Nothing Special   »   [go: up one dir, main page]

WO2013166568A1 - Polyolefin granulation method, polyolefin resin, polyolefin fibre, use of polyolefin fibre and cement composites - Google Patents

Polyolefin granulation method, polyolefin resin, polyolefin fibre, use of polyolefin fibre and cement composites Download PDF

Info

Publication number
WO2013166568A1
WO2013166568A1 PCT/BR2013/000141 BR2013000141W WO2013166568A1 WO 2013166568 A1 WO2013166568 A1 WO 2013166568A1 BR 2013000141 W BR2013000141 W BR 2013000141W WO 2013166568 A1 WO2013166568 A1 WO 2013166568A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
fiber
surfactant
resin
granulation process
Prior art date
Application number
PCT/BR2013/000141
Other languages
French (fr)
Portuguese (pt)
Inventor
Mauro alfredo SOTO OVIEDO
Cristovão de LEMOS
Fabiana PIRES DE CARVALHO
Original Assignee
Braskem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braskem S.A. filed Critical Braskem S.A.
Priority to CN201380036296.6A priority Critical patent/CN104619753B/en
Publication of WO2013166568A1 publication Critical patent/WO2013166568A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a process for producing polyolefins such as polyethylene, polypropylene or ethylene propylene copolymer or ethylene propylene butene terpolymer or a blend comprising two or more of these more polar components from the incorporation of additives for obtaining polyolefin resins, whose fibers provide a high performance to act as a reinforcing agent in fiber cement composites. More specifically, the polyolefin obtained via polymerization is modified by incorporating surfactants into the granulation process.
  • cement-based products may have cracks which, when subjected to stress, cause their rapid propagation, reducing the mechanical strength of the material.
  • the introduction of natural or synthetic fibers improves the performance of the concrete, since it can obstruct the propagation of micro cracks, delaying its onset and increasing its strength.
  • Fiber cement composites have greater ductility, bending capacity and resistance to fracture when compared to non-fiber reinforced materials, being used, for example, in the low cost construction industry, especially in the construction of roofs in housing, rural facilities, industrial warehouses and infrastructure works.
  • asbestos has been widely used in developing countries as a reinforcing agent in cement products due mainly to its low cost, availability and energy saving.
  • Asbestos has good dispersion properties in aqueous suspension without formation of agglomerates, good thermal, chemical, electrical and mechanical properties, the latter being the most important property, as it gives the final product a higher tensile strength.
  • Asbestos is used for the production of fiber cement sheets in the Hatschek process, in which a diluted suspension of asbestos fibers, cement and additive is mixed in a large tank where rotating cylinders capture this paste by suction, removing water from the mixture until obtaining plates of desired thickness.
  • new technologies and materials, such as natural and artificial fibers have been researched in both industry and academia, without neglecting their performance and competitiveness in the face of this problem. to asbestos.
  • PVA - poly (vinyl alcohol) fiber PAN - poly (acrylonitrile) fiber
  • glass fiber glass fiber
  • cellulose fiber PP - polypropylene fiber
  • PVA fiber was the first material to be used on a large scale due to its intrinsic properties such as high tensile strength, high modulus of elasticity, high alkaline matrix strength, hydrophilic behavior, good water dispersion and good adhesion with materials. cement-based. These properties mentioned for PVA fibers are also characteristic for PAN fibers. However, both materials require large and often impractical investments in developing countries. Fiberglass, in turn, has high mechanical resistance but low durability in alkaline medium. To ensure better performance of this material in alkaline media, the surface of these fibers should be modified by the addition of components. However, this solution is not commercially competitive.
  • Vegetable fibers such as cellulose, in spite of the low cost of the raw material, present unsatisfactory performance due to the low adherence with the cementitious matrix, low resistance to alkaline medium and humidity.
  • PP fibers have the lowest cost attractiveness and are used in many applications due to their good properties, such as high ductility, high specific energy, low moisture absorption and low density.
  • hydrophobic character and low roughness are properties that can compromise the adherence and anchorage of PP fibers to the cementitious matrix, respectively.
  • the document cites the use of polyalkylene glycols such as polyethylene glycol (PEG) and polypropylene glycol (PPG) as fiber lubricants at a concentration of 0.05 to 5% (w / w). These modifiers are applied to the fiber surface which is used in the production of fiber cement tiles.
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • the modifying agent described in US 2006234048 is added to the polyolefin fiber at one or more stages of the spinning process, with the function of improving the stretching of the yarn during its transportation in the various stages of production, thus minimizing the electrostatic charges from the spinning process. production.
  • Such modifying agents may be added in pure form, dilute solution, dispersion or emulsion. Contact of the modifying agent with the polymer mixture in the presence of water may still have the drawback of foaming during the process.
  • US6258159 describes an increase in the hydrophilicity of the PP fiber surface by the addition of additives in the melt during the PP fiber production process, which eventually migrate to the surface as they do not interact with the PP. matrix.
  • the surfactants described in US 6,258,159 are silicone surfactants, polysiloxanes, fatty acid esters, and polytetrahydrofuran which are chemically considered antifoam (avoids foaming). Such compounds with the defoaming function are often used in the reaction medium for producing PP fibers.
  • nonionic surfactants used in US 6258159 belong to the family of polyether polyols, and have dispersing characteristics, with the final system performance being affected by the surfactant lipophilic and hydrophilic balance (HLB), that is, this HLB balance affects the dispersion of surfactant in the polymeric matrix.
  • HLB surfactant lipophilic and hydrophilic balance
  • PP fibers can also be modified by surface treatment such as texturing, corona treatment, plasma, flame and chemical position.
  • surface treatment such as texturing, corona treatment, plasma, flame and chemical position.
  • the addition of the modifier only in the spinning step of a polypropylene fiber, whose process is in aqueous medium, may result in leaching and / or foaming losses, as the surfactant does not have good adhesion to the fiber, causing ease of leaching. .
  • the present invention describes the addition of nonionic and / or ionic surfactants to the polyolefin resin during the granulation step, ie, step prior to the spinning process.
  • the increased adhesion between the PP fiber and the cementitious matrix is a consequence of the addition of this modifying agent to the PP resin during granulation and not to the spinning step as described in the prior art.
  • the present invention provides for the addition of a surfactant having a polar and a nonpolar part that contributes to the increase in hydrophilicity of the PP fiber surface, which in turn improves the anchoring of the polymeric fiber to the cementitious composite constituents.
  • the process described in the present invention not only makes polyolefin more competitive in the market, but also promotes increased surface polarity of polyolefin fiber (higher surface tension) and therefore greater adhesion as a cementitious composite by incorporating surfactants nonionic and / or ionic.
  • the main object of the present invention is to provide a process for the preparation of a modified polymeric resin with non-surfactant ionic and / or ionic, involving the addition of said surfactant to said post-reactor resin, that is, during the granulation step of the molten polyolefin spheres, with subsequent pelletization of that material.
  • the present invention also aims to describe a modified polar polymeric resin having a higher polarity and incorporating at least one nonionic and / or ionic surfactant in a polyolefin selected from polypropylene homopolymer or ethylene homopolymer or ethylene copolymer -propylene or ethylene-propylene-butene terpolymer or a blend comprising two or more of these components via the granulation process, promoting an increase in the surface polarity of the polyolefin fiber and, consequently, a higher surface tension of the fiber.
  • a polyolefin selected from polypropylene homopolymer or ethylene homopolymer or ethylene copolymer -propylene or ethylene-propylene-butene terpolymer or a blend comprising two or more of these components via the granulation process, promoting an increase in the surface polarity of the polyolefin fiber and, consequently, a higher surface tension of the fiber.
  • the modified polymeric resin of the present invention is employed in the fabrication of lower surface tension fibers, allowing its better dispersion and adhesion in cementitious composites with excellent mechanical properties.
  • the present invention also discloses a polyolefin fiber having surface polarity and comprising a polymeric resin modified with ionic and nonionic surfactants obtained via granulation.
  • the present invention relates to the use of polyolefin fiber which is used as a reinforcement material in cementitious composites as well as to a cementitious composite comprising said polyolefin fiber.
  • the present invention describes a process involving the addition of surfactants to the post reactor resin, that is, the additive is performed at the granulation stage of the molten polyolefin spheres, with subsequent pelletization of that material, providing a modified polymer resin more specifically, modified polyolefin resin with nonionic and / or ionic surfactants.
  • the present invention has as advantage the production of polyolefin resin modified by incorporation of nonionic and / or ionic surfactant by the granulation process, which will be used in the manufacture of polyolefins fibers with higher surface polarity (surface tension), allowing having its best dispersion and adhesion in cementitious composites, resulting in a product with excellent mechanical properties.
  • the present invention has the advantage of the low incorporation cost to obtain the polyolefin resin whose fibers have greater polar character, which in turn makes this solution more competitive.
  • Another advantage of the granulation process of the present invention is that the modifying agent (surfactant) is added only in pure form through a specific device coupled to the extruder (liquid metering pump).
  • the modifying agent is mixed into the polymeric matrix in the melt state and under shear which contributes to better incorporation of this additive into the polyolefin resin.
  • surfactants are often employed to modify the reaction medium to solubilize low solubility species or to promote a new medium that can modify the reaction rate. Addition of surfactants to a polymer in the molten state during the granulation step has not been described or suggested in the state of the art.
  • the state of the art refers to modifications of the polyolefin fiber while the present invention provides for modification of the polyolefin resin.
  • Addition of the surfactants to the polyolefin granulation step of the present invention allows for better incorporation of the surfactants into the resin and consequently provides increased adhesion between the polyolefin fiber and the cementitious composite without leaching losses.
  • Figure 1 is an atomic force microscopy image of pure polypropylene fiber
  • Figure 2 is a picture of surfactant polypropylene fiber 1.
  • the technology developed in the present invention proposes a process involving the addition of surfactants in the post reactor resin, that is, the additive is performed in the granulation stage of the molten polyolefin spheres, with subsequent pelletization of this material.
  • Modified polymer resins more specifically, modified polyolefin resin of polar character to the addition of nonionic and / or ionic surfactants, promoting increased surface polarity of the polyolefin fiber and therefore greater adhesion with the composite are also described. cementitious.
  • the quantitative range of surfactant added during the granulation step comprises from 0.1-10% by weight, preferably from 0.1 to 7%, and the quantitative polymer range is from 90.0 to 99.9% by weight.
  • the polyolefin used in the polymerization process is a polypropylene homopolymer or ethylene propylene homopolymer or ethylene propylene copolymer or ethylene propylene butene terpolymer or a blend comprising two or more of these components.
  • the polymeric blend can be obtained in both reactor and post reactor.
  • the polyolefin used is preferably a polypropylene homopolymer consisting only of repetitive units of propylene monomers having a melt index in the range of 2.0 to 40 g / 10min (as determined by the standard that determines the standard test method for melt flow rates of ASTM D-1238 thermoplastics at 230 ° C and 2.16 kg load cell), preferably 4 to 20 g / 10min, most preferably 16 to 20 g / 10min.
  • This homopolymer is obtained via gaseous or liquid phase or slurry polymerization using Ziegler-Natta or metallocene (A) catalyst.
  • the surfactants may be ionic and / or nonionic.
  • Ionic surfactants are selected from hexadecyltrimethylammonium derivatives and dodecylamine derivatives and / or mixtures thereof.
  • Nonionic surfactants are selected from: compounds of the polyester family polyols and must have polar functional groups, allowing for increased interaction between reinforcement fibers and the cementitious matrix.
  • Nonionic surfactants may further comprise compounds of C12 - C18 saturated and unsaturated hydrocarbon chains containing at least one ethylene oxide (EO) unit and one propene oxide (PO) unit up to a maximum of 14EO and 20PO It may further comprise non-ionic triblock copolymers EO / PO / EO (known as Poloxamers) and polyalkylene glycols at concentrations of 0.1-10%. (w / w) during the granulation process in single screw and twin screw extruders.
  • the increase in surface hydrophilicity is achieved by the addition of lubricants, antistatic agents, surfactants, fatty acid chain compounds, alkoxylated alcohols and their derivatives, and polymers with polar functional groups.
  • these additives can also be added to the top oil used in the step prior to fiber stretching, leading to better performance in fiber reinforcing properties.
  • the polymeric composition disclosed herein comprises polypropylene, preferably in the form of a porous sphere, added with nonionic surfactants for the purpose of increasing their polarity (surface tension).
  • nonionic surfactants for the purpose of increasing their polarity (surface tension).
  • other additives such as antioxidants, nucleating agents, neutralizers, oils, organic and inorganic pigments and mineral fillers may be added to the polypropylene polymer compositions of the present invention.
  • the process of incorporating the nonionic and / or ionic surfactant in the polypropylene resin occurs in the granulation process, whose surfactant, in pure form, is dosed by a device attached to the extruder directly in the melt or directly in the sphere (wetting) after polymerization process.
  • the resin of the present invention preferably has a melt index of 4 to 20 g / 10 min, more preferably 16 to 20 g / 10 min, toughness in the range of 5 to 15 cN / dtex and chemical binding energy in the range of 1 to 6 J / m2
  • the present invention is also intended for the production of fiber reinforcing composites whose cross-section is preferably round, not excluding the possibility of being triangular or trilobal.
  • Polypropylene fibers have a high toughness of at least 4 cN / dtex, more preferably at least 7 cN / dtex and particularly 8 to 9 cN / dtex. This range of toughness can be achieved by adjusting the fiber extrusion conditions using the process in an appropriate manner.
  • the fibers obtained in multifilament extruders are generally in the form of cut fibers having a length in the range of 2 to 20 mm, preferably 8 to 2 mm.
  • the fibers according to the present invention are used as reinforcing agent in fibro-synthetic composites in the proportion of 0.2 to 5% by weight relative to the finished product (composite).
  • Example 1 For the preparation of said compositions, the following materials were used:
  • Polypropylene homopolymer of melt index of 18 g / 10min.
  • Surfactant 1 3EO / 6PO ratio lauryl alcohol copolymer, viscosity 45 cP (25 ° C) and density 0.96 g / cm3 (25 ° C).
  • Table 1 shows the percentage by weight of surfactant added to polypropylene during the granulation step.
  • the pellets thus obtained were processed in a multifilament extruder to obtain polypropylene fibers, which were characterized by pull-out testing, atomic force microscopy (AFM) and mechanical properties, for example, toughness and elongation.
  • AFM atomic force microscopy
  • mechanical properties for example, toughness and elongation.
  • Fiber adhesion in a cementitious matrix was assessed by a laboratory test in which a filament is embedded to a length between 0.5 mm to 2 mm in a formulation that simulates the composite matrix comprised of cement, fillers, sand, water, plasticizers and viscosity modifiers, in the following mass ratios, respectively: 1, 0; 1, 2; 0.8; 0.55; 0.01; 0.001.
  • the free end of the filament is subjected to traction, being determined the tensile force and the displacement point.
  • the pull-out test was performed with a 0.1 N load cell and tensile speed from 0.001 to 0.01 mm / min. From the decoupling force versus displacement curve it is possible to determine the chemical bonding energy (Gd) and frictional force ( ⁇ ) between the fiber and the cementitious composite.
  • Example 2 compared to Example 1 shows the effect of surfactant 1 on the mechanical properties of the fiber and its performance in adhesion tests on cementitious composite.
  • Resin comprising higher polarity obtained by granulation has a melt index preferably from 4 to 20 g / 10 min, more preferably from 16 to 20 g / 10 min, toughness in the range of 5 to 15 cN / dtex and chemical bonding energy in the range of 1 to 6 J / m2.
  • Figure 1 shows the atomic force microscopy image of pure polypropylene fiber, on which there is a continuous and non-contrasting surface.
  • Figure 2 it is possible to observe the modification of the fiber surface by the presence of dispersed phase (dark coloration) in the polymer matrix.
  • propylene showing the migration of surfactants to the fiber surface, thus giving an increase in hydrophilicity (higher polarity).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Sealing Material Composition (AREA)

Abstract

The present invention relates to a method for producing polyolefin with enhanced polar character by incorporation of surfactants in order to provide polymer resins used for the production of fibres with improved performance that can be used as reinforcing agents in cement composites. More specifically, the polyolefin obtained by polymerization is modified by incorporation of surfactants during the granulation process. Also described is a polymer resin of improved polarity consisting of a polyethylene homopolymer or a polypropylene homopolymer, copolymer or terpolymer, or a blend of two or more of these components, and at least one non-ionic and/or ionic surfactant having a partially polar structure for preparing reinforcing fibres for use in cement composites for manufacturing structural and non-structural components in the field of civil engineering, such as bridge girders, slabs, pavements, large concrete containers, sealing panels, high-performance tiles, inter alia.

Description

Relatório Descritivo da Patente de Invenção para "PROCESSO DE GRANULAÇÃO DE POLIOLEFINA, RESINA DE POLIOLEFINA, FIBRA DE POLIOLEFINA, USO DA FIBRA DE POLIOLEFINA E COMPÓSITO Cl- MENTÍCIO".  Report of the Invention Patent for "POLYLEPHINE GRANULATION PROCESS, POLYLEPHINE RESIN, POLYLEPHINE FIBER, POLYLEPHINE FIBER USE AND CLENTENT COMPOSITE".
A presente invenção refere-se a um processo de produção de poliolefinas tais como polietileno, polipropileno ou copolímero etileno-propileno ou terpo- límero de etileno-propileno-buteno ou uma blenda compreendendo dois ou mais destes componentes com maior caráter polar proveniente da incorporação de aditivos para a obtenção de resinas poliolefínicas, cujas fibras for- necem um alto desempenho para atuar como agente de reforço em compósitos de fibrocimento. Mais especificamente, a poliolefina obtida via polimerização é modificada pela incorporação de tensoativos no processo de granulação. The present invention relates to a process for producing polyolefins such as polyethylene, polypropylene or ethylene propylene copolymer or ethylene propylene butene terpolymer or a blend comprising two or more of these more polar components from the incorporation of additives for obtaining polyolefin resins, whose fibers provide a high performance to act as a reinforcing agent in fiber cement composites. More specifically, the polyolefin obtained via polymerization is modified by incorporating surfactants into the granulation process.
Descrição do estado da técnica  Description of the prior art
O mercado da construção civil aumentou significativamente na última década, principalmente devido à melhoria da qualidade de vida dos países em desenvolvimento. Somado a isso, programas habitacionais, mobilidade urbana e eventos sócio-econômicos mundiais têm contribuído no crescimento desse setor. A necessidade por materiais que atendam o crescimento desse segmento tem motivado a busca por produtos que sejam competitivos e que apresentem bom desempenho. Uma das principais matérias-primas utilizadas nesses segmentos são produtos à base de cimento, devido a sua excelente versatilidade, podendo atender a demanda específica relativa ao meio ambiente ao qual estará sujeito, configuração arquitetônica projetada, aos requisitos de durabilidade, técnicos e de sustentabilidade. The construction market has increased significantly in the last decade, mainly due to the improved quality of life of developing countries. In addition, housing programs, urban mobility and global socio-economic events have contributed to the growth of this sector. The need for materials that meet the growth of this segment has motivated the search for products that are competitive and perform well. One of the main raw materials used in these segments are cement-based products, due to their excellent versatility, and can meet the specific environmental demands to which they will be subjected, projected architectural configuration, durability, technical and sustainability requirements.
No entanto, os produtos à base de cimento podem apresentar fissuras, que, quando submetidos à tensão, ocasionam sua rápida propagação, reduzindo a resistência mecânica do material. Dessa forma, através da introdução de fibras naturais ou sintéticas observa-se uma melhora no desempenho do concreto, uma vez que pode obstruir a propagação de microfissuras, retardando seu início e aumentando sua resistência. Os compósitos de fibrocimento apresentam maior ductibilidade, capacidade de flexão e resistência à fratura quando comparados a materiais não fibro-reforçados, sendo utilizados, por exemplo, na indústria de construção de baixo custo, especialmente na construção de coberturas em habitações, instalações rurais, galpões industriais e obras de infraestrutura. However, cement-based products may have cracks which, when subjected to stress, cause their rapid propagation, reducing the mechanical strength of the material. Thus, the introduction of natural or synthetic fibers improves the performance of the concrete, since it can obstruct the propagation of micro cracks, delaying its onset and increasing its strength. Fiber cement composites have greater ductility, bending capacity and resistance to fracture when compared to non-fiber reinforced materials, being used, for example, in the low cost construction industry, especially in the construction of roofs in housing, rural facilities, industrial warehouses and infrastructure works.
Nas últimas décadas, o amianto tem sido largamente utilizado nos países em desenvolvimento como agente de reforço em produtos cimentícios em razão de, principalmente, seu baixo custo, disponibilidade e economia de energia. O amianto apresenta boas propriedades de dispersão em suspensão aquosa sem formação de aglomerados, boas propriedades térmicas, químicas, elétricas e mecânicas, sendo esta última a mais importante propriedade, pois confere ao produto final uma maior resistência sob tensão. In recent decades, asbestos has been widely used in developing countries as a reinforcing agent in cement products due mainly to its low cost, availability and energy saving. Asbestos has good dispersion properties in aqueous suspension without formation of agglomerates, good thermal, chemical, electrical and mechanical properties, the latter being the most important property, as it gives the final product a higher tensile strength.
O amianto é utilizado para a produção de chapas de fibrocimento no processo Hatschek, no qual uma suspensão diluída de fibras de amianto, cimento e aditivo é misturada em um grande tanque onde cilindros rotatórios captam essa pasta através de sucção, removendo a água da mistura até a obtenção de placas com espessura desejada. No entanto, em decorrência de potenciais riscos à saúde humana que o amianto apresenta, novas tecnologias e materiais, por exemplo, fibras naturais e artificiais, vêm sendo pesquisados tanto na indústria quanto na área académica, sem negligenciar seu desem- penho e sua competitividade frente ao amianto. Asbestos is used for the production of fiber cement sheets in the Hatschek process, in which a diluted suspension of asbestos fibers, cement and additive is mixed in a large tank where rotating cylinders capture this paste by suction, removing water from the mixture until obtaining plates of desired thickness. However, as a result of the potential risks to human health posed by asbestos, new technologies and materials, such as natural and artificial fibers, have been researched in both industry and academia, without neglecting their performance and competitiveness in the face of this problem. to asbestos.
Entres os principais materiais utilizados para substituir o amianto, tem-se a fibra de PVA - poli(álcool vinílico), fibra de PAN - poli(acrilonitrila), fibra de vidro, fibra de celulose e fibra de PP - polipropileno.  Among the main materials used to replace asbestos are PVA - poly (vinyl alcohol) fiber, PAN - poly (acrylonitrile) fiber, glass fiber, cellulose fiber and PP - polypropylene fiber.
A fibra de PVA foi o primeiro material a ser utilizado em larga escala devido as suas propriedades intrínsecas, tais como alta resistência à tração, alto módulo de elasticidade, alta resistência em matriz alcalina, comportamento hidrofílico, boa dispersão em água e boa adesão com materiais à base de cimento. Estas propriedades citadas para as fibras de PVA também são características para as fibras de PAN. Porém, ambos os materiais requerem investimentos vultosos e muitas vezes impraticáveis no caso de países em desenvolvimento. A fibra de vidro, por sua vez, apresenta alta resistência mecânica, porém baixa durabilidade em meio alcalino. Para garantir melhor desempenho desse material em meio alcalino, a superfície dessas fibras deve ser modificada pela adição de componentes. No entanto, essa solução não é comercialmen- te competitiva. PVA fiber was the first material to be used on a large scale due to its intrinsic properties such as high tensile strength, high modulus of elasticity, high alkaline matrix strength, hydrophilic behavior, good water dispersion and good adhesion with materials. cement-based. These properties mentioned for PVA fibers are also characteristic for PAN fibers. However, both materials require large and often impractical investments in developing countries. Fiberglass, in turn, has high mechanical resistance but low durability in alkaline medium. To ensure better performance of this material in alkaline media, the surface of these fibers should be modified by the addition of components. However, this solution is not commercially competitive.
Já as fibras vegetais, tais como celulose, apesar do baixo custo da matéria- prima, apresentam desempenho insatisfatório devido à baixa aderência com a matriz cimentícia, baixa resistência ao meio alcalino e umidade.  Vegetable fibers, such as cellulose, in spite of the low cost of the raw material, present unsatisfactory performance due to the low adherence with the cementitious matrix, low resistance to alkaline medium and humidity.
Por fim, as fibras de PP têm como atratividade o menor custo e são utiliza- das em várias aplicações devido às boas propriedades que apresentam, como, por exemplo, elevada ductibilidade, alta energia específica, baixa absorção à umidade e baixa densidade. Contudo, o caráter hidrofóbico e a baixa rugosidade são propriedades que podem comprometer a aderência e a ancoragem das fibras de PP à matriz cimentícia, respectivamente. Finally, PP fibers have the lowest cost attractiveness and are used in many applications due to their good properties, such as high ductility, high specific energy, low moisture absorption and low density. However, the hydrophobic character and low roughness are properties that can compromise the adherence and anchorage of PP fibers to the cementitious matrix, respectively.
As propriedades finais de um compósito fibro-sintético reforçado dependem fortemente das propriedades dos componentes individuais, da concentração de reforço presente no compósito e, principalmente, da interação interfacial entre a matriz e o reforço. Portanto, a modificação física ou química da superfície da fibra pode ser uma alternativa para a obtenção de um compósito com propriedades desejáveis. O estado da técnica comprova que esforços técnicos têm sido direcionados para a modificação superficial de fibras de PP com o objetivo de melhorar a interação interfacial entre a matriz-fibra. O documento de patente US 20060234048 descreve o uso de agentes anti- estáticos, surfactantes, compostos poliméricos com cadeia graxa hidrofóbica tendo grupos funcionais polares como modificadores de fibras de poliolefi- nas. O documento cita o uso de polialquilenoglicóis, tais como, polietilenogli- col (PEG) e polipropilenoglicol (PPG), como lubrificantes das fibras na concentração de 0,05 a 5% (m/m). Estes modificadores são aplicados na superfície da fibra, a qual é utilizada na produção de telhas de fibrocimento. No entanto, nesta técnica tem-se a adição do agente modificante na etapa posterior ao estiramento da fibra (etapa de fiação). Nesse processo de recobri- mento não se obtém uma boa adesão do aditivo à superfície da fibra polimé- rica, uma vez que ocorre a perda do mesmo durante o processo Hatschek e, portanto, compromete o desempenho da fibra como reforço. Além disso, o aumento da força de adesão apresentada nesse documento não se refere diretamente à energia de ligação química entre a fibra e a matriz, mas tão somente ao efeito do aditivo na formulação cimentícia. The final properties of a reinforced fibro-synthetic composite strongly depend on the properties of the individual components, the reinforcement concentration present in the composite and especially the interfacial interaction between the matrix and the reinforcement. Therefore, physical or chemical modification of the fiber surface may be an alternative to obtain a composite with desirable properties. The state of the art proves that technical efforts have been directed towards surface modification of PP fibers with the objective of improving the interfacial matrix-fiber interaction. US 20060234048 describes the use of antistatic agents, surfactants, hydrophobic grease chain polymer compounds having polar functional groups as polyolefin fiber modifiers. The document cites the use of polyalkylene glycols such as polyethylene glycol (PEG) and polypropylene glycol (PPG) as fiber lubricants at a concentration of 0.05 to 5% (w / w). These modifiers are applied to the fiber surface which is used in the production of fiber cement tiles. However, in this technique there is the addition of the modifying agent in the step after fiber stretching (spinning step). In this coating process a good adhesion of the additive to the surface of the polymeric fiber is not achieved. rich as it is lost during the Hatschek process and therefore compromises fiber performance as reinforcement. Furthermore, the increase in adhesion strength presented in this document does not refer directly to the chemical bonding energy between fiber and matrix, but only to the effect of the additive on the cementitious formulation.
O agente modificante descrito na US 2006234048 é adicionado na fibra de poliolefina em um ou mais estágios do processo de fiação, com a função de melhorar o estiramento do fio durante seu transporte nos vários estágios de produção, minimizando assim as cargas eletrostáticas oriundas do processo de produção. Esses agentes modificadores podem ser adicionados na forma pura, solução diluída, dispersão ou emulsão. O contato do agente modificante com a mistura polimérica na presença de água pode ainda apresentar o inconveniente de formar espuma durante o processo.  The modifying agent described in US 2006234048 is added to the polyolefin fiber at one or more stages of the spinning process, with the function of improving the stretching of the yarn during its transportation in the various stages of production, thus minimizing the electrostatic charges from the spinning process. production. Such modifying agents may be added in pure form, dilute solution, dispersion or emulsion. Contact of the modifying agent with the polymer mixture in the presence of water may still have the drawback of foaming during the process.
O documento de patente US6258159 descreve um aumento da hidrofilicida- de da superfície da fibra de PP pela adição de aditivos na massa de polímero fundido, durante o processo de produção da fibra de PP, que acabam migrando para a superfície por não apresentarem interação com a matriz. US6258159 describes an increase in the hydrophilicity of the PP fiber surface by the addition of additives in the melt during the PP fiber production process, which eventually migrate to the surface as they do not interact with the PP. matrix.
A modificação apenas na etapa da produção da fibra pode comprometer a dispersão destes aditivos na matriz polimérica, prejudicando a interação in- terfacial fibra-matriz cimentícia. Ademais, os agentes tensoativos descritos na US 6258159 são surfactantes de silicone, polissiloxanos, ésteres de ácidos graxos e politetra-hidrofurano que são quimicamente considerados anti- espumantes (evita a formação de espumas). Esses compostos com a função antiespumante são frequentemente utilizados em meio reacional de produ- ção de fibras de PP. Por outro lado, os agentes tensoativos não iónicos utilizados na US 6258159 pertencem à família dos polióis poliéteres, e possuem características dispersantes, sendo a performance do sistema final afetada pelo balanço lipofílico e hidrofílico (HLB) do tensoativo, ou seja, esse balanço HLB afeta a dispersão do surfactante na matriz polimérica. Modification only at the fiber production stage may compromise the dispersion of these additives in the polymeric matrix, impairing the cement-fiber-matrix interface. In addition, the surfactants described in US 6,258,159 are silicone surfactants, polysiloxanes, fatty acid esters, and polytetrahydrofuran which are chemically considered antifoam (avoids foaming). Such compounds with the defoaming function are often used in the reaction medium for producing PP fibers. On the other hand, the nonionic surfactants used in US 6258159 belong to the family of polyether polyols, and have dispersing characteristics, with the final system performance being affected by the surfactant lipophilic and hydrophilic balance (HLB), that is, this HLB balance affects the dispersion of surfactant in the polymeric matrix.
As fibras de PP também podem ser modificadas através de tratamento superficial, tais como, texturização, tratamento corona, plasma, à chama e de- posição química. Porém, essas soluções são de alta complexidade e elevado custo, o que as tornam inviáveis industrialmente. PP fibers can also be modified by surface treatment such as texturing, corona treatment, plasma, flame and chemical position. However, these solutions are of high complexity and high cost, making them industrially unviable.
Convencionalmente, a adição do modificador somente na etapa de fiação de uma fibra de polipropileno, cujo processo é em meio aquoso, pode acarretar em perdas por lixiviação e ou espumação, visto que o surfactante não sofre boa aderência à fibra, ocasionando a facilidade de lixiviação.  Conventionally, the addition of the modifier only in the spinning step of a polypropylene fiber, whose process is in aqueous medium, may result in leaching and / or foaming losses, as the surfactant does not have good adhesion to the fiber, causing ease of leaching. .
A presente invenção descreve a adição de tensoativos não iónicos e/ou iónicos na resina de poliolefina durante a etapa de granulação, ou seja, etapa anterior ao processo de fiação. Sendo assim, o aumento da adesão entre a fibra de PP e a matriz cimentícia é consequência da adição desse agente modificador na resina de PP durante a granulação e não na etapa de fiação conforme descrito no estado da técnica. The present invention describes the addition of nonionic and / or ionic surfactants to the polyolefin resin during the granulation step, ie, step prior to the spinning process. Thus, the increased adhesion between the PP fiber and the cementitious matrix is a consequence of the addition of this modifying agent to the PP resin during granulation and not to the spinning step as described in the prior art.
Adicionalmente, a presente invenção prevê a adição de um tensoativo que tem uma parte polar e outra apolar que contribui no aumento da hidrofilicida- de da superfície da fibra de PP, que por sua vez melhora o ancoramento da fibra polimérica aos constituintes do compósito cimentício.  Additionally, the present invention provides for the addition of a surfactant having a polar and a nonpolar part that contributes to the increase in hydrophilicity of the PP fiber surface, which in turn improves the anchoring of the polymeric fiber to the cementitious composite constituents.
Em vista das fragilidades das técnicas que compõem o estado da técnica no segmento de compósitos com fibras sintéticas, onde na maioria dos casos a modificação do polipropileno, obtido após etapa de polimerização, com a utilização de outros materiais, tais como anidrido maleico, metacrilato de gli- cidila e ácido acrílico, apresenta uma solução inovadora que envolve a incorporação de tensoativos não iónicos e/ou iónicos em poliolefinas na etapa de granulação. Estes tensoativos não iónicos e/ou iónicos também podem ser denominados como surfactantes ou agentes modificadores. In view of the weaknesses of the techniques that make up the state of the art in the segment of synthetic fiber composites, where in most cases the modification of polypropylene, obtained after polymerization step, with the use of other materials such as maleic anhydride, methacrylate glycidyl and acrylic acid, presents an innovative solution involving the incorporation of nonionic and / or ionic surfactants in polyolefins in the granulation step. These nonionic and / or ionic surfactants may also be termed as surfactants or modifying agents.
Além disso, o processo descrito na presente invenção não apenas torna a poliolefina mais competitiva no mercado, como também promove o aumento da polaridade superficial da fibra da poliolefina (maior tensão superficial) e, portanto, maior adesão como compósito cimentício, pela incorporação de tensoativos não iónicos e/ou iónicos. In addition, the process described in the present invention not only makes polyolefin more competitive in the market, but also promotes increased surface polarity of polyolefin fiber (higher surface tension) and therefore greater adhesion as a cementitious composite by incorporating surfactants nonionic and / or ionic.
Objetivos da invenção Objectives of the invention
O principal objetivo da presente invenção consiste em prover um processo para a preparação de uma resina polimérica modificada com tensoativos não iónicos e/ou iónicos, envolvendo a adição do dito tensoativo na dita resina pós-reator, ou seja, durante a etapa de granulação das esferas da poliolefina no estado fundido, com posterior peletização desse material. The main object of the present invention is to provide a process for the preparation of a modified polymeric resin with non-surfactant ionic and / or ionic, involving the addition of said surfactant to said post-reactor resin, that is, during the granulation step of the molten polyolefin spheres, with subsequent pelletization of that material.
A presente invenção tem por objetivo também descrever uma resina polimé- rica modificada com maior caráter polar e consiste na incorporação de pelo menos um tensoativo não iônico e/ou iônico em uma poliolefina selecionada dentre homopolímero de polipropileno ou homopolímero de etileno ou copo- límero etileno-propileno ou terpolímero de etileno-propileno-buteno ou uma blenda compreendendo dois ou mais destes componentes via processo de granulação, promovendo um aumento da polaridade superficial da fibra de poliolefina e, consequentemente, uma maior tensão superficial da fibra. The present invention also aims to describe a modified polar polymeric resin having a higher polarity and incorporating at least one nonionic and / or ionic surfactant in a polyolefin selected from polypropylene homopolymer or ethylene homopolymer or ethylene copolymer -propylene or ethylene-propylene-butene terpolymer or a blend comprising two or more of these components via the granulation process, promoting an increase in the surface polarity of the polyolefin fiber and, consequently, a higher surface tension of the fiber.
A resina polimérica modificada da presente invenção é empregada na confecção de fibras de menor tensão superficial, permitindo sua melhor dispersão e aderência em compósitos cimentícios e com excelentes propriedades mecânicas. The modified polymeric resin of the present invention is employed in the fabrication of lower surface tension fibers, allowing its better dispersion and adhesion in cementitious composites with excellent mechanical properties.
A presente invenção também descreve uma fibra de poliolefina apresentando polaridade superficial e compreendendo uma resina polimérica modificada com tensoativos iónicos e não iónicos obtida via granulação.  The present invention also discloses a polyolefin fiber having surface polarity and comprising a polymeric resin modified with ionic and nonionic surfactants obtained via granulation.
Por fim, a presente invenção refere-se ao uso da fibra de poliolefina que é utilizada como um material de reforço em compósitos cimentícios bem como a um compósito cimentício compreendendo a dita fibra de poliolefina. Finally, the present invention relates to the use of polyolefin fiber which is used as a reinforcement material in cementitious composites as well as to a cementitious composite comprising said polyolefin fiber.
Breve descrição da invenção Brief Description of the Invention
A presente invenção descreve um processo que envolve a adição de tensoativos na resina de pós-reator, ou seja, a aditivação é realizada na etapa de granulação das esferas da poliolefina no estado fundido, com posterior peletização desse material, fornecendo uma resina de polímero modificado, mais especificamente, resina de poliolefina modificada com tensoativos não iónicos e/ou iónicos.  The present invention describes a process involving the addition of surfactants to the post reactor resin, that is, the additive is performed at the granulation stage of the molten polyolefin spheres, with subsequent pelletization of that material, providing a modified polymer resin more specifically, modified polyolefin resin with nonionic and / or ionic surfactants.
A presente invenção apresenta como vantagem a produção de resina polio- lefínica modificada pela incorporação de tensoativo não iônico e/ou iônico pelo processo de granulação, o qual será empregado na confecção de fibras de poliolefinas com maior polaridade superficial (tensão superficial), permi- tindo sua melhor dispersão e aderência em compósitos cimentícios, resultando em um produto com excelentes propriedades mecânicas. The present invention has as advantage the production of polyolefin resin modified by incorporation of nonionic and / or ionic surfactant by the granulation process, which will be used in the manufacture of polyolefins fibers with higher surface polarity (surface tension), allowing having its best dispersion and adhesion in cementitious composites, resulting in a product with excellent mechanical properties.
Adicionalmente, a presente invenção apresenta como vantagem o baixo custo de incorporação para se obter a resina de poliolefina cujas fibras apresen- tam maior caráter polar, que, por sua vez, torna essa solução mais competitiva. In addition, the present invention has the advantage of the low incorporation cost to obtain the polyolefin resin whose fibers have greater polar character, which in turn makes this solution more competitive.
Outra vantagem do processo de granulação da presente invenção consiste no fato do agente modificador (tensoativo) ser adicionado somente na forma pura através de dispositivo específico acoplado à extrusora (bomba dosado- ra de líquidos).  Another advantage of the granulation process of the present invention is that the modifying agent (surfactant) is added only in pure form through a specific device coupled to the extruder (liquid metering pump).
Durante o processo de granulação, o agente modificador é misturado na matriz polimérica no estado fundido e sobre cisalhamento que contribui para melhor incorporação deste aditivo à resina poliolefínica.  During the granulation process, the modifying agent is mixed into the polymeric matrix in the melt state and under shear which contributes to better incorporation of this additive into the polyolefin resin.
Além disso, os tensoativos são frequentemente empregados para modificar o meio reacional permitindo solubilizar espécies de baixa solubilidade ou promover um novo meio que pode modificar a velocidade reacional. A adição de tensoativos em um polímero no estado fundido durante a etapa de granulação não foi descrito nem sugerido no estado da técnica. In addition, surfactants are often employed to modify the reaction medium to solubilize low solubility species or to promote a new medium that can modify the reaction rate. Addition of surfactants to a polymer in the molten state during the granulation step has not been described or suggested in the state of the art.
Assim, o estado da técnica refere-se a modificações da fibra de poliolefinas enquanto a presente invenção prevê a modificação da resina de poliolefina. A adição dos tensoativos na etapa de granulação da poliolefina da presente invenção permite uma melhor incorporação dos tensoativos na resina e consequentemente fornece um aumento da adesão entre a fibra de poliolefina e o compósito cimentício, sem perdas por lixiviação. Thus, the state of the art refers to modifications of the polyolefin fiber while the present invention provides for modification of the polyolefin resin. Addition of the surfactants to the polyolefin granulation step of the present invention allows for better incorporation of the surfactants into the resin and consequently provides increased adhesion between the polyolefin fiber and the cementitious composite without leaching losses.
Breve descrição dos desenhos Brief Description of Drawings
A presente invenção será, a seguir, mais detalhadamente descrita com base em um exemplo de execução representado nos desenhos. As figuras mostram:  The present invention will hereinafter be described in more detail based on an exemplary embodiment shown in the drawings. The figures show:
figura 1 - é uma imagem de microscopia de força atómica da fibra de poli- propileno puro; Figure 1 is an atomic force microscopy image of pure polypropylene fiber;
figura 2 - é uma imagem de fibra de polipropileno com surfactante 1. Figure 2 is a picture of surfactant polypropylene fiber 1.
Descrição detalhada da invenção A tecnologia desenvolvida na presente invenção propõe um processo envolvendo a adição de tensoativos na resina de pós-reator, ou seja, a aditivação é realizada na etapa de granulação das esferas da poliolefina no estado fundido, com posterior peletização desse material. Também são descritas resi- nas de polímero modificado, mais especificamente, resina de poliolefina modificada de caráter polar à adição de tensoativos não iónicos e/ou iónicos, promovendo um aumento da polaridade superficial da fibra da poliolefina e, portanto, maior adesão com o compósito cimentício. Detailed Description of the Invention The technology developed in the present invention proposes a process involving the addition of surfactants in the post reactor resin, that is, the additive is performed in the granulation stage of the molten polyolefin spheres, with subsequent pelletization of this material. Modified polymer resins, more specifically, modified polyolefin resin of polar character to the addition of nonionic and / or ionic surfactants, promoting increased surface polarity of the polyolefin fiber and therefore greater adhesion with the composite are also described. cementitious.
A faixa quantitativa de tensoativo adicionado durante a etapa de granulação compreende entre 0,1 - 10% em massa, preferencialmente de 0,1 a 7%, e a faixa quantitativa de polímero é de 90,0 a 99,9 % em massa.  The quantitative range of surfactant added during the granulation step comprises from 0.1-10% by weight, preferably from 0.1 to 7%, and the quantitative polymer range is from 90.0 to 99.9% by weight.
Está previsto na presente invenção que a poliolefina utilizada no processo de polimerização é um homopolímero de polipropileno ou homopolímero de etileno ou copolímero etileno-propileno ou terpolímero etileno-propileno-buteno ou uma blenda compreendendo dois ou mais destes componentes. A blenda polimérica pode ser obtida tanto em reator como em pós-reator. It is provided in the present invention that the polyolefin used in the polymerization process is a polypropylene homopolymer or ethylene propylene homopolymer or ethylene propylene copolymer or ethylene propylene butene terpolymer or a blend comprising two or more of these components. The polymeric blend can be obtained in both reactor and post reactor.
A poliolefina utilizada é preferencialmente um homopolímero de polipropileno que consiste somente em unidades repetitivas de monômeros de propileno, apresentando índice de fluidez na faixa de 2,0 a 40 g/10min (conforme de- terminado pela norma que determina o método de teste padrão para taxas de fluxo de fusão de termoplásticos ASTM D-1238, na temperatura de 230°C e célula de carga de 2,16 kg), preferencialmente 4 a 20 g/IOmin, sendo mais preferencialmente 16 a 20 g/10min. Esse homopolímero é obtido via polimerização em fase gasosa ou líquida ou lama, utilizando-se catalisador Ziegler- Natta ou metaloceno (A). The polyolefin used is preferably a polypropylene homopolymer consisting only of repetitive units of propylene monomers having a melt index in the range of 2.0 to 40 g / 10min (as determined by the standard that determines the standard test method for melt flow rates of ASTM D-1238 thermoplastics at 230 ° C and 2.16 kg load cell), preferably 4 to 20 g / 10min, most preferably 16 to 20 g / 10min. This homopolymer is obtained via gaseous or liquid phase or slurry polymerization using Ziegler-Natta or metallocene (A) catalyst.
Os tensoativos podem ser iónicos e/ ou não iónicos.  The surfactants may be ionic and / or nonionic.
Os tensoativos iónicos são selecionados dentre derivados de hexadeciltrime- tilamônio e derivados de dodecilamina e/ou mistura dos mesmos.  Ionic surfactants are selected from hexadecyltrimethylammonium derivatives and dodecylamine derivatives and / or mixtures thereof.
Os tensoativos não iónicos são selecionados dentre: compostos da família polióis poliésteres e devem apresentar grupos funcionais polares, possibilitando o aumento da interação entre as fibras de reforço e a matriz cimentí- cia. Os tensoativos não iónicos podem ainda compreender compostos de cadeias hidrocarbônicas saturadas e insaturadas de C12 - C18 contendo no mínimo uma unidade de óxido de eteno (EO) e uma unidade de óxido de pro- peno (PO), até no máximo de 14EO e 20PO, podendo ainda compreender copolímeros triblocos não iónicos EO/PO/EO (conhecidos como Poloxâme- ros) e polialquileno glicóis nas concentrações de 0,1 - 10%. (m/m) durante o processo de granulação, em extrusoras monorrosca e dupla rosca. Nonionic surfactants are selected from: compounds of the polyester family polyols and must have polar functional groups, allowing for increased interaction between reinforcement fibers and the cementitious matrix. Nonionic surfactants may further comprise compounds of C12 - C18 saturated and unsaturated hydrocarbon chains containing at least one ethylene oxide (EO) unit and one propene oxide (PO) unit up to a maximum of 14EO and 20PO It may further comprise non-ionic triblock copolymers EO / PO / EO (known as Poloxamers) and polyalkylene glycols at concentrations of 0.1-10%. (w / w) during the granulation process in single screw and twin screw extruders.
O aumento da hidrofilicidade superficial é alcançado a partir da adição de lubrificantes, agentes antiestáticos, surfactantes, compostos de cadeias áci- do-graxos, álcoois alcoxilados e seus derivados, e polímeros que apresentem grupos funcionais polares. The increase in surface hydrophilicity is achieved by the addition of lubricants, antistatic agents, surfactants, fatty acid chain compounds, alkoxylated alcohols and their derivatives, and polymers with polar functional groups.
Por outro lado, além de incrementar a polaridade superficial, esses aditivos (puros ou misturados) também podem ser adicionados ao óleo de encima- gem utilizado na etapa anterior ao estiramento da fibra, acarretando melhor desempenho nas propriedades de reforço da fibra.  On the other hand, in addition to increasing the surface polarity, these additives (pure or mixed) can also be added to the top oil used in the step prior to fiber stretching, leading to better performance in fiber reinforcing properties.
Em uma concretização preferencial, a composição polimérica aqui revelada compreende o polipropileno, preferencialmente na forma de esfera porosa, aditivado com os tensoativos não iónicos com o objetivo de aumentar sua polaridade (tensão superficial). Adicionalmente, outros aditivos tais como antioxidantes, agentes nucleantes, neutralizantes, óleos, pigmentos orgânicos e inorgânicos e cargas minerais podem ser acrescidos às composições poliméricas de polipropileno da presente invenção.  In a preferred embodiment, the polymeric composition disclosed herein comprises polypropylene, preferably in the form of a porous sphere, added with nonionic surfactants for the purpose of increasing their polarity (surface tension). Additionally, other additives such as antioxidants, nucleating agents, neutralizers, oils, organic and inorganic pigments and mineral fillers may be added to the polypropylene polymer compositions of the present invention.
A granulação do polipropileno, preferencialmente na forma física de esferas porosas, juntamente com aditivos descritos anteriormente, ocorre preferen- cialmente em uma extrusora, de mono ou dupla rosca, em condições apropriadas para a obtenção de um polipropileno de alto desempenho para reforço de compósitos, após a obtenção de dito polímero por polimerização do monômero base (propeno) pelo processo Spheripol. O processo de incorporação do tensoativo não iônico e/ou iônico na resina de polipropileno ocorre no processo de granulação, cujo tensoativo, na forma pura, é dosado por um dispositivo acoplado à extrusora diretamente na massa polimérica fundida ou diretamente na esfera (umectação) após processo de polimerização. A resina da presente invenção apresenta índice de fluidez preferencialmente 4 a 20 g/10min, sendo mais preferencialmente 16 a 20 g/10min, tenacidade na faixa de 5 a 15 cN/dtex e energia de ligação química na faixa de 1 a 6 J/m2. Granulation of the polypropylene, preferably in the physical form of porous spheres, together with additives described above, preferably occurs in a single or twin screw extruder, under conditions suitable for obtaining a high performance composite reinforcing polypropylene, after obtaining said polymer by polymerization of the base monomer (propene) by the Spheripol process. The process of incorporating the nonionic and / or ionic surfactant in the polypropylene resin occurs in the granulation process, whose surfactant, in pure form, is dosed by a device attached to the extruder directly in the melt or directly in the sphere (wetting) after polymerization process. The resin of the present invention preferably has a melt index of 4 to 20 g / 10 min, more preferably 16 to 20 g / 10 min, toughness in the range of 5 to 15 cN / dtex and chemical binding energy in the range of 1 to 6 J / m2
A presente invenção também se destina à produção de fibras para reforço de compósitos, cuja seção transversal é preferencialmente redonda, não excluindo a possibilidade de ser triangular ou trilobal. As fibras de polipropi- leno apresentam alta tenacidade de pelo menos 4 cN/dtex, mais preferencialmente de pelo menos 7 cN/dtex e particularmente de 8 a 9 cN/dtex. Essa faixa de tenacidade pode ser alcançada pelo ajuste nas condições de extru- são das fibras, utilizando o processo de uma maneira apropriada. The present invention is also intended for the production of fiber reinforcing composites whose cross-section is preferably round, not excluding the possibility of being triangular or trilobal. Polypropylene fibers have a high toughness of at least 4 cN / dtex, more preferably at least 7 cN / dtex and particularly 8 to 9 cN / dtex. This range of toughness can be achieved by adjusting the fiber extrusion conditions using the process in an appropriate manner.
As fibras obtidas em extrusoras multifilamentos são geralmente na forma de fibras cortadas apresentando comprimento na faixa de 2 a 20 mm, preferencialmente de 8 a 2 mm. As fibras de acordo com a presente invenção são utilizadas como agente de reforço em compósitos fibro-sintétícos na proporção de 0,2 a 5% em massa relativa ao produto acabado (compósito). The fibers obtained in multifilament extruders are generally in the form of cut fibers having a length in the range of 2 to 20 mm, preferably 8 to 2 mm. The fibers according to the present invention are used as reinforcing agent in fibro-synthetic composites in the proportion of 0.2 to 5% by weight relative to the finished product (composite).
Para permitir uma melhor compreensão da presente invenção e demonstrar claramente os avanços técnicos obtidos, são apresentados a seguir os resultados dos Exemplos 1 e 2 compreendendo as composições poliméricas re- veladas no presente pedido de patente. To allow a better understanding of the present invention and to clearly demonstrate the technical advances obtained, the results of Examples 1 and 2 comprising the polymeric compositions disclosed in the present patent application are set forth below.
Exemplo 1 : Para o preparo das ditas composições, foram utilizados os seguintes materiais:  Example 1: For the preparation of said compositions, the following materials were used:
• Polipropileno: homopolímero de índice de fluidez de 18 g/10min.  • Polypropylene: homopolymer of melt index of 18 g / 10min.
• Surfactante 1 : Copolímero de álcool laurílico com razão de 3EO/6PO, viscosidade 45 cP (25 °C) e densidade de 0,96 g/cm3 (25 °C).  • Surfactant 1: 3EO / 6PO ratio lauryl alcohol copolymer, viscosity 45 cP (25 ° C) and density 0.96 g / cm3 (25 ° C).
A Tabela 1 apresenta o percentual mássico de surfactante adicionado ao polipropileno durante a etapa de granulação.  Table 1 shows the percentage by weight of surfactant added to polypropylene during the granulation step.
Tabela 1  Table 1
Exemplos  Examples
1 2  1 2
% em massa  % in large scale
Polipropileno 100 98,5 Surfactante 1 0 1 ,5 Polypropylene 100 98.5 Surfactant 1 0 1, 5
Os péletes assim obtidos foram processados em uma extrusora multifilamen- tos para a obtenção de fibras de polipropileno, as quais foram caracterizadas por teste de pull-out, microscopia de força atómica (AFM) e propriedades mecânicas, por exemplo, tenacidade e alongamento. As técnicas emprega- das para as respectivas caracterizações são definidas a seguir:  The pellets thus obtained were processed in a multifilament extruder to obtain polypropylene fibers, which were characterized by pull-out testing, atomic force microscopy (AFM) and mechanical properties, for example, toughness and elongation. The techniques employed for their characterization are as follows:
• Teste de Pull-out: A adesão da fibra em uma matriz cimentícia foi avaliada por um teste de laboratório no qual um filamento é embutido até um comprimento entre 0,5 mm a 2 mm em uma formulação que simula a matriz do compósito compreendida por cimento, cargas, areia, água, plastificantes e modificadores de viscosidade, nas seguintes proporções mássicas, respectivamente: 1 ,0; 1 ,2; 0,8; 0,55; 0,01 ; 0,001 . Após 28 dias de cura da matriz, a ponta livre do filamento é submetida à tração, sendo determinados a força de tensão e o ponto de deslocamento. O teste de pull-out foi realizado com uma célula de carga de 0,1 N e velocidade de tração de 0,001 a 0,01 mm/min. A partir da curva de força de desacoplamento versus deslocamento é possível determinar a energia de ligação química (Gd) e força de atrito (τ) entre a fibra e o compósito cimentício.  • Pull-out test: Fiber adhesion in a cementitious matrix was assessed by a laboratory test in which a filament is embedded to a length between 0.5 mm to 2 mm in a formulation that simulates the composite matrix comprised of cement, fillers, sand, water, plasticizers and viscosity modifiers, in the following mass ratios, respectively: 1, 0; 1, 2; 0.8; 0.55; 0.01; 0.001. After 28 days of curing of the matrix, the free end of the filament is subjected to traction, being determined the tensile force and the displacement point. The pull-out test was performed with a 0.1 N load cell and tensile speed from 0.001 to 0.01 mm / min. From the decoupling force versus displacement curve it is possible to determine the chemical bonding energy (Gd) and frictional force (τ) between the fiber and the cementitious composite.
• Caracterização superficial da fibra por microscopia de força atómica (AFM): A migração do surfactante para a superfície da fibra foi avaliada por AFM Veeco, NanoScope V. As fibras foram fixadas diretamente no porta- amostra e analisadas utilizando o modo tapping (intermitente). Foi utilizado scanner 4955J e sonda de haste única de antimônio dopada com silício com constante de mola de 20 a 80 N/m e frequência de oscilação de 250-299 kHz. Para avaliação da superfície da fibra foi monitorada a variação de fase, a qual fornece informações relativas à densidade eletrônica dos materiais na superfície e dissipação de energia envolvida no contato entre a ponta e a amostra. Além disso, a diferença de contraste indica o nível de dissipação, ou seja, contraste mais escuro revela menor dissipação e menor densidade eletrônica.  • Surface characterization of fiber by atomic force microscopy (AFM): Surfactant migration to the fiber surface was assessed by AFM Veeco, NanoScope V. The fibers were fixed directly to the sample holder and analyzed using tapping mode. . A 4955J scanner and a silicon-doped antimony single-rod probe with a spring constant of 20 to 80 N / m and an oscillation frequency of 250-299 kHz were used. For fiber surface evaluation, phase variation was monitored, which provides information regarding the electronic density of surface materials and energy dissipation involved in the contact between the tip and the sample. In addition, the contrast difference indicates the level of dissipation, ie darker contrast reveals less dissipation and lower electron density.
· Propriedades mecânicas, as propriedades de tenacidade e alongamento foram determinadas de acordo com o método ASTM D2256. Exemplo 2 · Mechanical properties, toughness and elongation properties were determined according to ASTM D2256 method. Example 2
O Exemplo 2 comparativamente ao Exemplo 1 apresenta o efeito do surfac- tante 1 nas propriedades mecânicas da fibra e seu desempenho nos testes de adesão ao compósito cimentício.  Example 2 compared to Example 1 shows the effect of surfactant 1 on the mechanical properties of the fiber and its performance in adhesion tests on cementitious composite.
Tabela 2 Table 2
Figure imgf000014_0001
Figure imgf000014_0001
Os respectivos resultados na Tabela 2 evidenciam que as propriedades mecânicas, tais como tenacidade e alongamento, e a força de atrito (τ) são ligeiramente afetadas pela presença do tensoativo não iônico, porém não comprometem seu desempenho. É observado o aumento expressivo na e- nergia de ligação química (Gd), sendo esse valor similar ao desempenho observado para fibra de PVA. Ditas características do novo material o tornam industrialmente interessante devido ao aumento de desempenho da fibra como reforço de compósitos.  The respective results in Table 2 show that the mechanical properties, such as toughness and elongation, and the frictional force (τ) are slightly affected by the presence of nonionic surfactant, but do not compromise its performance. The significant increase in chemical bonding energy (Gd) is observed, which is similar to the performance observed for PVA fiber. These characteristics of the new material make it industrially interesting due to the increased performance of fiber as reinforcement of composites.
Sendo assim, o aumento expressivo da energia de ligação química (Gd) tal como observado na Tabela 2 indica que houve um aumento significativo da polaridade superficial da fibra devido à migração dos agentes modificadores à superfície da fibra e posterior ancoramento dos mesmos, permitindo assim a sua exposição na referida superfície da fibra. A dita exposição na superfície da fibra fornece uma melhor adesão ao compósito cimentício.  Thus, the significant increase in chemical bonding energy (Gd) as observed in Table 2 indicates that there was a significant increase in fiber surface polarity due to the migration of the modifying agents to the fiber surface and subsequent anchoring thereof, thus allowing exposure on said fiber surface. Said fiber surface exposure provides better adhesion to the cementitious composite.
A resina compreendendo maior polaridade obtida via granulação apresenta índice de fluidez preferencialmente de 4 a 20 g/10min, sendo mais preferencialmente de 16 a 20 g/10min, tenacidade na faixa de 5 a 15 cN/dtex e energia de ligação química na faixa de 1 a 6 J/m2. Resin comprising higher polarity obtained by granulation has a melt index preferably from 4 to 20 g / 10 min, more preferably from 16 to 20 g / 10 min, toughness in the range of 5 to 15 cN / dtex and chemical bonding energy in the range of 1 to 6 J / m2.
A figura 1 mostra a imagem de microscopia de força atómica da fibra de po- lipropileno puro, na qual se verifica uma superfície contínua e sem contraste. Por outro lado, na figura 2 é possível observar a modificação da superfície da fibra pela presença de fase dispersa (coloração escura) na matriz de poli- propileno, evidenciando a migração dos surfactantes para a superfície da fibra, conferindo assim um aumento da hidrofilicidade (maior polaridade). Tendo sido descrito um exemplo de concretização preferido, deve ser entendido que o escopo da presente invenção abrange outras possíveis varia- ções, sendo limitadas tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes. Figure 1 shows the atomic force microscopy image of pure polypropylene fiber, on which there is a continuous and non-contrasting surface. On the other hand, in Figure 2 it is possible to observe the modification of the fiber surface by the presence of dispersed phase (dark coloration) in the polymer matrix. propylene, showing the migration of surfactants to the fiber surface, thus giving an increase in hydrophilicity (higher polarity). Having described a preferred embodiment example, it should be understood that the scope of the present invention encompasses other possible variations, being limited only by the content of the appended claims, including the possible equivalents thereof.

Claims

REIVINDICAÇÕES
1. Processo de granulação de poliolefina, caracterizado pelo fato de compreender a incorporação de tensoativo para a produção de fibras poliméri- cas.  1. Polyolefin granulation process, characterized in that it comprises the incorporation of surfactant for the production of polymeric fibers.
2. Processo de granulação de acordo com a reivindicação 1 , caracterizado pelo fato de que a poliolefina é selecionada dentre: homopolímero de poli- propileno, homopolímero de polipropileno, copolímero de etileno-propileno, terpolímero de etileno-propileno-buteno ou uma blenda compreendendo dois ou mais destes componentes. Granulation process according to claim 1, characterized in that the polyolefin is selected from: polypropylene homopolymer, polypropylene homopolymer, ethylene propylene copolymer, ethylene propylene butene terpolymer or a blend comprising two or more of these components.
3. Processo de granulação de acordo com a reivindicação 1 , caracterizado pelo fato de que o tensoativo está na forma pura. Granulation process according to claim 1, characterized in that the surfactant is in pure form.
4. Processo de granulação de acordo com a reivindicação 1 , caracterizado pelo fato de que a quantidade de tensoativo adicionada é entre 0,1 a 10% em massa de resina.  Granulation process according to Claim 1, characterized in that the amount of surfactant added is between 0.1 and 10% by weight of resin.
5. Processo de granulação de acordo com a reivindicação 1 , caracterizado pelo fato de que o tensoativo é iônico e/ou não iônico. Granulation process according to claim 1, characterized in that the surfactant is ionic and / or nonionic.
6. Processo de granulação de acordo com a reivindicação 5, caracterizado pelo fato de que o tensoativo iônico é selecionado dentre derivados de he- xadeciltrimetilamônio e derivados de dodecilamina e/ou mistura dos mes- mos.  Granulation process according to Claim 5, characterized in that the ionic surfactant is selected from hexadecyltrimethylammonium derivatives and dodecylamine derivatives and / or a mixture thereof.
7. Processo de granulação de acordo com a reivindicação 5, caracterizado pelo fato de que o tensoativo não iônico compreende: compostos de cadeias hidrocarbônicas saturadas e insaturadas de C12 - C18 contendo no mínimo uma unidade de óxido de eteno (EO) e uma unidade de óxido de propeno (PO), até no máximo de 14EO e 20PO, podendo ainda compreender copolí- meros triblocos não iónicos EO/PO/EO (conhecidos como Poloxâmeros) e polialquileno glicóis  Granulation process according to Claim 5, characterized in that the nonionic surfactant comprises: compounds of C12 - C18 saturated and unsaturated hydrocarbon chains containing at least one unit of ethylene oxide (EO) and one unit of propene oxide (PO) up to a maximum of 14EO and 20PO and may further comprise nonionic triblock EO / PO / EO copolymers (known as Poloxamers) and polyalkylene glycols
8. Resina de poliolefina, caracterizada pelo fato de que compreende 1 a 10% em massa de tensoativo em relação à massa da resina.  8. Polyolefin resin, characterized in that it comprises 1 to 10% by weight of surfactant relative to the mass of the resin.
9. Resina de acordo com a reivindicação 8, caracterizada pelo fato de que apresenta índice de fluidez de 4 a 20 g/10min, tenacidade na faixa de 5 a 15 cN/dtex e energia de ligação química na faixa de 1 a 6 J/m2. Resin according to claim 8, characterized in that it has a melt index of 4 to 20 g / 10min, toughness in the range of 5 to 15 cN / dtex and chemical binding energy in the range of 1 to 6 J / m2
10. Resina de poliolefina, de acordo com a reivindicação 8, caracterizada pelo fato de que é obtida pelo processo conforme definido nas reivindicações 1 a 7. Polyolefin resin according to claim 8, characterized in that it is obtained by the process as defined in claims 1 to 7.
1 1. Fibra de poliolefina, caracterizada pelo fato de compreender uma resina conforme definida em qualquer uma das reivindicações 8 a 10.  Polyolefin fiber, characterized in that it comprises a resin as defined in any one of claims 8 to 10.
12. Uso da fibra de poliolefina, caracterizado pelo fato de ser utilizada como um material de reforço em compósitos cimentícios.  12. Use of polyolefin fiber, characterized in that it is used as a reinforcement material in cementitious composites.
13. Compósito cimentício, caracterizado pelo fato de que compreende uma fibra conforme definida na reivindicação 1 1.  Cementitious composite, characterized in that it comprises a fiber as defined in claim 11.
14. Compósito cimentício, de acordo com a reivindicação 13, caracterizado pelo fato de que compreende 0,2 a 5% em massa da fibra em relação à massa do compósito. Cementitious composite according to claim 13, characterized in that it comprises 0.2 to 5% by weight of the fiber relative to the mass of the composite.
15. Invenção, caracterizada por quaisquer de suas concretizações ou categorias de reivindicação englobadas pela matéria inicialmente revelada no pedido de patente ou em seus exemplos aqui apresentados.  An invention, characterized by any of its embodiments or claim categories encompassed by the subject matter initially disclosed in the patent application or its examples herein.
PCT/BR2013/000141 2012-05-07 2013-05-03 Polyolefin granulation method, polyolefin resin, polyolefin fibre, use of polyolefin fibre and cement composites WO2013166568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380036296.6A CN104619753B (en) 2012-05-07 2013-05-03 Polyolefin granulating method, polyolefin resin, polyolefine fiber, the purposes and cementaceous compound of polyolefine fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102012010783-0A BR102012010783A2 (en) 2012-05-07 2012-05-07 Polyolefin Granulation Process, Polyolefin Resin, Polyolefin Fiber, Polyolefin Fiber Use, and Cement Composites
BRBR102012010783-0 2012-05-07

Publications (1)

Publication Number Publication Date
WO2013166568A1 true WO2013166568A1 (en) 2013-11-14

Family

ID=49550003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000141 WO2013166568A1 (en) 2012-05-07 2013-05-03 Polyolefin granulation method, polyolefin resin, polyolefin fibre, use of polyolefin fibre and cement composites

Country Status (4)

Country Link
CN (1) CN104619753B (en)
AR (1) AR091809A1 (en)
BR (1) BR102012010783A2 (en)
WO (1) WO2013166568A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014139734A1 (en) * 2013-03-15 2014-09-18 Construction Research & Technology Gmbh Composite material including hydrophilic plastic fibers
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637900A (en) * 1969-04-22 1972-01-25 Kanegafuchi Spinning Co Ltd Polyamide fibers with aliphatic sulfonic acid containing antistatic agents
JPH11269281A (en) * 1998-03-20 1999-10-05 Teijin Ltd Hydrophilic film
US6258159B1 (en) * 1999-08-30 2001-07-10 Polymer Group, Inc. Product and method for incorporating synthetic polymer fibers into cement mixtures
JP3444674B2 (en) * 1994-12-07 2003-09-08 カネボウ株式会社 Nonwoven fabric using polyolefin resin composition
US20060234048A1 (en) * 2002-12-20 2006-10-19 Saint-Gobain Materiaux De Construction S.A.S. Polyolefin reinforcing fibre, use thereof and products comprising same
US20090105679A1 (en) * 2005-03-14 2009-04-23 Rhodia Recherches Et Technologies Hydrophilized Compositions Comprising Normally Hydrophobic Thermoplastic Polymers/Anionic Surfactants and Articles Shaped Therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173080C (en) * 2001-12-11 2004-10-27 上海依福瑞实业有限公司 Polyolefine fiber and its making process
EP2411061B1 (en) * 2009-03-27 2014-11-19 3M Innovative Properties Company Hydrophilic polypropylene melt additives
CN101891417B (en) * 2010-01-20 2012-12-12 俞家欢 High-toughness polypropylene fiber reinforced cement-based composite material and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637900A (en) * 1969-04-22 1972-01-25 Kanegafuchi Spinning Co Ltd Polyamide fibers with aliphatic sulfonic acid containing antistatic agents
JP3444674B2 (en) * 1994-12-07 2003-09-08 カネボウ株式会社 Nonwoven fabric using polyolefin resin composition
JPH11269281A (en) * 1998-03-20 1999-10-05 Teijin Ltd Hydrophilic film
US6258159B1 (en) * 1999-08-30 2001-07-10 Polymer Group, Inc. Product and method for incorporating synthetic polymer fibers into cement mixtures
US20060234048A1 (en) * 2002-12-20 2006-10-19 Saint-Gobain Materiaux De Construction S.A.S. Polyolefin reinforcing fibre, use thereof and products comprising same
US20090105679A1 (en) * 2005-03-14 2009-04-23 Rhodia Recherches Et Technologies Hydrophilized Compositions Comprising Normally Hydrophobic Thermoplastic Polymers/Anionic Surfactants and Articles Shaped Therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014139734A1 (en) * 2013-03-15 2014-09-18 Construction Research & Technology Gmbh Composite material including hydrophilic plastic fibers
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement

Also Published As

Publication number Publication date
CN104619753B (en) 2019-01-18
AR091809A1 (en) 2015-03-04
BR102012010783A2 (en) 2014-03-25
CN104619753A (en) 2015-05-13

Similar Documents

Publication Publication Date Title
Bahij et al. Fresh and hardened properties of concrete containing different forms of plastic waste–A review
Abbas et al. A state-of-the-art review on fibre-reinforced geopolymer composites
Cao et al. The relationship between cellulose nanocrystal dispersion and strength
Shao et al. Influence of dispersants on the properties of CNTs reinforced cement-based materials
Ferreira et al. Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bending behavior of cement based composites
Awang et al. Durability properties of foamed concrete with fiber inclusion
Luo et al. Bonding and toughness properties of PVA fibre reinforced aqueous epoxy resin cement repair mortar
Jiang et al. Influence of basalt fiber on performance of cement mortar
Chinchillas-Chinchillas et al. Evaluation of the mechanical properties, durability and drying shrinkage of the mortar reinforced with polyacrylonitrile microfibers
EP1461480B1 (en) Plastic fibers for improved concrete
WO2013166568A1 (en) Polyolefin granulation method, polyolefin resin, polyolefin fibre, use of polyolefin fibre and cement composites
Xie et al. The roles of water-soluble polymers in cement-based materials: A systematic review
Felekoğlu et al. A comparative study on the compatibility of PVA and HTPP fibers with various cementitious matrices under flexural loads
Jia et al. Surface hydrophilic modification of polypropylene fibers and their application in fiber-reinforced cement-based materials
Low et al. Mechanical properties
Hilal et al. Viability of cellulose nanofibre powder and silica fume in self-compacting concrete rheology, hardened properties, and microstructure
JP3274402B2 (en) Fiber for reinforcing concrete impact strength and concrete molding using the same
CN106116239B (en) A kind of plasticizing intensifier
CN106116241B (en) A kind of collapse protection type dry powder and mortar plasticizing intensifier
Zhang et al. Effect of Sisal Fibers on the Rheology of Cement Paste Plasticized by Polycarboxylate Superplasticizer
de Andrade Silva The effect of micro and nano cellulose fibers on the chemical, physical and mechanical properties of cement pastes
Mydin et al. Durability Properties of Lightweight Foamed Concrete Reinforced With ‘Musa Acuminate’Fibre
JP2015189662A (en) Reinforced fiber for hydraulic formed body
Zhang et al. Study on the performance and synergistic mechanism of cement mortar reinforced with combined superabsorbent polymers and basalt fibers admixture
Villela et al. Use of nanotalc as raw material for application in plaster matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787151

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787151

Country of ref document: EP

Kind code of ref document: A1