Nothing Special   »   [go: up one dir, main page]

WO2013165272A1 - Power plant for converting energy from air or water flows - Google Patents

Power plant for converting energy from air or water flows Download PDF

Info

Publication number
WO2013165272A1
WO2013165272A1 PCT/RU2013/000065 RU2013000065W WO2013165272A1 WO 2013165272 A1 WO2013165272 A1 WO 2013165272A1 RU 2013000065 W RU2013000065 W RU 2013000065W WO 2013165272 A1 WO2013165272 A1 WO 2013165272A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
wing
angle
movement
attack
Prior art date
Application number
PCT/RU2013/000065
Other languages
French (fr)
Russian (ru)
Inventor
Константин Серафимович ПАВЛОВИЧ
Алексей Константинович ПАВЛОВИЧ
Василий Георгиевич ПАВЛОВИЧ
Алексей Александрович ОСТЕРТАГ
Original Assignee
Pavlovich Konstantin Serafimovich
Pavlovich Aleksey Konstantinovich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pavlovich Konstantin Serafimovich, Pavlovich Aleksey Konstantinovich filed Critical Pavlovich Konstantin Serafimovich
Publication of WO2013165272A1 publication Critical patent/WO2013165272A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/06Other wind motors the wind-engaging parts swinging to-and-fro and not rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • F05B2240/9172Mounting on supporting structures or systems on a stationary structure attached to cables of kite type with traction and retraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • a disadvantage of the known converter is that it has a complex structure. In addition, to obtain useful work requires a large pressure head of the fluid. Also known is a wind energy converter acting on a tethered
  • the known Converter contains an aircraft that holds the cable, a working body that performs a reciprocating motion, and a mechanism that performs useful work.
  • the known converter allows the use of air flows, usually blowing at altitude.
  • the disadvantage of this solution is the constructive complexity of kinematic relationships.
  • the mechanism for transmitting wind movement to the working body has a complex structure and can quickly fail.
  • a known installation for converting the energy of the flow of air or water flows, containing a power take-off shaft with which a wing or an aerodynamic profile is connected kinematically through a cable transmission, guided into the stream in the direction of its movement WO2008034421, publ. 03/27/2008. This decision was made as a prototype.
  • the wing is attached by two bridles, the length of which is changed using a motor.
  • the motor is controlled by an external control signal (for example, a radio signal) to synchronize the movement of winches (reeling / unwinding the cable) and the wing (changing the angle of attack).
  • an external control signal for example, a radio signal
  • the sling is alternately wound and unwound on winches, i.e. with reverse.
  • the kinematics of the device is significantly complicated, difficulties arise with the conversion of the reverse movement of the winch into unidirectional rotation.
  • the objective of the invention is to provide a wind energy converter having a relatively simple design, more reliable than the prototype, and capable of converting wind energy directly into the rotational movement of the working body with its subsequent use to generate electricity.
  • the present invention is aimed at achieving a technical result, which consists in simplifying the design, reducing metal consumption, increasing manufacturability and, as a result, a sharp decrease in unit cost
  • a power take-off shaft with which a wing or an aerodynamic profile is kinematically connected through the moving axis to the flow in the direction of its movement
  • the power take-off shaft is made in the form of a crankshaft
  • the wing or aerodynamic profile is connected with this crankshaft by a sling, and directly at the wing of the sling has auxiliary rear and front slings (bridles) with the function of limiting the angle of attack
  • a device for controlling the angle of attack from the minimum to the maximum level made with the ability to move the spring-loaded axis relative to the center application of aerodynamic forces depending on the direction of movement of the crankshaft and, as a result, on the pressure of the air or water environment.
  • the claimed solution differs from the prototype in that the angle of attack changes automatically (without a motor) depending on the position of the crankshaft by the aerodynamic forces acting on the aerodynamic device for controlling the angle of attack.
  • the angle of attack changes automatically (without a motor) depending on the position of the crankshaft by the aerodynamic forces acting on the aerodynamic device for controlling the angle of attack.
  • the sling directly rotates the crankshaft, rotating in one direction.
  • the wing is controlled by changing the position of the central sling around the center of application of force (the length of the bridles is fixed).
  • the force of the wind pressure changes in accordance with the movement of the crankshaft (against the wind or in the wind).
  • FIG. 1 and in FIG. 2 shows a General view of the power plant for various versions of the wing (aerodynamic profile), where 1 - Wing (aerodynamic profile), 2 -
  • Angle of attack control device ( ⁇ ), 3 - Spacer, 4 - Slings, 5 - Crankshaft, 6 - Axis of rotation.
  • FIG. 3 shows an angle of attack control device (ATCM). Unstable neutral position. Any deviation of any parameter leads to a sharp change in the angle of attack in one direction or another, where 7 is the axis that moves freely in the groove and is attached to two springs and to the main sling, 8 is the spring
  • a the angle of attack of the wing.
  • a min 10 degrees.
  • tach 80 degrees.
  • 35 deg.
  • FIG. 4 shows the beginning of the movement of the wing forward (against the wind) until the angle of attack changes, where 12 is the direction of the crankshaft thrust.
  • the left spring is compressed, and the right one is stretched (due to two factors: mass-inertia of the wing, increase in air pressure in a cubic degree from wind speed).
  • Crankshaft torque occurs on the wing
  • FIG. Figure 5 shows the forward movement of the wing (against the wind) after changing the angle of attack.
  • the crankshaft moves counterclockwise and pulls the sling in the direction 12.
  • the lower (rear) bridle is stretched.
  • Wing Angle a min .
  • the resulting force of three forces (aerodynamic, tension of the main sling and tension of the auxiliary rear bridle) move the wing behind the crankshaft.
  • FIG. 6 shows the beginning of the movement of the wing backward (downwind) until the angle of attack changes. Beginning of the second half-period.
  • the crankshaft moves counterclockwise and releases the sling in the - 12 direction.
  • the crankshaft moves counterclockwise.
  • the wing pulls the crankshaft with a greater force counterclockwise in the - 12 direction.
  • the lower (back) bridle is weakened.
  • the angle of attack of the wing a max .
  • the force of the wind pressure is maximum at the maximum angle of attack.
  • FIG. 8 shows an example of a generator operating in a water stream, similar to working in an air stream. Only for positioning the wing at the desired depth
  • the invention provides a direct conversion of the oscillatory movements of the wing into the rotational movement of the crankshaft with minimal material consumption and with maximum simplicity and reliability of the design of the power plant.
  • An energy installation for converting the energy of the flow of air or water flows (Fig. 1 - Fig. 2) contains a power take-off shaft 5 with which wing 1 or an aerodynamic profile is kinematically connected to the flow in the direction of its movement. It is possible to use an inflatable wing lighter than air.
  • the power take-off shaft is made in the form of a crankshaft 5 rotating around axis 6.
  • the wing 1 or the aerodynamic profile is connected to this crankshaft by a sling 4, and the sling is attached to a movable spring-loaded axis, which can move near the point of application of aerodynamic forces.
  • the entire power plant can be placed on a platform that rotates about a vertical axis in the direction of the wind with a weather vane.
  • the slings themselves can be passed through guide rollers (also for water flow, for example, for sea currents).
  • the present invention provides the possibility of obtaining power take-off from the energy of a water or air flow of a medium using a simple kinematic design.
  • the present invention is industrially applicable, as it can be manufactured by known technologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

The invention relates to the field of power engineering and can be used in wind power plants or in hydraulic power plants for generating electrical energy or for carrying out mechanical work. The power plant comprises a power take-off shaft, to which a vane (1), directed into a flow in the direction of movement thereof, or an aerodynamic profile is kinematically connected via a movable spindle. The shaft is in the form of a crankshaft (5). The vane (1) or aerodynamic profile is connected to the crankshaft (5) by a cord (4). The cord (4) has an auxiliary rear cord and front cord immediately by the vane (1), with the function of limiting the angle of incidence. The power plant comprises a device for controlling the angle of incidence (2) from a minimum level to a maximum level, which device can move the spring-loaded spindle relative to the aerodynamic-force-application centre depending on the direction of movement of the crankshaft (5) and, consequently, on the pressure of the air or water medium. The invention is directed towards simplifying the design, reducing the metal content, increasing the technological effectiveness and reducing the specific cost of a kilowatt-hour of electrical energy generated.

Description

ЭНЕРГОУСТАНОВКА ДЛЯ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ВОЗДУШНЫХ  POWER PLANT FOR TRANSFORMING AIR ENERGY
ИЛИ ВОДНЫХ ПОТОКОВ  OR WATER FLOWS
ОПИСАНИЕ DESCRIPTION
Изобретение относится к области энергетики и может быть использовано в The invention relates to the field of energy and can be used in
ветроэнергетических или в гидроэнергетических установках для выработки wind or hydropower plants to generate
электроэнергии или для выполнения механической работы [F03B3/12, F03B7/00, F03B3/02]. electricity or to perform mechanical work [F03B3 / 12, F03B7 / 00, F03B3 / 02].
Из уровня техники известно устройаво, преобразующее энергию ветра в электрическую энергию с передачей механической работы на рабочий орган, совершающий  From the prior art it is known device that converts wind energy into electrical energy with the transfer of mechanical work to the working body, making
колебательное движение (RU 2142572, МПК F03D5/06, опубл. 10.12.1999). Недостаток известного преобразователя заключается в том, что он имеет сложную конструкцию. Кроме того, для получения полезной работы требуется большой напор текучей среды. Так же известен преобразователь энергии ветра, действующий на привязной oscillatory motion (RU 2142572, IPC F03D5 / 06, publ. 10.12.1999). A disadvantage of the known converter is that it has a complex structure. In addition, to obtain useful work requires a large pressure head of the fluid. Also known is a wind energy converter acting on a tethered
летательный аппарат, с передачей механической работы на рабочий орган, aircraft, with the transfer of mechanical work to the working body,
совершающий колебательное движение (RU 2109981, F03D5/06, опубл. 27.04.1998 г.). Известный преобразователь содержит летательный аппарат, удерживающий трос, рабочий орган, совершающий возвратно-поступательное движение, и механизм, совершающий полезную работу. Известный преобразователь позволяет использовать потоки воздуха, обычно дующие на высоте. Недостаток этого решения заключается в конструктивной сложности кинематических связей. Механизм передачи движения ветра на рабочий орган имеет сложную конструкцию и может быстро выйти из строя. Известна энергоустановка для преобразования энергии течения воздушных или водных потоков, содержащая вал отбора мощности, с которым кинематически через тросовую передачу связано крыло или аэродинамический профиль, веденный в поток по направлению его движения (WO2008034421, опубл. 27.03.2008). Данное решение принято в качестве прототипа. making an oscillatory motion (RU 2109981, F03D5 / 06, publ. 04/27/1998). The known Converter contains an aircraft that holds the cable, a working body that performs a reciprocating motion, and a mechanism that performs useful work. The known converter allows the use of air flows, usually blowing at altitude. The disadvantage of this solution is the constructive complexity of kinematic relationships. The mechanism for transmitting wind movement to the working body has a complex structure and can quickly fail. A known installation for converting the energy of the flow of air or water flows, containing a power take-off shaft with which a wing or an aerodynamic profile is connected kinematically through a cable transmission, guided into the stream in the direction of its movement (WO2008034421, publ. 03/27/2008). This decision was made as a prototype.
Недостаток данного решения заключается в сложности выполнения связи крыла с валом отбора мощности, которая обуславливает наличие больших механических потерь из-за сопротивления перемещению троссо-блочных элементов передачи. Наиболее близким решением (прототипом) является патент L1017171 на Способ получения энергии за счет воздушного змея, вращающего барабан генератора. The disadvantage of this solution is the difficulty of connecting the wing with the power take-off shaft, which leads to the presence of large mechanical losses due to resistance to movement of the cable-block transmission elements. The closest solution (prototype) is patent L1017171 for a method of generating energy through a kite rotating a drum of a generator.
Центральная стропа отсутствует. Крыло крепится двумя уздечками, длина которых менятся при помощи мотора. There is no central sling. The wing is attached by two bridles, the length of which is changed using a motor.
В указанном решении угол атаки изменяет мотор. В результате чего есть необходимость утяжелять воздушного змея мотором и блоком питания, есть дополнительные затраты электроэнергии на работу мотора.  In this solution, the angle of attack changes the motor. As a result, there is a need to weight the kite with a motor and a power supply, there is an additional cost of electricity for the operation of the motor.
Управление мотором производится внешним сигналом управления (например, радиосигналом) для синхронизации движения лебёдок (сматывание/разматывание троса) и крыла (изменение угла атаки). В результате чего возникает необходимость иметь систему дистанционного управления мотором и лебёдками.  The motor is controlled by an external control signal (for example, a radio signal) to synchronize the movement of winches (reeling / unwinding the cable) and the wing (changing the angle of attack). As a result, there is a need to have a remote control system for the motor and winches.
Стропа поочерёдно наматывается и разматывается на лебёдки, т.е. с реверсом. В результате чего значительно усложняется кинематика устройства, возникают сложности с преобразованием реверсивного движения лебёдок в однонаправленное вращение. The sling is alternately wound and unwound on winches, i.e. with reverse. As a result, the kinematics of the device is significantly complicated, difficulties arise with the conversion of the reverse movement of the winch into unidirectional rotation.
Задачей данного изобретения является создание преобразователя энергии ветра, имеющего относительно простую конструкцию, более надежного, чем прототип, и способного преобразовывать энергию ветра непосредственно во вращательное движение рабочего органа с последующим его использованием для генерации электричества. The objective of the invention is to provide a wind energy converter having a relatively simple design, more reliable than the prototype, and capable of converting wind energy directly into the rotational movement of the working body with its subsequent use to generate electricity.
Настоящее изобретение направлено на достижение технического результата, заключающегося в упрощении конструкции, снижении металлоёмкости, повышении технологичности и, как следствие, резком снижении удельной стоимости The present invention is aimed at achieving a technical result, which consists in simplifying the design, reducing metal consumption, increasing manufacturability and, as a result, a sharp decrease in unit cost
вырабатываемого кВт*часа электроэнергии. kW * hours of electricity generated.
Указанный технический результат достигается тем, что энергоустановка для The specified technical result is achieved by the fact that the power plant for
преобразования энергии течения воздушных или водных потоков, содержащая вал отбора мощности, с которым через подвижную ось кинематически связано веденное в поток по направлению его движения крыло или аэродинамический профиль, отличающаяся тем, что вал отбора мощности выполнен в виде коленвала, причем крыло или аэродинамический профиль связано с этим коленвалом стропой, а непосредственно у крыла стропа имеет вспомогательные заднюю и переднюю стропы (уздечки) с функцией ограничения угла атаки, также содержит устройство управления углом атаки от минимального до максимального уровня, выполненное с возможностью перемещать подпружиненную ось относительно центра приложения аэродинамических сил в зависимости от направления движения коленвала и как следствие от напора воздушной или водной среды. energy conversion of the flow of air or water flows, containing a power take-off shaft, with which a wing or an aerodynamic profile is kinematically connected through the moving axis to the flow in the direction of its movement, characterized in that the power take-off shaft is made in the form of a crankshaft, the wing or aerodynamic profile is connected with this crankshaft by a sling, and directly at the wing of the sling has auxiliary rear and front slings (bridles) with the function of limiting the angle of attack, also contains a device for controlling the angle of attack from the minimum to the maximum level, made with the ability to move the spring-loaded axis relative to the center application of aerodynamic forces depending on the direction of movement of the crankshaft and, as a result, on the pressure of the air or water environment.
Указанные признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата.  These features are significant and interconnected with the formation of a stable set of essential features sufficient to obtain the desired technical result.
Заявленное решение от прототипа отличает то, что угол атаки меняется автоматически (без мотора) в зависимости от положения коленвала аэродинамическими силами, действующими на аэродинамическое устройство управления углом атаки. В результате чего нет необходимости утяжелять воздушного змея мотором и блоком питания, нет дополнительных затрат электроэнергии на работу мотора, т. е. экономичность.  The claimed solution differs from the prototype in that the angle of attack changes automatically (without a motor) depending on the position of the crankshaft by the aerodynamic forces acting on the aerodynamic device for controlling the angle of attack. As a result, there is no need to weight the kite with a motor and a power supply, there is no additional cost of electricity for the operation of the motor, i.e., efficiency.
Синхронизация вала отбора мощности (коленвала) с крылом происходит автоматически при помощи аэродинамического устройства управления углом атаки, находящегося на крыле. В результате чего нет необходимости иметь систему дистанционного The synchronization of the power take-off shaft (crankshaft) with the wing occurs automatically using the aerodynamic device for controlling the angle of attack located on the wing. As a result, there is no need to have a remote
управления мотором и лебёдками. motor and winch controls.
Стропа вращает непосредственно коленвал, вращающийся в одну сторону. В результате чего значительно упрощается кинематика устройства, не возникает сложностей с преобразованием реверсивного движения лебёдок в однонаправленное вращение. Управление крылом происходит за счёт изменения положения центральной стропы вокруг центра приложения сил (длина уздечек фиксирована). Сила ветрового напора меняется в соответствии с движением коленвала (против ветра или по ветру).  The sling directly rotates the crankshaft, rotating in one direction. As a result, the kinematics of the device is greatly simplified, there is no difficulty in converting the reverse movement of the winch to unidirectional rotation. The wing is controlled by changing the position of the central sling around the center of application of force (the length of the bridles is fixed). The force of the wind pressure changes in accordance with the movement of the crankshaft (against the wind or in the wind).
Пропорционально этому ветровому напору изменяется натяжение упругих элементов (пружин), которые смещают в пазу ось крепления крыла к стропе в ту или иную сторону в соответствии с направлением движения (вперёд/назад) коленвала. Это отличие само по себе характеризует конструктивные особенности, которые определяют отличие в принципе действия. Изобретение поясняется конкретным примером, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения приведенной совокупностью признаков требуемого технического результата. In proportion to this wind pressure, the tension of the elastic elements (springs) changes, which displace the axis of the wing attachment to the sling in one direction or another in the groove in accordance with the direction of movement (forward / backward) of the crankshaft. This difference in itself characterizes the design features that determine the difference in principle of action. The invention is illustrated by a specific example, which, however, is not the only possible, but clearly demonstrates the possibility of achieving the above set of features of the required technical result.
На Фиг. 1 и на Фиг. 2 показан общий вид энергоустановки для различных исполнений крыла (аэродинамического профиля), где 1 - Крыло (аэродинамический профиль), 2 - In FIG. 1 and in FIG. 2 shows a General view of the power plant for various versions of the wing (aerodynamic profile), where 1 - Wing (aerodynamic profile), 2 -
Устройство управления углом атаки (УУУА), 3 - Распорка, 4 - Стропа, 5 - Коленвал, 6 - Ось вращения. Angle of attack control device (УУУА), 3 - Spacer, 4 - Slings, 5 - Crankshaft, 6 - Axis of rotation.
На Фиг. 3 изображено устройство управления углом атаки (УУУА). Неустойчивое нейтральное положение. Любая девиация любого параметра приводит к резкому изменению угла атаки в ту или другую сторону, где 7 - ось, свободно двигающаяся в пазу и прикреплённая к двум пружинам и к основной стропе, 8 - пружина  In FIG. 3 shows an angle of attack control device (ATCM). Unstable neutral position. Any deviation of any parameter leads to a sharp change in the angle of attack in one direction or another, where 7 is the axis that moves freely in the groove and is attached to two springs and to the main sling, 8 is the spring
(стационарная), 9 - пружина (регулируемая), 10 - датчик положения оси (например, магнитный), 11 - привод подтяжки пружины. (stationary), 9 - spring (adjustable), 10 - axis position sensor (for example, magnetic), 11 - spring tightening drive.
Пояснения: угол β выбирается из условия β = 0,5 х (amax - amin), где a - угол атаки крыла. Например: крайние углы атаки крыла amin =10 град. атах = 80 град. Тогда: β = 35 град. На Фиг. 4 показано начало движения крыла вперёд (против ветра) до изменения угла атаки, где 12 - направление тяги коленвала. Начало движения крыла вперёд (против ветра) до изменения угла атаки. Левая пружина сжимается, а правая растягивается (из- за двух факторов: массы-инерции крыла, увеличения воздушного напора в кубической степени от скорости ветра). На крыле возникает вращающий момент коленвала Explanations: the angle β is selected from the condition β = 0.5 x (a max - a min ), where a is the angle of attack of the wing. For example: extreme angles of attack of the wing a min = 10 degrees. and tach = 80 degrees. Then: β = 35 deg. In FIG. 4 shows the beginning of the movement of the wing forward (against the wind) until the angle of attack changes, where 12 is the direction of the crankshaft thrust. The beginning of the movement of the wing forward (against the wind) until the angle of attack changes. The left spring is compressed, and the right one is stretched (due to two factors: mass-inertia of the wing, increase in air pressure in a cubic degree from wind speed). Crankshaft torque occurs on the wing
(направление - 12) против часовой стрелки. Угол атаки уменьшается до тех пор, пока позволяет длина обвисшей нижней стропы (уздечки) до её натяжения. Как только она натянется, сила её натяжения сбалансирует крутящий момент и изменение угла атаки прекратится. Система станет уравновешенной относительно крыла (но само-то крыло будет иметь результирующую силу, движущую его вперёд против ветра за коленвалом, но с малым сопротивлением). (direction - 12) counterclockwise. The angle of attack decreases as long as the length of the sagging lower sling (bridle) allows it to tension. As soon as it is pulled, the force of its tension will balance the torque and the change in the angle of attack will stop. The system will become balanced relative to the wing (but the wing itself will have a resultant force moving it forward against the wind behind the crankshaft, but with low resistance).
На Фиг. 5 показано движение крыла вперёд (против ветра) после изменения угла атаки. Коленвал движется против часовой стрелки и тянет стропу в направлении 12. Нижняя (задняя) уздечка натянута. Угол атаки крыла = amin. Результирующая сила трёх сил (аэродинамической, натяжения основной стропы и натяжения вспомогательной задней уздечки) двигают крыло за коленвалом. На Фиг. 6 показано начало движения крыла назад (по ветру) до изменения угла атаки. Начало второго полупериода. Коленвал движется против часовой стрелки и отпускает стропу в направлении - 12. Теперь левая пружина растягивается, а правая сжимается (из-за уменьшения воздушного напора в кубической степени от скорости ветра). На крыле возникает вращающий момент по часовой стрелке. Угол атаки увеличивается до тех пор, пока позволяет длина обвисшей верхней уздечки (до её натяжения). Как только она натянется, сила её натяжения сбалансирует крутящий момент и изменение угла атаки прекратится. Система станет уравновешенной относительно крыла (но само-то крыло будет иметь результирующую силу, движущую его назад по ветру от коленвала. На Фиг. 7 показано движение крыла назад (по ветру) после изменения угла атаки. In FIG. Figure 5 shows the forward movement of the wing (against the wind) after changing the angle of attack. The crankshaft moves counterclockwise and pulls the sling in the direction 12. The lower (rear) bridle is stretched. Wing Angle = a min . The resulting force of three forces (aerodynamic, tension of the main sling and tension of the auxiliary rear bridle) move the wing behind the crankshaft. In FIG. 6 shows the beginning of the movement of the wing backward (downwind) until the angle of attack changes. Beginning of the second half-period. The crankshaft moves counterclockwise and releases the sling in the - 12 direction. Now the left spring is stretched, and the right one is compressed (due to a decrease in air pressure in a cubic degree of wind speed). Clockwise torque occurs on the wing. The angle of attack increases as long as the length of the sagging upper frenulum allows (before its tension). As soon as it is pulled, the force of its tension will balance the torque and the change in the angle of attack will stop. The system will become balanced relative to the wing (but the wing itself will have the resulting force moving it backward in the wind from the crankshaft. Fig. 7 shows the wing moving backward (in the wind) after changing the angle of attack.
Второй полупериод. Коленвал движется против часовой стрелки. Крыло с большей силой тянет коленвал против часовой стрелки в направлении - 12. The second half period. The crankshaft moves counterclockwise. The wing pulls the crankshaft with a greater force counterclockwise in the - 12 direction.
Нижняя (задняя) уздечка ослаблена. Угол атаки крыла = атах Рабочий ход. Сила напора ветра максимальна при максимальном угле атаки. The lower (back) bridle is weakened. The angle of attack of the wing = a max . The force of the wind pressure is maximum at the maximum angle of attack.
На Фиг. 8 показан пример работы генератора в водном потоке, аналогичный работе в воздушном потоке. Только для позиционирования крыла на нужной глубине  In FIG. 8 shows an example of a generator operating in a water stream, similar to working in an air stream. Only for positioning the wing at the desired depth
желательно использовать дополнительный поплавок 16, где 13 - вспомогательные стропы (уздечки), 14 - Направляющие ролики, 15 - основная стропа, 16 - Поплавок, 17 - Баржа. It is advisable to use an additional float 16, where 13 - auxiliary slings (bridles), 14 - Guide rollers, 15 - main sling, 16 - Float, 17 - Barge.
Изобретение обеспечивает прямое преобразование колебательных движений крыла во вращательное движение коленвала при минимальной материалоёмкости и при максимальной простоте и надёжности конструкции энергоустановки. The invention provides a direct conversion of the oscillatory movements of the wing into the rotational movement of the crankshaft with minimal material consumption and with maximum simplicity and reliability of the design of the power plant.
Энергоустановка для преобразования энергии течения воздушных или водных потоков (Фиг.1 - Фиг.2.) содержит вал отбора мощности 5, с которым кинематически связано веденное в поток по направлению его движения крыло 1 или аэродинамический профиль. Возможно использование надувного крыла легче воздуха. An energy installation for converting the energy of the flow of air or water flows (Fig. 1 - Fig. 2) contains a power take-off shaft 5 with which wing 1 or an aerodynamic profile is kinematically connected to the flow in the direction of its movement. It is possible to use an inflatable wing lighter than air.
Вал отбора мощности выполнен в виде коленвала 5, вращающегося вокруг оси 6. Крыло 1 или аэродинамический профиль связано с этим коленвалом стропой 4, причем стропа прикреплена к подвижной подпружиненной оси, которая может двигаться около точки приложения аэродинамических сил. Таким образом, за один полупериод воздушный или водный поток выполняет большую работу (назовём её положительной, а за второй полупериод - маленькую, но в противоположном направлении (назовём её отрицательной). Суммарная работа и будет полезной работой, выполненной потоком за период. The power take-off shaft is made in the form of a crankshaft 5 rotating around axis 6. The wing 1 or the aerodynamic profile is connected to this crankshaft by a sling 4, and the sling is attached to a movable spring-loaded axis, which can move near the point of application of aerodynamic forces. Thus, in one half-cycle, air or water flow does a lot of work (let's call it positive, and in the second half-cycle it does a little, but in the opposite direction (let's call it negative). The total work will be useful work performed by the stream over the period.
Вся энергоустановка может быть размещена на платформе, поворачивающейся относительно вертикальной оси по направлению ветра флюгером. Для улучшения равномерности вращения и сглаживания толчков на оси 6 можно расположить маховик. Также на оси б можно разместить любое количество элементарных (работающих на один вал) энергоустановок с целью повышения суммарной мощности, улучшения равномерности вращения и сглаживания толчков (как цилиндров в двигателе The entire power plant can be placed on a platform that rotates about a vertical axis in the direction of the wind with a weather vane. To improve the uniformity of rotation and smoothing shocks on the axis 6, you can position the flywheel. Also on the b axis, you can place any number of elementary (operating on one shaft) power plants in order to increase the total power, improve the uniformity of rotation and smooth out shocks (like cylinders in an engine
внутреннего сгорания). internal combustion).
Для повышения надёжности работы (в частности исключения возможности задевания стропами вращающихся деталей коленвала, например, при резких изменениях направления ветра) сами стропы можно пропустить через направляющие ролики (также для водного потока, например для морских течений).  To increase the reliability of work (in particular, to exclude the possibility of touching the rotating parts of the crankshaft with slings, for example, with sharp changes in the wind direction), the slings themselves can be passed through guide rollers (also for water flow, for example, for sea currents).
Таким образом, настоящее изобретение обеспечивает возможность получения отбора мощности от энергии водного или воздушного потока среды при использовании простой кинематической конструкции. Настоящее изобретение промышленно применимо, так как может быть изготовлено по известным технологиям.  Thus, the present invention provides the possibility of obtaining power take-off from the energy of a water or air flow of a medium using a simple kinematic design. The present invention is industrially applicable, as it can be manufactured by known technologies.

Claims

ФОРМУЛА FORMULA
Энергоустановка для преобразования энергии течения воздушных или водных потоков, содержащая вал отбора мощности, с которым через подвижную ось кинематически связано веденное в поток по направлению его движения крыло или аэродинамический профиль, отличающаяся тем, что вал отбора мощности выполнен в виде коленвала, причем крыло или аэродинамический профиль связано с этим коленвалом стропой, а непосредственно у крыла стропа имеет вспомогательные заднюю и переднюю стропы (уздечки) с функцией ограничения угла атаки, также содержит устройство управления углом атаки от минимального до максимального уровня, выполненное с возможностью перемещать подпружиненную ось относительно центра приложения аэродинамических сил в зависимости от направления движения коленвала и как следствие от напора воздушной или водной среды. An energy installation for converting the energy of the flow of air or water flows, containing a power take-off shaft, with which a wing or aerodynamic profile is kinematically connected through the moving axis to the stream in the direction of its movement, characterized in that the power take-off shaft is made in the form of a crankshaft, and the wing or the profile is connected with this crankshaft by a sling, and directly at the wing of the sling has auxiliary rear and front slings (bridles) with the function of limiting the angle of attack, also contains a device to control the angle of attack from the minimum to the maximum level, operable to move the spring-loaded center axis relative to the application of aerodynamic forces depending on the direction of the crankshaft and movement as a consequence of air pressure or an aqueous medium.
PCT/RU2013/000065 2012-05-02 2013-01-30 Power plant for converting energy from air or water flows WO2013165272A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012117893/06A RU2492355C1 (en) 2012-05-02 2012-05-02 Power plant to convert energy of air or water flow currents
RU2012117893 2012-05-02

Publications (1)

Publication Number Publication Date
WO2013165272A1 true WO2013165272A1 (en) 2013-11-07

Family

ID=49164937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2013/000065 WO2013165272A1 (en) 2012-05-02 2013-01-30 Power plant for converting energy from air or water flows

Country Status (2)

Country Link
RU (1) RU2492355C1 (en)
WO (1) WO2013165272A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158576A1 (en) * 2017-03-01 2018-09-07 Kite Power Systems Limited Kite systems
KR101942263B1 (en) * 2018-04-25 2019-01-25 한국전력공사 Power generator using wind power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017171C1 (en) * 2001-01-23 2002-07-25 Cornelis Eerkens Wind power method for generating electricity, uses kite to unwind cable in order to rotate drum
WO2007034193A2 (en) * 2005-09-22 2007-03-29 Kit Nicholson Kite power generator
WO2010098648A1 (en) * 2009-02-26 2010-09-02 Bayaliev Omir Karimovitch Pendulum wind turbine
WO2012005703A1 (en) * 2010-07-07 2012-01-12 Sabbagh Khaled Katmawi Rotating motion power generation by harnessing high altitude wind
FR2964160A1 (en) * 2010-08-27 2012-03-02 Snecma Energy recovery device for producing electrical energy to e.g. electrical circuit in aircraft, has wing supporting unit connected to energy transformation unit, and profiled wing placed along flow of fluid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2448271C2 (en) * 2008-07-01 2012-04-20 Андрей Алексеевич Терентьев Engine for fluid utilisation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1017171C1 (en) * 2001-01-23 2002-07-25 Cornelis Eerkens Wind power method for generating electricity, uses kite to unwind cable in order to rotate drum
WO2007034193A2 (en) * 2005-09-22 2007-03-29 Kit Nicholson Kite power generator
WO2010098648A1 (en) * 2009-02-26 2010-09-02 Bayaliev Omir Karimovitch Pendulum wind turbine
WO2012005703A1 (en) * 2010-07-07 2012-01-12 Sabbagh Khaled Katmawi Rotating motion power generation by harnessing high altitude wind
FR2964160A1 (en) * 2010-08-27 2012-03-02 Snecma Energy recovery device for producing electrical energy to e.g. electrical circuit in aircraft, has wing supporting unit connected to energy transformation unit, and profiled wing placed along flow of fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158576A1 (en) * 2017-03-01 2018-09-07 Kite Power Systems Limited Kite systems
KR101942263B1 (en) * 2018-04-25 2019-01-25 한국전력공사 Power generator using wind power

Also Published As

Publication number Publication date
RU2492355C1 (en) 2013-09-10

Similar Documents

Publication Publication Date Title
US9080550B2 (en) Airborne wind energy conversion system with fast motion transfer
US6523781B2 (en) Axial-mode linear wind-turbine
US5183386A (en) Vertical axis sail bladed wind turbine
US9587630B2 (en) Rotor kite wind energy system and more
US5171127A (en) Vertical axis sail bladed wind turbine
EP2642118A3 (en) Wind system for converting energy through a vertical-axis turbine actuated by means of kites and process for producing electric energy through such system
US9777709B2 (en) Translating foil system for harvesting kinetic energy from wind and flowing water
EP2010783A1 (en) Aeolian system comprising power wing profiles and process for producing electric energy
US20090236858A1 (en) Vertical turbine for water or wind power generation
WO2013151678A1 (en) Airborne wind energy conversion system with endless belt
WO2013101791A1 (en) Wind energy conversion system over water
WO2014018424A1 (en) Airborne wind energy conversion system with ground generator
CN102678467B (en) Variable-pitch vertical-shaft wind turbine
JPWO2010150670A1 (en) Rotating blade type vertical axis wind turbine
RU2492355C1 (en) Power plant to convert energy of air or water flow currents
RU2491445C1 (en) Method to convert energy of air or water flow currents
WO2005068833A2 (en) Wind turbine with variable pitch blades
CN110608129B (en) Advection micro-water power generation device based on mutual switching of double-water umbrella
CN202718810U (en) Variable-pitch vertical-shaft wind turbine
US9234504B1 (en) Variable altitude wind-powered generator system
WO2013165271A1 (en) Method and power plant for converting energy from air or water flows
KR102500958B1 (en) drive assembly
WO2019111674A1 (en) Vertical axis-type wind turbine
JPH09144642A (en) Underwater reverse oscillating wing axial-flow turbine for wave activated generation
CN108331706A (en) The adjustable expanding horizontal axis tidal current energy hydraulic turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13785061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13785061

Country of ref document: EP

Kind code of ref document: A1