Nothing Special   »   [go: up one dir, main page]

WO2013154058A1 - Display medium and display device - Google Patents

Display medium and display device Download PDF

Info

Publication number
WO2013154058A1
WO2013154058A1 PCT/JP2013/060544 JP2013060544W WO2013154058A1 WO 2013154058 A1 WO2013154058 A1 WO 2013154058A1 JP 2013060544 W JP2013060544 W JP 2013060544W WO 2013154058 A1 WO2013154058 A1 WO 2013154058A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
display
particle
mass
substrate
Prior art date
Application number
PCT/JP2013/060544
Other languages
French (fr)
Japanese (ja)
Inventor
奈実 徳永
弘朗 森山
真鍋 力
町田 義則
佐藤 忠伸
Original Assignee
富士ゼロックス株式会社
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ゼロックス株式会社, 富士フイルム株式会社 filed Critical 富士ゼロックス株式会社
Publication of WO2013154058A1 publication Critical patent/WO2013154058A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Definitions

  • the present invention relates to a display medium and a display device.
  • a display medium using particles is known as a display medium that can be rewritten repeatedly.
  • the display medium includes, for example, a pair of substrates, and a group of particles sealed between the substrates so as to be able to move between the substrates in accordance with an electric field formed between the pair of substrates.
  • a gap member for partitioning the substrates into a plurality of cells may be provided between the substrates for the purpose of preventing the particles from being biased to a specific region in the substrates.
  • Japanese Patent Application Laid-Open No. 2010-078826 discloses a pair of substrates having electrodes, at least one of which is translucent and disposed with a gap.
  • An embodiment is disclosed in which a treatment layer formed of a polymer compound having a silicone chain is formed on at least one of the opposing surfaces of the pair of substrates in the medium.
  • JP 2010-262066 A discloses a display medium particle having chargeability used for an information display panel, on the surface of a base particle made of a resin. It is disclosed that an external additive having an external additive surface hydrophobicity of 25% or more and 40% or less measured in a methanol wetting test is used for particles for display media to which an external additive is added.
  • An object of the present invention is to provide a display medium capable of suppressing the sticking of particles to a substrate facing surface.
  • ⁇ 1> a pair of substrates having electrodes, at least one of which is translucent and disposed with a gap; A dispersion medium sealed between the pair of substrates; A group of particles dispersed in the dispersion medium and moving in the dispersion medium in response to an electric field formed between the pair of substrates; (1) (meth) acrylic monomer of at least 10 mol% to 90 mol%, (2) silicone macromer of 1 mol% to 50 mol%, and (3) crosslinkability of 2 mol% to 70 mol% A polymer compound derived from a monomer (provided that the ratio is a ratio based on the total amount of the components (1), (2) and (3) (100 mol%)) A surface layer provided on at least one of the opposing surfaces of the substrate; A display medium having
  • ⁇ 2> The display medium according to ⁇ 1>, wherein the surface layer has a surface wetting tension (JIS-K6768 / 1999) of 35 mN / m or less.
  • ⁇ 3> The display medium according to ⁇ 1> or ⁇ 2>, wherein the polymer compound has a structural unit derived from at least one compound selected from compounds represented by the following structural formula as the silicone macromer.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 ′ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n represents a natural number.
  • x represents an integer of 1 to 3.
  • the dispersion medium is the display medium according to any one of ⁇ 1> to ⁇ 3>, wherein the content of polar components excluding water is 0.01% by mass or less.
  • Voltage applying means for applying a voltage between the pair of substrates; Is a display device.
  • a display medium capable of suppressing the sticking of particles to the substrate facing surface is provided as compared with the case where the surface layer has a surface wetting tension of 35 mN / m or less.
  • a display medium capable of suppressing the sticking of particles to the substrate facing surface is provided as compared with the case where at least one selected from the compounds represented by the structural formula is not used as the silicone macromer. Is done.
  • a display medium in which the repeated stability of display is maintained as compared with the case where the dispersion medium contains polar components excluding water beyond the above range.
  • a display device capable of suppressing the adhesion of particles to the substrate facing surface as compared with a case where a display medium having a surface layer of a polymer compound derived from a crosslinkable monomer of 2 mol% to 70 mol% is not provided.
  • FIG. 1 is a schematic configuration diagram of a display device according to a first embodiment. It is explanatory drawing which shows typically the movement aspect of a particle group when a voltage is applied between the board
  • a display medium includes a pair of substrates having electrodes, at least one of which is translucent and disposed with a gap, a dispersion medium sealed between the pair of substrates, and the dispersion medium A group of particles dispersed in the particles and moving in the dispersion medium according to the electric field formed between the pair of substrates, and a polymer compound derived from at least the following components (1), (2) and (3): Has a surface layer provided on at least one of the opposing surfaces of the pair of substrates.
  • the polymer compound obtained by polymerizing at least the compounds of (1) to (3) at the above-mentioned quantitative ratio has a surface layer provided on the opposing surface of the substrate, Particle sticking is suppressed.
  • the amount ratio of (1) (meth) acrylic monomer is less than the lower limit, the surface layer may be whitened or the polymer compound may be gelled, making film formation difficult. When the upper limit is exceeded, particles that can be formed are fixed.
  • the amount ratio of the (meth) acrylic monomer is more preferably 40 mol% or more and 70 mol% or less.
  • the amount ratio of (2) the silicone macromer is less than the above lower limit value, the effect of suppressing particle adhesion cannot be obtained. On the other hand, if the amount exceeds the above upper limit value, the polymer compound gels and the surface layer is formed. The film becomes difficult.
  • the amount ratio of the silicone macromer is more preferably 2 mol% or more and 40 mol% or less.
  • the amount ratio of (3) the crosslinkable monomer is less than the above lower limit value, the effect of suppressing particle fixation cannot be obtained, while if the amount exceeds the above upper limit value, whitening of the surface layer occurs.
  • the amount ratio of the crosslinkable monomer is more preferably 5 mol% or more and 40 mol% or less.
  • This ratio is the ratio of the amount charged when the polymer compound is synthesized.
  • the wetting tension of the surface of the said surface layer is 35 mN / m or less.
  • the wetting tension is preferably 30 mN / m or less, more preferably as small as possible.
  • the above wetting tension is measured according to JIS-K6768 (1999). Specifically, a cotton swab is immersed in a mixture for wetting tension test (for example, in the range of 22.6 mN / m to 73 mN / m / the greater the numerical value, the closer the intimacy is), and the subject (surface layer)
  • a mixture for wetting tension test for example, in the range of 22.6 mN / m to 73 mN / m / the greater the numerical value, the closer the intimacy is
  • the minimum value of the number of the test liquid mixture that is applied to the surface of the film and wets without getting water repellent is calculated as the wettability index.
  • the surface tension of the surface layer is controlled by adjusting the type and amount of the (meth) acrylic monomer, silicone macromer and crosslinkable monomer, and the type and amount of silicone macromer and crosslinkable monomer contribute greatly. To do. In particular, from the viewpoint of setting the wetting tension in the above range, it is preferable that the amount of the silicone macromer is not less than the lower limit and the amount of the crosslinkable monomer is not less than the lower limit.
  • FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment.
  • FIGS. 2A and 2B are explanatory views schematically showing a movement mode of the particle group when a voltage is applied between the substrates of the display medium of the display device according to the first embodiment.
  • the display device 10 includes a display medium 12, a voltage application unit 16 (a type of voltage application unit) that applies a voltage to the display medium 12, and a control unit 18. Contains.
  • the display medium 12 holds the display substrate 20 serving as an image display surface, the back substrate 22 facing the display substrate 20 with a gap, and holds the substrate between the display substrate 20 and the back substrate 22 at a predetermined interval.
  • a gap member 24 that divides the space into a plurality of cells, a particle group 34 enclosed in each cell, and a colored suspended particle group 36 having optical reflection characteristics different from the particle group 34 are included.
  • the above cell indicates a region surrounded by the display substrate 20, the back substrate 22, and the gap member 24.
  • a dispersion medium 50 is enclosed in this cell.
  • the particle group 34 (details will be described later) includes a plurality of particles, dispersed in the dispersion medium 50, and colored floating particles between the display substrate 20 and the back substrate 22 according to the electric field strength formed in the cell. Move through the gaps in group 36.
  • the description will be made assuming that the particle group 34 enclosed in one cell has a predetermined color and is preliminarily prepared by being charged positively or negatively.
  • the gap member 24 is provided so as to correspond to each pixel when the image is displayed on the display medium 12, and cells are formed so as to correspond to each pixel, so that the display medium 12 can display each pixel. May be.
  • the display substrate 20 has a surface electrode 40 laminated on a support substrate 38.
  • the back substrate 22 has a back electrode 46 laminated on a support substrate 44.
  • the display substrate 20 or both the display substrate 20 and the back substrate 22 are translucent.
  • the translucency in the present embodiment indicates that the visible light transmittance is 60% or more.
  • Examples of the support substrate 38 and the support substrate 44 include glass or plastic (for example, polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyimide resin, polyester resin, epoxy resin, polyethersulfone resin).
  • glass or plastic for example, polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyimide resin, polyester resin, epoxy resin, polyethersulfone resin.
  • oxides such as indium, tin, cadmium and antimony, composite oxides such as ITO, metals such as gold, silver, copper and nickel, organic materials such as polypyrrole and polythiophene, etc. Is used. These are used as a single layer film, a mixed film or a composite film, and are formed by vapor deposition, sputtering, coating, or the like. Moreover, the thickness is normally 100 to 2000 mm according to the vapor deposition method and the sputtering method.
  • the back electrode 46 and the front electrode 40 may be formed in a desired pattern, for example, a matrix shape or a stripe shape capable of performing passive matrix driving, by a conventionally known means such as etching of a conventional liquid crystal display medium or a printed circuit board. .
  • the surface electrode 40 may be embedded in the support substrate 38.
  • the back electrode 46 may be embedded in the support substrate 44.
  • the materials of the support substrate 38 and the support substrate 44 are selected according to the composition of each particle of the particle group 34 and the like.
  • the back electrode 46 and the surface electrode 40 may be separated from the display substrate 20 and the back substrate 22 and disposed outside the display medium 12.
  • the support substrate 38 and the support substrate 44 may include a TFT (thin film transistor) for each pixel. Since it is easy to laminate wiring and mount components, it is desirable to form the TFT on the back substrate 22 instead of the display substrate.
  • TFT thin film transistor
  • a surface layer 21 and a surface layer 23 are provided on the opposing surfaces of the display substrate 20 and the back substrate 22, respectively.
  • a surface layer 25 is also provided on the surface of the gap member 24 (cell inner surface).
  • the display substrate 20 and the back substrate 22 are described. May be provided only on one of the opposing surfaces, and it is desirable that the surface layer 21 is provided on at least the opposing surface on the display substrate 20 side from the viewpoint of suppressing image defects due to particle fixation. .
  • the surface layer 25 is provided also on the surface of the gap member 24 (cell inner surface)
  • the adhesion of particles to the gap member 24 is suppressed as compared with the case where the surface layer is not provided on the gap member 24, and the result is displayed. An increase in particles that do not contribute is suppressed. That is, it is preferable to provide a surface layer on at least the opposing surface of the display substrate 20, but it is best that the surface layer is disposed on all of the pair of substrates and the gap member (that is, the cell inner wall surrounded by these). .
  • each of the surface layer 21, the surface layer 23, and the surface layer 25 at least a polymer compound derived from the following (1) to (3) (hereinafter also simply referred to as “specific polymer compound”) is used for the display substrate 20 or the back surface. It is preferably provided on the opposing surface of the substrate 22 and the surface of the gap member 24 and further joined together.
  • Silicone macromer 1 mol% or more and 50 mol% or less
  • Crosslinkable monomer 2 mol% or more and 70 mol% or less
  • the ratio is a ratio based on the total amount of the components (1), (2) and (3) as a reference (100 mol%))
  • Each of the surface layer 21, the surface layer 23, and the surface layer 25 contains the specific polymer compound.
  • Each of the surface layer 21, the surface layer 23, and the surface layer 25 is configured by forming the specific polymer compound on the surface by a process of coating (coating) the compound (that is, a process of forming a polymer compound). is doing.
  • (meth) acrylic monomers include (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate , Hydroxyethyl (meth) acrylate, hydroxybutyl (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate and other alkyloxyoligoethylene glycol (meth) acrylate, polyethylene glycol one-end (meth) acrylate, (meth) Acrylic acid, maleic acid, N, N-dialkylamino (meth) acrylate and the like can be mentioned, among which hydroxyethyl (meth) acrylate and methyl (meth) acrylate are preferred.
  • acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate,
  • (meth) acryl means to include both “acryl” and “methacryl”.
  • Silicone macromer A macromer refers to a monomer having a polymer structure in the molecule, and a silicone macromer represents a macromer having a silicone chain component.
  • examples of the silicone macromer include a dimethyl silicone macromer having a (meth) acrylate group at one end, and a dimethyl silicone macromer having an epoxy group at one end.
  • a silicone compound represented by the following structural formula 1 is preferable.
  • examples of the silicone compound represented by the following structural formula 1 include, for example, X-22-173DX manufactured by Shin-Etsu Chemical Co., Ltd.
  • R 1 ′ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n represents a natural number, for example, 3 or more and 100 or less.
  • x represents an integer of 1 to 3.
  • a silicone compound represented by the following structural formula 2 is preferable.
  • the silicone compound represented by the following structural formula 2 include, for example, manufactured by JNC: Silaplane: FM-0711, FM-0721, FM-0725, etc., Shin-Etsu Chemical Co., Ltd .: X-22-174DX, X- 22-2426, X-22-2475, and the like.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 ′ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • n represents a natural number, for example, 3 or more and 100 or less.
  • x represents an integer of 1 to 3.
  • a dimethyl silicone macromer having a (meth) acrylate group at one end for example, a silicone compound having a branched structure represented by the following structural formulas 3 and 4 is also preferable.
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, having 1 to 4 carbon atoms. Or a fluoroalkyl group having 1 to 4 carbon atoms.
  • R 1 represents a hydrogen atom or a methyl group.
  • p, q, and r each independently represents an integer of 1 to 1000.
  • x represents an integer of 1 to 3.
  • silicone compound represented by the structural formula 3 examples include, for example, MCS-M11 manufactured by Gelest.
  • silicone compound represented by the structural formula 4 examples include RTT-1011 manufactured by Gelest, X-22-2404 manufactured by Shin-Etsu Chemical Co., Ltd., and the like. The structural formulas of these silicone compounds are shown below.
  • m and l in the above structural formula are each independently an integer of 2 or more and 4 or less, and the molecular weight thereof is 800 or more and 1000 or less.
  • RTT-1011 is a compound represented by the above structural formula.
  • X-22-2404 is a compound represented by the above structural formula.
  • Crosslinkable monomer is a polymerizable monomer having a group that can form a crosslinked structure, a polymerizable monomer having a group that can form a crosslinked structure by changing the structure, or Represents a polymerizable monomer having a plurality of reactive groups in the molecule.
  • the crosslinkable monomer include an isocyanate monomer having an isocyanate block having a (meth) acrylate group at one end and becoming an active isocyanate group upon heating (for example, Karenz MOI-BP manufactured by Showa Denko KK).
  • an isocyanate monomer having a (meth) acrylate group at one end and having an isocyanate group for example, Showa Denko Co., Ltd .: Karenz AOI, Karenz MOI), glycidyl (meth) acrylate having an epoxy group, and the like are also included.
  • diisocyanate compounds and triisocyanate compounds toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane isocyanate (for example, Takenate D-160N manufactured by Mitsui Chemicals), diepoxy compounds (1,7-octadiene diepoxide, And dicyclopentadiene diepoxide).
  • alkylated melamine compounds and alkylated urea compounds having functional groups in the molecule such as imino group, methylol group and methoxymethyl group (for example, Nikalac MX-270 manufactured by Sanwa Chemical Co., Ltd.).
  • an isocyanate-based monomer having an isocyanate block having a (meth) acrylate group at one end and becoming an active isocyanate group by heating is particularly preferable.
  • the specific polymer compound may be a copolymer further containing other polymerization components.
  • other polymerization components include aromatic substituted ethylene monomers having a nitrogen-containing group such as dimethylaminostyrene, diethylaminostyrene, dimethylaminomethylstyrene, and dioctylaminostyrene; vinyl-N-ethyl-N-phenyl Nitrogen-containing vinyl ether monomers such as aminoethyl ether, vinyl-N-butyl-N-phenylaminoethyl ether, triethanolamine divinyl ether, vinyl diphenylaminoethyl ether, N-vinylhydroxyethylbenzamide, m-aminophenyl vinyl ether Pyrroles such as N-vinylpyrrole; pyrrolines such as N-vinyl-2-pyrroline and N-vinyl-3-pyrroline; pyrroles such as N-
  • Piperidines such as 2-vinylquinoline and 4-vinylquinoline; pyrazoles such as N-vinylpyrazole and N-vinylpyrazoline; oxazoles such as 2-vinyloxazole; 4-vinyloxazine and morpholinoethyl (meth) Oxazine such as acrylate Crotonic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, or their anhydrides and their monoalkyl esters, vinyl ethers having a carboxyl group such as carboxyethyl vinyl ether, carboxypropyl vinyl ether; styrene sulfonic acid, 2-acrylamide -2-Methylpropane sulfonic acid, 3-sulfopropyl (meth) acyclic acid ester, bis- (3-sulfopropyl) -itaconic acid ester, and salts thereof; sulfuric acid of 2-hydroxyethyl (meth)
  • a polymerization component having a polar group may be used as the other polymerization component.
  • Examples of the polymerization component having a polar group include a polymerization component having a base (cationic group), a polymerization component having an acid group (anionic group), and a polymerization component having a hydroxyl group (hydroxyl group).
  • Examples of the base (cationic group) as a polar group include an amino group and a quaternary ammonium group (including salts of these groups).
  • Examples of the acid group (anionic group) as the polar group include a phenol group, a carboxyl group, a carboxylate group, a sulfonate group, a sulfonate group, a phosphate group, a phosphate group, and a tetraphenylboron group.
  • Examples of the polymerization component having a base (cationic group) include the following. Specifically, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dibutylaminoethyl (meth) acrylate, N, N-hydroxyethylaminoethyl (meta) ) Acrylate, N-ethylaminoethyl (meth) acrylate, N-octyl-N-ethylaminoethyl (meth) acrylate, (meth) acrylate having an aliphatic amino group such as N, N-dihexylaminoethyl (meth) acrylate N-methyl (meth) acrylamide, N-octyl (meth) acrylamide, N-phenylmethyl (meth) acrylamide, N-cyclohexyl (meth
  • the polymerization component having a base may be quaternized ammonium chloride before or after polymerization to form a salt structure.
  • Quaternary ammonium chloride is realized, for example, by reacting a cationic group with alkyl halides or tosylate esters.
  • Examples of the polymerization component having an acid group include the following.
  • Examples of the polymerization component having a carboxylic acid group include (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, their anhydrides, monoalkyl esters, carboxyethyl vinyl ether, carboxypropyl vinyl ether. And vinyl ethers having a carboxyl group, and salts thereof.
  • polymerization components having a sulfonic acid group examples include styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, 3-sulfopropyl (meth) click acid ester, bis- (3-sulfopropyl) -itaconic. And acid esters and salts thereof.
  • examples of the polymerization component having a sulfonic acid group include sulfuric acid monoesters of 2-hydroxyethyl (meth) acrylic acid and salts thereof.
  • Examples of the polymerization component having a phosphoric acid group include vinylphosphonic acid, vinyl phosphate, acid phosphoxyethyl (meth) acrylate, acid phosphoxypropyl (meth) acrylate, bis (methacryloxyethyl) phosphate, diphenyl-2-methacrylate.
  • Examples include leuoxyethyl phosphate, diphenyl-2-acryloyloxyethyl phosphate, dibutyl-2-methacryloyloxyethyl phosphate, dibutyl-2-acryloyloxyethyl phosphate, dioctyl-2- (meth) acryloyloxyethyl phosphate It is done.
  • the polymerization component having an acid group may be subjected to ammonium chloride before polymerization or after polymerization to form a salt structure.
  • Ammonium chloride is realized, for example, by reacting an anionic group with a tertiary amine or quaternary ammonium hydroxide.
  • polymerization component having a hydroxyl group examples include hydroxyalkyl (meth) acrylate (for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc.), allyl alcohol, polyethylene glycol mono (meth) acrylate, and the like.
  • hydroxyalkyl (meth) acrylate for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc.
  • allyl alcohol polyethylene glycol mono (meth) acrylate
  • Other examples include those obtained by copolymerizing a monomer having a glycidyl group and then ring-opening, and those obtained by polymerizing a monomer having t-butoxy and then hydrolyzing it to introduce an OH group.
  • polymerization components for example, (meth) acrylonitrile, (meth) acrylic acid alkyl ester, (meth) acrylamide, ethylene, propylene, butadiene, isoprene, isobutylene, N-dialkyl substituted ( And (meth) acrylamide, vinyl carbazole, vinyl chloride, vinylidene chloride, isoprene, butadiene, vinyl pyrrolidone, and the like.
  • the polymerization component mentioned as “other polymerization component” is preferably 0% by mass or more and 74% by mass or less, more preferably 25% by mass or more and 70% by mass or less in terms of the mass ratio to the total polysynthesis.
  • the specific polymer compound may constitute a surface layer as a crosslinked body.
  • a polymerization component having a reactive group (crosslinkable group) as a polymerization component is polymerized to form a resin.
  • a crosslinking agent well-known crosslinking agents, such as isocyanate, are mentioned, for example.
  • the ratio of the other polymerization component is the total amount (100) of the components (1), (2) and (3) described above.
  • the mol% is preferably 900 mol% or less, more preferably 300 mol% or less.
  • the weight average molecular weight of the specific polymer compound is preferably from 100 to 1,000,000, more preferably from 400 to 1,000,000, more preferably from 500 to 1,000,000, and even more preferably from 1,000 to 500,000. is there.
  • the weight average molecular weight is measured by a static light scattering method or size exclusion column chromatography, and the numerical values described in this specification are measured by the method.
  • the substrate or the gap member when the substrate or the gap member includes a material having a functional group that reacts with a crosslinking group in the crosslinkable monomer, the substrate and the gap member are directly reacted and bonded. This is done by processing.
  • the formation of the surface layer using a specific polymer compound is performed when the substrate or the gap member does not contain a material having a functional group that reacts with the crosslinking group in the crosslinkable monomer.
  • the treatment is performed by reacting a specific polymer compound with the substrate or the gap member.
  • the treating agent is preferably a silane coupling agent, such as vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane and ⁇ -chloropropyltrimethoxysilane, etc. (b) ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane, etc.
  • silane coupling agent such as vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane and ⁇ -chloropropyltrimethoxy
  • the thickness of the surface layer of the specific polymer compound is desirably 0.001 ⁇ m to 10 ⁇ m, more desirably 0.01 ⁇ m to 1 ⁇ m.
  • the thickness of the surface layer was measured with a Dektak 6M step gauge (manufactured by Veeco).
  • the gap member 24 for holding a gap between the display substrate 20 and the back substrate 22 is formed so as not to impair the light-transmitting property of the display substrate 20, and is a thermoplastic resin, a thermosetting resin, an electron beam curable resin. , Photo-curing resin, rubber, metal and the like.
  • the gap member 24 may be integrated with either the display substrate 20 or the back substrate 22.
  • the support substrate 38 or the support substrate 44 is manufactured by performing etching processing, laser processing processing, press processing processing, printing processing, or the like using a previously manufactured mold.
  • the gap member 24 is fabricated on either the display substrate 20 side, the back substrate 22 side, or both.
  • the gap member 24 may be colored or colorless, but is preferably colorless and transparent so as not to adversely affect the display image displayed on the display medium 12, and in this case, for example, a transparent resin such as polystyrene, polyester, or acrylic Etc. are used.
  • the particulate gap member 24 is also transparent, and glass particles are used in addition to transparent resin particles such as polystyrene, polyester, or acrylic.
  • “transparent” indicates having a transmittance of 60% or more with respect to visible light.
  • the dispersion medium 50 in which the particle group 34 is dispersed is desirably an insulating liquid.
  • insulating indicates that the volume resistivity is 10 11 ⁇ cm or more. The following are synonymous.
  • the dispersion medium 50 is not particularly limited, but a low dielectric solvent (for example, a dielectric constant of 5.0 or less, desirably 3.0 or less) is preferably selected.
  • the dispersion medium may use a solvent other than the low dielectric solvent, but preferably contains 50% by volume or more of the low dielectric solvent.
  • the dielectric constant of a low dielectric constant is calculated
  • the insulating liquid examples include hexane, cyclohexane, toluene, xylene, decane, hexadecane, kerosene, paraffin, isoparaffin, silicone oil, dichloroethylene, trichloroethylene, perchloroethylene, high-purity petroleum, ethylene glycol, and alcohols.
  • Ethers, esters dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, 2-pyrrolidone, N-methylformamide, acetonitrile, tetrahydrofuran, propylene carbonate, ethylene carbonate, benzine, diisopropylnaphthalene, olive oil, isopropanol, trichloro Trifluoroethane, tetrachloroethane, dibromotetrafluoroethane, etc., and mixtures thereof It is preferably used. Among these, silicone oil is preferably applied.
  • water is also suitably used as the dispersion medium 50 by removing impurities so as to have the following volume resistance value.
  • the volume resistance value is preferably 10 3 ⁇ cm or more, more preferably 10 7 ⁇ cm or more and 10 19 ⁇ cm or less, and further preferably 10 10 ⁇ cm or more and 10 19 ⁇ cm or less.
  • the insulating liquid may contain acids, alkalis, salts, dispersion stabilizers, stabilizers for the purpose of preventing oxidation or UV absorption, antibacterial agents, preservatives, etc. It is desirable to add so that it may become the range of the volume resistance value of.
  • anionic surfactants for insulating liquids, anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorosurfactants, silicone surfactants, metal soaps as charge control agents Alkyl phosphate esters, succinimides and the like may be added and used.
  • Nonionic surfactants include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester And fatty acid alkylolamide.
  • anionic surfactant examples include alkylbenzene sulfonate, alkylphenyl sulfonate, alkyl naphthalene sulfonate, higher fatty acid salt, sulfate of higher fatty acid ester, sulfonic acid of higher fatty acid ester, and the like.
  • examples of the cationic surfactant include primary to tertiary amine salts and quaternary ammonium salts. These charge control agents are preferably 0.01% by mass or more and 20% by mass or less, and particularly preferably 0.05% by mass or more and 10% by mass or less with respect to the solid content of the particles.
  • the dispersion medium 50 may use a polymer resin in combination with the insulating liquid.
  • the polymer resin is preferably a polymer gel, a polymer, or the like.
  • agarose As this polymer resin, agarose, agaropectin, amylose, sodium alginate, propylene glycol ester of alginate, isolikenan, insulin, ethylcellulose, ethylhydroxyethylcellulose, curdlan, casein, carrageenan, carboxymethylcellulose, carboxymethyl starch, callose, agar, chitin , Chitosan, silk fibroin, gar gum, quince seed, crown gall polysaccharide, glycogen, glucomannan, keratan sulfate, keratin protein, collagen, cellulose acetate, gellan gum, schizophyllan, gelatin, elephant palm mannan, tunisin, dextran, dermatan sulfate, starch , Tragacanth gum, nigeran, hyaluronic acid, hydroxyethylcellulose, hydro Examples include synthetic gels derived from natural polymers such as cyclopropylcellulose,
  • polymers containing functional groups of alcohol, ketone, ether, ester, and amide in the repeating unit are exemplified.
  • copolymers containing molecules include copolymers containing molecules.
  • gelatin, polyvinyl alcohol, poly (meth) acrylamide and the like are desirably used.
  • the following colorant may be mixed with the dispersion medium 50 to display a color different from the color of the particle group 34 on the display medium 12.
  • the color of the particle group 34 is black by mixing a white colorant as the colorant, white and black are displayed on the display medium 12.
  • Examples of the colorant mixed in the dispersion medium 50 include carbon black, titanium oxide, magnesium oxide, zinc oxide, phthalocyanine copper-based cyan color material, azo-based yellow color material, azo-based magenta color material, quinacridone-based magenta color material, and red.
  • Known colorants such as a color material, a green color material, and a blue color material can be used.
  • aniline blue, calcoil blue, chrome yellow, ultramarine blue, DuPont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black rose bengal
  • C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. Blue 15: 1, C.I. I. Pigment Blue 15: 3 is a typical example.
  • the particle group 34 moves in the dispersion medium 50, if the viscosity of the dispersion medium 50 is equal to or higher than a predetermined value, there is a large variation in force on the back substrate 22 and the display substrate 20, and the particle movement with respect to the electric field. Therefore, it is preferable to adjust the viscosity of the dispersion medium 50 as well.
  • the viscosity of the dispersion medium 50 is preferably 0.1 mPa ⁇ s or more and 100 mPa ⁇ s or less in an environment at a temperature of 20 ° C. from the viewpoint of the moving speed of the particles, that is, the display speed. -It is more preferable that it is s or less, and it is still more desirable that it is 0.1 mPa * s or more and 20 mPa * s or less.
  • the viscosity of the dispersion medium 50 is adjusted by adjusting the molecular weight, structure, composition, etc. of the dispersion medium.
  • a B-8L viscometer manufactured by Tokyo Keiki is used for measurement of the viscosity.
  • the particle group (electrophoretic particle group) 34 includes a plurality of electrophoretic particles.
  • each electrophoretic particle is positively or negatively charged, and is interposed between the front electrode 40 and the back electrode 46 (that is, the display substrate 20). And between the rear substrate 22 and the substrate), a predetermined voltage is applied to form an electric field higher than a predetermined electric field strength between the display substrate 20 and the rear substrate 22 in the dispersion medium 50. Is to move. The change in display color on the display medium 12 is caused by the movement of each migrating particle contained in the migrating particle group 34 in the dispersion medium 50.
  • the migrating particles of the migrating particle group 34 include, for example, colored core material particles (hereinafter referred to as “core particles”) and a coating layer that covers the core particles.
  • core particles colored core material particles
  • coating layer that covers the core particles.
  • the core particles include, for example, a composition containing a resin (hereinafter referred to as “core particle resin”) and a colorant.
  • the resin of the core particle may be a non-crosslinked resin, but is preferably a crosslinked resin.
  • a resin cross-linked body for example, a polymerization component having a reactive group (crosslinkable group) as a polymerization component of the resin is polymerized to crosslink the resin.
  • a method of adding and crosslinking the resin can be mentioned.
  • the core particle resin is preferably a water-soluble resin or an alcohol-soluble resin from the viewpoint of the production method of the electrophoretic particles.
  • Water-soluble and alcohol-soluble means that the target substance dissolves 1% by mass or more in water or alcohol at 25 ° C.
  • the core particle resin may be a chargeable resin (a resin having a chargeable group) or a non-chargeable resin (a resin having no chargeable group), but from the viewpoint of improving the charge amount. It is preferable that the resin is a chargeable resin.
  • the chargeable resin include a homopolymer of a polymerization component having a chargeable group, and a copolymer of a polymerization component having a chargeable group and a polymerization component having no chargeable group.
  • examples of the non-chargeable resin include a homopolymer of a polymerization component having no chargeable group.
  • a polymerization component having a reactive group crosslinkable group
  • Each of these polymerization components may be used alone or in combination of two or more.
  • examples of the chargeable group include a base and an acid group.
  • examples of the base (cationic group) as the chargeable group include an amino group and a quaternary ammonium group (including salts of these groups). These bases (cationic groups) tend to impart positively charged polarity to the particles, for example.
  • examples of the acid group (anionic group) as the chargeable group include a phenol group, a carboxyl group, a carboxylate group, a sulfonate group, a sulfonate group, a phosphate group, a phosphate group, and a tetraphenylboron group. These acid groups (anionic groups) tend to impart negatively charged polarity to the particles, for example.
  • Examples of the polymerization component having a base (cationic group) include those similar to the polymerization component having a base (cationic group) described as the polymerization component of the specific polymer compound contained in the surface layer.
  • Examples of the polymerization component having an acid group (anionic group) include those similar to the polymerization component having an acid group (anionic group) described as the polymerization component of the specific polymer compound contained in the surface layer. .
  • polymerization component having no chargeable group examples include nonionic polymerization components (nonionic polymerization components).
  • nonionic polymerization components include butadiene, isoprene, isobutylene, N-dialkyl-substituted (meth) acrylamide, vinyl carbazole, vinyl chloride, vinylidene chloride, isoprene, butadiene, vinyl pyrrolidone, and the like.
  • polymerization component having a reactive group examples include glycidyl (meth) acrylate having an epoxy group, an isocyanate monomer having an isocyanate group (for example, Showa Denko: Karenz AOI (2-isocyanatoethyl acrylate) ), Karenz MOI (2-isocyanatoethyl methacrylate)), an isocyanate monomer having a blocked isocyanate group (for example, Showa Denko: Karenz MOI-BM (methacrylic acid 2- (0- [1'-methylpropylideneamino)) Carboxyamino) ethyl), Karenz MOI-BP (2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate)) and the like.
  • glycidyl (meth) acrylate having an epoxy group for example, Showa Denko: Karenz AOI (2-isocyanatoethyl acrylate) ),
  • the blocked isocyanate group is, for example, a state in which the isocyanate group has reacted with a substituent, and a state in which the isocyanate group does not react with a substituent that is eliminated by heating. Thereby, the reactivity of an isocyanate group is suppressed and it will be in the state which reacts, when a substituent detaches
  • a polymerization component having a reactive group is used as the polymerization component of the resin of the core particle, the core particle resin itself is crosslinked, and the core particle becomes a resin crosslinked body.
  • the polymerization component having a chargeable group is preferably 0.1% by mass or more and 90% by mass or less, more preferably 0.5% by mass or more and 70% by mass, with respect to the total polymerization component. It is below mass%.
  • the polymerization component having a reactive group is preferably 1% by mass or more and 80% by mass or less, more preferably 3% by mass or more and 60% by mass or less in terms of a mass ratio to the total polymerization components.
  • crosslinking agents such as an epoxy compound, a carboxyimide compound, block isocyanate
  • examples of the epoxy compound include glycidyl (meth) acrylate, itaconic acid diglycidyl ester, butenetricarboxylic acid triglycidyl ester, p-styrenecarboxylic acid glycidyl ester, and the like, vinyl glycidyl ether, allyl glycidyl ether, 2- And unsaturated glycidyl ethers such as methylallyl glycidyl ether, methacryl glycidyl ether, and styrene-p-glycidyl ether.
  • Examples of the carboximide compound include saccharin, succinimide, and phthalimide.
  • Examples of the blocked isocyanate include isocyanate-based monomers having the blocked isocyanate groups exemplified above.
  • the amount of the crosslinking agent used to obtain the crosslinked resin is, for example, preferably from 1% by weight to 80% by weight, and more preferably from 3% by weight to 60% by weight with respect to the resin of the core particles.
  • the weight average molecular weight of the core particle resin is preferably 1,000 to 1,000,000, more preferably 10,000 to 200,000.
  • the colorant examples include organic or inorganic pigments, oil-soluble dyes, etc., for example, magnetic powders such as magnetite and ferrite, carbon black, titanium oxide, magnesium oxide, zinc oxide, phthalocyanine copper-based cyan colorants, azo-based materials
  • Known colorants such as a yellow color material, an azo magenta color material, a quinacridone magenta color material, a red color material, a green color material, and a blue color material can be used.
  • examples of the colorant include aniline blue, calcoyl blue, chrome yellow, ultramarine blue, dupont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black, rose bengal, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. I. Pigment blue 15: 1, C.I. I. Pigment Blue 15: 3, etc. are exemplified as typical examples.
  • the blending amount of the colorant is preferably 10% by mass or more and 99% by mass or less, and more preferably 30% by mass or more and 99% by mass or less with respect to the resin of the core particles.
  • the core particles may contain other compounding materials.
  • other compounding materials include charge control materials and magnetic materials.
  • charge control material known materials used for electrophotographic toner materials can be used.
  • cetylpyridyl chloride, BONTRON P-51, BONTRON P-53, BONTRON E-84, BONTRON E-81 above, Quaternary ammonium salts such as Orient Chemical Industry Co., Ltd., salicylic acid metal complexes, phenol condensates, tetraphenyl compounds, metal oxide particles, and metal oxide particles surface-treated with various coupling agents.
  • the magnetic material a color-coated inorganic magnetic material or organic magnetic material is used as necessary. Further, a transparent magnetic material, in particular, a transparent organic magnetic material is more preferable because it hardly inhibits the coloring of the colored pigment and has a smaller specific gravity than the inorganic magnetic material.
  • the colored magnetic material include small-diameter colored magnetic powder described in JP-A-2003-131420. A material provided with magnetic particles serving as nuclei and a colored layer laminated on the surface of the magnetic particles is used. The colored layer may be selected such that the magnetic powder is opaquely colored with a pigment or the like, but it is preferable to use, for example, a light interference thin film.
  • This optical interference thin film is a thin film having a thickness equivalent to the wavelength of light made of an achromatic material such as SiO 2 or TiO 2 and selectively reflects the wavelength of light by optical interference in the thin film. It is.
  • the coating layer includes, for example, a resin (hereinafter referred to as “resin of the coating layer”).
  • the resin of the coating layer may be a non-crosslinked resin, but is preferably a crosslinked resin.
  • a polymerization component having a reactive group (crosslinkable group) as a polymerization component of the resin is polymerized to crosslink the resin.
  • a method of adding and crosslinking the resin can be mentioned.
  • the resin of the coating layer is preferably copolymerized with a polymerization component having a silicone chain as a polymerization component of the resin from the viewpoint of improving the dispersibility of the electrophoretic particles.
  • a polymerization component having a silicone chain for example, a polymerization component having a silicone chain, a polymerization component having a reactive group, and a polymerization component having a chargeable group and other polymerization components, if necessary
  • the resin include a copolymer.
  • the polymerization component having a silicone chain for example, the same as the polymerization component having a silicone chain (that is, a silicone macromer) described as a polymerization component of a specific polymer compound contained in the surface layer. Things.
  • the polymerization component having a reactive group is the same as the polymerization component having a reactive group (crosslinkable group) described as the polymerization component of the core particle resin.
  • the polymerization component which has a reactive group is used as a polymerization component of resin of such a coating layer, the resin itself of a coating layer will bridge
  • the coating layer is coated on the core particle in a state where the reactive group of the resin of the coating layer is bonded to the functional group on the surface of the core particle.
  • the polymerization component having a chargeable group include the same as the polymerization component having a chargeable group described as the polymerization component of the core particle resin.
  • polymerization components include polymerization components that do not have a chargeable group.
  • the polymerization component having no chargeable group is the same as the polymerization component having no chargeable group described as the polymerization component of the core particle resin.
  • the polymerization component having a silicone chain (that is, silicone macromer) is preferably 1% by mass or more and 90% by mass or less, more preferably 2% by mass or more and 80% by mass with respect to the total polymerization component. It is as follows.
  • the polymerization component having a reactive group is preferably 3% by mass or more and 80% by mass or less, more preferably 5% by mass or more and 60% by mass or less in terms of a mass ratio with respect to all the polymerization components.
  • a crosslinking agent for obtaining a resin crosslinked body for example, a crosslinking agent such as an epoxy compound, a carboxyimide compound, and a blocked isocyanate can be used in the same manner as the crosslinking agent for converting the resin of the core particle into a crosslinked body.
  • the amount of the crosslinking agent used to obtain the resin crosslinked body is, for example, preferably from 1% by mass to 80% by mass, and more preferably from 3% by mass to 60% by mass with respect to the resin of the coating layer.
  • the weight average molecular weight of the resin of the coating layer is preferably 500 to 1,000,000, more preferably 1,000 to 1,000,000.
  • the coating layer may contain other compounding materials.
  • compounding materials include, for example, styrenes such as styrene and chlorostyrene, monoolefins such as ethylene, propylene, butylene, and isoprene, vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate, and vinyl butyrate, and methyl acrylate.
  • ⁇ -methylene aliphatic monocarboxylic esters such as ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate, vinyl Vinyl ethers such as methyl ether, vinyl ethyl ether, vinyl butyl ether, vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, vinyl isopropenyl ketone, hydroxyethyl (meth) acrylate, Alkoxyoxy-oligoethylene glycol (meth) acrylates such as droxybutyl (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, polyethylene glycol one-terminal (meth) acrylate, (meth) acrylic acid and its salts, vinyls
  • the coating layer has a coating amount on the surface of the core particles of, for example, 0.4% by mass or more and 15% by mass or less, and preferably 0.4% by mass or more and 6% by mass or less with respect to the core particles.
  • the average particle diameter (volume average particle diameter) of the migrating particles is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less, but is selected according to the application and is not limited thereto.
  • the average particle size is measured using a Photo FPAR-1000 (dynamic light scattering type particle size distribution measuring device) manufactured by Otsuka Electronics Co., Ltd. and analyzed by the MARQUARD method.
  • the method for producing the migrating particles includes, but is not limited to, the following production method.
  • the core particle resin, the colorant, and other compounding materials are mixed in the first solvent to prepare a mixed solution in which the core particle resin is dissolved.
  • the first solvent is a good solvent capable of forming a dispersed phase in a second solvent described later (a poor solvent capable of forming a continuous phase), has a lower boiling point than the second solvent, and is a core particle resin. Is selected from solvents that dissolve.
  • the first solvent include water, isopropyl alcohol (IPA), methanol, ethanol, butanol, tetrahydrofuran, ethyl acetate, butyl acetate and the like.
  • the obtained mixed liquid is mixed with the second solvent, stirred, and the mixed liquid is emulsified using the second solvent as a continuous phase to prepare an emulsified liquid.
  • the first solvent in the emulsified liquid is removed (dried) by heating or the like to precipitate the core particle resin, and as a granular material containing the colorant and other compounding materials together with these, the core particles (to the second solvent) To obtain dispersed core particles).
  • the second solvent is a poor solvent that can form a continuous phase with respect to the first solvent that becomes the dispersed phase, and is selected from solvents having a boiling point higher than that of the first solvent and in which the core particle resin is insoluble.
  • the second solvent include a dispersion medium for dispersing the obtained electrophoretic particles.
  • the resin of the coating layer and other compounding materials are mixed in a third solvent to prepare a mixed solution in which the resin of the coating layer is dissolved.
  • the third solvent is also a good solvent that can form a dispersed phase in the second solvent (a poor solvent that can form a continuous phase), has a lower boiling point than the second solvent, and dissolves the resin of the coating layer.
  • the third solvent is preferably selected from solvents in which the core particle resin is insoluble. Examples of the third solvent include water, isopropyl alcohol (IPA), methanol, ethanol, butanol, tetrahydrofuran, ethyl acetate, and butyl acetate.
  • the obtained mixed liquid is mixed with the second solvent in which the core particles are dispersed and stirred to emulsify the mixed liquid using the second solvent as a continuous phase to prepare an emulsion.
  • the third solvent in the emulsion is removed (dried) by heating, etc., and the resin of the coating layer is deposited on the surface of the core particles, and together with this, a coating layer containing other compounding materials is formed on the surface of the core particles To do.
  • a heat treatment for cross-linking the resin is performed.
  • electrophoretic particles having a coating layer formed on the surface of the core particles are obtained.
  • the content of the migrating particles (the migrating particle group 34) (the content (% by mass) with respect to the total mass in the cell) is not particularly limited as long as the desired hue is obtained, and the cell thickness ( That is, it is effective for the display medium 12 to adjust the content by the distance between the display substrate 20 and the back substrate). That is, in order to obtain a desired hue, the content decreases as the cell becomes thicker, and the content increases as the cell becomes thinner. Generally, it is 0.01 mass% or more and 50 mass% or less.
  • the colored floating particle group 36 is an uncharged particle group, includes colored particles having optical reflection characteristics different from that of the particle group 34, and functions as a reflecting member that displays a color different from that of the particle group 34. is there.
  • the colored floating particle group 36 is, for example, a member that is colored in a color different from the color of the particle group 34 and causes the display medium 12 to display a color different from the color of the particle group 34.
  • the case where the colored suspended particle group 36 is white will be described, but the present invention is not limited to this color.
  • the colored floating particle group 36 for example, particles in which a white pigment such as titanium oxide, silicon oxide, or zinc oxide is dispersed in polystyrene, polyethylene, polypropylene, polycarbonate, PMMA, acrylic resin, phenol resin, formaldehyde condensate, or the like are used.
  • a white pigment such as titanium oxide, silicon oxide, or zinc oxide
  • polystyrene polyethylene, polypropylene, polycarbonate, PMMA, acrylic resin, phenol resin, formaldehyde condensate, or the like
  • the above-described resin particles containing a pigment or dye of a desired color may be used.
  • the pigment or dye is, for example, RGB or YMC color
  • a general pigment or dye used for printing ink or color toner may be used.
  • the colored floating particle group 36 is sealed between the substrates by, for example, an ink jet method.
  • the size of the cell in the display medium 12 is closely related to the resolution of the display medium 12, and the display medium 12 capable of displaying a higher resolution image is produced as the cell is smaller.
  • the length of the substrate 20 in the plate surface direction is 10 ⁇ m or more and 1 mm or less.
  • fixing means such as a combination of bolts and nuts, a clamp, a clip, and a frame for fixing the substrate are used.
  • fixing means such as an adhesive agent, heat melting, and ultrasonic bonding.
  • the display medium 12 is, for example, a bulletin board that can store and rewrite images, a circular version, an electronic blackboard, an advertisement, a signboard, a flashing sign, an electronic paper, an electronic newspaper, an electronic book, a copier, a document sheet that is shared with a printer, Used for.
  • the display device 10 includes a display medium 12, a voltage application unit 16 (a type of voltage application unit) that applies a voltage to the display medium 12, and a control unit 18 ( (See FIG. 1).
  • the voltage application unit 16 is electrically connected to the front electrode 40 and the back electrode 46.
  • the case where both the front electrode 40 and the back electrode 46 are electrically connected to the voltage application unit 16 will be described. However, one of the front electrode 40 and the back electrode 46 is grounded. The other may be connected to the voltage application unit 16.
  • the voltage application unit 16 is connected so as to be able to send and receive signals to the control unit 18.
  • the control unit 18 stores in advance various programs such as a CPU (central processing unit) that controls the operation of the entire apparatus, a RAM (Random Access Memory) that temporarily stores various data, and a control program that controls the entire apparatus. It is good also as a microcomputer containing ROM (Read Only Memory).
  • the voltage application unit 16 is a voltage application device for applying a voltage to the front electrode 40 and the back electrode 46, and applies a voltage according to the control of the control unit 18 between the front electrode 40 and the back electrode 46.
  • the particle group 34 enclosed in the display medium 12 is black and is negatively charged will be described.
  • the dispersion medium 50 is transparent and the colored suspended particle group 36 is white. That is, in this embodiment, the case where the display medium 12 displays black or white by the movement of the particle group 34 will be described.
  • an initial operation signal indicating that the voltage is applied for a predetermined time so that the front electrode 40 becomes a negative electrode and the back electrode 46 becomes a positive electrode is output to the voltage application unit 16.
  • the particle group 34 charged on the negative electrode moves to the back substrate 22 side and reaches the back substrate 22 (FIG. 2 (A)).
  • the color of the display medium 12 visually recognized from the display substrate 20 side is visually recognized as white as the color of the colored floating particle group 36.
  • the predetermined time may be stored in advance in a memory such as a ROM (not shown) in the control unit 18 as information indicating the voltage application time in the voltage application in the initial operation. Then, when the process is executed, information indicating the predetermined time may be read.
  • a memory such as a ROM (not shown) in the control unit 18 as information indicating the voltage application time in the voltage application in the initial operation. Then, when the process is executed, information indicating the predetermined time may be read.
  • the polarity of the voltage applied between the substrates is reversed between the surface electrode 40 and the back electrode 46, and when the voltage is applied with the surface electrode 40 as the positive electrode and the back electrode 46 as the negative electrode, FIG. As shown in B), the particle group 34 moves to the display substrate 20 side and reaches the display substrate 20 side, and black display by the particle group 34 is performed.
  • the display is performed when the particle group 34 reaches the display substrate 20 or the back substrate 22 and adheres thereto.
  • the opposing surface of the display substrate 20 and the back substrate 22 has the surface layers 21 and 23 (surface layer) made of the specific polymer compound, so that the particles even if the particle group 34 moves and adheres to the opposing surface.
  • the adhesion of the particles of the group 34 is suppressed. As a result, color reproducibility and high contrast are realized.
  • the opposing surfaces of the support substrate 38 and the support substrate 44 are the specific polymer compound and have a polarity. It is preferable to have the surface layer 21 and the surface layer 23 comprised including the high molecular compound formed by superposing
  • the polar group functions as a functional group that adsorbs the migrating particle group 34 (adsorptive functional group), and the display substrate 20 and the back surface This is considered because the state in which the migrating particle group 34 is attached to the opposite surface of the substrate 22 is easily maintained.
  • the dispersion medium 50 in which the electrophoretic particle group 34 is dispersed contains a large amount of polar components other than water
  • the content of polar components excluding water contained in the dispersion medium 50 is 0.01% by mass or less, preferably 0.005% by mass or less. Is preferred. Thereby, the display device 10 (display medium 12) according to the present embodiment maintains the repeated stability of display.
  • the “polar component excluding water” that causes the repeated stability of display to decrease is, for example, a member in contact with the dispersion medium 50 (for example, the surface layer 21, the surface layer 23, the surface layer 25, and the electrophoretic particles).
  • the polymerization component having an unreacted polar group contained in the resin (polymer) contained in is dissolved in the dispersion medium 50.
  • the “polar component excluding water” is an unreacted low molecular weight component among the polymerization components having a polar group that is blended to function as a functional functional group (for example, an adsorptive functional group or a chargeable group).
  • the component eluted from the member in contact with the dispersion medium 50 into the dispersion medium 50.
  • the “polar component excluding water” refers to a component in which a polar component other than the resin (polymer) constituting the migrating particles is eluted into the dispersion medium 50, a residual solvent, and the like.
  • water does not cause the repeated stability of the display to deteriorate because the silicone oil contains approximately 140 ppm of water in normal use conditions and is almost saturated. Therefore, it is not necessary to consider the content.
  • the polar group of the resin (polymer) is oriented on the side in contact with the dispersion medium 50.
  • a reduction in the amount of the polymerization component itself having a polar group that functions as a functional functional group is realized. It is considered that the polymerization component having a polar group is easily reduced, and as a result, the polar component eluted from the member in contact with the dispersion medium 50 to the dispersion medium 50 is reduced.
  • a method for orienting the polar group of the resin (polymer) on the side in contact with the dispersion medium 50 for example, a method of orienting by an electric field or a magnetic field, or by spreading the resin on a gas-liquid or two-liquid interface. And a method of forming a layer on the substrate.
  • the content of “polar components excluding water” is measured as follows. First, a part of the dispersion medium 50 is collected from the produced display device 10 (display medium 12) and used as a measurement sample. Using the collected measurement sample, the solid and the liquid are separated by an operation such as centrifugation. Current measurement is performed on the separated liquid, and the content of polar components excluding water is measured by comparison with a calibration curve prepared in advance.
  • the content of the polar component excluding water is measured as a step of discriminating the final product from the non-defective product or the defective product. It may be determined whether the content of polar components excluding water contained is within the above range.
  • FIG. 3 is a schematic configuration diagram of a display device according to the second embodiment.
  • FIG. 4 is a diagram schematically showing a relationship between an applied voltage and a moving amount (display density) of particles in the display device according to the second embodiment.
  • FIG. 5 is an explanatory diagram schematically showing the relationship between the voltage mode applied between the substrates of the display medium and the particle movement mode in the display device according to the second embodiment.
  • the display device 10 according to the second embodiment is a form in which two or more kinds of particle groups are applied. Two or more kinds of particle groups are all charged with the same polarity.
  • the display device 10 includes a display medium 12, a voltage application unit 16 that applies a voltage to the display medium 12, and a control unit 18.
  • the display device 10 according to the present embodiment has substantially the same configuration as the display device 10 described in the first embodiment, and thus the same reference numerals are given to the same configuration and detailed description thereof is omitted.
  • the display medium 12 holds the display substrate 20 serving as an image display surface, the back substrate 22 facing the display substrate 20 with a gap, and holds the substrate between the display substrate 20 and the back substrate 22 at a predetermined interval.
  • a gap member 24 that divides the substrate into a plurality of cells, a particle group 34 enclosed in each cell, and a colored suspended particle group 36 having optical reflection characteristics different from the particle group 34 are included.
  • the opposing surfaces of the display substrate 20 and the back substrate 22 are charged as described in the first embodiment, and the surface layer 21 and the surface layer 23 are provided on the opposing surfaces.
  • a plurality of types of particle groups 34 having different colors are dispersed in the dispersion medium 50 as the particle group 34.
  • each color particle group 34 (yellow particle group 34Y, magenta particle group 34M, and cyan particle group 34C) has a voltage range necessary for moving each color particle group 34 for each color. Are different.
  • each particle of the plurality of types of particle groups 34 having different absolute values of voltages necessary to move according to the electric field for example, among the materials included in the particle group 34 described in the first embodiment, for example, It can be obtained by preparing particle dispersions each containing particles having different charge amounts by mixing the charge control agent and the amount of magnetic powder, the type and concentration of the resin constituting the particles, and the like.
  • the yellow particle group 34Y, the magenta particle group 34M, and the cyan particle group 34C having different colors are dispersed as the three types of particle groups 34.
  • These plural types of particle groups 34 have different absolute values of voltages necessary for moving in accordance with the electric field in the respective color particle groups.
  • the absolute value of the voltage when each of the three color particle groups, the magenta magenta particle group 34M, the cyan cyan particle group 34C, and the yellow yellow particle group 34Y starts moving.
  • the magenta magenta particle group 34M is
  • the cyan cyan particle group 34C is
  • the yellow yellow particle group 34Y is
  • the absolute value of the maximum voltage for moving almost all of the three color particle groups of the magenta particle group 34M, the cyan cyan particle group 34C, and the yellow yellow particle group 34Y of each color particle group 34 Assuming that the magenta magenta particle group 34M is
  • the three types of particle groups 34 are dispersed in the dispersion medium 50 in a state of being charged with the same polarity, and voltages necessary for moving the cyan particle groups 34C.
  • absolute value of a value between Vtc and Vdc
  • from Vtm
  • (the absolute value of the value between Vty and Vdy) are in this order. It is set to be large without overlapping.
  • of the maximum voltage for moving almost all the cyan particle groups 34C is the absolute value of the voltage range necessary for moving the magenta particle group 34M.
  • (Vty to Vdy The absolute value of the value between) is set smaller.
  • of the maximum voltage for moving almost all of the magenta particle group 34M is the absolute value of the voltage range necessary for moving the yellow particle group 34Y
  • the particle groups 34 of each color are independently driven by setting the voltage ranges necessary for moving the particle groups 34 of each color so as not to overlap.
  • the “voltage range necessary for moving the particle group 34” means the voltage necessary for the particle to start moving and the change in display density even if the voltage and voltage application time are further increased from the start of movement. It shows the voltage range until it disappears and the display density is saturated.
  • the “maximum voltage necessary for moving almost all the particle groups 34” means that even if the voltage and the voltage application time are further increased from the start of the above movement, the display density does not change and the display density is saturated. Indicates voltage. Further, “almost all” means that there is a variation in the characteristics of the particle groups 34 of the respective colors, so that some of the characteristics of the particle groups 34 are so different that they do not contribute to the display characteristics.
  • a voltage is applied from 0 V between the display substrate 20 and the rear substrate 22 to gradually increase the voltage value of the applied voltage, and the voltage applied between the substrates is When + Vtc is exceeded, the display density starts to change due to the movement of the cyan particle group 34C in the display medium 12. Further, when the voltage value is increased and the voltage applied between the substrates becomes + Vdc, the change in display density due to the movement of the cyan particle group 34C in the display medium 12 stops.
  • the magenta particles are displayed on the display medium 12.
  • a change in display density due to movement of the group 34M begins to appear.
  • the absolute value of the voltage value is further increased and the voltage applied between the display substrate 20 and the back substrate 22 becomes ⁇ Vdm, the change in display density due to the movement of the magenta particle group 34M in the display medium 12 stops.
  • the voltage applied between the substrates is in the range of ⁇ Vtc to + Vtc (voltage range
  • Vtc voltage range
  • the particle group 34 the cyan particle group 34C, the magenta particle group 34M, and the yellow particle group 34Y
  • the display density of the display medium 12 changes I can say that.
  • the display density of the display medium 12 changes so as to change with respect to the cyan particle group 34C among the three color particle groups 34.
  • of the voltage Vdc is applied, the display density per unit voltage does not change.
  • the display medium 12 when a voltage that is applied between the substrates is between ⁇ Vtm and + Vtm (voltage range
  • a voltage higher than the absolute values of the voltage + Vtm and the voltage ⁇ Vtm is applied between the substrates, the display density of the display medium 12 is changed for the magenta particle group 34M and the magenta particle group 34M of the yellow particle group 34Y.
  • the display density per unit voltage starts to change to such an extent that the particles move to the extent that occurs, and the display density changes when a voltage greater than the absolute value
  • the display medium 12 is filled with the yellow particle group 34Y, the magenta particle group 34M, and the cyan particle group 34C described with reference to FIG.
  • the voltage applied between the substrates that is larger than the absolute value of the voltage necessary for the particles constituting the yellow particle group 34Y to start moving and less than or equal to the maximum voltage of the yellow particle group 34Y is referred to as “large voltage”.
  • the voltage applied between the substrates that is larger than the absolute value of the voltage necessary for the particles constituting the magenta particle group 34M to start moving and is equal to or less than the maximum voltage of the magenta particle group 34M is referred to as “medium voltage”.
  • the voltage applied between the substrates that is larger than the absolute value of the voltage required for the particles constituting the cyan particle group 34C to start moving and below the maximum voltage of the cyan particle group 34C is referred to as a “small voltage”. To do.
  • the respective voltages are referred to as “+ large voltage”, “+ medium voltage”, and “+ small voltage”, respectively.
  • the respective voltages will be referred to as “ ⁇ large voltage”, “ ⁇ medium voltage”, and “ ⁇ small voltage”, respectively. .
  • magenta particle group 34M As shown in FIG. 5A, in the initial state, it is assumed that all of the magenta particle group 34M, the cyan particle group 34C, and the yellow particle group 34Y are positioned on the back substrate 22 side (white display state).
  • the magenta particle group 34M, the cyan particle group 34C, and the yellow particle group 34Y are formed as all the particle groups. Move to the display substrate 20 side. In this state, even if the voltage application is canceled, each particle group does not move while adhering to the display substrate 20 side, and subtractive color mixing (magenta) by the magenta particle group 34M, the cyan particle group 34C, and the yellow particle group 34Y. In this case, the black color is displayed by the subtractive color mixture of cyan and yellow. (See FIG. 5B).
  • magenta particle group 34M, cyan particle group 34C when “+ medium voltage” is applied between the display substrate 20 and the back substrate 22 from the initial state shown in FIG. 5A, all the particle groups 34 (magenta particle group 34M, cyan particle group 34C) are applied. , And the yellow particle group 34Y), the magenta particle group 34M and the cyan particle group 34C move to the display substrate 20 side. For this reason, since the magenta particle group 34M and the cyan particle group 34C are attached to the display substrate 20 side, blue is displayed by the subtractive color mixing of magenta and cyan (see FIG. 5E).
  • magenta particle group 34M and the cyan particle group 34C attached to the display substrate 20 side.
  • the cyan particle group 34C moves to the back substrate 22 side. Therefore, only the magenta particle group 34M is attached to the display substrate 20 side, so that a magenta color is displayed (see FIG. 5F).
  • the desired particles are selectively moved according to the electric field generated by the voltage, so that particles of colors other than the desired color are dispersed.
  • the movement in the medium 50 is suppressed, and the color mixture in which colors other than the desired color are mixed is suppressed, and color display is performed.
  • the absolute value of the voltage required for each particle group 34 to move according to the electric field is different from each other, even if the voltage ranges necessary for moving according to the electric field overlap with each other, clear color display is possible.
  • the voltage ranges are different from each other, color mixing is further suppressed and color display is realized.
  • the particle group 34 reaches the display substrate 20 or the back substrate 22 and adheres to display. Is called.
  • the opposing surface of the display substrate 20 and the back substrate 22 has the surface layers 21 and 23 (surface layer) made of the specific polymer compound, so that the particles even if the particle group 34 moves and adheres to the opposing surface. The adhesion of the particles of the group 34 is suppressed. As a result, color reproducibility and high contrast are realized.
  • volume average primary particle size of particles The volume average primary particle diameter of the particles was measured using a Coulter Multisizer-II type (manufactured by Beckman Coulter, Inc.) with an aperture diameter of 50 ⁇ m. At this time, the measurement is performed after the particles are dispersed in an electrolyte aqueous solution (Isoton aqueous solution, manufactured by Beckman Coulter, Inc.) and dispersed by ultrasonic waves for 30 seconds or more.
  • an electrolyte aqueous solution Isoton aqueous solution, manufactured by Beckman Coulter, Inc.
  • a measuring method 0.5 to 50 mg of a measurement sample is added to 2 ml of a 5% aqueous solution of a surfactant, preferably sodium alkylbenzenesulfonate as a dispersant, and this is added to 100 to 150 ml of the electrolytic solution.
  • the electrolytic solution in which the measurement sample is suspended is subjected to a dispersion treatment for 1 minute with an ultrasonic disperser, and the particle size distribution of the particles is measured.
  • the number of particles to be measured is 50,000.
  • a cumulative distribution is drawn from the smaller diameter side with respect to the divided particle size range (channel), and the particle size at which 50% is accumulated is defined as the volume average primary particle size.
  • the glass transition temperature was measured according to JIS 7121-1987 using a differential scanning calorimeter (DSC-50 manufactured by Shimadzu Corporation).
  • the melting temperature of the mixture of indium and zinc was used for temperature correction of the detection part of this apparatus, and the heat of melting of indium was used for correction of the amount of heat.
  • the particles were put in an aluminum pan as they were, and an aluminum pan containing particles and an empty aluminum pan for control were set, and measurement was performed at a heating rate of 10 ° C./min.
  • the glass transition temperature was defined as the temperature at the intersection of the extension line of the base line and the rising line in the endothermic part of the DSC curve obtained by the measurement.
  • Example A [Preparation of colored floating particles (white particles)] 1) Preparation of core particles-Preparation of continuous phase- The following materials were mixed and a polymer dispersant E1 was synthesized by radical solution polymerization (55 ° C./6 hours).
  • Preparation of cyan particles 1) Preparation of core particles-Preparation of dispersed phase- The following components were mixed while heating at 60 ° C., and a dispersed phase was prepared so that the ink solid content concentration was 15% by mass and the pigment concentration after drying was 50% by mass.
  • Styrene acrylic polymer X345 manufactured by Seiko PMC
  • 7.2 g -Cyan pigment PB15 3 aqueous dispersion Emacol SF Blue H524F (manufactured by Sanyo Color Co., Ltd., solid content 26 mass%): 18.8 g ⁇ Distilled water: 24.1 g
  • -Particle preparation- 50 g of the above dispersed phase and 350 g of the above continuous phase were mixed and emulsified for 10 minutes at a rotational speed of 10,000 rpm and a temperature of 30 ° C. using an internal tooth tabletop dispersing machine ROBOMICS (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • ROBOMICS manufactured by Tokushu Kika Kogyo Co., Ltd.
  • the obtained particle suspension was centrifuged at 6,000 rpm for 15 minutes, the supernatant was removed, and the washing step of redispersing with silicone oil KF-96L-2CS was repeated three times. In this way, 6 g of core particles were obtained. As a result of SEM image analysis, the average particle size was 0.6 ⁇ m.
  • the particles were filtered, and the obtained particle powder was dispersed in ion-exchanged water, and calcium carbonate was decomposed with hydrochloric acid water, followed by filtration. After washing with sufficient distilled water, the openings were passed through nylon sieves having a mesh size of 15 ⁇ m and 10 ⁇ m to make the particle sizes uniform.
  • the obtained particles had a volume average primary particle size of 13 ⁇ m.
  • the obtained particles are dispersed in silicone oil KF-96L-1CS (manufactured by Shin-Etsu Chemical Co., Ltd.), and dodecyl bromide (quaternizing agent) is used, such as 2- (diethylamino) ethyl methacrylate used for particle preparation. Molar amount was added and heated at 90 ° C. for 6 hours. After cooling, this dispersion was washed with a large amount of silicone oil and dried under reduced pressure to obtain red (R) particles. The glass transition temperature of the resin contained in the red (R) particle group was 145 ° C.
  • the white (W) particle group, the cyan (C) particle group, and the red (R) particle group are solid components of 0.1 g of the C particle group, 1.3 g of the R particle group, and 2 of the W particle group.
  • a silicone dispersion KF-96L-2CS manufactured by Shin-Etsu Chemical Co., Ltd. was added to a liquid volume of 10 g, and the mixture was ultrasonically stirred to obtain a display dispersion.
  • HEMA hydroxyethyl methacrylate
  • the obtained product was purified and dried using hexane as a reprecipitation solvent to prepare the polymer compound A1. It was. The weight average molecular weight was 45,000. And the 4 mass% isopropyl alcohol solution of polymer compound A1 was prepared by melt
  • a display medium was produced as follows.
  • An ITO film having a thickness of 50 nm was formed as an electrode on a supporting substrate made of glass having a thickness of 0.7 mm by a sputtering method.
  • the electrode surface of the back substrate composed of this ITO / glass substrate was immersed in a 2% by mass aqueous solution of ⁇ -aminopropyltriethoxysilane for 15 minutes, rinsed with pure water, and then dried at 120 ° C. for 30 minutes. Thereafter, a thin film was formed by spin coating using a 4 mass% isopropyl alcohol solution of the polymer compound A1, and then heated at 120 ° C. for 60 minutes. Thereby, a surface layer was formed.
  • the surface layer had a thickness of 100 nm and was insoluble in various organic solvents such as dimethyl silicone oil (KF-96L-1CS manufactured by Shin-Etsu Chemical Co., Ltd.), acetone, and tetrahydrofuran (THF).
  • the thickness of the surface layer was measured with a Dektak 6M step gauge (manufactured by Veeco).
  • a layer was applied using a photosensitive polyimide varnish (PROBIMIDE 7005, manufactured by Fuji Hunt Electronics Technology Co., Ltd.), followed by exposure and wet etching to form a gap member having a height of 100 ⁇ m and a width of 20 ⁇ m.
  • a surface layer was formed on the surface of the gap member (cell side surface) by the same method as that for the back substrate.
  • a display substrate made of ITO / glass and having a surface layer formed is bonded to the back substrate so that the surfaces (electrode surfaces) on which the surface layers are formed face each other, and heat is applied.
  • a medium was made.
  • the degree of adhesion of the particle group to the surface layer was evaluated by the decrease in white reflectance after the black display and white display were repeated 100 times.
  • the white reflectance Y1 at the first white display and the white reflectance Y100 after driving 100 times are measured and fixed.
  • ⁇ (%) (Y1 ⁇ Y100) / Y1 ⁇ 100” and used as an evaluation index.
  • the luminous reflectance was used as the reflectance. The results are shown in Table 1 below.
  • Example A2 Evaluation was performed by forming a surface layer by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A2.
  • Example A3> A surface layer was formed and evaluated by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A3.
  • polymer compound A3- (Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 17 parts by mass (meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries, Ltd.) 6 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw 1000): 22 parts by mass Crosslinkable monomer (monomer containing blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 55 parts by mass Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (Azobisvaleronitrile, Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymer
  • Example A4 The surface layer was formed by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A4 and the method for producing the display medium was changed. Evaluation was performed.
  • -Synthesis of polymer compound A4- -(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 4 parts by mass-(Meth) acrylic monomer 3 (methyl methacrylate, MMA, manufactured by Wako Pure Chemical Industries): 3 masses Parts Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw 1000): 3 parts by mass 1-methoxy-2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.): 30 parts by mass Polymerization initiator (Azobisvaleronitrile, manufactured by Wako Pure Chemical Industries, Ltd .: V-65): 0.2 parts by mass
  • Example A display medium was produced by the method described in Example A1, except that the method for forming the surface layer was changed to the following method in “-Production of display medium” in Example A1.
  • a cyclohexanone solution was prepared so that the polymer compound A4 was 4% by mass and Takenate D-160N (manufactured by Mitsui Chemicals) was 2% by mass as a crosslinkable monomer, and a thin film was formed by spin coating. It was formed by heating at 0 Pa 100 ° C. for 60 minutes.
  • the surface layer had a thickness of 100 nm and was insoluble in various organic solvents such as dimethyl silicone oil (KF-96L-1CS manufactured by Shin-Etsu Chemical Co., Ltd.), acetone, and tetrahydrofuran (THF).
  • organic solvents such as dimethyl silicone oil (KF-96L-1CS manufactured by Shin-Etsu Chemical Co., Ltd.), acetone, and tetrahydrofuran (THF).
  • Example A5 A surface layer was formed and evaluated by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A5.
  • -Synthesis of polymer compound A5- -(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 58 parts by mass-(Meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries): 18 masses Parts Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw 1000): 14 parts by mass Crosslinkable monomer (monomer containing blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 9 Mass parts-Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass-Polymerization initiator (Azobisvaleronitrile, Wako Pure).
  • Example A6 A surface layer was formed and evaluated by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A6.
  • -Synthesis of polymer compound A6- -(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 31 parts by mass-Silicone macromer (VTT106, manufactured by Gelest, weight average molecular weight Mw 550): 30 parts by mass-Crosslinkability Monomer (Monomer containing a blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 51 parts by mass ⁇ Isopropyl alcohol (manufactured by Wako Pure Chemical Industries): 45 parts by mass ⁇ Polymerization initiator (azobisvaleronitrile, Wako Pure) Yakuhin Kogyo Co., Ltd .: V-65): 0.1 parts by mass
  • Example A7 A surface layer was formed and evaluated by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A7.
  • -Synthesis of polymer compound A7- (Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries, Ltd.): 52 parts by mass Silicone macromer (VTT106, manufactured by Gelest, weight average molecular weight Mw 550): 68 parts by mass Monomer (Monomer containing a blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 6 parts by mass Isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (Azobisvaleronitrile, Wako Pure) Yakuhin Kogyo Co., Ltd .: V-65): 0.1 parts by mass
  • -Synthesis of polymer compound A8- (Meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries, Ltd.): 3.6 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw 1000): 4 0.1 parts by mass Other polymerization components (styrene, manufactured by Wako Pure Chemical Industries, Ltd.): 2.9 parts by mass Crosslinkable monomer (glycidyl methacrylate, GMA, manufactured by Wako Pure Chemical Industries, Ltd .: 2.6 parts by mass) Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 40 parts by mass Polymerization initiator (azobisvaleronitrile, Wako Pure Chemical Industries, Ltd .: V
  • Example A1 A surface layer was formed and evaluated by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound B1.
  • -Synthesis of polymer compound B1- (Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries, Ltd.): 71 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw 1000): 29 masses Parts Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (Azobisvaleronitrile, Wako Pure Chemical Industries, Ltd .: V-65): 0.1 parts by mass
  • Example A2 Evaluation was performed by forming a surface layer by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound B2.
  • -Synthesis of polymer compound B2- -(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 66 parts by mass-(Meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries): 20 masses Part Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw 1000): 4 parts by mass Crosslinkable monomer (monomer containing a blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 10 Mass parts-Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass-Polymerization initiator (Azobisvaleronitrile,
  • [substrate] Preparation of substrates b1 to b18 with surface layers and substrates bb1 and bb2 with surface layers for comparison-
  • the crosslinkable monomer (post-addition) agent was mixed in the part at the ratio shown in Table 2 and Table 3.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • the obtained solution was applied to the electrode surface of the ITO electrode substrate by spin coating (2000 rpm ⁇ 30 sec, 3500 rpm ⁇ 2 sec) and baked at 130 ° C. for 1 hour to form a surface layer having a thickness of 100 nm.
  • the substrates b1 to b18 with surface layers and the substrates bb1 and bb2 with surface layers for comparison were obtained.
  • Example A1 In the production of the display medium of Example A1, a display medium was produced in the same manner as in Example A1, except that the display substrate used was changed to the above-mentioned substrates b1 to b18 with surface layers and substrates bb1 and bb2 with comparative surface layers. Evaluation was performed in the same manner as in Example A1. The results are shown in Table 4.
  • -HEMA 2-hydroxyethyl methacrylate-MAA: methacrylic acid-MMA: methyl methacrylate-CXMA: cyclohexyl methacrylate-DEAEMA: N, N-diethylaminoethyl methacrylate-A-SA: 2-acryloyloxyethyl succinate (Shin Nakamura (Chemical company)
  • MOI-BP Isocyanate monomer having a blocked isocyanate group: 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate “Karenz MOI-BP (manufactured by Showa Denko KK)”
  • D-160N Isocyanate compound “Takenate D-160 (Mitsui Chemicals)”
  • MX-270 Methylated urea compound “Nicalak MX-270 (manufactured by Sanwa Chemical Co., Ltd.)”
  • Example B [Substrate surface layer material] -Production of substrate surface layer materials A1 to A17- Polymer compounds having silicone chains having compositions according to Tables 5 and 6 were synthesized by radical solution polymerization, and these were used as substrate surface layer materials A1 to A17.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • the obtained solution was applied to the electrode surface of the ITO electrode substrate by spin coating (2000 rpm ⁇ 30 sec, 3500 rpm ⁇ 2 sec) and baked at 130 ° C. for 1 hour to form a surface layer having a thickness of 100 nm.
  • Substrates B1 to B17 with a surface layer were obtained.
  • Silaplane FM-0721 (manufactured by JNC) is 1.7 parts by mass
  • Silaplane FM-0725 (manufactured by JNC) is 0.2 parts by mass
  • hydroxyethyl methacrylate is 59.8 parts by mass
  • AMP-10G manufactured by Shin-Nakamura Chemical Co., Ltd.
  • 21.8 parts by mass of Karenz MOI-BP (manufactured by Showa Denko KK) were mixed and dissolved in 200 parts by mass of isopropyl alcohol.
  • the eggplant flask was connected to a rotary evaporator, and t-butanol was removed at a vacuum of 20 mbar and a water bath temperature of 50 ° C. for 1 hour. This was heated in an oil bath with further stirring. First, heating is performed at 100 ° C. for 1 hour to remove residual moisture and residual t-butanol, followed by heating at 130 ° C. for 1.5 hours to remove the blocking group of the blocked isocyanate group, and thereby the coating layer A cross-linking reaction of the resin (shell resin) was performed.
  • the silicone oil particle dispersion was subjected to a sedimentation step using a centrifuge and a redispersion step using an ultrasonic cleaner three times to remove excess resin (shell resin) of the coating layer.
  • the finally obtained particles were 0.6 parts by mass.
  • a dispersion of cyan particles (electrophoretic particles) C1 having a coating layer formed on the surface of the core particles was obtained.
  • the cyan particles (electrophoretic particles) C1 dispersed in the liquid are obtained as a cyan particle dispersion C1 (particle solid content of 5% by mass) dispersed in silicone oil by washing with silicone oil using a centrifuge. It was. It was 600 nm as a result of measuring the average particle diameter of the cyan particle (electrophoretic particle) in the produced cyan particle dispersion.
  • the charged polarity of cyan particles (electrophoretic particles) in the cyan particle dispersion was positively charged as a result of encapsulating the dispersion between two electrode substrates and applying a DC voltage to evaluate the electrophoretic direction. It was.
  • cyan particles (electrophoretic particles) C2 to C6 are the same as cyan particles C1 (dispersion C1) except that the composition of the core particles and the coating layer is changed. Got.
  • cyan particles C1 to C4 and C6 were negatively charged and positively charged.
  • the charged polarity of cyan particles (electrophoretic particles) in the cyan particle dispersion was positively charged as a result of encapsulating the dispersion between two electrode substrates and applying a DC voltage to evaluate the electrophoretic direction. It was.
  • the obtained particle powder was dispersed in ion-exchanged water, calcium carbonate was decomposed with hydrochloric acid water, and filtered. Thereafter, it was washed with sufficient distilled water, and passed through a nylon sieve having openings of 20 ⁇ m and 25 ⁇ m to make the particle sizes uniform. This was dried to obtain white particles W1 having an average particle diameter of 20 ⁇ m.
  • Examples B1 to B22, Comparative Examples B1 to B4 In accordance with Table 9, two identical substrates with a surface layer were prepared and used as a first substrate and a second substrate. Then, using a 50 ⁇ m Teflon (registered trademark) sheet as a spacer, the second substrate was superimposed on the first substrate with the surface layers facing each other, and fixed with clips. Next, according to Table 9, the white particles were mixed with the cyan particle dispersion so that the white particles were 10 parts by mass and the cyan particles were 5 parts by mass, and the mixture was injected into the gap between the substrates, and then sealed. An evaluation cell was produced.
  • Teflon registered trademark
  • the first substrate is used as a display substrate, and the display surface is cyan (that is, cyan particles migrate to the first substrate side).
  • a voltage of 15 V was applied to each electrode of the second substrate.
  • the first substrate is used as a display substrate, and the display surface is white (that is, cyan particles migrate to the second substrate side).
  • a voltage was applied.
  • the white white density observed from the first substrate side was measured by X-Rite 404 and converted into white reflectance.
  • the white reflectance at this time was defined as “initial white reflectance”.
  • the white reflectance was measured in the same manner, and the white reflectance at this time was defined as “temporal white reflectance”.
  • the first substrate is used as a display substrate, and the display surface becomes white (that is, cyan particles migrate to the second substrate side).
  • a voltage of 15V was applied.
  • Example B the decrease in white reflectance over time is suppressed as compared with Comparative Example B.
  • HEMA 2-hydroxyethyl methacrylate
  • MAA methacrylic acid
  • MMA methyl methacrylate
  • CXMA cyclohexyl methacrylate
  • DMAPAA dimethylaminopropylacrylamide
  • A-SA 2-acryloyloxyethyl succinate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • MOI-BP Isocyanate monomer having a blocked isocyanate group: 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate “Karenz MOI-BP (manufactured by Showa Denko KK)”
  • D-160N Isocyanate compound “Takenate D-160 (Mitsui Chemicals)”
  • MX-270 Methylated urea compound “Nicalak MX-270 (manufactured by Sanwa Chemical Co., Ltd.)”
  • Styrene / acrylic resin A “X-345 (manufactured by Seiko PMC)” (the carboxylic acid of the acrylic moiety is ammonium chloride with 2-hydroxyethyldimethylammonium)
  • Acrylic resin B Acrylic compound polymer “AW-36H (manufactured by Seiko PMC)” (acrylic carboxylic acid is ammonium chloride with aqueous ammonia)
  • Styrene / maleic acid resin C: Copolymer of styrene compound and maleic acid compound “X-1220L (manufactured by Seiko PMC)” (maleic acid is ammonium chloride with ammonia water)
  • Sulphonic acid resin D Polymer containing 2-acrylamido-2-methylpropanesulfonic acid
  • CTX-809M Fluorine resin “CTX-809M (manufactured by AGC)”
  • AMP-10G Polymer of phenoxy compound ⁇ MX-035: Methylated mel

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

A display medium (10) that has the following: a pair of substrates (20, 22) that have electrodes and are laid out at a separation from each other, at least one of said substrates being light-transmitting; a dispersion medium (50) sealed in between the pair of substrates (20, 22); particles (34) that are dispersed within the dispersion medium (50) and move within the dispersion medium (50) in response to an electric field formed between the pair of substrates (20, 22); and a surface layer or surface layers (21, 23) comprising a macromolecular compound provided on at least one of the facing surfaces of the pair of substrates (20, 22). Said macromolecular compound is derived from at least the following: (1) 10-90 mol.% of a (meth)acrylic monomer; (2) 1-50 mol.% of a silicone macromer; and (3) 2-70 mol.% of a cross-linkable monomer (with said molar percentages based on the sum of the molar percentages of components (1), (2), and (3) being 100 mol.%).

Description

表示媒体、および表示装置Display medium and display device
 本発明は、表示媒体、および表示装置に関するものである。 The present invention relates to a display medium and a display device.
 従来、繰り返し書き換えし得る表示媒体として、粒子を用いた表示媒体が知られている。この表示媒体は、例えば一対の基板と、一対の基板間に形成された電界に応じて基板間を移動し得るよう該基板間に封入された粒子群と、を含んで構成されている。また、基板間には、粒子が基板内の特定の領域に偏るのを防ぐため等の理由により、基板間を複数のセルに仕切るための間隙部材が設けられる場合もある。 Conventionally, a display medium using particles is known as a display medium that can be rewritten repeatedly. The display medium includes, for example, a pair of substrates, and a group of particles sealed between the substrates so as to be able to move between the substrates in accordance with an electric field formed between the pair of substrates. Further, a gap member for partitioning the substrates into a plurality of cells may be provided between the substrates for the purpose of preventing the particles from being biased to a specific region in the substrates.
 ここで、基板の表面に処理層を形成した態様として、特開2010-078826号公報には、電極を有する一対の基板であって、少なくとも一方が透光性を有すると共に間隙をもって配置された一対の基板と、この一対の基板間に封入された分散媒と、この分散媒中に分散され一対の基板間に形成された電界に応じて該分散媒中を移動する粒子群と、を有する表示媒体の、この一対の基板の対向面の少なくとも一方に、シリコーン鎖を持つ高分子化合物により形成された処理層を形成する態様が開示されている。 Here, as an embodiment in which a treatment layer is formed on the surface of a substrate, Japanese Patent Application Laid-Open No. 2010-078826 discloses a pair of substrates having electrodes, at least one of which is translucent and disposed with a gap. A display medium, a dispersion medium sealed between the pair of substrates, and a group of particles that are dispersed in the dispersion medium and move in the dispersion medium in response to an electric field formed between the pair of substrates. An embodiment is disclosed in which a treatment layer formed of a polymer compound having a silicone chain is formed on at least one of the opposing surfaces of the pair of substrates in the medium.
 また、粒子群における粒子の表面を処理した態様として、特開2010-262066号公報には、情報表示用パネルに用いる帯電性を有する表示媒体用粒子であって、樹脂からなる母粒子の表面に外添剤を付与してなる表示媒体用粒子において、メタノール濡れ試験で測定した外添剤表面疎水度が25%以上40%以下である外添剤を用いることが開示されている。 In addition, as a mode in which the surface of the particles in the particle group is treated, JP 2010-262066 A discloses a display medium particle having chargeability used for an information display panel, on the surface of a base particle made of a resin. It is disclosed that an external additive having an external additive surface hydrophobicity of 25% or more and 40% or less measured in a methanol wetting test is used for particles for display media to which an external additive is added.
 本発明の課題は、基板対向面に対する粒子の固着を抑制し得る表示媒体を提供することにある。 An object of the present invention is to provide a display medium capable of suppressing the sticking of particles to a substrate facing surface.
 上記課題は、以下の手段により解決される。
 <1> 電極を有し、少なくとも一方が透光性を有し且つ間隙をもって配置された一対の基板と、
 前記一対の基板間に封入された分散媒と、
 前記分散媒中に分散され、前記一対の基板間に形成された電界に応じて該分散媒中を移動する粒子群と、
 少なくとも10モル%以上90モル%以下の(1)(メタ)アクリル系モノマー、1モル%以上50モル%以下の(2)シリコーンマクロマー、および2モル%以上70モル%以下の(3)架橋性モノマーに由来する高分子化合物(但し前記比率は、前記(1)、(2)および(3)の成分の合計量を基準(100モル%)とした場合の比率である)が、前記一対の基板の対向面の少なくとも一方に設けられた表面層と、
 を有する表示媒体である。
The above problem is solved by the following means.
<1> a pair of substrates having electrodes, at least one of which is translucent and disposed with a gap;
A dispersion medium sealed between the pair of substrates;
A group of particles dispersed in the dispersion medium and moving in the dispersion medium in response to an electric field formed between the pair of substrates;
(1) (meth) acrylic monomer of at least 10 mol% to 90 mol%, (2) silicone macromer of 1 mol% to 50 mol%, and (3) crosslinkability of 2 mol% to 70 mol% A polymer compound derived from a monomer (provided that the ratio is a ratio based on the total amount of the components (1), (2) and (3) (100 mol%)) A surface layer provided on at least one of the opposing surfaces of the substrate;
A display medium having
 <2> 前記表面層の表面の濡れ張力(JIS-K6768/1999年)が35mN/m以下である前記<1>に記載の表示媒体である。 <2> The display medium according to <1>, wherein the surface layer has a surface wetting tension (JIS-K6768 / 1999) of 35 mN / m or less.
 <3> 前記高分子化合物が、前記シリコーンマクロマーとして下記構造式で示される化合物から選択される少なくとも1種に由来する構成単位を有する前記<1>または<2>に記載の表示媒体である。 <3> The display medium according to <1> or <2>, wherein the polymer compound has a structural unit derived from at least one compound selected from compounds represented by the following structural formula as the silicone macromer.
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
〔上記構造式中、Rは、水素原子またはメチル基を示す。R’は、水素原子または炭素数1以上4以下のアルキル基を示す。nは自然数を示す。xは1以上3以下の整数を示す。〕 [In the above structural formula, R 1 represents a hydrogen atom or a methyl group. R 1 ′ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n represents a natural number. x represents an integer of 1 to 3. ]
 <4> 前記分散媒は、水を除く極性成分の含有量が0.01質量%以下である前記<1>から<3>のいずれか一項に記載の表示媒体である。 <4> The dispersion medium is the display medium according to any one of <1> to <3>, wherein the content of polar components excluding water is 0.01% by mass or less.
 <5> 前記<1>から<4>のいずれか一項に記載の表示媒体と、
 前記一対の基板間に電圧を印加する電圧印加手段と、
 を備えた表示装置である。
<5> The display medium according to any one of <1> to <4>,
Voltage applying means for applying a voltage between the pair of substrates;
Is a display device.
 前記<1>に係る発明によれば、基板対向面に少なくとも10モル%以上90モル%以下の(1)(メタ)アクリル系モノマー、1モル%以上50モル%以下の(2)シリコーンマクロマー、および2モル%以上70モル%以下の(3)架橋性モノマーに由来する高分子化合物が結合されて形成された表面層を有さない場合に比べ、基板対向面に対する粒子の固着を抑制し得る表示媒体が提供される。 According to the invention according to <1>, at least 10 mol% to 90 mol% of (1) (meth) acrylic monomer, 1 mol% to 50 mol% of (2) silicone macromer on the substrate facing surface, Compared with the case where there is no surface layer formed by bonding a polymer compound derived from (3) a crosslinkable monomer of 2 mol% or more and 70 mol% or less, adhesion of particles to the substrate facing surface can be suppressed. A display medium is provided.
 前記<2>に係る発明によれば、表面層の表面の濡れ張力が35mN/m以下でない場合に比べ、基板対向面に対する粒子の固着を抑制し得る表示媒体が提供される。 According to the invention according to the above <2>, a display medium capable of suppressing the sticking of particles to the substrate facing surface is provided as compared with the case where the surface layer has a surface wetting tension of 35 mN / m or less.
 前記<3>に係る発明によれば、シリコーンマクロマーとして前記構造式で示される化合物から選択される少なくとも1種を用いない場合に比べ、基板対向面に対する粒子の固着を抑制し得る表示媒体が提供される。 According to the invention according to <3>, a display medium capable of suppressing the sticking of particles to the substrate facing surface is provided as compared with the case where at least one selected from the compounds represented by the structural formula is not used as the silicone macromer. Is done.
 前記<4>に係る発明によれば、分散媒が水を除く極性成分を上記範囲を超えて含む場合に比べ、表示の繰り返し安定性が維持される表示媒体が提供される。 According to the invention according to <4>, there is provided a display medium in which the repeated stability of display is maintained as compared with the case where the dispersion medium contains polar components excluding water beyond the above range.
 前記<5>に係る発明によれば、基板対向面に少なくとも10モル%以上90モル%以下の(1)(メタ)アクリル系モノマー、1モル%以上50モル%以下の(2)シリコーンマクロマー、および2モル%以上70モル%以下の(3)架橋性モノマーに由来する高分子化合物の表面層を有する表示媒体を備えない場合に比べ、基板対向面に対する粒子の固着を抑制し得る表示装置が提供される。 According to the invention according to the above <5>, at least 10 mol% to 90 mol% (1) (meth) acrylic monomer, 1 mol% to 50 mol% (2) silicone macromer on the substrate facing surface, And (3) a display device capable of suppressing the adhesion of particles to the substrate facing surface as compared with a case where a display medium having a surface layer of a polymer compound derived from a crosslinkable monomer of 2 mol% to 70 mol% is not provided. Provided.
第1実施形態に係る表示装置の概略構成図である。1 is a schematic configuration diagram of a display device according to a first embodiment. 第1実施形態に係る表示装置の表示媒体の基板間に電圧を印加したときの粒子群の移動態様を模式的に示す説明図である。It is explanatory drawing which shows typically the movement aspect of a particle group when a voltage is applied between the board | substrates of the display medium of the display apparatus which concerns on 1st Embodiment. 第1実施形態に係る表示装置の表示媒体の基板間に電圧を印加したときの粒子群の移動態様を模式的に示す説明図である。It is explanatory drawing which shows typically the movement aspect of a particle group when a voltage is applied between the board | substrates of the display medium of the display apparatus which concerns on 1st Embodiment. 第2実施形態に係る表示装置の概略構成図である。It is a schematic block diagram of the display apparatus which concerns on 2nd Embodiment. 第2実施形態に係る表示装置における、印加する電圧と粒子の移動量(表示濃度)との関係を模式的に示す線図である。It is a diagram which shows typically the relation between the applied voltage and the amount of movement of particles (display density) in the display device concerning a 2nd embodiment. 表示媒体の基板間へ印加する電圧態様と、粒子の移動態様との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the voltage aspect applied between the board | substrates of a display medium, and the movement aspect of particle | grains.
 以下、本発明に係る表示媒体および表示装置の実施形態について説明する。 Hereinafter, embodiments of a display medium and a display device according to the present invention will be described.
<表示媒体および表示装置>
 本実施形態に係る表示媒体は、電極を有し、少なくとも一方が透光性を有し且つ間隙をもって配置された一対の基板と、前記一対の基板間に封入された分散媒と、前記分散媒中に分散され、前記一対の基板間に形成された電界に応じて該分散媒中を移動する粒子群と、少なくとも下記(1)、(2)および(3)の成分に由来する高分子化合物が、前記一対の基板の対向面の少なくとも一方に設けられた表面層と、を有する。
 (1)(メタ)アクリル系モノマー:10モル%以上90モル%以下
 (2)シリコーンマクロマー:1モル%以上50モル%以下
 (3)架橋性モノマー:2モル%以上70モル%以下
(但し前記比率は、前記(1)、(2)および(3)の成分の合計量を基準(100モル%)とした場合の比率である)
<Display medium and display device>
A display medium according to the present embodiment includes a pair of substrates having electrodes, at least one of which is translucent and disposed with a gap, a dispersion medium sealed between the pair of substrates, and the dispersion medium A group of particles dispersed in the particles and moving in the dispersion medium according to the electric field formed between the pair of substrates, and a polymer compound derived from at least the following components (1), (2) and (3): Has a surface layer provided on at least one of the opposing surfaces of the pair of substrates.
(1) (meth) acrylic monomer: 10 mol% or more and 90 mol% or less (2) Silicone macromer: 1 mol% or more and 50 mol% or less (3) Crosslinkable monomer: 2 mol% or more and 70 mol% or less The ratio is a ratio based on the total amount of the components (1), (2) and (3) as a reference (100 mol%))
 少なくとも上記(1)乃至(3)の化合物が上記の量比にて重合されてなる上記高分子化合物が基板の対向面に設けられた表面層を有することで、基板対向面に対する前記粒子群の粒子の固着が抑制される。 Since the polymer compound obtained by polymerizing at least the compounds of (1) to (3) at the above-mentioned quantitative ratio has a surface layer provided on the opposing surface of the substrate, Particle sticking is suppressed.
 尚、(1)(メタ)アクリル系モノマーの量比が上記下限値未満であると、表面層が白化したり、上記高分子化合物がゲル化して成膜が困難となることがあり、一方上記上限値を超えると、成膜し得るものの粒子の固着が発生するようになる。
 (メタ)アクリル系モノマーの量比は、40モル%以上70モル%以下がより好ましい。
In addition, if the amount ratio of (1) (meth) acrylic monomer is less than the lower limit, the surface layer may be whitened or the polymer compound may be gelled, making film formation difficult. When the upper limit is exceeded, particles that can be formed are fixed.
The amount ratio of the (meth) acrylic monomer is more preferably 40 mol% or more and 70 mol% or less.
 また、(2)シリコーンマクロマーの量比が上記下限値未満であると、粒子固着の抑制の効果が得られず、一方上記上限値を越えると、高分子化合物がゲル化してしまい表面層の成膜が困難となる。
 シリコーンマクロマーの量比は、2モル%以上40モル%以下がより好ましい。
In addition, if the amount ratio of (2) the silicone macromer is less than the above lower limit value, the effect of suppressing particle adhesion cannot be obtained. On the other hand, if the amount exceeds the above upper limit value, the polymer compound gels and the surface layer is formed. The film becomes difficult.
The amount ratio of the silicone macromer is more preferably 2 mol% or more and 40 mol% or less.
 また、(3)架橋性モノマーの量比が上記下限値未満であると、粒子固着の抑制の効果が得られず、一方上記上限値を越えると、表面層の白化が発生する。
 架橋性モノマーの量比は、5モル%以上40モル%以下がより好ましい。
Further, if the amount ratio of (3) the crosslinkable monomer is less than the above lower limit value, the effect of suppressing particle fixation cannot be obtained, while if the amount exceeds the above upper limit value, whitening of the surface layer occurs.
The amount ratio of the crosslinkable monomer is more preferably 5 mol% or more and 40 mol% or less.
 なお、この割合は、前記高分子化合物を合成する際の仕込み量の割合である。 This ratio is the ratio of the amount charged when the polymer compound is synthesized.
 ・濡れ張力
 また、前記表面層の表面の濡れ張力は35mN/m以下であることが好ましい。濡れ張力が上記範囲であることにより、基板対向面に対する粒子の固着がより効果的に抑制される。
 上記濡れ張力は、30mN/m以下が好ましく、小さい程より好ましい。
-Wetting tension Moreover, it is preferable that the wetting tension of the surface of the said surface layer is 35 mN / m or less. When the wetting tension is in the above range, the adhesion of particles to the substrate facing surface is more effectively suppressed.
The wetting tension is preferably 30 mN / m or less, more preferably as small as possible.
 上記濡れ張力は、JIS-K6768(1999年)に準じて測定される。具体的には、濡れ張力試験用混合液(例えば22.6mN/mから73mN/mの範囲のもの/数値が大きいほど親密性が向上する)に綿棒を浸し、それを被験体(表面層)の表面に塗布し、この際に撥水すること無くベッタリと濡れる試験用混合液の番号の最小値を濡れ性指数として算出される。 The above wetting tension is measured according to JIS-K6768 (1999). Specifically, a cotton swab is immersed in a mixture for wetting tension test (for example, in the range of 22.6 mN / m to 73 mN / m / the greater the numerical value, the closer the intimacy is), and the subject (surface layer) The minimum value of the number of the test liquid mixture that is applied to the surface of the film and wets without getting water repellent is calculated as the wettability index.
 表面層の表面の濡れ張力は、前記(メタ)アクリル系モノマー,シリコーンマクロマーおよび架橋性モノマーの種類と量を調整することで制御され、更にはシリコーンマクロマーおよび架橋性モノマーの種類と量が大きく寄与する。特に濡れ張力を上記範囲とする観点から、シリコーンマクロマーの量を前記下限値以上とし、且つ架橋性モノマーの量を前記下限値以上とすることが好ましい。 The surface tension of the surface layer is controlled by adjusting the type and amount of the (meth) acrylic monomer, silicone macromer and crosslinkable monomer, and the type and amount of silicone macromer and crosslinkable monomer contribute greatly. To do. In particular, from the viewpoint of setting the wetting tension in the above range, it is preferable that the amount of the silicone macromer is not less than the lower limit and the amount of the crosslinkable monomer is not less than the lower limit.
 次いで、本実施形態に係る表示媒体および表示装置の構成について説明する Next, the configuration of the display medium and the display device according to this embodiment will be described.
 以下、本実施形態について図面を参照しつつ説明するが、作用および機能が同じ働きを担う部材には、全図面を通して同じ符合を付与し、重複する説明を省略する場合がある。 Hereinafter, although the present embodiment will be described with reference to the drawings, members having the same functions and functions may be given the same reference numerals throughout the drawings, and redundant descriptions may be omitted.
(第1実施形態)
 図1は、第1実施形態に係る表示装置の概略構成図である。図2(A)および(B)は、第1実施形態に係る表示装置の表示媒体の基板間に電圧を印加したときの粒子群の移動態様を模式的に示す説明図である。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a display device according to the first embodiment. FIGS. 2A and 2B are explanatory views schematically showing a movement mode of the particle group when a voltage is applied between the substrates of the display medium of the display device according to the first embodiment.
 第1実施形態に係る表示装置10は、図1に示すように、表示媒体12と、表示媒体12に電圧を印加する電圧印加部16(電圧印加手段の一種)と、制御部18と、を含んでいる。 As shown in FIG. 1, the display device 10 according to the first embodiment includes a display medium 12, a voltage application unit 16 (a type of voltage application unit) that applies a voltage to the display medium 12, and a control unit 18. Contains.
 表示媒体12は、画像表示面とされる表示基板20、表示基板20に間隙をもって対向する背面基板22、これらの基板間を定められた間隔に保持すると共に、表示基板20と背面基板22との間を複数のセルに区画する間隙部材24、各セル内に封入された粒子群34、および粒子群34とは異なる光学的反射特性を有する着色浮遊粒子群36を含んでいる。 The display medium 12 holds the display substrate 20 serving as an image display surface, the back substrate 22 facing the display substrate 20 with a gap, and holds the substrate between the display substrate 20 and the back substrate 22 at a predetermined interval. A gap member 24 that divides the space into a plurality of cells, a particle group 34 enclosed in each cell, and a colored suspended particle group 36 having optical reflection characteristics different from the particle group 34 are included.
 上記セルとは、表示基板20と、背面基板22と、間隙部材24と、によって囲まれた領域を示している。このセル中には、分散媒50が封入されている。粒子群34(詳細後述)は、複数の粒子を含み、この分散媒50中に分散され、セル内に形成された電界強度に応じて表示基板20と背面基板22との基板間を着色浮遊粒子群36の間隙を通じて移動する。 The above cell indicates a region surrounded by the display substrate 20, the back substrate 22, and the gap member 24. A dispersion medium 50 is enclosed in this cell. The particle group 34 (details will be described later) includes a plurality of particles, dispersed in the dispersion medium 50, and colored floating particles between the display substrate 20 and the back substrate 22 according to the electric field strength formed in the cell. Move through the gaps in group 36.
 なお、本実施形態では、1つのセル内に封入されている粒子群34は、定められた色を有すると共に、正または負に帯電処理されて予め調製されているものとして説明する。 In the present embodiment, the description will be made assuming that the particle group 34 enclosed in one cell has a predetermined color and is preliminarily prepared by being charged positively or negatively.
 なお、この表示媒体12に画像を表示したときの各画素に対応するように間隙部材24を設け、各画素に対応するようにセルを形成することで、表示媒体12を、画素毎の表示をしてもよい。 In addition, the gap member 24 is provided so as to correspond to each pixel when the image is displayed on the display medium 12, and cells are formed so as to correspond to each pixel, so that the display medium 12 can display each pixel. May be.
 また、本実施形態では、説明を簡易化するために、1つのセルに注目した図を用いて本実施形態を説明する。以下、各構成について詳細に説明する。 Also, in the present embodiment, the present embodiment will be described using a diagram focusing on one cell in order to simplify the description. Hereinafter, each configuration will be described in detail.
 ・基板
 まず、一対の基板について説明する。表示基板20は、支持基板38上に、表面電極40を積層している。背面基板22は、支持基板44上に、背面電極46を積層している。
-Substrate First, a pair of substrates will be described. The display substrate 20 has a surface electrode 40 laminated on a support substrate 38. The back substrate 22 has a back electrode 46 laminated on a support substrate 44.
 表示基板20、または表示基板20と背面基板22との双方は、透光性を有している。ここで、本実施形態における透光性とは、可視光の透過率が60%以上であることを示している。 The display substrate 20 or both the display substrate 20 and the back substrate 22 are translucent. Here, the translucency in the present embodiment indicates that the visible light transmittance is 60% or more.
 支持基板38および支持基板44としては、ガラス、またはプラスチック(例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリイミド樹脂、ポリエステル樹脂、エポキシ樹脂、ポリエーテルサルフォン樹脂)等が挙げられる。 Examples of the support substrate 38 and the support substrate 44 include glass or plastic (for example, polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyimide resin, polyester resin, epoxy resin, polyethersulfone resin).
 ・電極
 表面電極40および背面電極46には、インジウム、スズ、カドミウム、アンチモン等の酸化物、ITO等の複合酸化物、金、銀、銅、ニッケル等の金属、ポリピロールやポリチオフェン等の有機材料等が使用される。これらは単層膜、混合膜あるいは複合膜として使用され、蒸着法、スパッタリング法、塗布法等で形成される。また、その厚さは、蒸着法、スパッタリング法によれば、通常100Å以上2000Å以下である。背面電極46および表面電極40は、従来の液晶表示媒体あるいはプリント基板のエッチング等従来公知の手段により、所望のパターン、例えば、マトリックス状、またはパッシブマトリックス駆動を行い得るストライプ状に形成してもよい。
-Electrode For the surface electrode 40 and the back electrode 46, oxides such as indium, tin, cadmium and antimony, composite oxides such as ITO, metals such as gold, silver, copper and nickel, organic materials such as polypyrrole and polythiophene, etc. Is used. These are used as a single layer film, a mixed film or a composite film, and are formed by vapor deposition, sputtering, coating, or the like. Moreover, the thickness is normally 100 to 2000 mm according to the vapor deposition method and the sputtering method. The back electrode 46 and the front electrode 40 may be formed in a desired pattern, for example, a matrix shape or a stripe shape capable of performing passive matrix driving, by a conventionally known means such as etching of a conventional liquid crystal display medium or a printed circuit board. .
 また、表面電極40を支持基板38に埋め込んでもよい。また、背面電極46を支持基板44に埋め込んでもよい。この場合、支持基板38および支持基板44の材料を粒子群34の各粒子の組成等に応じて選択する。 Alternatively, the surface electrode 40 may be embedded in the support substrate 38. Further, the back electrode 46 may be embedded in the support substrate 44. In this case, the materials of the support substrate 38 and the support substrate 44 are selected according to the composition of each particle of the particle group 34 and the like.
 なお、背面電極46および表面電極40各々を表示基板20および背面基板22と分離させ、表示媒体12の外部に配置してもよい。 The back electrode 46 and the surface electrode 40 may be separated from the display substrate 20 and the back substrate 22 and disposed outside the display medium 12.
 なお、上記では、表示基板20と背面基板22の双方に電極(表面電極40および背面電極46)を備える場合を説明したが、何れか一方にだけ設けて、アクティブマトリクス駆動させてもよい。 In the above description, the case where the electrodes (surface electrode 40 and back electrode 46) are provided on both the display substrate 20 and the back substrate 22 has been described, but active matrix driving may be performed by providing only one of them.
 また、アクティブマトリックス駆動を行い得る構成とするために、支持基板38および支持基板44は、画素毎にTFT(薄膜トランジスタ)を備えていてもよい。配線の積層化および部品実装が容易であることから、TFTは表示基板ではなく背面基板22に形成することが望ましい。 Further, in order to obtain a configuration capable of performing active matrix driving, the support substrate 38 and the support substrate 44 may include a TFT (thin film transistor) for each pixel. Since it is easy to laminate wiring and mount components, it is desirable to form the TFT on the back substrate 22 instead of the display substrate.
 ・表面層
 次に、表面層について説明する。表示基板20と背面基板22の対向面には、各々、表面層21および表面層23が設けられている。そして、間隙部材24の表面(セル内側表面)にも、表面層25が設けられている。
-Surface layer Next, a surface layer is demonstrated. A surface layer 21 and a surface layer 23 are provided on the opposing surfaces of the display substrate 20 and the back substrate 22, respectively. A surface layer 25 is also provided on the surface of the gap member 24 (cell inner surface).
 なお、本実施形態では、表示基板20と背面基板22の対向面の双方に表面層(表面層21および表面層23各々)が設けられている場合を説明するが、表示基板20と背面基板22の対向面の何れか一方にのみ設けられていてもよく、少なくとも表示基板20側の対向面に表面層21が設けられていることが粒子の固着に起因する画像欠陥が抑制される観点から望ましい。また、間隙部材24の表面(セル内側表面)にも表面層25を設けると、間隙部材24に表面層が設けられていない場合に比べ、間隙部材24に対する粒子の固着も抑制され、結果表示に寄与しない粒子の増加が抑制される。つまり、少なくとも表示基板20の対向面に表面層を設けることがよいが、一対の基板および間隙部材の全て(即ち、これらで囲まれるセル内壁)に表面層が配設されていることが最もよい。 In the present embodiment, a case in which surface layers (each of the surface layer 21 and the surface layer 23) are provided on both opposing surfaces of the display substrate 20 and the back substrate 22 will be described. However, the display substrate 20 and the back substrate 22 are described. May be provided only on one of the opposing surfaces, and it is desirable that the surface layer 21 is provided on at least the opposing surface on the display substrate 20 side from the viewpoint of suppressing image defects due to particle fixation. . Further, if the surface layer 25 is provided also on the surface of the gap member 24 (cell inner surface), the adhesion of particles to the gap member 24 is suppressed as compared with the case where the surface layer is not provided on the gap member 24, and the result is displayed. An increase in particles that do not contribute is suppressed. That is, it is preferable to provide a surface layer on at least the opposing surface of the display substrate 20, but it is best that the surface layer is disposed on all of the pair of substrates and the gap member (that is, the cell inner wall surrounded by these). .
 表面層21、表面層23および表面層25の各々は、少なくとも下記(1)乃至(3)に由来する高分子化合物(以下単に「特定の高分子化合物」とも称す)が前記表示基板20や背面基板22の対向面、間隙部材24の表面に設けられ、更に結合されて形成されることが好ましい。
 (1)(メタ)アクリル系モノマー:10モル%以上90モル%以下
 (2)シリコーンマクロマー:1モル%以上50モル%以下
 (3)架橋性モノマー:2モル%以上70モル%以下
(但し前記比率は、前記(1)、(2)および(3)の成分の合計量を基準(100モル%)とした場合の比率である)
In each of the surface layer 21, the surface layer 23, and the surface layer 25, at least a polymer compound derived from the following (1) to (3) (hereinafter also simply referred to as “specific polymer compound”) is used for the display substrate 20 or the back surface. It is preferably provided on the opposing surface of the substrate 22 and the surface of the gap member 24 and further joined together.
(1) (meth) acrylic monomer: 10 mol% or more and 90 mol% or less (2) Silicone macromer: 1 mol% or more and 50 mol% or less (3) Crosslinkable monomer: 2 mol% or more and 70 mol% or less The ratio is a ratio based on the total amount of the components (1), (2) and (3) as a reference (100 mol%))
 表面層21、表面層23および表面層25の各々は、前記特定の高分子化合物を含んでいる。具体的には、例えば、表示基板20と背面基板22各々の対向面や間隙部材24同士の対向面に対して、前記特定の高分子化合物を化学的に結合させる処理、または前記特定の高分子化合物を被覆(塗布)させる処理(つまり高分子化合物を成膜する処理)によって、前記特定の高分子化合物を当該面に形成して、表面層21、表面層23および表面層25の各々を構成している。 Each of the surface layer 21, the surface layer 23, and the surface layer 25 contains the specific polymer compound. Specifically, for example, the process of chemically bonding the specific polymer compound to the opposing surfaces of the display substrate 20 and the back substrate 22 or the opposing surfaces of the gap members 24, or the specific polymer Each of the surface layer 21, the surface layer 23, and the surface layer 25 is configured by forming the specific polymer compound on the surface by a process of coating (coating) the compound (that is, a process of forming a polymer compound). is doing.
 (1)(メタ)アクリル系モノマー
 (メタ)アクリル系モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステル、ヒドロキシエチル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレートなどのアルキルオキシオリゴエチレングリコールの(メタ)アクリレート、ポリエチレングリコールの片末端(メタ)アクリレート、(メタ)アクリル酸、マレイン酸、N,N-ジアルキルアミノ(メタ)アクリレート等が挙げられ、中でもヒドロキシエチル(メタ)アクリレート、メチル(メタ)アクリレートが好ましい。
(1) (meth) acrylic monomers (meth) acrylic monomers include (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate , Hydroxyethyl (meth) acrylate, hydroxybutyl (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate and other alkyloxyoligoethylene glycol (meth) acrylate, polyethylene glycol one-end (meth) acrylate, (meth) Acrylic acid, maleic acid, N, N-dialkylamino (meth) acrylate and the like can be mentioned, among which hydroxyethyl (meth) acrylate and methyl (meth) acrylate are preferred.
 ここで、「(メタ)アクリル」とは、「アクリル」および「メタクリル」の双方を含むことを意味する。 Here, “(meth) acryl” means to include both “acryl” and “methacryl”.
 (2)シリコーンマクロマー
 マクロマーとは、分子中にポリマー構造を有するモノマーを指し、シリコーンマクロマーとはシリコーン鎖成分を有するマクロマーを表す。
 該シリコーンマクロマーとしては、片末端に(メタ)アクリレート基を持つジメチルシリコーンマクロマー、片末端にエポキシ基を持つジメチルシリコーンマクロマー等が挙げられる。
(2) Silicone macromer A macromer refers to a monomer having a polymer structure in the molecule, and a silicone macromer represents a macromer having a silicone chain component.
Examples of the silicone macromer include a dimethyl silicone macromer having a (meth) acrylate group at one end, and a dimethyl silicone macromer having an epoxy group at one end.
 片末端にエポキシ基を持つジメチルシリコーンマクロマーとしては、例えば下記構造式1で示されるシリコーン化合物が好適なものとして挙げられる。下記構造式1で示されるシリコーン化合物の例としては、例えば信越化学工業社製:X-22-173DX等が挙げられる。 As a dimethyl silicone macromer having an epoxy group at one end, for example, a silicone compound represented by the following structural formula 1 is preferable. Examples of the silicone compound represented by the following structural formula 1 include, for example, X-22-173DX manufactured by Shin-Etsu Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
〔構造式1中、R’は、水素原子または炭素数1以上4以下のアルキル基を示す。nは自然数を示し、例えば3以上100以下である。xは1以上3以下の整数を示す。〕 [In Structural Formula 1, R 1 ′ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n represents a natural number, for example, 3 or more and 100 or less. x represents an integer of 1 to 3. ]
 片末端に(メタ)アクリレート基を持つジメチルシリコーンマクロマーとしては、例えば下記構造式2で示されるシリコーン化合物が好適なものとして挙げられる。下記構造式2で示されるシリコーン化合物の例としては、例えば、JNC社製:サイラプレーン:FM-0711,FM-0721,FM-0725等、信越化学工業社製:X-22-174DX,X-22-2426,X-22-2475等が挙げられる。 As a dimethyl silicone macromer having a (meth) acrylate group at one end, for example, a silicone compound represented by the following structural formula 2 is preferable. Examples of the silicone compound represented by the following structural formula 2 include, for example, manufactured by JNC: Silaplane: FM-0711, FM-0721, FM-0725, etc., Shin-Etsu Chemical Co., Ltd .: X-22-174DX, X- 22-2426, X-22-2475, and the like.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
〔構造式2中、Rは、水素原子またはメチル基を示す。R’は、水素原子または炭素数1以上4以下のアルキル基を示す。nは自然数を示し、例えば3以上100以下である。xは1以上3以下の整数を示す。〕 [In Structural Formula 2, R 1 represents a hydrogen atom or a methyl group. R 1 ′ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n represents a natural number, for example, 3 or more and 100 or less. x represents an integer of 1 to 3. ]
 片末端に(メタ)アクリレート基を持つジメチルシリコーンマクロマーとしては、例えば下記構造式3、構造式4で示される分岐構造を有するシリコーン化合物も好適なものとして挙げられる。 As a dimethyl silicone macromer having a (meth) acrylate group at one end, for example, a silicone compound having a branched structure represented by the following structural formulas 3 and 4 is also preferable.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
〔構造式3、構造式4中、R、R、R、R、R、R、R、RおよびR10はそれぞれ独立に、水素原子、炭素数1以上4以下のアルキル基、または炭素数1以上4以下のフルオロアルキル基を表す。Rは、水素原子、またはメチル基を表す。p、qおよびrはそれぞれ独立に、1以上1000以下の整数を表す。xは、1以上3以下の整数を表す。〕 [In Structural Formula 3 and Structural Formula 4, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently a hydrogen atom, having 1 to 4 carbon atoms. Or a fluoroalkyl group having 1 to 4 carbon atoms. R 1 represents a hydrogen atom or a methyl group. p, q, and r each independently represents an integer of 1 to 1000. x represents an integer of 1 to 3. ]
 上記構造式3で示されるシリコーン化合物の例としては、例えば、Gelest社製のMCS-M11等が挙げられる。上記構造式4で表されるシリコーン化合物としては、例えば、Gelest社製のRTT-1011、信越化学工業社製のX-22-2404等が挙げられる。以下にこれらのシリコーン化合物の構造式を示す。 Examples of the silicone compound represented by the structural formula 3 include, for example, MCS-M11 manufactured by Gelest. Examples of the silicone compound represented by the structural formula 4 include RTT-1011 manufactured by Gelest, X-22-2404 manufactured by Shin-Etsu Chemical Co., Ltd., and the like. The structural formulas of these silicone compounds are shown below.
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 MCS-M11は、上記の構造式においてmおよびlがそれぞれ独立に2以上4以下の整数であり、その分子量が800以上1000以下である。 In MCS-M11, m and l in the above structural formula are each independently an integer of 2 or more and 4 or less, and the molecular weight thereof is 800 or more and 1000 or less.
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 RTT-1011は、上記の構造式で表わされる化合物である。 RTT-1011 is a compound represented by the above structural formula.
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 X-22-2404は、上記の構造式で表わされる化合物である。 X-22-2404 is a compound represented by the above structural formula.
 (3)架橋性モノマー
 架橋性モノマーとは、架橋構造を形成し得る基を有する重合性のモノマー、構造が変化することで架橋構造を形成し得る基となる基を有する重合性のモノマー、または、分子内に複数の反応性基を有する重合性のモノマーを表す。
 架橋性モノマーとしては、例えば片末端に(メタ)アクリレート基を持ち且つ加熱により活性なイソシアネート基となるイソシアネートブロック体を有するイソシアネート系モノマー(例えば昭和電工社製:カレンズMOI-BP)が挙げられる。
 また、片末端に(メタ)アクリレート基を持ち且つイソシアネート基を有するイソシアネート系モノマー(例えば昭和電工社製:カレンズAOI、カレンズMOI)、エポキシ基を有するグリシジル(メタ)アクリレートなども挙げられる。
 また、ジイソシアネート化合物およびトリイソシアネート化合物(トルエンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、トリフェニルメタンイソシアネート(例えば三井化学社製:タケネートD-160N)等)、ジエポキシ化合物(1,7-オクタジエンジエポキシド、ジシクロペンタジエンジエポキシド等)なども挙げられる。
 また、分子内に官能基としてイミノ基、メチロール基およびメトキシメチル基等を有するアルキル化メラミン化合物やアルキル化尿素化合物(例えば三和ケミカル社製:ニカラックMX-270等)なども挙げられる。
(3) Crosslinkable monomer A crosslinkable monomer is a polymerizable monomer having a group that can form a crosslinked structure, a polymerizable monomer having a group that can form a crosslinked structure by changing the structure, or Represents a polymerizable monomer having a plurality of reactive groups in the molecule.
Examples of the crosslinkable monomer include an isocyanate monomer having an isocyanate block having a (meth) acrylate group at one end and becoming an active isocyanate group upon heating (for example, Karenz MOI-BP manufactured by Showa Denko KK).
Moreover, an isocyanate monomer having a (meth) acrylate group at one end and having an isocyanate group (for example, Showa Denko Co., Ltd .: Karenz AOI, Karenz MOI), glycidyl (meth) acrylate having an epoxy group, and the like are also included.
Further, diisocyanate compounds and triisocyanate compounds (toluene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, triphenylmethane isocyanate (for example, Takenate D-160N manufactured by Mitsui Chemicals), diepoxy compounds (1,7-octadiene diepoxide, And dicyclopentadiene diepoxide).
Also included are alkylated melamine compounds and alkylated urea compounds having functional groups in the molecule such as imino group, methylol group and methoxymethyl group (for example, Nikalac MX-270 manufactured by Sanwa Chemical Co., Ltd.).
 これらの中でも、特に片末端に(メタ)アクリレート基を持ち且つ加熱により活性なイソシアネート基となるイソシアネートブロック体を有するイソシアネート系モノマーが好ましい。 Among these, an isocyanate-based monomer having an isocyanate block having a (meth) acrylate group at one end and becoming an active isocyanate group by heating is particularly preferable.
 (4)その他の重合成分
 また、前記特定の高分子化合物は、更にその他の重合成分を含んだ共重合体であってもよい。
 その他の重合成分としては、例えば、ジメチルアミノスチレン、ジエチルアミノスチレン、ジメチルアミノメチルスチレン、ジオクチルアミノスチレン等の含窒素基を有する芳香族置換エチレン系単量体類;ビニル-N-エチル-N-フェニルアミノエチルエーテル、ビニル-N-ブチル-N-フェニルアミノエチルエーテル、トリエタノールアミンジビニルエーテル、ビニルジフェニルアミノエチルエーテル、N-ビニルヒドロキシエチルベンズアミド、m-アミノフェニルビニルエーテル等の含窒素ビニルエーテル単量体類;N-ビニルピロール等のピロール類;N-ビニル-2-ピロリン、N-ビニル-3-ピロリン等のピロリン類;N-ビニルピロリジン、ビニルピロリジンアミノエーテル、N-ビニル-2-ピロリドン等のピロリジン類;N-ビニル-2-メチルイミダゾール等のイミダゾール類;N-ビニルイミダゾリン等のイミダゾリン類;N-ビニルインドール等のインドール類;N-ビニルインドリン等のインドリン類;N-ビニルカルバゾール、3,6-ジブロム-N-ビニルカルバゾール等のカルバゾール類;2-ビニルピリジン、4-ビニルピリジン、2-メチル-5-ビニルピロジン等のピリジン類;(メタ)アクリルピペリジン、N-ビニルピペリドン、N-ビニルピペラジン等のピペリジン類;2-ビニルキノリン、4-ビニルキノリン等のキノリン類;N-ビニルピラゾール、N-ビニルピラゾリン等のピラゾール類;2-ビニルオキサゾール等のオキサゾール類;4-ビニルオキサジン、モルホリノエチル(メタ)アクリレート等のオキサジン類;クロトン酸、イタコン酸、マレイン酸、フマール酸、シトラコン酸、またはそれらの無水物およびそのモノアルキルエステルやカルボキシエチルビニルエーテル、カルボキシプロピルビニルエーテルの如きカルボキシル基を有するビニルエーテル類;スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホニックアシッド、3-スルホプロピル(メタ)アクリックアシッドエステル、ビス-(3-スルホプロピル)-イタコニックアシッドエステル等およびその塩;2-ヒドロキシエチル(メタ)アクリル酸の硫酸モノエステルおよびその塩;ビニルホスホン酸、ビニルホスフェート、アシッドホスホキシエチル(メタ)アクリレート、アシッドホスホキシプロピル(メタ)アクリレート、ビス(メタクリロキシエチル)ホスフェート、ジフェニル-2-メタクリロイロキシエチルホスフェート、ジフェニル-2-アクリロイロキシエチルホスフェート、ジブチル-2-メタクリロイロキシエチルホスフェート、ジブチル-2-アクリロイロキシエチルホスフェート、ジオクチル-2-(メタ)アクリロイロキシエチルホスフェート;スチレンやビニルナフタレン等の芳香族ビニル化合物類等が挙げられる。
(4) Other Polymerization Components The specific polymer compound may be a copolymer further containing other polymerization components.
Examples of other polymerization components include aromatic substituted ethylene monomers having a nitrogen-containing group such as dimethylaminostyrene, diethylaminostyrene, dimethylaminomethylstyrene, and dioctylaminostyrene; vinyl-N-ethyl-N-phenyl Nitrogen-containing vinyl ether monomers such as aminoethyl ether, vinyl-N-butyl-N-phenylaminoethyl ether, triethanolamine divinyl ether, vinyl diphenylaminoethyl ether, N-vinylhydroxyethylbenzamide, m-aminophenyl vinyl ether Pyrroles such as N-vinylpyrrole; pyrrolines such as N-vinyl-2-pyrroline and N-vinyl-3-pyrroline; pyrroles such as N-vinylpyrrolidine, vinylpyrrolidine amino ether and N-vinyl-2-pyrrolidone Imidazoles such as N-vinyl-2-methylimidazole; imidazolines such as N-vinylimidazoline; indoles such as N-vinylindole; indolines such as N-vinylindoline; N-vinylcarbazole, 3, Carbazoles such as 6-dibromo-N-vinylcarbazole; Pyridines such as 2-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyrazine; (meth) acrylic piperidine, N-vinylpiperidone, N-vinylpiperazine, etc. Piperidines; quinolines such as 2-vinylquinoline and 4-vinylquinoline; pyrazoles such as N-vinylpyrazole and N-vinylpyrazoline; oxazoles such as 2-vinyloxazole; 4-vinyloxazine and morpholinoethyl (meth) Oxazine such as acrylate Crotonic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, or their anhydrides and their monoalkyl esters, vinyl ethers having a carboxyl group such as carboxyethyl vinyl ether, carboxypropyl vinyl ether; styrene sulfonic acid, 2-acrylamide -2-Methylpropane sulfonic acid, 3-sulfopropyl (meth) acyclic acid ester, bis- (3-sulfopropyl) -itaconic acid ester, and salts thereof; sulfuric acid of 2-hydroxyethyl (meth) acrylic acid Monoesters and salts thereof; vinyl phosphonic acid, vinyl phosphate, acid phosphoxyethyl (meth) acrylate, acid phosphoxypropyl (meth) acrylate, bis (methacryloxyethyl) Sulfate, diphenyl-2-methacryloyloxyethyl phosphate, diphenyl-2-acryloyloxyethyl phosphate, dibutyl-2-methacryloyloxyethyl phosphate, dibutyl-2-acryloyloxyethyl phosphate, dioctyl-2- (meth) acrylic Leuoxyethyl phosphate; aromatic vinyl compounds such as styrene and vinyl naphthalene.
 また、上記その他の重合成分として、極性基を持つ重合成分を用いてもよい。 In addition, as the other polymerization component, a polymerization component having a polar group may be used.
 極性基を持つ重合成分としては、塩基(カチオン性基)を持つ重合成分、酸基(アニオン性基)を持つ重合成分、水酸基(ヒドロキシル基)を持つ重合成分等が挙げられる。
 なお、極性基としての塩基(カチオン性基)は、例えば、アミノ基、4級アンモニウム基が挙げられる(これら基の塩も含む)。
 極性基としての酸基(アニオン性基)は、例えば、フェノール基、カルボキシル基、カルボン酸塩基、スルホン酸基、スルホン酸塩基、リン酸基、リン酸塩基およびテトラフェニルボロン基が挙げられる。
Examples of the polymerization component having a polar group include a polymerization component having a base (cationic group), a polymerization component having an acid group (anionic group), and a polymerization component having a hydroxyl group (hydroxyl group).
Examples of the base (cationic group) as a polar group include an amino group and a quaternary ammonium group (including salts of these groups).
Examples of the acid group (anionic group) as the polar group include a phenol group, a carboxyl group, a carboxylate group, a sulfonate group, a sulfonate group, a phosphate group, a phosphate group, and a tetraphenylboron group.
 塩基(カチオン性基)を持つ重合成分としては、例えば、以下のものが挙げられる。具体的には、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジブチルアミノエチル(メタ)アクリレート、N,N-ヒドロキシエチルアミノエチル(メタ)アクリレート、N-エチルアミノエチル(メタ)アクリレート、N-オクチル-N-エチルアミノエチル(メタ)アクリレート、N,N-ジヘキシルアミノエチル(メタ)アクリレート等の脂肪族アミノ基を持つ(メタ)アクリレート類;、N-メチル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、N-フェニルメチル(メタ)アクリルアミド、N-シクロヘキシル(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミド、N-p-メトキシ-フェニル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジブチル(メタ)アクリルアミド、N-メチル-N-フェニル(メタ)アクリルアミド等の(メタ)アクリルアミド類;、ジメチルアミノスチレン、ジエチルアミノスチレン、ジメチルアミノメチルスチレン、ジオクチルアミノスチレン等の含窒素基を持つ芳香族置換エチレン系単量体類;、ビニル-N-エチル-N-フェニルアミノエチルエーテル、ビニル-N-ブチル-N-フェニルアミノエチルエーテル、トリエタノールアミンジビニルエーテル、ビニルジフェニルアミノエチルエーテル、N-ビニルヒドロキシエチルベンズアミド、m-アミノフェニルビニルエーテル等の含窒素ビニルエーテル単量体類;、ビニルアミン、N-ビニルピロール等のピロール類;、N-ビニル-2-ピロリン、N-ビニル-3-ピロリン等のピロリン類;、N-ビニルピロリジン、ビニルピロリジンアミノエーテル、N-ビニル-2-ピロリドン等のピロリジン類;、N-ビニル-2-メチルイミダゾール等のイミダゾール類;、N-ビニルイミダゾリン等のイミダゾリン類;、N-ビニルインドール等のインドール類;、N-ビニルインドリン等のインドリン類;、N-ビニルカルバゾール、3,6-ジブロム-N-ビニルカルバゾール等のカルバゾール類;、2-ビニルピリジン、4-ビニルピリジン、2-メチル-5-ビニルピリジン等のピリジン類;、(メタ)アクリルピペリジン、N-ビニルピペリドン、N-ビニルピペラジン等のピペリジン類;、2-ビニルキノリン、4-ビニルキノリン等のキノリン類;、N-ビニルピラゾール、N-ビニルピラゾリン等のピラゾール類;、2-ビニルオキサゾール等のオキサゾール類;、4-ビニルオキサジン、モルホリノエチル(メタ)アクリレート等のオキサジン類;などが挙げられる。
 なお、塩基(カチオン性基)を持つ重合成分は、重合前または重合後に4級アンモニウム塩化して塩構造を形成してもよい。4級アンモニウム塩化は、例えば、カチオン性基をアルキルハライド類やトシル酸エステル類と反応させることで実現される。
Examples of the polymerization component having a base (cationic group) include the following. Specifically, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dibutylaminoethyl (meth) acrylate, N, N-hydroxyethylaminoethyl (meta) ) Acrylate, N-ethylaminoethyl (meth) acrylate, N-octyl-N-ethylaminoethyl (meth) acrylate, (meth) acrylate having an aliphatic amino group such as N, N-dihexylaminoethyl (meth) acrylate N-methyl (meth) acrylamide, N-octyl (meth) acrylamide, N-phenylmethyl (meth) acrylamide, N-cyclohexyl (meth) acrylamide, N-phenyl (meth) acrylamide, Np-methoxy- Phenyl (meth) acrylamide, N, -(Meth) acrylamides such as dimethyl (meth) acrylamide, N, N-dibutyl (meth) acrylamide, N-methyl-N-phenyl (meth) acrylamide; dimethylaminostyrene, diethylaminostyrene, dimethylaminomethylstyrene, dioctyl Aromatic substituted ethylene monomers having nitrogen-containing groups such as aminostyrene; vinyl-N-ethyl-N-phenylaminoethyl ether, vinyl-N-butyl-N-phenylaminoethyl ether, triethanolamine di Nitrogen-containing vinyl ether monomers such as vinyl ether, vinyl diphenylaminoethyl ether, N-vinylhydroxyethylbenzamide and m-aminophenyl vinyl ether; pyrroles such as vinylamine and N-vinylpyrrole; N-vinyl-2-pyrrole Pyrrolines such as phosphorus and N-vinyl-3-pyrroline; pyrrolidines such as N-vinylpyrrolidine, vinylpyrrolidine amino ether and N-vinyl-2-pyrrolidone; imidazoles such as N-vinyl-2-methylimidazole Imidazolines such as N-vinylimidazoline; indoles such as N-vinylindole; indolines such as N-vinylindoline; carbazole such as N-vinylcarbazole and 3,6-dibromo-N-vinylcarbazole Pyridines such as 2-vinylpyridine, 4-vinylpyridine and 2-methyl-5-vinylpyridine; piperidines such as (meth) acrylic piperidine, N-vinylpiperidone and N-vinylpiperazine; Quinolines such as quinoline and 4-vinylquinoline; N-vinylpyrazo And pyrazoles such as N-vinylpyrazoline; oxazoles such as 2-vinyloxazole; and oxazines such as 4-vinyloxazine and morpholinoethyl (meth) acrylate.
The polymerization component having a base (cationic group) may be quaternized ammonium chloride before or after polymerization to form a salt structure. Quaternary ammonium chloride is realized, for example, by reacting a cationic group with alkyl halides or tosylate esters.
 酸基(アニオン性基)を持つ重合成分としては、例えば、以下のものが挙げられる。
 カルボン酸基を持つ重合成分としては、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマール酸、シトラコン酸、それらの無水物、そのモノアルキルエステルやカルボキシエチルビニルエーテル、カルボキシプロピルビニルエーテルの如きカルボキシル基を持つビニルエーテル類、およびその塩等が挙げられる。
 スルホン酸基を持つ重合成分としては、例えば、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、3-スルホプロピル(メタ)アクリックアシッドエステル、ビス-(3-スルホプロピル)-イタコニックアシッドエステル等およびその塩が挙げられる。また、スルホン酸基を持つ重合成分としては、その他2-ヒドロキシエチル(メタ)アクリル酸の硫酸モノエステルおよびその塩も挙げられる。
 リン酸基を持つ重合成分としては、例えば、ビニルホスホン酸、ビニルホスフェート、アシッドホスホキシエチル(メタ)アクリレート、アシッドホスホキシプロピル(メタ)アクリレート、ビス(メタクリロキシエチル)ホスフェート、ジフェニル-2-メタクリロイロキシエチルホスフェート、ジフェニル-2-アクリロイロキシエチルホスフェート、ジブチル-2-メタクリロイロキシエチルホスフェート、ジブチル-2-アクリロイロキシエチルホスフェート、ジオクチル-2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。
 なお、酸基(アニオン性基)を持つ重合成分は、重合前若しくは重合後にアンモニウム塩化して塩構造を形成させてもよい。アンモニウム塩化は、例えば、アニオン性基を3級アミン類若しくは4級アンモニウムハイドロオキサイド類と反応させることで実現される。
Examples of the polymerization component having an acid group (anionic group) include the following.
Examples of the polymerization component having a carboxylic acid group include (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, citraconic acid, their anhydrides, monoalkyl esters, carboxyethyl vinyl ether, carboxypropyl vinyl ether. And vinyl ethers having a carboxyl group, and salts thereof.
Examples of polymerization components having a sulfonic acid group include styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, 3-sulfopropyl (meth) click acid ester, bis- (3-sulfopropyl) -itaconic. And acid esters and salts thereof. In addition, examples of the polymerization component having a sulfonic acid group include sulfuric acid monoesters of 2-hydroxyethyl (meth) acrylic acid and salts thereof.
Examples of the polymerization component having a phosphoric acid group include vinylphosphonic acid, vinyl phosphate, acid phosphoxyethyl (meth) acrylate, acid phosphoxypropyl (meth) acrylate, bis (methacryloxyethyl) phosphate, diphenyl-2-methacrylate. Examples include leuoxyethyl phosphate, diphenyl-2-acryloyloxyethyl phosphate, dibutyl-2-methacryloyloxyethyl phosphate, dibutyl-2-acryloyloxyethyl phosphate, dioctyl-2- (meth) acryloyloxyethyl phosphate It is done.
In addition, the polymerization component having an acid group (anionic group) may be subjected to ammonium chloride before polymerization or after polymerization to form a salt structure. Ammonium chloride is realized, for example, by reacting an anionic group with a tertiary amine or quaternary ammonium hydroxide.
 水酸基(ヒドロキシル基)を持つ重合成分としては、例えば、ヒドロキシアルキル(メタ)アクリレート(例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等)、アリルアルコール、ポリエチレングリコールモノ(メタ)アクリレート等が挙げられ、その他、グリシジル基を持つモノマーを共重合させたのち開環させたもの、t-ブトキシキなどを持つモノマーを重合したのち加水分解させることでOH基を導入したものも挙げられる。 Examples of the polymerization component having a hydroxyl group (hydroxyl group) include hydroxyalkyl (meth) acrylate (for example, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, etc.), allyl alcohol, polyethylene glycol mono (meth) acrylate, and the like. Other examples include those obtained by copolymerizing a monomer having a glycidyl group and then ring-opening, and those obtained by polymerizing a monomer having t-butoxy and then hydrolyzing it to introduce an OH group.
 また更に、上記で列挙したもの以外の重合成分としては、例えば、(メタ)アクリロニトリル、(メタ)アクリル酸アルキルエステル、(メタ)アクリルアミド、エチレン、プロピレン、ブタジエン、イソプレン、イソブチレン、N-ジアルキル置換(メタ)アクリルアミド、ビニルカルバゾール、塩化ビニル、塩化ビニリデン、イソプレン、ブタジエン、ビニルピロリドン、等が挙げられる。 Furthermore, as polymerization components other than those listed above, for example, (meth) acrylonitrile, (meth) acrylic acid alkyl ester, (meth) acrylamide, ethylene, propylene, butadiene, isoprene, isobutylene, N-dialkyl substituted ( And (meth) acrylamide, vinyl carbazole, vinyl chloride, vinylidene chloride, isoprene, butadiene, vinyl pyrrolidone, and the like.
 また、「その他の重合成分」として挙げた重合成分は、全重合成に対して占める質量比で0質量%以上74質量%以下が望ましく、より望ましくは25質量%以上70質量%以下である。 In addition, the polymerization component mentioned as “other polymerization component” is preferably 0% by mass or more and 74% by mass or less, more preferably 25% by mass or more and 70% by mass or less in terms of the mass ratio to the total polysynthesis.
 前記特定の高分子化合物は、架橋体として表面層を構成してもよく、当該架橋体とするには、例えば、重合成分として反応性基(架橋性基)を持つ重合成分を重合させ、樹脂を架橋させる方法、高分子化合物とは別途、架橋剤を添加して、架橋させる方法が挙げられる。なお、架橋剤としては、例えば、イソシアネート等の周知の架橋剤が挙げられる。 The specific polymer compound may constitute a surface layer as a crosslinked body. In order to obtain the crosslinked body, for example, a polymerization component having a reactive group (crosslinkable group) as a polymerization component is polymerized to form a resin. In addition to the method of crosslinking, and a method of crosslinking by adding a crosslinking agent separately from the polymer compound. In addition, as a crosslinking agent, well-known crosslinking agents, such as isocyanate, are mentioned, for example.
 但し、前記特定の高分子化合物が上述したその他の重合成分を原料として含む場合、該その他の重合成分の比率は、前述の(1)、(2)および(3)の成分の合計量(100モル%)に対し900モル%以下とすることが望ましく、より望ましくは300モル%以下である。 However, when the specific polymer compound contains the above-described other polymerization component as a raw material, the ratio of the other polymerization component is the total amount (100) of the components (1), (2) and (3) described above. The mol% is preferably 900 mol% or less, more preferably 300 mol% or less.
 前記特定の高分子化合物の重量平均分子量としては、100以上100万以下が望ましく、より望ましくは400以上100万以下であり、500以上100万以下が更に望ましく、更に望ましくは1000以上50万以下である。
 なお、重量平均分子量は静的光散乱法またはサイズ排除カラムクロマトグラフィーにより測定され、本明細書に記載の数値は当該方法によって測定されたものである。
The weight average molecular weight of the specific polymer compound is preferably from 100 to 1,000,000, more preferably from 400 to 1,000,000, more preferably from 500 to 1,000,000, and even more preferably from 1,000 to 500,000. is there.
The weight average molecular weight is measured by a static light scattering method or size exclusion column chromatography, and the numerical values described in this specification are measured by the method.
 前記特定の高分子化合物を用いた表面層の形成は、基板や間隙部材が前記架橋性モノマーにおける架橋基と反応する官能基を持つ材料を含む場合、当該基板および間隙部材に直接反応させ結合させる処理を行うことで行われる。一方、特定の高分子化合物を用いた表面層の形成は、基板や間隙部材が前記架橋性モノマーにおける架橋基と反応する官能基を持つ材料を含まない場合、基板や間隙部材の表面を処理剤(例えば、シランカップリング剤)により処理した後、特定の高分子化合物を、当該基板や間隙部材に反応させる処理を行うことで行われる。 When the surface layer is formed using the specific polymer compound, when the substrate or the gap member includes a material having a functional group that reacts with a crosslinking group in the crosslinkable monomer, the substrate and the gap member are directly reacted and bonded. This is done by processing. On the other hand, the formation of the surface layer using a specific polymer compound is performed when the substrate or the gap member does not contain a material having a functional group that reacts with the crosslinking group in the crosslinkable monomer. After the treatment with (for example, a silane coupling agent), the treatment is performed by reacting a specific polymer compound with the substrate or the gap member.
 ここで、上記処理剤としては、シランカップリング剤が望ましく、例えば、ビニルトリクロルシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシランおよびγ-クロロプロピルトリメトキシシラン等、(b)γ-グリシドキシプロピルトリメトキシシランおよびγ-グリシドキシプロピルメチルジエトキシシラン等、(c)N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、またはγ-アミノプロピルトリエトキシシラン等が挙げられる。 Here, the treating agent is preferably a silane coupling agent, such as vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane and γ-chloropropyltrimethoxysilane, etc. (b) γ-glycidoxypropyltrimethoxysilane and γ-glycidoxypropylmethyldiethoxysilane, etc. (c) N-β (amino And ethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, and γ-aminopropyltriethoxysilane.
 特定の高分子化合物による表面層の厚みとしては、望ましくは0.001μm以上10μm以下、より望ましくは0.01μm以上1μm以下である。なお、表面層の厚みはDektak 6M 段差計(Veeco製)にて測定した。 The thickness of the surface layer of the specific polymer compound is desirably 0.001 μm to 10 μm, more desirably 0.01 μm to 1 μm. The thickness of the surface layer was measured with a Dektak 6M step gauge (manufactured by Veeco).
 ・間隙部材
 次に、間隙部材について説明する。表示基板20と背面基板22との基板間の隙を保持するための間隙部材24は、表示基板20の透光性を損なわないよう形成され、熱可塑性樹脂、熱硬化性樹脂、電子線硬化樹脂、光硬化樹脂、ゴム、金属等で形成される。
-Gap member Next, a gap member is demonstrated. The gap member 24 for holding a gap between the display substrate 20 and the back substrate 22 is formed so as not to impair the light-transmitting property of the display substrate 20, and is a thermoplastic resin, a thermosetting resin, an electron beam curable resin. , Photo-curing resin, rubber, metal and the like.
 間隙部材24は表示基板20および背面基板22の何れか一方と一体化されてもよい。この場合には、支持基板38または支持基板44をエッチングするエッチング処理、レーザー加工処理、予め作製した型を使用してプレス加工処理または印刷処理等を行うことによって作製する。
 この場合、間隙部材24は、表示基板20側、背面基板22側のいずれか、または双方に作製する。
The gap member 24 may be integrated with either the display substrate 20 or the back substrate 22. In this case, the support substrate 38 or the support substrate 44 is manufactured by performing etching processing, laser processing processing, press processing processing, printing processing, or the like using a previously manufactured mold.
In this case, the gap member 24 is fabricated on either the display substrate 20 side, the back substrate 22 side, or both.
 間隙部材24は有色でも無色でもよいが、表示媒体12に表示される表示画像に悪影響を及ぼさないよう無色透明であることが望ましく、その場合には、例えば、ポリスチレンやポリエステルやアクリルなどの透明樹脂等が使用される。 The gap member 24 may be colored or colorless, but is preferably colorless and transparent so as not to adversely affect the display image displayed on the display medium 12, and in this case, for example, a transparent resin such as polystyrene, polyester, or acrylic Etc. are used.
 また、粒子状の間隙部材24もまた透明であることが望ましく、ポリスチレン、ポリエステルまたはアクリル等の透明樹脂粒子の他、ガラス粒子も使用される。 Further, it is desirable that the particulate gap member 24 is also transparent, and glass particles are used in addition to transparent resin particles such as polystyrene, polyester, or acrylic.
 なお、「透明」とは、可視光に対して、透過率60%以上有することを示している。 In addition, “transparent” indicates having a transmittance of 60% or more with respect to visible light.
 ・分散媒
 次に、分散媒について説明する。粒子群34が分散される分散媒50としては、絶縁性液体であることが望ましい。ここで、「絶縁性」とは、体積固有抵抗が1011Ωcm以上であることを示している。以下同義である。
-Dispersion medium Next, a dispersion medium is demonstrated. The dispersion medium 50 in which the particle group 34 is dispersed is desirably an insulating liquid. Here, “insulating” indicates that the volume resistivity is 10 11 Ωcm or more. The following are synonymous.
 分散媒50としては、特に制限はないが、低誘電溶媒(例えば誘電率5.0以下、望ましくは3.0以下)が選択されることがよい。分散媒は、低誘電溶媒以外の溶媒を併用してもよいが、50体積%以上の低誘電溶媒を含むことがよい。なお、低誘電率の誘電率は、誘電率計(日本ルフト製)により求められる。 The dispersion medium 50 is not particularly limited, but a low dielectric solvent (for example, a dielectric constant of 5.0 or less, desirably 3.0 or less) is preferably selected. The dispersion medium may use a solvent other than the low dielectric solvent, but preferably contains 50% by volume or more of the low dielectric solvent. In addition, the dielectric constant of a low dielectric constant is calculated | required with a dielectric constant meter (made by Nippon Luft).
 上記絶縁性液体として具体的には、ヘキサン、シクロヘキサン、トルエン、キシレン、デカン、ヘキサデカン、ケロセン、パラフィン、イソパラフィン、シリコーンオイル、ジククロロエチレン、トリクロロエチレン、パークロロエチレン、高純度石油、エチレングリコール、アルコール類、エーテル類、エステル類、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、2-ピロリドン、N-メチルホルムアミド、アセトニトリル、テトラヒドロフラン、プロピレンカーボネート、エチレンカーボネート、ベンジン、ジイソプロピルナフタレン、オリーブ油、イソプロパノール、トリクロロトリフルオロエタン、テトラクロロエタン、ジブロモテトラフルオロエタンなど、およびそれらの混合物が好適に使用される。これらの中でも、シリコーンオイルを適用することがよい。 Specific examples of the insulating liquid include hexane, cyclohexane, toluene, xylene, decane, hexadecane, kerosene, paraffin, isoparaffin, silicone oil, dichloroethylene, trichloroethylene, perchloroethylene, high-purity petroleum, ethylene glycol, and alcohols. , Ethers, esters, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, 2-pyrrolidone, N-methylformamide, acetonitrile, tetrahydrofuran, propylene carbonate, ethylene carbonate, benzine, diisopropylnaphthalene, olive oil, isopropanol, trichloro Trifluoroethane, tetrachloroethane, dibromotetrafluoroethane, etc., and mixtures thereof It is preferably used. Among these, silicone oil is preferably applied.
 また、下記体積抵抗値となるよう不純物を除去することで、水(所謂、純水)も、分散媒50として好適に使用される。該体積抵抗値としては、10Ωcm以上であることが望ましく、10Ωcm以上1019Ωcm以下であることがより好適であり、さらに1010Ωcm以上1019Ωcm以下であることがより良い。 Further, water (so-called pure water) is also suitably used as the dispersion medium 50 by removing impurities so as to have the following volume resistance value. The volume resistance value is preferably 10 3 Ωcm or more, more preferably 10 7 Ωcm or more and 10 19 Ωcm or less, and further preferably 10 10 Ωcm or more and 10 19 Ωcm or less.
 なお、絶縁性液体には、酸、アルカリ、塩、分散安定剤、酸化防止や紫外線吸収などを目的とした安定剤、抗菌剤、防腐剤などを添加してもよいが、上記で示した特定の体積抵抗値の範囲となるよう添加することが望ましい。 The insulating liquid may contain acids, alkalis, salts, dispersion stabilizers, stabilizers for the purpose of preventing oxidation or UV absorption, antibacterial agents, preservatives, etc. It is desirable to add so that it may become the range of the volume resistance value of.
 また、絶縁性液体には、帯電制御剤として、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤、非イオン界面活性剤、フッ素系界面活性剤、シリコーン系界面活性剤、金属石鹸、アルキルリン酸エステル類、コハク酸イミド類等を添加して使用してもよい。 For insulating liquids, anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorosurfactants, silicone surfactants, metal soaps as charge control agents Alkyl phosphate esters, succinimides and the like may be added and used.
 イオン性および非イオン性の界面活性剤としては、より具体的には以下が挙げられる。ノニオン界面活性剤としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、脂肪酸アルキロールアミド等が挙げられる。アニオン界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキルフェニルスルホン酸塩、アルキルナフタリンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルの硫酸エステル塩、高級脂肪酸エステルのスルホン酸等がある。カチオン界面活性剤としては、第一級ないし第三級のアミン塩、第四級アンモニウム塩等があげられる。これら帯電制御剤は、粒子固形分に対して0.01質量%以上20質量%以下が望ましく、特に0.05質量%以上10質量%以下の範囲が望ましい。 Specific examples of the ionic and nonionic surfactants include the following. Nonionic surfactants include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene dodecyl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester And fatty acid alkylolamide. Examples of the anionic surfactant include alkylbenzene sulfonate, alkylphenyl sulfonate, alkyl naphthalene sulfonate, higher fatty acid salt, sulfate of higher fatty acid ester, sulfonic acid of higher fatty acid ester, and the like. Examples of the cationic surfactant include primary to tertiary amine salts and quaternary ammonium salts. These charge control agents are preferably 0.01% by mass or more and 20% by mass or less, and particularly preferably 0.05% by mass or more and 10% by mass or less with respect to the solid content of the particles.
 なお、分散媒50は、前記絶縁性液体と共に高分子樹脂を併用してもよい。この高分子樹脂としては、高分子ゲル、高分子ポリマー等であることも望ましい。 The dispersion medium 50 may use a polymer resin in combination with the insulating liquid. The polymer resin is preferably a polymer gel, a polymer, or the like.
 この高分子樹脂としては、アガロース、アガロペクチン、アミロース、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル、イソリケナン、インスリン、エチルセルロース、エチルヒドロキシエチルセルロース、カードラン、カゼイン、カラギーナン、カルボキシメチルセルロース、カルボキシメチルデンプン、カロース、寒天、キチン、キトサン、絹フィブロイン、クアーガム、クインスシード、クラウンゴール多糖、グリコーゲン、グルコマンナン、ケラタン硫酸、ケラチン蛋白質、コラーゲン、酢酸セルロース、ジェランガム、シゾフィラン、ゼラチン、ゾウゲヤシマンナン、ツニシン、デキストラン、デルマタン硫酸、デンプン、トラガカントゴム、ニゲラン、ヒアルロン酸、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、プスツラン、フノラン、分解キシログルカン、ペクチン、ポルフィラン、メチルセルロース、メチルデンプン、ラミナラン、リケナン、レンチナン、ローカストビーンガム等の天然高分子由来の高分子ゲルが挙げられる他、合成高分子の場合にはほとんどすべての高分子ゲルが挙げられる。 As this polymer resin, agarose, agaropectin, amylose, sodium alginate, propylene glycol ester of alginate, isolikenan, insulin, ethylcellulose, ethylhydroxyethylcellulose, curdlan, casein, carrageenan, carboxymethylcellulose, carboxymethyl starch, callose, agar, chitin , Chitosan, silk fibroin, gar gum, quince seed, crown gall polysaccharide, glycogen, glucomannan, keratan sulfate, keratin protein, collagen, cellulose acetate, gellan gum, schizophyllan, gelatin, elephant palm mannan, tunisin, dextran, dermatan sulfate, starch , Tragacanth gum, nigeran, hyaluronic acid, hydroxyethylcellulose, hydro Examples include synthetic gels derived from natural polymers such as cyclopropylcellulose, pustulan, funolan, decomposed xyloglucan, pectin, porphyran, methylcellulose, methyl starch, laminaran, lichenan, lentinan, locust bean gum, etc. Includes almost all polymer gels.
 更に、アルコール、ケトン、エーテル、エステル、およびアミドの官能基を繰り返し単位中に含む高分子等が挙げられ、例えば、ポリビニルアルコール、ポリ(メタ)アクリルアミドやその誘導体、ポリビニルピロリドン、ポリエチレンオキシドやこれら高分子を含む共重合体が挙げられる。これら中でも、ゼラチン、ポリビニルアルコール、ポリ(メタ)アクリルアミド等が望ましく用いられる。 In addition, polymers containing functional groups of alcohol, ketone, ether, ester, and amide in the repeating unit are exemplified. For example, polyvinyl alcohol, poly (meth) acrylamide and derivatives thereof, polyvinyl pyrrolidone, polyethylene oxide and the like. Examples include copolymers containing molecules. Among these, gelatin, polyvinyl alcohol, poly (meth) acrylamide and the like are desirably used.
 また、この分散媒50に下記着色剤を混合することで、表示媒体12に粒子群34の色とは異なる色を表示させてもよい。例えば、着色剤として白色を示す着色剤を混合することにより、粒子群34の色が黒色の場合には、表示媒体12において白色と黒色とが表示される。 Alternatively, the following colorant may be mixed with the dispersion medium 50 to display a color different from the color of the particle group 34 on the display medium 12. For example, when the color of the particle group 34 is black by mixing a white colorant as the colorant, white and black are displayed on the display medium 12.
 この分散媒50に混合する着色剤としては、カーボンブラック、酸化チタン、酸化マグネシウム、酸化亜鉛、フタロシアニン銅系シアン色材、アゾ系イエロー色材、アゾ系マゼンタ色材、キナクリドン系マゼンタ色材、レッド色材、グリーン色材、ブルー色材等の公知の着色剤が挙げられる。具体的には、アニリンブルー、カルコイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.ブルー15:1、C.I.ピグメント・ブルー15:3、等が代表的なものとして挙げられる。 Examples of the colorant mixed in the dispersion medium 50 include carbon black, titanium oxide, magnesium oxide, zinc oxide, phthalocyanine copper-based cyan color material, azo-based yellow color material, azo-based magenta color material, quinacridone-based magenta color material, and red. Known colorants such as a color material, a green color material, and a blue color material can be used. Specifically, aniline blue, calcoil blue, chrome yellow, ultramarine blue, DuPont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black, rose bengal, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. Blue 15: 1, C.I. I. Pigment Blue 15: 3 is a typical example.
 分散媒50はその中で粒子群34が移動することから、分散媒50の粘度が定められた値以上であると、背面基板22および表示基板20への力のばらつきが大きく、電界に対する粒子移動の閾値がとれないことから、分散媒50の粘度についても、調整することがよい。 Since the particle group 34 moves in the dispersion medium 50, if the viscosity of the dispersion medium 50 is equal to or higher than a predetermined value, there is a large variation in force on the back substrate 22 and the display substrate 20, and the particle movement with respect to the electric field. Therefore, it is preferable to adjust the viscosity of the dispersion medium 50 as well.
 分散媒50の粘度は、温度20℃の環境下において、0.1mPa・s以上100mPa・s以下であることが粒子の移動速度、すなわち、表示速度の観点から望ましく、0.1mPa・s以上50mPa・s以下であることがより望ましく、0.1mPa・s以上20mPa・s以下であることが更に望ましい。 The viscosity of the dispersion medium 50 is preferably 0.1 mPa · s or more and 100 mPa · s or less in an environment at a temperature of 20 ° C. from the viewpoint of the moving speed of the particles, that is, the display speed. -It is more preferable that it is s or less, and it is still more desirable that it is 0.1 mPa * s or more and 20 mPa * s or less.
 分散媒50の粘度の調整は、分散媒の分子量、構造、組成等を調整することによって行われる。なお、この粘度の測定には、東京計器製B-8L型粘度計を用いる。 The viscosity of the dispersion medium 50 is adjusted by adjusting the molecular weight, structure, composition, etc. of the dispersion medium. For measurement of the viscosity, a B-8L viscometer manufactured by Tokyo Keiki is used.
 ・粒子群(泳動粒子群)
 粒子群(泳動粒子群)34は、複数の泳動粒子を含み、例えば、各泳動粒子は正または負に帯電されており、表面電極40と背面電極46との電極間に(すなわち、表示基板20と背面基板22と基板間に)、予め定められた電圧が印加されて表示基板20と背面基板22との間に、予め定められた電界強度以上の電界が形成されることで分散媒50中を移動するものである。
 表示媒体12における表示色の変化は、この泳動粒子群34に含まれる各泳動粒子の分散媒50中の移動によって生じる。
・ Particle group (electrophoretic particle group)
The particle group (electrophoretic particle group) 34 includes a plurality of electrophoretic particles. For example, each electrophoretic particle is positively or negatively charged, and is interposed between the front electrode 40 and the back electrode 46 (that is, the display substrate 20). And between the rear substrate 22 and the substrate), a predetermined voltage is applied to form an electric field higher than a predetermined electric field strength between the display substrate 20 and the rear substrate 22 in the dispersion medium 50. Is to move.
The change in display color on the display medium 12 is caused by the movement of each migrating particle contained in the migrating particle group 34 in the dispersion medium 50.
 泳動粒子群34の泳動粒子は、例えば、着色した芯材粒子(以下、「コア粒子」と称する)と、コア粒子を被覆する被覆層と、を有している。 The migrating particles of the migrating particle group 34 include, for example, colored core material particles (hereinafter referred to as “core particles”) and a coating layer that covers the core particles.
-コア粒子-
 コア粒子は、例えば、樹脂(以下、「コア粒子の樹脂」と称する)と着色剤とを含む組成物を含む。
-Core particles-
The core particles include, for example, a composition containing a resin (hereinafter referred to as “core particle resin”) and a colorant.
 コア粒子の樹脂は、非架橋の樹脂であってもよいが、樹脂架橋体であることがよい。コア粒子の樹脂を樹脂架橋体とするには、例えば、樹脂の重合成分として反応性基(架橋性基)を持つ重合成分を重合させ、樹脂を架橋させる方法、樹脂とは別途、架橋剤を添加して、樹脂を架橋させる方法が挙げられる。 The resin of the core particle may be a non-crosslinked resin, but is preferably a crosslinked resin. In order to make the resin of the core particle a resin cross-linked body, for example, a polymerization component having a reactive group (crosslinkable group) as a polymerization component of the resin is polymerized to crosslink the resin. A method of adding and crosslinking the resin can be mentioned.
 コア粒子の樹脂(架橋前の樹脂)としては、電気泳動粒子の製法上の観点から、水溶性樹脂またはアルコール可溶性樹脂であることがよい。なお、水溶性、アルコール可溶性とは、25℃において、対象物質が水またはアルコールに対して1質量%以上溶解することを意味する。 The core particle resin (pre-crosslinking resin) is preferably a water-soluble resin or an alcohol-soluble resin from the viewpoint of the production method of the electrophoretic particles. Water-soluble and alcohol-soluble means that the target substance dissolves 1% by mass or more in water or alcohol at 25 ° C.
 コア粒子の樹脂は、帯電性樹脂(帯電性基を有する樹脂)であっても、非帯電性樹脂(帯電性基を有していない樹脂)であってもよいが、帯電量向上の観点から、帯電性樹脂であることがよい。
 帯電性樹脂としては、例えば、帯電性基を持つ重合成分の単独重合体、帯電性基を持つ重合成分と帯電性基を持たない重合成分との共重合体等が挙げられる。
 一方、非帯電性樹脂としては、例えば、帯電性基を持たない重合成分の単独重合体が挙げられる。
 これら共重合体は、樹脂架橋体とする場合、反応性基(架橋性基)を持つ重合成分がさらに共重合されていてもよい。
 なお、これら各重合成分は、1種単独でも、2種以上併用してもよい。
The core particle resin may be a chargeable resin (a resin having a chargeable group) or a non-chargeable resin (a resin having no chargeable group), but from the viewpoint of improving the charge amount. It is preferable that the resin is a chargeable resin.
Examples of the chargeable resin include a homopolymer of a polymerization component having a chargeable group, and a copolymer of a polymerization component having a chargeable group and a polymerization component having no chargeable group.
On the other hand, examples of the non-chargeable resin include a homopolymer of a polymerization component having no chargeable group.
When these copolymers are resin crosslinked products, a polymerization component having a reactive group (crosslinkable group) may be further copolymerized.
Each of these polymerization components may be used alone or in combination of two or more.
 ここで、帯電性基(例えば極性基;分極性の官能基)としては、塩基または酸基が挙げられる。
 帯電性基としての塩基(カチオン性基)は、例えば、アミノ基、4級アンモニウム基が挙げられる(これら基の塩も含む)。これら塩基(カチオン性基)は、例えば、粒子に正帯電極性を付与する傾向がある。
 帯電性基としての酸基(アニオン性基)は、例えば、フェノール基、カルボキシル基、カルボン酸塩基、スルホン酸基、スルホン酸塩基、リン酸基、リン酸塩基およびテトラフェニルボロン基が挙げられる。これら酸基(アニオン性基)は、例えば、粒子に負帯電極性を付与する傾向がある。
Here, examples of the chargeable group (for example, a polar group; a polarizable functional group) include a base and an acid group.
Examples of the base (cationic group) as the chargeable group include an amino group and a quaternary ammonium group (including salts of these groups). These bases (cationic groups) tend to impart positively charged polarity to the particles, for example.
Examples of the acid group (anionic group) as the chargeable group include a phenol group, a carboxyl group, a carboxylate group, a sulfonate group, a sulfonate group, a phosphate group, a phosphate group, and a tetraphenylboron group. These acid groups (anionic groups) tend to impart negatively charged polarity to the particles, for example.
 以下、各重合成分について説明する。
 なお、以下の説明において、「(メタ)アクリレート」等の記述は、「アクリレート」および「メタクリレート」等のいずれをも含む表現である。
Hereinafter, each polymerization component will be described.
In the following description, descriptions such as “(meth) acrylate” are expressions including both “acrylate” and “methacrylate”.
 塩基(カチオン性基)を持つ重合成分としては、例えば、表面層に含まれる特定の高分子化合物の重合成分として説明した塩基(カチオン性基)を持つ重合成分と同様なものが挙げられる。
 酸基(アニオン性基)を持つ重合成分としては、例えば、表面層に含まれる特定の高分子化合物の重合成分として説明した酸基(アニオン性基)を持つ重合成分と同様なものが挙げられる。
Examples of the polymerization component having a base (cationic group) include those similar to the polymerization component having a base (cationic group) described as the polymerization component of the specific polymer compound contained in the surface layer.
Examples of the polymerization component having an acid group (anionic group) include those similar to the polymerization component having an acid group (anionic group) described as the polymerization component of the specific polymer compound contained in the surface layer. .
 帯電性基を持たない重合成分としては、非イオン性重合成分(ノニオン性重合成分)が挙げられ、例えば、(メタ)アクリロニトリル、(メタ)アクリル酸アルキルエステル、(メタ)アクリルアミド、エチレン、プロピレン、ブタジエン、イソプレン、イソブチレン、N-ジアルキル置換(メタ)アクリルアミド、ビニルカルバゾール、塩化ビニル、塩化ビニリデン、イソプレン、ブタジエン、ビニルピロリドン、等が挙げられる。 Examples of the polymerization component having no chargeable group include nonionic polymerization components (nonionic polymerization components). For example, (meth) acrylonitrile, (meth) acrylic acid alkyl ester, (meth) acrylamide, ethylene, propylene, Examples thereof include butadiene, isoprene, isobutylene, N-dialkyl-substituted (meth) acrylamide, vinyl carbazole, vinyl chloride, vinylidene chloride, isoprene, butadiene, vinyl pyrrolidone, and the like.
 反応性基(架橋性基)を持つ重合成分としては、例えば、エポキシ基を有するグリシジル(メタ)アクリレート、イソシアネート基を有するイソシアネート系モノマー(例えば、昭和電工:カレンズAOI(2-イソシアナトエチルアクリラート)、カレンズMOI(2-イソシアナトエチルメタクリレート))、ブロックされたイソシアネート基を有するイソシアネート系モノマー(例えば、昭和電工:カレンズMOI-BM(メタクリル酸2-(0-[1’-メチルプロピリデンアミノ]カルボキシアミノ)エチル)、カレンズMOI-BP(2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート))等が挙げられる。
 なお、ブロックされたイソシアネート基とは、例えば、イソシアネート基が置換基と反応した状態となっており、イソシアネート基が加熱によって脱離する置換基と反応しない状態となっているものである。これにより、イソシアネート基の反応性が抑制され、加熱により置換基が離脱すると反応する状態となる。
 このようなコア粒子の樹脂の重合成分として反応性基を持つ重合成分を用いると、コア粒子の樹脂自体が架橋し、コア粒子が樹脂架橋体となる。
Examples of the polymerization component having a reactive group (crosslinkable group) include glycidyl (meth) acrylate having an epoxy group, an isocyanate monomer having an isocyanate group (for example, Showa Denko: Karenz AOI (2-isocyanatoethyl acrylate) ), Karenz MOI (2-isocyanatoethyl methacrylate)), an isocyanate monomer having a blocked isocyanate group (for example, Showa Denko: Karenz MOI-BM (methacrylic acid 2- (0- [1'-methylpropylideneamino)) Carboxyamino) ethyl), Karenz MOI-BP (2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate)) and the like.
The blocked isocyanate group is, for example, a state in which the isocyanate group has reacted with a substituent, and a state in which the isocyanate group does not react with a substituent that is eliminated by heating. Thereby, the reactivity of an isocyanate group is suppressed and it will be in the state which reacts, when a substituent detaches | leaves by heating.
When a polymerization component having a reactive group is used as the polymerization component of the resin of the core particle, the core particle resin itself is crosslinked, and the core particle becomes a resin crosslinked body.
 コア粒子の樹脂において、帯電性基を持つ重合成分は、例えば、全重合成分に対して占める質量比で0.1質量%以上90質量%以下が望ましく、より望ましくは0.5質量%以上70質量%以下である。
 また、反応性基を持つ重合成分は、全重合成分に対して占める質量比で1質量%以上80質量%以下が望ましく、より望ましくは3質量%以上60質量%以下である。
In the resin of the core particle, the polymerization component having a chargeable group is preferably 0.1% by mass or more and 90% by mass or less, more preferably 0.5% by mass or more and 70% by mass, with respect to the total polymerization component. It is below mass%.
In addition, the polymerization component having a reactive group is preferably 1% by mass or more and 80% by mass or less, more preferably 3% by mass or more and 60% by mass or less in terms of a mass ratio to the total polymerization components.
 ここで、樹脂架橋体を得るための架橋剤としては、例えば、エポキシ化合物、カルボキシイミド化合物、ブロックイソシアネート等の架橋剤が挙げられる。
 エポキシ化合物としては、グリシジル(メタ)アクリレート,イタコン酸ジグリシジルエステル,ブテントリカルボン酸トリグリシジルエステル,p-スチレンカルボン酸グリシジルエステル等の不飽和カルボン酸グリシジルエステル,ビニルグリシジルエーテル,アリルグリシジルエーテル,2-メチルアリルグリシジルエーテル,メタクリルグリシジルエーテル,スチレン-p-グリシジルエーテル等の不飽和グリシジルエーテル等が挙げられる。
 カルボキシイミド化合物としては、サッカリン,こはく酸イミド,フタル酸イミド等が挙げられる。
 ブロックイソシアネートとしては、例えば、上記例示したブロックされたイソシアネート基を有するイソシアネート系モノマーが挙げられる。
 樹脂架橋体を得るための架橋剤の使用量は、例えば、コア粒子の樹脂に対して、1質量%以上80質量%以下が望ましく、より望ましくは3質量%以上60質量%以下である。
Here, as a crosslinking agent for obtaining a resin crosslinked body, crosslinking agents, such as an epoxy compound, a carboxyimide compound, block isocyanate, are mentioned, for example.
Examples of the epoxy compound include glycidyl (meth) acrylate, itaconic acid diglycidyl ester, butenetricarboxylic acid triglycidyl ester, p-styrenecarboxylic acid glycidyl ester, and the like, vinyl glycidyl ether, allyl glycidyl ether, 2- And unsaturated glycidyl ethers such as methylallyl glycidyl ether, methacryl glycidyl ether, and styrene-p-glycidyl ether.
Examples of the carboximide compound include saccharin, succinimide, and phthalimide.
Examples of the blocked isocyanate include isocyanate-based monomers having the blocked isocyanate groups exemplified above.
The amount of the crosslinking agent used to obtain the crosslinked resin is, for example, preferably from 1% by weight to 80% by weight, and more preferably from 3% by weight to 60% by weight with respect to the resin of the core particles.
 コア粒子の樹脂の重量平均分子量としては、1000以上100万以下が望ましく、より望ましくは1万以上20万以下である。 The weight average molecular weight of the core particle resin is preferably 1,000 to 1,000,000, more preferably 10,000 to 200,000.
 着色剤としては、有機若しくは無機の顔料、油溶性染料等が挙げられ、例えば、マグネタイト、フェライト等の磁性紛、カーボンブラック、酸化チタン、酸化マグネシウム、酸化亜鉛、フタロシアニン銅系シアン色材、アゾ系イエロー色材、アゾ系マゼンタ色材、キナクリドン系マゼンタ色材、レッド色材、グリーン色材、ブルー色材等の公知の着色剤が挙げられる。具体的には、着色剤としては、アニリンブルー、カルコイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロリド、フタロシアニンブルー、マラカイトグリーンオキサレート、ランプブラック、ローズベンガル、C.I.ピグメント・レッド48:1、C.I.ピグメント・レッド122、C.I.ピグメント・レッド57:1、C.I.ピグメント・イエロー97、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:3、等が代表的なものとして例示される。 Examples of the colorant include organic or inorganic pigments, oil-soluble dyes, etc., for example, magnetic powders such as magnetite and ferrite, carbon black, titanium oxide, magnesium oxide, zinc oxide, phthalocyanine copper-based cyan colorants, azo-based materials Known colorants such as a yellow color material, an azo magenta color material, a quinacridone magenta color material, a red color material, a green color material, and a blue color material can be used. Specifically, examples of the colorant include aniline blue, calcoyl blue, chrome yellow, ultramarine blue, dupont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, lamp black, rose bengal, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 122, C.I. I. Pigment red 57: 1, C.I. I. Pigment yellow 97, C.I. I. Pigment blue 15: 1, C.I. I. Pigment Blue 15: 3, etc. are exemplified as typical examples.
 着色剤の配合量としては、コア粒子の樹脂に対して10質量%以上99質量%以下が望ましく、望ましくは30質量%以上99質量%以下である。 The blending amount of the colorant is preferably 10% by mass or more and 99% by mass or less, and more preferably 30% by mass or more and 99% by mass or less with respect to the resin of the core particles.
 コア粒子には、その他の配合材料を含んでいてもよい。
 その他配合材料としては、例えば帯電制御材料、磁性材料が挙げられる。
 帯電制御材料としては、電子写真用トナー材料に使用される公知のものが使用でき、例えば、セチルピリジルクロライド、BONTRON P-51、BONTRON P-53、BONTRON E-84、BONTRON E-81(以上、オリエント化学工業社製)等の第4級アンモニウム塩、サリチル酸系金属錯体、フェノール系縮合物、テトラフェニル系化合物、酸化金属粒子、各種カップリング剤により表面処理された酸化金属粒子を挙げられる。
The core particles may contain other compounding materials.
Examples of other compounding materials include charge control materials and magnetic materials.
As the charge control material, known materials used for electrophotographic toner materials can be used. For example, cetylpyridyl chloride, BONTRON P-51, BONTRON P-53, BONTRON E-84, BONTRON E-81 (above, Quaternary ammonium salts such as Orient Chemical Industry Co., Ltd., salicylic acid metal complexes, phenol condensates, tetraphenyl compounds, metal oxide particles, and metal oxide particles surface-treated with various coupling agents.
 磁性材料としては、必要に応じてカラーコートした無機磁性材料や有機磁性材料を使用する。また、透明な磁性材料、特に、透明有機磁性材料は着色顔料の発色を阻害し難く、比重も無機磁性材料に比べて小さく、より望ましい。
 着色した磁性材料(カラーコートした材料)として、例えば、特開2003-131420公報記載の小径着色磁性粉が挙げられる。核となる磁性粒子と該磁性粒子表面上に積層された着色層とを備えたものが用いられる。そして、着色層としては、顔料等により磁性粉を不透過に着色する等選定して差し支えないが、例えば光干渉薄膜を用いるのが好ましい。この光干渉薄膜とは、SiOやTiO等の無彩色材料を光の波長と同等な厚みを有する薄膜にしたものであり、薄膜内の光干渉により光の波長を選択的に反射するものである。
As the magnetic material, a color-coated inorganic magnetic material or organic magnetic material is used as necessary. Further, a transparent magnetic material, in particular, a transparent organic magnetic material is more preferable because it hardly inhibits the coloring of the colored pigment and has a smaller specific gravity than the inorganic magnetic material.
Examples of the colored magnetic material (color-coated material) include small-diameter colored magnetic powder described in JP-A-2003-131420. A material provided with magnetic particles serving as nuclei and a colored layer laminated on the surface of the magnetic particles is used. The colored layer may be selected such that the magnetic powder is opaquely colored with a pigment or the like, but it is preferable to use, for example, a light interference thin film. This optical interference thin film is a thin film having a thickness equivalent to the wavelength of light made of an achromatic material such as SiO 2 or TiO 2 and selectively reflects the wavelength of light by optical interference in the thin film. It is.
-被覆層-
 被覆層は、例えば、樹脂(以下、「被覆層の樹脂」と称する)を含む。
-Coating layer-
The coating layer includes, for example, a resin (hereinafter referred to as “resin of the coating layer”).
 被覆層の樹脂は、非架橋の樹脂であってもよいが、樹脂架橋体であることがよい。被覆層の樹脂を樹脂架橋体とするには、例えば、樹脂の重合成分として反応性基(架橋性基)を持つ重合成分を重合させ、樹脂を架橋させる方法、樹脂とは別途、架橋剤を添加して、樹脂を架橋させる方法が挙げられる。 The resin of the coating layer may be a non-crosslinked resin, but is preferably a crosslinked resin. In order to make the resin of the coating layer into a resin crosslinked body, for example, a polymerization component having a reactive group (crosslinkable group) as a polymerization component of the resin is polymerized to crosslink the resin. A method of adding and crosslinking the resin can be mentioned.
 被覆層の樹脂は、電気泳動粒子の分散性向上の観点から、樹脂の重合成分としてシリコーン鎖を持つ重合成分が共重合されていることがよい。
 被覆層の樹脂として具体的には、例えば、シリコーン鎖を持つ重合成分と、反応性基を持つ重合成分と、必要に応じて、帯電性基を持つ重合成分や、その他の重合成分と、の共重合体からなる樹脂が挙げられる。
The resin of the coating layer is preferably copolymerized with a polymerization component having a silicone chain as a polymerization component of the resin from the viewpoint of improving the dispersibility of the electrophoretic particles.
Specifically, as the resin for the coating layer, for example, a polymerization component having a silicone chain, a polymerization component having a reactive group, and a polymerization component having a chargeable group and other polymerization components, if necessary, Examples of the resin include a copolymer.
 シリコーン鎖を持つ重合成分(シリコーン鎖を持つ単量体)としては、例えば、表面層に含まれる特定の高分子化合物の重合成分として説明したシリコーン鎖を持つ重合成分(つまりシリコーンマクロマー)と同様なものが挙げられる。
 反応性基(架橋性基)を持つ重合成分としては、コア粒子の樹脂の重合成分として説明した反応性基(架橋性基)を持つ重合成分と同様である。
 なお、このような被覆層の樹脂の重合成分として反応性基を持つ重合成分を用いると、被覆層の樹脂自体が架橋し、被覆層が樹脂架橋体となる。また、被覆層の樹脂の反応性基がコア粒子の表面の官能基と結合した状態で、被覆層がコア粒子に被覆されることなる。
 帯電性基を持つ重合成分としては、コア粒子の樹脂の重合成分として説明した帯電性基を持つ重合成分と同様なものが挙げられる。
As the polymerization component having a silicone chain (monomer having a silicone chain), for example, the same as the polymerization component having a silicone chain (that is, a silicone macromer) described as a polymerization component of a specific polymer compound contained in the surface layer. Things.
The polymerization component having a reactive group (crosslinkable group) is the same as the polymerization component having a reactive group (crosslinkable group) described as the polymerization component of the core particle resin.
In addition, when the polymerization component which has a reactive group is used as a polymerization component of resin of such a coating layer, the resin itself of a coating layer will bridge | crosslink and a coating layer will become a resin crosslinked body. In addition, the coating layer is coated on the core particle in a state where the reactive group of the resin of the coating layer is bonded to the functional group on the surface of the core particle.
Examples of the polymerization component having a chargeable group include the same as the polymerization component having a chargeable group described as the polymerization component of the core particle resin.
 その他重合成分としては、帯電性基を持たない重合成分が挙げられる。
 帯電性基を持たない重合成分としては、コア粒子の樹脂の重合成分として説明した帯電性基を持たない重合成分と同様である。
Other polymerization components include polymerization components that do not have a chargeable group.
The polymerization component having no chargeable group is the same as the polymerization component having no chargeable group described as the polymerization component of the core particle resin.
 被覆層の樹脂において、シリコーン鎖を持つ重合成分(つまりシリコーンマクロマー)は、全重合成分に対して占める質量比で1質量%以上90質量%以下が望ましく、より望ましくは2質量%以上80質量%以下である。
 また、反応性基を持つ重合成分は、全重合成分に対して占める質量比で3質量%以上80質量%以下が望ましく、より望ましくは5質量%以上60質量%以下である。
In the resin of the coating layer, the polymerization component having a silicone chain (that is, silicone macromer) is preferably 1% by mass or more and 90% by mass or less, more preferably 2% by mass or more and 80% by mass with respect to the total polymerization component. It is as follows.
The polymerization component having a reactive group is preferably 3% by mass or more and 80% by mass or less, more preferably 5% by mass or more and 60% by mass or less in terms of a mass ratio with respect to all the polymerization components.
 ここで、樹脂架橋体を得るための架橋剤としては、例えば、コア粒子の樹脂を架橋体とするための架橋剤と同様に、エポキシ化合物、カルボキシイミド化合物、ブロックイソシアネート等の架橋剤が挙げられる。
 樹脂架橋体を得るための架橋剤の使用量は、例えば、被覆層の樹脂に対して、1質量%以上80質量%以下が望ましく、より望ましくは3質量%以上60質量%以下である。
Here, as a crosslinking agent for obtaining a resin crosslinked body, for example, a crosslinking agent such as an epoxy compound, a carboxyimide compound, and a blocked isocyanate can be used in the same manner as the crosslinking agent for converting the resin of the core particle into a crosslinked body. .
The amount of the crosslinking agent used to obtain the resin crosslinked body is, for example, preferably from 1% by mass to 80% by mass, and more preferably from 3% by mass to 60% by mass with respect to the resin of the coating layer.
 被覆層の樹脂の重量平均分子量としては、500以上100万以下が望ましく、より望ましくは1000以上100万以下である。 The weight average molecular weight of the resin of the coating layer is preferably 500 to 1,000,000, more preferably 1,000 to 1,000,000.
 被覆層には、その他配合材料を含んでもよい。
 その他配合材料としては、例えば、スチレン,クロロスチレン等のスチレン類,エチレン,プロピレン,ブチレン,イソプレン等のモノオレフィン,酢酸ビニル,プロピオン酸ビニル,安息香酸ビニル,酪酸ビニル等のビニルエステル、アクリル酸メチル,アクリル酸エチル,アクリル酸ブチル,アクリル酸ドデシル,アクリル酸オクチル,アクリル酸フェニル,メタクリル酸メチル,メタクリル酸エチル,メタクリル酸ブチル,メタクリル酸ドデシル等のα-メチレン脂肪族モノカルボン酸エステル類,ビニルメチルエーテル,ビニルエチルエーテル,ビニルブチルエーテル等のビニルエーテル類,ビニルメチルケトン,ビニルヘキシルケトン,ビニルイソプロペニルケトン等のビニルケトン類,ヒドロキシエチル(メタ)アクリレート,ヒドロキシブチル(メタ)アクリレート,テトラエチレングリコールモノメチルエーテル(メタ)アクリレートなどのアルキルオキシオリゴエチレングリコールの(メタ)アクリレート,ポリエチレングリコールの片末端(メタ)アクリレート,(メタ)アクリル酸およびその塩,ビニルスルホン酸およびその塩,ビニルピロリドン等周知の単量体の重合体、またはこれらの共重合体が挙げられる。
The coating layer may contain other compounding materials.
Other compounding materials include, for example, styrenes such as styrene and chlorostyrene, monoolefins such as ethylene, propylene, butylene, and isoprene, vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate, and vinyl butyrate, and methyl acrylate. , Α-methylene aliphatic monocarboxylic esters such as ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate, vinyl Vinyl ethers such as methyl ether, vinyl ethyl ether, vinyl butyl ether, vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, vinyl isopropenyl ketone, hydroxyethyl (meth) acrylate, Alkoxyoxy-oligoethylene glycol (meth) acrylates such as droxybutyl (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, polyethylene glycol one-terminal (meth) acrylate, (meth) acrylic acid and its salts, vinylsulfonic acid And a polymer of a known monomer such as a salt thereof, vinylpyrrolidone, or a copolymer thereof.
 被覆層は、コア粒子の表面に対する被覆量が、例えば、コア粒子に対して、0.4質量%以上15質量%以下、望ましくは0.4質量%以上6質量%以下である。 The coating layer has a coating amount on the surface of the core particles of, for example, 0.4% by mass or more and 15% by mass or less, and preferably 0.4% by mass or more and 6% by mass or less with respect to the core particles.
-泳動粒子の特性-
 泳動粒子の平均粒径(体積平均粒径)は、例えば、0.1μm以上10μm以下であるが、用途に応じて選択され、これに限定されない。
 平均粒径は、大塚電子株式会社製Photal FPAR-1000(動的光散乱式粒径分布測定装置)を用いて測定され、MARQUARDT法により解析が行われる。
-Characteristics of migrating particles-
The average particle diameter (volume average particle diameter) of the migrating particles is, for example, 0.1 μm or more and 10 μm or less, but is selected according to the application and is not limited thereto.
The average particle size is measured using a Photo FPAR-1000 (dynamic light scattering type particle size distribution measuring device) manufactured by Otsuka Electronics Co., Ltd. and analyzed by the MARQUARD method.
-泳動粒子の製造方法-
 泳動粒子の製造方法の一例としては、例えば、次の製法が挙げられるが、これに限られるわけではない。
 まず、コア粒子の樹脂、着色剤、およびその他配合材料を、第1溶媒に混合し、コア粒子の樹脂が溶解した混合液を調製する。
 ここで、第1溶媒は、後述する第2溶媒(連続相を形成し得る貧溶媒)中で分散相を形成し得る良溶媒であり、第2溶媒よりも沸点が低く且つ、コア粒子の樹脂を溶解する溶媒から選択する。
 第1溶媒としては、例えば、水、イソプロピルアルコール(IPA)、メタノール、エタノール、ブタノール、テトラヒドロフラン、酢酸エチル、酢酸ブチルなどが挙げられる。
-Manufacturing method of migrating particles-
An example of the method for producing the migrating particles includes, but is not limited to, the following production method.
First, the core particle resin, the colorant, and other compounding materials are mixed in the first solvent to prepare a mixed solution in which the core particle resin is dissolved.
Here, the first solvent is a good solvent capable of forming a dispersed phase in a second solvent described later (a poor solvent capable of forming a continuous phase), has a lower boiling point than the second solvent, and is a core particle resin. Is selected from solvents that dissolve.
Examples of the first solvent include water, isopropyl alcohol (IPA), methanol, ethanol, butanol, tetrahydrofuran, ethyl acetate, butyl acetate and the like.
 次に、得られた混合液を、第2溶媒と混合し、攪拌して、第2溶媒を連続相として混合液を乳化させ、乳化液を調製する。
 そして、加熱等により、乳化液中の第1溶媒を除去(乾燥)して、コア粒子の樹脂を析出させ、これらと共に着色剤およびその他配合材料を含む粒状物として、コア粒子(第2溶媒に分散されたコア粒子)を得る。
 ここで、第2溶媒は、分散相となる第1溶媒に対して連続相を形成し得る貧溶媒であり、第1溶媒よりも沸点が高く且つ、コア粒子の樹脂が不溶な溶媒から選択する。
 第2溶媒としては、例えば、得られる電気泳動粒子を分散させるための分散媒が挙げられる。
Next, the obtained mixed liquid is mixed with the second solvent, stirred, and the mixed liquid is emulsified using the second solvent as a continuous phase to prepare an emulsified liquid.
Then, the first solvent in the emulsified liquid is removed (dried) by heating or the like to precipitate the core particle resin, and as a granular material containing the colorant and other compounding materials together with these, the core particles (to the second solvent) To obtain dispersed core particles).
Here, the second solvent is a poor solvent that can form a continuous phase with respect to the first solvent that becomes the dispersed phase, and is selected from solvents having a boiling point higher than that of the first solvent and in which the core particle resin is insoluble. .
Examples of the second solvent include a dispersion medium for dispersing the obtained electrophoretic particles.
 次に、被覆層の樹脂とその他配合材料を、第3溶媒に混合し、被覆層の樹脂が溶解した混合液を調整する。
 ここで、第3溶媒も、第2溶媒(連続相を形成し得る貧溶媒)中で分散相を形成し得る良溶媒であり、第2溶媒よりも沸点が低く且つ、被覆層の樹脂を溶解する溶媒から選択する。また、第3溶媒は、コア粒子の樹脂が不溶な溶媒から選択することがよい。
 第3溶媒としても、例えば、水、イソプロピルアルコール(IPA)、メタノール、エタノール、ブタノール、テトラヒドロフラン、酢酸エチル、酢酸ブチルなどが挙げられる。
Next, the resin of the coating layer and other compounding materials are mixed in a third solvent to prepare a mixed solution in which the resin of the coating layer is dissolved.
Here, the third solvent is also a good solvent that can form a dispersed phase in the second solvent (a poor solvent that can form a continuous phase), has a lower boiling point than the second solvent, and dissolves the resin of the coating layer. Select from the solvents to be used. The third solvent is preferably selected from solvents in which the core particle resin is insoluble.
Examples of the third solvent include water, isopropyl alcohol (IPA), methanol, ethanol, butanol, tetrahydrofuran, ethyl acetate, and butyl acetate.
 次に、得られた混合液を、コア粒子が分散した第2溶媒と混合し、攪拌して、第2溶媒を連続相として混合液を乳化させ、乳化液を調製する。
 そして、加熱等により、乳化液中の第3溶媒を除去(乾燥)して、コア粒子の表面に被覆層の樹脂を析出させ、これと共にその他配合材料を含む被覆層をコア粒子の表面に形成する。
 その後、コア粒子および被覆層に含まれる樹脂を架橋させる場合、樹脂を架橋化させるための加熱処理を行う。
Next, the obtained mixed liquid is mixed with the second solvent in which the core particles are dispersed and stirred to emulsify the mixed liquid using the second solvent as a continuous phase to prepare an emulsion.
Then, the third solvent in the emulsion is removed (dried) by heating, etc., and the resin of the coating layer is deposited on the surface of the core particles, and together with this, a coating layer containing other compounding materials is formed on the surface of the core particles To do.
Thereafter, when the resin contained in the core particles and the coating layer is cross-linked, a heat treatment for cross-linking the resin is performed.
 このようにして、コア粒子の表面に被覆層が形成された泳動粒子を得る。 In this way, electrophoretic particles having a coating layer formed on the surface of the core particles are obtained.
-泳動粒子の含有量-
 泳動粒子(泳動粒子群34)の含有量(セル中の全質量に対する含有量(質量%))は、所望の色相が得られる濃度であれば特に限定されるものではなく、セルの厚さ(すなわち、表示基板20と背面基板との基板間の距離)により含有量を調整することが、表示媒体12としては有効である。即ち、所望の色相を得るために、セルが厚くなるほど含有量は少なくなり、セルが薄くなるほど含有量を多くなる。一般的には、0.01質量%以上50質量%以下である。
-Content of migrating particles-
The content of the migrating particles (the migrating particle group 34) (the content (% by mass) with respect to the total mass in the cell) is not particularly limited as long as the desired hue is obtained, and the cell thickness ( That is, it is effective for the display medium 12 to adjust the content by the distance between the display substrate 20 and the back substrate). That is, in order to obtain a desired hue, the content decreases as the cell becomes thicker, and the content increases as the cell becomes thinner. Generally, it is 0.01 mass% or more and 50 mass% or less.
 ・着色浮遊粒子群
 次に、着色浮遊粒子群について説明する。着色浮遊粒子群36は、帯電されていない粒子群であり、粒子群34とは異なる光学的反射特性を有する着色粒子を含み、粒子群34とは異なる色を表示する反射部材として機能するものである。
-Colored suspended particle group Next, a colored suspended particle group is demonstrated. The colored floating particle group 36 is an uncharged particle group, includes colored particles having optical reflection characteristics different from that of the particle group 34, and functions as a reflecting member that displays a color different from that of the particle group 34. is there.
 着色浮遊粒子群36は、具体的には、例えば、粒子群34の色とは異なる色に着色されており、粒子群34による色とは異なる色を表示媒体12に表示させるための部材である。本実施形態では、着色浮遊粒子群36は白色である場合を説明するが、この色に限定されることはない。 Specifically, the colored floating particle group 36 is, for example, a member that is colored in a color different from the color of the particle group 34 and causes the display medium 12 to display a color different from the color of the particle group 34. . In the present embodiment, the case where the colored suspended particle group 36 is white will be described, but the present invention is not limited to this color.
 着色浮遊粒子群36は、例えば、酸化チタンや酸化ケイ素、酸化亜鉛などの白色顔料を、ポリスチレンやポリエチレン、ポリプロピレン、ポリカーボネート、PMMA、アクリル樹脂、フェノール樹脂、ホルムアルデヒド縮合物などに分散した粒子が使用される。また、白色以外の粒子を適用する場合、例えば、所望の色の顔料、あるいは染料を内包した前記した樹脂粒子を使用してもよい。顔料や染料は、例えばRGBやYMC色であれば、印刷インキやカラートナーに使用されている一般的な顔料あるいは染料を使用してもよい。 As the colored floating particle group 36, for example, particles in which a white pigment such as titanium oxide, silicon oxide, or zinc oxide is dispersed in polystyrene, polyethylene, polypropylene, polycarbonate, PMMA, acrylic resin, phenol resin, formaldehyde condensate, or the like are used. The Moreover, when applying particles other than white, for example, the above-described resin particles containing a pigment or dye of a desired color may be used. If the pigment or dye is, for example, RGB or YMC color, a general pigment or dye used for printing ink or color toner may be used.
 着色浮遊粒子群36を基板間へ封入するには、例えば、インクジェット法などにより行う。 The colored floating particle group 36 is sealed between the substrates by, for example, an ink jet method.
 表示媒体12における上記セルの大きさとしては、表示媒体12の解像度と密接な関係にあり、セルが小さいほど高解像度な画像を表示し得る表示媒体12が作製され、通常、表示媒体12の表示基板20の板面方向の長さが10μm以上1mm以下である。 The size of the cell in the display medium 12 is closely related to the resolution of the display medium 12, and the display medium 12 capable of displaying a higher resolution image is produced as the cell is smaller. The length of the substrate 20 in the plate surface direction is 10 μm or more and 1 mm or less.
 上記表示基板20および背面基板22を、間隙部材24を介して互いに固定するには、ボルトとナットの組み合わせ、クランプ、クリップ、基板固定用の枠等の固定手段を使用する。また、接着剤、熱溶融、超音波接合等の固定手段を使用してもよい。 In order to fix the display substrate 20 and the rear substrate 22 to each other via the gap member 24, fixing means such as a combination of bolts and nuts, a clamp, a clip, and a frame for fixing the substrate are used. Moreover, you may use fixing means, such as an adhesive agent, heat melting, and ultrasonic bonding.
 表示媒体12は、例えば、画像の保存および書換えを行い得る掲示板、回覧版、電子黒板、広告、看板、点滅標識、電子ペーパー、電子新聞、電子書籍、および複写機、プリンタと共用するドキュメントシート等に使用する。 The display medium 12 is, for example, a bulletin board that can store and rewrite images, a circular version, an electronic blackboard, an advertisement, a signboard, a flashing sign, an electronic paper, an electronic newspaper, an electronic book, a copier, a document sheet that is shared with a printer, Used for.
 上記に示した、本実施形態に係る表示装置10は、表示媒体12と、表示媒体12に電圧を印加する電圧印加部16(電圧印加手段の一種)と、制御部18とを含んでいる(図1参照)。 The display device 10 according to the present embodiment described above includes a display medium 12, a voltage application unit 16 (a type of voltage application unit) that applies a voltage to the display medium 12, and a control unit 18 ( (See FIG. 1).
 電圧印加部16は、表面電極40および背面電極46に電気的に接続されている。なお、本実施形態では、表面電極40および背面電極46の双方が、電圧印加部16に電気的に接続されている場合を説明するが、表面電極40および背面電極46の一方が、接地されており、他方が電圧印加部16に接続されていてもよい。 The voltage application unit 16 is electrically connected to the front electrode 40 and the back electrode 46. In the present embodiment, the case where both the front electrode 40 and the back electrode 46 are electrically connected to the voltage application unit 16 will be described. However, one of the front electrode 40 and the back electrode 46 is grounded. The other may be connected to the voltage application unit 16.
 電圧印加部16は、制御部18に信号を授受し得るよう接続されている。 The voltage application unit 16 is connected so as to be able to send and receive signals to the control unit 18.
 制御部18は、装置全体の動作を司るCPU(中央処理装置)と、各種データを一時的に記憶するRAM(Random Access Memory)と、装置全体を制御する制御プログラム等の各種プログラムが予め記憶されたROM(Read Only Memory)と、を含むマイクロコンピュータとしてもよい。 The control unit 18 stores in advance various programs such as a CPU (central processing unit) that controls the operation of the entire apparatus, a RAM (Random Access Memory) that temporarily stores various data, and a control program that controls the entire apparatus. It is good also as a microcomputer containing ROM (Read Only Memory).
 電圧印加部16は、表面電極40および背面電極46に電圧を印加するための電圧印加装置であり、制御部18の制御に応じた電圧を表面電極40および背面電極46間に印加する。 The voltage application unit 16 is a voltage application device for applying a voltage to the front electrode 40 and the back electrode 46, and applies a voltage according to the control of the control unit 18 between the front electrode 40 and the back electrode 46.
 次に、表示装置10の作用を説明する。この作用は制御部18の動作に従って説明する。 Next, the operation of the display device 10 will be described. This operation will be described according to the operation of the control unit 18.
 ここで、表示媒体12に封入されている粒子群34は、黒色であり且つ負極性に帯電されている場合を説明する。また、分散媒50は透明であり、着色浮遊粒子群36が白色であるものとして説明する。すなわち、本実施形態では、表示媒体12は、粒子群34の移動によって黒色または白色を表示する場合を説明する。 Here, the case where the particle group 34 enclosed in the display medium 12 is black and is negatively charged will be described. In the following description, it is assumed that the dispersion medium 50 is transparent and the colored suspended particle group 36 is white. That is, in this embodiment, the case where the display medium 12 displays black or white by the movement of the particle group 34 will be described.
 まず、電圧を、定められた時間、表面電極40が負極となり背面電極46が正極となるよう印加することを示す初期動作信号を、電圧印加部16へ出力する。基板間に負極で且つ濃度変動が終了する閾値電圧以上の電圧が印加されると、負極に帯電している粒子群34が背面基板22側へと移動して、背面基板22に到る(図2(A)参照)。
 このとき、表示基板20側から視認される表示媒体12の色は、着色浮遊粒子群36の色としての白色として視認される。
First, an initial operation signal indicating that the voltage is applied for a predetermined time so that the front electrode 40 becomes a negative electrode and the back electrode 46 becomes a positive electrode is output to the voltage application unit 16. When a negative electrode and a voltage equal to or higher than the threshold voltage at which the concentration variation ends is applied between the substrates, the particle group 34 charged on the negative electrode moves to the back substrate 22 side and reaches the back substrate 22 (FIG. 2 (A)).
At this time, the color of the display medium 12 visually recognized from the display substrate 20 side is visually recognized as white as the color of the colored floating particle group 36.
 この定められた時間は、初期動作における電圧印加における電圧印加時間を示す情報として、予め制御部18内の図示を省略するROM等のメモリ等に記憶しておけばよい。そして、処理実行のときに、この定められた時間を示す情報を読み取ればよい。 The predetermined time may be stored in advance in a memory such as a ROM (not shown) in the control unit 18 as information indicating the voltage application time in the voltage application in the initial operation. Then, when the process is executed, information indicating the predetermined time may be read.
 次に、表面電極40と背面電極46との電極間に、基板間に印加した電圧とは極性を反転させて、表面電極40を正極とし背面電極46を負極として電圧を印加すると、図2(B)に示すごとく、粒子群34は表示基板20側へと移動して表示基板20側に到達し、粒子群34による黒表示がなされる。 Next, the polarity of the voltage applied between the substrates is reversed between the surface electrode 40 and the back electrode 46, and when the voltage is applied with the surface electrode 40 as the positive electrode and the back electrode 46 as the negative electrode, FIG. As shown in B), the particle group 34 moves to the display substrate 20 side and reaches the display substrate 20 side, and black display by the particle group 34 is performed.
 こうして、本実施形態に係る表示装置10では、粒子群34が表示基板20または背面基板22に到達して、付着することで表示が行われる。そして、表示基板20と背面基板22の対向面が、前記特定の高分子化合物による表面層21、23(表面層)を有することで、粒子群34が当該対向面に移動し付着しても粒子群34の各粒子の固着が抑制される。結果、色再現性や、高いコントラストが実現される。 Thus, in the display device 10 according to the present embodiment, the display is performed when the particle group 34 reaches the display substrate 20 or the back substrate 22 and adheres thereto. And the opposing surface of the display substrate 20 and the back substrate 22 has the surface layers 21 and 23 (surface layer) made of the specific polymer compound, so that the particles even if the particle group 34 moves and adheres to the opposing surface. The adhesion of the particles of the group 34 is suppressed. As a result, color reproducibility and high contrast are realized.
 以上説明した本実施形態に係る表示装置10(表示媒体12)では、表示基板20と背面基板22において、支持基板38および支持基板44の対向面が、上記特定の高分子化合物であって且つ極性基を有する重合成分を重合してなる高分子化合物を含んで構成された表面層21、表面層23を有することが好ましい。
 これにより、繰り返し表示を行っても、泳動粒子群34が当該対向面に移動し付着した状態が維持され、表示のメモリ性が付与される一方で、泳動粒子群34の各泳動粒子の当該対向面に対する固着も抑制される。
 この理由は定かではないが、表面層に含まれる高分子化合物として前記特定の高分子化合物を適用することから、シリコーン鎖により泳動粒子群34に対する離形性を発現し、表示基板20と背面基板22の対向面において泳動粒子群34の各泳動粒子の固着が抑制される一方で、極性基が泳動粒子群34を吸着する官能基(吸着性官能基)として機能して、表示基板20と背面基板22の対向面において泳動粒子群34の付着した状態が維持され易くなるためと考えられる。
In the display device 10 (display medium 12) according to the present embodiment described above, in the display substrate 20 and the back substrate 22, the opposing surfaces of the support substrate 38 and the support substrate 44 are the specific polymer compound and have a polarity. It is preferable to have the surface layer 21 and the surface layer 23 comprised including the high molecular compound formed by superposing | polymerizing the polymerization component which has group.
Thereby, even when repeated display is performed, the state in which the migrating particle group 34 moves and adheres to the facing surface is maintained, and the memory property of the display is provided, while the facing of each migrating particle in the migrating particle group 34 Sticking to the surface is also suppressed.
The reason for this is not clear, but since the specific polymer compound is applied as the polymer compound contained in the surface layer, the release property to the migrating particle group 34 is expressed by the silicone chain, and the display substrate 20 and the back substrate While the migration of the migrating particles of the migrating particle group 34 is suppressed on the opposite surface 22, the polar group functions as a functional group that adsorbs the migrating particle group 34 (adsorptive functional group), and the display substrate 20 and the back surface This is considered because the state in which the migrating particle group 34 is attached to the opposite surface of the substrate 22 is easily maintained.
 しかしながら、泳動粒子群34を分散する分散媒50中に、水を除く極性成分が多く含まれていると、経時で、表示基板20と背面基板22の対向面において泳動粒子群34の各泳動粒子の固着が発生して、各基板から離脱させる電圧が上昇し、表示の繰り返し安定性が低下することがある。
 この理由も定かではないが、分散媒50中に、水を除く極性成分が、表示基板20と背面基板22の対向面である表面層21および表面層23に吸着されると考えられるためである。
However, if the dispersion medium 50 in which the electrophoretic particle group 34 is dispersed contains a large amount of polar components other than water, each electrophoretic particle of the electrophoretic particle group 34 on the opposing surface of the display substrate 20 and the back substrate 22 over time. May occur, the voltage to be released from each substrate may increase, and the display stability may decrease.
Although this reason is not certain, it is because polar components other than water are adsorbed to the surface layer 21 and the surface layer 23, which are opposed surfaces of the display substrate 20 and the back substrate 22, in the dispersion medium 50. .
 そこで、本実施形態に係る表示装置10(表示媒体12)では、分散媒50中に含まれる水を除く極性成分の含有量を0.01質量%以下望ましくは0.005質量%以下とすることが好ましい。
 これにより、本実施形態に係る表示装置10(表示媒体12)は、表示の繰り返し安定性が維持される。
Therefore, in the display device 10 (display medium 12) according to the present embodiment, the content of polar components excluding water contained in the dispersion medium 50 is 0.01% by mass or less, preferably 0.005% by mass or less. Is preferred.
Thereby, the display device 10 (display medium 12) according to the present embodiment maintains the repeated stability of display.
 ここで、表示の繰り返し安定性を低下させる原因となる「水を除く極性成分」とは、例えば、分散媒50に接する部材(例えば、表面層21、表面層23、表面層25、泳動粒子)に含まれる樹脂(高分子)中に含まれる未反応の極性基を持つ重合成分が分散媒50へ溶出した成分である。つまり、「水を除く極性成分」とは、機能性官能基(例えば吸着性官能基や帯電性基)として働かせるために配合した極性基を持つ重合成分のうち未反応で残存した低分子量成分が、分散媒50に接する部材から分散媒50へ溶出した成分である。
 また、「水を除く極性成分」とは、その他、泳動粒子を構成する樹脂(高分子)以外に含まれる極性成分が分散媒50へ溶出した成分、残留溶媒等である。
 なお、極性成分のうち「水」は、通常の使用条件ではシリコーンオイル中に140ppm前後の水分が含まれており、ほぼ飽和しているため、表示の繰り返し安定性を低下させる原因とはならないことから、その含有量については考慮する必要はない。
Here, the “polar component excluding water” that causes the repeated stability of display to decrease is, for example, a member in contact with the dispersion medium 50 (for example, the surface layer 21, the surface layer 23, the surface layer 25, and the electrophoretic particles). The polymerization component having an unreacted polar group contained in the resin (polymer) contained in is dissolved in the dispersion medium 50. In other words, the “polar component excluding water” is an unreacted low molecular weight component among the polymerization components having a polar group that is blended to function as a functional functional group (for example, an adsorptive functional group or a chargeable group). The component eluted from the member in contact with the dispersion medium 50 into the dispersion medium 50.
The “polar component excluding water” refers to a component in which a polar component other than the resin (polymer) constituting the migrating particles is eluted into the dispersion medium 50, a residual solvent, and the like.
Of the polar components, “water” does not cause the repeated stability of the display to deteriorate because the silicone oil contains approximately 140 ppm of water in normal use conditions and is almost saturated. Therefore, it is not necessary to consider the content.
 そして、この水を除く極性成分を上記範囲内と低減する構成としては、例えば、以下の構成が挙げられる。 And as a structure which reduces the polar component except this water within the said range, the following structures are mentioned, for example.
 1)分散媒50に接する部材に含まれる樹脂(高分子)を高分子量化(例えば重量平均分子量100,000以上)した構成。この構成では、分散媒50が接する部材に含まれる樹脂自体において、未反応の極性基を持つ重合成分が低減され易くなり、その結果、分散媒50が接する部材から分散媒50へ溶出する極性成分が低減されると考えられる。 1) A configuration in which a resin (polymer) contained in a member in contact with the dispersion medium 50 has a high molecular weight (for example, a weight average molecular weight of 100,000 or more). In this configuration, in the resin itself contained in the member in contact with the dispersion medium 50, the polymerization component having an unreacted polar group is easily reduced. As a result, the polar component eluted from the member in contact with the dispersion medium 50 to the dispersion medium 50 Is considered to be reduced.
 2)分散媒50に接する部材に含まれる樹脂(高分子)を架橋体とした構成。この構成では、樹脂(高分子)の高分子鎖が3次元的に連結した所謂3次元網目構造を取ることから、分散媒50が接する部材から分散媒50へ溶出する極性成分が低減されると考えられる。 2) A configuration in which a resin (polymer) contained in a member in contact with the dispersion medium 50 is a crosslinked body. In this configuration, since a so-called three-dimensional network structure in which polymer (polymer) polymer chains are three-dimensionally connected is taken, when the polar component eluted from the member in contact with the dispersion medium 50 to the dispersion medium 50 is reduced. Conceivable.
 3)分散媒50に接する部材に含まれる樹脂(高分子)において、当該樹脂(高分子)が持つ極性基を分散媒50と接する側に配向させた構成。この構成では、樹脂(高分子)において、機能性官能基(例えは吸着性官能基や帯電性基)として機能させる極性基を持つ重合成分自体の量の低減が実現され、つまり、未反応の極性基を持つ重合成分も低減され易くなり、その結果、分散媒50が接する部材から分散媒50へ溶出する極性成分が低減されると考えられる。
 なお、樹脂(高分子)が持つ極性基を分散媒50と接する側に配向する方法としては、例えば、電場や磁場などにより配向する方法、気液、または2液界面に樹脂を展開させておき、基盤上に層を形成する方法等が挙げられる。
3) In a resin (polymer) contained in a member in contact with the dispersion medium 50, the polar group of the resin (polymer) is oriented on the side in contact with the dispersion medium 50. In this configuration, in the resin (polymer), a reduction in the amount of the polymerization component itself having a polar group that functions as a functional functional group (for example, an adsorptive functional group or a chargeable group) is realized. It is considered that the polymerization component having a polar group is easily reduced, and as a result, the polar component eluted from the member in contact with the dispersion medium 50 to the dispersion medium 50 is reduced.
In addition, as a method for orienting the polar group of the resin (polymer) on the side in contact with the dispersion medium 50, for example, a method of orienting by an electric field or a magnetic field, or by spreading the resin on a gas-liquid or two-liquid interface. And a method of forming a layer on the substrate.
 4)その他、再沈殿、再結晶等の方法により、分散媒50自体を精製し、基板間に封入する前の分散媒50に含まれる水を除く極性成分を低減させた構成。 4) In addition, a configuration in which the dispersion medium 50 itself is purified by a method such as reprecipitation and recrystallization, and polar components other than water contained in the dispersion medium 50 before sealing between the substrates are reduced.
 「水を除く極性成分」の含有量の測定は、次の通りに行う。
 まず、作製した表示装置10(表示媒体12)から、分散媒50の一部を採取し、測定試料とする。
 採取した測定試料を用いて、遠心分離等の操作により固体と液体とを分離する。分離した液体に対して電流測定を実施し、あらかじめ作成していた検量線と比較して、水を除く極性成分の含有量を測定する。
The content of “polar components excluding water” is measured as follows.
First, a part of the dispersion medium 50 is collected from the produced display device 10 (display medium 12) and used as a measurement sample.
Using the collected measurement sample, the solid and the liquid are separated by an operation such as centrifugation. Current measurement is performed on the separated liquid, and the content of polar components excluding water is measured by comparison with a calibration curve prepared in advance.
 ここで、表示装置10(表示媒体12)の作製過程(製造方法)において、最終完成品の良品または不良品の判別工程として、水を除く極性成分の含有量の測定を行い、分散媒50に含まれる水を除く極性成分の含有量が上記範囲内か否かの判別を行ってもよい。 Here, in the manufacturing process (manufacturing method) of the display device 10 (display medium 12), the content of the polar component excluding water is measured as a step of discriminating the final product from the non-defective product or the defective product. It may be determined whether the content of polar components excluding water contained is within the above range.
(第2実施形態)
 図3は、第2実施形態に係る表示装置の概略構成図である。図4は、第2実施形態に係る表示装置における、印加する電圧と粒子の移動量(表示濃度)との関係を模式的に示す線図である。図5は、第2実施形態に係る表示装置における、表示媒体の基板間へ印加する電圧態様と、粒子の移動態様との関係を模式的に示す説明図である。
(Second Embodiment)
FIG. 3 is a schematic configuration diagram of a display device according to the second embodiment. FIG. 4 is a diagram schematically showing a relationship between an applied voltage and a moving amount (display density) of particles in the display device according to the second embodiment. FIG. 5 is an explanatory diagram schematically showing the relationship between the voltage mode applied between the substrates of the display medium and the particle movement mode in the display device according to the second embodiment.
 第2実施形態に係る表示装置10は、2種類以上の粒子群を適用した形態である。なお、2種類以上の粒子群は、全て同じ極性で帯電されている。 The display device 10 according to the second embodiment is a form in which two or more kinds of particle groups are applied. Two or more kinds of particle groups are all charged with the same polarity.
 本実施形態に係る表示装置10は、図3に示すごとく、表示媒体12と、表示媒体12に電圧を印加する電圧印加部16と、制御部18と、を含んでいる。
 なお、本実施形態に係る表示装置10は、上記第1実施形態で説明した表示装置10と略同一の構成であるため、同一構成には同一符号を付与して詳細な説明を省略する。
As shown in FIG. 3, the display device 10 according to the present embodiment includes a display medium 12, a voltage application unit 16 that applies a voltage to the display medium 12, and a control unit 18.
Note that the display device 10 according to the present embodiment has substantially the same configuration as the display device 10 described in the first embodiment, and thus the same reference numerals are given to the same configuration and detailed description thereof is omitted.
 表示媒体12は、画像表示面とされる表示基板20、表示基板20に間隙をもって対向する背面基板22、これらの基板間を定められた間隔に保持すると共に、表示基板20と背面基板22との基板間を複数のセルに区画する間隙部材24、各セル内に封入された粒子群34、および粒子群34とは異なる光学的反射特性を有する着色浮遊粒子群36を含んでいる。
 表示基板20および背面基板22の対向面は、第1実施形態に記載のごとく帯電処理されており、この対向面上には、表面層21および表面層23各々が設けられている。
The display medium 12 holds the display substrate 20 serving as an image display surface, the back substrate 22 facing the display substrate 20 with a gap, and holds the substrate between the display substrate 20 and the back substrate 22 at a predetermined interval. A gap member 24 that divides the substrate into a plurality of cells, a particle group 34 enclosed in each cell, and a colored suspended particle group 36 having optical reflection characteristics different from the particle group 34 are included.
The opposing surfaces of the display substrate 20 and the back substrate 22 are charged as described in the first embodiment, and the surface layer 21 and the surface layer 23 are provided on the opposing surfaces.
 本実施形態では、粒子群34として、互いに色の異なる複数種の粒子群34が分散媒50に分散されている。 In this embodiment, a plurality of types of particle groups 34 having different colors are dispersed in the dispersion medium 50 as the particle group 34.
 なお、本実施形態では3種類の粒子群34として、イエロー色のイエロー粒子群34Y、マゼンタ色のマゼンタ粒子群34M、およびシアン色のシアン粒子群34Cが分散されているとして説明するが、3種類に限られない。
 この複数種類の粒子群34は、基板間を電気泳動する粒子群であり、電界に応じて移動するために必要な電圧の絶対値が各色の粒子群でそれぞれ異なる。すなわち、各色の粒子群34(イエロー粒子群34Y、マゼンタ粒子群34M、およびシアン粒子群34C)は、色毎に各色の粒子群34を移動させるために必要な電圧範囲を有し、当該電圧範囲がそれぞれ異なる。
In the present embodiment, the description will be made on the assumption that the yellow particle group 34Y, the magenta magenta particle group 34M, and the cyan cyan particle group 34C are dispersed as the three types of particle groups 34. Not limited to.
The plurality of types of particle groups 34 are particle groups that perform electrophoresis between substrates, and the absolute value of the voltage required to move in accordance with the electric field is different for each color particle group. That is, each color particle group 34 (yellow particle group 34Y, magenta particle group 34M, and cyan particle group 34C) has a voltage range necessary for moving each color particle group 34 for each color. Are different.
 この電界に応じて移動するために必要な電圧の絶対値が異なる複数種の粒子群34の各粒子としては、上記第1実施形態で説明した粒子群34に含まれる材料の内の、例えば、帯電制御剤や磁性粉の量、粒子を構成する樹脂の種類や濃度等を換える等して、帯電量の異なる粒子を含む粒子分散液をそれぞれ作製し、これを混合することで得られる。 As each particle of the plurality of types of particle groups 34 having different absolute values of voltages necessary to move according to the electric field, for example, among the materials included in the particle group 34 described in the first embodiment, for example, It can be obtained by preparing particle dispersions each containing particles having different charge amounts by mixing the charge control agent and the amount of magnetic powder, the type and concentration of the resin constituting the particles, and the like.
 ここで、上述のごとく、本実施形態に係る表示媒体12には3種類の粒子群34として、互いに色の異なるイエロー粒子群34Y、マゼンタ粒子群34M、およびシアン粒子群34Cが分散されており、これらの複数種類の粒子群34は、電界に応じて移動するために必要な電圧の絶対値が各色の粒子群でそれぞれ異なる。 Here, as described above, in the display medium 12 according to the present embodiment, the yellow particle group 34Y, the magenta particle group 34M, and the cyan particle group 34C having different colors are dispersed as the three types of particle groups 34. These plural types of particle groups 34 have different absolute values of voltages necessary for moving in accordance with the electric field in the respective color particle groups.
 なお、本実施形態では、マゼンタ色のマゼンタ粒子群34M、シアン色のシアン粒子群34C、およびイエロー色のイエロー粒子群34Yの3色の粒子群各々が移動を開始するときの電圧の絶対値として、マゼンタ色のマゼンタ粒子群34Mが|Vtm|、シアン色のシアン粒子群34Cが|Vtc|、イエロー色のイエロー粒子群34Yが|Vty|であるとして説明する。また、各色粒子群34のゼンタ色のマゼンタ粒子群34M、シアン色のシアン粒子群34C、およびイエロー色のイエロー粒子群34Yの3色の粒子群各々をほぼ全て移動させるための最大電圧の絶対値として、マゼンタ色のマゼンタ粒子群34Mが|Vdm|、シアン色のシアン粒子群34Cが|Vdc|、イエロー色のイエロー粒子群34Yが|Vdy|であるとして説明する。 In the present embodiment, the absolute value of the voltage when each of the three color particle groups, the magenta magenta particle group 34M, the cyan cyan particle group 34C, and the yellow yellow particle group 34Y, starts moving. In the following description, it is assumed that the magenta magenta particle group 34M is | Vtm |, the cyan cyan particle group 34C is | Vtc |, and the yellow yellow particle group 34Y is | Vty |. Also, the absolute value of the maximum voltage for moving almost all of the three color particle groups of the magenta particle group 34M, the cyan cyan particle group 34C, and the yellow yellow particle group 34Y of each color particle group 34. Assuming that the magenta magenta particle group 34M is | Vdm |, the cyan cyan particle group 34C is | Vdc |, and the yellow yellow particle group 34Y is | Vdy |.
 なお、以下で説明するVtc、-Vtc、Vdc、-Vdc、Vtm、-Vtm、Vdm、-Vdm、Vty、-Vty、Vdy、および-Vdyの絶対値は、|Vtc|<|Vdc|<|Vtm|<|Vdm|<|Vty|<|Vdy|の関係であるとして説明する。 The absolute values of Vtc, -Vtc, Vdc, -Vdc, Vtm, -Vtm, Vdm, -Vdm, Vty, -Vty, Vdy, and -Vdy described below are | Vtc | <| Vdc | <| Description will be made assuming that the relationship is Vtm | <| Vdm | <| Vty | <| Vdy |.
 具体的には、図4に示すごとく、例えば、3種類の粒子群34は、全て同極性に帯電された状態で分散媒50内に分散され、シアン粒子群34Cを移動させるために必要な電圧範囲の絶対値|Vtc≦Vc≦Vdc|(VtcからVdcの間の値の絶対値)、マゼンタ粒子群34Mを移動させるために必要な電圧範囲の絶対値|Vtm≦Vm≦Vdm|(VtmからVdmの間の値の絶対値)、およびイエロー粒子群34Yを移動させるために必要な電圧範囲の絶対値|Vty≦Vy≦Vdy|(VtyからVdyの間の値の絶対値)が、この順で重複することなく、大きくなるよう設定されている。 Specifically, as shown in FIG. 4, for example, the three types of particle groups 34 are dispersed in the dispersion medium 50 in a state of being charged with the same polarity, and voltages necessary for moving the cyan particle groups 34C. Absolute value of range | Vtc ≦ Vc ≦ Vdc | (absolute value of a value between Vtc and Vdc), absolute value of voltage range necessary for moving magenta particle group 34M | Vtm ≦ Vm ≦ Vdm | (from Vtm The absolute value of the value between Vdm) and the absolute value of the voltage range necessary to move the yellow particle group 34Y | Vty ≦ Vy ≦ Vdy | (the absolute value of the value between Vty and Vdy) are in this order. It is set to be large without overlapping.
 また、各色の粒子群34を独立駆動するために、シアン粒子群34Cをほぼ全て移動させるための最大電圧の絶対値|Vdc|が、マゼンタ粒子群34Mを移動させるために必要な電圧範囲の絶対値|Vtm≦Vm≦Vdm|(VtmからVdmの間の値の絶対値)、およびイエロー粒子群34Yを移動させるために必要な電圧範囲の絶対値|Vty≦Vy≦Vdy|(VtyからVdyの間の値の絶対値)よりも小さく設定されている。また、マゼンタ粒子群34Mをほぼ全て移動させるための最大電圧の絶対値|Vdm|が、イエロー粒子群34Yを移動させるために必要な電圧範囲の絶対値|Vty≦Vy≦Vdy|(VtyからVdyの間の値の絶対値)よりも小さく設定されている。 Further, in order to independently drive the particle groups 34 of the respective colors, the absolute value | Vdc | of the maximum voltage for moving almost all the cyan particle groups 34C is the absolute value of the voltage range necessary for moving the magenta particle group 34M. Value | Vtm ≦ Vm ≦ Vdm | (the absolute value of a value between Vtm and Vdm), and the absolute value of the voltage range necessary to move the yellow particle group 34Y | Vty ≦ Vy ≦ Vdy | (Vty to Vdy The absolute value of the value between) is set smaller. In addition, the absolute value | Vdm | of the maximum voltage for moving almost all of the magenta particle group 34M is the absolute value of the voltage range necessary for moving the yellow particle group 34Y | Vty ≦ Vy ≦ Vdy | (Vty to Vdy). Is set to be smaller than the absolute value).
 即ち、本実施形態では、各色の粒子群34を移動させるために必要な電圧範囲が重ならないよう設定することによって、各色の粒子群34を独立駆動している。 That is, in this embodiment, the particle groups 34 of each color are independently driven by setting the voltage ranges necessary for moving the particle groups 34 of each color so as not to overlap.
 なお、「粒子群34を移動させるために必要な電圧範囲」とは、粒子が移動開始するために必要な電圧と移動開始からさらに電圧および電圧印加時間を増加させても、表示濃度の変化が生じなくなり、表示濃度が飽和するまでの電圧範囲を示す。
 また、「粒子群34をほぼ全て移動させるために必要な最大電圧」とは上記の移動開始からさらに電圧および電圧印加時間を増加させても、表示濃度の変化が生じなくなり、表示濃度が飽和する電圧を示す。
 また、「ほぼ全て」とは、各色の粒子群34の特性ばらつきがあるため、一部の粒子群34の特性が表示特性に寄与しない程に異なるものがあることを表す。すなわち上述した移動開始からさらに電圧および電圧印加時間を増加させても、表示濃度の変化が生じなくなり、表示濃度が飽和した状態である。
 また、「表示濃度」は、表示面側における色濃度を光学濃度(Optical Density=0D)の反射濃度計X-rite社の反射濃度計で測定しながら、表示面側と背面側との間に電圧を印加して且つこの電圧を測定濃度が増加する方向に徐々に変化(印加電圧を増加または減少)させて、単位電圧あたりの濃度変化が飽和し、且つその状態で電圧および電圧印加時間を増加させても濃度変化が生じず、濃度が飽和したときの濃度を示している。
The “voltage range necessary for moving the particle group 34” means the voltage necessary for the particle to start moving and the change in display density even if the voltage and voltage application time are further increased from the start of movement. It shows the voltage range until it disappears and the display density is saturated.
The “maximum voltage necessary for moving almost all the particle groups 34” means that even if the voltage and the voltage application time are further increased from the start of the above movement, the display density does not change and the display density is saturated. Indicates voltage.
Further, “almost all” means that there is a variation in the characteristics of the particle groups 34 of the respective colors, so that some of the characteristics of the particle groups 34 are so different that they do not contribute to the display characteristics. That is, even if the voltage and the voltage application time are further increased from the start of the movement described above, the display density does not change and the display density is saturated.
The “display density” is a color density on the display surface side measured with a reflection densitometer of an optical density (Optical Density = 0D) reflection densitometer of X-rite. Apply a voltage and gradually change this voltage in the direction of increasing the measured concentration (increase or decrease the applied voltage) to saturate the concentration change per unit voltage, and in that state, adjust the voltage and voltage application time. Even when the density is increased, the density does not change, and the density is shown when the density is saturated.
 そして、本実施形態に係る表示媒体12では、表示基板20と背面基板22との間に0Vから電圧を印加して除々に印加電圧の電圧値を上昇させて、基板間に印加された電圧が+Vtcを超えると、表示媒体12においてシアン粒子群34Cの移動により表示濃度に変化が現れ始める。さらに、電圧値を上昇させて、基板間に印加された電圧が+Vdcとなると、表示媒体12においてシアン粒子群34Cの移動による表示濃度の変化が止まる。 In the display medium 12 according to the present embodiment, a voltage is applied from 0 V between the display substrate 20 and the rear substrate 22 to gradually increase the voltage value of the applied voltage, and the voltage applied between the substrates is When + Vtc is exceeded, the display density starts to change due to the movement of the cyan particle group 34C in the display medium 12. Further, when the voltage value is increased and the voltage applied between the substrates becomes + Vdc, the change in display density due to the movement of the cyan particle group 34C in the display medium 12 stops.
 さらに電圧値を上昇させて、表示基板20と背面基板22との間に印加された電圧が+Vtmを超えると、表示媒体12においてマゼンタ粒子群34Mの移動による表示濃度の変化が現れ始める。さらに電圧値を上昇させて、表示基板20と背面基板22との間に印加された電圧が+Vdmとなると、表示媒体12においてマゼンタ粒子群34Mの移動による表示濃度の変化が止まる。 When the voltage value is further increased and the voltage applied between the display substrate 20 and the back substrate 22 exceeds + Vtm, a change in display density due to the movement of the magenta particle group 34M starts to appear in the display medium 12. When the voltage value is further increased and the voltage applied between the display substrate 20 and the back substrate 22 becomes + Vdm, the change in display density due to the movement of the magenta particle group 34M in the display medium 12 stops.
 さらに、電圧値を上昇させて、基板間に印加された電圧が+Vtyを超えると、表示媒体12においてイエロー粒子群34Yの移動による表示濃度の変化が現れ始める。さらに電圧値を上昇させて、基板間に印加された電圧が+Vdyとなると、表示媒体12においてイエロー粒子群34Yの移動による表示濃度の変化が止まる。 Further, when the voltage value is increased and the voltage applied between the substrates exceeds + Vty, a change in display density due to the movement of the yellow particle group 34Y starts to appear in the display medium 12. When the voltage value is further increased and the voltage applied between the substrates becomes + Vdy, the change in display density due to the movement of the yellow particle group 34Y in the display medium 12 stops.
 反対に、表示基板20と背面基板22との間に0Vからマイナス極の電圧を印加して除々に電圧の絶対値を上昇させ、基板間に印加された電圧-Vtcの絶対値を超えると、表示媒体12においてシアン粒子群34Cの基板間の移動により表示濃度に変化が現れ始める。さらに、電圧値の絶対値を上昇させ、表示基板20と背面基板22との間に印加された電圧が-Vdc以上となると、表示媒体12においてシアン粒子群34Cの移動による表示濃度の変化が止まる。 On the contrary, when a negative voltage is applied from 0V to the display substrate 20 and the back substrate 22 to gradually increase the absolute value of the voltage and the absolute value of the voltage −Vtc applied between the substrates is exceeded, In the display medium 12, the display density starts to change due to the movement of the cyan particle group 34C between the substrates. Furthermore, when the absolute value of the voltage value is increased and the voltage applied between the display substrate 20 and the back substrate 22 becomes −Vdc or more, the change in display density due to the movement of the cyan particle group 34C in the display medium 12 stops. .
 さらに電圧値の絶対値を上昇させてマイナス極の電圧を印加し、表示基板20と背面基板22との基板間に印加される電圧が-Vtmの絶対値を超えると、表示媒体12においてマゼンタ粒子群34Mの移動による表示濃度の変化が現れ始める。さらに電圧値の絶対値を上昇させて、表示基板20と背面基板22との間に印加された電圧が-Vdmとなると、表示媒体12においてマゼンタ粒子群34Mの移動による表示濃度の変化が止まる。 When the negative voltage is further applied by increasing the absolute value of the voltage value, and the voltage applied between the display substrate 20 and the back substrate 22 exceeds the absolute value of −Vtm, the magenta particles are displayed on the display medium 12. A change in display density due to movement of the group 34M begins to appear. When the absolute value of the voltage value is further increased and the voltage applied between the display substrate 20 and the back substrate 22 becomes −Vdm, the change in display density due to the movement of the magenta particle group 34M in the display medium 12 stops.
 さらに電圧値の絶対値を上昇させてマイナス極の電圧を印加し、表示基板20と背面基板22との間に印加される電圧が-Vtyの絶対値を超えると、表示媒体12においてイエロー粒子群34Yの移動により表示濃度に変化が現れ始める。さらに電圧値の絶対値を上昇させて、基板間に印加された電圧が-Vdyとなると、表示媒体12においてイエロー粒子群34Yの移動による表示濃度の変化が止まる。 When the absolute value of the voltage value is further increased and a negative voltage is applied, and the voltage applied between the display substrate 20 and the rear substrate 22 exceeds the absolute value of −Vty, the yellow particles in the display medium 12 A change in the display density starts to appear due to the movement of 34Y. When the absolute value of the voltage value is further increased and the voltage applied between the substrates becomes −Vdy, the change in display density due to the movement of the yellow particle group 34Y in the display medium 12 stops.
 すなわち、本実施形態では、図4に示すごとく、基板間に印加される電圧が-Vtcから+Vtcの範囲内(電圧範囲|Vtc|以下)となる電圧が表示基板20と背面基板22との間に印加された場合には、表示媒体12の表示濃度に変化が発生する程の粒子群34(シアン粒子群34C、マゼンタ粒子群34M、およびイエロー粒子群34Y)の粒子の移動は生じていないといえる。そして、基板間に、電圧+Vtcおよび電圧-Vtcの絶対値より高い電圧が印加されると、3色の粒子群34の内のシアン粒子群34Cについて表示媒体12の表示濃度に変化が発生する程の粒子の移動が生じはじめて表示濃度に変化が生じはじめ、電圧-Vdcおよび電圧Vdcの絶対値|Vdc|以上の電圧が印加されると、単位電圧あたりの表示濃度に変化は生じなくなる。 That is, in the present embodiment, as shown in FIG. 4, the voltage applied between the substrates is in the range of −Vtc to + Vtc (voltage range | Vtc | or less) between the display substrate 20 and the back substrate 22. Is applied to the particle group 34 (the cyan particle group 34C, the magenta particle group 34M, and the yellow particle group 34Y) to the extent that the display density of the display medium 12 changes, the movement of the particles does not occur. I can say that. When a voltage higher than the absolute value of the voltage + Vtc and the voltage −Vtc is applied between the substrates, the display density of the display medium 12 changes so as to change with respect to the cyan particle group 34C among the three color particle groups 34. When the voltage of −Vdc and the absolute value | Vdc | of the voltage Vdc is applied, the display density per unit voltage does not change.
 さらに、基板間に印加される電圧が-Vtmから+Vtmの範囲内(電圧範囲|Vtm|以下)となる電圧が表示基板20と背面基板22との間に印加された場合には、表示媒体12の表示濃度に変化が発生する程のマゼンタ粒子群34Mおよびイエロー粒子群34Yの粒子の移動は生じていないといえる。そして、基板間に、電圧+Vtmおよび電圧-Vtmの絶対値より高い電圧が印加されると、マゼンタ粒子群34Mおよびイエロー粒子群34Yの内のマゼンタ粒子群34Mについて、表示媒体12の表示濃度に変化が発生する程の粒子の移動が生じはじめて単位電圧あたりの表示濃度に変化が生じはじめ、電圧-Vdmおよび電圧Vdmの絶対値|Vdm|以上の電圧が印加されると、表示濃度に変化は生じなくなる。 Further, when a voltage that is applied between the substrates is between −Vtm and + Vtm (voltage range | Vtm | or less) is applied between the display substrate 20 and the back substrate 22, the display medium 12. It can be said that the movement of the particles of the magenta particle group 34M and the yellow particle group 34Y to the extent that the display density is changed does not occur. When a voltage higher than the absolute values of the voltage + Vtm and the voltage −Vtm is applied between the substrates, the display density of the display medium 12 is changed for the magenta particle group 34M and the magenta particle group 34M of the yellow particle group 34Y. The display density per unit voltage starts to change to such an extent that the particles move to the extent that occurs, and the display density changes when a voltage greater than the absolute value | Vdm | of the voltage −Vdm and the voltage Vdm is applied. Disappear.
 さらに、基板間に印加する電圧が-Vtyから+Vtyの範囲内(電圧範囲|Vty|以下)となる電圧が表示基板20と背面基板22との間に印加された場合には、表示媒体12の表示濃度に変化が発生する程のイエロー粒子群34Yの粒子の移動は生じていないといえる。そして、基板間に、電圧+Vtyおよび電圧-Vtyの絶対値より高い電圧が印加されると、イエロー粒子群34Yについて、表示媒体12の表示濃度に変化が発生する程の粒子の移動が生じ始めて表示濃度に変化が生じはじめ、電圧-Vdyおよび電圧Vdyの絶対値|Vdy|以上の電圧が印加されると、表示濃度に変化は生じなくなる。 Further, when a voltage that is applied between the substrates is between −Vty and + Vty (voltage range | Vty | or less) is applied between the display substrate 20 and the back substrate 22, It can be said that there is no movement of the particles of the yellow particle group 34Y to the extent that the display density changes. When a voltage higher than the absolute values of the voltage + Vty and the voltage −Vty is applied between the substrates, the yellow particle group 34Y starts to move and display a particle that causes a change in the display density of the display medium 12. When the density starts to change and a voltage higher than the absolute value | Vdy | of the voltage −Vdy and the voltage Vdy is applied, the display density does not change.
 次に、図5を参照して、表示媒体12に画像を表示するときの粒子移動のメカニズムを説明する。 Next, the mechanism of particle movement when displaying an image on the display medium 12 will be described with reference to FIG.
 例えば、表示媒体12に、複数種類の粒子群34として、図4を用いて説明したイエロー粒子群34Y、マゼンタ粒子群34M、シアン粒子群34Cが封入されているとして説明する。 For example, it is assumed that the display medium 12 is filled with the yellow particle group 34Y, the magenta particle group 34M, and the cyan particle group 34C described with reference to FIG.
 また、以下では、イエロー粒子群34Yを構成する粒子が移動開始するために必要な電圧の絶対値より大きく、且つイエロー粒子群34Yの上記最大電圧以下で基板間に印加する電圧を「大電圧」と称し、マゼンタ粒子群34Mを構成する粒子が移動開始するために必要な電圧の絶対値より大きく、且つマゼンタ粒子群34Mの上記最大電圧以下で基板間に印加する電圧を「中電圧」と称し、シアン粒子群34Cを構成する粒子が移動開始するために必要な電圧の絶対値より大きく、且つシアン粒子群34Cの上記最大電圧以下で基板間に印加する電圧を「小電圧」と称して説明する。 In the following, the voltage applied between the substrates that is larger than the absolute value of the voltage necessary for the particles constituting the yellow particle group 34Y to start moving and less than or equal to the maximum voltage of the yellow particle group 34Y is referred to as “large voltage”. The voltage applied between the substrates that is larger than the absolute value of the voltage necessary for the particles constituting the magenta particle group 34M to start moving and is equal to or less than the maximum voltage of the magenta particle group 34M is referred to as “medium voltage”. The voltage applied between the substrates that is larger than the absolute value of the voltage required for the particles constituting the cyan particle group 34C to start moving and below the maximum voltage of the cyan particle group 34C is referred to as a “small voltage”. To do.
 また、表示基板20側に背面基板22側より高い電圧を印加する場合には、各々の電圧を、「+大電圧」、「+中電圧」、および「+小電圧」各々と称する。また、背面基板22側に表示基板20側より高い電圧を印加する場合には、各々の電圧を、「-大電圧」、「-中電圧」、および「-小電圧」各々と称して説明する。 Further, when a higher voltage is applied to the display substrate 20 side than the rear substrate 22 side, the respective voltages are referred to as “+ large voltage”, “+ medium voltage”, and “+ small voltage”, respectively. Further, when a higher voltage is applied to the back substrate 22 side than the display substrate 20 side, the respective voltages will be referred to as “−large voltage”, “−medium voltage”, and “−small voltage”, respectively. .
 図5(A)に示すごとく、初期状態では全ての粒子群としてのマゼンタ粒子群34M、シアン粒子群34C、およびイエロー粒子群34Yの全てが背面基板22側に位置されるとすると(白色表示状態)、この初期状態から、表示基板20と背面基板22との間に「+大電圧」を印加させると、全ての粒子群として、マゼンタ粒子群34M、シアン粒子群34C、およびイエロー粒子群34Yが表示基板20側に移動する。この状態で、電圧印加を解除しても、各粒子群各々は表示基板20側に付着したまま移動せずに、マゼンタ粒子群34M、シアン粒子群34C、およびイエロー粒子群34Yによる減色混合(マゼンタと、シアンと、イエロー色の減色混合)により黒色を表示したままの状態となる。(図5(B)参照)。 As shown in FIG. 5A, in the initial state, it is assumed that all of the magenta particle group 34M, the cyan particle group 34C, and the yellow particle group 34Y are positioned on the back substrate 22 side (white display state). ) When a “+ high voltage” is applied between the display substrate 20 and the rear substrate 22 from this initial state, the magenta particle group 34M, the cyan particle group 34C, and the yellow particle group 34Y are formed as all the particle groups. Move to the display substrate 20 side. In this state, even if the voltage application is canceled, each particle group does not move while adhering to the display substrate 20 side, and subtractive color mixing (magenta) by the magenta particle group 34M, the cyan particle group 34C, and the yellow particle group 34Y. In this case, the black color is displayed by the subtractive color mixture of cyan and yellow. (See FIG. 5B).
 次に、図5(B)の状態から、表示基板20と背面基板22との間に「-中電圧」を印加させると、全ての色の粒子群34の内、マゼンタ粒子群34Mと、シアン粒子群34Cと、が背面基板22側に移動する。このため、表示基板20側にはイエロー粒子群34Yのみが付着した状態となることから、イエロー色表示がなされる(図5(C)参照)。 Next, when a “−medium voltage” is applied between the display substrate 20 and the back substrate 22 from the state of FIG. 5B, among the particle groups 34 of all colors, the magenta particle group 34M and cyan The particle group 34 </ b> C moves to the back substrate 22 side. For this reason, since only the yellow particle group 34Y is attached to the display substrate 20 side, yellow display is performed (see FIG. 5C).
 さらに、図5(C)の状態から、表示基板20と背面基板22との間に「+小電圧」を印加させると、背面基板22側に移動したマゼンタ粒子群34Mおよびシアン粒子群34Cの内、シアン粒子群34Cが表示基板20側に移動する。このため、表示基板20側には、イエロー粒子群34Yおよびシアン粒子群34Cが付着した状態となり、イエローとシアンとの減色混合による緑色が表示される(図5(D)参照)。 Further, when “+ small voltage” is applied between the display substrate 20 and the back substrate 22 from the state of FIG. 5C, the magenta particle group 34M and the cyan particle group 34C moved to the back substrate 22 side. The cyan particle group 34C moves to the display substrate 20 side. For this reason, the yellow particle group 34Y and the cyan particle group 34C are attached to the display substrate 20 side, and green is displayed by the subtractive color mixture of yellow and cyan (see FIG. 5D).
 また、上記図5(B)の状態から、表示基板20と背面基板22との間に「-小電圧」を印加させると、全ての粒子群34の内、シアン粒子群34Cが背面基板22側に移動する。このため、表示基板20側にはイエロー粒子群34Yとマゼンタ粒子群34Mが付着した状態となることから、シアンとマゼンタの加色混合による赤色表示がなされる(図5(I)参照)。 When a “−small voltage” is applied between the display substrate 20 and the back substrate 22 from the state of FIG. 5B, among all the particle groups 34, the cyan particle group 34C is on the back substrate 22 side. Move to. For this reason, since the yellow particle group 34Y and the magenta particle group 34M are attached to the display substrate 20 side, red display is performed by additive mixing of cyan and magenta (see FIG. 5I).
 一方、図5(A)に示す上記初期状態から、表示基板20と背面基板22との間に「+中電圧」を印加させると、全ての粒子群34(マゼンタ粒子群34M、シアン粒子群34C、およびイエロー粒子群34Y)の内、マゼンタ粒子群34Mとシアン粒子群34Cとが表示基板20側に移動する。このため、表示基板20側には、マゼンタ粒子群34Mとシアン粒子群34Cとが付着するので、マゼンタとシアンの減色混合による青色が表示される(図5(E)参照)。 On the other hand, when “+ medium voltage” is applied between the display substrate 20 and the back substrate 22 from the initial state shown in FIG. 5A, all the particle groups 34 (magenta particle group 34M, cyan particle group 34C) are applied. , And the yellow particle group 34Y), the magenta particle group 34M and the cyan particle group 34C move to the display substrate 20 side. For this reason, since the magenta particle group 34M and the cyan particle group 34C are attached to the display substrate 20 side, blue is displayed by the subtractive color mixing of magenta and cyan (see FIG. 5E).
 この図5(E)の状態から、表示基板20と背面基板22との間に「-小電圧」を印加させると、表示基板20側に付着しているマゼンタ粒子群34Mとシアン粒子群34Cの内の、シアン粒子群34Cが背面基板22側に移動する。
 このため、表示基板20側には、マゼンタ粒子群34Mのみが付着した状態となるので、マゼンタ色が表示される(図5(F)参照)。
When a “−small voltage” is applied between the display substrate 20 and the back substrate 22 from the state of FIG. 5E, the magenta particle group 34M and the cyan particle group 34C attached to the display substrate 20 side. Among them, the cyan particle group 34C moves to the back substrate 22 side.
Therefore, only the magenta particle group 34M is attached to the display substrate 20 side, so that a magenta color is displayed (see FIG. 5F).
 この図5(F)の状態から、表示基板20と背面基板22との間に「-大電圧」を印加させると、表示基板20側に付着しているマゼンタ粒子群34Mが背面基板22側に移動する。
 このため、表示基板20側には、何も付着しない状態となるため、着色浮遊粒子群36の色としての白色が表示される(図5(G)参照)。
When a “−large voltage” is applied between the display substrate 20 and the back substrate 22 from the state of FIG. 5F, the magenta particle group 34M adhering to the display substrate 20 side is moved to the back substrate 22 side. Moving.
For this reason, since nothing is attached to the display substrate 20 side, white is displayed as the color of the colored suspended particle group 36 (see FIG. 5G).
 また、上記図5(A)に示す上記初期状態から、表示基板20と背面基板22との間に「+小電圧」を印加させると、全ての粒子群34(マゼンタ粒子群34M、シアン粒子群34C、およびイエロー粒子群34Y)の内、シアン粒子群34Cが表示基板20側に移動する。このため、表示基板20側には、シアン粒子群34Cが付着するので、シアン色が表示される(図5(H)参照)。 When a “+ small voltage” is applied between the display substrate 20 and the back substrate 22 from the initial state shown in FIG. 5A, all the particle groups 34 (magenta particle group 34M, cyan particle group) are applied. 34C and the yellow particle group 34Y), the cyan particle group 34C moves to the display substrate 20 side. For this reason, the cyan particle group 34C adheres to the display substrate 20 side, so that a cyan color is displayed (see FIG. 5H).
 さらに、上記図5(I)に示す状態から、表示基板20と背面基板22との間に「-大電圧」を印加させると、図5(G)に示すごとく全ての粒子群34が背面基板22側に移動して白色表示がなされる。
 同様に、上記図5(D)に示す状態から、表示基板20と背面基板22との間に「-大電圧」を印加させると、図5(G)に示すごとく全ての粒子群34が背面基板22側に移動して白色表示がなされる。
Further, when a “−high voltage” is applied between the display substrate 20 and the back substrate 22 from the state shown in FIG. 5I, all the particle groups 34 are transferred to the back substrate as shown in FIG. It moves to the 22 side and a white display is made.
Similarly, when a “−high voltage” is applied between the display substrate 20 and the back substrate 22 from the state shown in FIG. 5D, all the particle groups 34 appear on the back surface as shown in FIG. Moving to the substrate 22 side, white display is performed.
 本実施形態では、各粒子群34に応じた電圧を基板間に印加することで、当該電圧による電界に応じて選択的に所望の粒子を移動させるので、所望の色以外の色の粒子が分散媒50中を移動することが抑制され、所望の色以外の色が混じる混色が抑制されて、カラー表示がなされる。なお、各粒子群34は、互いに電界に応じて移動するために必要な電圧の絶対値が異なれば、互いに電界に応じて移動するために必要な電圧範囲が重なっていても、鮮明なカラー表示が実現されるが、当該電圧範囲が互いに異なるほうが、より混色を抑制してカラー表示が実現される。 In the present embodiment, by applying a voltage corresponding to each particle group 34 between the substrates, the desired particles are selectively moved according to the electric field generated by the voltage, so that particles of colors other than the desired color are dispersed. The movement in the medium 50 is suppressed, and the color mixture in which colors other than the desired color are mixed is suppressed, and color display is performed. In addition, if the absolute value of the voltage required for each particle group 34 to move according to the electric field is different from each other, even if the voltage ranges necessary for moving according to the electric field overlap with each other, clear color display is possible. However, when the voltage ranges are different from each other, color mixing is further suppressed and color display is realized.
 また、シアン、マゼンタ、イエローの3色の粒子群34を分散媒50中に分散することによって、シアン、マゼンタ、イエロー、青色、赤色、緑色、および黒色を表示するとともに、白色の着色浮遊粒子群36によって白色を表示し、特定のカラー表示を行うことが実現される。 Further, by dispersing the three color particle groups 34 of cyan, magenta, and yellow in the dispersion medium 50, cyan, magenta, yellow, blue, red, green, and black are displayed, and white colored floating particle groups A white color is displayed by 36 and a specific color display is realized.
 こうして、本実施形態に係る表示装置10でも、上記第1実施形態で説明した表示装置10に示すごとく、粒子群34が表示基板20または背面基板22に到達して、付着することで表示が行われる。そして、表示基板20と背面基板22の対向面が、前記特定の高分子化合物による表面層21、23(表面層)を有することで、粒子群34が当該対向面に移動し付着しても粒子群34の各粒子の固着が抑制される。結果、色再現性や、高いコントラストが実現される。 Thus, also in the display device 10 according to the present embodiment, as shown in the display device 10 described in the first embodiment, the particle group 34 reaches the display substrate 20 or the back substrate 22 and adheres to display. Is called. And the opposing surface of the display substrate 20 and the back substrate 22 has the surface layers 21 and 23 (surface layer) made of the specific polymer compound, so that the particles even if the particle group 34 moves and adheres to the opposing surface. The adhesion of the particles of the group 34 is suppressed. As a result, color reproducibility and high contrast are realized.
 なお、日本出願2012-092466および日本出願2012-092468の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese application 2012-092466 and Japanese application 2012-092468 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
 以下に本発明を実施例を挙げてより詳細に説明するが、本発明は以下の実施例にのみ限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
[測定方法]
 -粒子の体積平均一次粒径の測定-
 粒子の体積平均一次粒径は、コールターマルチサイザー-II型(ベックマン-コールター社製)を用いて、50μmのアパーチャー径で測定した。この時、測定は粒子を電解質水溶液(アイソトン水溶液、ベックマン-コールター社製)に分散させ、超音波により30秒以上分散させた後に行う。
 測定法としては、分散剤として界面活性剤、望ましくはアルキルベンゼンスルホン酸ナトリウムの5%水溶液2ml中に、測定試料を0.5乃至50mg加え、これを前記電解液100乃至150ml中に添加する。この測定試料を懸濁させた電解液を超音波分散器で1分間分散処理を行い、粒子の粒度分布を測定する。測定する粒子数は50,000である。
 測定された粒度分布を、分割された粒度範囲(チャンネル)に対し、体積について小径側から累積分布を描き、累積50%となる粒径を体積平均一次粒径と定義する。
[Measuring method]
-Measurement of volume average primary particle size of particles-
The volume average primary particle diameter of the particles was measured using a Coulter Multisizer-II type (manufactured by Beckman Coulter, Inc.) with an aperture diameter of 50 μm. At this time, the measurement is performed after the particles are dispersed in an electrolyte aqueous solution (Isoton aqueous solution, manufactured by Beckman Coulter, Inc.) and dispersed by ultrasonic waves for 30 seconds or more.
As a measuring method, 0.5 to 50 mg of a measurement sample is added to 2 ml of a 5% aqueous solution of a surfactant, preferably sodium alkylbenzenesulfonate as a dispersant, and this is added to 100 to 150 ml of the electrolytic solution. The electrolytic solution in which the measurement sample is suspended is subjected to a dispersion treatment for 1 minute with an ultrasonic disperser, and the particle size distribution of the particles is measured. The number of particles to be measured is 50,000.
For the measured particle size distribution, a cumulative distribution is drawn from the smaller diameter side with respect to the divided particle size range (channel), and the particle size at which 50% is accumulated is defined as the volume average primary particle size.
 -粒子に含まれる樹脂のガラス転移温度の測定-
 ガラス転移温度は、示差走査熱量計(島津製作所製のDSC-50)を用い、JIS 7121-1987に準拠して測定した。この装置の検出部の温度補正にはインジウムと亜鉛との混合物の溶融温度を用い、熱量の補正にはインジウムの融解熱を用いた。
 粒子をそのままアルミニウム製パンに入れ、粒子の入ったアルミニウム製パンと対照用の空のアルミニウム製パンとをセットし、昇温速度10℃/minで測定を行った。
 測定により得られたDSC曲線の吸熱部におけるベースラインと立ち上がりラインとの延長線の交点の温度をもってガラス転移温度とした。
-Measurement of glass transition temperature of resin contained in particles-
The glass transition temperature was measured according to JIS 7121-1987 using a differential scanning calorimeter (DSC-50 manufactured by Shimadzu Corporation). The melting temperature of the mixture of indium and zinc was used for temperature correction of the detection part of this apparatus, and the heat of melting of indium was used for correction of the amount of heat.
The particles were put in an aluminum pan as they were, and an aluminum pan containing particles and an empty aluminum pan for control were set, and measurement was performed at a heating rate of 10 ° C./min.
The glass transition temperature was defined as the temperature at the intersection of the extension line of the base line and the rising line in the endothermic part of the DSC curve obtained by the measurement.
≪実施例A≫
[着色浮遊粒子群(白色粒子群)の調製]
1)コア粒子の作製
 -連続相の調製-
 以下の材料を混合し、ラジカル溶液重合(55℃/6時間)にて高分子分散剤E1を合成した。
 ・サイラプレーンFM-0711(JNC社製、重量平均分子量Mn=1,000):36g
 ・メタクリル酸(アルドリッチ社製):0.35g
 ・シリコーンオイルKF-96L-2CS(信越化学工業社製):40g
 ・重合開始剤V-65(和光純薬工業社製):0.06g
 重合反溶成分が3gになるようにシリコーンオイルKF-96L-2CS(信越化学工業社製)を用いて希釈し、高分子分散剤E1を含む溶液A1(連続相)を調製した。
Example A
[Preparation of colored floating particles (white particles)]
1) Preparation of core particles-Preparation of continuous phase-
The following materials were mixed and a polymer dispersant E1 was synthesized by radical solution polymerization (55 ° C./6 hours).
Silaplane FM-0711 (manufactured by JNC, weight average molecular weight Mn = 1,000): 36 g
-Methacrylic acid (manufactured by Aldrich): 0.35 g
・ Silicone oil KF-96L-2CS (manufactured by Shin-Etsu Chemical Co., Ltd.): 40g
・ Polymerization initiator V-65 (manufactured by Wako Pure Chemical Industries): 0.06 g
Dilution was performed using silicone oil KF-96L-2CS (manufactured by Shin-Etsu Chemical Co., Ltd.) so that the amount of the polymerization anti-soluble component was 3 g, and a solution A1 (continuous phase) containing the polymer dispersant E1 was prepared.
 -分散相の調製-
 スチレンアクリル系樹脂X-1202L(星光PMC社製)10g、二酸化チタンTTO-55A(石原産業社製)10g、および蒸留水90gを混合したものにジルコニアビーズを加え、ロッキングミルで1時間分散処理を行い、溶液B1(分散相)とした。
-Preparation of dispersed phase-
Add zirconia beads to a mixture of 10 g of styrene acrylic resin X-1220L (manufactured by Seiko PMC), 10 g of titanium dioxide TTO-55A (manufactured by Ishihara Sangyo Co., Ltd.), and 90 g of distilled water, and disperse with a rocking mill for 1 hour. To obtain solution B1 (dispersed phase).
 -乳化および液中乾燥工程-
 溶液A1(連続相)80gと、溶液B1(分散相)20gとを混合して、オムニホモジナイザーGLH-115を用いて20,000rpmで10分間乳化を行い乳化液を調製した。
 次に、得られた乳化液をナスフラスコに入れ、攪拌しながらエバポレーターにて65℃、10mPaに加熱減圧することで水を除去し、二酸化チタン粒子がシリコーンオイル中に分散された粒子分散液を得た。得られた分散液を遠心分離を用いて沈降させ、上澄みを除去し、トルエンを加えて粒子固形分濃度20質量%となるように調製し、粒子トルエン分散液C1を得た。
-Emulsification and drying in liquid process-
80 g of solution A1 (continuous phase) and 20 g of solution B1 (dispersed phase) were mixed and emulsified at 20,000 rpm for 10 minutes using an omnihomogenizer GLH-115 to prepare an emulsion.
Next, the obtained emulsion is put into an eggplant flask, water is removed by heating and reducing to 65 ° C. and 10 mPa with an evaporator while stirring, and a particle dispersion in which titanium dioxide particles are dispersed in silicone oil is obtained. Obtained. The obtained dispersion was sedimented using centrifugation, the supernatant was removed, and toluene was added to prepare a particle solid concentration of 20% by mass to obtain a particle toluene dispersion C1.
2)シェル化工程
 -シェル樹脂の合成-
 ・スチレン(和光純薬工業社製):70g
 ・サイラプレーンFM-0721(JNC社製、重量平均分子量Mw=5000):25g
 ・メタクリル酸(東京化成工業社製):5g
 ・ラウロイルパーオキサイド(アルドリッチ社製):1g
 ・トルエン(関東化学社製):100g
 上記組成で各材料を混合し、75℃で6時間加熱した後、イソプロピルアルコール(関東化学社製)中に滴下し、再沈殿法により精製し、白色の固体(シェル樹脂)を得た。得られたシェル樹脂の重量平均分子量Mw=30000であった。
2) Shelling process -Synthesis of shell resin-
・ Styrene (Wako Pure Chemical Industries, Ltd.): 70g
Silaplane FM-0721 (manufactured by JNC, weight average molecular weight Mw = 5000): 25 g
・ Methacrylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.): 5g
・ Lauroyl peroxide (Aldrich): 1g
・ Toluene (Kanto Chemical Co., Inc.): 100g
After mixing each material with the said composition and heating at 75 degreeC for 6 hours, it was dripped in isopropyl alcohol (made by Kanto Chemical Co., Inc.), it refine | purified by the reprecipitation method, and white solid (shell resin) was obtained. The weight average molecular weight Mw of the obtained shell resin was 30000.
 -シェル化工程-
 酸化チタン粒子分散液の作製
 ・シェル樹脂:10g
 ・粒子トルエン分散液C1(粒子固形分濃度20質量%):50g
 上記組成で各材料を混合し、それにシリコーンオイルKF-96L-2CS(信越化学工業社製)を200g滴下しシェル樹脂を析出させた。その後、エバポレーターを用いて60℃、20mbar下でトルエンを除去することで、シェル樹脂で被覆された酸化チタンよりなる、着色浮遊粒子群(白色粒子群)の分散液を得た。
-Shelling process-
Preparation of titanium oxide particle dispersion ・ Shell resin: 10 g
-Particle toluene dispersion C1 (particle solid content concentration 20% by mass): 50 g
Each material was mixed with the above composition, and 200 g of silicone oil KF-96L-2CS (manufactured by Shin-Etsu Chemical Co., Ltd.) was added dropwise to deposit a shell resin. Then, the dispersion liquid of the colored floating particle group (white particle group) which consists of titanium oxide coat | covered with shell resin was obtained by removing toluene using an evaporator under 60 degreeC and 20 mbar.
[シアン粒子群の調製]
 1)コア粒子の作製
 -分散相の調製-
 下記成分を60℃に加温しながら混合し、インク固形分濃度が15質量%、乾燥後の顔料濃度が50質量%となるように分散相を調製した。
 ・スチレンアクリル系ポリマーX345(星光PMC社製):7.2g
 ・シアン顔料PB15:3の水分散液Emacol SF Blue H524F(山陽色素社製、固形分26質量%):18.8g
 ・蒸留水:24.1g
[Preparation of cyan particles]
1) Preparation of core particles-Preparation of dispersed phase-
The following components were mixed while heating at 60 ° C., and a dispersed phase was prepared so that the ink solid content concentration was 15% by mass and the pigment concentration after drying was 50% by mass.
Styrene acrylic polymer X345 (manufactured by Seiko PMC): 7.2 g
-Cyan pigment PB15: 3 aqueous dispersion Emacol SF Blue H524F (manufactured by Sanyo Color Co., Ltd., solid content 26 mass%): 18.8 g
・ Distilled water: 24.1 g
 -連続相の調製-
 下記成分を混合して連続相を準備した。
 ・界面活性剤KF-6028(信越化学工業社製):3.5g
 ・シリコーンオイルKF-96L-2CS(信越化学工業社製):346.5g
-Preparation of continuous phase-
The following components were mixed to prepare a continuous phase.
Surfactant KF-6028 (manufactured by Shin-Etsu Chemical Co., Ltd.): 3.5g
・ Silicone oil KF-96L-2CS (manufactured by Shin-Etsu Chemical Co., Ltd.): 346.5 g
 -粒子作製-
 上記分散相50gと、上記連続相350gと、を混合し内歯式卓上分散機ROBOMICS(特殊機化工業社製)を用い回転数10,000rpm、温度30℃で10分間乳化を行った。その結果、乳化液滴径が2μmの乳化液を得た。これをロータリーエバポレーターを用いて真空度20mbar、水浴温度40℃で18時間乾燥を行った。
 得られた粒子懸濁液を6,000rpmで15分間遠心分離し、上澄み液を除去した後、シリコーンオイルKF-96L-2CSを用いて再分散させる洗浄工程を3回繰り返した。こうしてコア粒子6gを得た。SEM画像解析した結果、平均粒径は0.6μmであった。
-Particle preparation-
50 g of the above dispersed phase and 350 g of the above continuous phase were mixed and emulsified for 10 minutes at a rotational speed of 10,000 rpm and a temperature of 30 ° C. using an internal tooth tabletop dispersing machine ROBOMICS (manufactured by Tokushu Kika Kogyo Co., Ltd.). As a result, an emulsion having an emulsion droplet diameter of 2 μm was obtained. This was dried using a rotary evaporator at a vacuum degree of 20 mbar and a water bath temperature of 40 ° C. for 18 hours.
The obtained particle suspension was centrifuged at 6,000 rpm for 15 minutes, the supernatant was removed, and the washing step of redispersing with silicone oil KF-96L-2CS was repeated three times. In this way, 6 g of core particles were obtained. As a result of SEM image analysis, the average particle size was 0.6 μm.
 2)シェル形成(コアセルベーション法)
 -シェル樹脂の合成-
 下記成分を混合し、窒素下で70℃、6時間重合を行なった。
 ・サイラプレーンFM-0721(JNC社製):50g
 ・ヒドロキシエチルメタクリレート(HEMA/アルドリッチ社製):32g
 ・フェノキシ基を含むモノマーAMP-10G(新中村化学社製):18g
 ・ブロックイソシアネート基を含むモノマー・カレンズMOI-BP(昭和電工社製):2g
 ・イソプロピルアルコール(関東化学社製):200g
 ・重合開始剤AIBN(2,2’-アゾビスイソブチロニトリル、アルドリッチ社製):0.2g
 生成物をシクロヘキサンを再沈殿溶媒として精製、乾燥しシェル樹脂を得た。このシェル樹脂2gをt-ブタノール溶媒20gに溶解し、シェル樹脂溶液を作製した。
2) Shell formation (coacervation method)
-Synthesis of shell resin-
The following components were mixed and polymerized at 70 ° C. for 6 hours under nitrogen.
・ Silaplane FM-0721 (manufactured by JNC): 50 g
・ Hydroxyethyl methacrylate (HEMA / Aldrich): 32 g
Monomer AMP-10G containing phenoxy group (manufactured by Shin-Nakamura Chemical Co., Ltd.): 18 g
-Monomer containing blocked isocyanate group-Karenz MOI-BP (manufactured by Showa Denko KK): 2g
・ Isopropyl alcohol (Kanto Chemical Co., Inc.): 200g
Polymerization initiator AIBN (2,2′-azobisisobutyronitrile, manufactured by Aldrich): 0.2 g
The product was purified using cyclohexane as a reprecipitation solvent and dried to obtain a shell resin. 2 g of this shell resin was dissolved in 20 g of t-butanol solvent to prepare a shell resin solution.
 -シェル樹脂による粒子被覆-
 上記コア粒子1gを200mLのナスフラスコに取り、シリコーンオイルKF-96L-2CSを15g加え、超音波を加えながら攪拌分散した。これに、t-ブタノール7.5g、上記シェル樹脂溶液22g、シリコーンオイルKF-96L-2CS12.5gを順次加えた。投入速度は全て2mL/sとした。上記ナスフラスコをロータリーエバポレーターに接続し、真空度20mbar、水浴温度50℃で1時間、t-ブタノール除去を行った。
 これをさらに攪拌しながらオイルバス中で加温した。まず100℃で1時間加温し、残留水分と残留するt-ブタノールを除いた後、続けて130℃で1.5時間の加熱を行い、ブロックイソシアネート基のブロック基を脱離させ、シェル材料の架橋反応を行った。
 冷却後、得られた粒子懸濁液を6,000rpmで15分間遠心分離し、上澄み液を除去した後、シリコーンオイルKF-96L-2CSを用いて再分散させる洗浄工程を3回繰り返した。こうしてシアン(C)粒子群0.6gを得た。
-Particle coating with shell resin-
1 g of the above core particles was placed in a 200 mL eggplant flask, 15 g of silicone oil KF-96L-2CS was added, and the mixture was stirred and dispersed while applying ultrasonic waves. To this, 7.5 g of t-butanol, 22 g of the above shell resin solution, and 12.5 g of silicone oil KF-96L-2CS were sequentially added. The input speed was all 2 mL / s. The eggplant flask was connected to a rotary evaporator, and t-butanol was removed at a vacuum of 20 mbar and a water bath temperature of 50 ° C. for 1 hour.
This was further heated in an oil bath with stirring. First, after heating at 100 ° C. for 1 hour to remove residual moisture and residual t-butanol, heating is continued at 130 ° C. for 1.5 hours to remove the blocking group of the blocked isocyanate group, thereby forming a shell material. The crosslinking reaction was performed.
After cooling, the obtained particle suspension was centrifuged at 6,000 rpm for 15 minutes, the supernatant was removed, and the washing step of redispersing with silicone oil KF-96L-2CS was repeated three times. Thus, 0.6 g of cyan (C) particle group was obtained.
[赤色粒子群の調製]
 -分散液A-1Aの調製-
 下記成分を混合し、10mmΦのジルコニアボールにてボールミル粉砕を20時間実施して分散液A-1Aを調製した。
 ・メタクリル酸メチル(アルドリッチ社製):53質量部
 ・メタクリル酸2-(ジエチルアミノ)エチル(アルドリッチ社製):0.3質量部
 ・赤色顔料Red3090(山陽色素社製):1.5質量部
[Preparation of red particles]
-Preparation of dispersion A-1A-
The following ingredients were mixed, and ball milling was performed for 20 hours with 10 mmφ zirconia balls to prepare dispersion A-1A.
・ Methyl methacrylate (manufactured by Aldrich): 53 parts by mass ・ 2- (diethylamino) ethyl methacrylate (manufactured by Aldrich): 0.3 part by mass ・ Red pigment Red 3090 (manufactured by Sanyo Dye): 1.5 parts by mass
 -分散液A-1Bの調製-
 下記成分を混合し、上記分散液A-1Aに記載の方法によりボールミルにて粉砕して炭酸カルシウム分散液A-1Bを調製した。
 ・炭酸カルシウム:40質量部
 ・水:60質量部
-Preparation of dispersion A-1B-
The following components were mixed and pulverized with a ball mill by the method described in the above dispersion A-1A to prepare calcium carbonate dispersion A-1B.
・ Calcium carbonate: 40 parts by mass ・ Water: 60 parts by mass
 -混合液A-1Cの調製-
 下記成分を混合し、超音波機で脱気を10分間行い、ついで乳化機で攪拌して混合液A-1Cを調製した。
 ・炭酸カルシウム分散液A-1B:4g
 ・20%食塩水:60g
-Preparation of mixture A-1C-
The following components were mixed, degassed with an ultrasonic machine for 10 minutes, and then stirred with an emulsifier to prepare a mixed solution A-1C.
・ Calcium carbonate dispersion A-1B: 4g
・ 20% saline solution: 60g
 -着色粒子の調製-
 下記成分を混合後、超音波機で脱気を10分行った。
 ・分散液A-1A:20g
 ・ジメタクリル酸エチレングリコール:0.6g
 ・重合開始剤V601(Dimethyl 2,2’-azobis(2-methylpropionate):和光純薬工業社製):0.2g
 これを前記混合液A-1Cに加え、乳化機で乳化を実施した。次にこの乳化液をフラスコにいれ、減圧脱気を充分行い、窒素ガスで封入した。次に65℃で15時間反応させ粒子を調製した。冷却後、粒子を濾過し、得られた粒子粉をイオン交換水中に分散させ、塩酸水で炭酸カルシウムを分解させ、ろ過を行った。充分な蒸留水で洗浄し、目開き:15μm、10μmのナイロン篩にかけ、粒度を揃えた。得られた粒子は、体積平均一次粒径13μmであった。
-Preparation of colored particles-
After mixing the following components, deaeration was performed with an ultrasonic machine for 10 minutes.
・ Dispersion A-1A: 20 g
・ Ethylene glycol dimethacrylate: 0.6g
-Polymerization initiator V601 (Dimethyl 2,2'-azobis (2-methylpropionate): Wako Pure Chemical Industries, Ltd.): 0.2 g
This was added to the mixed solution A-1C and emulsified with an emulsifier. Next, this emulsified liquid was put into a flask, sufficiently degassed under reduced pressure, and sealed with nitrogen gas. Next, it was reacted at 65 ° C. for 15 hours to prepare particles. After cooling, the particles were filtered, and the obtained particle powder was dispersed in ion-exchanged water, and calcium carbonate was decomposed with hydrochloric acid water, followed by filtration. After washing with sufficient distilled water, the openings were passed through nylon sieves having a mesh size of 15 μm and 10 μm to make the particle sizes uniform. The obtained particles had a volume average primary particle size of 13 μm.
 -4級アンモニウム化処理-
 得られた粒子をシリコーンオイルKF-96L-1CS(信越化学工業社製)に分散し、臭化ドデシル(4級化剤)を、粒子の調整に用いたメタクリル酸2-(ジエチルアミノ)エチルと等モル量加え、90℃で6時間加熱した。
 冷却後、この分散液を多量のシリコーンオイルにて洗浄し、減圧乾燥させることにより赤色(R)粒子群を得た。この赤色(R)粒子群に含まれる樹脂のガラス転移温度は145℃であった。
-4 quaternary ammonium treatment
The obtained particles are dispersed in silicone oil KF-96L-1CS (manufactured by Shin-Etsu Chemical Co., Ltd.), and dodecyl bromide (quaternizing agent) is used, such as 2- (diethylamino) ethyl methacrylate used for particle preparation. Molar amount was added and heated at 90 ° C. for 6 hours.
After cooling, this dispersion was washed with a large amount of silicone oil and dried under reduced pressure to obtain red (R) particles. The glass transition temperature of the resin contained in the red (R) particle group was 145 ° C.
[シアン・赤・白混合液の調製]
 上記白色(W)粒子群と、シアン(C)粒子群と、赤色(R)粒子群と、を固形分でC粒子群が0.1g、R粒子群が1.3g、W粒子群が2.0gとなるように秤量して混合し、液量が10gとなるようにシリコーンオイルKF-96L-2CS(信越化学工業社製)を加え、超音波攪拌して表示用分散液を得た。
[Preparation of cyan / red / white mixture]
The white (W) particle group, the cyan (C) particle group, and the red (R) particle group are solid components of 0.1 g of the C particle group, 1.3 g of the R particle group, and 2 of the W particle group. A silicone dispersion KF-96L-2CS (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to a liquid volume of 10 g, and the mixture was ultrasonically stirred to obtain a display dispersion.
<実施例A1>
(表面層および表示媒体の作製)
 -高分子化合物A1の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):23質量部
 ・(メタ)アクリル系モノマー2(メタクリル酸、MAA、和光純薬工業社製)13質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):25質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):38質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬製:V-65):0.1質量部
 上記組成物を混合して、55℃10時間重合を実施した後、得られた生成物を、ヘキサンを再沈殿溶媒として精製、乾燥し、高分子化合物A1を調製した。重量平均分子量は45,000であった。そして、イソプロピルアルコール(和光純薬工業社製)に溶解することで高分子化合物A1の4質量%イソプロピルアルコール溶液を準備した。
<Example A1>
(Production of surface layer and display medium)
-Synthesis of polymer compound A1-
-(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 23 parts by mass-(Meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries) 13 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 25 parts by mass Crosslinkable monomer (monomer containing a blocked isocyanate group, Karenz MOI-BP, Showa Denko): 38 mass Parts: Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (azobisvaleronitrile, Wako Pure Chemicals: V-65): 0.1 parts by mass After carrying out the polymerization at 10 ° C. for 10 hours, the obtained product was purified and dried using hexane as a reprecipitation solvent to prepare the polymer compound A1. It was. The weight average molecular weight was 45,000. And the 4 mass% isopropyl alcohol solution of polymer compound A1 was prepared by melt | dissolving in isopropyl alcohol (made by Wako Pure Chemical Industries Ltd.).
 -表示媒体の作製-
 以下のごとく、表示媒体を作製した。
 厚さ0.7mmのガラスからなる支持基板上に電極としてITOをスパッタリング法により50nmの厚さで成膜した。このITO/ガラス基板で構成された背面基板の電極面をγ-アミノプロピルトリエトキシシランの2質量%水溶液に15分間浸漬し、純水でリンスした後、120℃30分間の乾燥を行った。その後、上記高分子化合物A1の4質量%イソプロピルアルコール溶液を用いてスピン塗布法により薄膜を形成後、120℃60分間の加熱を行った。これにより、表面層を形成した。この表面層の膜厚は100nmであり、ジメチルシリコーンオイル(信越化学工業社製KF-96L-1CS)、アセトン、テトラヒドロフラン(THF)の各種有機溶媒には不溶であった。なお、表面層の厚みはDektak 6M 段差計(Veeco製)にて測定した。
-Production of display media-
A display medium was produced as follows.
An ITO film having a thickness of 50 nm was formed as an electrode on a supporting substrate made of glass having a thickness of 0.7 mm by a sputtering method. The electrode surface of the back substrate composed of this ITO / glass substrate was immersed in a 2% by mass aqueous solution of γ-aminopropyltriethoxysilane for 15 minutes, rinsed with pure water, and then dried at 120 ° C. for 30 minutes. Thereafter, a thin film was formed by spin coating using a 4 mass% isopropyl alcohol solution of the polymer compound A1, and then heated at 120 ° C. for 60 minutes. Thereby, a surface layer was formed. The surface layer had a thickness of 100 nm and was insoluble in various organic solvents such as dimethyl silicone oil (KF-96L-1CS manufactured by Shin-Etsu Chemical Co., Ltd.), acetone, and tetrahydrofuran (THF). The thickness of the surface layer was measured with a Dektak 6M step gauge (manufactured by Veeco).
 その後、感光性ポリイミドワニス(富士ハントエレクトロニクステクノロジー社製、PROBIMIDE 7005)を用いて層を塗布した後、露光、およびウエットエッチングを行うことにより高さ100μm、幅20μmの間隙部材を形成した。この間隙部材の表面(セル側表面)に対しても、背面基板と同じ方法により表面層を形成した。 Thereafter, a layer was applied using a photosensitive polyimide varnish (PROBIMIDE 7005, manufactured by Fuji Hunt Electronics Technology Co., Ltd.), followed by exposure and wet etching to form a gap member having a height of 100 μm and a width of 20 μm. A surface layer was formed on the surface of the gap member (cell side surface) by the same method as that for the back substrate.
 間隙部材の上部に熱融着性の接着層を形成し、上記表示用分散液(C粒子群、R粒子群、およびW粒子群の混合分散液)を充填した後、背面基板と同じ方法により作製したITO/ガラスで構成され、且つ表面層の形成された表示基板を、互いの表面層の形成された側の面(電極面)が対向するように背面基板に張り合わせて熱をかけて表示媒体を作製した。 After forming a heat-fusible adhesive layer on top of the gap member and filling the display dispersion liquid (mixed dispersion liquid of C particle group, R particle group, and W particle group), the same method as for the back substrate is used. A display substrate made of ITO / glass and having a surface layer formed is bonded to the back substrate so that the surfaces (electrode surfaces) on which the surface layers are formed face each other, and heat is applied. A medium was made.
 -表面層の濡れ張力の測定-
 形成された表面層の濡れ張力を、JIS-K6768(1999年)に準じて測定した。結果を下記表1に示す。
-Measurement of surface layer wetting tension-
The wetting tension of the formed surface layer was measured according to JIS-K6768 (1999). The results are shown in Table 1 below.
 -粒子の固着評価試験-
 前記作製した表示媒体を用いて、表面基板の電極がマイナスとなるように電極間に15Vの電位差を5秒間印加した。分散された正帯電のシアン粒子群と正帯電の赤色粒子群はマイナス側電極、すなわち表面電極側へ移動し、表示基板側から観察すると黒色が観察された。
 その後、表面電極がプラスとなるように電極間に15Vの電位差を5秒間印加したところ、正帯電のシアン粒子群と正帯電の赤色粒子群はマイナス側電極、すなわち背面電極側へ移動し、表示基板側から観察すると白色が観察された。
-Particle sticking evaluation test-
Using the produced display medium, a potential difference of 15 V was applied between the electrodes for 5 seconds so that the electrodes on the surface substrate were negative. The dispersed positively charged cyan particle group and positively charged red particle group moved to the negative electrode, that is, the surface electrode side, and when observed from the display substrate side, black color was observed.
Thereafter, when a potential difference of 15 V is applied between the electrodes so that the surface electrode becomes positive, the positively charged cyan particle group and the positively charged red particle group move to the negative electrode, that is, the back electrode side, and display When observed from the substrate side, white color was observed.
 ここで、粒子群の表面層への固着の程度を、前記の黒色表示と白色表示を100回繰り返した後の白反射率の低下分によって評価した。具体的には、分光輝度計 CM-2022(ミノルタ社製)を使って、1回目の白色表示の際の白反射率Y1と、100回駆動後の白反射率Y100と、を測定し、固着の程度αを「α(%)=(Y1-Y100)/Y1×100」で定義し評価の指標とした。尚、反射率は視感反射率を用いた。結果を下記表1に示す。 Here, the degree of adhesion of the particle group to the surface layer was evaluated by the decrease in white reflectance after the black display and white display were repeated 100 times. Specifically, using a spectral luminance meter CM-2022 (manufactured by Minolta), the white reflectance Y1 at the first white display and the white reflectance Y100 after driving 100 times are measured and fixed. Was defined as “α (%) = (Y1−Y100) / Y1 × 100” and used as an evaluation index. Note that the luminous reflectance was used as the reflectance. The results are shown in Table 1 below.
<実施例A2>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物A2の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行なった。
 -高分子化合物A2の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):65質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):28質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):7質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
<Example A2>
Evaluation was performed by forming a surface layer by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A2.
-Synthesis of polymer compound A2-
(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries, Ltd.): 65 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 28 masses Parts Crosslinkable monomer (monomers containing blocked isocyanate groups, Karenz MOI-BP, manufactured by Showa Denko KK): 7 parts by mass Isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (azobis valero Nitrile, manufactured by Wako Pure Chemical Industries, Ltd .: V-65): 0.1 parts by mass
<実施例A3>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物A3の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行なった。
 -高分子化合物A3の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬社製):17質量部
 ・(メタ)アクリル系モノマー2(メタクリル酸、MAA、和光純薬工業社製)6質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):22質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):55質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
<Example A3>
A surface layer was formed and evaluated by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A3.
-Synthesis of polymer compound A3-
(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 17 parts by mass (meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries, Ltd.) 6 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 22 parts by mass Crosslinkable monomer (monomer containing blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 55 parts by mass Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (Azobisvaleronitrile, Wako Pure Chemical Industries, Ltd .: V-65): 0.1 parts by mass
<実施例A4>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物A4の組成に変更し、表示媒体の作製の方法を変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行なった。
 -高分子化合物A4の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):4質量部
 ・(メタ)アクリル系モノマー3(メチルメタクリレート、MMA、和光純薬工業社製):3質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):3質量部
 ・1-メトキシ-2-プロパノール(和光純薬工業社製):30質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.2質量部
<Example A4>
The surface layer was formed by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A4 and the method for producing the display medium was changed. Evaluation was performed.
-Synthesis of polymer compound A4-
-(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 4 parts by mass-(Meth) acrylic monomer 3 (methyl methacrylate, MMA, manufactured by Wako Pure Chemical Industries): 3 masses Parts Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 3 parts by mass 1-methoxy-2-propanol (manufactured by Wako Pure Chemical Industries, Ltd.): 30 parts by mass Polymerization initiator (Azobisvaleronitrile, manufactured by Wako Pure Chemical Industries, Ltd .: V-65): 0.2 parts by mass
 -表示媒体の作製-
 実施例A1の「-表示媒体の作製-」において、表面層の形成方法を以下の方法に変更した以外は、実施例A1に記載の方法により表示媒体を作製した。
 表面層は、上記高分子化合物A4が4質量%、架橋性モノマーとしてタケネートD-160N(三井化学社製)が2質量%となるようシクロヘキサノン溶液を調製し、スピン塗布法により薄膜を形成後、0Pa100℃60分間の加熱を行って形成した。この表面層の膜厚は100nmであり、ジメチルシリコーンオイル(信越化学工業社製KF-96L-1CS)、アセトン、テトラヒドロフラン(THF)の各種有機溶媒には不溶であった。
-Production of display media-
A display medium was produced by the method described in Example A1, except that the method for forming the surface layer was changed to the following method in “-Production of display medium” in Example A1.
For the surface layer, a cyclohexanone solution was prepared so that the polymer compound A4 was 4% by mass and Takenate D-160N (manufactured by Mitsui Chemicals) was 2% by mass as a crosslinkable monomer, and a thin film was formed by spin coating. It was formed by heating at 0 Pa 100 ° C. for 60 minutes. The surface layer had a thickness of 100 nm and was insoluble in various organic solvents such as dimethyl silicone oil (KF-96L-1CS manufactured by Shin-Etsu Chemical Co., Ltd.), acetone, and tetrahydrofuran (THF).
<実施例A5>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物A5の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行った。
 -高分子化合物A5の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):58質量部
 ・(メタ)アクリル系モノマー2(メタクリル酸、MAA、和光純薬工業社製):18質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):14質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):9質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
<Example A5>
A surface layer was formed and evaluated by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A5.
-Synthesis of polymer compound A5-
-(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 58 parts by mass-(Meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries): 18 masses Parts Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 14 parts by mass Crosslinkable monomer (monomer containing blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 9 Mass parts-Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass-Polymerization initiator (Azobisvaleronitrile, Wako Pure Chemical Industries, Ltd .: V-65): 0.1 parts by mass
<実施例A6>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物A6の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行った。
 -高分子化合物A6の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):31質量部
 ・シリコーンマクロマー(VTT106、Gelest社製、重量平均分子量Mw=550):30質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):51質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
<Example A6>
A surface layer was formed and evaluated by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A6.
-Synthesis of polymer compound A6-
-(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 31 parts by mass-Silicone macromer (VTT106, manufactured by Gelest, weight average molecular weight Mw = 550): 30 parts by mass-Crosslinkability Monomer (Monomer containing a blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 51 parts by mass ・ Isopropyl alcohol (manufactured by Wako Pure Chemical Industries): 45 parts by mass ・ Polymerization initiator (azobisvaleronitrile, Wako Pure) Yakuhin Kogyo Co., Ltd .: V-65): 0.1 parts by mass
<実施例A7>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物A7の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行った。
 -高分子化合物A7の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):52質量部
 ・シリコーンマクロマー(VTT106、Gelest社製、重量平均分子量Mw=550):68質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):6質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
<Example A7>
A surface layer was formed and evaluated by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A7.
-Synthesis of polymer compound A7-
(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries, Ltd.): 52 parts by mass Silicone macromer (VTT106, manufactured by Gelest, weight average molecular weight Mw = 550): 68 parts by mass Monomer (Monomer containing a blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 6 parts by mass Isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (Azobisvaleronitrile, Wako Pure) Yakuhin Kogyo Co., Ltd .: V-65): 0.1 parts by mass
<実施例A8>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物A8の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行った。
 -高分子化合物A8の合成-
 ・(メタ)アクリル系モノマー2(メタクリル酸、MAA、和光純薬工業社製):3.6質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):4.1質量部
 ・その他の重合成分(スチレン、和光純薬工業社製):2.9質量部
 ・架橋性モノマー(グリシジルメタクリレート、GMA、和光純薬工業社製:2.6質量部
 ・イソプロピルアルコール(和光純薬工業社製):40質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.3質量部
<Example A8>
A surface layer was formed and evaluated by the method described in Example A1 except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound A8.
-Synthesis of polymer compound A8-
(Meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries, Ltd.): 3.6 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 4 0.1 parts by mass Other polymerization components (styrene, manufactured by Wako Pure Chemical Industries, Ltd.): 2.9 parts by mass Crosslinkable monomer (glycidyl methacrylate, GMA, manufactured by Wako Pure Chemical Industries, Ltd .: 2.6 parts by mass) Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 40 parts by mass Polymerization initiator (azobisvaleronitrile, Wako Pure Chemical Industries, Ltd .: V-65): 0.3 parts by mass
<比較例A1>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物B1の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行なった。
 -高分子化合物B1の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):71質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):29質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
<Comparative Example A1>
A surface layer was formed and evaluated by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound B1.
-Synthesis of polymer compound B1-
(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries, Ltd.): 71 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 29 masses Parts Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (Azobisvaleronitrile, Wako Pure Chemical Industries, Ltd .: V-65): 0.1 parts by mass
<比較例A2>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物B2の組成に変更した以外は、実施例A1に記載の方法により表面層を形成し評価を行なった。
 -高分子化合物B2の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):66質量部
 ・(メタ)アクリル系モノマー2(メタクリル酸、MAA、和光純薬工業社製):20質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):4質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):10質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
<Comparative Example A2>
Evaluation was performed by forming a surface layer by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound B2.
-Synthesis of polymer compound B2-
-(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries): 66 parts by mass-(Meth) acrylic monomer 2 (methacrylic acid, MAA, manufactured by Wako Pure Chemical Industries): 20 masses Part Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 4 parts by mass Crosslinkable monomer (monomer containing a blocked isocyanate group, Karenz MOI-BP, manufactured by Showa Denko KK): 10 Mass parts-Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass-Polymerization initiator (Azobisvaleronitrile, Wako Pure Chemical Industries, Ltd .: V-65): 0.1 parts by mass
<比較例A3>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物B3の組成に変更した以外は、実施例A1に記載の方法により表面層を形成した。
 -高分子化合物B3の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):19質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):49質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):33質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
 しかし比較例A3では、上記高分子化合物B3がゲル化してしまい、表面層の成膜ができなかった。そのため、「表面層の濡れ張力の測定」および「粒子の固着評価試験」は行えなかった。
<Comparative Example A3>
A surface layer was formed by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound B3.
-Synthesis of polymer compound B3-
(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries, Ltd.): 19 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 49 masses Parts Crosslinkable monomer (monomers containing blocked isocyanate group, Karenz MOI-BP, Showa Denko KK): 33 parts by mass Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (azobis valero Nitrile, manufactured by Wako Pure Chemical Industries, Ltd .: V-65): 0.1 part by mass However, in Comparative Example A3, the polymer compound B3 gelled, and the surface layer could not be formed. Therefore, “measurement of surface layer wetting tension” and “particle adhesion evaluation test” could not be performed.
<比較例A4>
 実施例A1にて用いた高分子化合物の組成を、下記高分子化合物B4の組成に変更した以外は、実施例A1に記載の方法により表面層を形成した。
 -高分子化合物B4の合成-
 ・(メタ)アクリル系モノマー1(ヒドロキシエチルメタクリレート、HEMA、和光純薬工業社製):10質量部
 ・シリコーンマクロマー(サイラプレーンFM-0711、JNC社製、重量平均分子量Mw=1000):19質量部
 ・架橋性モノマー(ブロックイソシアネート基を含むモノマー、カレンズMOI-BP、昭和電工社製):71質量部
 ・イソプロピルアルコール(和光純薬工業社製):45質量部
 ・重合開始剤(アゾビスバレロニトリル、和光純薬工業社製:V-65):0.1質量部
 しかし比較例A4では、表面層の白化が発生した。そのため、「表面層の濡れ張力の測定」および「粒子の固着評価試験」は行わなかった。
<Comparative Example A4>
A surface layer was formed by the method described in Example A1, except that the composition of the polymer compound used in Example A1 was changed to the composition of the following polymer compound B4.
-Synthesis of polymer compound B4-
(Meth) acrylic monomer 1 (hydroxyethyl methacrylate, HEMA, manufactured by Wako Pure Chemical Industries, Ltd.): 10 parts by mass Silicone macromer (Silaplane FM-0711, manufactured by JNC, weight average molecular weight Mw = 1000): 19 masses Parts Crosslinkable monomer (monomers containing blocked isocyanate group, Karenz MOI-BP, Showa Denko KK): 71 parts by mass Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.): 45 parts by mass Polymerization initiator (azobis valero Nitrile, manufactured by Wako Pure Chemical Industries, Ltd .: V-65): 0.1 part by mass However, in Comparative Example A4, whitening of the surface layer occurred. Therefore, “measurement of surface layer wetting tension” and “particle adhesion evaluation test” were not performed.
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
<実施例A9~A26、比較例A5、A6>
[基板表面層材料]
-基板表面層材料a1~a19の作製-
 表2および表3に従った組成のシリコーン鎖を持つ高分子化合物をラジカル溶液重合で合成し、これらを基板表面層材料a1~a19とした。
<Examples A9 to A26, Comparative Examples A5 and A6>
[Substrate surface layer material]
-Preparation of substrate surface layer materials a1 to a19-
Polymer compounds having silicone chains having compositions according to Table 2 and Table 3 were synthesized by radical solution polymerization, and these were used as substrate surface layer materials a1 to a19.
[基板]
-表面層付き基板b1~b18、比較用表面層付き基板bb1、bb2の作製-
 表2および表3に従った基板表面層材料を混合溶媒(トルエン/テトラヒドロフラン=25/75質量比の溶媒)に溶解して、基板表面層材料の4質量%溶液を準備し、この溶液4質量部に、表2および表3に示す割合で架橋性モノマー(後添加)剤を混合した。
 一方、厚さ0.7mmのガラス基板上に電極としてITO(酸化スズインジウム)をスパッタリング法により50nmの厚さで成膜し、ITO電極基板を準備した。
 そして、得られた溶液を、ITO電極基板の電極面にスピンコート(2000rpm×30sec,3500rpm×2sec)にて塗布し、130℃にて1時間焼成して、膜厚100nmの表面層を形成し、表面層付き基板b1~b18、比較用表面層付き基板bb1、bb2を得た。
[substrate]
-Preparation of substrates b1 to b18 with surface layers and substrates bb1 and bb2 with surface layers for comparison-
The substrate surface layer material according to Table 2 and Table 3 was dissolved in a mixed solvent (toluene / tetrahydrofuran = 25/75 mass ratio solvent) to prepare a 4 mass% solution of the substrate surface layer material. The crosslinkable monomer (post-addition) agent was mixed in the part at the ratio shown in Table 2 and Table 3.
On the other hand, ITO (indium tin oxide) was formed as an electrode on a 0.7 mm thick glass substrate by sputtering to a thickness of 50 nm to prepare an ITO electrode substrate.
Then, the obtained solution was applied to the electrode surface of the ITO electrode substrate by spin coating (2000 rpm × 30 sec, 3500 rpm × 2 sec) and baked at 130 ° C. for 1 hour to form a surface layer having a thickness of 100 nm. The substrates b1 to b18 with surface layers and the substrates bb1 and bb2 with surface layers for comparison were obtained.
 実施例A1の表示媒体の作製において、用いる表示基板を上記表面層付き基板b1~b18、比較用表面層付き基板bb1、bb2に変更した以外は、実施例A1と同様にして表示媒体を作製し、実施例A1と同様に評価を行った。結果を表4に示す。 In the production of the display medium of Example A1, a display medium was produced in the same manner as in Example A1, except that the display substrate used was changed to the above-mentioned substrates b1 to b18 with surface layers and substrates bb1 and bb2 with comparative surface layers. Evaluation was performed in the same manner as in Example A1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 なお、表2および表3中の略称等の詳細は、以下の通りである。
・FM-0711:「サイラプレーンFM-0711(JNC社製)」、重量平均分子量Mw=1,000
・X-22-2404:「X-22-2404(信越化学工業社製)」
Details of abbreviations and the like in Table 2 and Table 3 are as follows.
FM-0711: “Silaplane FM-0711 (manufactured by JNC)”, weight average molecular weight Mw = 1,000
・ X-22-2404: “X-22-2404 (manufactured by Shin-Etsu Chemical Co., Ltd.)”
・HEMA:2-ヒドロキシエチルメタクリレート
・MAA:メタクリル酸
・MMA:メタクリル酸メチル
・CXMA:メタクリル酸シクロヘキシル
・DEAEMA:N,N-ジエチルアミノエチルメタクリレート
・A-SA:2-アクリロイルオキシエチルサクシネート(新中村化学社製)
・MOI-BP:ブロック化されたイソシアネート基を有するイソシアネート系モノマー:2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート「カレンズMOI-BP(昭和電工社製)」
・D-160N:イソシアネート化合物「タケネートD-160(三井化学社製)」
・MX-270:メチル化尿素化合物「ニカラックMX-270(三和ケミカル社製)」
-HEMA: 2-hydroxyethyl methacrylate-MAA: methacrylic acid-MMA: methyl methacrylate-CXMA: cyclohexyl methacrylate-DEAEMA: N, N-diethylaminoethyl methacrylate-A-SA: 2-acryloyloxyethyl succinate (Shin Nakamura (Chemical company)
MOI-BP: Isocyanate monomer having a blocked isocyanate group: 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate “Karenz MOI-BP (manufactured by Showa Denko KK)”
D-160N: Isocyanate compound “Takenate D-160 (Mitsui Chemicals)”
MX-270: Methylated urea compound “Nicalak MX-270 (manufactured by Sanwa Chemical Co., Ltd.)”
 上記結果から、本実施例Aでは、比較例Aに比べ、粒子の固着が抑制されることがわかる。 From the above results, it can be seen that the sticking of particles is suppressed in Example A as compared with Comparative Example A.
≪実施例B≫
[基板表面層材料]
-基板表面層材料A1~A17の作製-
 表5および表6に従った組成のシリコーン鎖を持つ高分子化合物をラジカル溶液重合で合成し、これらを基板表面層材料A1~A17とした。
Example B
[Substrate surface layer material]
-Production of substrate surface layer materials A1 to A17-
Polymer compounds having silicone chains having compositions according to Tables 5 and 6 were synthesized by radical solution polymerization, and these were used as substrate surface layer materials A1 to A17.
[基板]
-表面層付き基板B1~B17の作製-
 表5および表6に従った基板表面層材料を混合溶媒(トルエン/テトラヒドロフラン=25/75質量比の溶媒)に溶解して、基板表面層材料の4質量%溶液を準備し、この溶液4質量部に,トリイソシアネート系架橋剤(「タケネートD160N(タケダ薬品工業社製)」)2質量部を混合した。
 一方、厚さ0.7mmのガラス基板上に電極としてITO(酸化スズインジウム)をスパッタリング法により50nmの厚さで成膜し、ITO電極基板を準備した。
 そして、得られた溶液を、ITO電極基板の電極面にスピンコート(2000rpm×30sec,3500rpm×2sec)にて塗布し,130℃にて1時間焼成して,膜厚100nmの表面層を形成し、表面層付き基板B1~B17を得た。
[substrate]
-Production of substrates B1 to B17 with surface layers-
The substrate surface layer material according to Table 5 and Table 6 was dissolved in a mixed solvent (toluene / tetrahydrofuran = 25/75 mass ratio solvent) to prepare a 4% by mass solution of the substrate surface layer material. 2 parts by mass of a triisocyanate-based crosslinking agent (“Takenate D160N (manufactured by Takeda Pharmaceutical Co., Ltd.)”) was mixed with the part.
On the other hand, ITO (indium tin oxide) was formed as an electrode on a 0.7 mm thick glass substrate by sputtering to a thickness of 50 nm to prepare an ITO electrode substrate.
Then, the obtained solution was applied to the electrode surface of the ITO electrode substrate by spin coating (2000 rpm × 30 sec, 3500 rpm × 2 sec) and baked at 130 ° C. for 1 hour to form a surface layer having a thickness of 100 nm. Substrates B1 to B17 with a surface layer were obtained.
-比較用表面層付き基板BB1の作製-
 フッ素樹脂を希釈用フッ素溶媒に溶解して、フッ素樹脂の33質量%溶液を準備した。
 得られた溶液を、表面層付き基板B1と同様のITO電極基板の電極面にスピンコート(500rpm×20sec,2500rpm×10sec)にて塗布し,130℃にて1時間焼成して,膜厚100nmの表面層を形成し、比較用表面層付き基板BB1を得た。
-Production of substrate BB1 with a surface layer for comparison-
The fluororesin was dissolved in a diluting fluorosolvent to prepare a 33% by mass solution of the fluororesin.
The obtained solution was applied to the electrode surface of the ITO electrode substrate similar to the substrate B1 with the surface layer by spin coating (500 rpm × 20 sec, 2500 rpm × 10 sec), baked at 130 ° C. for 1 hour, and a film thickness of 100 nm A surface layer with a comparative surface layer BB1 was obtained.
[泳動粒子(その分散液)]
-シアン粒子C1(その分散液C1)の作製-
 コア粒子の樹脂としてスチレン/アクリル樹脂A45質量部と、架橋剤としてメチル化メラミン樹脂(「MX-035(三和ケミカル社製)」)5質量部と,着色剤としてシアン顔料PB15:3を26質量%含む水分散液Emacol SF Blue H524F (山陽色素社製)50質量部と、蒸留水24.1質量部とを、60℃に加温しながら混合し、インク固形分濃度が15%、乾燥後の顔料濃度が50%となるように分散相を調製した。
[Electrophoretic particles (dispersion liquid)]
-Preparation of cyan particles C1 (dispersion C1)-
45 parts by mass of styrene / acrylic resin A as the core particle resin, 5 parts by mass of methylated melamine resin (“MX-035 (manufactured by Sanwa Chemical Co.)”) as the crosslinking agent, and 26 cyan pigment PB15: 3 as the colorant 50% by weight of an aqueous dispersion containing Emasol SF Blue H524F (manufactured by Sanyo Dye) and 24.1 parts by weight of distilled water are mixed while heating to 60 ° C., and the ink solid content concentration is 15% and dried. The dispersed phase was prepared so that the subsequent pigment concentration was 50%.
 次に、界面活性剤KF-6028(信越化学工業社製)3.5質量部をシリコーンオイルKF-96L-2cs (信越化学工業社製)に溶解して連続相350質量部を調製し、これに上記分散相50質量部を加えて内歯式卓上分散機ROBOMICS(特殊機化工業社製)を用い回転数10000rpm、温度30℃で10分間乳化を行った。その結果、乳化液滴径が約2μmの乳化液を得た。これをロータリーエバポレーターを用いて真空度20mbar、水浴温度40℃で18時間乾燥を行った。
 次に、このシリコーンオイル中粒子分散液を遠心分離器を用いた沈降工程と、超音波洗浄機を用いた再分散工程を3回繰り返し、過剰な界面活性剤KF-6028を除き濃縮してコア粒子6質量部を得た。なお、遠心分離の条件は6000rpmで15分である。
 得られた粒子をSEM観察して、画像解析した結果、平均粒径は0.6μm、C.V.値(単分散性を示す指標:Coefficient of Variation:CV[%] = (σ/D)×100(σ:標準偏差,D:平均粒径))は25%であった。
Next, 3.5 parts by mass of surfactant KF-6028 (manufactured by Shin-Etsu Chemical Co., Ltd.) is dissolved in silicone oil KF-96L-2cs (manufactured by Shin-Etsu Chemical Co., Ltd.) to prepare 350 parts by mass of a continuous phase. 50 parts by mass of the above dispersed phase was added to the mixture, and emulsification was carried out for 10 minutes at a rotational speed of 10000 rpm and a temperature of 30 ° C. using an internal tooth tabletop dispersing machine ROBOMICS (manufactured by Tokushu Kika Kogyo). As a result, an emulsion having an emulsion droplet diameter of about 2 μm was obtained. This was dried using a rotary evaporator at a vacuum degree of 20 mbar and a water bath temperature of 40 ° C. for 18 hours.
Next, the sediment dispersion step using a centrifugal separator and the redispersion step using an ultrasonic washer are repeated three times to remove the excess surfactant KF-6028 and concentrate the core particle dispersion in silicone oil. 6 parts by mass of particles were obtained. The centrifugation conditions are 15 minutes at 6000 rpm.
As a result of SEM observation and image analysis of the obtained particles, the average particle diameter was 0.6 μm, CV value (index indicating monodispersity: Coefficient of Variation: CV [%] = (σ / D) × 100 (σ: standard deviation, D: average particle size)) was 25%.
 次に,各重合成分として、サイラプレーンFM-0721(JNC社製)1.7質量部と、サイラプレーンFM-0725(JNC社製)0.2質量部、ヒドロキシエチルメタクリレート59.8質量部と、AMP-10G(新中村化学工業社製)6.5質量部と、カレンズMOI-BP(昭和電工社製)21.8質量部と、をイソプロピルアルコール200質量部に混合して溶解した。これに重合開始剤としてAIBN(2,2’-アゾビス(イソブチロニトリル))0.2質量部を溶解し、窒素下で70℃、6時間重合を行なった。生成物をシクロヘキサンを再沈殿溶媒として精製、乾燥し、被覆層の樹脂(シェル樹脂)を得た。この被覆層の樹脂2質量部をt-ブタノール溶媒20質量部に溶解し、被覆層形成用溶液(シェル溶液)を作製した。 Next, as each polymerization component, Silaplane FM-0721 (manufactured by JNC) is 1.7 parts by mass, Silaplane FM-0725 (manufactured by JNC) is 0.2 parts by mass, and hydroxyethyl methacrylate is 59.8 parts by mass. AMP-10G (manufactured by Shin-Nakamura Chemical Co., Ltd.) and 21.8 parts by mass of Karenz MOI-BP (manufactured by Showa Denko KK) were mixed and dissolved in 200 parts by mass of isopropyl alcohol. 0.2 parts by mass of AIBN (2,2′-azobis (isobutyronitrile)) as a polymerization initiator was dissolved in this, and polymerization was performed at 70 ° C. for 6 hours under nitrogen. The product was purified using cyclohexane as a reprecipitation solvent and dried to obtain a resin (shell resin) for the coating layer. 2 parts by mass of the resin of the coating layer was dissolved in 20 parts by mass of t-butanol solvent to prepare a coating layer forming solution (shell solution).
 次に、上記コア粒子1質量部を200mLのナスフラスコに取り、シリコーンオイルKF-96L-2csを15質量部加え、25℃でコア粒子分散液に超音波を加えながら撹拌分散した。これに、t-ブタノール7.5質量部、上記被覆層形成用溶液(シェル溶液)22質量部、シリコーンオイル「KF-96L-2cs(信越化学工業社製)」12.5質量部を順次加えた。投入速度は全て2mL/sで行った。上記ナスフラスコをロータリーエバポレーターに接続し、真空度20mbar、水浴温度50℃で1時間、t-ブタノール除去を行った。
 これを、さらに撹拌しながらオイルバス中で加温した。まず100℃で1時間加温し、残留水分と残留するt-ブタノールを除いた後、続けて130℃で1.5時間の加熱を行い、ブロックイソシアネート基のブロック基を脱離させ、被覆層の樹脂(シェル樹脂)の架橋反応を行った。
 冷却後、シリコーンオイル粒子分散液を、遠心分離機を用いた沈降工程と、超音波洗浄機を用いた再分散工程を3回繰り返し、過剰な被覆層の樹脂(シェル樹脂)を除去した。最終的に得られた粒子は0.6質量部であった。
Next, 1 part by mass of the above core particles was placed in a 200 mL eggplant flask, 15 parts by mass of silicone oil KF-96L-2cs was added, and the core particle dispersion was stirred and dispersed at 25 ° C. while applying ultrasonic waves. To this, 7.5 parts by mass of t-butanol, 22 parts by mass of the above coating layer forming solution (shell solution), and 12.5 parts by mass of silicone oil “KF-96L-2cs (manufactured by Shin-Etsu Chemical Co., Ltd.)” were sequentially added. It was. The input speed was all 2 mL / s. The eggplant flask was connected to a rotary evaporator, and t-butanol was removed at a vacuum of 20 mbar and a water bath temperature of 50 ° C. for 1 hour.
This was heated in an oil bath with further stirring. First, heating is performed at 100 ° C. for 1 hour to remove residual moisture and residual t-butanol, followed by heating at 130 ° C. for 1.5 hours to remove the blocking group of the blocked isocyanate group, and thereby the coating layer A cross-linking reaction of the resin (shell resin) was performed.
After cooling, the silicone oil particle dispersion was subjected to a sedimentation step using a centrifuge and a redispersion step using an ultrasonic cleaner three times to remove excess resin (shell resin) of the coating layer. The finally obtained particles were 0.6 parts by mass.
 以上の工程を経て、コア粒子の表面に被覆層を形成したシアン粒子(泳動粒子)C1の分散液を得た。
 なお、液中に分散されたシアン粒子(泳動粒子)C1は、遠心分離機を用いてシリコーンオイルで洗浄し、シリコーンオイルに分散されたシアン粒子分散液C1(粒子固形分5質量%)として得た。
 作製したシアン粒子分散液中のシアン粒子(泳動粒子)の平均粒径を測定した結果、600nmであった。
 また、シアン粒子分散液中のシアン粒子(泳動粒子)の帯電極性を、2枚の電極基板間に該分散液を封入し、直流電圧を印加して泳動方向を評価した結果、正帯電であった。
Through the above steps, a dispersion of cyan particles (electrophoretic particles) C1 having a coating layer formed on the surface of the core particles was obtained.
The cyan particles (electrophoretic particles) C1 dispersed in the liquid are obtained as a cyan particle dispersion C1 (particle solid content of 5% by mass) dispersed in silicone oil by washing with silicone oil using a centrifuge. It was.
It was 600 nm as a result of measuring the average particle diameter of the cyan particle (electrophoretic particle) in the produced cyan particle dispersion.
In addition, the charged polarity of cyan particles (electrophoretic particles) in the cyan particle dispersion was positively charged as a result of encapsulating the dispersion between two electrode substrates and applying a DC voltage to evaluate the electrophoretic direction. It was.
-シアン粒子C2~C6(その分散液C2~C6)の作製-
 表7および表8に従って、コア粒子および被覆層の組成を変更した以外は、シアン粒子C1(その分散液C1)と同様にしてシアン粒子(泳動粒子)C2~C6(その分散液C2~C6)を得た。
 作製したシアン粒子分散液中のシアン粒子(泳動粒子)の帯電極性を、2枚の電極基板間に該分散液を封入し、直流電圧を印加して泳動方向を評価した結果、シアン粒子C5は負帯電で、シアン粒子C1~C4、C6は正帯電であった。
-Preparation of cyan particles C2 to C6 (dispersions C2 to C6 thereof)-
According to Tables 7 and 8, cyan particles (electrophoretic particles) C2 to C6 (dispersions C2 to C6) are the same as cyan particles C1 (dispersion C1) except that the composition of the core particles and the coating layer is changed. Got.
As a result of evaluating the charging polarity of the cyan particles (electrophoretic particles) in the produced cyan particle dispersion by enclosing the dispersion between two electrode substrates and applying a DC voltage to evaluate the electrophoretic direction. The cyan particles C1 to C4 and C6 were negatively charged and positively charged.
-比較用シアン粒子CC1(その分散液CC1)の作製-
 シリコーン変性ポリマーKP-545(信越化学工業社製)3質量部をジメチルシリコーンオイル(信越化学工業社製KF-96L-2CS)97質量部に溶解して溶液Aを調製した。
 次に、ジメチルアミン・エピクロロヒドリンポリマー10質量部、水分散顔料溶液(Ciba社製ユニスパース・シアン色、顔料濃度20質量%)5質量部、純水85質量部を混合して溶液Bを調整した。
 次に、得られた溶液Aと溶液Bを混合し、超音波破砕機(エスエムテー社製UH-600S)にて分散し乳化を行った。
 次に、この懸濁液を減圧(2KPa)、加熱(70℃)して水分を除去し、濃度を調整することにより、シリコーンオイル中に比較用シアン粒子(泳動粒子)CC1が分散した比較用シアン粒子分散液CC1(粒子固形分5質量%)を得た。
 作製したシアン粒子分散液中のシアン粒子(泳動粒子)の平均粒径を測定した結果、290nmであった。
 また、シアン粒子分散液中のシアン粒子(泳動粒子)の帯電極性を、2枚の電極基板間に該分散液を封入し、直流電圧を印加して泳動方向を評価した結果、正帯電であった。
-Preparation of comparative cyan particles CC1 (dispersion liquid CC1 thereof)-
A solution A was prepared by dissolving 3 parts by mass of silicone-modified polymer KP-545 (manufactured by Shin-Etsu Chemical Co., Ltd.) in 97 parts by mass of dimethyl silicone oil (KF-96L-2CS manufactured by Shin-Etsu Chemical Co., Ltd.).
Next, 10 parts by mass of a dimethylamine / epichlorohydrin polymer, 5 parts by mass of a water-dispersed pigment solution (Unipas cyan color, pigment concentration 20% by mass, manufactured by Ciba), and 85 parts by mass of pure water are mixed to prepare a solution B. It was adjusted.
Next, the obtained solution A and solution B were mixed, and dispersed and emulsified with an ultrasonic crusher (UH-600S manufactured by SMT).
Next, the suspension was decompressed (2 KPa), heated (70 ° C.) to remove moisture, and the concentration was adjusted, whereby comparative cyan particles (electrophoretic particles) CC1 were dispersed in silicone oil. Cyan particle dispersion CC1 (particle solid content 5 mass%) was obtained.
It was 290 nm as a result of measuring the average particle diameter of the cyan particle (electrophoretic particle) in the produced cyan particle dispersion.
In addition, the charged polarity of cyan particles (electrophoretic particles) in the cyan particle dispersion was positively charged as a result of encapsulating the dispersion between two electrode substrates and applying a DC voltage to evaluate the electrophoretic direction. It was.
[白色粒子W1]
-分散液AA1の調製-
 下記成分を混合し、10mmΦのジルコニアボールにてボールミル粉砕を20時間実施して分散液AAを調製した。
<組成>
・メタクリル酸シクロヘキシル: 53質量部
・酸化チタン: 45質量部
(白色顔料:一次粒子径0.3μm、タイペークCR63:石原産業社製)
・シクロヘキサン: 5質量部
[White particles W1]
-Preparation of dispersion AA1-
The following components were mixed and ball milling was performed for 20 hours with 10 mmφ zirconia balls to prepare dispersion AA.
<Composition>
・ Cyclohexyl methacrylate: 53 parts by mass. Titanium oxide: 45 parts by mass (white pigment: primary particle size 0.3 μm, Type CR63: manufactured by Ishihara Sangyo Co., Ltd.)
・ Cyclohexane: 5 parts by mass
-炭カル分散液ABの調製-
 下記成分を混合し、上記と同様にボールミルにて微粉砕して炭カル分散液ABを調製した。
<組成>
・炭酸カルシウム: 40質量部
・水: 60質量部
-Preparation of charcoal dispersion AB-
The following components were mixed, and finely pulverized with a ball mill in the same manner as above to prepare a charcoal dispersion AB.
<Composition>
・ Calcium carbonate: 40 parts by mass ・ Water: 60 parts by mass
-混合液ACの調製-
 下記成分を混合し、超音波機で脱気を10分間おこない、ついで乳化機で攪拌して混合液ACを調製した。
<組成>
・2%セロゲン 4.3質量部
・炭カル分散液AB: 8.5質量部
・20%食塩水: 50質量部
-Preparation of mixture AC-
The following components were mixed, degassed with an ultrasonic machine for 10 minutes, and then stirred with an emulsifier to prepare a mixed liquid AC.
<Composition>
-2% serogen 4.3 parts by mass-Charcoal cal dispersion AB: 8.5 parts by mass-20% saline: 50 parts by mass
 次に、分散液AA35質量部、ジビニルベンゼン1質量部、および重合開始剤AIBN(アゾビスイソブチロニトリル)0.35質量部を計り取り、これらを混合し、超音波機で脱気を10分おこなった。これを混合液ACに加え、乳化機で乳化を実施した。
 次に、この乳化液をビンに入れ、シリコーン詮をし、注射針を使用し、減圧脱気を充分行い、窒素ガスで封入した。
 次に、65℃で15時間反応させ粒子を調製した。冷却後、この分散液を凍結乾燥機により-35℃、0.1Paの下で2日間でシクロヘキサンを除去した。得られた粒子粉をイオン交換水中に分散させ、塩酸水で炭酸カルシウムを分解させ、ろ過を行った。その後充分な蒸留水で洗浄し、目開き:20μm、25μmのナイロン篩にかけ、粒度を揃えた。これを乾燥させ、平均粒子径20μmの白色粒子W1を得た。
Next, 35 parts by weight of dispersion AA, 1 part by weight of divinylbenzene, and 0.35 part by weight of polymerization initiator AIBN (azobisisobutyronitrile) are weighed, mixed, and deaerated with an ultrasonic machine. I did it. This was added to the liquid mixture AC and emulsified with an emulsifier.
Next, this emulsified liquid was put into a bottle, and a silicone bottle was put on it, and a vacuum needle was sufficiently deaerated using an injection needle and sealed with nitrogen gas.
Next, particles were prepared by reacting at 65 ° C. for 15 hours. After cooling, cyclohexane was removed from the dispersion with a freeze dryer at −35 ° C. and 0.1 Pa for 2 days. The obtained particle powder was dispersed in ion-exchanged water, calcium carbonate was decomposed with hydrochloric acid water, and filtered. Thereafter, it was washed with sufficient distilled water, and passed through a nylon sieve having openings of 20 μm and 25 μm to make the particle sizes uniform. This was dried to obtain white particles W1 having an average particle diameter of 20 μm.
[実施例B1~B22、比較例B1~B4]
 表9に従って、2枚の同じ表面層付き基板を準備し、これを第1基板、および第2基板とした。そして、50μmのテフロン(登録商標)シートをスペーサーとして、第1基板上に第2基板を互いの表面層を対向させるようにして重ね合わせて、クリップにて固定した。
 次に、表9に従って、白色粒子10質量部およびシアン粒子5質量部となるように、シアン粒子分散液に白色粒子を混合し、これを上記基板間の間隙に注入した後、封止して、評価用セルを作製した。
[Examples B1 to B22, Comparative Examples B1 to B4]
In accordance with Table 9, two identical substrates with a surface layer were prepared and used as a first substrate and a second substrate. Then, using a 50 μm Teflon (registered trademark) sheet as a spacer, the second substrate was superimposed on the first substrate with the surface layers facing each other, and fixed with clips.
Next, according to Table 9, the white particles were mixed with the cyan particle dispersion so that the white particles were 10 parts by mass and the cyan particles were 5 parts by mass, and the mixture was injected into the gap between the substrates, and then sealed. An evaluation cell was produced.
 評価用セルを作製し、12時間経過した後、当該評価用セルからシリコーンオイル(分散媒)の一部を採取し、これを測定試料として、既述の方法に従って、シリコーンオイル(分散媒)の水を除く極性成分の含有量を測定した。 After the evaluation cell was prepared and 12 hours passed, a part of the silicone oil (dispersion medium) was collected from the evaluation cell, and this was used as a measurement sample according to the method described above. The content of polar components excluding water was measured.
 次に、作製した評価用セルを用いて、第1基板を表示基板とし、その表示面がシアン色となるように(つまり、第1基板側にシアン粒子が泳動するように)、第1基板および第2基板の互いの電極に15Vの電圧を印加した。 Next, using the produced evaluation cell, the first substrate is used as a display substrate, and the display surface is cyan (that is, cyan particles migrate to the first substrate side). A voltage of 15 V was applied to each electrode of the second substrate.
 その後、第1基板を表示基板とし、その表示面が白色となるように(つまり、第2基板側にシアン粒子が泳動するように)、第1基板および第2基板の互いの電極に15Vの電圧を印加した。
 このとき第1基板側から観察した白色の白色濃度を、X-Rite404にて測定して、白色反射率に換算した。このときの白色反射率を「初期白色反射率」とした。
 そして、同様の操作を100回繰り返した後、同様に、白色反射率を測定し、このときの白色反射率を「経時白色反射率」とした。
Thereafter, the first substrate is used as a display substrate, and the display surface is white (that is, cyan particles migrate to the second substrate side). A voltage was applied.
At this time, the white white density observed from the first substrate side was measured by X-Rite 404 and converted into white reflectance. The white reflectance at this time was defined as “initial white reflectance”.
Then, after the same operation was repeated 100 times, the white reflectance was measured in the same manner, and the white reflectance at this time was defined as “temporal white reflectance”.
 その後、再び、第1基板を表示基板とし、その表示面が白色となるように(つまり、第2基板側にシアン粒子が泳動するように)、第1基板および第2基板の互いの電極に15Vの電圧を印加した。 After that, again, the first substrate is used as a display substrate, and the display surface becomes white (that is, cyan particles migrate to the second substrate side). A voltage of 15V was applied.
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000017
 
 上記結果から、実施例Bでは、比較例Bに比べ、経時白色反射率の低下が抑制されていることがわかる。 From the above results, it can be seen that in Example B, the decrease in white reflectance over time is suppressed as compared with Comparative Example B.
 なお、表5~表8中の略称等の詳細は、以下の通りである。
・FM-0711:「サイラプレーンFM-0711(JNC社製)」、重量平均分子量Mw=1,000
・FM-0721:「サイラプレーンFM-0721(JNC社製)」、重量平均分子量Mw=5,000
・FM-0725:「サイラプレーンFM-0725(JNC社製)」、重量平均分子量Mw=10,000
・X-22-2404:「X-22-2404(信越化学工業社製)」
Details of abbreviations and the like in Tables 5 to 8 are as follows.
FM-0711: “Silaplane FM-0711 (manufactured by JNC)”, weight average molecular weight Mw = 1,000
FM-0721: “Silaplane FM-0721 (manufactured by JNC)”, weight average molecular weight Mw = 5,000
FM-0725: “Silaplane FM-0725 (manufactured by JNC)”, weight average molecular weight Mw = 10,000
・ X-22-2404: “X-22-2404 (manufactured by Shin-Etsu Chemical Co., Ltd.)”
・HEMA:2-ヒドロキシエチルメタクリレート
・MAA:メタクリル酸
・MMA:メタクリル酸メチル
・CXMA:メタクリル酸シクロヘキシル
・DMAPAA:ジメチルアミノプロピルアクリルアミド
・A-SA:2-アクリロイルオキシエチルサクシネート(新中村化学社製)
・MOI-BP:ブロック化されたイソシアネート基を有するイソシアネート系モノマー:2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチルメタクリレート「カレンズMOI-BP(昭和電工社製)」
・D-160N:イソシアネート化合物「タケネートD-160(三井化学社製)」
・MX-270:メチル化尿素化合物「ニカラックMX-270(三和ケミカル社製)」
· HEMA: 2-hydroxyethyl methacrylate · MAA: methacrylic acid · MMA: methyl methacrylate · CXMA: cyclohexyl methacrylate · DMAPAA: dimethylaminopropylacrylamide · A-SA: 2-acryloyloxyethyl succinate (manufactured by Shin-Nakamura Chemical Co., Ltd.) )
MOI-BP: Isocyanate monomer having a blocked isocyanate group: 2-[(3,5-dimethylpyrazolyl) carbonylamino] ethyl methacrylate “Karenz MOI-BP (manufactured by Showa Denko KK)”
D-160N: Isocyanate compound “Takenate D-160 (Mitsui Chemicals)”
MX-270: Methylated urea compound “Nicalak MX-270 (manufactured by Sanwa Chemical Co., Ltd.)”
・スチレン/アクリル樹脂A:「X-345(星光PMC社製)」(アクリル部位のカルボン酸が2-ヒドロキシエチルジメチルアンモニウムによりアンモニウム塩化)
・アクリル樹脂B:アクリル系化合物の重合体「AW-36H(星光PMC社製)」(アクリル部位のカルボン酸がアンモニア水によりアンモニウム塩化)
・スチレン/マレイン酸樹脂C:スチレン系化合物とマレイン酸系化合物の共重合体「X-1202L(星光PMC社製)」(マレイン酸がアンモニア水によりアンモニウム塩化)
・スルホン酸樹脂D:2-アクリルアミド-2-メチルプパンスルホン酸を含む重合物
・CTX-809M:フッ素樹脂「CTX-809M(AGC社製)」
・AMP-10G:フェノキシ化合物の重合体
・MX-035:メチル化メラミン樹脂「MX-035(三和ケミカル社製)」
・H525F:シアン顔料(「H525F(山陽色素社製)」)
 
Styrene / acrylic resin A: “X-345 (manufactured by Seiko PMC)” (the carboxylic acid of the acrylic moiety is ammonium chloride with 2-hydroxyethyldimethylammonium)
Acrylic resin B: Acrylic compound polymer “AW-36H (manufactured by Seiko PMC)” (acrylic carboxylic acid is ammonium chloride with aqueous ammonia)
Styrene / maleic acid resin C: Copolymer of styrene compound and maleic acid compound “X-1220L (manufactured by Seiko PMC)” (maleic acid is ammonium chloride with ammonia water)
・ Sulphonic acid resin D: Polymer containing 2-acrylamido-2-methylpropanesulfonic acid ・ CTX-809M: Fluorine resin “CTX-809M (manufactured by AGC)”
・ AMP-10G: Polymer of phenoxy compound ・ MX-035: Methylated melamine resin “MX-035 (manufactured by Sanwa Chemical Co., Ltd.)”
-H525F: Cyan pigment ("H525F (manufactured by Sanyo Dye)")

Claims (5)

  1.  電極を有し、少なくとも一方が透光性を有し且つ間隙をもって配置された一対の基板と、
     前記一対の基板間に封入された分散媒と、
     前記分散媒中に分散され、前記一対の基板間に形成された電界に応じて該分散媒中を移動する粒子群と、
     少なくとも10モル%以上90モル%以下の(1)(メタ)アクリル系モノマー、1モル%以上50モル%以下の(2)シリコーンマクロマー、および2モル%以上70モル%以下の(3)架橋性モノマーに由来する高分子化合物(但し前記比率は、前記(1)、(2)および(3)の成分の合計量を基準(100モル%)とした場合の比率である)が、前記一対の基板の対向面の少なくとも一方に設けられた表面層と、
     を有する表示媒体。
    A pair of substrates having electrodes, at least one of which is translucent and disposed with a gap;
    A dispersion medium sealed between the pair of substrates;
    A group of particles dispersed in the dispersion medium and moving in the dispersion medium in response to an electric field formed between the pair of substrates;
    (1) (meth) acrylic monomer of at least 10 mol% to 90 mol%, (2) silicone macromer of 1 mol% to 50 mol%, and (3) crosslinkability of 2 mol% to 70 mol% A polymer compound derived from a monomer (provided that the ratio is a ratio based on the total amount of the components (1), (2) and (3) (100 mol%)) A surface layer provided on at least one of the opposing surfaces of the substrate;
    A display medium.
  2.  前記表面層の表面の濡れ張力(JIS-K6768/1999年)が35mN/m以下である請求項1に記載の表示媒体。 The display medium according to claim 1, wherein the surface layer has a surface wetting tension (JIS-K6768 / 1999) of 35 mN / m or less.
  3.  前記高分子化合物が、前記シリコーンマクロマーとして下記構造式で示される化合物から選択される少なくとも1種に由来する構成単位を有する請求項1または請求項2に記載の表示媒体。
    Figure JPOXMLDOC01-appb-C000001

     
    〔上記構造式中、Rは、水素原子またはメチル基を示す。R’は、水素原子または炭素数1以上4以下のアルキル基を示す。nは自然数を示す。xは1以上3以下の整数を示す。〕
    The display medium according to claim 1, wherein the polymer compound has a structural unit derived from at least one selected from compounds represented by the following structural formula as the silicone macromer.
    Figure JPOXMLDOC01-appb-C000001


    [In the above structural formula, R 1 represents a hydrogen atom or a methyl group. R 1 ′ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n represents a natural number. x represents an integer of 1 to 3. ]
  4.  前記分散媒は、水を除く極性成分の含有量が0.01質量%以下である請求項1から請求項3のいずれか一項に記載の表示媒体。 The display medium according to any one of claims 1 to 3, wherein the dispersion medium has a content of polar components excluding water of 0.01% by mass or less.
  5.  請求項1から請求項4のいずれか一項に記載の表示媒体と、
     前記一対の基板間に電圧を印加する電圧印加手段と、
     を備えた表示装置。
     
    A display medium according to any one of claims 1 to 4,
    Voltage applying means for applying a voltage between the pair of substrates;
    A display device comprising:
PCT/JP2013/060544 2012-04-13 2013-04-05 Display medium and display device WO2013154058A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-092466 2012-04-13
JP2012092466 2012-04-13
JP2012092468 2012-04-13
JP2012-092468 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013154058A1 true WO2013154058A1 (en) 2013-10-17

Family

ID=49327622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060544 WO2013154058A1 (en) 2012-04-13 2013-04-05 Display medium and display device

Country Status (2)

Country Link
JP (1) JP2013235262A (en)
WO (1) WO2013154058A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029512B2 (en) * 2013-03-28 2016-11-24 富士フイルム株式会社 Reflective particles, particle dispersion, display medium, and display device
JP7410645B2 (en) * 2019-03-08 2024-01-10 積水化学工業株式会社 Adhesive tape
KR20230096058A (en) * 2020-12-24 2023-06-29 가부시끼가이샤 레조낙 Copolymer and method for producing the copolymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003330047A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Optoelectronic device, method for manufacturing the same and electronic equipment
JP2004210962A (en) * 2002-12-27 2004-07-29 Lion Corp Water-repelling agent composition
JP2005062305A (en) * 2003-08-08 2005-03-10 Fuji Xerox Co Ltd Method of manufacturing particle for display device, particle for the display device, and image display medium using the same and image forming device
JP2006243399A (en) * 2005-03-03 2006-09-14 Soken Chem & Eng Co Ltd Device and method for reflective image display
JP2010078826A (en) * 2008-09-25 2010-04-08 Fuji Xerox Co Ltd Display medium and display device
JP2011081120A (en) * 2009-10-06 2011-04-21 Toppan Printing Co Ltd Antireflection film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023711A (en) * 2004-06-08 2006-01-26 Canon Inc Electrophoretic display apparatus
JP2012042497A (en) * 2010-08-12 2012-03-01 Fuji Xerox Co Ltd Particle dispersion liquid for display, display medium and display device
JP5234076B2 (en) * 2010-09-22 2013-07-10 富士ゼロックス株式会社 Display medium and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003330047A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Optoelectronic device, method for manufacturing the same and electronic equipment
JP2004210962A (en) * 2002-12-27 2004-07-29 Lion Corp Water-repelling agent composition
JP2005062305A (en) * 2003-08-08 2005-03-10 Fuji Xerox Co Ltd Method of manufacturing particle for display device, particle for the display device, and image display medium using the same and image forming device
JP2006243399A (en) * 2005-03-03 2006-09-14 Soken Chem & Eng Co Ltd Device and method for reflective image display
JP2010078826A (en) * 2008-09-25 2010-04-08 Fuji Xerox Co Ltd Display medium and display device
JP2011081120A (en) * 2009-10-06 2011-04-21 Toppan Printing Co Ltd Antireflection film

Also Published As

Publication number Publication date
JP2013235262A (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP4816703B2 (en) Display medium and display device
US20130222886A1 (en) Dispersion liquid for display, display medium, and display device
JP5381737B2 (en) Display device
US8587859B2 (en) White particle for display, particle dispersion for display , display medium, and display device
US20130222884A1 (en) Electrophoretic particle, particle dispersion liquid for display, display medium and display device
US8581899B2 (en) Display medium and display device
WO2013154058A1 (en) Display medium and display device
US8331015B2 (en) Display medium and display device
JP2010204537A (en) White particle for display, display medium and display device
KR20130098196A (en) Display particles, display particle dispersion liquid, display medium, and display device
JP5682660B2 (en) White particles for display, particle dispersion for display, display medium, and display device
JP5499438B2 (en) Display particles and manufacturing method thereof, display particle dispersion, display medium, and display device
WO2013153994A1 (en) Display medium and display device
JP5959321B2 (en) White particles for display, particle dispersion for display, display medium, and display device
JP5387437B2 (en) Display particle dispersion, display medium, and display device
US9778535B2 (en) Particle dispersion for display, display medium, and display device
US7952793B2 (en) Electrophoretic particles, electrophoretic particle dispersion, display medium and display device
JP6114574B2 (en) Electrophoretic particles, electrophoretic particle dispersion, display medium, and display device
JP5332792B2 (en) Display medium and display device
JP2012042497A (en) Particle dispersion liquid for display, display medium and display device
JP5936188B2 (en) Image display particles, image display particle dispersion, display medium, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13776265

Country of ref document: EP

Kind code of ref document: A1