Nothing Special   »   [go: up one dir, main page]

WO2013151233A1 - 배터리셀 - Google Patents

배터리셀 Download PDF

Info

Publication number
WO2013151233A1
WO2013151233A1 PCT/KR2013/001185 KR2013001185W WO2013151233A1 WO 2013151233 A1 WO2013151233 A1 WO 2013151233A1 KR 2013001185 W KR2013001185 W KR 2013001185W WO 2013151233 A1 WO2013151233 A1 WO 2013151233A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
separator
battery cell
separation film
electrode assembly
Prior art date
Application number
PCT/KR2013/001185
Other languages
English (en)
French (fr)
Inventor
공명철
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Publication of WO2013151233A1 publication Critical patent/WO2013151233A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery cell, and relates to a battery cell having an improved shape of an electrode assembly constituted in the battery cell.
  • secondary batteries are rechargeable and have a large capacity, such as nickel cadmium, nickel hydrogen, and lithium ion batteries.
  • the lithium ion battery has attracted attention as a next generation power source due to its excellent characteristics such as long life and high capacity.
  • lithium secondary batteries are used as power sources for portable electronic devices with operating voltages of 3.6 V or higher, or in high-power hybrid vehicles by connecting several in series. Compared with the three times higher operating voltage and excellent energy density per unit weight, the use is increasing rapidly.
  • the lithium secondary battery may be manufactured in various forms, and typical shapes include cylindrical and prismatic types that are mainly used in lithium ion batteries.
  • Lithium polymer batteries which are in the spotlight in recent years, have been manufactured in a flexible pouched type, and their shapes are relatively free.
  • the lithium polymer battery is excellent in safety and light in weight, which is advantageous for slimmer and lighter portable electronic devices.
  • the electrode assembly is composed of a separator which separates the first electrode portion, the second electrode portion, and the first electrode portion and the second electrode portion, respectively.
  • the electrode assembly may be manufactured in the form of a winding or folded in a zigzag form.
  • the electrode assembly manufactured in the folding form has a problem in that a plurality of empty spaces are generated between the separator and the first electrode part or between the separator and the second electrode part.
  • the present invention has been made to solve the above problems, to provide a battery cell comprising an electrode assembly that can reduce the empty space between the separator and the first electrode portion or the separator and the second electrode portion.
  • the battery cell of the present invention comprises: an electrode assembly including a first electrode part, a second electrode part, and a separator separating the first electrode part and the second electrode part; First and second electrode tabs connected to the first and second electrode portions, respectively; And a case for exposing the first electrode tab and the second electrode tab to the outside and accommodating the first electrode part, the second electrode part, and the separator therein, wherein the separator includes the first electrode part and the second electrode.
  • the contact portion is the surface of the separator is bonded to each other.
  • the contact portion is bonded to the surface of the separator by heat fusion.
  • the first electrode portion is an anode
  • the second electrode portion is a cathode
  • the separator is formed in a zigzag shape to separate the alternately stacked first and second electrode parts, respectively.
  • the electrode assembly according to the second exemplary embodiment of the present invention is a full cell in which the first electrode part and the second electrode part are sequentially stacked with an anode, a separation film, and a cathode, or a cathode, a separation film, and an anode are sequentially stacked.
  • the separator is formed in a zigzag shape to separate the alternately stacked first and second electrode parts, respectively.
  • the first electrode portion and the second electrode portion are sequentially stacked anode, separation film, cathode, separation film, anode or cathode, separation film, anode, separation A bicell in which a film and a cathode are laminated.
  • the separator is formed in a zigzag shape to separate the alternately stacked first and second electrode parts, respectively.
  • the battery cell of the present invention has an advantage of reducing the empty space between the separator and the first and second electrode parts, thereby effectively using the space.
  • FIG. 1 is a cross-sectional view of an electrode assembly according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view of an electrode assembly including a multilayer structure in which a first electrode part and a second electrode part are alternately stacked according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of an electrode assembly according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view of an electrode assembly according to Embodiment 3 of the present invention.
  • 5 to 6 are various embodiments of a battery cell including an electrode assembly according to an embodiment of the present invention
  • the battery cell of the present invention includes an electrode assembly, a first electrode tab, a second electrode tab, and a case.
  • the electrode assembly is a configuration provided inside the case, the electrode assembly of the present invention may be formed in various forms, it will be described in detail.
  • FIG. 1 is a cross-sectional view of an electrode assembly according to Embodiment 1 of the present invention.
  • the electrode assembly 100a includes a first electrode part 110a, a second electrode part 120a, and a separator 130a.
  • the first electrode part 110a is a positive electrode 101, and includes a positive electrode 101 active material layer coated on both surfaces of a positive electrode 101 current collector made of a thin metal plate having excellent conductivity and an aluminum (Al) foil.
  • a chalcogenide compound is used as the active material.
  • complex metal oxides such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi1-xCoxO 2 (0 ⁇ x ⁇ 1), and LiMnO 2 are used.
  • the material is not limited.
  • the second electrode part 120a is a cathode 102, and is a cathode 101 active material coated on both surfaces of an anode 102 current collector made of a conductive metal sheet, for example, copper (Cu) or nickel (Ni) foil. It contains a layer.
  • a carbon (C) -based material Si, Sn, tin oxide, composite tin alloys, transition metal oxide, lithium metal nitride, or lithium metal oxide is used. It does not limit the substance.
  • the separator 130a is configured to separate the first electrode part 110a and the second electrode part 120a, and is formed from a group consisting of polyethylene, polypropylene, and a copolymer of polyethylene and polypropylene. It is made of any one selected, but the material is not limited in this embodiment.
  • the separator 130a may be formed to include the first bending part 131a, the second bending part 132a, and the contact part 133a.
  • the first bending part 131a is a part formed by bending a predetermined region of the separator 130a at one end of the first electrode part 110a while covering at least a portion of the first electrode part 110a.
  • the second bending part 132a is a part formed by bending a predetermined region of the separator 130a at one end of the second electrode part 120a while covering at least a portion of the second electrode part 120a.
  • the contact portion 133a is formed to be in contact with each other while the predetermined regions of the separation membrane 130a corresponding to the first bending portion 131a and the second bending portion 132a are folded.
  • the electrode assembly 100a includes a contact portion 133a, and thus, an empty space between the separator 130a and the first electrode portion 110a or the separator 130a and the second electrode portion 120a. There is an advantage to reduce.
  • the contact portion 133a may be bonded by applying a sealing member.
  • contact portion 133a may be bonded by thermal fusion.
  • the electrode assembly 100a includes a contact portion 133a, so that the first bending portion 131a and the second bending portion 132a are formed of the first electrode portion 110a and the second electrode portion ( In close contact with the 120a side, there is an advantage in that the empty space between the separator 130a and the first and second electrode parts 110a and 120a can be further reduced.
  • FIG. 2 is a cross-sectional view of an electrode assembly including a multilayer structure in which a first electrode part and a second electrode part are alternately stacked according to Embodiment 1 of the present invention.
  • the electrode assembly 100a has a multilayer structure in which a plurality of first electrode portions 110a and a plurality of second electrode portions 120a are alternately stacked. Can be.
  • the separator 130a is formed in a zigzag form including the first bending part 131a, the second bending part 132a, and the contact part 133a to form the first electrode part 110a and the second electrode part 120a.
  • the plurality of first electrode portions 110a and the plurality of second electrode portions 120 that are alternately stacked and enclosed at least a portion of the plurality of second electrodes 120 are separated from each other.
  • FIG. 3 is a cross-sectional view of an electrode assembly 100 according to Embodiment 2 of the present invention.
  • the electrode assembly 100b includes a first electrode part 110b, a second electrode part 120b, and a separator 130b.
  • the first electrode part 110b and the second electrode part 120b are sequentially stacked with the anode 101, the separation film 103, and the cathode 102, or sequentially with the cathode 102, the separation film 103, and the anode.
  • Each of the 101 cells is formed of a stacked full cell.
  • the electrode assembly 100b includes a full cell in which the first electrode part 110b is sequentially stacked with the anode 101, the separation film 103, and the cathode 102.
  • the second electrode part 120b may be formed in a structure in which the cathode 102, the separation film 103, and the cathode 102 are sequentially stacked.
  • the electrode assembly 100b according to the second embodiment of the present invention is formed in a structure of a full cell in which the first electrode part 110b is sequentially stacked with a cathode 102, a separation film 103, and an anode 101.
  • the second electrode part 120b may be formed to have a structure in which the anode 101, the separation film 103, and the cathode 102 are sequentially stacked.
  • first electrode part 110b and the second electrode part 120b are composed of a plurality of alternating layers to increase the overall power capacity of the electrode assembly 100b.
  • the first electrode part 110b and the second electrode part 120b are formed of a full cell in which the anode 101, the separation film 103, and the cathode 102 are sequentially stacked, and the plurality of first electrode parts ( 110b) and the plurality of second electrode portions 120b are alternately stacked.
  • the separation film 103 is formed of the same material as the separator 130b.
  • the separator 130b is formed in a zigzag form including the first bending part 131b, the second bending part 132b, and the contact part 133b to form at least one of the first electrode part 110b and the second electrode part 120b.
  • the first electrode part 110b and the second electrode part 120b, which are alternately stacked and partially stacked, are separated from each other.
  • FIG. 4 is a cross-sectional view of an electrode assembly according to a third exemplary embodiment of the present invention.
  • the electrode assembly 100c includes a first electrode part 110c, a second electrode part 120c, and a separator 130c.
  • the first electrode part 110c and the second electrode part 120c are sequentially stacked with the anode 101, the separator film 103, the cathode 102, the separator film 103, and the anode 101 or the cathode sequentially.
  • the 102, the separation film 103, the positive electrode 101, the separation film 103, and the negative electrode 102 are each formed of a bi-cell (bi-cell) is laminated.
  • the first electrode part 110 may sequentially have a positive electrode 101, a separation film 103, a negative electrode 102, a separation film 103, and an anode 101.
  • first electrode part 110c and the second electrode part 110c are configured in plural and alternately stacked in order to increase the overall power capacity of the electrode assembly 100c.
  • the first electrode part 110c and the second electrode part 120c are sequentially stacked with the positive electrode 101, the separation film 103, the negative electrode 102, the separation film 103, and the positive electrode 101.
  • a structure in which a cell is formed and a plurality of first electrode portions 110c and a plurality of second electrode portions 120c are alternately stacked is illustrated.
  • the separator 130c is formed in a zigzag form including the first bending part 131c, the second bending part 132c, and the contact part 133c to form at least one of the first electrode part 110c and the second electrode part 120c.
  • the first electrode part 110c and the second electrode part 120c, which are alternately stacked and partially stacked, are separated from each other.
  • the electrode assembly according to Embodiments 2 and 3 of the present invention is formed in a stacked form of a full cell or bicell, while maximizing the content of the electrode active material, while the empty space between the separator and the first electrode part and the second electrode part. There is an advantage to reduce.
  • 5 to 6 are various embodiments of a battery cell including an electrode assembly according to an embodiment of the present invention.
  • one embodiment of a battery cell 1000a including an electrode assembly may include an electrode assembly, a first electrode junction 140a, a second electrode junction 150a, and a second electrode assembly 150a.
  • the first electrode tab 145a, the second electrode tab 155a, and the case 200a are formed.
  • Electrode assembly is preferably formed of an electrode assembly (100a) according to the first embodiment of the present invention.
  • the present invention is not limited to this, and may be applied to an electrode assembly of another embodiment including the technical idea of the present invention.
  • the first electrode junction 140a extends from one side of each of the first electrode portions 110a of the electrode assembly 100a, and each end of the first electrode junction 140a is joined.
  • the second electrode bonding part 150a is formed to extend from one side to the second electrode part 120 of the electrode assembly 100, and one end of each of the second electrode bonding part 150a is joined.
  • the first electrode tab 145a and the second electrode tab 155a are connected to the first electrode tab 140a and the second electrode tab 150a as a configuration for power connection.
  • an electrode assembly 100a, a first electrode junction 140a, and a second electrode junction 150a are accommodated therein, and the first electrode tab 145a and the second electrode tab 155a are disposed to the outside. Sealed so as to be exposed, the sealing member (A) is formed by applying a sealing member on the circumferential surface bonded to each other.
  • case 200 is made of a conductive metal material such as aluminum, aluminum alloy or nickel plated steel.
  • another embodiment of a battery cell 1000b including an electrode assembly includes an electrode assembly, a first electrode junction 140b, a second electrode junction 150b, The first electrode tab 145b, the second electrode tab 155b, and the case 200b are formed.
  • the electrode assembly is preferably formed of the electrode assembly 100a according to the first embodiment of the present invention, but the present invention is not limited thereto and may be applied to the electrode assembly of another embodiment including the technical idea of the present invention. Do.
  • the first electrode bonding part 140b is formed to extend in one direction from the first electrode part 110b of the electrode assembly 100b, and each end of the first electrode bonding part 140b is joined.
  • the second electrode bonding portion 150b is formed to extend in the other direction from the second electrode portion 120b of the electrode assembly 100b, and one end of the second electrode bonding portion 150b is joined.
  • the first electrode tab 145b and the second electrode tab 155b are connected to the first electrode junction 140b and the second electrode junction 150b as a configuration for connecting power.
  • the case 200b includes an electrode assembly 100b, a first electrode junction 140b, and a second electrode junction 150b disposed therein, and the first electrode tab 145b and the second electrode tab 155b are disposed outward. Sealed so as to be exposed, the sealing member (A) is formed by applying a sealing member on the circumferential surface bonded to each other.
  • the battery cell of the present invention constitutes a battery cell including an electrode assembly capable of reducing the empty space between the separator and the first electrode part or the separator and the second electrode part, thereby separating the separator and the first electrode part and the second electrode part.
  • an electrode assembly capable of reducing the empty space between the separator and the first electrode part or the separator and the second electrode part, thereby separating the separator and the first electrode part and the second electrode part.
  • the present invention can be applied to a rectangular battery, and is not limited to the above-described embodiments.
  • first electrode portion 120a, b, c second electrode portion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 배터리셀은 제1전극부, 제2전극부, 및 상기 제1전극부와 상기 제2전극부를 분리하는 분리막을 포함하는 전극조립체; 상기 제1전극부 및 제2전극부에 각각 연결되는 제1전극탭 및 제2전극탭; 상기 제1전극탭 및 제2전극탭이 외부로 노출되며 상기 제1전극부, 제2전극부 및 분리막을 내부에 수납하는 케이스;를 포함하며, 상기 분리막은 상기 제1전극부와 제2전극부의 적어도 일부를 감싸며 상기 제1전극부의 일단에서 굽힘 형성되는 제1벤딩부와 상기 제2전극부의 일단에서 굽힘 형성되는 제2벤딩부를 포함하고, 상기 제1벤딩부 및 상기 제2벤딩부는 상기 분리막이 접혀져서 그 면이 서로 맞닿도록 형성되는 접촉부를 포함한다.

Description

배터리셀
본 발명은 배터리셀에 관한 것으로, 배터리셀에 구성되는 전극조립체의 형태가 개선된 배터리셀에 관한 것이다.
통상적으로 2차 전지는 재충전이 가능하고 대용량화가 가능한 것으로 대표적인 것으로 니켈카드뮴, 니켈수소 및 리튬이온전지 등이 있다. 이중에서 상기 리튬이온전지는 장 수명, 고용량 등 우수한 특성으로 인하여 차세대 동력원으로 주목받고 있다. 이 중에서, 리튬 2차 전지는 작동 전압이 3.6V 이상으로 휴대용 전자 기기의 전원으로 사용되거나, 또는 수개를 직렬 연결하여 고출력의 하이브리드 자동차에 사용되는데, 니켈-카드뮴 전지나, 니켈-메탈 하이드라이드 전지에 비하여 작동 전압이 3배가 높고, 단위 중량당 에너지 밀도의 특성도 우수하여 급속도로 사용이 증가되고 있는 추세이다.
상기 리튬 2차 전지는 다양한 형태로 제조가능한데, 대표적인 형상으로는 리튬 이온 전지에 주로 사용되는 원통형(cylinder type) 및 각형(prismatic type)을 들 수 있다. 최근 들어 각광받는 리튬 폴리머 전지는 유연성을 지닌 파우치형(pouched type)으로 제조되어서, 그 형상이 비교적 자유롭다. 또한 리튬 폴리머 전지는 안전성도 우수하고, 무게가 가벼워서 휴대용 전자 기기의 슬림화 및 경량화에 유리하다.
상기한 바와 같은 파우치형 이차 전지에 있어서, 전극조립체는 제1전극부 및 제2전극부와 제1전극부와 제2전극부를 각각 분리시키는 분리막으로 구성된다.
또한, 전극조립체는 권취형태로 제작되거나 지그재그형태로 접힌 폴딩형태로 제조된다.
그런데, 상기 폴딩형태로 제조된 전극조립체는 분리막과 제1전극부 또는 분리막과 제2전극부 사이에 다수개의 빈 공간이 발생하는 문제점이 있었다.
따라서 상기한 바와 같은 문제점을 해결하기 위한 전극조립체를 포함하는 배터리셀의 개발이 필요한 실정이다.
(선행기술문헌)
(특허문헌)
US 2011-0104550 A1 (2011.05.05)
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 분리막과 제1전극부 또는 분리막과 제2전극부 사이의 빈 공간을 줄일 수 있는 전극조립체를포함하는 배터리셀을 제공하려는 것이다.
본 발명의 배터리셀은 제1전극부, 제2전극부, 및 상기 제1전극부와 상기 제2전극부를 분리하는 분리막을 포함하는 전극조립체; 상기 제1전극부 및 제2전극부에 각각 연결되는 제1전극탭 및 제2전극탭; 상기 제1전극탭 및 제2전극탭이 외부로 노출되며 상기 제1전극부, 제2전극부 및 분리막을 내부에 수납하는 케이스;를 포함하며, 상기 분리막은 상기 제1전극부와 제2전극부의 적어도 일부를 감싸며 상기 제1전극부의 일단에서 굽힘 형성되는 제1벤딩부와 상기 제2전극부의 일단에서 굽힘 형성되는 제2벤딩부를 포함하고, 상기 제1벤딩부 및 상기 제2벤딩부는 상기 분리막이 접혀져서 그 면이 서로 맞닿도록 형성되는 접촉부를 포함한다.
또한, 상기 접촉부는 상기 분리막의 면이 서로 접착된다.
이 때, 상기 접촉부는 상기 분리막의 면이 열융착에 의해 접착된다.
한 편, 본 발명의 실시예 1에 따른 상기 전극조립체는 상기 제1전극부가 양극이고, 상기 제2전극부가 음극이다.
이 때, 상기 전극조립체는 복수의 상기 제1전극부와 복수의 상기 제2전극부가 교번 적층되고, 상기 분리막은 지그재그형태로 형성되어 교번 적층된 상기 제1전극부와 제2전극부를 각각 분리시킨다.
또한, 본 발명의 실시예 2에 따른 상기 전극조립체는 상기 제1전극부 및 상기 제2전극부가 순차적으로 양극, 분리 필름, 음극이 적층되거나 순차적으로 음극, 분리 필름, 양극이 적층된 풀셀이다.
이 때, 상기 전극조립체는 복수의 상기 제1전극부와 복수의 상기 제2전극부가 교번 적층되고, 상기 분리막은 지그재그형태로 형성되어 교번 적층된 상기 제1전극부와 제2전극부를 각각 분리시킨다.
또한, 본 발명의 실시예 3에 따른 상기 전극조립체는 상기 제1전극부 및 제2전극부가 순차적으로 양극, 분리 필름, 음극, 분리 필름, 양극이 적층되거나 순차적으로 음극, 분리 필름, 양극, 분리 필름, 음극이 적층된 바이셀이다.
이 때, 상기 전극조립체는 복수의 상기 제1전극부와 복수의 상기 제2전극부가 교번 적층되고, 상기 분리막은 지그재그형태로 형성되어 교번 적층된 상기 제1전극부와 제2전극부를 각각 분리시킨다.
본 발명의 배터리셀은 분리막과 제1, 2전극부 사이의 빈 공간을 줄일 수 있어서 공간을 효율적으로 사용할 수 있는 장점이 있다.
도 1은 본 발명의 실시예 1에 따른 전극조립체의 단면도
도 2는 본 발명의 실시예 1에 따른 제1전극부와 제2전극부가 교번 적층된 다층 구조를 포함하는 전극조립체의 단면도
도 3은 본 발명의 실시예 2에 따른 전극조립체의 단면도
도 4는 본 발명의 실시에 3에 따른 전극조립체의 단면도
도 5 내지 도 6은 본 발명의 실시예에 따른 전극조립체를 포함하는 배터리셀의 여러 실시예
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 기술적 사상이 첨부된 도면의 형태에 한정되는 것은 아니다.
본 발명의 배터리셀은 전극조립체, 제1전극탭, 제2전극탭, 케이스를 포함하여 형성된다.
전극조립체는 케이스의 내부에 구비되는 구성으로서, 본 발명의 전극조립체는 다양한 형태로 형성될 수 있는데, 이에 대해 상세히 설명하기로 한다.
도 1은 본 발명의 실시예 1에 따른 전극조립체의 단면도이다.
도 1에 도시된 바와 같이, 본 발명의 실시예 1에 따른 전극조립체(100a)는 제1전극부(110a), 제2전극부(120a), 분리막(130a)을 포함하여 형성된다.
제1전극부(110a)는 양극(101)으로서, 도전성이 우수한 금속 박판, 알루미늄(Al) 호일(foil)로 이루어진 양극(101) 집전체의 양면에 코팅된 양극(101) 활물질층을 포함하고 있다. 활물질로는 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNiO2, LiNi1-xCoxO2(0<x<1), LiMnO2 등의 복합 금속 산화물들이 사용되고 있으나, 본 실시예에서 그 물질을 한정하는 것은 아니다.
제2전극부(120a)는 음극(102)으로서, 전도성 금속 박판, 예를 들면, 구리(Cu) 또는 니켈(Ni) 호일로 이루어진 음극(102) 집전체의 양면에 코팅된 양극(101) 활물질층을 포함하고 있다. 음극(102) 활물질은 탄소(C) 계열 물질, Si, Sn, 틴 옥사이드, 틴 합금 복합체(composite tin alloys), 전이 금속 산화물, 리튬 금속 나이트라이드 또는 리튬 금속 산화물 등 이 사용되고 있으나, 본 실시예에서 그 물질을 한정하는 것은 아니다.
분리막(130a)은 제1전극부(110a)와 제2전극부(120a)를 분리시키는 구성으로서, 폴리에틸렌, 폴리프로필렌 및 폴리에틸렌과 폴리프로필렌의 공중합체(co-polymer)로 이루어지는 군(group)에서 선택되는 어느 하나로 이루어져 있으나, 본 실시예에서 그 재질을 한정하는 것은 아니다.
또한, 분리막(130a)은 제1벤딩부(131a), 제2벤딩부(132a), 접촉부(133a)를 포함하여 형성된다.
제1벤딩부(131a)는 분리막(130a)의 소정 영역이 제1전극부(110a)의 적어도 일부를 감싸면서 제1전극부(110a)의 일단에서 굽혀져서 형성되는 부분이다.
제2벤딩부(132a)는 분리막(130a)의 소정 영역이 제2전극부(120a)의 적어도 일부를 감싸면서 제2전극부(120a)의 일단에서 굽혀져서 형성되는 부분이다.
접촉부(133a)는 제1벤딩부(131a) 및 제2벤딩부(132a)에 해당되는 분리막(130a)의 소정 영역이 접혀지면서 서로 맞닿도록 형성되는 구성이다.
이에 따라, 본 발명에 따른 전극조립체(100a)는 접촉부(133a)가 구성됨으로서, 분리막(130a)과 제1전극부(110a) 또는 분리막(130a)과 제2전극부(120a) 사이의 빈 공간을 줄일 수 있는 장점이 있다.
또한, 접촉부(133a)는 실링부재를 도포하여 접착될 수 있다.
또한, 접촉부(133a)는 열융착에 의해 접착 할 수 있다.
이에 따라, 본 발명에 따른 전극조립체(100a)는 접촉부(133a)가 구성됨으로서, 제1벤딩부(131a) 및 제2벤딩부(132a)를 제1전극부(110a) 및 제2전극부(120a) 측으로 더욱 밀착시켜 분리막(130a)과 제1, 2전극부(110a, 120a) 사이의 빈공간을 더욱 줄일 수 있는 장점이 있다.
도 2는 본 발명의 실시예 1에 따른 제1전극부와 제2전극부가 교번 적층된 다층 구조를 포함하는 전극조립체의 단면도이다.
도 2에 도시된 바와 같이, 본 발명의 실시예 1에 따른 전극조립체(100a)는 복수의 제1전극부(110a)와 복수의 제2전극부(120a)가 교번 적층된 다층 구조로 구성될 수 있다.
이 때, 분리막(130a)은 제1벤딩부(131a), 제2벤딩부(132a), 접촉부(133a)를 포함하는 지그재그형태로 형성되어 제1전극부(110a) 및 제2전극부(120a)의 적어도 일부를 둘러싸며 교번 적층된 복수의 제1전극부(110a)와 복수의 제2전극부(120)를 각각 분리시킨다.
도 3는 본 발명의 실시예 2에 따른 전극조립체(100)의 단면도이다.
도 3에 도시된 바와 같이, 본 발명의 실시예 2에 따른 전극조립체(100b)는 제1전극부(110b), 제2전극부(120b), 분리막(130b)을 포함하여 형성된다.
제1전극부(110b)와 제2전극부(120b)는 순차적으로 양극(101), 분리 필름(103), 음극(102)이 적층되거나 순차적으로 음극(102), 분리 필름(103), 양극(101)이 적층되는 풀셀로 각각 형성된다.
또한, 본 발명의 실시예 2에 따른 전극조립체(100b)는 제1전극부(110b)가 순차적으로 양극(101), 분리 필름(103), 음극(102)이 적층되는 풀셀(Full cell)의 구조로 형성되고, 제2전극부(120b)가 순차적으로 음극(102), 분리 필름(103), 음극(102)이 적층되는 구조로도 형성될 수 있다.
또한, 본 발명의 실시예 2에 따른 전극조립체(100b)는 제1전극부(110b)가 순차적으로 음극(102), 분리 필름(103), 양극(101)이 적층되는 풀셀의 구조로 형성되고, 제2전극부(120b)가 순차적으로 양극(101), 분리 필름(103), 음극(102)이 적층되는 구조로도 형성될 수 있다.
또한, 제1전극부(110b) 및 제2전극부(120b)는 각각 복수개로 구성되어 교번 적층되는 것이 전극조립체(100b)의 전체적인 전력 용량을 높이기 위하여 바람직하다.
도 3에는 1전극부(110b) 및 제2전극부(120b)가 순차적으로 양극(101), 분리 필름(103), 음극(102)이 적층되는 풀셀로 형성되되, 복수의 제1전극부(110b)와 복수의 제2전극부(120b)가 교번 적층된 구조를 도시하였다.
양극(101)과 음극(102)은 위에서 설명하였으므로 추가설명은 생략하며, 분리 필름(103)은 분리막(130b)과 동일한 재질로 형성된다.
분리막(130b)은 제1벤딩부(131b), 제2벤딩부(132b), 접촉부(133b)를 포함하는 지그재그형태로 형성되어 제1전극부(110b) 및 제2전극부(120b)의 적어도 일부를 둘러싸며, 교번 적층된 제1전극부(110b)와 제2전극부(120b)를 각각 분리시킨다.
도 4는 본 발명의 실시예 3에 따른 전극조립체의 단면도이다.
도 4에 도시된 바와 같이, 본 발명의 실시예 3에 따른 전극조립체(100c)는 제1전극부(110c), 제2전극부(120c), 분리막(130c)을 포함하여 형성된다.
제1전극부(110c)와 제2전극부(120c)는 순차적으로 양극(101), 분리 필름(103), 음극(102), 분리 필름(103), 양극(101)이 적층되거나 순차적으로 음극(102), 분리 필름(103), 양극(101), 분리 필름(103), 음극(102)이 적층되는 바이셀(bi-cell)로 각각 형성된다.
그러나 본 발명의 실시예 3에 따른 전극조립체(100c)는 제1전극부(110)가 순차적으로 양극(101), 분리 필름(103), 음극(102), 분리 필름(103), 양극(101)이 적층되는 풀셀의 구조로 형성되고, 제2전극부(120)가 순차적으로 음극(102), 분리 필름(103), 양극(101), 분리 필름(103), 음극(102)이 적층되는 구조로도 형성될 수 있다.
또한, 제1전극부(110c) 및 제2전극부(110c)는 각각 복수개로 구성되어 교번 적층되는 것이 전극조립체(100c)의 전체적인 전력 용량을 높이기 위하여 바람직하다.
도 4에는 1전극부(110c) 및 제2전극부(120c)가 순차적으로 양극(101), 분리 필름(103), 음극(102), 분리 필림(103), 양극(101)이 적층되는 바이셀의 구조로 형성되되, 복수의 제1전극부(110c)와 복수의 제2전극부(120c)가 교번 적층된 구조를 도시하였다.
양극(101), 음극(102), 분리 필름(103)은 위에서 설명하였으므로 추가설명은 생략한다.
분리막(130c)은 제1벤딩부(131c), 제2벤딩부(132c), 접촉부(133c)를 포함하는 지그재그형태로 형성되어 제1전극부(110c) 및 제2전극부(120c)의 적어도 일부를 둘러싸며 교번 적층된 제1전극부(110c)와 제2전극부(120c)를 각각 분리시킨다.
이에 따라, 본 발명의 실시예 2, 3에 따른 전극조립체는 풀셀 또는 바이셀이 적층된 형태로 형성되어 전극 활물질의 함량을 극대화 하면서도, 분리막과 제1전극부 및 제2전극부 사이의 빈 공간을 줄일 수 있는 장점이 있다.
도 5 내지 도 6은 본 발명의 실시예에 따른 전극조립체를 포함하는 배터리셀의 여러 실시예이다.
도 5에 도시된 바와 같이, 본 발명의 실시예에 따른 전극조립체를 포함하는 배터리셀(1000a)의 일실시예는 전극조립체, 제1전극접합부(140a), 제2전극접합부(150a), 제1전극탭(145a), 제2전극탭(155a), 케이스(200a)를 포함하여 형성된다.
전극조립체는 본 발명의 실시예 1에 따른 전극조립체(100a)로 형성되는 것이 바람직하나. 본 발명은 이에 한정되지 않고, 본 발명의 기술적 사상을 포함하는 또 다른 실시예의 전극조립체로도 적용이 가능하다.
제1전극접합부(140a)는 전극조립체(100a)에 구성된 제1전극부(110a)에서 각각 일측으로 연장 형성되며, 각각의 일단이 접합된다.
제2전극접합부(150a)는 전극조립체(100)에 구성된 제2전극부(120)에서 각각 일측으로 연장 형성되며, 각각의 일단이 접합된다.
제1전극탭(145a) 및 제2전극탭(155a)은 전원연결을 위한 구성으로서, 제1전극접합부(140a) 및 제2전극접합부(150a)에 각각 접합된다.
케이스(200a)는 내부에 전극조립체(100a), 제1전극접합부(140a) 및 제2전극접합부(150a)가 수용되며, 제1전극탭(145a) 및 제2전극탭(155a)이 외측으로 노출되도록 밀봉되되, 서로 접합되는 둘레면에 실링부재를 도포하여 실링된 밀봉부(A)가 형성된다.
또한, 케이스(200)는 알루미늄이나 알루미늄 합금 또는 니켈이 도금된 스틸 등과 같은 도전성 금속재로 이루어진다.
도 6에 도시된 바와 같이, 본 발명의 실시예에 따른 전극조립체를 포함하는 배터리셀(1000b)의 또 다른 실시예는 전극조립체, 제1전극접합부(140b), 제2전극접합부(150b), 제1전극탭(145b), 제2전극탭(155b), 케이스(200b)를 포함하여 형성된다.
전극조립체는 본 발명의 실시예 1에 따른 전극조립체(100a)로 형성되는 것이 바람직하나, 본 발명은 이에 한정되지 않고, 본 발명의 기술적 사상을 포함하는 또 다른 실시예의 전극조립체로도 적용이 가능하다.
제1전극접합부(140b)는 전극조립체(100b)에 구성된 제1전극부(110b)에서 각각 일측방향으로 연장 형성되며, 각각의 일단이 접합된다.
제2전극접합부(150b)는 전극조립체(100b)에 구성된 제2전극부(120b)에서 각각 타측방향으로 연장 형성되며, 각각의 일단이 접합된다.
제1전극탭(145b) 및 제2전극탭(155b)은 전원연결을 위한 구성으로서, 제1전극접합부(140b) 및 제2전극접합부(150b)에 각각 접합된다.
케이스(200b)는 내부에 전극조립체(100b), 제1전극접합부(140b) 및 제2전극접합부(150b)가 수용되며, 제1전극탭(145b) 및 제2전극탭(155b)이 외측으로 노출되도록 밀봉되되, 서로 접합되는 둘레면에 실링부재를 도포하여 실링된 밀봉부(A)가 형성된다.
이에 따라, 본 발명의 배터리셀은 분리막과 제1전극부 또는 분리막과 제2전극부 사이의 빈공간을 줄일 수 있는 전극조립체를 포함하는 배터리셀을 구성함으로서, 분리막과 제1전극부 및 제2전극부가 서로 효율적으로 밀착됨에 따라, 전극조립체를 둘러싸는 케이스의 크기를 줄일 수 있는 장점이 있다.
또한, 본 발명은 각형 전지에도 적용될 수 있으며, 상기한 실시예들에 한정되지 아니한다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
(부호의 설명)
1000a, b : 본 발명의 배터리셀
100a, b, c : 전극조립체
101 : 양극 102 : 음극
103 : 분리 필름
110a, b, c : 제1전극부 120a, b, c : 제2전극부
130a, b, c : 분리막
131a, b, c : 제1벤딩부 132a, b, c : 제2벤딩부
133a, b, c : 접촉부
140a, b : 제1전극접합부 145a, b : 제1전극탭
150a, b : 제2전극접합부 155a, b : 제2전극탭
200a, b : 케이스
A : 밀봉부

Claims (9)

  1. 제1전극부, 제2전극부, 및 상기 제1전극부와 상기 제2전극부를 분리하는 분리막을 포함하는 전극조립체;
    상기 제1전극부 및 제2전극부에 각각 연결되는 제1전극탭 및 제2전극탭; 및
    상기 제1전극탭 및 제2전극탭이 외부로 노출되며 상기 제1전극부, 제2전극부 및 분리막을 내부에 수납하는 케이스;를 포함하며,
    상기 분리막은 상기 제1전극부와 제2전극부의 적어도 일부를 감싸며 상기 제1전극부의 일단에서 굽힘 형성되는 제1벤딩부와 상기 제2전극부의 일단에서 굽힘 형성되는 제2벤딩부를 포함하고,
    상기 제1벤딩부 및 상기 제2벤딩부는 상기 분리막이 접혀져서 그 면이 서로 맞닿도록 형성되는 접촉부를 포함하는 배터리셀.
  2. 제1항에 있어서, 상기 접촉부는
    상기 분리막의 면이 서로 접착되는 배터리셀.
  3. 제2항에 있어서, 상기 접촉부는
    상기 분리막의 면이 열융착에 의해 접착되는 배터리셀.
  4. 제1항에 있어서, 상기 전극조립체는
    상기 제1전극부가 양극이고, 상기 제2전극부가 음극인 배터리셀.
  5. 제4항에 있어서, 상기 전극조립체는
    복수의 상기 제1전극부와 복수의 상기 제2전극부가 교번 적층되고,
    상기 분리막은 지그재그형태로 형성되어 교번 적층된 상기 제1전극부와 제2전극부를 각각 분리시키는 배터리셀.
  6. 제1항에 있어서, 상기 전극조립체는
    상기 제1전극부 및 상기 제1전극부가 순차적으로 양극, 분리 필름, 음극이 적층되거나 순차적으로 음극, 분리 필름, 양극이 적층된 풀셀인 배터리셀.
  7. 제6항에 있어서, 상기 전극조립체는
    복수의 상기 제1전극부와 복수의 상기 제2전극부가 교번 적층되고,
    상기 분리막은 지그재그형태로 형성되어 교번 적층된 상기 제1전극부와 제2전극부를 각각 분리시키는 배터리셀.
  8. 제1항에 있어서, 상기 전극조립체는
    상기 제1전극부 및 상기 제1전극부가 순차적으로 양극, 분리 필름, 음극, 분리 필름, 양극이 적층되거나 순차적으로 음극, 분리 필름, 양극, 분리 필름, 음극이 적층된 바이셀인 배터리셀.
  9. 제8항에 있어서, 상기 전극조립체는
    복수의 상기 제1전극부와 복수의 상기 제2전극부가 교번 적층되고,
    상기 분리막은 지그재그형태로 형성되어 교번 적층된 상기 제1전극부와 제2전극부를 각각 분리시키는 배터리셀.
PCT/KR2013/001185 2012-04-02 2013-02-15 배터리셀 WO2013151233A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0033754 2012-04-02
KR1020120033754A KR101901370B1 (ko) 2012-04-02 2012-04-02 배터리셀

Publications (1)

Publication Number Publication Date
WO2013151233A1 true WO2013151233A1 (ko) 2013-10-10

Family

ID=49300686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001185 WO2013151233A1 (ko) 2012-04-02 2013-02-15 배터리셀

Country Status (2)

Country Link
KR (1) KR101901370B1 (ko)
WO (1) WO2013151233A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554860A (en) * 2016-10-04 2018-04-18 Saralon Gmbh Thin printed battery
CN109860490A (zh) * 2017-11-30 2019-06-07 宁德新能源科技有限公司 电芯、电池以及电芯的隔离膜的封装方法
US11437651B2 (en) * 2016-09-06 2022-09-06 Samsung Sdi Co., Ltd. Stacked electrode assembly and flexible rechargeable battery comprising the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646313B1 (ko) * 2013-12-11 2016-08-05 현대자동차주식회사 바이폴라 셀 및 그 제조방법
WO2018159938A1 (ko) 2017-02-28 2018-09-07 한국과학기술원 유연성 탄소 포켓 복합 구조체, 이의 제조방법, 이를 포함하는 전극 및 상기 전극을 포함하는 에너지 저장 디바이스
US10985364B2 (en) 2017-02-28 2021-04-20 Korea Advanced Institute Of Science And Technology Pliable carbonaceous pocket composite structure, method for preparing the same, electrode, including the same, and energy storage device including the electrode
KR102666729B1 (ko) * 2021-03-22 2024-05-16 주식회사 엘지에너지솔루션 전극 조립체 및 이를 포함하는 이차전지
EP4443592A1 (en) * 2022-01-14 2024-10-09 LG Energy Solution, Ltd. Secondary battery and manufacturing method therefor
KR20230110024A (ko) * 2022-01-14 2023-07-21 주식회사 엘지에너지솔루션 이차전지 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030170533A1 (en) * 2000-06-30 2003-09-11 Airey Matthew Martin Method of assembling a cell
KR20050010611A (ko) * 2003-07-21 2005-01-28 한국 파워셀 주식회사 리튬이온 이차전지 및 그 제조방법
KR20100051353A (ko) * 2008-11-07 2010-05-17 주식회사 엘지화학 중첩 전기화학소자
JP2011113843A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 扁平形非水二次電池
KR20110122378A (ko) * 2010-05-04 2011-11-10 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030170533A1 (en) * 2000-06-30 2003-09-11 Airey Matthew Martin Method of assembling a cell
KR20050010611A (ko) * 2003-07-21 2005-01-28 한국 파워셀 주식회사 리튬이온 이차전지 및 그 제조방법
KR20100051353A (ko) * 2008-11-07 2010-05-17 주식회사 엘지화학 중첩 전기화학소자
JP2011113843A (ja) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd 扁平形非水二次電池
KR20110122378A (ko) * 2010-05-04 2011-11-10 삼성에스디아이 주식회사 전극 조립체 및 이를 이용한 이차 전지

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11437651B2 (en) * 2016-09-06 2022-09-06 Samsung Sdi Co., Ltd. Stacked electrode assembly and flexible rechargeable battery comprising the same
GB2554860A (en) * 2016-10-04 2018-04-18 Saralon Gmbh Thin printed battery
CN109860490A (zh) * 2017-11-30 2019-06-07 宁德新能源科技有限公司 电芯、电池以及电芯的隔离膜的封装方法
CN109860490B (zh) * 2017-11-30 2022-08-12 宁德新能源科技有限公司 电芯、电池以及电芯的隔离膜的封装方法

Also Published As

Publication number Publication date
KR101901370B1 (ko) 2018-09-21
KR20130111697A (ko) 2013-10-11

Similar Documents

Publication Publication Date Title
WO2013151233A1 (ko) 배터리셀
WO2012086855A1 (ko) 다방향성 리드-탭 구조를 가진 리튬 이차전지
WO2017217641A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2014104728A1 (ko) 내구성 향상을 위해 실링 마진을 가진 파우치형 이차 전지
WO2013069953A1 (ko) 신규한 구조의 전지셀
WO2017061746A1 (ko) 전지 모듈
WO2014017864A1 (ko) 이차전지
WO2020204407A1 (ko) 이차 전지용 전지 케이스 및 파우치 형 이차 전지
WO2012044035A2 (ko) 부식방지용 보호층을 포함하는 전극리드, 및 이를 포함하는 이차전지
WO2015005652A1 (ko) 전극 조립체, 이를 포함하는 전지 및 디바이스
WO2018174370A1 (ko) 전극 조립체 및 그 제조방법
WO2014137017A1 (ko) 라운드 코너를 포함하는 전극조립체
WO2022119220A1 (ko) 이차전지 및 이를 포함하는 디바이스
WO2020036318A1 (ko) 전극조립체 및 그 전극조립체의 제조 방법
WO2018155815A1 (ko) 버스바를 적용한 배터리 셀
WO2019009511A1 (ko) 이차전지
WO2017039352A1 (ko) 향상된 냉각구조를 갖는 배터리 모듈
WO2015056973A1 (ko) 파우치형 이차전지 및 이를 포함하는 이차전지 모듈
WO2018221828A1 (ko) 배터리 팩
WO2013133540A1 (ko) 배터리셀
WO2018030835A1 (ko) 이차 전지
WO2020166802A1 (ko) 이차 전지 및 전지 모듈
WO2018074849A1 (ko) 2차 전지
WO2019045365A1 (ko) 열전달 부재를 포함하는 파우치형 이차전지
WO2023055040A1 (ko) 파우치형 이차 전지 및 그 이차 전지의 실링 장치와 그 이차 전지의 실링 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772388

Country of ref document: EP

Kind code of ref document: A1