Nothing Special   »   [go: up one dir, main page]

WO2013150974A1 - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
WO2013150974A1
WO2013150974A1 PCT/JP2013/059528 JP2013059528W WO2013150974A1 WO 2013150974 A1 WO2013150974 A1 WO 2013150974A1 JP 2013059528 W JP2013059528 W JP 2013059528W WO 2013150974 A1 WO2013150974 A1 WO 2013150974A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
honeycomb structure
wall
flow paths
thickness
Prior art date
Application number
PCT/JP2013/059528
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 岩崎
朝 吉野
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013150974A1 publication Critical patent/WO2013150974A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb structure used as a filter for purifying gas.
  • Honeycomb structures are widely used as filters for purifying exhaust gas from internal combustion engines, such as diesel particulate filters (see, for example, Patent Document 1). Since the soot removed from the exhaust gas accumulates on the honeycomb structure, it is necessary to regenerate the filter by burning the soot at regular intervals. In order to burn the soot, it is only necessary to supply a large amount of combustion exhaust gas at a high temperature to ignite the soot and burn out the soot.
  • honeycomb structure is heated beyond an allowable amount due to burning of soot during filter regeneration, excessive thermal stress may occur and the honeycomb structure may be damaged. In order to avoid such breakage, there is a need for a technique that moderates soot combustion during filter regeneration.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a honeycomb structure capable of mildly burning soot during filter regeneration.
  • the present invention provides a first end surface and a second end surface facing each other, a plurality of first flow paths and a plurality of first flow paths extending in a facing direction of the first end surface and the second end surface.
  • first flow paths are provided surrounding the second flow path, and each first The flow path is disposed adjacent to the second flow path, and the partition wall includes a standard wall that separates the first flow path and the second flow path, and two first flow paths that are adjacent on the first end surface.
  • a standard wall having a thickness smaller than that of the common wall.
  • the honeycomb structure since the thickness of the standard wall is smaller than the thickness of the common wall, compared to the case where the thickness of the standard wall is equal to the thickness of the common wall, The gas flowing into the first flow path can easily pass through the standard wall. For this reason, in the above honeycomb structure, the high temperature gas flowing into the first flow path at the time of filter regeneration passes through the standard wall without flowing out sufficiently and flows out to the second flow path. The burning of soot on the common wall is difficult to proceed. Therefore, in the above honeycomb structure, soot in the first flow path is prevented from burning all at once in a short time, so that soot can be burned mildly. As a result, since the honeycomb structure is heated beyond the allowable amount, damage due to excessive thermal stress can be avoided, so that the reliability of the honeycomb structure can be improved.
  • the thickness of all standard walls between one second flow path and each first flow path surrounding the second flow path is equal to each first flow path surrounding the second flow path. It may be less than the thickness of all common walls between the channels. According to the honeycomb structure, since all the standard walls around the second flow path are formed thinner than the common wall, the high temperature gas is more likely to pass through the standard walls without staying in the first flow path. Remarkable, soot burning can be made milder.
  • the area formed by the common wall may be larger than the area formed by the standard wall.
  • the soot layer is deposited wider and thinner on the common wall than the standard wall. For this reason, even if high temperature gas flows into the first flow path during filter regeneration and soot combustion occurs, soot combustion gas will enter the standard wall at locations away from the standard wall in the soot layer widely deposited on the common wall. It becomes difficult to reach and combustion gas stays easily. As a result, in the honeycomb structure, new oxygen supply is suppressed, and soot combustion can be made milder.
  • honeycomb structure according to the present invention can mildly burn soot during filter regeneration.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is an enlarged view for demonstrating arrangement
  • the honeycomb structure 100 As shown in FIGS. 1 and 2, the honeycomb structure 100 according to the first embodiment is a cylindrical structure used as a filter for purifying exhaust gas from an internal combustion engine such as a diesel engine or a gasoline engine. It is.
  • the columnar honeycomb structure 100 includes a first end surface 100 a and a second end surface 100 b facing each other, and partition walls 112 that form a plurality of flow paths 110.
  • the plurality of flow paths 110 include a first flow path 110a that is open on the first end face 100a side and sealed on the second end face 100b side, and a second end that is sealed on the first end face 100a side. And the second flow path 110b having an open end face 100b side.
  • the plurality of first flow paths 110a and the plurality of second flow paths 110b are flow paths extending in the opposing direction of the first end face 100a and the second end face 100b, and have a regular hexagonal cross-sectional shape (flow paths 110a, 110b (cross-sectional shape perpendicular to the extending direction of 110b).
  • the first flow path 110a and the second flow path 110b are arranged on the first end face 100a so that the first flow path 110a surrounds the second flow path 110b.
  • first flow paths 110a are disposed so as to surround one second flow path 110b.
  • the six first channels 110a are arranged adjacent to one second channel 110b. In this arrangement, the opening ratio of the first end face 100a is larger than the opening ratio of the second end face 100b.
  • the honeycomb structure 100 configured as described above has a first end face 100a on the gas upstream side (internal combustion engine side) and a second end face 100b on the gas downstream side (exhaust side) on the exhaust gas flow path of the internal combustion engine. Be placed.
  • the main flow of exhaust gas passing through the honeycomb structure 100 functioning as a filter is indicated by an arrow G.
  • the exhaust gas of the internal combustion engine first flows into the first flow path 110a from the opening on the first end face 100a side.
  • the gas that has flowed into the flow path 110a passes through the partition wall 112 and flows into the second flow path 110b because the second end face 100b side of the flow path 110a is sealed.
  • soot in the exhaust gas is captured by the partition 112.
  • the gas from which the soot has been removed flows through the second flow path 110b and flows out from the opening on the second end face 100b side.
  • the honeycomb structure 100 functioning as a filter is composed of a porous (for example, an average pore diameter of 20 ⁇ m or less) ceramic material or the like.
  • a porous ceramic material or the like examples include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal.
  • the aluminum titanate can further contain magnesium and / or silicon.
  • Such a honeycomb structure 100 can be obtained by extruding the green molded body (unfired molded body) to be the ceramic material described above after firing and then performing a predetermined sealing process.
  • a green molded object contains the inorganic compound source powder which is a ceramic raw material, organic binders, such as methylcellulose, and the additive added as needed.
  • the inorganic compound source powder includes an aluminum source powder such as ⁇ -alumina powder, and a titanium source powder such as anatase-type or rutile-type titania powder. Further, magnesium source powder such as magnesia powder and magnesia spinel powder, and / or silicon source powder such as silicon oxide powder and glass frit can be included.
  • organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
  • additives include a pore-forming agent, a lubricant, a plasticizer, a dispersant, and a solvent.
  • Examples of the pore-forming agent include carbon materials such as graphite; resins such as polyethylene, polypropylene and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells and corn; ice; and dry ice.
  • Lubricants and plasticizers include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; stearic acid metal salts such as Al stearate, polyoxyalkylene alkyl And ether (POAAE).
  • alcohols such as glycerin
  • higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid
  • stearic acid metal salts such as Al stearate, polyoxyalkylene alkyl And ether (POAAE).
  • dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate Surfactant etc. are mentioned.
  • solvent for example, alcohols such as methanol, ethanol, butanol and propanol; glycols such as propylene glycol, polypropylene glycol and ethylene glycol; and water can be used.
  • the same material as that of the green molded body described above may be used, or a different material may be used.
  • a material through which exhaust gas from the internal combustion engine cannot pass can also be used.
  • FIG. 3 is a view for explaining the arrangement of the flow path 110 on the first end face 100a.
  • FIG. 3 shows the flow paths 121 and 122 of the plurality of first flow paths 110a and the flow path 123 of the plurality of second flow paths 110b as examples.
  • the partition 112 separates the standard wall 112 a that separates the adjacent first flow paths 121 and 122 and the second flow path 123 from the two adjacent first flow paths 121 and 122. And a common wall 112b.
  • the first flow paths 121 and 122 are formed of the standard wall 112a and the common wall 112b, and the second flow path 123 is formed of only the standard wall 112a.
  • the thickness t s of the standard wall 112a is formed to be smaller than the thickness t c of the common wall 112b. That is, the distance between the first flow paths 121 and 122 and the second flow path 123 is formed to be smaller than the distance between the first flow paths 121 and 122. For this reason, compared with the case where the thickness t s of the standard wall 112a is equal to the thickness t c of the common wall 112b, the gas in the first flow paths 121 and 122 tends to flow to the second flow path 123.
  • all the standard walls 112 a between the plurality of first flow paths 110 a and the second flow paths 123 surrounding the second flow path 123 are provided.
  • the thickness is formed smaller than the thickness of all the common walls 112b between the adjacent first flow paths 110a on the first end face 100a. It is preferable that the thickness t s of the standard wall 112a and the thickness t c of the common wall 112b satisfy a relationship of 0.1 ⁇ t s / t c ⁇ 0.9.
  • the exhaust gas flowing into the first flow paths 121 and 122 from the opening of the first end face 100a passes through the standard wall 112a and enters the second flow path 123, thereby opening the second end face 100b. Is discharged to the outside.
  • soot contained in the exhaust gas is supplemented by the standard wall 112a, so that the soot layer Sa shown in FIG. 3 is formed.
  • the soot layer Sa is formed on the standard wall surfaces 121 a and 122 a of the first flow paths 121 and 122.
  • the standard wall surface 121a is a surface formed by the standard wall 112a in the first flow path 121
  • the standard wall surface 122a is a surface formed by the standard wall 112a in the first flow path 122.
  • the second flow path 123 has standard wall surfaces 123a and 123b formed by the standard wall 112a.
  • the standard wall surface 123a of the second flow path 123 is a surface facing the standard wall surface 121a of the first flow path 121 with the standard wall 112a interposed therebetween.
  • the standard wall surface 123b of the second flow path 123 is a surface facing the standard wall surface 122a of the first flow path 122 with the standard wall 112a interposed therebetween.
  • a portion of the partition wall 112 sandwiched between the standard wall surfaces 121a and 122a of the first flow paths 121 and 122 and the standard wall surfaces 123a and 123b of the second flow path 123 constitutes the standard wall 112a.
  • the thickness t s of the standard wall 112a is a standard wall 121a of the first flow path 121 and 122, 122a and the standard wall 123a of the second flow path 123, which corresponds to the distance between 123b.
  • the soot layer Sb is formed on the common wall surfaces 121b, 122b of the first flow paths 121, 122.
  • the common wall surface 121b is a surface formed by the common wall 112b in the first flow path 121
  • the common wall surface 122b is a surface formed by the common wall 112b in the first flow path 122.
  • the common wall surface 121b and the common wall surface 122b are opposed to each other with the common wall 112b interposed therebetween.
  • a portion of the partition wall 112 sandwiched between the common wall surface 121b and the common wall surface 122b constitutes the common wall 112b.
  • the thickness t c of the common wall 112b corresponds to the interval between the common wall surface 121b and the common wall surface 122b.
  • illustration is abbreviate
  • filter regeneration for recovering the filter function is performed by burning the soot layers Sa, Sb and the like with a high-temperature gas.
  • An example of hot gas flow during filter regeneration is shown as arrows A and B.
  • the thickness of the standard wall 112a is smaller than the thickness of the common wall 112b
  • the thickness of the standard wall 112a is the thickness of the common wall 112b.
  • the high-temperature gas that has flowed into the first flow path 110a during the filter regeneration passes through the standard wall 112a and flows out to the second flow path 110b without being sufficiently retained. Combustion of soot on the common wall 112b that is located away from the front is difficult to proceed.
  • soot in the first flow path 110a can be avoided from burning all at once in a short time, so that soot can be burned mildly.
  • the honeycomb structure 100 is heated beyond an allowable amount, damage due to excessive thermal stress can be avoided, so that the reliability of the honeycomb structure 100 can be improved.
  • the six first flow paths 110a surround the single second flow path 110b and are adjacent to the second flow paths 110b. Since it arrange
  • the thickness of all the standard walls 112a between the second flow paths 110b and the first flow paths 110a is equal to the thickness of all the common walls 112b between the adjacent first flow paths 110a. Since it is smaller than the thickness, the tendency for hot gas to pass through the standard wall without staying in the first flow path becomes more remarkable, and soot combustion can be made milder.
  • the honeycomb structure 101 according to the second embodiment is different from the honeycomb structure 100 according to the first embodiment in the cross-sectional shape of the first flow path.
  • FIG. 4 is a view showing a part of the first end face 101a of the honeycomb structure 101 according to the second embodiment.
  • the plurality of flow paths 130 of the honeycomb structure 101 according to the second embodiment are opened on the first end face 101 a side and sealed on the second end face side (not shown).
  • the first flow path 130a and the second flow path 130b in which the first end face 101a side is sealed and the second end face side is opened are divided.
  • the second flow path 130 b is sealed with a sealing material 134.
  • the first flow path 130a and the second flow path 130b are arranged on the first end surface 101a so that the first flow path 130a surrounds the second flow path 130b. Specifically, on the first end face 101a, six adjacent first flow paths 130a are arranged so as to surround one second flow path 130b. The six first flow paths 130a are arranged so as to be adjacent to one second flow path 130b.
  • the second channel 130b is a channel having the same regular hexagonal cross-sectional shape as the first embodiment.
  • the first flow path 130a has a regular hexagonal shape (for example, a short side facing one side of the regular hexagonal cross section of the adjacent second flow path 130b, and a long side longer than the short side. Hexagonal shape in which the side and the short side are arranged to face each other.
  • the short sides of the regular hexagonal cross section of the six first flow paths 130a face each side of the regular hexagonal cross section of the second flow path 130b. Is arranged.
  • FIG. 5 is a diagram for explaining the arrangement of the flow path 130 in the first end face 101a.
  • FIG. 5 shows the flow paths 131 and 132 of the plurality of first flow paths 130a and the flow path 133 of the plurality of second flow paths 130b as examples.
  • the partition wall 135 separates the standard wall 135 a that separates the adjacent first flow paths 131 and 132 and the second flow path 133 from the two adjacent first flow paths 131 and 132. And a common wall 135b.
  • the first flow paths 131 and 132 are flow paths formed from the standard wall 135a and the common wall 135b, and the second flow path 133 is a flow path formed only from the standard wall 135a.
  • the honeycomb structure 101 according to the second embodiment is formed such that the thickness t s of the standard wall 135a is larger than the thickness t c of the common wall 135b. That is, the distance between the first flow paths 131 and 132 and the second flow path 133 is formed to be larger than the distance between the first flow paths 131 and 132.
  • the area of the common wall surface 131b of the first flow path 131 is formed larger than the area of the standard wall surface 131a. That is, of the standard wall 135a and the common wall 135b forming the first flow path 131, the area formed by the common wall 135b is larger than the area formed by the standard wall surface 131a. This means that the area of the standard wall surface 131a serving as the outlet for soot combustion gas is smaller than the common wall surface 131b on which soot accumulates.
  • the thickness t s of the standard wall 135a between the standard wall 133a of the standard wall 131a and the second flow path 133 of the first passage 131 is uniform Yes, it is smaller than the thickness t c of the common wall 135b.
  • the thickness t s of the standard wall 135a is smaller than the thickness t c of the common wall 135b, and thus the thickness t of the standard wall 135a.
  • the combustion gas in the first flow paths 131 and 132 is likely to pass through the standard wall 135a as indicated by the arrow B during filter regeneration. Therefore, according to the honeycomb structure 101 according to the second embodiment, the soot in the first flow paths 131 and 132 is simultaneously formed in a short time for the same reason as the honeycomb structure 100 according to the first embodiment. Since burning is avoided, soot burning can be suppressed to make it milder.
  • the area of the common wall surface 131b forming the first flow path 131 is larger than the area of the standard wall surface 131a.
  • it is deposited widely and thinly on the common wall 131b.
  • the soot layer widely deposited on the common wall surface 131b At locations away from the standard wall 135a, the soot combustion gas does not easily reach the standard wall 135a, and the combustion gas is liable to stay.
  • new oxygen supply is suppressed, and soot combustion can be made milder.
  • the honeycomb structure 101 according to the second embodiment employs an asymmetric cell structure (asymmetric lattice structure) having flow passages having different cross-sectional shapes, the per-filter unit volume per unit volume is compared with the symmetric cell structure.
  • the filter area can be increased. This reduces the pressure loss of the exhaust gas, which is advantageous for improving the fuel consumption of the internal combustion engine.
  • the honeycomb structure 102 according to the third embodiment is different from the honeycomb structure 101 according to the second embodiment in the cross-sectional shape of the first flow path 140a.
  • FIG. 6 is a view showing a part of the first end face 102a of the honeycomb structure 102 according to the third embodiment.
  • the first flow path 140a of the honeycomb structure 102 has a flat hexagonal shape (for example, a regular hexagonal cross section of the adjacent second flow path 140b). It has a short side that faces one side and a long side that is longer than the short side, and has a cross-sectional shape of four long sides and two hexagons facing each other. is doing.
  • the first flow path 140a and the second flow path 140b are arranged such that the short sides of the six hexagonal first hexagonal cross sections of the first flow paths 140a face each side of the regular hexagonal cross section of the second flow path 140b. Has been placed.
  • the standard wall 145a is formed so that the thickness of the standard wall 145a is smaller than the thickness of the common wall 145b, as in the first embodiment.
  • the standard wall 145a is a partition corresponding to the short side of the flat hexagonal cross section
  • the common wall 145b is a partition corresponding to the short side of the flat hexagonal cross section.
  • the standard wall surface 141a of the standard wall 145a and the common wall 145b that form the first flow path 140a is formed.
  • the area formed by the common wall 145b is larger than the area.
  • honeycomb structure 102 according to the third embodiment described above the same effect as that of the honeycomb structure 101 according to the second embodiment can be obtained.
  • the shape of the honeycomb structure is not limited to a cylindrical shape, and the cross section may be a columnar shape such as an ellipse or a polygon.
  • the cross-sectional shape of the flow path is not limited to a hexagonal shape, and may be other polygons, circles, ellipses, or the like.
  • the cross-sectional shape of the plurality of first flow paths may be different from the cross-sectional shape of the plurality of second flow paths, and the cross-sectional shapes of the plurality of first flow paths (or the plurality of second flow paths) are different A flow path may be included.
  • the arrangement of the flow paths is not limited to the above. From the viewpoint of efficiency, on the first end surface, five or more first flow paths are provided so as to surround one second flow path, and are arranged adjacent to the second flow path. preferable.
  • the area of the common wall surface forming the first flow path is larger than the area of the standard wall surface is described. However, the area of the common wall surface forming the first flow path is the area of the standard wall surface. May be smaller.
  • the thickness of the standard wall may be different depending on the location, and the thickness of the common wall may be different depending on the location.
  • the minimum thickness of all the standard walls forming one second flow path only needs to be larger than the maximum thickness of all the common walls between the first flow paths surrounding the second flow path.
  • the present invention can be used for a honeycomb structure that can mildly burn soot during filter regeneration.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

A honeycomb structure (100) having a partitioning wall (112) forming a plurality of first flowpaths (110a) and a plurality of second flowpaths (110b), and wherein the first flowpaths (110a) have a first end surface (100a) side that is open and a second end surface (100b) side that is sealed. In the second flowpaths (110), the first end surface (100a) side is sealed and the second end surface (100b) side is open. The partitioning wall (112) has a standard wall (112a) that separates the first flowpaths (110a) and the second flowpaths (110b), and a common wall (112b) that separates two first flowpaths (110a) adjacent upon the first end surface (100a). The thickness of the standard wall (112a) is less than the thickness of the common wall (112b).

Description

ハニカム構造体Honeycomb structure
 本発明は、ガスを浄化するフィルタとして用いられるハニカム構造体に関する。 The present invention relates to a honeycomb structure used as a filter for purifying gas.
 ディーゼル粒子フィルタ等、内燃機関の排出ガスを浄化するフィルタとしてハニカム構造体が広く用いられている(例えば特許文献1を参照)。ハニカム構造体には、排出ガスから取り除かれた煤が堆積するため、一定期間ごとに煤を燃焼してフィルタ再生(regeneration)を行う必要がある。煤を燃焼させるには、高温かつ大量の燃焼排ガスを供給して煤に着火し、煤を燃え尽きさせればよい。 Honeycomb structures are widely used as filters for purifying exhaust gas from internal combustion engines, such as diesel particulate filters (see, for example, Patent Document 1). Since the soot removed from the exhaust gas accumulates on the honeycomb structure, it is necessary to regenerate the filter by burning the soot at regular intervals. In order to burn the soot, it is only necessary to supply a large amount of combustion exhaust gas at a high temperature to ignite the soot and burn out the soot.
特開2009-202143号公報JP 2009-202143 A
 しかしながら、フィルタ再生時の煤の燃焼によりハニカム構造体が許容量を超えて加熱されると、過剰な熱応力が発生してハニカム構造体が破損するおそれがある。このような破損を避けるため、フィルタ再生時における煤の燃焼を緩やかにする技術が求められている。 However, if the honeycomb structure is heated beyond an allowable amount due to burning of soot during filter regeneration, excessive thermal stress may occur and the honeycomb structure may be damaged. In order to avoid such breakage, there is a need for a technique that moderates soot combustion during filter regeneration.
 本発明は上記課題に鑑みてなされたものであり、フィルタ再生時の煤の燃焼をマイルドにすることができるハニカム構造体を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a honeycomb structure capable of mildly burning soot during filter regeneration.
 上記課題を解決するため、本発明は、互いに対向する第1の端面及び第2の端面と、第1の端面及び第2の端面の対向方向で延在する複数の第1流路及び複数の第2流路を形成する隔壁と、を有するハニカム構造体であって、複数の第1流路は、第1の端面側が開口され、第2の端面側が封口されており、第2流路は、第1の端面側が封口され、第2の端面側が開口されており、第1の端面上で、五個以上の第1流路が、第2流路を囲んで設けられると共に、各第1流路が第2流路と隣り合って配置されており、隔壁は、第1流路及び第2流路を隔てる標準壁と、第1の端面上で隣り合う二個の第1流路を隔てる共通壁と、を含み、標準壁の厚さが共通壁の厚さより小さいことを特徴とする。 In order to solve the above problems, the present invention provides a first end surface and a second end surface facing each other, a plurality of first flow paths and a plurality of first flow paths extending in a facing direction of the first end surface and the second end surface. A plurality of first flow paths, the first end face side being opened, the second end face side being sealed, and the second flow path being formed of a partition wall forming a second flow path. The first end face side is sealed and the second end face side is opened. On the first end face, five or more first flow paths are provided surrounding the second flow path, and each first The flow path is disposed adjacent to the second flow path, and the partition wall includes a standard wall that separates the first flow path and the second flow path, and two first flow paths that are adjacent on the first end surface. A standard wall having a thickness smaller than that of the common wall.
 上記ハニカム構造体によれば、標準壁の厚さが共通壁の厚さより小さく形成されているので、標準壁の厚さが共通壁の厚さと等しい場合と比べて、第1の端面の開口から第1流路に流れこんだガスが標準壁を通り抜けやすくなる。このため、上記ハニカム構造体では、フィルタ再生時において第1流路に流れ込んだ高温ガスが十分に滞留することなく標準壁を通り抜けて第2流路に流出するので、高温ガスの流れから外れて位置する共通壁上の煤の燃焼が進みにくくなる。従って、上記ハニカム構造体では、第1流路内の煤が短時間で一斉に燃焼することが避けられるので、煤の燃焼をマイルドにすることができる。その結果、ハニカム構造体が許容量を超えて加熱されることで、過剰な熱応力により破損が生じることを避けられるので、ハニカム構造体の信頼性を向上させることができる。 According to the honeycomb structure, since the thickness of the standard wall is smaller than the thickness of the common wall, compared to the case where the thickness of the standard wall is equal to the thickness of the common wall, The gas flowing into the first flow path can easily pass through the standard wall. For this reason, in the above honeycomb structure, the high temperature gas flowing into the first flow path at the time of filter regeneration passes through the standard wall without flowing out sufficiently and flows out to the second flow path. The burning of soot on the common wall is difficult to proceed. Therefore, in the above honeycomb structure, soot in the first flow path is prevented from burning all at once in a short time, so that soot can be burned mildly. As a result, since the honeycomb structure is heated beyond the allowable amount, damage due to excessive thermal stress can be avoided, so that the reliability of the honeycomb structure can be improved.
 本発明に係るハニカム構造体において、一つの第2流路と当該第2流路を囲む各第1流路の間の全ての標準壁の厚さが、当該第2流路を囲む各第1流路の間の全ての共通壁の厚さより小さくてもよい。
 上記ハニカム構造体によれば、第2流路の周りの全ての標準壁が共通壁より薄く形成されているので、高温ガスが第1流路内に滞留することなく標準壁を通り抜ける傾向がより顕著となり、煤の燃焼をより一層マイルドにすることができる。
In the honeycomb structure according to the present invention, the thickness of all standard walls between one second flow path and each first flow path surrounding the second flow path is equal to each first flow path surrounding the second flow path. It may be less than the thickness of all common walls between the channels.
According to the honeycomb structure, since all the standard walls around the second flow path are formed thinner than the common wall, the high temperature gas is more likely to pass through the standard walls without staying in the first flow path. Remarkable, soot burning can be made milder.
 本発明に係るハニカム構造体において、第1流路を形成する隔壁のうち、標準壁によって形成される面積より共通壁によって形成される面積が大きくてもよい。
 上記ハニカム構造体によれば、第1流路を形成する共通壁の面積が標準壁の面積よりも大きいので、煤の層は標準壁と比べて共通壁に広く薄く堆積する。このため、フィルタ再生時に高温ガスが第1流路に流れ込んで煤の燃焼が生じても、共通壁に広く堆積した煤の層のうち標準壁から離れた箇所では煤の燃焼ガスが標準壁に到達しにくくなり、燃焼ガスの滞留が生じやすくなる。その結果、上記ハニカム構造体では、新たな酸素供給が抑制されるので、煤の燃焼を一層マイルドにすることができる。
In the honeycomb structure according to the present invention, among the partition walls forming the first flow path, the area formed by the common wall may be larger than the area formed by the standard wall.
According to the honeycomb structure, since the area of the common wall forming the first flow path is larger than the area of the standard wall, the soot layer is deposited wider and thinner on the common wall than the standard wall. For this reason, even if high temperature gas flows into the first flow path during filter regeneration and soot combustion occurs, soot combustion gas will enter the standard wall at locations away from the standard wall in the soot layer widely deposited on the common wall. It becomes difficult to reach and combustion gas stays easily. As a result, in the honeycomb structure, new oxygen supply is suppressed, and soot combustion can be made milder.
 本発明に係るハニカム構造体によれば、フィルタ再生時の煤の燃焼をマイルドにすることができる。 The honeycomb structure according to the present invention can mildly burn soot during filter regeneration.
第1の実施形態に係るハニカム構造体を示す図である。It is a figure which shows the honeycomb structure which concerns on 1st Embodiment. 図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 第1の端面における流路の配置を説明するための拡大図である。It is an enlarged view for demonstrating arrangement | positioning of the flow path in a 1st end surface. 第2の実施形態に係るハニカム構造体の第1の端面の一部を示す図である。It is a figure which shows a part of 1st end surface of the honeycomb structure which concerns on 2nd Embodiment. 第2の実施形態に係るハニカム構造体の流路の配置を説明するための拡大図である。It is an enlarged view for demonstrating arrangement | positioning of the flow path of the honeycomb structure which concerns on 2nd Embodiment. 第3の実施形態に係るハニカム構造体の第1の端面の一部を示す図である。It is a figure which shows a part of 1st end surface of the honeycomb structure which concerns on 3rd Embodiment.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[第1の実施形態]
 図1及び図2に示されるように、第1の実施形態に係るハニカム構造体100は、例えばディーゼルエンジン、ガソリンエンジン等の内燃機関の排出ガスを浄化するフィルタとして利用される円柱状の構造体である。円柱状のハニカム構造体100は、互いに対向する第1の端面100a及び第2の端面100bと、複数の流路110を形成する隔壁112と、を有している。
[First Embodiment]
As shown in FIGS. 1 and 2, the honeycomb structure 100 according to the first embodiment is a cylindrical structure used as a filter for purifying exhaust gas from an internal combustion engine such as a diesel engine or a gasoline engine. It is. The columnar honeycomb structure 100 includes a first end surface 100 a and a second end surface 100 b facing each other, and partition walls 112 that form a plurality of flow paths 110.
 図2に示されるように、流路110は、第1の端面100a及び第2の端面100bの何れか一方が封口材111によって封口されている。具体的には、複数の流路110は、第1の端面100a側が開口されると共に第2の端面100b側が封口された第1流路110aと、第1の端面100a側が封口されると共に第2の端面100b側が開口された第2流路110bと、に分けられる。 As shown in FIG. 2, in the flow path 110, one of the first end surface 100 a and the second end surface 100 b is sealed with a sealing material 111. Specifically, the plurality of flow paths 110 include a first flow path 110a that is open on the first end face 100a side and sealed on the second end face 100b side, and a second end that is sealed on the first end face 100a side. And the second flow path 110b having an open end face 100b side.
 複数の第1流路110a及び複数の第2流路110bは、第1の端面100a及び第2の端面100bの対向方向に延在する流路であり、正六角形の断面形状(流路110a,110bの延在方向に垂直な断面形状)を有している。 The plurality of first flow paths 110a and the plurality of second flow paths 110b are flow paths extending in the opposing direction of the first end face 100a and the second end face 100b, and have a regular hexagonal cross-sectional shape ( flow paths 110a, 110b (cross-sectional shape perpendicular to the extending direction of 110b).
 第1流路110a及び第2流路110bは、第1の端面100a上で第1流路110aが第2流路110bを囲むようにして配置されている。具体的には、第1の端面100a上で、隣り合う六個の第1流路110aが一個の第2流路110bを囲んで配置されている。六個の第1流路110aは、一個の第2流路110bと各々が隣り合って配置されている。この配置においては、第1の端面100aの開口割合の方が第2の端面100bの開口割合より大きくなる。 The first flow path 110a and the second flow path 110b are arranged on the first end face 100a so that the first flow path 110a surrounds the second flow path 110b. Specifically, on the first end face 100a, six adjacent first flow paths 110a are disposed so as to surround one second flow path 110b. The six first channels 110a are arranged adjacent to one second channel 110b. In this arrangement, the opening ratio of the first end face 100a is larger than the opening ratio of the second end face 100b.
 このように構成されたハニカム構造体100は、第1の端面100aをガス上流側(内燃機関側)、第2の端面100bをガス下流側(排気側)として、内燃機関の排出ガス流路上に配置される。フィルタとして機能するハニカム構造体100を通過する排出ガスの主な流れを矢印Gとして示す。 The honeycomb structure 100 configured as described above has a first end face 100a on the gas upstream side (internal combustion engine side) and a second end face 100b on the gas downstream side (exhaust side) on the exhaust gas flow path of the internal combustion engine. Be placed. The main flow of exhaust gas passing through the honeycomb structure 100 functioning as a filter is indicated by an arrow G.
 矢印Gに示されるように、内燃機関の排出ガスは、まず第1の端面100a側の開口から第1流路110aに流入する。流路110aに流入したガスは、流路110aの第2の端面100b側が封口されているため、隔壁112を通り抜けて第2流路110b内に流入する。このとき、排気ガス中の煤が隔壁112に捕捉される。煤が除かれたガスは第2流路110bを通り、第2の端面100b側の開口から外へと流れ出る。 As shown by the arrow G, the exhaust gas of the internal combustion engine first flows into the first flow path 110a from the opening on the first end face 100a side. The gas that has flowed into the flow path 110a passes through the partition wall 112 and flows into the second flow path 110b because the second end face 100b side of the flow path 110a is sealed. At this time, soot in the exhaust gas is captured by the partition 112. The gas from which the soot has been removed flows through the second flow path 110b and flows out from the opening on the second end face 100b side.
 フィルタとして機能するハニカム構造体100は、多孔質(例えば、平均細孔直径20μm以下)のセラミクス材料等から構成されている。ハニカム構造体100に用いられるセラミクス材料としては、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素、金属等が挙げられる。チタン酸アルミニウムは、更に、マグネシウム及び/又はケイ素を含むことができる。 The honeycomb structure 100 functioning as a filter is composed of a porous (for example, an average pore diameter of 20 μm or less) ceramic material or the like. Examples of the ceramic material used for the honeycomb structure 100 include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal. The aluminum titanate can further contain magnesium and / or silicon.
 このようなハニカム構造体100は、上述したセラミクス材料となるグリーン成形体(未焼成成形体)を押し出し成形後に焼成し、その後に所定の封口処理を行うことで得られる。グリーン成形体は、例えばセラミクス原料である無機化合物源粉末、メチルセルロース等の有機バインダ、及び必要に応じて添加される添加剤を含む。 Such a honeycomb structure 100 can be obtained by extruding the green molded body (unfired molded body) to be the ceramic material described above after firing and then performing a predetermined sealing process. A green molded object contains the inorganic compound source powder which is a ceramic raw material, organic binders, such as methylcellulose, and the additive added as needed.
 なお、チタン酸アルミニウムのグリーン成形体の場合、無機化合物源粉末は、αアルミナ粉等のアルミニウム源粉末、及びアナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末を含み、必要に応じて、更に、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末、及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。 In the case of a green molded body of aluminum titanate, the inorganic compound source powder includes an aluminum source powder such as α-alumina powder, and a titanium source powder such as anatase-type or rutile-type titania powder. Further, magnesium source powder such as magnesia powder and magnesia spinel powder, and / or silicon source powder such as silicon oxide powder and glass frit can be included.
 有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロース等のセルロース類;ポリビニルアルコール等のアルコール類;リグニンスルホン酸塩が挙げられる。 Examples of the organic binder include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
 添加物としては、例えば、造孔剤、潤滑剤、可塑剤、分散剤及び溶媒が挙げられる。 Examples of additives include a pore-forming agent, a lubricant, a plasticizer, a dispersant, and a solvent.
 造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーン等の植物材料;氷;及びドライアイス等が挙げられる。 Examples of the pore-forming agent include carbon materials such as graphite; resins such as polyethylene, polypropylene and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells and corn; ice; and dry ice.
 潤滑剤及び可塑剤としては、グリセリン等のアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラキジン酸、オレイン酸、ステアリン酸等の高級脂肪酸;ステアリン酸Al等のステアリン酸金属塩、ポリオキシアルキレンアルキルエーテル(POAAE)等が挙げられる。 Lubricants and plasticizers include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; stearic acid metal salts such as Al stearate, polyoxyalkylene alkyl And ether (POAAE).
 分散剤としては、例えば、硝酸、塩酸、硫酸等の無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸等の有機酸;メタノール、エタノール、プロパノール等のアルコール類;ポリカルボン酸アンモニウム等の界面活性剤等が挙げられる。 Examples of the dispersant include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate Surfactant etc. are mentioned.
 溶媒としては、例えば、メタノール、エタノール、ブタノール、プロパノール等のアルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコール等のグリコール類;及び水等を用いることができる。 As the solvent, for example, alcohols such as methanol, ethanol, butanol and propanol; glycols such as propylene glycol, polypropylene glycol and ethylene glycol; and water can be used.
 また、封口材111の材料は、上述したグリーン成形体と同じ材料を用いてもよく、異なる材料を用いてもよい。封口材111には、内燃機関の排出ガスが通過できない材料を用いることもできる。 In addition, as the material of the sealing material 111, the same material as that of the green molded body described above may be used, or a different material may be used. For the sealing material 111, a material through which exhaust gas from the internal combustion engine cannot pass can also be used.
 続いて、ハニカム構造体100の流路110及び隔壁112について詳しく説明する。 Subsequently, the flow path 110 and the partition 112 of the honeycomb structure 100 will be described in detail.
 図3は、第1の端面100aにおける流路110の配置を説明するための図である。複数の第1流路110aのうちの流路121,122、及び複数の第2流路110bのうちの流路123を例として図3に示す。 FIG. 3 is a view for explaining the arrangement of the flow path 110 on the first end face 100a. FIG. 3 shows the flow paths 121 and 122 of the plurality of first flow paths 110a and the flow path 123 of the plurality of second flow paths 110b as examples.
 図3に示されるように、隔壁112は、隣り合う第1流路121,122及び第2流路123の間を隔てる標準壁112aと、隣り合う二個の第1流路121,122を隔てる共通壁112bと、を有している。第1流路121,122は標準壁112a及び共通壁112bから形成されており、第2流路123は標準壁112aのみから形成されている。 As shown in FIG. 3, the partition 112 separates the standard wall 112 a that separates the adjacent first flow paths 121 and 122 and the second flow path 123 from the two adjacent first flow paths 121 and 122. And a common wall 112b. The first flow paths 121 and 122 are formed of the standard wall 112a and the common wall 112b, and the second flow path 123 is formed of only the standard wall 112a.
 ハニカム構造体100では、標準壁112aの厚さtが共通壁112bの厚さtより小さくなるように形成されている。すなわち、第1流路121,122と第2流路123との間隔が、第1流路121,122同士の間隔より小さくなるように形成されている。このため、標準壁112aの厚さtが共通壁112bの厚さtと等しい場合と比べて、第1流路121,122内のガスが第2流路123へ流れやすい。 In the honeycomb structure 100, the thickness t s of the standard wall 112a is formed to be smaller than the thickness t c of the common wall 112b. That is, the distance between the first flow paths 121 and 122 and the second flow path 123 is formed to be smaller than the distance between the first flow paths 121 and 122. For this reason, compared with the case where the thickness t s of the standard wall 112a is equal to the thickness t c of the common wall 112b, the gas in the first flow paths 121 and 122 tends to flow to the second flow path 123.
 なお、図1に示されるように、第1流路121,122の他、第2流路123を囲む複数の第1流路110aと第2流路123との間の全ての標準壁112aの厚さが、第1の端面100a上で隣り合う第1流路110aの間の全ての共通壁112bの厚さより小さく形成されている。標準壁112aの厚さtと共通壁112bの厚さtは、0.1<t/t<0.9の関係を満たすことが好ましい。 As shown in FIG. 1, in addition to the first flow paths 121 and 122, all the standard walls 112 a between the plurality of first flow paths 110 a and the second flow paths 123 surrounding the second flow path 123 are provided. The thickness is formed smaller than the thickness of all the common walls 112b between the adjacent first flow paths 110a on the first end face 100a. It is preferable that the thickness t s of the standard wall 112a and the thickness t c of the common wall 112b satisfy a relationship of 0.1 <t s / t c <0.9.
 前述したように、第1の端面100aの開口から第1流路121,122に流れ込んだ排気ガスは、標準壁112aを通り抜けて第2流路123に入り込むことで、第2の端面100bの開口から外へ排出される。 As described above, the exhaust gas flowing into the first flow paths 121 and 122 from the opening of the first end face 100a passes through the standard wall 112a and enters the second flow path 123, thereby opening the second end face 100b. Is discharged to the outside.
 このとき、排気ガスに含まれる煤が標準壁112aに補足されることで、図3に示す煤層Saが形成される。煤層Saは、第1流路121,122の標準壁面121a,122a上に形成される。標準壁面121aとは第1流路121のうち標準壁112aによって形成される面であり、標準壁面122aとは第1流路122のうち標準壁112aによって形成される面である。同様に、第2流路123も標準壁112aによって形成される標準壁面123a,123bを有している。 At this time, soot contained in the exhaust gas is supplemented by the standard wall 112a, so that the soot layer Sa shown in FIG. 3 is formed. The soot layer Sa is formed on the standard wall surfaces 121 a and 122 a of the first flow paths 121 and 122. The standard wall surface 121a is a surface formed by the standard wall 112a in the first flow path 121, and the standard wall surface 122a is a surface formed by the standard wall 112a in the first flow path 122. Similarly, the second flow path 123 has standard wall surfaces 123a and 123b formed by the standard wall 112a.
 第2流路123の標準壁面123aは、標準壁112aを挟んで第1流路121の標準壁面121aと対向する面である。また、第2流路123の標準壁面123bは、標準壁112aを挟んで第1流路122の標準壁面122aと対向する面である。換言すると、隔壁112のうち、第1流路121,122の標準壁面121a,122aと第2流路123の標準壁面123a、123bとに挟まれた部分が標準壁112aを構成する。 The standard wall surface 123a of the second flow path 123 is a surface facing the standard wall surface 121a of the first flow path 121 with the standard wall 112a interposed therebetween. The standard wall surface 123b of the second flow path 123 is a surface facing the standard wall surface 122a of the first flow path 122 with the standard wall 112a interposed therebetween. In other words, a portion of the partition wall 112 sandwiched between the standard wall surfaces 121a and 122a of the first flow paths 121 and 122 and the standard wall surfaces 123a and 123b of the second flow path 123 constitutes the standard wall 112a.
 標準壁112aの厚さtは、第1流路121,122の標準壁面121a,122aと第2流路123の標準壁面123a、123bとの間隔に相当する。 The thickness t s of the standard wall 112a is a standard wall 121a of the first flow path 121 and 122, 122a and the standard wall 123a of the second flow path 123, which corresponds to the distance between 123b.
 また、排気ガスに含まれる煤の一部は、第1流路121,122を流れるうちに共通壁112bに付着して煤層Sbを形成する。煤層Sbは、第1流路121,122の共通壁面121b,122b上に形成される。共通壁面121bとは第1流路121のうち共通壁112bによって形成される面であり、共通壁面122bとは第1流路122のうち共通壁112bによって形成される面である。 Further, a part of the soot contained in the exhaust gas adheres to the common wall 112b while flowing through the first flow paths 121 and 122 to form the soot layer Sb. The soot layer Sb is formed on the common wall surfaces 121b, 122b of the first flow paths 121, 122. The common wall surface 121b is a surface formed by the common wall 112b in the first flow path 121, and the common wall surface 122b is a surface formed by the common wall 112b in the first flow path 122.
 共通壁面121b及び共通壁面122bは、共通壁112bを挟んで対向している。換言すると、隔壁112のうち、共通壁面121b及び共通壁面122bに挟まれた部分が共通壁112bを構成する。 The common wall surface 121b and the common wall surface 122b are opposed to each other with the common wall 112b interposed therebetween. In other words, a portion of the partition wall 112 sandwiched between the common wall surface 121b and the common wall surface 122b constitutes the common wall 112b.
 共通壁112bの厚さtは、共通壁面121b及び共通壁面122bの間隔に相当する。なお、図示は省略するが、第1流路121,122を形成する他の面にも煤は堆積している。 The thickness t c of the common wall 112b corresponds to the interval between the common wall surface 121b and the common wall surface 122b. In addition, although illustration is abbreviate | omitted, soot has accumulated also on the other surface which forms the 1st flow paths 121 and 122. FIG.
 ハニカム構造体100では、煤層Sa、Sb等を高温ガスにより燃焼することによってフィルタ機能を回復するフィルタ再生が行われる。フィルタ再生時における高温ガスの流れの一例を矢印A,Bとして示す。 In the honeycomb structure 100, filter regeneration for recovering the filter function is performed by burning the soot layers Sa, Sb and the like with a high-temperature gas. An example of hot gas flow during filter regeneration is shown as arrows A and B.
 フィルタ再生において、内燃機関から生じた高温ガスが第1流路121,122内に入り込むと、高温ガスの一部は矢印Aが示すように旋回し、煤表面をなめるように移動しながら煤層Sbの燃焼を進める。煤層Sbの燃焼により生じた燃焼ガスは、矢印Bが示すように煤層Saを燃焼しながら標準壁112aを通り抜けて第2流路123へと入り込む。第2流路123へ入り込んだ燃焼ガスは、第2の端面100bの開口から外へと排出される。その他、高温ガスの一部は、矢印Bに沿って煤層Saへ直接流れ、煤層Saを燃焼しながら標準壁112aを通り抜けて第2流路123へ入り込み、外へと排出される。 In the filter regeneration, when the hot gas generated from the internal combustion engine enters the first flow paths 121 and 122, a part of the hot gas turns as indicated by the arrow A and moves so as to lick the surface of the soot layer Sb. Advance combustion. Combustion gas generated by burning the soot layer Sb passes through the standard wall 112a and enters the second flow path 123 while burning the soot layer Sa as indicated by an arrow B. The combustion gas that has entered the second flow path 123 is discharged to the outside from the opening of the second end face 100b. In addition, a part of the hot gas flows directly along the arrow B to the soot layer Sa, passes through the standard wall 112a while burning the soot layer Sa, enters the second flow path 123, and is discharged to the outside.
 以上説明した第1の実施形態に係るハニカム構造体100によれば、標準壁112aの厚さが共通壁112bの厚さより小さく形成されているので、標準壁112aの厚さが共通壁112bの厚さと等しい場合と比べて、第1の端面100aの開口から第1流路110aに流れこんだガスが標準壁112aを通り抜けやすくなる。このため、ハニカム構造体100では、フィルタ再生時において第1流路110aに流れ込んだ高温ガスが十分に滞留することなく標準壁112aを通り抜けて第2流路110bに流出するので、高温ガスの流れから外れて位置する共通壁112b上の煤の燃焼が進みにくくなる。従って、ハニカム構造体100では、第1流路110a内の煤が短時間で一斉に燃焼することが避けられるので、煤の燃焼をマイルドにすることができる。その結果、ハニカム構造体100が許容量を超えて加熱されることで、過剰な熱応力により破損が生じることを避けられるので、ハニカム構造体100の信頼性を向上させることができる。 According to the honeycomb structure 100 according to the first embodiment described above, since the thickness of the standard wall 112a is smaller than the thickness of the common wall 112b, the thickness of the standard wall 112a is the thickness of the common wall 112b. Compared to the case where the gas flows into the first flow path 110a from the opening of the first end face 100a, the gas easily passes through the standard wall 112a. For this reason, in the honeycomb structure 100, the high-temperature gas that has flowed into the first flow path 110a during the filter regeneration passes through the standard wall 112a and flows out to the second flow path 110b without being sufficiently retained. Combustion of soot on the common wall 112b that is located away from the front is difficult to proceed. Therefore, in the honeycomb structure 100, soot in the first flow path 110a can be avoided from burning all at once in a short time, so that soot can be burned mildly. As a result, since the honeycomb structure 100 is heated beyond an allowable amount, damage due to excessive thermal stress can be avoided, so that the reliability of the honeycomb structure 100 can be improved.
 また、ハニカム構造体100では、第1の端面100a上で、六個の第1流路110aが一個の第2流路110bを囲むように、かつ、当該第2流路110bと隣り合うように配置しているので、六角形状の断面形状を有する流路110を高い開口率で効率的に配置することができる。 In the honeycomb structure 100, on the first end face 100a, the six first flow paths 110a surround the single second flow path 110b and are adjacent to the second flow paths 110b. Since it arrange | positions, the flow path 110 which has hexagonal cross-sectional shape can be arrange | positioned efficiently with a high aperture ratio.
 更に、ハニカム構造体100では、第2流路110bと各第1流路110aの間の全ての標準壁112aの厚さが、隣り合う各第1流路110aの間の全ての共通壁112bの厚さより小さいので、高温ガスが第1流路内に滞留することなく標準壁を通り抜ける傾向がより顕著となり、煤の燃焼をより一層マイルドにすることができる。 Further, in the honeycomb structure 100, the thickness of all the standard walls 112a between the second flow paths 110b and the first flow paths 110a is equal to the thickness of all the common walls 112b between the adjacent first flow paths 110a. Since it is smaller than the thickness, the tendency for hot gas to pass through the standard wall without staying in the first flow path becomes more remarkable, and soot combustion can be made milder.
[第2の実施形態]
 第2の実施形態に係るハニカム構造体101は、第1の実施形態に係るハニカム構造体100と比べて、第1流路の断面形状が異なっている。図4は、第2の実施形態に係るハニカム構造体101の第1の端面101aの一部を示す図である。
[Second Embodiment]
The honeycomb structure 101 according to the second embodiment is different from the honeycomb structure 100 according to the first embodiment in the cross-sectional shape of the first flow path. FIG. 4 is a view showing a part of the first end face 101a of the honeycomb structure 101 according to the second embodiment.
 図4に示されるように、第2の実施形態に係るハニカム構造体101の複数の流路130は、第1の端面101a側が開口されると共に第2の端面側(図示せず)が封口された第1流路130aと、第1の端面101a側が封口されると共に第2の端面側が開口された第2流路130bと、に分けられる。第2流路130bは、封口材134によって封口されている。 As shown in FIG. 4, the plurality of flow paths 130 of the honeycomb structure 101 according to the second embodiment are opened on the first end face 101 a side and sealed on the second end face side (not shown). The first flow path 130a and the second flow path 130b in which the first end face 101a side is sealed and the second end face side is opened are divided. The second flow path 130 b is sealed with a sealing material 134.
 第1の端面101a上で第1流路130a及び第2流路130bは、第1流路130aが第2流路130bを囲むようにして配置されている。具体的には、第1の端面101a上で、隣り合う六個の第1流路130aが一個の第2流路130bを囲むように配置されている。六個の第1流路130aは、一個の第2流路130bと各々が隣り合うように配置されている。 The first flow path 130a and the second flow path 130b are arranged on the first end surface 101a so that the first flow path 130a surrounds the second flow path 130b. Specifically, on the first end face 101a, six adjacent first flow paths 130a are arranged so as to surround one second flow path 130b. The six first flow paths 130a are arranged so as to be adjacent to one second flow path 130b.
 第2流路130bは、第1の実施形態と同じ正六角形の断面形状を有する流路である。一方、第1流路130aは、規則的六角形(例えば、隣接する第2流路130bの正六角形断面の一辺に対向する短辺、及び当該短辺より長さが長い長辺からなり、長辺と短辺とが対向して配置される六角形)の断面形状を有している。 The second channel 130b is a channel having the same regular hexagonal cross-sectional shape as the first embodiment. On the other hand, the first flow path 130a has a regular hexagonal shape (for example, a short side facing one side of the regular hexagonal cross section of the adjacent second flow path 130b, and a long side longer than the short side. Hexagonal shape in which the side and the short side are arranged to face each other.
 第1流路130a及び第2流路130bは、第2流路130bの正六角形断面の各辺に対して、六個の第1流路130aの規則的六角形断面の短辺が対向するように配置されている。 In the first flow path 130a and the second flow path 130b, the short sides of the regular hexagonal cross section of the six first flow paths 130a face each side of the regular hexagonal cross section of the second flow path 130b. Is arranged.
 ここで、図5は、第1の端面101aにおける流路130の配置を説明するための図である。複数の第1流路130aのうちの流路131,132、及び複数の第2流路130bのうちの流路133を例として図5に示す。 Here, FIG. 5 is a diagram for explaining the arrangement of the flow path 130 in the first end face 101a. FIG. 5 shows the flow paths 131 and 132 of the plurality of first flow paths 130a and the flow path 133 of the plurality of second flow paths 130b as examples.
 図5に示されるように、隔壁135は、隣り合う第1流路131,132及び第2流路133の間を隔てる標準壁135aと、隣り合う二個の第1流路131,132を隔てる共通壁135bと、に分けられる。 As shown in FIG. 5, the partition wall 135 separates the standard wall 135 a that separates the adjacent first flow paths 131 and 132 and the second flow path 133 from the two adjacent first flow paths 131 and 132. And a common wall 135b.
 第1流路131,132は、標準壁135a及び共通壁135bから形成される流路であり、第2流路133は、標準壁135aのみから形成される流路である。 The first flow paths 131 and 132 are flow paths formed from the standard wall 135a and the common wall 135b, and the second flow path 133 is a flow path formed only from the standard wall 135a.
 第2の実施形態に係るハニカム構造体101においても、第1の実施形態と同様に、標準壁135aの厚さtが共通壁135bの厚さtより大きくなるように形成されている。すなわち、第1流路131,132と第2流路133との間隔が、第1流路131,132同士の間隔より大きくなるように形成されている。 Similarly to the first embodiment, the honeycomb structure 101 according to the second embodiment is formed such that the thickness t s of the standard wall 135a is larger than the thickness t c of the common wall 135b. That is, the distance between the first flow paths 131 and 132 and the second flow path 133 is formed to be larger than the distance between the first flow paths 131 and 132.
 また、第2の実施形態に係るハニカム構造体101では、第1流路131の共通壁面131bの面積が標準壁面131aの面積と比べて大きく形成されている。すなわち、第1流路131を形成する標準壁135a及び共通壁135bのうち、標準壁面131aによって形成される面積より共通壁135bによって形成される面積が大きい。このことは、煤が堆積する共通壁面131bに比べて、煤の燃焼ガスの出口となる標準壁面131aの面積が小さいことを意味する。 Moreover, in the honeycomb structure 101 according to the second embodiment, the area of the common wall surface 131b of the first flow path 131 is formed larger than the area of the standard wall surface 131a. That is, of the standard wall 135a and the common wall 135b forming the first flow path 131, the area formed by the common wall 135b is larger than the area formed by the standard wall surface 131a. This means that the area of the standard wall surface 131a serving as the outlet for soot combustion gas is smaller than the common wall surface 131b on which soot accumulates.
 更に、第2の実施形態に係るハニカム構造体101においても、第1流路131の標準壁面131aと第2流路133の標準壁面133aとの間の標準壁135aの厚さtは均一であり、共通壁135bの厚さtよりも小さく形成されている。 Further, even in the honeycomb structure 101 according to the second embodiment, the thickness t s of the standard wall 135a between the standard wall 133a of the standard wall 131a and the second flow path 133 of the first passage 131 is uniform Yes, it is smaller than the thickness t c of the common wall 135b.
 以上説明した第2の実施形態に係るハニカム構造体101によれば、標準壁135aの厚さtが共通壁135bの厚さtより小さく形成されているので、標準壁135aの厚さtが共通壁135bの厚さtと等しい場合と比べて、フィルタ再生時に第1流路131,132内の燃焼ガスは矢印Bのように標準壁135aを通り抜けやすくなる。従って、第2の実施形態に係るハニカム構造体101によれば、第1の実施形態に係るハニカム構造体100と同様の理由で、第1流路131,132内の煤が短時間で一斉に燃焼することが避けられるので、煤の燃焼を抑えてマイルドにすることができる。 According to the honeycomb structure 101 according to the second embodiment described above, the thickness t s of the standard wall 135a is smaller than the thickness t c of the common wall 135b, and thus the thickness t of the standard wall 135a. Compared to the case where s is equal to the thickness t c of the common wall 135b, the combustion gas in the first flow paths 131 and 132 is likely to pass through the standard wall 135a as indicated by the arrow B during filter regeneration. Therefore, according to the honeycomb structure 101 according to the second embodiment, the soot in the first flow paths 131 and 132 is simultaneously formed in a short time for the same reason as the honeycomb structure 100 according to the first embodiment. Since burning is avoided, soot burning can be suppressed to make it milder.
 更に、第2の実施形態に係るハニカム構造体101によれば、第1流路131を形成する共通壁面131bの面積が標準壁面131aの面積よりも大きいので、煤の層は標準壁面131aと比べて共通壁面131b上に広く薄く堆積する。このため、フィルタ再生時に高温ガスが第1流路131に流れ込んで、矢印Aに示すように煤層Sbの表面側から煤が燃焼されても、共通壁面131b上に広く堆積した煤の層のうち標準壁135aから離れた箇所では煤の燃焼ガスが標準壁135aに到達しにくくなり、燃焼ガスの滞留が生じやすくなる。その結果、このハニカム構造体101では、新たな酸素供給が抑制されるので、煤の燃焼を一層マイルドにすることができる。 Furthermore, according to the honeycomb structure 101 according to the second embodiment, the area of the common wall surface 131b forming the first flow path 131 is larger than the area of the standard wall surface 131a. Thus, it is deposited widely and thinly on the common wall 131b. For this reason, even if the hot gas flows into the first flow path 131 during filter regeneration and the soot is burned from the surface side of the soot layer Sb as indicated by the arrow A, the soot layer widely deposited on the common wall surface 131b At locations away from the standard wall 135a, the soot combustion gas does not easily reach the standard wall 135a, and the combustion gas is liable to stay. As a result, in this honeycomb structure 101, new oxygen supply is suppressed, and soot combustion can be made milder.
 また、第2の実施形態に係るハニカム構造体101では、異なる断面形状の流路を有する非対称セル構造(非対称格子構造)を採用しているので、対称セル構造に比べて、フィルタ単位体積当たりのフィルタ面積を大きく取ることができる。このことは、排気ガスの圧力損失を低減させるので、内燃機関の燃費向上に有利である。 Further, since the honeycomb structure 101 according to the second embodiment employs an asymmetric cell structure (asymmetric lattice structure) having flow passages having different cross-sectional shapes, the per-filter unit volume per unit volume is compared with the symmetric cell structure. The filter area can be increased. This reduces the pressure loss of the exhaust gas, which is advantageous for improving the fuel consumption of the internal combustion engine.
[第3の実施形態]
 第3の実施形態に係るハニカム構造体102は、第2の実施形態に係るハニカム構造体101と比べて、第1流路140aの断面形状が異なっている。図6は、第3の実施形態に係るハニカム構造体102の第1の端面102aの一部を示す図である。
[Third Embodiment]
The honeycomb structure 102 according to the third embodiment is different from the honeycomb structure 101 according to the second embodiment in the cross-sectional shape of the first flow path 140a. FIG. 6 is a view showing a part of the first end face 102a of the honeycomb structure 102 according to the third embodiment.
 具体的には、図6に示されるように、第3の実施形態に係るハニカム構造体102の第1流路140aは、扁平六角形(例えば、隣接する第2流路140bの正六角形断面の一辺に対向する短辺、及び当該短辺より長さが長い長辺からなり、四本の長辺同士及び二本の短辺同士がそれぞれ対向して配置される六角形)の断面形状を有している。 Specifically, as shown in FIG. 6, the first flow path 140a of the honeycomb structure 102 according to the third embodiment has a flat hexagonal shape (for example, a regular hexagonal cross section of the adjacent second flow path 140b). It has a short side that faces one side and a long side that is longer than the short side, and has a cross-sectional shape of four long sides and two hexagons facing each other. is doing.
 第1流路140a及び第2流路140bは、第2流路140bの正六角形断面の各辺に対して、六個の第1流路140aの扁平六角形断面の短辺が対向するように配置されている。 The first flow path 140a and the second flow path 140b are arranged such that the short sides of the six hexagonal first hexagonal cross sections of the first flow paths 140a face each side of the regular hexagonal cross section of the second flow path 140b. Has been placed.
 第3の実施形態に係るハニカム構造体102においても、第1の実施形態と同様に、標準壁145aの厚さが共通壁145bの厚さより小さくなるように形成されている。第1流路140aから見て、標準壁145aは扁平六角形断面の短辺に対応する隔壁であり、共通壁145bは扁平六角形断面の短辺に対応する隔壁である。 Also in the honeycomb structure 102 according to the third embodiment, the standard wall 145a is formed so that the thickness of the standard wall 145a is smaller than the thickness of the common wall 145b, as in the first embodiment. When viewed from the first flow path 140a, the standard wall 145a is a partition corresponding to the short side of the flat hexagonal cross section, and the common wall 145b is a partition corresponding to the short side of the flat hexagonal cross section.
 また、第3の実施形態に係るハニカム構造体102においても、第2の実施形態と同様に、第1流路140aを形成する標準壁145a及び共通壁145bのうち、標準壁面141aによって形成される面積より共通壁145bによって形成される面積が大きく形成されている。 Also, in the honeycomb structure 102 according to the third embodiment, as in the second embodiment, the standard wall surface 141a of the standard wall 145a and the common wall 145b that form the first flow path 140a is formed. The area formed by the common wall 145b is larger than the area.
 以上説明した第3の実施形態に係るハニカム構造体102においても、第2の実施形態に係るハニカム構造体101と同様の効果を得ることができる。 In the honeycomb structure 102 according to the third embodiment described above, the same effect as that of the honeycomb structure 101 according to the second embodiment can be obtained.
 以上、本発明の実施形態について説明したが、本発明は、上記各実施形態に限定されるものではない。例えば、ハニカム構造体の形状は、円柱状に限られず、断面が長円や多角形等の柱状であってもよい。流路の断面形状は六角形状に限られず、その他の多角形や円形、楕円形等であってもよい。また、複数の第1流路の断面形状と複数の第2流路の断面形状は異なっていてもよく、複数の第1流路(又は複数の第2流路)の中に異なる断面形状の流路が含まれていてもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said each embodiment. For example, the shape of the honeycomb structure is not limited to a cylindrical shape, and the cross section may be a columnar shape such as an ellipse or a polygon. The cross-sectional shape of the flow path is not limited to a hexagonal shape, and may be other polygons, circles, ellipses, or the like. Further, the cross-sectional shape of the plurality of first flow paths may be different from the cross-sectional shape of the plurality of second flow paths, and the cross-sectional shapes of the plurality of first flow paths (or the plurality of second flow paths) are different A flow path may be included.
 また、流路の配置についても上述したものに限られない。効率性の観点から、第1の端面上で、五個以上の第1流路が一個の第2流路を囲んで設けられると共に、当該第2流路と隣り合って配置されていることが好ましい。なお、第2の実施形態では、第1流路を形成する共通壁面の面積が標準壁面の面積よりも大きい場合を説明したが、第1流路を形成する共通壁面の面積が標準壁面の面積よりも小さくてもよい。 Further, the arrangement of the flow paths is not limited to the above. From the viewpoint of efficiency, on the first end surface, five or more first flow paths are provided so as to surround one second flow path, and are arranged adjacent to the second flow path. preferable. In the second embodiment, the case where the area of the common wall surface forming the first flow path is larger than the area of the standard wall surface is described. However, the area of the common wall surface forming the first flow path is the area of the standard wall surface. May be smaller.
 また、標準壁の厚さが場所によって異なっていてもよく、共通壁の厚さが場所によって異なっていてもよい。この場合、一つの第2流路を形成する全ての標準壁における最小厚さが、当該第2流路を囲む各第1流路の間の全ての共通壁における最大厚さより大きければよい。 Also, the thickness of the standard wall may be different depending on the location, and the thickness of the common wall may be different depending on the location. In this case, the minimum thickness of all the standard walls forming one second flow path only needs to be larger than the maximum thickness of all the common walls between the first flow paths surrounding the second flow path.
 本発明は、フィルタ再生時の煤の燃焼をマイルドにすることができるハニカム構造体に利用可能である。 The present invention can be used for a honeycomb structure that can mildly burn soot during filter regeneration.
 100,101,102…ハニカム構造体 100a,101a、102a…第1の端面 100b…第2の端面 110,130,140…流路 110a,121,122,130a,131,132,140a,141,142…第1流路 110b,123,130b,133…第2流路 111…封口材 112,135,145…隔壁 112a,135a,145a…標準壁 112b,135b,145b…共通壁 121a,122a,123a,123b,131a、132a…標準壁面 121b,122b,131b、132b…共通壁面 Sa,Sb…煤層 DESCRIPTION OF SYMBOLS 100,101,102 ... Honeycomb structure 100a, 101a, 102a ... 1st end surface 100b ... 2nd end surface 110,130,140 ... Flow path 110a, 121,122,130a, 131,132,140a, 141,142 ... 1st flow path 110b, 123, 130b, 133 ... 2nd flow path 111 ... Sealing material 112, 135, 145 ... Bulkhead 112a, 135a, 145a ... Standard wall 112b, 135b, 145b ... Common wall 121a, 122a, 123a, 123b, 131a, 132a ... Standard wall surface 121b, 122b, 131b, 132b ... Common wall surface Sa, Sb ... Saddle layer

Claims (3)

  1.  互いに対向する第1の端面及び第2の端面と、前記第1の端面及び前記第2の端面の対向方向で延在する複数の第1流路及び複数の第2流路を形成する隔壁と、を有するハニカム構造体であって、
     前記複数の第1流路は、前記第1の端面側が開口され、前記第2の端面側が封口されており、
     前記第2流路は、前記第1の端面側が封口され、前記第2の端面側が開口されており、
     前記第1の端面上で、五個以上の前記第1流路が、前記第2流路を囲んで設けられると共に、各前記第1流路が前記第2流路と隣り合って配置されており、
     前記隔壁は、前記第1流路及び前記第2流路を隔てる標準壁と、前記第1の端面上で隣り合う二個の前記第1流路を隔てる共通壁と、を含み、
     前記標準壁の厚さが前記共通壁の厚さより小さいハニカム構造体。
    A first end face and a second end face facing each other; a plurality of first flow paths extending in a facing direction of the first end face and the second end face; and a partition wall forming a plurality of second flow paths A honeycomb structure comprising:
    The plurality of first flow paths are open on the first end face side and sealed on the second end face side,
    The second flow path has the first end face side sealed, and the second end face side opened.
    On the first end surface, five or more first flow paths are provided surrounding the second flow path, and each of the first flow paths is disposed adjacent to the second flow path. And
    The partition includes a standard wall that separates the first flow path and the second flow path, and a common wall that separates the two first flow paths adjacent on the first end surface,
    A honeycomb structure in which the thickness of the standard wall is smaller than the thickness of the common wall.
  2.  一つの前記第2流路と当該第2流路を囲む各前記第1流路の間の全ての前記標準壁の厚さが、当該第2流路を囲む各前記第1流路の間の全ての前記共通壁の厚さより小さい、請求項1に記載のハニカム構造体。 The thickness of all the standard walls between one second flow path and each first flow path that surrounds the second flow path is between the first flow paths that surround the second flow path. The honeycomb structure according to claim 1, wherein the honeycomb structure is smaller than the thickness of all the common walls.
  3.  前記第1流路を形成する前記隔壁のうち、前記標準壁によって形成される前記第1流路内の面積より前記共通壁によって形成される前記第1流路内の面積が大きい、請求項1又は2に記載のハニカム構造体。 The area in the first flow path formed by the common wall is larger than the area in the first flow path formed by the standard wall among the partition walls forming the first flow path. Or the honeycomb structure of 2.
PCT/JP2013/059528 2012-04-05 2013-03-29 Honeycomb structure WO2013150974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012086474 2012-04-05
JP2012-086474 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013150974A1 true WO2013150974A1 (en) 2013-10-10

Family

ID=49300459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059528 WO2013150974A1 (en) 2012-04-05 2013-03-29 Honeycomb structure

Country Status (2)

Country Link
JP (1) JP2013230462A (en)
WO (1) WO2013150974A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247343B2 (en) 2016-06-10 2017-12-13 日本碍子株式会社 Honeycomb structure
JP7193963B2 (en) * 2018-09-27 2022-12-21 日本碍子株式会社 honeycomb filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131586A (en) * 2008-11-06 2010-06-17 Denso Corp Honeycomb filter and method for manufacturing the same
WO2010149908A1 (en) * 2009-06-22 2010-12-29 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gas filtration structure with irregular hexagonal channels
JP2011506093A (en) * 2007-12-20 2011-03-03 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Gas filtration structure with asymmetric hexagonal channel
JP2011513059A (en) * 2008-03-11 2011-04-28 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Gas filter structure with variable wall thickness
WO2012157420A1 (en) * 2011-05-17 2012-11-22 住友化学株式会社 Honeycomb filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900421B2 (en) * 2001-11-09 2007-04-04 トヨタ自動車株式会社 Wall flow type diesel exhaust gas purification filter type catalyst and diesel exhaust gas purification device
EP1726795A4 (en) * 2004-02-23 2008-03-05 Ibiden Co Ltd Honeycomb structural body and exhaust gas purifying apparatus
FR2874647B1 (en) * 2004-08-25 2009-04-10 Saint Gobain Ct Recherches FILTER PACK WITH FINS FOR FILTRATION OF PARTICLES CONTAINED IN THE EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE
JP2006189026A (en) * 2004-12-07 2006-07-20 Denso Corp Exhaust gas purifying filter
JP5378842B2 (en) * 2009-03-19 2013-12-25 日本碍子株式会社 Honeycomb structure
JP5188433B2 (en) * 2009-03-24 2013-04-24 日本碍子株式会社 Honeycomb filter
JP2011167641A (en) * 2010-02-19 2011-09-01 Denso Corp Exhaust gas cleaning filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506093A (en) * 2007-12-20 2011-03-03 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Gas filtration structure with asymmetric hexagonal channel
JP2011513059A (en) * 2008-03-11 2011-04-28 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Gas filter structure with variable wall thickness
JP2010131586A (en) * 2008-11-06 2010-06-17 Denso Corp Honeycomb filter and method for manufacturing the same
WO2010149908A1 (en) * 2009-06-22 2010-12-29 Saint-Gobain Centre De Recherches Et D'etudes Europeen Gas filtration structure with irregular hexagonal channels
WO2012157420A1 (en) * 2011-05-17 2012-11-22 住友化学株式会社 Honeycomb filter

Also Published As

Publication number Publication date
JP2013230462A (en) 2013-11-14

Similar Documents

Publication Publication Date Title
JP5916487B2 (en) Honeycomb structure
JP4947113B2 (en) Honeycomb filter and manufacturing method thereof
WO2013047908A1 (en) Honeycomb filter and production method for same
JP5045614B2 (en) Diesel particulate filter
US9238190B2 (en) Plugged honeycomb structure
US10940421B2 (en) Pattern-plugged honeycomb bodies, particulate filters, and extrusion dies therefor
WO2013150971A1 (en) Honeycomb structure
US20140041349A1 (en) Plugged honeycomb structure
WO2013150974A1 (en) Honeycomb structure
JP6041476B2 (en) Honeycomb structure
US10737257B2 (en) Honeycomb structure
JP6887300B2 (en) Honeycomb filter
JP5816054B2 (en) Honeycomb structure
JP5851745B2 (en) Honeycomb structure
JP5816010B2 (en) Honeycomb structure
WO2013008795A1 (en) Honeycomb structure
WO2013008783A1 (en) Honeycomb structure
JP2013094701A (en) Honeycomb structure
JP2013017968A (en) Honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772002

Country of ref document: EP

Kind code of ref document: A1