Nothing Special   »   [go: up one dir, main page]

WO2013038911A1 - Semiconductor device and infrared image-capturing device provided with same - Google Patents

Semiconductor device and infrared image-capturing device provided with same Download PDF

Info

Publication number
WO2013038911A1
WO2013038911A1 PCT/JP2012/071925 JP2012071925W WO2013038911A1 WO 2013038911 A1 WO2013038911 A1 WO 2013038911A1 JP 2012071925 W JP2012071925 W JP 2012071925W WO 2013038911 A1 WO2013038911 A1 WO 2013038911A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
bias
voltage
integration circuit
saturation prevention
Prior art date
Application number
PCT/JP2012/071925
Other languages
French (fr)
Japanese (ja)
Inventor
邦幸 奥山
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP12831932.4A priority Critical patent/EP2757355A4/en
Priority to US14/344,790 priority patent/US9426388B2/en
Priority to JP2013533602A priority patent/JP5884997B2/en
Publication of WO2013038911A1 publication Critical patent/WO2013038911A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J1/46Electric circuits using a capacitor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • G01J5/24Use of specially adapted circuits, e.g. bridge circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/20Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming only infrared radiation into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J2005/106Arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers

Definitions

  • the present invention relates to a semiconductor device and an infrared imaging device including the same.
  • thermoelectric conversion elements As an example of an infrared imaging device, a bolometer type infrared imaging device including a one-dimensional or two-dimensional sensor array and a readout circuit is known (Patent Document 1). An example thereof will be described with reference to FIG. FIG. 4 partially shows a readout circuit and a two-dimensional sensor array in the bolometer-type infrared imaging device.
  • This infrared imaging device arranges thermoelectric conversion elements in a two-dimensional matrix, detects an infrared signal received by the thermoelectric conversion element for each thermoelectric conversion element, and outputs a detection signal as an electric signal.
  • the infrared imaging apparatus receives a detection signal from a pixel switch 201 selected by a vertical shift register 205 via a scanning line 211, a horizontal switch 204, and a readout circuit 206 connected to the thermoelectric conversion element 202 via a signal line 203. Parallel processing is possible. Outputs of the plurality of readout circuits 206 are sequentially output from the output terminal 210 to the outside by the horizontal shift register 208. Reference numerals 207 and 209 denote a multiplexer switch and an output buffer, respectively.
  • FIG. 5 shows the configuration of the read circuit in FIG.
  • the readout circuit 101 includes a bias circuit 102 that applies a constant voltage to the bolometer element (thermoelectric conversion element) 105, a bias cancel circuit 103 that removes an offset current of components other than the signal of the subject, a bias circuit 102, and a bias cancel circuit 103. And an integration circuit 104 including an operational amplifier (hereinafter referred to as an integration operational amplifier) 111 connected to both of these circuits.
  • the plurality of read circuits 101 are supplied with input voltages via the input voltage wirings 1 and 2 (106, 107), and execute read operations simultaneously in parallel. The operation is roughly as follows.
  • each bolometer element 105 that occurs according to the intensity of infrared incident light from the subject is detected as the difference between the bolometer current determined by the input voltages VB1, VB2 (115, 121) and the bias cancellation current.
  • the detected current difference is integrated by the integration circuit 104, and at the same time, current-voltage conversion is performed and output as a voltage value.
  • Specific operations of the bias circuit 102 and the bias cancel circuit 103 are as follows. First, the input voltages VB1 and VB2 are adjusted in a state where the shutter of the imaging device is closed (a state where light from the subject is not incident). Thereby, the current flowing through the bolometer element 105 and the current flowing through the bias cancel resistor 116 are balanced.
  • the bias circuit 102 includes an NMOS transistor (hereinafter referred to as a bias transistor) 108 whose source is connected to one end of the bolometer element 105, an input terminal connected to the input voltage wiring 1 (106), and an output terminal connected to the bias transistor 108.
  • the source follower circuit 109 is connected to each gate. Since the bias transistor 108 is driven with a low impedance by the source follower circuit 109, it is possible to suppress the jumping noise of each readout circuit.
  • the bias circuit 102 applies a constant voltage to each bolometer element 105. Thereby, the resistance value change of the bolometer element 105 is converted into a current value.
  • the VGS removal voltage generation circuit 1 (110) is a circuit that compensates for VGS (gate-source voltage) of both the bias transistor 108 and the source follower circuit 109, and the fluctuation voltage of VGS does not appear in the drain current. (Voltage fluctuation compensation) circuit configuration. More specifically, the VGS removal voltage generation circuit 1 (110) includes the same bias transistor 108, source follower circuit 109, and operational amplifier 114 as the bias circuit 102.
  • the source of the bias transistor 108 is connected to one end of the bolometer element 105, the gate of the bias transistor 108 is connected to the output terminal of the source follower circuit 109, and the drain of the bias transistor 108 is connected to + 5V.
  • the operational amplifier 114 has its output terminal connected to the input terminal of the source follower circuit 109, the inverting input terminal ( ⁇ ) connected to the source of the bias transistor 108, and the non-inverting input terminal (+) connected to the input voltage VB1 (115). Has been.
  • the bias cancel circuit 103 includes a resistor element (bias cancel resistor) 116 having a power source connected to one end, a PMOS transistor (hereinafter referred to as a canceller transistor) 117 having a source connected to the other end of the resistor element, and an input terminal having an input voltage.
  • the wiring follower circuit 118 includes a source follower circuit 118 whose output terminal is connected to the gate of the canceller transistor 117.
  • the infrared signal has a large offset component, and the signal component from the subject exists at a minute level on the offset component. Therefore, the bias cancel circuit 103 is configured for the purpose of removing the offset component.
  • the canceller transistor 117 is driven with a low impedance by the source follower circuit 118, the jumping noise of each readout circuit 101 can be suppressed.
  • the VGS removal voltage generation circuit 2 (119) is a circuit that compensates for VGS of both the canceller transistor 117 and the source follower circuit 118. More specifically, the VGS removal voltage generation circuit 2 (119) also includes the same bias cancellation resistor 116, canceller transistor 117, source follower circuit 118, and operational amplifier 120 as the bias cancellation circuit 103.
  • the source of the canceller transistor 117 is connected to one end of the bias cancel resistor 116, the gate is connected to the output end of the source follower circuit 118, and the drain is connected to + 5V.
  • the operational amplifier 120 has its output terminal connected to the input terminal of the source follower circuit 118, the inverting input terminal ( ⁇ ) connected to the source of the canceller transistor 117, and the non-inverting input terminal (+) connected to the input voltage terminal VB2 (121). ing.
  • the drains of the bias transistor 108 and the canceller transistor 117 in the readout circuit 101 are connected to the inverting input terminal ( ⁇ ) of the integrating operational amplifier 111 and one end of the integrating capacitor 122 in the integrating circuit 104, respectively.
  • the integration circuit 104 integrates the current change of the bolometer element 105 described above.
  • the other end of the integrating capacitor 122 is connected to the output terminal of the integrating operational amplifier 111, and the non-inverting input terminal (+) of the integrating operational amplifier 111 is connected to + 5V.
  • the inverting input terminal ( ⁇ ) of the integrating operational amplifier 111 that is, the drains of the bias transistor 108 and the canceller transistor 117 are normally fixed at + 5V, respectively.
  • the voltage of the integrating capacitor 122 after the integration is taken out from the output terminal of the integrating operational amplifier 111, and these are sequentially output from each readout circuit 101 as an output signal.
  • a reset switch 123 is provided between the inverting input terminal ( ⁇ ) and the output terminal of the integrating operational amplifier 111. After the integrated voltage is output from the integrating capacitor 122, the switch 123 is turned “ON", so that the voltage of the non-inverting input terminal (+) of the integrating operational amplifier 111 is set to + 5V.
  • a clip diode A (124) and a clip diode B (125) are connected to the inverting input terminal ( ⁇ ) of the integrating operational amplifier 111. These function so as to compensate for the excessive current when one of the current of the bolometer element 105 or the current on the bias cancel circuit 103 side becomes excessive and the output of the integrating operational amplifier 111 is saturated.
  • each input voltage wiring connected to a plurality of readout circuits is directly connected to a bias transistor or a canceller transistor, the influence of the voltage displacement inside the readout circuit when the input voltage is light incident from a high-temperature subject or the like.
  • the drain voltage of each of the above transistors is fixed to +5 V, but the voltage fluctuates when light from a high-temperature subject is incident on the bolometer element (thermoelectric conversion element). The resistance value of the bolometer element decreases due to light incident from a high-temperature subject.
  • the inverting input terminal ( ⁇ ) of the integrated operational amplifier drops from +5 V to about +4.3 V as the clip voltage (t1 in FIG. 6B). 'Period).
  • the voltage at the inverting input terminal ( ⁇ ) fluctuates, the voltage at the drain of the bias transistor or canceller transistor decreases. For this reason, the gate voltage also fluctuates due to the drain-gate parasitic capacitance of each transistor, and the voltage fluctuation of each input voltage wiring connected to the gate occurs.
  • the image pickup apparatus of Patent Document 1 uses a source follower circuit (109 and 118 in FIG. 5), and drives a bias transistor and a canceller transistor with low impedance, thereby suppressing fluctuations in gate voltage due to a high-temperature false signal.
  • the bolometer type infrared imaging device has the following problems.
  • each transistor is driven with a low impedance to prevent jumping noise due to a high-temperature subject or the like. Therefore, the area and power consumption for this source follower circuit are increased.
  • This problem is caused by the extremely small infrared signal, and the source follower circuit needs to realize low noise.
  • the source follower circuit needs to have a large area in order to reduce the influence of 1 / f noise, and to increase the mutual conductance gm of the transistor in order to reduce white noise. For this reason, the source follower circuit consumes a large amount of power. Since there are two such source follower circuits in each readout circuit, the area and power consumption of the entire chip increase.
  • the present invention is intended to realize low noise, small area, and low power consumption in a semiconductor device for an infrared imaging device.
  • a bolometer element that receives light from a subject, a bias circuit that applies a bias voltage to the bolometer element, a bias cancellation circuit that removes an offset current of the bolometer element, the bias circuit, and the bias
  • One or more combinations of an integration circuit that is connected to a connection point of a cancellation circuit and integrates a difference current between the bias circuit and the bias cancellation circuit and a saturation prevention circuit that prevents saturation of the output voltage of the integration circuit are provided.
  • a semiconductor device is provided.
  • a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to the first and second input voltage wirings.
  • An infrared imaging device is provided.
  • the readout circuit is connected to a connection point between the bias circuit that applies a bias voltage to the corresponding bolometer element, a bias cancellation circuit that removes an offset current of the corresponding bolometer element, and the bias circuit and the bias cancellation circuit.
  • An integration circuit that integrates a difference current between the bias circuit and the bias cancellation circuit; and a saturation prevention circuit that prevents saturation of an output voltage of the integration circuit.
  • a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to the first and second input voltage wirings.
  • a bias circuit that applies a bias voltage to the corresponding bolometer element, a bias cancel circuit that removes an offset current of the corresponding bolometer element, and a connection between the bias circuit and the bias cancel circuit.
  • a method for preventing output voltage saturation of the integration circuit in an infrared imaging device including an integration circuit that is connected to a point and integrates a difference current between the bias circuit and the bias cancellation circuit.
  • the output voltage of the integration circuit is compared with a preset saturation prevention upper detection voltage, and when the output voltage of the integration circuit is higher than the saturation prevention upper detection voltage, the integration circuit is By disconnecting from the connection point, saturation of the output voltage of the integration circuit is prevented.
  • the saturation prevention circuit prevents saturation of the output voltage of the integration circuit.
  • the semiconductor device according to the present invention can achieve performance equivalent to that of a device including a source follower circuit with low noise, small area, and low power consumption even without a source follower circuit.
  • the saturation prevention circuit can prevent the saturation of the output voltage of the integration circuit, and can eliminate the voltage fluctuation component of the input voltage wiring due to a high-temperature subject or the like.
  • the infrared imaging device according to the present invention can eliminate the influence on the input voltage supplied to the other readout circuits operating in parallel, which is caused by the saturation phenomenon of the output voltage of the integration circuit, and uses the source follower circuit. It is possible to obtain a high temperature false signal prevention effect equivalent to the case.
  • the infrared imaging device according to the present invention can realize low noise, small area, and low power consumption.
  • FIG. 1 is a diagram showing a configuration of a readout circuit in a bolometer-type infrared imaging device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a readout circuit in a bolometer-type infrared imaging device according to the second embodiment of the present invention.
  • FIG. 3A is a circuit diagram for explaining an operation at the time of light incidence from a high-temperature subject in one of the readout circuits of FIG.
  • FIG. 3B is an output voltage and signal waveform diagram for explaining an operation at the time of light incidence from a high-temperature subject in one of the readout circuits of FIG. 3A.
  • FIG. 4 is a circuit diagram partially showing the bolometer-type infrared imaging device of Patent Document 1.
  • FIG. 5 is a diagram showing the configuration of the read circuit shown in FIG.
  • FIG. 6A is a circuit diagram for explaining a mechanism of a high-temperature false signal and temperature drift in the readout circuit shown in FIG.
  • FIG. 6B is a signal waveform diagram for explaining the mechanism of the high-temperature false signal and the temperature drift in the readout circuit shown in FIG. 6A.
  • Each readout circuit 301 includes a bias circuit 302 that applies a constant voltage to the bolometer element 305, a bias cancellation circuit 303 that removes an offset current of components other than the subject signal, an integration circuit 304 that integrates the subject signal, and an integration circuit 304. It comprises a saturation prevention circuit 309 that prevents output voltage saturation.
  • the first input voltage wiring 1 (306) and the second input voltage wiring 2 (307) remove VGS using the input voltages VB1, VB2 (315, 321) as inputs, as in the circuit described in FIG.
  • the bias circuit 302 includes an NMOS transistor (hereinafter referred to as a bias transistor) 308 whose source is connected to one end of the bolometer element 305, and applies a constant voltage to the bolometer element 305. Thereby, the resistance value change of the bolometer element 305 is converted into a current value.
  • a bias transistor NMOS transistor
  • the bias cancel circuit 303 includes a resistance element 316 having a power source (VDD) connected to one end and a transistor (hereinafter referred to as a canceller transistor) 317 having a source connected to the other end of the resistance element 316.
  • VDD power source
  • a transistor hereinafter referred to as a canceller transistor
  • a bias cancel circuit 303 is configured for the purpose of removing the offset component.
  • the drains of the bias transistor 308 and the canceller transistor 317 are connected to the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324 and one end of the integrating capacitor 322 in the integrating circuit 304 via the input separation switch 325.
  • the integration circuit 304 integrates the current change of the bolometer element 305 described above.
  • the other end of the integrating capacitor 322 is connected to the output terminal of the integrating operational amplifier 324.
  • the non-inverting input terminal (+) of the integrating operational amplifier 324 is connected to the reference voltage (VDD / 2).
  • the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324 that is, the drains of the bias transistor 308 and the canceller transistor 317 via the input separation switch 325 are normally fixed to the reference voltage (VDD / 2), respectively.
  • the voltage of the integrating capacitor 322 after the integration is taken out from the output terminal of the integrating operational amplifier 324, and these are sequentially outputted from each readout circuit 301 as an output signal.
  • the saturation prevention circuit 309 compares the output voltage of the integration circuit 304 with a preset saturation prevention upper detection voltage (Vprev_sat_up), and controls the input separation switch 325 according to the comparison result.
  • the saturation prevention circuit 309 disconnects the drains of the bias transistor 308 and the canceller transistor 317 (the connection point between them) and the input of the integration circuit 304 when the output voltage of the integration circuit 304 is higher than the saturation prevention upper detection voltage (Vprev_sat_up).
  • the saturation prevention circuit 309 suppresses voltage fluctuation at the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324 that occurs when the output voltage of the integrating operational amplifier 324 is saturated.
  • the saturation prevention circuit 309 includes a comparator 326 that compares the output voltage of the integration circuit 304 with the saturation prevention upper detection voltage (Vprev_sat_up).
  • the saturation prevention circuit 309 also includes an SR latch 327 that holds the output of the comparator 326, and an input separation switch 325 that disconnects the drain of the bias transistor 308 and the canceller transistor 317 from the input of the integration circuit 304 by the output of the SR latch 327.
  • the non-inverting input terminal (+) of the comparator 326 is connected to the output terminal of the integrating operational amplifier 324 and the integrating capacitor 322, and the inverting input terminal ( ⁇ ) of the comparator 326 is connected to the saturation prevention upper detection voltage (Vprev_sat_up).
  • the output terminal of the comparator 326 is connected to the set terminal (S) of the SR latch 327.
  • the output of the comparator 326 becomes “High” when the output voltage of the integrating operational amplifier 324 exceeds the saturation prevention upper detection voltage (Vprev_sat_up).
  • the reset signal wiring 312 is connected to the reset terminal (R) of the SR latch 327, and the output terminal (Q) of the SR latch 327 is connected to the control terminal of the input separation switch 325.
  • the output terminal (Q) becomes “High” even for a moment while the reset terminal (R) is “Low”
  • the output terminal (Q) becomes “High”
  • the set terminal (S) becomes Even after returning to “Low”
  • the output terminal (Q) keeps “High”.
  • the input separation switch 325 is a single pole double throw (one circuit and two contacts), and the common terminal is connected to the drains of the bias transistor 308 and the canceller transistor 317.
  • the contact 1 of the input separation switch 325 is connected to the inverting input terminal ( ⁇ ) of the integration operational amplifier 324 and the integration capacitor 322, and the contact 2 of the input separation switch 325 is connected to the reference voltage (VDD / 2).
  • the control terminal is connected to the output terminal (Q) of the SR latch 327.
  • a reset switch (RSTSW) 323 is connected between the inverting input terminal ( ⁇ ) and the output terminal of the integrating operational amplifier 324. After the integrated voltage is output from the capacitor 322, the switch 323 is turned “ON” by the reset signal from the reset signal wiring 312, so that the output voltage of the integrating operational amplifier 324 is the reference voltage of the non-inverting input terminal (+).
  • the voltage (VDD / 2) is set.
  • the detected current difference is integrated by the integration circuit 304, and at the same time, is subjected to current-voltage conversion and output from the integration circuit 304 as a voltage value.
  • the saturation prevention circuit 309 detects the upper limit of the voltage value output from the integration circuit 304, and before the output voltage of the integration circuit 304 saturates, the input of the integration circuit 304 is input to the bias circuit 302 and the bias cancellation circuit by the input separation switch 325 Disconnect from 303 connection point.
  • the SR latch 327 in the saturation prevention circuit 309 is provided to prevent chattering during the transition of the comparator 326. Therefore, when the influence of chattering is small, the SR latch 327 is not necessary.
  • the bias circuit 302 and the bias cancel circuit 303 are as follows. First, the input voltages VB1 and VB2 (see FIG. 5) are adjusted in a state where the shutter of the infrared imaging device is closed (the light from the subject is not incident), and the current flowing to the bolometer element 305 side and the bias cancel circuit 303 are adjusted. Balance the current flowing through Thereafter, when the shutter is opened, only the current change accompanying the change in the resistance value of the bolometer element 305 due to the light incident from the subject can be taken out. The operation when light is incident from a high-temperature subject will be described in detail with reference to FIGS. 3A and 3B. In FIG.
  • a readout circuit 301 connected to a bolometer element 305 to which light from a high-temperature subject is not incident, and a readout circuit 301-1 connected to a bolometer element 305-1 to which light from a high-temperature subject is incident.
  • the resistance temperature coefficient of the bolometer element is negative, the resistance value of the bolometer element 305-1 decreases due to the incidence of light from a high-temperature subject, and thus the current to the bolometer element 305-1 increases.
  • the capacitor 322 of the integration circuit 304-1 is taken along the path indicated by the arrow in the circuit on the right side of FIG. 3A.
  • the imaginary short circuit of the integrating operational amplifier is destroyed, and the bias transistor 308-1 and the canceller transistor connected to the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324-1 and the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324-1.
  • a voltage change ( ⁇ V) occurs at the drain of 317-1 (the connection point between them) (period T1 in FIG. 3B).
  • the parasitic capacitance between the drain and gate of the bias transistor 308-1 and canceller transistor 317-1 is connected between the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324-1 and the input voltage wirings 1 and 2. For this reason, the voltage fluctuation of the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324-1 is differentiated and appears in the input voltage wirings 1 and 2 (( ⁇ ) ⁇ VS1 in FIG. 3B).
  • the saturation prevention upper detection voltage (Vprev_sat_up) is set between the upper effective voltage and the upper saturation voltage of the output voltage of the integration circuit 304-1.
  • the output of the integrating operational amplifier 324-1 reaches the saturation prevention upper detection voltage (Vprev_sat_up)
  • the output of the comparator 326-1 of the saturation prevention circuit 309-1 becomes “High” and is connected to the comparator 326-1.
  • the output of the SR latch 327-1 is also held at “High”.
  • the input separation switch 325-1 is connected to the common terminal (the drains of the bias transistor 308-1 and the canceller transistor 317-1) and the contact 2 (VDD / 2).
  • the input of the integration circuit 304-1 is disconnected. Since the input of the integration circuit 304-1 is disconnected, the current from the capacitor 322-1 of the integration operational amplifier 324-1 does not flow.
  • the output voltage of the integrating operational amplifier 324-1 is fixed at the saturation prevention upper detection voltage (Vprev_sat_up), the inverting input terminal ( ⁇ ) of the integrating operational amplifier 324-1 is imaginary shorted, and returns to the reference voltage (VDD / 2). (Period T2 in FIG. 3B). At this time, voltage fluctuations at the drains of the bias transistor 308-1 and the canceller transistor 317-1 are differentiated by the parasitic capacitance and appear in the input voltage wirings 1 and 2 ((+) ⁇ VS2 in FIG. 3B).
  • the current generated by applying the voltage of the input voltage wiring is integrated by the integrating operational amplifier 324.
  • the effect of the first embodiment is that performance equivalent to that provided with a source follower circuit as shown in Patent Document 1 can be obtained with low noise, small area, and low power consumption.
  • the reason is that by using the saturation prevention circuit, the voltage fluctuation component of the input voltage wiring due to the high temperature subject or the like can be made zero, and the high temperature false signal prevention effect can be obtained. That is, the saturation prevention circuit prevents saturation of the output voltage of the integration circuit, thereby eliminating the influence on the input voltage supplied to other readout circuits operating in parallel, which is caused by the saturation phenomenon of the output voltage of the integration circuit.
  • a second embodiment of the present invention will be described with reference to FIG.
  • the second embodiment also shows the configuration of the readout circuit applied to the bolometer type infrared imaging device.
  • the connection relationship between the second input voltage wiring 2 (407) and the reset signal wiring 412 is the same as that in the first embodiment, and a description thereof will be omitted.
  • the input voltage wiring 1 (406) and the input voltage wiring 2 (407) generate VGS removal voltages using the input voltages VB1, VB2 (315, 321) described in FIG. 5 as inputs.
  • illustration is omitted. In the circuit shown in FIG.
  • the saturation prevention circuit 409 includes a saturation prevention upper detection comparator (first comparator) 426 and a saturation prevention lower detection comparator for the purpose of preventing both high temperature false signals and low temperature false signals. 428 is used.
  • the inverting input terminal ( ⁇ ) of the saturation prevention lower detection comparator (second comparator) 428 is the non-inversion of the output terminal of the integration operational amplifier 424, the capacitor 422, and the saturation prevention upper detection comparator 426 in the integration circuit 404. Connected to the input terminal (+).
  • the non-inverting input terminal (+) of the saturation prevention lower detection comparator 428 is connected to the saturation prevention lower detection voltage (Vprev_sat_down).
  • the saturation prevention lower detection voltage (Vprev_sat_down) is set between the lower effective voltage and lower saturation voltage (see FIG. 3B) of the output voltage of the integration circuit 404.
  • the OR circuit 429 takes the logical sum of the output signal of the saturation prevention lower detection comparator 428 and the output signal of the saturation prevention upper detection comparator 426 and outputs the logical sum to the set terminal (S) of the SR latch 427.
  • the reset signal wiring 412 is connected to the reset terminal (R) of the SR latch 427.
  • the integration circuit is less likely to be saturated in the case of a low-temperature subject, but the lower side saturation may occur depending on the gain of the integration circuit.
  • the sum of the voltage fluctuation components of the input voltage wiring due to the lower saturation cannot be made zero, resulting in a low-temperature false signal.
  • the circuit area slightly increases, the second embodiment in which the total of the voltage fluctuation components of the input voltage wiring due to the lower saturation can be made zero by adding a saturation detection lower detection comparator. preferable. In some cases, only lower saturation prevention may be used.
  • (Appendix 1) A bolometer element that receives light from the subject; A bias circuit for applying a bias voltage to the bolometer element; A bias cancel circuit for removing the offset current of the bolometer element; An integration circuit that is connected to a connection point between the bias circuit and the bias cancellation circuit and integrates a difference current between the bias circuit and the bias cancellation circuit; A saturation prevention circuit for preventing saturation of the output voltage of the integration circuit; A semiconductor device comprising: (Appendix 2) The semiconductor device according to attachment 1, wherein the saturation prevention circuit has a function of comparing an output voltage of the integration circuit with a preset saturation prevention upper detection voltage, and the output voltage of the integration circuit is the saturation prevention upper side.
  • a semiconductor device which prevents the output voltage of the integration circuit from being saturated due to the high temperature of the subject by disconnecting the integration circuit from the connection point when the voltage is higher than a detection voltage.
  • Appendix 3 The semiconductor device according to attachment 2, wherein the saturation prevention circuit is inserted between a first comparator that compares the output voltage of the integration circuit and the saturation prevention upper detection voltage, and between the connection point and the integration circuit. And a switch connected and controlled to be turned on and off by the output of the first comparator.
  • Appendix 4 The semiconductor device according to appendix 3, wherein a latch portion is inserted and connected between the output of the first comparator and the switch.
  • a second comparator for comparing a detection voltage; a logic circuit for calculating a logical sum of the outputs of the first and second comparators; and the logic circuit inserted between the connection point and the integration circuit. And a switch that is controlled to be turned on / off by the output of the semiconductor device.
  • Appendix 7 The semiconductor device according to appendix 6, wherein a latch portion is inserted and connected between the output of the logic circuit and the switch.
  • An infrared imaging device in which a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to first and second input voltage wirings, The readout circuit is connected to a connection point between the bias circuit that applies a bias voltage to the corresponding bolometer element, a bias cancellation circuit that removes an offset current of the corresponding bolometer element, and the bias circuit and the bias cancellation circuit.
  • An infrared imaging apparatus comprising: an integration circuit that integrates a difference current between the bias circuit and the bias cancellation circuit; and a saturation prevention circuit that prevents saturation of an output voltage of the integration circuit.
  • the saturation prevention circuit has a function of comparing the output voltage of the integration circuit with a preset saturation prevention upper detection voltage, and the output voltage of the integration circuit is the saturation prevention circuit.
  • An infrared imaging device that prevents the output voltage of the integration circuit from being saturated due to the high temperature of the subject by disconnecting the integration circuit from the connection point when the voltage is higher than the upper detection voltage.
  • the saturation prevention circuit includes a first comparator that compares an output voltage of the integration circuit and the saturation prevention upper detection voltage, and between the connection point and the integration circuit.
  • An infrared imaging device comprising: a switch inserted and connected and controlled to be turned on and off by an output of the first comparator.
  • Appendix 11 The infrared imaging device according to appendix 10, wherein a latch portion is inserted and connected between the output of the first comparator and the switch.
  • Appendix 12 In the infrared imaging device according to appendix 9, the saturation prevention circuit further has a function of comparing the output voltage of the integration circuit with a preset saturation prevention lower detection voltage, and the output voltage of the integration circuit is An infrared imaging apparatus that prevents the output voltage of the integration circuit from being saturated due to the low temperature of the subject by disconnecting the integration circuit from the connection point when the detection voltage is lower than a saturation detection lower detection voltage.
  • (Appendix 13) The infrared imaging device according to attachment 12, wherein the saturation prevention circuit includes a first comparator that compares an output voltage of the integration circuit and the saturation prevention upper detection voltage, an output voltage of the integration circuit, and the saturation prevention circuit.
  • a second comparator for comparing the side detection voltage, a logic circuit for calculating the logical sum of the outputs of the first and second comparators, and being inserted and connected between the connection point and the integration circuit,
  • An infrared imaging device comprising: a switch that is on / off controlled by an output of a circuit.
  • (Appendix 14) The infrared imaging device according to appendix 13, wherein a latch portion is inserted and connected between the output of the logic circuit and the switch.
  • a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to first and second input voltage wirings, and the readout circuits correspond to each other.
  • a bias circuit for applying a bias voltage to the bolometer element, a bias cancel circuit for removing the offset current of the corresponding bolometer element, and the bias circuit and the bias connected to a connection point of the bias circuit and the bias cancel circuit An integration circuit for integrating the difference current of the cancellation circuit, and an output voltage saturation prevention method for the integration circuit in an infrared imaging device, By comparing the output voltage of the integration circuit with a preset saturation prevention upper detection voltage and disconnecting the integration circuit from the connection point when the output voltage of the integration circuit is higher than the saturation prevention upper detection voltage, the subject That prevents the output voltage of the integrating circuit from saturating due to the high temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

An infrared image-capturing device is formed by connecting, to a first and second input voltage wiring, a plurality of bolometer elements for receiving light form a subject, and a plurality of readout circuits connected to each of the plurality of bolometer elements. The readout circuit includes a bias circuit for providing a bias voltage to the corresponding bolometer element, a bias-canceling circuit for removing the offset electric current of the corresponding bolometer element, an integration circuit connected to a connection point of the bias circuit and the bias-canceling circuit and adapted for integrating the differential electric current of the bias circuit and the bias-canceling circuit, and a saturation-preventing circuit for preventing saturation of output voltage of the integration circuit.

Description

半導体装置及びこれを備えた赤外線撮像装置Semiconductor device and infrared imaging apparatus provided with the same
 本発明は半導体装置及びこれを備えた赤外線撮像装置に関する。 The present invention relates to a semiconductor device and an infrared imaging device including the same.
 赤外線撮像装置の一例として、一次元または二次元のセンサアレイと読み出し回路から構成されるボロメータ型赤外線撮像装置が知られている(特許文献1)。その一例を、図4を参照して説明する。
 図4は、ボロメータ型赤外線撮像装置のうちの、読み出し回路と二次元センサアレイを部分的に示している。
 本赤外線撮像装置は、熱電変換素子を二次元マトリクス状に配列し、熱電変換素子で受光した赤外線信号を熱電変換素子毎に検出し、検出信号を電気信号として出力する。本赤外線撮像装置は、垂直シフトレジスタ205により走査線211を介して選択された画素スイッチ201、および水平スイッチ204、信号線203を介して熱電変換素子202に接続する読み出し回路206により、検出信号を並列処理することができる。複数の読み出し回路206の出力は水平シフトレジスタ208によって出力端子210から順次、外部に出力される。207、209はそれぞれマルチプレクサスイッチ、出力バッファである。
 図4の読み出し回路の構成を図5に示す。読み出し回路101は、ボロメータ素子(熱電変換素子)105に定電圧を印加するバイアス回路102と、被写体の信号以外の成分のオフセット電流を除去するバイアスキャンセル回路103と、バイアス回路102とバイアスキャンセル回路103の両回路に接続されているオペアンプ(以下、積分オペアンプと呼ぶ)111を含む積分回路104と、を有する。複数の読み出し回路101は入力電圧配線1,2(106,107)を介して入力電圧を供給され、それぞれ同時並列に読み出し動作を実行する。
 動作は、概略以下の通りである。被写体からの赤外線入射光の強度に応じて生じた各ボロメータ素子105の抵抗変化は、入力電圧VB1,VB2(115,121)により決まるボロメータ電流とバイアスキャンセル電流との差として検出される。検出された電流差は、積分回路104により積分されると同時に電流−電圧変換されて電圧値として出力される。
 バイアス回路102とバイアスキャンセル回路103の具体的な動作は、以下の通りである。まず撮像装置のシャッターを閉じた状態(被写体からの光が入射していない状態)で入力電圧VB1,VB2が調整される。これにより、ボロメータ素子105側に流れる電流とバイアスキャンセル抵抗116に流れる電流をつり合わせる。その後、シャッターを開くことにより、被写体からの光入射によるボロメータ素子105の抵抗値変化に伴う電流変化分のみを取り出すことができる。図5の各回路の詳細を以下に示す。
 まず、バイアス回路102は、ボロメータ素子105の一端にソースが接続されるNMOSトランジスタ(以下、バイアストランジスタと呼ぶ)108と、入力端が入力電圧配線1(106)に、出力端がバイアストランジスタ108のゲートにそれぞれ接続されるソースフォロア回路109から構成される。このソースフォロア回路109により、バイアストランジスタ108は低インピーダンスでドライブされるため、各読み出し回路の飛び込みノイズを抑えることができる。バイアス回路102は各ボロメータ素子105に定電圧を印加する。これにより、ボロメータ素子105の抵抗値変化は電流値に変換される。
 さらに、VGS除去電圧発生回路1(110)は、バイアストランジスタ108とソースフォロア回路109のトランジスタ両方のVGS(ゲート−ソース間電圧)を補償する回路であり、VGSの変動電圧がドレイン電流に現れない(電圧変動の補償)回路構成になっている。より詳細にはVGS除去電圧発生回路1(110)は、バイアス回路102と同じバイアストランジスタ108、ソースフォロア回路109、オペアンプ114から構成される。接続形態についても、バイアストランジスタ108のソースはボロメータ素子105の一端に、バイアストランジスタ108のゲートはソースフォロア回路109の出力端に、バイアストランジスタ108のドレインは+5Vにそれぞれ接続される。オペアンプ114は、その出力端子にソースフォロア回路109の入力端が、反転入力端子(−)にはバイアストランジスタ108のソースが、非反転入力端子(+)には入力電圧VB1(115)がそれぞれ接続されている。
 同様にバイアスキャンセル回路103は、一端に電源を接続した抵抗素子(バイアスキャンセル抵抗)116と抵抗素子の他端にソースを接続したPMOSトランジスタ(以下、キャンセラトランジスタと呼ぶ)117、入力端が入力電圧配線2(107)に、出力端がキャンセラトランジスタ117のゲートにそれぞれ接続されるソースフォロア回路118から構成される。
 ここで赤外線の信号は、大きなオフセット成分を持ち、そのオフセット成分の上に被写体からの信号成分が微小なレベルで存在する。従って、このオフセット成分を除去する目的のためにこのバイアスキャンセル回路103を構成している。またこのソースフォロア回路118により、キャンセラトランジスタ117は低インピーダンスでドライブされるため、各読み出し回路101の飛び込みノイズを抑えることができる。
 また、VGS除去電圧発生回路2(119)もVGS除去電圧発生回路1(110)と同様に、キャンセラトランジスタ117とソースフォロア回路118のトランジスタの両方のVGSを補償する回路である。より詳細には、VGS除去電圧発生回路2(119)も、バイアスキャンセル回路103と同じバイアスキャンセル抵抗116、キャンセラトランジスタ117、ソースフォロア回路118、オペアンプ120から構成される。接続形態についても、キャンセラトランジスタ117のソースはバイアスキャンセル抵抗116の一端に、ゲートはソースフォロア回路118の出力端に、ドレインは+5Vにそれぞれ接続される。オペアンプ120は、その出力端子にソースフォロア回路118の入力端、反転入力端子(−)にはキャンセラトランジスタ117のソース、非反転入力端子(+)には入力電圧端子VB2(121)がそれぞれ接続されている。
 読み出し回路101におけるバイアストランジスタ108及びキャンセラトランジスタ117のドレインはそれぞれ、積分回路104における積分オペアンプ111の反転入力端子(−)と積分コンデンサ122の一端に接続されている。積分回路104は、前述のボロメータ素子105の電流変化分を積分する。
 積分コンデンサ122の他端は積分オペアンプ111の出力端子に接続されており、積分オペアンプ111の非反転入力端子(+)は+5Vに接続されている。これにより積分オペアンプ111の反転入力端子(−)、つまりバイアストランジスタ108とキャンセラトランジスタ117のドレインはそれぞれ、通常、+5Vに固定される。積分後の積分コンデンサ122の電圧は積分オペアンプ111の出力端子から取り出され、これらは出力信号として各読み出し回路101から順次出力される。また、積分オペアンプ111の反転入力端子(−)と出力端子間にはリセット用のスイッチ123を備える。積分コンデンサ122から積分された電圧を出力した後に、スイッチ123を”ON”とすることで積分オペアンプ111の非反転入力端子(+)の電圧である+5Vに設定される。
 積分オペアンプ111の反転入力端子(−)にはクリップダイオードA(124)及びクリップダイオードB(125)が接続されている。これらは、ボロメータ素子105の電流、またはバイアスキャンセル回路103側の電流の一方が過多になり、積分オペアンプ111の出力が飽和した場合に、その過多の電流を補うように働く。
 次に、高温偽信号と温度ドリフトのメカニズムを、図6A、図6Bを用いて説明する。
 図6Aでは複数の読み出し回路に接続している各入力電圧配線とバイアストランジスタやキャンセラトランジスタが直接接続されるため、入力電圧が高温被写体からの光入射等の場合の読み出し回路内部の電圧変位の影響を受けてしまう問題がある。通常は上記の各トランジスタのドレイン電圧はそれぞれ+5V固定になっているが、ボロメータ素子(熱電変換素子)に高温被写体からの光が入射される場合には電圧が変動してしまう。高温被写体からの光入射によりボロメータ素子の抵抗値が下がる。そのため、ボロメータ素子への電流が増加する場合、積分開始時にリセット用のスイッチRSTSW(図5のスイッチ123)が”OFF”となった瞬間、図6Aの右側の回路に矢印で示す経路で積分オペアンプのコンデンサからボロメータ素子へ急激な電流が流れる。このことにより、オペアンプのイマジナリショートが崩れ、積分オペアンプの反転入力端子(−)に電圧変化が発生する(図6Bのt1の期間)。
 その後、積分オペアンプの出力が飽和する場合にもオペアンプのイマジナリショートが崩れ、最終的に積分オペアンプの反転入力端子(−)は+5Vからクリップ電圧である約+4.3Vに低下する(図6Bのt1’の期間)。このような反転入力端子(−)の電圧変動時にはバイアストランジスタやキャンセラトランジスタのドレインの電圧が低下する。そのため、各トランジスタのドレイン−ゲート間寄生容量によりゲート電圧もそれぞれ変動し、ゲートに接続する各入力電圧配線の電圧変動が発生する。
 このため、一部のボロメータ素子に高温被写体からの光が入射されると、上記のような電圧変動(飛び込みノイズ)の影響により、入力電圧配線1及び入力電圧配線2を介し、すべての読み出し回路に変位電流が発生する。発生した変位電流は、高温被写体からの光が入射されていない他のボロメータ素子の出力電圧に影響を与えてしまう。
 その対策として、特許文献1の撮像装置ではソースフォロワ回路(図5の109と118)を用い、バイアストランジスタやキャンセラトランジスタを低インピーダンスでドライブすることにより、高温偽信号によるゲート電圧の変動を抑える。
As an example of an infrared imaging device, a bolometer type infrared imaging device including a one-dimensional or two-dimensional sensor array and a readout circuit is known (Patent Document 1). An example thereof will be described with reference to FIG.
FIG. 4 partially shows a readout circuit and a two-dimensional sensor array in the bolometer-type infrared imaging device.
This infrared imaging device arranges thermoelectric conversion elements in a two-dimensional matrix, detects an infrared signal received by the thermoelectric conversion element for each thermoelectric conversion element, and outputs a detection signal as an electric signal. The infrared imaging apparatus receives a detection signal from a pixel switch 201 selected by a vertical shift register 205 via a scanning line 211, a horizontal switch 204, and a readout circuit 206 connected to the thermoelectric conversion element 202 via a signal line 203. Parallel processing is possible. Outputs of the plurality of readout circuits 206 are sequentially output from the output terminal 210 to the outside by the horizontal shift register 208. Reference numerals 207 and 209 denote a multiplexer switch and an output buffer, respectively.
FIG. 5 shows the configuration of the read circuit in FIG. The readout circuit 101 includes a bias circuit 102 that applies a constant voltage to the bolometer element (thermoelectric conversion element) 105, a bias cancel circuit 103 that removes an offset current of components other than the signal of the subject, a bias circuit 102, and a bias cancel circuit 103. And an integration circuit 104 including an operational amplifier (hereinafter referred to as an integration operational amplifier) 111 connected to both of these circuits. The plurality of read circuits 101 are supplied with input voltages via the input voltage wirings 1 and 2 (106, 107), and execute read operations simultaneously in parallel.
The operation is roughly as follows. The change in resistance of each bolometer element 105 that occurs according to the intensity of infrared incident light from the subject is detected as the difference between the bolometer current determined by the input voltages VB1, VB2 (115, 121) and the bias cancellation current. The detected current difference is integrated by the integration circuit 104, and at the same time, current-voltage conversion is performed and output as a voltage value.
Specific operations of the bias circuit 102 and the bias cancel circuit 103 are as follows. First, the input voltages VB1 and VB2 are adjusted in a state where the shutter of the imaging device is closed (a state where light from the subject is not incident). Thereby, the current flowing through the bolometer element 105 and the current flowing through the bias cancel resistor 116 are balanced. Thereafter, by opening the shutter, it is possible to extract only the amount of current change that accompanies a change in resistance value of the bolometer element 105 due to light incident from the subject. Details of each circuit in FIG. 5 are shown below.
First, the bias circuit 102 includes an NMOS transistor (hereinafter referred to as a bias transistor) 108 whose source is connected to one end of the bolometer element 105, an input terminal connected to the input voltage wiring 1 (106), and an output terminal connected to the bias transistor 108. The source follower circuit 109 is connected to each gate. Since the bias transistor 108 is driven with a low impedance by the source follower circuit 109, it is possible to suppress the jumping noise of each readout circuit. The bias circuit 102 applies a constant voltage to each bolometer element 105. Thereby, the resistance value change of the bolometer element 105 is converted into a current value.
Furthermore, the VGS removal voltage generation circuit 1 (110) is a circuit that compensates for VGS (gate-source voltage) of both the bias transistor 108 and the source follower circuit 109, and the fluctuation voltage of VGS does not appear in the drain current. (Voltage fluctuation compensation) circuit configuration. More specifically, the VGS removal voltage generation circuit 1 (110) includes the same bias transistor 108, source follower circuit 109, and operational amplifier 114 as the bias circuit 102. Regarding the connection form, the source of the bias transistor 108 is connected to one end of the bolometer element 105, the gate of the bias transistor 108 is connected to the output terminal of the source follower circuit 109, and the drain of the bias transistor 108 is connected to + 5V. The operational amplifier 114 has its output terminal connected to the input terminal of the source follower circuit 109, the inverting input terminal (−) connected to the source of the bias transistor 108, and the non-inverting input terminal (+) connected to the input voltage VB1 (115). Has been.
Similarly, the bias cancel circuit 103 includes a resistor element (bias cancel resistor) 116 having a power source connected to one end, a PMOS transistor (hereinafter referred to as a canceller transistor) 117 having a source connected to the other end of the resistor element, and an input terminal having an input voltage. The wiring follower circuit 118 includes a source follower circuit 118 whose output terminal is connected to the gate of the canceller transistor 117.
Here, the infrared signal has a large offset component, and the signal component from the subject exists at a minute level on the offset component. Therefore, the bias cancel circuit 103 is configured for the purpose of removing the offset component. Further, since the canceller transistor 117 is driven with a low impedance by the source follower circuit 118, the jumping noise of each readout circuit 101 can be suppressed.
Similarly to the VGS removal voltage generation circuit 1 (110), the VGS removal voltage generation circuit 2 (119) is a circuit that compensates for VGS of both the canceller transistor 117 and the source follower circuit 118. More specifically, the VGS removal voltage generation circuit 2 (119) also includes the same bias cancellation resistor 116, canceller transistor 117, source follower circuit 118, and operational amplifier 120 as the bias cancellation circuit 103. Regarding the connection configuration, the source of the canceller transistor 117 is connected to one end of the bias cancel resistor 116, the gate is connected to the output end of the source follower circuit 118, and the drain is connected to + 5V. The operational amplifier 120 has its output terminal connected to the input terminal of the source follower circuit 118, the inverting input terminal (−) connected to the source of the canceller transistor 117, and the non-inverting input terminal (+) connected to the input voltage terminal VB2 (121). ing.
The drains of the bias transistor 108 and the canceller transistor 117 in the readout circuit 101 are connected to the inverting input terminal (−) of the integrating operational amplifier 111 and one end of the integrating capacitor 122 in the integrating circuit 104, respectively. The integration circuit 104 integrates the current change of the bolometer element 105 described above.
The other end of the integrating capacitor 122 is connected to the output terminal of the integrating operational amplifier 111, and the non-inverting input terminal (+) of the integrating operational amplifier 111 is connected to + 5V. As a result, the inverting input terminal (−) of the integrating operational amplifier 111, that is, the drains of the bias transistor 108 and the canceller transistor 117 are normally fixed at + 5V, respectively. The voltage of the integrating capacitor 122 after the integration is taken out from the output terminal of the integrating operational amplifier 111, and these are sequentially output from each readout circuit 101 as an output signal. Further, a reset switch 123 is provided between the inverting input terminal (−) and the output terminal of the integrating operational amplifier 111. After the integrated voltage is output from the integrating capacitor 122, the switch 123 is turned "ON", so that the voltage of the non-inverting input terminal (+) of the integrating operational amplifier 111 is set to + 5V.
A clip diode A (124) and a clip diode B (125) are connected to the inverting input terminal (−) of the integrating operational amplifier 111. These function so as to compensate for the excessive current when one of the current of the bolometer element 105 or the current on the bias cancel circuit 103 side becomes excessive and the output of the integrating operational amplifier 111 is saturated.
Next, the mechanism of the high temperature false signal and temperature drift will be described with reference to FIGS. 6A and 6B.
In FIG. 6A, since each input voltage wiring connected to a plurality of readout circuits is directly connected to a bias transistor or a canceller transistor, the influence of the voltage displacement inside the readout circuit when the input voltage is light incident from a high-temperature subject or the like. There is a problem that receives. Normally, the drain voltage of each of the above transistors is fixed to +5 V, but the voltage fluctuates when light from a high-temperature subject is incident on the bolometer element (thermoelectric conversion element). The resistance value of the bolometer element decreases due to light incident from a high-temperature subject. For this reason, when the current to the bolometer element increases, the integration operational amplifier along the path indicated by the arrow in the circuit on the right side of FIG. 6A at the moment when the reset switch RSTSW (switch 123 in FIG. 5) is “OFF” at the start of integration. A sudden current flows from the capacitor to the bolometer element. As a result, the imaginary short circuit of the operational amplifier collapses, and a voltage change occurs at the inverting input terminal (−) of the integrating operational amplifier (period t1 in FIG. 6B).
Thereafter, even when the output of the integrated operational amplifier saturates, the imaginary short of the operational amplifier collapses, and finally, the inverting input terminal (−) of the integrated operational amplifier drops from +5 V to about +4.3 V as the clip voltage (t1 in FIG. 6B). 'Period). When the voltage at the inverting input terminal (−) fluctuates, the voltage at the drain of the bias transistor or canceller transistor decreases. For this reason, the gate voltage also fluctuates due to the drain-gate parasitic capacitance of each transistor, and the voltage fluctuation of each input voltage wiring connected to the gate occurs.
For this reason, when light from a high-temperature subject is incident on some bolometer elements, all the readout circuits are connected via the input voltage wiring 1 and the input voltage wiring 2 due to the influence of the voltage fluctuation (jump noise) as described above. Displacement current is generated. The generated displacement current affects the output voltage of other bolometer elements to which light from a high-temperature subject is not incident.
As a countermeasure, the image pickup apparatus of Patent Document 1 uses a source follower circuit (109 and 118 in FIG. 5), and drives a bias transistor and a canceller transistor with low impedance, thereby suppressing fluctuations in gate voltage due to a high-temperature false signal.
特開2008−22457号公報JP 2008-22457 A
 上記のボロメータ型赤外線撮像装置は以下の問題点を有する。バイアストランジスタ及びキャンセラトランジスタの入力にソースフォロワ回路を用いることで、各トランジスタを低インピーダンスでドライブして高温被写体などによる飛び込みノイズを防止している。そのため、このソースフォロワ回路分の面積や消費電力が大きくなる。
 この問題は、赤外線の信号が極めて微小であることに起因しており、ソースフォロワ回路は低ノイズを実現する必要がある。具体的には、ソースフォロワ回路は、1/fノイズの影響を低減するために大面積にし、またホワイトノイズを低減するためにトランジスタの相互コンダクタンスgmを上げる必要がある。このことからソースフォロワ回路は消費電力が大きくなってしまう。このようなソースフォロワ回路が各読み出し回路に2つずつあるため、チップ全体の面積や消費電力が大きくなってしまう。
 本発明は、赤外線撮像装置用の半導体装置における低ノイズ、小面積、低消費電力を実現しようとするものである。
The bolometer type infrared imaging device has the following problems. By using a source follower circuit for the input of the bias transistor and the canceller transistor, each transistor is driven with a low impedance to prevent jumping noise due to a high-temperature subject or the like. Therefore, the area and power consumption for this source follower circuit are increased.
This problem is caused by the extremely small infrared signal, and the source follower circuit needs to realize low noise. Specifically, the source follower circuit needs to have a large area in order to reduce the influence of 1 / f noise, and to increase the mutual conductance gm of the transistor in order to reduce white noise. For this reason, the source follower circuit consumes a large amount of power. Since there are two such source follower circuits in each readout circuit, the area and power consumption of the entire chip increase.
The present invention is intended to realize low noise, small area, and low power consumption in a semiconductor device for an infrared imaging device.
 本発明の態様によれば、被写体からの光を受けるボロメータ素子と、該ボロメータ素子にバイアス電圧を与えるバイアス回路と、前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、前記積分回路の出力電圧の飽和を防止する飽和防止回路と、の組合せを一組以上備えた半導体装置が提供される。
 本発明の別の態様によれば、被写体からの光を受ける複数のボロメータ素子と、該複数のボロメータ素子のそれぞれに接続した複数の読み出し回路と、を第1、第2の入力電圧配線に接続した赤外線撮像装置が提供される。前記読み出し回路は、対応する前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、対応する前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、前記積分回路の出力電圧の飽和を防止する飽和防止回路と、を含む。
 本発明のさらに別の態様によれば、被写体からの光を受ける複数のボロメータ素子と、該複数のボロメータ素子のそれぞれに接続した複数の読み出し回路と、を第1、第2の入力電圧配線に接続して成り、前記読み出し回路が、対応する前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、対応する前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、を含む赤外線撮像装置における前記積分回路の出力電圧飽和防止方法が提供される。本出力電圧飽和防止方法においては、前記積分回路の出力電圧をあらかじめ設定された飽和防止上側検知電圧と比較し、前記積分回路の出力電圧が前記飽和防止上側検知電圧より高い時に前記積分回路を前記接続点から切り離すことにより、前記積分回路の出力電圧が飽和することを防止する。
According to an aspect of the present invention, a bolometer element that receives light from a subject, a bias circuit that applies a bias voltage to the bolometer element, a bias cancellation circuit that removes an offset current of the bolometer element, the bias circuit, and the bias One or more combinations of an integration circuit that is connected to a connection point of a cancellation circuit and integrates a difference current between the bias circuit and the bias cancellation circuit and a saturation prevention circuit that prevents saturation of the output voltage of the integration circuit are provided. A semiconductor device is provided.
According to another aspect of the present invention, a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to the first and second input voltage wirings. An infrared imaging device is provided. The readout circuit is connected to a connection point between the bias circuit that applies a bias voltage to the corresponding bolometer element, a bias cancellation circuit that removes an offset current of the corresponding bolometer element, and the bias circuit and the bias cancellation circuit. An integration circuit that integrates a difference current between the bias circuit and the bias cancellation circuit; and a saturation prevention circuit that prevents saturation of an output voltage of the integration circuit.
According to still another aspect of the present invention, a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to the first and second input voltage wirings. A bias circuit that applies a bias voltage to the corresponding bolometer element, a bias cancel circuit that removes an offset current of the corresponding bolometer element, and a connection between the bias circuit and the bias cancel circuit. There is provided a method for preventing output voltage saturation of the integration circuit in an infrared imaging device including an integration circuit that is connected to a point and integrates a difference current between the bias circuit and the bias cancellation circuit. In this output voltage saturation prevention method, the output voltage of the integration circuit is compared with a preset saturation prevention upper detection voltage, and when the output voltage of the integration circuit is higher than the saturation prevention upper detection voltage, the integration circuit is By disconnecting from the connection point, saturation of the output voltage of the integration circuit is prevented.
 本発明による半導体装置は、飽和防止回路が、積分回路の出力電圧の飽和を未然に防ぐ。これにより、本発明による半導体装置は、ソースフォロワ回路無しでも、ソースフォロワ回路を備える装置と同等の性能を低ノイズ、小面積、低消費電力で得られる。
 本発明による赤外線撮像装置は、飽和防止回路が、積分回路の出力電圧の飽和を未然に防ぎ、高温被写体などによる入力電圧配線の電圧変動成分を無くすことができる。これにより、本発明による赤外線撮像装置は、積分回路の出力電圧の飽和現象が与える、並列動作する他の読み出し回路へ供給される入力電圧への影響をなくすことができ、ソースフォロワ回路を用いた場合と同等の高温偽信号の防止効果を得ることが可能である。その結果、本発明による赤外線撮像装置は、低ノイズ、小面積、低消費電力を実現することができる。
In the semiconductor device according to the present invention, the saturation prevention circuit prevents saturation of the output voltage of the integration circuit. As a result, the semiconductor device according to the present invention can achieve performance equivalent to that of a device including a source follower circuit with low noise, small area, and low power consumption even without a source follower circuit.
In the infrared imaging device according to the present invention, the saturation prevention circuit can prevent the saturation of the output voltage of the integration circuit, and can eliminate the voltage fluctuation component of the input voltage wiring due to a high-temperature subject or the like. Thereby, the infrared imaging device according to the present invention can eliminate the influence on the input voltage supplied to the other readout circuits operating in parallel, which is caused by the saturation phenomenon of the output voltage of the integration circuit, and uses the source follower circuit. It is possible to obtain a high temperature false signal prevention effect equivalent to the case. As a result, the infrared imaging device according to the present invention can realize low noise, small area, and low power consumption.
 図1は、本発明の第1の実施形態による、ボロメータ型赤外線撮像装置における読み出し回路の構成を示した図である。
 図2は、本発明の第2の実施形態による、ボロメータ型赤外線撮像装置における読み出し回路の構成を示した図である。
 図3Aは、図1の読み出し回路の1つにおける高温被写体からの光入射時の動作について説明するための回路図である。
 図3Bは、図3Aの読み出し回路の1つにおける高温被写体からの光入射時の動作について説明するための出力電圧及び信号波形図である。
 図4は、特許文献1のボロメータ型赤外線撮像装置を部分的に示した回路図である。
 図5は、図4に示された読み出し回路の構成を示した図である。
 図6Aは、図5に示された読み出し回路における高温偽信号と温度ドリフトのメカニズムを説明するための回路図である。
 図6Bは、図6Aに示された読み出し回路における高温偽信号と温度ドリフトのメカニズムを説明するための信号波形図である。
FIG. 1 is a diagram showing a configuration of a readout circuit in a bolometer-type infrared imaging device according to the first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a readout circuit in a bolometer-type infrared imaging device according to the second embodiment of the present invention.
FIG. 3A is a circuit diagram for explaining an operation at the time of light incidence from a high-temperature subject in one of the readout circuits of FIG.
FIG. 3B is an output voltage and signal waveform diagram for explaining an operation at the time of light incidence from a high-temperature subject in one of the readout circuits of FIG. 3A.
FIG. 4 is a circuit diagram partially showing the bolometer-type infrared imaging device of Patent Document 1.
FIG. 5 is a diagram showing the configuration of the read circuit shown in FIG.
FIG. 6A is a circuit diagram for explaining a mechanism of a high-temperature false signal and temperature drift in the readout circuit shown in FIG.
FIG. 6B is a signal waveform diagram for explaining the mechanism of the high-temperature false signal and the temperature drift in the readout circuit shown in FIG. 6A.
(実施形態の構成)
 ボロメータ型赤外線撮像装置に適用された、本発明の第1の実施形態による読み出し回路の構成を図1に示す。各読み出し回路301は、ボロメータ素子305に定電圧を印加するバイアス回路302、被写体の信号以外の成分のオフセット電流を除去するバイアスキャンセル回路303、被写体の信号を積分する積分回路304、積分回路304の出力電圧の飽和を防止する飽和防止回路309から構成される。なお、第1の入力電圧配線1(306)、第2の入力電圧配線2(307)は、図5で説明した回路と同様、入力電圧VB1,VB2(315,321)を入力とするVGS除去電圧発生回路1(110)、2(119)に接続されるが、ここでは図示を省略している。
 各読み出し回路301には入力電圧配線1,2(306,307)とリセット信号配線312が共通に接続されており、各読み出し回路301は同時並列に読み出し動作を行なう。
 バイアス回路302は、ボロメータ素子305の一端にソースが接続されるNMOSトランジスタ(以下、バイアストランジスタと呼ぶ)308から構成され、ボロメータ素子305に定電圧を印加する。これにより、ボロメータ素子305の抵抗値変化が電流値に変換される。
 バイアスキャンセル回路303は、一端に電源(VDD)を接続した抵抗素子316と抵抗素子316の他端にソースを接続したトランジスタ(以下、キャンセラトランジスタと呼ぶ)317から構成される。
 ここで赤外線の信号は、大きなオフセット成分を持ち、そのオフセット成分の上に被写体からの信号成分が微小なレベルで存在する。このオフセット成分を除去する目的のためにバイアスキャンセル回路303を構成している。
 バイアストランジスタ308及びキャンセラトランジスタ317のドレインは、入力分離スイッチ325を介して積分回路304における積分オペアンプ324の反転入力端子(−)と積分コンデンサ322の一端に接続されている。積分回路304は、前述のボロメータ素子305の電流変化分を積分する。積分コンデンサ322の他端は積分オペアンプ324の出力端子に接続されている。積分オペアンプ324の非反転入力端子(+)は基準電圧(VDD/2)に接続されている。これにより積分オペアンプ324の反転入力端子(−)、つまり入力分離スイッチ325を介したバイアストランジスタ308とキャンセラトランジスタ317のドレインは、通常、それぞれ基準電圧(VDD/2)に固定される。積分後の積分コンデンサ322の電圧は積分オペアンプ324の出力端子から取り出され、これらは出力信号として各読み出し回路301から順次出力される。
 飽和防止回路309は、積分回路304の出力電圧とあらかじめ設定された飽和防止上側検知電圧(Vprev_sat_up)とを比較し、比較結果に応じて入力分離スイッチ325を制御する。飽和防止回路309は、積分回路304の出力電圧が飽和防止上側検知電圧(Vprev_sat_up)より高い時にバイアストランジスタ308及びキャンセラトランジスタ317のドレイン(両者の接続点)と積分回路304の入力とを切り離す。これにより、飽和防止回路309は、積分オペアンプ324の出力電圧飽和時に発生する積分オペアンプ324の反転入力端子(−)の電圧変動を抑える。より詳細には、飽和防止回路309は、積分回路304の出力電圧を飽和防止上側検知電圧(Vprev_sat_up)と比較するコンパレータ326を含む。飽和防止回路309はまた、コンパレータ326の出力を保持するSRラッチ327と、SRラッチ327の出力によりバイアストランジスタ308及びキャンセラトランジスタ317のドレインと積分回路304の入力とを切り離す入力分離スイッチ325と、を備える。
 コンパレータ326の非反転入力端子(+)は積分オペアンプ324の出力端子と積分コンデンサ322に接続されており、コンパレータ326の反転入力端子(−)は飽和防止上側検知電圧(Vprev_sat_up)に接続されている。また、コンパレータ326の出力端子はSRラッチ327のセット端子(S)に接続されている。コンパレータ326の出力は、積分オペアンプ324の出力電圧が飽和防止上側検知電圧(Vprev_sat_up)を超えたときに”High”となる。
 SRラッチ327のリセット端子(R)にはリセット信号配線312が接続され、SRラッチ327の出力端子(Q)は入力分離スイッチ325の制御端子に接続されている。SRラッチ327は、リセット端子(R)が”Low”の間にセット端子(S)が一瞬でも”High”となった場合、出力端子(Q)が”High”となり、セット端子(S)が”Low”に戻った後も出力端子(Q)は”High”を保持する。
 同様に、SRラッチ327は、セット端子(S)が”Low”の間にリセット端子(R)が一瞬でも”High”となった場合、出力端子(Q)が”Low”となり、リセット端子(R)が”Low”に戻った後も出力端子(Q)は”Low”を保持する。
 入力分離スイッチ325は単極双投(1回路2接点)であり、共通端子はバイアストランジスタ308及びキャンセラトランジスタ317のドレインに接続されている。入力分離スイッチ325の接点1は積分オペアンプ324の反転入力端子(−)と積分コンデンサ322に接続され、入力分離スイッチ325の接点2は基準電圧(VDD/2)に接続され、入力分離スイッチ325の制御端子はSRラッチ327の出力端子(Q)に接続されている。
 SRラッチ327の出力端子(Q)が”Low”の場合は入力分離スイッチ325の共通端子と接点1が接続され、前述のボロメータ素子305の電流変化分が積分回路304へ流れる。
 SRラッチ327の出力端子(Q)が”High”の場合は入力分離スイッチ325の共通端子と接点2が接続され、バイアストランジスタ308及びキャンセラトランジスタ317のドレイン(両者の接続点)が基準電圧(VDD/2)に接続される。このため、積分回路304の入力は上記接続点から切り離され、積分回路304のコンデンサ322に電流が流れなくなる。
 また、積分オペアンプ324の反転入力端子(−)と出力端子間にはリセット用のスイッチ(RSTSW)323が接続されている。コンデンサ322から積分された電圧を出力した後に、リセット信号配線312からのリセット信号によりスイッチ323を”ON”とすることで積分オペアンプ324の出力電圧は非反転入力端子(+)の電圧である基準電圧(VDD/2)に設定される。
(実施形態の動作)
 第1の実施形態の動作の概略は、以下の通りである。被写体からの赤外線入射光の強度に応じて生じた各ボロメータ素子305の抵抗値変化が、入力電圧VB1,VB2(図1では図示省略、図5参照)により決まるボロメータ電流とバイアスキャンセル回路303の電流との差として検出される。検出された電流の差は、積分回路304により積分されると同時に電流−電圧変換されて積分回路304から電圧値として出力される。
 飽和防止回路309は、積分回路304から出力された電圧値の上限を検出し、積分回路304の出力電圧が飽和する前に積分回路304の入力を入力分離スイッチ325でバイアス回路302とバイアスキャンセル回路303の接続点から切り離す。
 ここで、飽和防止回路309内のSRラッチ327は、コンパレータ326の過渡時のチャタリング防止のために設けられている。それゆえチャタリングの影響が小さい場合は、SRラッチ327は不要である。
 バイアス回路302とバイアスキャンセル回路303の具体的な動作は、以下の通りである。まず赤外線撮像装置のシャッターを閉じた状態(被写体からの光が入射していない状態)で入力電圧VB1,VB2(図5参照)を調整して、ボロメータ素子305側に流れる電流とバイアスキャンセル回路303に流れる電流をつり合わせる。その後、シャッターを開くと、被写体からの光入射によるボロメータ素子305の抵抗値変化に伴う電流変化分のみを取り出すことができる。
 高温被写体からの光入射時の動作について図3A、図3Bを用いて詳細に説明する。図3Aでは、高温被写体からの光が入射していないボロメータ素子305に接続された読み出し回路301と、高温被写体からの光が入射しているボロメータ素子305−1に接続された読み出し回路301−1を示している。
 ボロメータ素子の抵抗温度係数がマイナスの場合、高温被写体からの光入射によりボロメータ素子305−1の抵抗値が小さくなるため、ボロメータ素子305−1への電流が増加する。積分回路304−1における積分開始時にリセット用のスイッチRSTSW(スイッチ323−1)が”OFF”となった瞬間、図3Aの右側の回路に矢印で示す経路で、積分回路304−1のコンデンサ322−1からボロメータ素子305−1へ急激に電流が流れる。このことにより、積分オペアンプのイマジナリショートが崩れ、積分オペアンプ324−1の反転入力端子(−)と積分オペアンプ324−1の反転入力端子(−)に接続されているバイアストランジスタ308−1及びキャンセラトランジスタ317−1のドレイン(両者の接続点)に電圧変化(ΔV)が発生する(図3BのT1の期間)。
 バイアストランジスタ308−1及びキャンセラトランジスタ317−1のドレインとゲート間の寄生容量は、積分オペアンプ324−1の反転入力端子(−)と入力電圧配線1,2の間に繋がっている。このため、積分オペアンプ324−1の反転入力端子(−)の電圧変動が微分されて入力電圧配線1,2に現れる(図3Bの(−)ΔVS1)。
 ここで、飽和防止上側検知電圧(Vprev_sat_up)は、図3Bに示すように、積分回路304−1の出力電圧の上側有効電圧と上側飽和電圧の間に設定する。
 その後、積分オペアンプ324−1の出力電圧が飽和防止上側検知電圧(Vprev_sat_up)に達すると、飽和防止回路309−1のコンパレータ326−1の出力が”High”となり、コンパレータ326−1に接続されているSRラッチ327−1の出力も”High”に保持される。SRラッチ327−1の出力が”High”となることで入力分離スイッチ325−1は共通端子(バイアストランジスタ308−1及びキャンセラトランジスタ317−1のドレイン)と接点2(VDD/2)の接続に切り替わり、積分回路304−1の入力は切り離される。積分回路304−1の入力が切り離されたことにより、積分オペアンプ324−1のコンデンサ322−1からの電流が流れなくなる。このため、積分オペアンプ324−1の出力電圧は飽和防止上側検知電圧(Vprev_sat_up)で固定され、積分オペアンプ324−1の反転入力端子(−)はイマジナリショートとなり、基準電圧(VDD/2)に戻る(図3BのT2の期間)。
 このときバイアストランジスタ308−1及びキャンセラトランジスタ317−1のドレインの電圧変動が寄生容量によって微分されて入力電圧配線1,2に現れる(図3Bの(+)ΔVS2)。
 積分期間内のバイアストランジスタ308−1及びキャンセラトランジスタ317−1のドレインの電圧変動は、基準電圧(VDD/2)からΔVに変化し、さらに元の基準電圧(VDD/2)へ戻っている。このため、この電圧変動が微分された入力電圧配線の電圧変動成分の合計は±ゼロとなる(図3Bの(−)ΔVS1+(+)ΔVS2=0)。
 高温被写体からの光が入射していない他のボロメータ素子305が接続される読出し回路301では、この入力電圧配線の電圧が印加されて発生した電流を積分オペアンプ324によって積分しているが、積分期間内で入力電圧配線の電圧変動成分の合計がゼロであるため、積分出力電圧には影響しない。
(実施形態の効果)
 第1の実施形態の効果は、特許文献1に示されるようなソースフォロワ回路無しでもソースフォロワ回路を備える場合と同等の性能が低ノイズ、小面積、低消費電力で得られることにある。その理由は、飽和防止回路を使用することで高温被写体などによる入力電圧配線の電圧変動成分をゼロにでき、高温偽信号の防止効果が得られるからである。すなわち、飽和防止回路が、積分回路の出力電圧の飽和を未然に防ぐことで、積分回路の出力電圧の飽和現象が与える、並列動作する他の読み出し回路へ供給される入力電圧への影響をなくすことができるため、特許文献1に示されるようなソースフォロワ回路を用いた場合と同等の高温偽信号の防止効果を得ることが可能であるからである。
 さらに、この飽和防止回路は入力分離スイッチの制御を行うだけであるため、コンパレータやラッチのノイズは積分後の出力電圧に現れない。よって、回路面積と消費電力を大きくしてノイズを下げる必要がないため、低ノイズ、小面積、低消費電力化が可能となる。
[他の実施形態]
 図2を参照して、本発明の第2の実施形態について説明する。第2の実施形態も、ボロメータ型赤外線撮像装置に適用された、読み出し回路の構成を示している。
 図2において、参照番号は異なるが、読み出し回路401を構成しているバイアス回路402、バイアスキャンセル回路403、積分回路404の構成や、ボロメータ素子405、第1の入力電圧配線1(406)、第2の入力電圧配線2(407)、リセット信号配線412との接続関係は第1の実施形態と同じであるので説明は省略する。また、第1の実施形態と同様、入力電圧配線1(406)、入力電圧配線2(407)は、図5で説明した入力電圧VB1,VB2(315,321)を入力とするVGS除去電圧発生回路1(110)、2(119)に接続されるが、図示を省略している。
 図2に示す回路では、高温偽信号と低温偽信号の両方を防止する目的のために、飽和防止回路409に飽和防止上側検知用コンパレータ(第1のコンパレータ)426と飽和防止下側検知用コンパレータ428を使用している。図2では、飽和防止下側検知用コンパレータ(第2のコンパレータ)428の反転入力端子(−)が積分回路404における積分オペアンプ424の出力端とコンデンサ422と飽和防止上側検知用コンパレータ426の非反転入力端子(+)に接続されている。一方、飽和防止下側検知用コンパレータ428の非反転入力端子(+)は飽和防止下側検知電圧(Vprev_sat_down)に接続されている。
 ここで、飽和防止下側検知電圧(Vprev_sat_down)は、積分回路404の出力電圧の下側有効電圧と下側飽和電圧(図3B参照)の間に設定する。OR回路429は、飽和防止下側検知用コンパレータ428の出力信号と飽和防止上側検知用コンパレータ426の出力信号の論理和をとり、SRラッチ427のセット端子(S)へ出力する。第1の実施形態と同様、SRラッチ427のリセット端子(R)にはリセット信号配線412が接続されている。
 この構成により、積分オペアンプ424の出力信号が飽和防止下側検知電圧(Vprev_sat_down)より低い場合や、飽和防止上側検知電圧(Vprev_sat_up)より高い場合に、バイアストランジスタ408及びキャンセラトランジスタ417のドレイン(両者の接続点)が基準電圧(VDD/2)に接続されて、積分回路404の入力が切り離される。このため、高温被写体からの光入射及び低温被写体からの光入射による第1、第2の入力電圧配線1,2(406,407)の電圧変動成分をゼロにすることができ、高温偽信号と低温偽信号が発生しない。
 一般的に、被写体温度が低いほどエネルギーが小さいため、低温被写体の場合、積分回路は飽和しにくいが、積分回路のゲインによって下側飽和となる場合がある。この場合、第1の実施形態では、下側飽和による入力電圧配線の電圧変動成分の合計をゼロにすることが出来ないため、低温偽信号となってしまう。このため、回路面積が若干大きくなるが、飽和防止下側検知用コンパレータを追加して下側飽和による入力電圧配線の電圧変動成分の合計をゼロにすることが出来る第2の実施形態の方が好ましい。場合によっては、下側飽和防止のみでも良い。
 以上、本発明を、複数の実施形態を参照して説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、請求項に記載された本発明の精神や範囲内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2011年9月15日に出願された日本出願特願2011−201953を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 被写体からの光を受けるボロメータ素子と、
 前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、
 前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、
 前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、
 前記積分回路の出力電圧の飽和を防止する飽和防止回路と、
を備えた半導体装置。
(付記2)
 付記1に記載の半導体装置において、前記飽和防止回路は、前記積分回路の出力電圧をあらかじめ設定された飽和防止上側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止上側検知電圧より高い時に前記積分回路を前記接続点から切り離すことにより、前記被写体が高温であることに起因して前記積分回路の出力電圧が飽和することを防止する半導体装置。
(付記3)
 付記2に記載の半導体装置において、前記飽和防止回路は、前記積分回路の出力電圧と前記飽和防止上側検知電圧とを比較する第1のコンパレータと、前記接続点と前記積分回路との間に挿入接続されて、前記第1のコンパレータの出力でオン、オフ制御されるスイッチと、を含むことを特徴とする半導体装置。
(付記4)
 付記3に記載の半導体装置において、前記第1のコンパレータの出力と前記スイッチとの間にラッチ部を挿入接続したことを特徴とする半導体装置。
(付記5)
 付記2に記載の半導体装置において、前記飽和防止回路はさらに、前記積分回路の出力電圧をあらかじめ設定された飽和防止下側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止下側検知電圧より低い時に前記積分回路を前記接続点から切り離すことにより、前記被写体が低温であることに起因して前記積分回路の出力電圧が飽和することを防止する半導体装置。
(付記6)
 付記5に記載の半導体装置において、前記飽和防止回路は、前記積分回路の出力電圧と前記飽和防止上側検知電圧とを比較する第1のコンパレータと、前記積分回路の出力電圧と前記飽和防止下側検知電圧とを比較する第2のコンパレータと、前記第1、第2のコンパレータの出力の論理和をとる論理回路と、前記接続点と前記積分回路との間に挿入接続されて、前記論理回路の出力でオン、オフ制御されるスイッチとを含むことを特徴とする半導体装置。
(付記7)
 付記6に記載の半導体装置において、前記論理回路の出力と前記スイッチとの間にラッチ部を挿入接続したことを特徴とする半導体装置。
(付記8)
 被写体からの光を受ける複数のボロメータ素子と、該複数のボロメータ素子のそれぞれに接続した複数の読み出し回路と、を第1、第2の入力電圧配線に接続した赤外線撮像装置であって、
 前記読み出し回路は、対応する前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、対応する前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、前記積分回路の出力電圧の飽和を防止する飽和防止回路と、を含むことを特徴とする赤外線撮像装置。
(付記9)
 付記8に記載の赤外線撮像装置において、前記飽和防止回路は、前記積分回路の出力電圧をあらかじめ設定された飽和防止上側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止上側検知電圧より高い時に前記積分回路を前記接続点から切り離すことにより、前記被写体が高温であることに起因して前記積分回路の出力電圧が飽和することを防止する赤外線撮像装置。
(付記10)
 付記9に記載の赤外線撮像装置において、前記飽和防止回路は、前記積分回路の出力電圧と前記飽和防止上側検知電圧とを比較する第1のコンパレータと、前記接続点と前記積分回路との間に挿入接続されて、前記第1のコンパレータの出力でオン、オフ制御されるスイッチと、を含むことを特徴とする赤外線撮像装置。
(付記11)
 付記10に記載の赤外線撮像装置において、前記第1のコンパレータの出力と前記スイッチとの間にラッチ部を挿入接続したことを特徴とする赤外線撮像装置。
(付記12)
 付記9に記載の赤外線撮像装置において、前記飽和防止回路はさらに、前記積分回路の出力電圧をあらかじめ設定された飽和防止下側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止下側検知電圧より低い時に前記積分回路を前記接続点から切り離すことにより、前記被写体が低温であることに起因して前記積分回路の出力電圧が飽和することを防止する赤外線撮像装置。
(付記13)
 付記12に記載の赤外線撮像装置において、前記飽和防止回路は、前記積分回路の出力電圧と前記飽和防止上側検知電圧とを比較する第1のコンパレータと、前記積分回路の出力電圧と前記飽和防止下側検知電圧とを比較する第2のコンパレータと、前記第1、第2のコンパレータの出力の論理和をとる論理回路と、前記接続点と前記積分回路との間に挿入接続されて、前記論理回路の出力でオン、オフ制御されるスイッチとを含むことを特徴とする赤外線撮像装置。
(付記14)
 付記13に記載の赤外線撮像装置において、前記論理回路の出力と前記スイッチとの間にラッチ部を挿入接続したことを特徴とする赤外線撮像装置。
(付記15)
 被写体からの光を受ける複数のボロメータ素子と、該複数のボロメータ素子のそれぞれに接続した複数の読み出し回路と、を第1、第2の入力電圧配線に接続して成り、前記読み出し回路が、対応する前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、対応する前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、を含む赤外線撮像装置における前記積分回路の出力電圧飽和防止方法であって、
 前記積分回路の出力電圧をあらかじめ設定された飽和防止上側検知電圧と比較し、前記積分回路の出力電圧が前記飽和防止上側検知電圧より高い時に前記積分回路を前記接続点から切り離すことにより、前記被写体が高温であることに起因して前記積分回路の出力電圧が飽和することを防止する方法。
(付記16)
 付記15に記載の方法において、さらに、前記積分回路の出力電圧をあらかじめ設定された飽和防止下側検知電圧と比較し、前記積分回路の出力電圧が前記飽和防止下側検知電圧より低い時に前記積分回路を前記接続点から切り離すことにより、前記被写体が低温であることに起因して前記積分回路の出力電圧が飽和することを防止する方法。
(Configuration of the embodiment)
A configuration of a readout circuit according to the first embodiment of the present invention applied to a bolometer type infrared imaging apparatus is shown in FIG. Each readout circuit 301 includes a bias circuit 302 that applies a constant voltage to the bolometer element 305, a bias cancellation circuit 303 that removes an offset current of components other than the subject signal, an integration circuit 304 that integrates the subject signal, and an integration circuit 304. It comprises a saturation prevention circuit 309 that prevents output voltage saturation. The first input voltage wiring 1 (306) and the second input voltage wiring 2 (307) remove VGS using the input voltages VB1, VB2 (315, 321) as inputs, as in the circuit described in FIG. Although connected to the voltage generation circuits 1 (110) and 2 (119), illustration is omitted here.
Input voltage wirings 1 and 2 (306, 307) and a reset signal wiring 312 are commonly connected to each readout circuit 301, and each readout circuit 301 performs a readout operation simultaneously in parallel.
The bias circuit 302 includes an NMOS transistor (hereinafter referred to as a bias transistor) 308 whose source is connected to one end of the bolometer element 305, and applies a constant voltage to the bolometer element 305. Thereby, the resistance value change of the bolometer element 305 is converted into a current value.
The bias cancel circuit 303 includes a resistance element 316 having a power source (VDD) connected to one end and a transistor (hereinafter referred to as a canceller transistor) 317 having a source connected to the other end of the resistance element 316.
Here, the infrared signal has a large offset component, and the signal component from the subject exists at a minute level on the offset component. A bias cancel circuit 303 is configured for the purpose of removing the offset component.
The drains of the bias transistor 308 and the canceller transistor 317 are connected to the inverting input terminal (−) of the integrating operational amplifier 324 and one end of the integrating capacitor 322 in the integrating circuit 304 via the input separation switch 325. The integration circuit 304 integrates the current change of the bolometer element 305 described above. The other end of the integrating capacitor 322 is connected to the output terminal of the integrating operational amplifier 324. The non-inverting input terminal (+) of the integrating operational amplifier 324 is connected to the reference voltage (VDD / 2). Thereby, the inverting input terminal (−) of the integrating operational amplifier 324, that is, the drains of the bias transistor 308 and the canceller transistor 317 via the input separation switch 325 are normally fixed to the reference voltage (VDD / 2), respectively. The voltage of the integrating capacitor 322 after the integration is taken out from the output terminal of the integrating operational amplifier 324, and these are sequentially outputted from each readout circuit 301 as an output signal.
The saturation prevention circuit 309 compares the output voltage of the integration circuit 304 with a preset saturation prevention upper detection voltage (Vprev_sat_up), and controls the input separation switch 325 according to the comparison result. The saturation prevention circuit 309 disconnects the drains of the bias transistor 308 and the canceller transistor 317 (the connection point between them) and the input of the integration circuit 304 when the output voltage of the integration circuit 304 is higher than the saturation prevention upper detection voltage (Vprev_sat_up). As a result, the saturation prevention circuit 309 suppresses voltage fluctuation at the inverting input terminal (−) of the integrating operational amplifier 324 that occurs when the output voltage of the integrating operational amplifier 324 is saturated. More specifically, the saturation prevention circuit 309 includes a comparator 326 that compares the output voltage of the integration circuit 304 with the saturation prevention upper detection voltage (Vprev_sat_up). The saturation prevention circuit 309 also includes an SR latch 327 that holds the output of the comparator 326, and an input separation switch 325 that disconnects the drain of the bias transistor 308 and the canceller transistor 317 from the input of the integration circuit 304 by the output of the SR latch 327. Prepare.
The non-inverting input terminal (+) of the comparator 326 is connected to the output terminal of the integrating operational amplifier 324 and the integrating capacitor 322, and the inverting input terminal (−) of the comparator 326 is connected to the saturation prevention upper detection voltage (Vprev_sat_up). . The output terminal of the comparator 326 is connected to the set terminal (S) of the SR latch 327. The output of the comparator 326 becomes “High” when the output voltage of the integrating operational amplifier 324 exceeds the saturation prevention upper detection voltage (Vprev_sat_up).
The reset signal wiring 312 is connected to the reset terminal (R) of the SR latch 327, and the output terminal (Q) of the SR latch 327 is connected to the control terminal of the input separation switch 325. In the SR latch 327, when the set terminal (S) becomes “High” even for a moment while the reset terminal (R) is “Low”, the output terminal (Q) becomes “High” and the set terminal (S) becomes Even after returning to “Low”, the output terminal (Q) keeps “High”.
Similarly, when the reset terminal (R) becomes “High” for a moment while the set terminal (S) is “Low”, the output terminal (Q) becomes “Low” and the reset terminal (R) Even after R) returns to “Low”, the output terminal (Q) remains “Low”.
The input separation switch 325 is a single pole double throw (one circuit and two contacts), and the common terminal is connected to the drains of the bias transistor 308 and the canceller transistor 317. The contact 1 of the input separation switch 325 is connected to the inverting input terminal (−) of the integration operational amplifier 324 and the integration capacitor 322, and the contact 2 of the input separation switch 325 is connected to the reference voltage (VDD / 2). The control terminal is connected to the output terminal (Q) of the SR latch 327.
When the output terminal (Q) of the SR latch 327 is “Low”, the common terminal of the input separation switch 325 and the contact 1 are connected, and the current change of the bolometer element 305 flows to the integration circuit 304.
When the output terminal (Q) of the SR latch 327 is “High”, the common terminal of the input separation switch 325 and the contact 2 are connected, and the drains (the connection point between the bias transistor 308 and the canceller transistor 317) are connected to the reference voltage (VDD). / 2). For this reason, the input of the integration circuit 304 is disconnected from the connection point, and no current flows through the capacitor 322 of the integration circuit 304.
A reset switch (RSTSW) 323 is connected between the inverting input terminal (−) and the output terminal of the integrating operational amplifier 324. After the integrated voltage is output from the capacitor 322, the switch 323 is turned "ON" by the reset signal from the reset signal wiring 312, so that the output voltage of the integrating operational amplifier 324 is the reference voltage of the non-inverting input terminal (+). The voltage (VDD / 2) is set.
(Operation of the embodiment)
The outline of the operation of the first embodiment is as follows. A change in resistance value of each bolometer element 305 generated according to the intensity of infrared incident light from the subject is determined by input voltages VB1 and VB2 (not shown in FIG. 1, refer to FIG. 5) and a current of the bias cancel circuit 303. It is detected as a difference. The detected current difference is integrated by the integration circuit 304, and at the same time, is subjected to current-voltage conversion and output from the integration circuit 304 as a voltage value.
The saturation prevention circuit 309 detects the upper limit of the voltage value output from the integration circuit 304, and before the output voltage of the integration circuit 304 saturates, the input of the integration circuit 304 is input to the bias circuit 302 and the bias cancellation circuit by the input separation switch 325 Disconnect from 303 connection point.
Here, the SR latch 327 in the saturation prevention circuit 309 is provided to prevent chattering during the transition of the comparator 326. Therefore, when the influence of chattering is small, the SR latch 327 is not necessary.
Specific operations of the bias circuit 302 and the bias cancel circuit 303 are as follows. First, the input voltages VB1 and VB2 (see FIG. 5) are adjusted in a state where the shutter of the infrared imaging device is closed (the light from the subject is not incident), and the current flowing to the bolometer element 305 side and the bias cancel circuit 303 are adjusted. Balance the current flowing through Thereafter, when the shutter is opened, only the current change accompanying the change in the resistance value of the bolometer element 305 due to the light incident from the subject can be taken out.
The operation when light is incident from a high-temperature subject will be described in detail with reference to FIGS. 3A and 3B. In FIG. 3A, a readout circuit 301 connected to a bolometer element 305 to which light from a high-temperature subject is not incident, and a readout circuit 301-1 connected to a bolometer element 305-1 to which light from a high-temperature subject is incident. Is shown.
When the resistance temperature coefficient of the bolometer element is negative, the resistance value of the bolometer element 305-1 decreases due to the incidence of light from a high-temperature subject, and thus the current to the bolometer element 305-1 increases. At the moment when the reset switch RSTSW (switch 323-1) is “OFF” at the start of integration in the integration circuit 304-1, the capacitor 322 of the integration circuit 304-1 is taken along the path indicated by the arrow in the circuit on the right side of FIG. 3A. Current suddenly flows from -1 to the bolometer element 305-1. As a result, the imaginary short circuit of the integrating operational amplifier is destroyed, and the bias transistor 308-1 and the canceller transistor connected to the inverting input terminal (−) of the integrating operational amplifier 324-1 and the inverting input terminal (−) of the integrating operational amplifier 324-1. A voltage change (ΔV) occurs at the drain of 317-1 (the connection point between them) (period T1 in FIG. 3B).
The parasitic capacitance between the drain and gate of the bias transistor 308-1 and canceller transistor 317-1 is connected between the inverting input terminal (−) of the integrating operational amplifier 324-1 and the input voltage wirings 1 and 2. For this reason, the voltage fluctuation of the inverting input terminal (−) of the integrating operational amplifier 324-1 is differentiated and appears in the input voltage wirings 1 and 2 ((−) ΔVS1 in FIG. 3B).
Here, as shown in FIG. 3B, the saturation prevention upper detection voltage (Vprev_sat_up) is set between the upper effective voltage and the upper saturation voltage of the output voltage of the integration circuit 304-1.
After that, when the output voltage of the integrating operational amplifier 324-1 reaches the saturation prevention upper detection voltage (Vprev_sat_up), the output of the comparator 326-1 of the saturation prevention circuit 309-1 becomes “High” and is connected to the comparator 326-1. The output of the SR latch 327-1 is also held at “High”. When the output of the SR latch 327-1 becomes “High”, the input separation switch 325-1 is connected to the common terminal (the drains of the bias transistor 308-1 and the canceller transistor 317-1) and the contact 2 (VDD / 2). The input of the integration circuit 304-1 is disconnected. Since the input of the integration circuit 304-1 is disconnected, the current from the capacitor 322-1 of the integration operational amplifier 324-1 does not flow. For this reason, the output voltage of the integrating operational amplifier 324-1 is fixed at the saturation prevention upper detection voltage (Vprev_sat_up), the inverting input terminal (−) of the integrating operational amplifier 324-1 is imaginary shorted, and returns to the reference voltage (VDD / 2). (Period T2 in FIG. 3B).
At this time, voltage fluctuations at the drains of the bias transistor 308-1 and the canceller transistor 317-1 are differentiated by the parasitic capacitance and appear in the input voltage wirings 1 and 2 ((+) ΔVS2 in FIG. 3B).
The voltage fluctuation of the drains of the bias transistor 308-1 and the canceller transistor 317-1 within the integration period changes from the reference voltage (VDD / 2) to ΔV, and further returns to the original reference voltage (VDD / 2). For this reason, the sum of the voltage fluctuation components of the input voltage wiring obtained by differentiating the voltage fluctuation is ± zero ((−) ΔVS1 + (+) ΔVS2 = 0 in FIG. 3B).
In the readout circuit 301 to which another bolometer element 305 to which light from a high-temperature subject is not incident is connected, the current generated by applying the voltage of the input voltage wiring is integrated by the integrating operational amplifier 324. Since the sum of the voltage fluctuation components of the input voltage wiring is zero, the integrated output voltage is not affected.
(Effect of embodiment)
The effect of the first embodiment is that performance equivalent to that provided with a source follower circuit as shown in Patent Document 1 can be obtained with low noise, small area, and low power consumption. The reason is that by using the saturation prevention circuit, the voltage fluctuation component of the input voltage wiring due to the high temperature subject or the like can be made zero, and the high temperature false signal prevention effect can be obtained. That is, the saturation prevention circuit prevents saturation of the output voltage of the integration circuit, thereby eliminating the influence on the input voltage supplied to other readout circuits operating in parallel, which is caused by the saturation phenomenon of the output voltage of the integration circuit. This is because it is possible to obtain a high-temperature false signal prevention effect equivalent to that when using a source follower circuit as disclosed in Patent Document 1.
Furthermore, since this saturation prevention circuit only controls the input separation switch, the noise of the comparator and latch does not appear in the output voltage after integration. Therefore, there is no need to increase the circuit area and power consumption to reduce noise, so that low noise, small area, and low power consumption can be achieved.
[Other Embodiments]
A second embodiment of the present invention will be described with reference to FIG. The second embodiment also shows the configuration of the readout circuit applied to the bolometer type infrared imaging device.
In FIG. 2, although the reference numbers are different, the configuration of the bias circuit 402, bias cancel circuit 403, and integration circuit 404 constituting the readout circuit 401, the bolometer element 405, the first input voltage wiring 1 (406), the first The connection relationship between the second input voltage wiring 2 (407) and the reset signal wiring 412 is the same as that in the first embodiment, and a description thereof will be omitted. Similarly to the first embodiment, the input voltage wiring 1 (406) and the input voltage wiring 2 (407) generate VGS removal voltages using the input voltages VB1, VB2 (315, 321) described in FIG. 5 as inputs. Although connected to the circuits 1 (110) and 2 (119), illustration is omitted.
In the circuit shown in FIG. 2, the saturation prevention circuit 409 includes a saturation prevention upper detection comparator (first comparator) 426 and a saturation prevention lower detection comparator for the purpose of preventing both high temperature false signals and low temperature false signals. 428 is used. In FIG. 2, the inverting input terminal (−) of the saturation prevention lower detection comparator (second comparator) 428 is the non-inversion of the output terminal of the integration operational amplifier 424, the capacitor 422, and the saturation prevention upper detection comparator 426 in the integration circuit 404. Connected to the input terminal (+). On the other hand, the non-inverting input terminal (+) of the saturation prevention lower detection comparator 428 is connected to the saturation prevention lower detection voltage (Vprev_sat_down).
Here, the saturation prevention lower detection voltage (Vprev_sat_down) is set between the lower effective voltage and lower saturation voltage (see FIG. 3B) of the output voltage of the integration circuit 404. The OR circuit 429 takes the logical sum of the output signal of the saturation prevention lower detection comparator 428 and the output signal of the saturation prevention upper detection comparator 426 and outputs the logical sum to the set terminal (S) of the SR latch 427. As in the first embodiment, the reset signal wiring 412 is connected to the reset terminal (R) of the SR latch 427.
With this configuration, when the output signal of the integrating operational amplifier 424 is lower than the saturation prevention lower detection voltage (Vprev_sat_down) or higher than the saturation prevention upper detection voltage (Vprev_sat_up), the drains of the bias transistor 408 and the canceller transistor 417 (both of them) Is connected to the reference voltage (VDD / 2), and the input of the integration circuit 404 is disconnected. For this reason, voltage fluctuation components of the first and second input voltage wirings 1 and 2 (406, 407) due to light incidence from a high-temperature subject and light incidence from a low-temperature subject can be reduced to zero. Low temperature false signal does not occur.
In general, since the energy is smaller as the subject temperature is lower, the integration circuit is less likely to be saturated in the case of a low-temperature subject, but the lower side saturation may occur depending on the gain of the integration circuit. In this case, in the first embodiment, the sum of the voltage fluctuation components of the input voltage wiring due to the lower saturation cannot be made zero, resulting in a low-temperature false signal. For this reason, although the circuit area slightly increases, the second embodiment in which the total of the voltage fluctuation components of the input voltage wiring due to the lower saturation can be made zero by adding a saturation detection lower detection comparator. preferable. In some cases, only lower saturation prevention may be used.
Although the present invention has been described with reference to a plurality of embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the spirit and scope of the present invention described in the claims.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-201953 for which it applied on September 15, 2011, and takes in those the indications of all here.
A part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
(Appendix 1)
A bolometer element that receives light from the subject;
A bias circuit for applying a bias voltage to the bolometer element;
A bias cancel circuit for removing the offset current of the bolometer element;
An integration circuit that is connected to a connection point between the bias circuit and the bias cancellation circuit and integrates a difference current between the bias circuit and the bias cancellation circuit;
A saturation prevention circuit for preventing saturation of the output voltage of the integration circuit;
A semiconductor device comprising:
(Appendix 2)
The semiconductor device according to attachment 1, wherein the saturation prevention circuit has a function of comparing an output voltage of the integration circuit with a preset saturation prevention upper detection voltage, and the output voltage of the integration circuit is the saturation prevention upper side. A semiconductor device which prevents the output voltage of the integration circuit from being saturated due to the high temperature of the subject by disconnecting the integration circuit from the connection point when the voltage is higher than a detection voltage.
(Appendix 3)
The semiconductor device according to attachment 2, wherein the saturation prevention circuit is inserted between a first comparator that compares the output voltage of the integration circuit and the saturation prevention upper detection voltage, and between the connection point and the integration circuit. And a switch connected and controlled to be turned on and off by the output of the first comparator.
(Appendix 4)
The semiconductor device according to appendix 3, wherein a latch portion is inserted and connected between the output of the first comparator and the switch.
(Appendix 5)
The semiconductor device according to attachment 2, wherein the saturation prevention circuit further has a function of comparing an output voltage of the integration circuit with a preset saturation prevention lower detection voltage, and the output voltage of the integration circuit is the saturation voltage A semiconductor device that prevents the output voltage of the integration circuit from being saturated due to the low temperature of the subject by disconnecting the integration circuit from the connection point when the voltage is lower than the lower detection voltage.
(Appendix 6)
The semiconductor device according to appendix 5, wherein the saturation prevention circuit includes a first comparator that compares an output voltage of the integration circuit and the saturation prevention upper detection voltage, an output voltage of the integration circuit, and the saturation prevention lower side. A second comparator for comparing a detection voltage; a logic circuit for calculating a logical sum of the outputs of the first and second comparators; and the logic circuit inserted between the connection point and the integration circuit. And a switch that is controlled to be turned on / off by the output of the semiconductor device.
(Appendix 7)
The semiconductor device according to appendix 6, wherein a latch portion is inserted and connected between the output of the logic circuit and the switch.
(Appendix 8)
An infrared imaging device in which a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to first and second input voltage wirings,
The readout circuit is connected to a connection point between the bias circuit that applies a bias voltage to the corresponding bolometer element, a bias cancellation circuit that removes an offset current of the corresponding bolometer element, and the bias circuit and the bias cancellation circuit. An infrared imaging apparatus, comprising: an integration circuit that integrates a difference current between the bias circuit and the bias cancellation circuit; and a saturation prevention circuit that prevents saturation of an output voltage of the integration circuit.
(Appendix 9)
The infrared imaging device according to appendix 8, wherein the saturation prevention circuit has a function of comparing the output voltage of the integration circuit with a preset saturation prevention upper detection voltage, and the output voltage of the integration circuit is the saturation prevention circuit. An infrared imaging device that prevents the output voltage of the integration circuit from being saturated due to the high temperature of the subject by disconnecting the integration circuit from the connection point when the voltage is higher than the upper detection voltage.
(Appendix 10)
In the infrared imaging device according to appendix 9, the saturation prevention circuit includes a first comparator that compares an output voltage of the integration circuit and the saturation prevention upper detection voltage, and between the connection point and the integration circuit. An infrared imaging device comprising: a switch inserted and connected and controlled to be turned on and off by an output of the first comparator.
(Appendix 11)
The infrared imaging device according to appendix 10, wherein a latch portion is inserted and connected between the output of the first comparator and the switch.
(Appendix 12)
In the infrared imaging device according to appendix 9, the saturation prevention circuit further has a function of comparing the output voltage of the integration circuit with a preset saturation prevention lower detection voltage, and the output voltage of the integration circuit is An infrared imaging apparatus that prevents the output voltage of the integration circuit from being saturated due to the low temperature of the subject by disconnecting the integration circuit from the connection point when the detection voltage is lower than a saturation detection lower detection voltage.
(Appendix 13)
The infrared imaging device according to attachment 12, wherein the saturation prevention circuit includes a first comparator that compares an output voltage of the integration circuit and the saturation prevention upper detection voltage, an output voltage of the integration circuit, and the saturation prevention circuit. A second comparator for comparing the side detection voltage, a logic circuit for calculating the logical sum of the outputs of the first and second comparators, and being inserted and connected between the connection point and the integration circuit, An infrared imaging device comprising: a switch that is on / off controlled by an output of a circuit.
(Appendix 14)
The infrared imaging device according to appendix 13, wherein a latch portion is inserted and connected between the output of the logic circuit and the switch.
(Appendix 15)
A plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to first and second input voltage wirings, and the readout circuits correspond to each other. A bias circuit for applying a bias voltage to the bolometer element, a bias cancel circuit for removing the offset current of the corresponding bolometer element, and the bias circuit and the bias connected to a connection point of the bias circuit and the bias cancel circuit An integration circuit for integrating the difference current of the cancellation circuit, and an output voltage saturation prevention method for the integration circuit in an infrared imaging device,
By comparing the output voltage of the integration circuit with a preset saturation prevention upper detection voltage and disconnecting the integration circuit from the connection point when the output voltage of the integration circuit is higher than the saturation prevention upper detection voltage, the subject That prevents the output voltage of the integrating circuit from saturating due to the high temperature.
(Appendix 16)
The method according to claim 15, further comprising comparing the output voltage of the integration circuit with a preset saturation prevention lower detection voltage, and the integration circuit when the output voltage of the integration circuit is lower than the saturation prevention lower detection voltage. A method of preventing the output voltage of the integration circuit from being saturated due to the low temperature of the subject by disconnecting the circuit from the connection point.
 101,301,401  読み出し回路
 102,302,402  バイアス回路
 103,303,403  バイアスキャンセル回路
 104,304,404  積分回路
 108,308,408  バイアストランジスタ
 117,317,417  キャンセラトランジスタ
 122,322,422  コンデンサ
 123,323,423  リセット用のスイッチ
 111,324,424  積分オペアンプ
 309,409  飽和防止回路
 325,425  入力分離スイッチ
 326,426,428  コンパレータ
 327,427  SRラッチ
101, 301, 401 Read circuit 102, 302, 402 Bias circuit 103, 303, 403 Bias cancel circuit 104, 304, 404 Integration circuit 108, 308, 408 Bias transistor 117, 317, 417 Canceller transistor 122, 322, 422 Capacitor 123 , 323, 423 Reset switch 111, 324, 424 Integral operational amplifier 309, 409 Saturation prevention circuit 325, 425 Input isolation switch 326, 426, 428 Comparator 327, 427 SR latch

Claims (10)

  1.  被写体からの光を受けるボロメータ素子と、
     前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、
     前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、
     前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、
     前記積分回路の出力電圧の飽和を防止する飽和防止回路と、
    の組合せを一組以上備えた半導体装置。
    A bolometer element that receives light from the subject;
    A bias circuit for applying a bias voltage to the bolometer element;
    A bias cancel circuit for removing the offset current of the bolometer element;
    An integration circuit that is connected to a connection point between the bias circuit and the bias cancellation circuit and integrates a difference current between the bias circuit and the bias cancellation circuit;
    A saturation prevention circuit for preventing saturation of the output voltage of the integration circuit;
    A semiconductor device provided with one or more combinations.
  2.  請求項1に記載の半導体装置において、前記飽和防止回路は、前記積分回路の出力電圧をあらかじめ設定された飽和防止上側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止上側検知電圧より高い時に前記積分回路を前記接続点から切り離すことを特徴とする半導体装置。 2. The semiconductor device according to claim 1, wherein the saturation prevention circuit has a function of comparing an output voltage of the integration circuit with a preset saturation prevention upper detection voltage, and the output voltage of the integration circuit is the saturation prevention circuit. A semiconductor device, wherein the integration circuit is disconnected from the connection point when higher than an upper detection voltage.
  3.  請求項1又は2に記載の半導体装置において、前記飽和防止回路は、前記積分回路の出力電圧をあらかじめ設定された飽和防止下側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止下側検知電圧より低い時に前記積分回路を前記接続点から切り離すことを特徴とすることを防止する半導体装置。 3. The semiconductor device according to claim 1, wherein the saturation prevention circuit has a function of comparing an output voltage of the integration circuit with a preset saturation prevention lower detection voltage, and the output voltage of the integration circuit is A semiconductor device for preventing the integration circuit from being disconnected from the connection point when the saturation prevention lower detection voltage is lower.
  4.  被写体からの光を受ける複数のボロメータ素子と、該複数のボロメータ素子のそれぞれに接続した複数の読み出し回路と、を第1、第2の入力電圧配線に接続した赤外線撮像装置であって、
     前記読み出し回路は、対応する前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、対応する前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、前記積分回路の出力電圧の飽和を防止する飽和防止回路と、を含むことを特徴とする赤外線撮像装置。
    An infrared imaging device in which a plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to first and second input voltage wirings,
    The readout circuit is connected to a connection point between the bias circuit that applies a bias voltage to the corresponding bolometer element, a bias cancellation circuit that removes an offset current of the corresponding bolometer element, and the bias circuit and the bias cancellation circuit. An infrared imaging apparatus, comprising: an integration circuit that integrates a difference current between the bias circuit and the bias cancellation circuit; and a saturation prevention circuit that prevents saturation of an output voltage of the integration circuit.
  5.  請求項4に記載の赤外線撮像装置において、前記飽和防止回路は、前記積分回路の出力電圧をあらかじめ設定された飽和防止上側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止上側検知電圧より高い時に前記積分回路を前記接続点から切り離すことを特徴とする赤外線撮像装置。 5. The infrared imaging device according to claim 4, wherein the saturation prevention circuit has a function of comparing the output voltage of the integration circuit with a preset saturation prevention upper detection voltage, and the output voltage of the integration circuit is the saturation voltage. An infrared imaging device, wherein the integration circuit is disconnected from the connection point when the prevention upper detection voltage is higher.
  6.  請求項5に記載の赤外線撮像装置において、前記飽和防止回路は、前記積分回路の出力電圧と前記飽和防止上側検知電圧とを比較する第1のコンパレータと、前記接続点と前記積分回路との間に挿入接続されて、前記第1のコンパレータの出力でオン、オフ制御されるスイッチと、を含むことを特徴とする赤外線撮像装置。 6. The infrared imaging device according to claim 5, wherein the saturation prevention circuit includes a first comparator that compares an output voltage of the integration circuit and the saturation prevention upper detection voltage, and between the connection point and the integration circuit. And an on-off switch that is inserted and connected to the output of the first comparator.
  7.  請求項6に記載の赤外線撮像装置において、前記第1のコンパレータの出力と前記スイッチとの間にラッチ手段を挿入接続したことを特徴とする赤外線撮像装置。 7. The infrared imaging apparatus according to claim 6, wherein latch means is inserted and connected between the output of the first comparator and the switch.
  8.  請求項5に記載の赤外線撮像装置において、前記飽和防止回路はさらに、前記積分回路の出力電圧をあらかじめ設定された飽和防止下側検知電圧と比較する機能を有し、前記積分回路の出力電圧が前記飽和防止下側検知電圧より低い時に前記積分回路を前記接続点から切り離すことを特徴とする赤外線撮像装置。 The infrared imaging device according to claim 5, wherein the saturation prevention circuit further has a function of comparing an output voltage of the integration circuit with a preset saturation prevention lower detection voltage, and the output voltage of the integration circuit is An infrared imaging device, wherein the integration circuit is disconnected from the connection point when the saturation prevention lower detection voltage is lower.
  9.  請求項8に記載の赤外線撮像装置において、前記飽和防止回路は、前記積分回路の出力電圧と前記飽和防止上側検知電圧とを比較する第1のコンパレータと、前記積分回路の出力電圧と前記飽和防止下側検知電圧とを比較する第2のコンパレータと、前記第1、第2のコンパレータの出力の論理和をとる論理回路と、前記接続点と前記積分回路との間に挿入接続されて、前記論理回路の出力でオン、オフ制御されるスイッチと、を含むことを特徴とする赤外線撮像装置。 9. The infrared imaging device according to claim 8, wherein the saturation prevention circuit includes a first comparator that compares an output voltage of the integration circuit and the saturation prevention upper detection voltage, an output voltage of the integration circuit, and the saturation prevention. A second comparator for comparing a lower detection voltage, a logic circuit for calculating a logical sum of the outputs of the first and second comparators, and being inserted and connected between the connection point and the integration circuit, An infrared imaging device comprising: a switch that is on / off controlled by an output of a logic circuit.
  10.  被写体からの光を受ける複数のボロメータ素子と、該複数のボロメータ素子のそれぞれに接続した複数の読み出し回路と、を第1、第2の入力電圧配線に接続して成り、前記読み出し回路が、対応する前記ボロメータ素子にバイアス電圧を与えるバイアス回路と、対応する前記ボロメータ素子のオフセット電流を除去するバイアスキャンセル回路と、前記バイアス回路と前記バイアスキャンセル回路の接続点に接続されて前記バイアス回路と前記バイアスキャンセル回路の差電流を積分する積分回路と、を含む赤外線撮像装置における前記積分回路の出力電圧飽和防止方法であって、
     前記積分回路の出力電圧をあらかじめ設定された飽和防止上側検知電圧と比較し、前記積分回路の出力電圧が前記飽和防止上側検知電圧より高い時に前記積分回路を前記接続点から切り離すことにより、前記積分回路の出力電圧が飽和することを防止する方法。
    A plurality of bolometer elements that receive light from a subject and a plurality of readout circuits connected to each of the plurality of bolometer elements are connected to first and second input voltage wirings, and the readout circuits correspond to each other. A bias circuit for applying a bias voltage to the bolometer element, a bias cancel circuit for removing the offset current of the corresponding bolometer element, and the bias circuit and the bias connected to a connection point of the bias circuit and the bias cancel circuit An integration circuit for integrating the difference current of the cancellation circuit, and an output voltage saturation prevention method for the integration circuit in an infrared imaging device,
    By comparing the output voltage of the integration circuit with a preset saturation prevention upper detection voltage, and disconnecting the integration circuit from the connection point when the output voltage of the integration circuit is higher than the saturation prevention upper detection voltage, the integration circuit A method of preventing the output voltage of a circuit from saturating.
PCT/JP2012/071925 2011-09-15 2012-08-23 Semiconductor device and infrared image-capturing device provided with same WO2013038911A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12831932.4A EP2757355A4 (en) 2011-09-15 2012-08-23 Semiconductor device and infrared image-capturing device provided with same
US14/344,790 US9426388B2 (en) 2011-09-15 2012-08-23 Semiconductor device and infrared image pickup device provided with same
JP2013533602A JP5884997B2 (en) 2011-09-15 2012-08-23 Semiconductor device and infrared imaging apparatus provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011201953 2011-09-15
JP2011-201953 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013038911A1 true WO2013038911A1 (en) 2013-03-21

Family

ID=47883144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071925 WO2013038911A1 (en) 2011-09-15 2012-08-23 Semiconductor device and infrared image-capturing device provided with same

Country Status (4)

Country Link
US (1) US9426388B2 (en)
EP (1) EP2757355A4 (en)
JP (1) JP5884997B2 (en)
WO (1) WO2013038911A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162842A (en) * 2013-04-02 2013-06-19 江苏物联网研究发展中心 Diode infrared detector readout integrated circuit with self-stabilization zero circuit
CN103972247A (en) * 2014-05-20 2014-08-06 厦门大学 Silica-based uniwafer optoelectronic integration receiving chip used for automatic electricity meter reading system
WO2015162876A1 (en) * 2014-04-22 2015-10-29 日本電気株式会社 Semiconductor device, infrared imaging device equipped with said semiconductor device, and method for manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020906B1 (en) * 2014-05-07 2018-11-02 Ulis HIGH DYNAMIC DEVICE FOR THE INTEGRATION OF AN ELECTRICAL CURRENT
WO2016085586A2 (en) 2014-10-16 2016-06-02 Flir Systems, Inc. Low cost and high performance bolometer circuitry and methods
CN108414093B (en) * 2018-01-12 2020-02-28 武汉高德红外股份有限公司 Readout circuit of uncooled infrared focal plane detector and method for improving yield
US11454546B2 (en) 2020-05-27 2022-09-27 Samsung Electronics Co., Ltd. Hybrid visible/NIR and LWIR sensor with resistive microbolometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190563A (en) * 1989-12-19 1991-08-20 Origin Electric Co Ltd Converter control circuit
JPH1197989A (en) * 1997-09-18 1999-04-09 Toyota Autom Loom Works Ltd Pulse signal generating device with malfunction preventing function
JP2004512536A (en) * 2000-10-23 2004-04-22 コミツサリア タ レネルジー アトミーク Electromagnetic radiation detecting element, sensor and reading process related thereto
JP2008022457A (en) * 2006-07-14 2008-01-31 Nec Electronics Corp Semiconductor apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115482A (en) * 1977-03-18 1978-10-07 Yokogawa Hokushin Electric Corp Trouble detecting device for electronic instruments for process control
EP0423489A1 (en) * 1989-09-15 1991-04-24 Cerberus Ag Smoke detection arrangement with monitoring
US6274869B1 (en) * 1996-06-28 2001-08-14 Lockheed-Martin Ir Imaging Systems, Inc. Digital offset corrector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190563A (en) * 1989-12-19 1991-08-20 Origin Electric Co Ltd Converter control circuit
JPH1197989A (en) * 1997-09-18 1999-04-09 Toyota Autom Loom Works Ltd Pulse signal generating device with malfunction preventing function
JP2004512536A (en) * 2000-10-23 2004-04-22 コミツサリア タ レネルジー アトミーク Electromagnetic radiation detecting element, sensor and reading process related thereto
JP2008022457A (en) * 2006-07-14 2008-01-31 Nec Electronics Corp Semiconductor apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757355A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162842A (en) * 2013-04-02 2013-06-19 江苏物联网研究发展中心 Diode infrared detector readout integrated circuit with self-stabilization zero circuit
WO2015162876A1 (en) * 2014-04-22 2015-10-29 日本電気株式会社 Semiconductor device, infrared imaging device equipped with said semiconductor device, and method for manufacturing semiconductor device
JPWO2015162876A1 (en) * 2014-04-22 2017-04-13 日本電気株式会社 Semiconductor device, infrared imaging device including the semiconductor device, and method for controlling the semiconductor device
CN103972247A (en) * 2014-05-20 2014-08-06 厦门大学 Silica-based uniwafer optoelectronic integration receiving chip used for automatic electricity meter reading system

Also Published As

Publication number Publication date
JP5884997B2 (en) 2016-03-15
JPWO2013038911A1 (en) 2015-03-26
EP2757355A1 (en) 2014-07-23
US9426388B2 (en) 2016-08-23
US20140367573A1 (en) 2014-12-18
EP2757355A4 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP5884997B2 (en) Semiconductor device and infrared imaging apparatus provided with the same
KR102552767B1 (en) Image sensors with power supply noise rejection capabilities
JP4372097B2 (en) Infrared sensor, infrared camera, driving method of infrared sensor, and driving method of infrared camera
JP4854410B2 (en) Semiconductor device
JP5080794B2 (en) Solid-state imaging device and camera
US7642846B2 (en) Apparatuses and methods for providing offset compensation for operational amplifier
US20190141265A1 (en) Sample and hold based temporal contrast vision sensor
JP2008271159A (en) Solid-state imaging apparatus
US20040036783A1 (en) Asymmetric comparator for use in pixel oversaturation detection
US8987667B2 (en) Systems and methods for image lag mitigation for buffered direct injection readout with current mirror
JPWO2017030007A1 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
US20100123504A1 (en) Adaptive low noise offset subtraction for imagers with long integration times
JP6737192B2 (en) Solid-state imaging device and electronic device
US7667201B2 (en) Sensitive silicon sensor and test structure for an ultra-sensitive silicon sensor
US9497402B2 (en) Image lag mitigation for buffered direct injection readout with current mirror
JP4290034B2 (en) Infrared solid-state imaging device
US20030183891A1 (en) Column readout circuit with increased signal range for CMOS image sensor
US7619667B2 (en) Solid-state image device and camera including solid-state image device for selective outputs
US11159752B2 (en) Imaging device
JP6733540B2 (en) Semiconductor integrated circuit and imaging device
US7289149B1 (en) Operational transconductance amplifier for high-speed, low-power imaging applications
Wu et al. High linearity current mode image sensor
US20120091343A1 (en) Device for detecting electromagnetic radiation with polarized bolometric detector, and application for infrared detection
US20140131778A1 (en) Wide Bias Background Subtraction Pixel Front-End with Short Protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533602

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14344790

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE