Nothing Special   »   [go: up one dir, main page]

WO2013035222A1 - Secondary battery positive electrode material and secondary battery using same - Google Patents

Secondary battery positive electrode material and secondary battery using same Download PDF

Info

Publication number
WO2013035222A1
WO2013035222A1 PCT/JP2012/003452 JP2012003452W WO2013035222A1 WO 2013035222 A1 WO2013035222 A1 WO 2013035222A1 JP 2012003452 W JP2012003452 W JP 2012003452W WO 2013035222 A1 WO2013035222 A1 WO 2013035222A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrode material
lithium
site
Prior art date
Application number
PCT/JP2012/003452
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 浅利
雄二 諏訪
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013532403A priority Critical patent/JP5830540B2/en
Publication of WO2013035222A1 publication Critical patent/WO2013035222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material for a secondary battery (rechargeable battery) and a secondary battery using the same.
  • Non-aqueous electrolyte secondary batteries that use alkaline metals such as lithium and sodium, alkaline earth metals such as magnesium, or alloys and compounds thereof as negative electrode materials insert or intercalate negative electrode metal ions into the positive electrode material. As a result, the electric capacity and charge reversibility are ensured.
  • the positive electrode material and the negative electrode material are called hosts, and the movable metal ions that are inserted and intercalated with respect to the host are called guests.
  • a typical example of such a host / guest type non-aqueous electrolyte secondary battery is a lithium ion secondary battery. Secondary batteries are disclosed in, for example, Patent Documents 1 and 2 and Non-Patent Documents 1 to 5.
  • Lithium ion secondary batteries have a higher energy density than conventional secondary batteries, and it is important to ensure battery safety.
  • the thermal stability of the positive electrode material is one of the factors that determine the safety of lithium ion secondary batteries.
  • heat generation or oxygen release occurs.
  • the released oxygen may react with the combustible organic electrolyte or the negative electrode material, and the safety of the battery may be impaired.
  • the problem of thermal stability is particularly noticeable in the charged state.
  • lithium ions are accumulated in the negative electrode material, and the positive electrode material is delithiated.
  • the delithiated cathode material is chemically high in energy and has a lower pyrolysis temperature. For this reason, the positive electrode material is likely to deteriorate during storage at high temperatures, and may be thermally decomposed as the temperature rises.
  • layered rock salt type LiMO 2 (where M is a transition metal) which is a metal oxide type positive electrode material
  • LiCoO 2 a metal oxide type positive electrode material
  • the instability of the structure increases in an overcharged state.
  • a thermal decomposition reaction occurs at a temperature of °C or higher and oxygen is released by self-heating of the positive electrode material.
  • the spinel type metal oxide LiMn 2 O 4 manganese is eluted in the electrolyte during storage at high temperature, and the eluted manganese causes clogging of the separator or forms a film on the negative electrode.
  • the material may be deteriorated (see Patent Document 1).
  • a protection circuit In a lithium ion secondary battery using the positive electrode group as described above, it is necessary to prevent overcharge by a protection circuit in order to ensure reliability and safety. Such protection circuits and mechanical mechanisms occupy a considerable volume of current battery packs. If a secondary battery can be constituted by using a positive electrode material having high thermal stability, it becomes possible to realize intrinsic safety, simplify the battery mechanism, and improve the effective energy density.
  • the olivine type compound LiFePO 4 is known to have high thermal stability.
  • the charge phase of LiFePO 4 , FePO 4 (Heterosite) is extremely stable with respect to heating, and even when heated to 620 ° C. or higher, it only undergoes a phase transition to the Quartz phase, which is more thermodynamically stable. Does not release.
  • the reason for exhibiting such high thermal stability is that the olivine type compound has a phosphate skeleton.
  • phosphorus (P) and oxygen (O) are connected by a strong covalent bond. That is, oxygen is fixed by phosphorus, oxygen release due to heat generation is difficult to occur, and heat stability is high.
  • the covalent bond between phosphorus and oxygen is an effective means for ensuring the thermal stability of the positive electrode material.
  • a positive electrode material excellent in thermal stability a polyanion positive electrode group containing a phosphoric acid type structure (P x O y ) is considered optimal.
  • polyanion positive electrode materials olivic acid compound LiMPO 4 (for example, see Non-patent Documents 1 and 5), pyrophosphate compound Li 2 MP 2 O 7 (for example, refer to Non-Patent Documents 2 to 4) and the like have been proposed. Yes. The detail regarding said phosphoric acid type positive electrode material is described below.
  • the olivic acid compound LiMPO 4 is known as part of a series of positive electrode materials represented by a polyanion (chemical formula (XO 4 ) y ⁇ ).
  • M Fe, Mn, Co, Ni, or the like is used for the chemical composition formula LiMPO 4 .
  • olivine-type lithium iron phosphate Li x FePO 4 , 0 ⁇ x ⁇ 1, hereinafter referred to as olivine Fe
  • the olivine-type LiFePO 4 has one atom of lithium per chemical composition formula and a theoretical electric capacity of 160 mAh / g. In experiments, almost all of the theoretical electric capacity can be used.
  • the pyrophosphate compound Li 2 MP 2 O 7 is a positive electrode material using Fe, Mn, Co or the like as M.
  • the electric capacity when the pyrophosphate compound can use all the lithium ions for charging and discharging is called the theoretical electric capacity, which is 220 mAh / g.
  • the theoretical electric capacity of the olivine-type positive electrode is 160 mAh / g, and the capacity can be used in experiments.
  • the theoretical electric capacity of the pyrophosphate-type positive electrode is 220 mAh / g, but only 110 mAh / g, which is half that, can be used in the experiment.
  • olivine-type positive electrode material LiFePO 4 As an example, olivine-type LiFePO 4 generally has an experimental electric capacity much lower than the theoretical capacity, it is known that the electric capacity increases by making the particles of the positive electrode material finer and reducing the particle diameter. The fine particle size necessary to operate as an electrode is 200 nm or less. In order to achieve the theoretical capacity of 160 mAh / g of LiFePO 4 , it is essential to further refine the positive electrode material.
  • the reason for the increase in capacity due to such micronization is related to the movement distance of the inserted lithium ions. If the particle size is large, the movement distance of lithium ions in the particles of the positive electrode material is long. In such cases, various impurities such as impurities in the particles, atomic position exchange defects (antisite defects), trapping of ions due to atomic vacancies, blocking of ion diffusion paths caused by mismatched surfaces such as grain boundaries, etc. There is a high possibility that the movement of lithium ions will be hindered by factors.
  • LiFePO 4 is known to have a one-dimensional lithium diffusion path.
  • Such a one-dimensional diffusion path is susceptible to the above-described crystal defects. That is, in the one-dimensional network-like phosphoric acid compound, lithium ions move one-dimensionally through the network in the material, so that the network is easily interrupted by crystal defects. Even if one crystal defect such as an antisite defect exists in one lithium diffusion network, the utilization rate of the network hardly changes. The fact that the network utilization rate does not change means that the electric capacity does not decrease.
  • Non-Patent Document 5 when two or more crystal defects occur, the lithium storage site between the defects in the one-dimensional network cannot be used, the network utilization rate decreases, and the electric capacity decreases.
  • the number of one-dimensional networks having two or more crystal defects increases rapidly as the particle size increases. For example, even when assuming 0.1% antisite defects, a particle size of 100 nm is required to achieve 100% network utilization.
  • the theoretical value of the network utilization rate decreases to 50%, resulting in a significant decrease in electric capacity (Non-Patent Document 5).
  • Non-patent Document 2 a one-electron theoretical capacity is achieved even for particles having a large size of about 1 ⁇ m without controlling the particle size such as micronization (Non-patent Document 2). If large particle size control is not required and particle size control is possible, the micronization process can be omitted, the surface modification treatment restrictions are greatly relaxed, battery costs are reduced, and process management is simplified. This leads to the elimination of performance impediment factors. If surface modification treatment with a conductive material such as graphite, which is essential for the olivine cathode material, is unnecessary, there are many advantages such as cost reduction and ease of process, as well as ease of electrode binding.
  • a conductive material such as graphite
  • the pyrophosphate-type positive electrode can be a positive electrode active material that exceeds the olivine-type positive electrode not only in electric capacity but also in productivity.
  • the dimension of the diffusion network of lithium ions in the pyrophosphate cathode material Li 2 MP 2 O 7 is expected to be greater than 1. That is, in Li 2 MP 2 O 7 , lithium ions have a layered structure, and are alternately laminated with transition metal layers, and it is expected that a lithium diffusion network having a dimension different from the olivine type exists.
  • the lithium ion diffusion network has a higher dimension than one.
  • the conditions for the positive electrode material satisfying the requirements for safety and electric capacity are: (1) a positive electrode material having a potentially large electric capacity pyrophosphoric acid crystal structure, and (2) heat. It has a highly stable skeleton based on phosphoric acid, and (3) has an electric capacity higher than 110 mAh / g.
  • pyrophosphate-type positive electrode materials having these characteristics have not been realized yet.
  • the present invention has been proposed to improve the discharge capacity of pyrophosphate-type positive electrode materials, and the object thereof is to have a crystal structure having a pyroskeleton-type P 2 O 7 structure having high thermal stability as a basic skeleton. Another object of the present invention is to provide a positive electrode material for a secondary battery capable of obtaining a high discharge capacity and a secondary battery using the same.
  • a positive electrode material for a secondary battery having a chemical composition formula of A 2-x MP 2 O 7- ⁇ Z ⁇ as a main component, wherein A is selected from alkali metals At least one element, M is at least one element selected from transition metals that can be a divalent or higher valent ion, Z is at least one element selected from halogen elements, and x is 0 ⁇ x ⁇ 2 and ⁇ is in a range of 0 ⁇ ⁇ 1.47.
  • the positive electrode material for the secondary battery is used for the positive electrode.
  • the positive electrode has a crystal structure having a pyrophosphate-type P 2 O 7 structure as a basic skeleton, and oxygen constituting the pyrophosphate-type P 2 O 7 structure
  • a part of oxygen constituting the pyrophosphate-type P 2 O 7 structure is substituted with a halogen element in a crystal structure having a pyroskeleton-type P 2 O 7 structure having a high thermal stability as a basic skeleton.
  • the present inventors have repeatedly studied lithium desorption and crystal structure change accompanying the charge / discharge reaction of the pyrophosphate-type positive electrode material.
  • the cause of the difficulty in desorption of lithium is the presence of single-bonded oxygen, and the instability of the crystal structure is reduced by substituting single-bonded oxygen with a different element, resulting in a higher charge / discharge capacity.
  • the positive electrode material design that leads to an improvement in charge / discharge capacity will be described below. Since lithium is the most practical, lithium will be described as an example, but any alkali metal can be used.
  • the crystal structure of the pyrophosphate-type positive electrode material is shown in FIG.
  • the crystal structure is a lithium layer and a transition metal layer along the bc plane (especially, transition metals that can be multivalent ions having two or more valences; V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W
  • the transition metal M has an MO x polyhedral structure (corresponding to reference numeral 6) with oxygen atoms coordinated around it.
  • MO x polyhedron structures MO 6 and MO 5 , which take a cluster shape in which edges are covalently connected.
  • a phosphoric acid structure (polyhedron) P 2 O 7 (corresponding to reference numeral 5) is arranged between polyhedral clusters in which MO 6 and MO 5 are bonded, and the clusters are joined to each other. For this reason, the transition metal layer can maintain a layered structure during charging and discharging.
  • the crystallographically independent lithium sites are the Li1 site 1, the Li2 site 2, the Li3 site 3 and the Li4 site 4, the lithium layer consisting only of the Li1 site 1 and the Li2 site 2, and only the LI3 site 3 and the Li4 site 4 Divided into lithium layers.
  • a lithium layer composed of the Li1 site 1 and the Li2 site 2 is defined as an A layer
  • a lithium layer composed of the Li3 site 3 and the Li4 site 4 is defined as a C layer.
  • the number of lithium sites contained in the A layer and the C layer is 8 in each unit cell 7, and the lithium density is equal.
  • the arrangement of lithium sites (lithium diffusion network shape) is different.
  • a lithium diffusion network of layer A is shown in FIG.
  • Reference numeral 21 denotes a Li1 site
  • reference numeral 22 denotes a Li2 site
  • reference numeral 23 denotes a unit cell.
  • Each lithium site is adjacent to the other three lithium sites.
  • the elementary process of lithium diffusion in the positive electrode is considered to be ion hopping from one lithium site to another adjacent lithium site. Therefore, the dimension of the lithium ion diffusion network can be determined by the number of adjacent sites. For example, in the well-known olivine-type positive electrode material LiFePO 4 , the number of adjacent lithium sites is 2, so it can be said that the lithium ion diffusion network has a one-dimensional topology.
  • the topology of the lithium ion diffusion network is considered to be two-dimensional.
  • the lithium diffusion path network of the C layer is shown in FIG.
  • Reference numeral 31 denotes a Li3 site
  • reference numeral 32 denotes a Li4 site
  • reference numeral 33 denotes a unit cell.
  • the number of adjacent lithium sites in the Li3 site 31 is 4, and the number of adjacent lithium sites in the Li4 site 32 is 3.
  • the topology of the lithium diffusion network is considered to be two-dimensional like the A layer.
  • the present inventors used a computer numerical analysis technique based on the first-principles calculation theory to determine pyrophosphoric acid.
  • the binding energy of lithium in was calculated.
  • the binding energy is an index of stabilization due to the binding of lithium to the lithium site, and 0 eV was used as a reference point in a negative electrode state (lithium ions intercalated with graphite).
  • the calculation results are shown in FIG.
  • the binding energy was 4.40 eV, 3.93 eV, 3.80 eV, and 3.61 eV. The higher the binding energy, the more difficult it is to extract lithium ions.
  • lithium ions in the A layer are difficult to extract, and lithium ions in the C layer are easy to extract. Since the number of lithium ions contained in the A layer and the C layer is the same, it is suggested that the one-electron reaction that has been confirmed at present is lithium desorption into the C layer.
  • the energy difference between the Li1 site 21 and the Li2 site 22 is 0.47 eV.
  • the lithium diffusion network FIG. 2
  • the lithium ions must pass through both the Li1 site 21 and the Li2 site 22 in order to diffuse. That is, at least 0.47 eV or more is required for the diffusion of lithium ions. This suggests that lithium ions cannot diffuse in the A layer unless they have high energy. It also means that the site related to the rate limiting of lithium ions in the A layer is the Li1 site 21.
  • the energy difference between the Li3 site 31 and the Li4 site 32 is 0.19 eV, which is much smaller than the energy difference in the A layer. That is, it is suggested that lithium ions are much more mobile in the C layer than in the A layer. This energy difference confirms that the one-electron reaction confirmed in the pyrophosphoric acid charging / discharging experiment occurs in the C layer.
  • the mechanism by which the Li1 site 21 controls the lithium ion diffusion in the A layer will be examined.
  • oxygen is coordinated to lithium.
  • four oxygen atoms were coordinated at the Li1 site 21, four oxygen atoms were coordinated at the Li2 site 22, five oxygen atoms were coordinated at the Li3 site 31, and four oxygen atoms were coordinated at the Li4 site 32.
  • Oxygen is responsible for adsorbing and immobilizing lithium.
  • the number of oxygen surrounding the lithium site is at most 4 or 5 at any site, and there is no significant difference. Therefore, the factor determining the adsorption energy of lithium ions is not the number of coordinated oxygen atoms but the chemical nature of the oxygen atoms.
  • Reference numeral 41 is an oxygen ion with a lone electron pair
  • reference numeral 42 is an oxygen ion
  • reference numeral 43 is a phosphoric acid (PO 4 ) polyhedron
  • reference numeral 44 is an iron oxide polyhedron (MOx polyhedron).
  • Oxygen occupies the apex position of the polyhedral structure.
  • oxygen atoms that are not coordinated to either MO 6 or MO 5 (corresponding to reference numeral 44).
  • Such an oxygen atom has only a single bond with phosphorus, and is considered to be extremely unstable during lithium desorption (charged state).
  • oxygen with lone pairs oxygen with lone pairs.
  • the lone pair of electrons not only affects the diffusion of lithium ions, but also affects the deterioration of the crystal structure.
  • the lone pair In the delithiated state, the lone pair is in a chemically unstable state, so it tries to stabilize by coordinating with surrounding iron ions.
  • MO 5 polyhedron MO 5 in which five oxygen atoms are coordinated with the transition metal
  • MO 6 is obtained , and the entire crystal structure is stabilized.
  • Stable spontaneously by changing the crystal structure without adsorbing lithium means that the positive electrode material has deteriorated.
  • the polyhedron becomes MO 6 in this way, lithium cannot be adsorbed when the battery is discharged, causing irreversible capacity. Therefore, in order to suppress the crystal structure deterioration, it is necessary to suppress the reactivity of the lone pair of electrons.
  • the present inventors have replaced the oxygen with lone pair (two hands) with a halogen element (one hand) to reduce the reactivity.
  • a halogen element one hand
  • the reactivity of the lone pair is suppressed, and the diffusibility of lithium ions
  • Z is a halogen element
  • fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and the like are suitable.
  • fluorine or chlorine is preferable as the ion having a size that does not destroy the crystal structure.
  • the amount of the halogen element Z to be added is ⁇ and the chemical composition formula of the pyrophosphate positive electrode substituted with the halogen element Z is expressed as Li 2 ⁇ x MP 2 O 7 ⁇ Z ⁇ , 0 ⁇ ⁇ 1. 47.
  • is preferably 0.5 or less.
  • the compound which is the positive electrode material according to the present embodiment can be manufactured using a known general method, and various methods can be adopted as the method. Specifically, for example, in the case of Li 2 FeP 2 O 7- ⁇ F ⁇ , iron oxide (Fe 2 O 3 ), a lithium phosphate compound, and a lithium monofluorophosphate compound (Li 2 PO 3 F) are mixed. It is synthesized by firing in an inert gas atmosphere such as argon.
  • the lithium phosphate compound is one selected from the group consisting of Li 3 PO 4 , Li 4 P 2 O 7 and LiPO 3 , for example.
  • the material When producing a positive electrode for a secondary battery of a non-aqueous electrolyte using the positive electrode material according to the present embodiment, the material may be usually used in the form of powder, and the average particle diameter is about 0.1 to 1 ⁇ m. That's fine.
  • the average particle diameter is a value measured by, for example, a laser diffraction particle size distribution measuring apparatus.
  • a binder binder
  • the usage-amount of a electrically conductive agent etc.
  • the above material alone or a mixture with other conventionally known positive electrode materials may be used as long as predetermined positive electrode characteristics can be obtained as the positive electrode material.
  • the production of the positive electrode of the secondary battery according to the present embodiment may be performed in accordance with a known method for producing a positive electrode except that the positive electrode material is used.
  • powders of the above materials may be combined with known binders (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene butadiene rubber, acrylonitrile butadiene rubber, fluoro rubber, polyvinyl acetate, Polymethylmethacrylate, polyethylene, nitrocellulose, etc.) and further mixed with known conductive materials (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, carbon nanotube, carbon nanohorn, graphene nanosheet, etc.) if necessary Thereafter, the obtained mixed powder may be pressure-formed on a support made of stainless steel or filled into a metal container.
  • the mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran.
  • organic solvent N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran.
  • the electrode of the secondary battery according to this embodiment can also be manufactured by a method such as applying a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel, or copper.
  • the negative electrode is formed by applying a negative electrode mixture to a current collector made of copper or the like.
  • the negative electrode mixture includes a material, a conductive material, a binder, and the like.
  • metallic lithium, a carbon material, a material capable of inserting lithium or forming a compound can be used, and a carbon material is particularly suitable.
  • the carbon material include graphites such as natural graphite and artificial graphite, and amorphous carbon such as coal-based coke, coal-based pitch carbide, petroleum-based coke, petroleum-based pitch carbide, and pitch-coke carbide.
  • these carbon materials are subjected to various surface treatments. These carbon materials can be used not only in one kind but also in combination of two or more kinds.
  • Examples of the material capable of inserting lithium or forming a compound include metals such as aluminum, tin, silicon, indium, gallium, and magnesium, alloys containing these elements, and metal oxides containing tin, silicon, and the like. . Furthermore, the composite material of the above-mentioned metal, an alloy, a metal oxide, and the carbon material of a graphite type or an amorphous carbon is mentioned.
  • FIG. 5 is a longitudinal sectional view of a coin-type lithium secondary battery which is a specific example of the secondary battery according to the present embodiment.
  • a battery having a diameter of 6.8 mm and a thickness of 2.1 mm was manufactured.
  • a positive electrode can 51 also serves as a positive electrode terminal and is made of stainless steel having excellent corrosion resistance.
  • the negative electrode can 52 also serves as a negative electrode terminal and is made of stainless steel made of the same material as the positive electrode can 51.
  • the gasket 53 insulates the positive electrode can 51 and the negative electrode can 52 and is made of polypropylene. Pitch is applied to the contact surface between the positive electrode can 51 and the gasket 53 and the contact surface between the negative electrode can 52 and the gasket 53.
  • a separator 55 made of a nonwoven fabric made of polypropylene is disposed between the positive electrode molded body (pellet) 54 and the negative electrode molded body (pellet) 56.
  • the electrolyte solution is infiltrated when the separator 55 is installed.
  • the shape of the secondary battery is not limited to the coin type, but may be a cylindrical shape obtained by winding an electrode, for example, an 18650 type. Alternatively, the electrodes may be stacked to form a square shape.
  • the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
  • the battery was manufactured and measured in a dry box under an argon atmosphere. The battery started from discharging for the first time, and then charged and discharged.
  • lithium carbonate (Li 2 CO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and iron oxide Fe 2 O 3 were mixed in a 2: 2: 1 predetermined molar ratio as raw materials, and then , 0.1 mole ratio lithium monofluorophosphate compound is added, and citric acid is added and mixed as a chelating agent. Thereafter, the water is evaporated while heating and stirring. After the evaporation of moisture, the remaining substance was recovered to be a precursor, and this precursor was subjected to a heat treatment in a firing atmosphere at 800 ° C. for 4 hours using an atmosphere furnace (argon gas stream) to obtain a fluoropyrophosphate positive electrode material (Li 2 FeP 2 O 7- ⁇ F ⁇ ) is prepared.
  • a fluoropyrophosphate positive electrode material Li 2 FeP 2 O 7- ⁇ F ⁇
  • citric acid In place of citric acid, other organic acids such as malic acid, tartaric acid, succinic acid and the like can be used.
  • the organic acid may be a mixture of a plurality of organic acids among citric acid, malic acid, tartaric acid, succinic acid, and the like.
  • the calcined sample was pulverized for 1 hour using a meteor-type ball mill (manufactured by FRITSCH, Planetary mill pulverisete 7). Thereafter, coarse particles of 50 ⁇ m or more are removed by sieving.
  • a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained.
  • a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same can be provided.
  • Li 3 PO 4 and manganese (III) oxide are used as raw materials for preparing the positive electrode material.
  • Li 3 PO 4 and manganese (III) oxide (Mn 2 O 3 ) are used as raw materials for preparing the positive electrode material.
  • Li 3 PO 4 lithium monofluorophosphate
  • Li 2 PO 3 F lithium monofluorophosphate
  • Li: Mn: P is 2: 1: 2 in the raw material ratio, and wet pulverize and mix with a pulverizer.
  • the powder is dried and fired at 650 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 MnP 2 O 7- ⁇ F ⁇ .
  • 0.04.
  • a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained.
  • a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same can be provided.
  • a higher discharge capacity can be obtained by using Mn.
  • lithium carbonate, Li 3 PO 4 , cobalt dioxide, and nickel oxide are used as the raw material for producing the positive electrode material, and Li: Co: Ni is 4.01: 0.34: 0.66 in the raw material ratio.
  • Li: Co: Ni is 4.01: 0.34: 0.66 in the raw material ratio.
  • Li 2 PO 3 F lithium monofluorophosphate
  • the obtained positive electrode material is Li 2 Co 1/3 Ni 2/3 P 2 O 7- ⁇ F ⁇ .
  • 0.03.
  • a discharge capacity of 120 mAh / g can be confirmed.
  • the average particle size was 1 ⁇ m (the average radius was 0.5 ⁇ m).
  • a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained.
  • a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same can be provided.
  • ion exchange from lithium ions to sodium ions is performed by a quantum simulation technique based on first-principles calculations.
  • a simulation was performed.
  • the ion exchange is reproduced on a computer, and by using a generalized density gradient approximation that takes into account the density functional theory and short-range Hubbard correlation terms, Na 2 FeP 2 O 7 - ⁇ F ⁇ crystal structure optimization calculation was performed.
  • Na 2 FeP 2 O 7 having a crystal structure equal to Li 2 FeP 2 O 7- ⁇ F ⁇ - ⁇ F ⁇ was obtained.
  • Unit cell volume of Na 2 FeP 2 O 7- ⁇ F ⁇ is 1127.7 ⁇ 3, was about 6% greater than the Li 2 FeP 2 O 7- ⁇ F ⁇ .
  • This result can be explained by the fact that sodium ions have a larger ionic radius than lithium ions, and shows that Na 2 FeP 2 O 7- ⁇ F ⁇ can be created experimentally.
  • the discharge capacity of 120 mAh / g can be confirmed.
  • a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained.
  • a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same can be provided.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

In order to provide a secondary battery positive electrode material having a crystal structure having a highly thermally stable pyrophosphoric acid P2O7 structure as a fundamental skeleton and capable of obtaining a high discharging capacity and also to provide a secondary battery using the secondary battery positive electrode material, the following configuration is employed. The secondary battery positive electrode material consists primarily of a chemical composition formula of A2-xMP2O7-δZδ, wherein: A is an alkali metal (1 to 4) such as, for example, lithium; M is a transition metal such as, for example, iron that is able to form a divalent or more multivalent ion; Z is a halogen such as, for example, fluorine; x is 0 or more and less than 2; and δ is greater than 0 and less than or equal to 1.47. A secondary battery using this positive electrode material is also provided.

Description

二次電池用正極材料およびそれを用いた二次電池Positive electrode material for secondary battery and secondary battery using the same
 本発明は、二次電池(再充電可能電池)用正極材料およびそれを用いた二次電池に関する。 The present invention relates to a positive electrode material for a secondary battery (rechargeable battery) and a secondary battery using the same.
 リチウム、ナトリウム等のアルカリ金属、マグネシウム等のアルカリ土類金属、あるいはこれらの合金、化合物などを負極材料とする非水電解質二次電池は、負極金属イオンを正極材料へインサーションもしくはインターカレーションすることにより、その電気容量と充電可逆性を確保している。正極材料および負極材料をホストと呼び、ホストに対してインサーション・インターカレーションする可動金属イオンをゲストと呼ぶ。このようなホスト・ゲスト型の非水電解質二次電池の代表例としては、リチウムイオン二次電池が挙げられる。二次電池については、例えば、特許文献1や2、非特許文献1~5に開示されている。 Non-aqueous electrolyte secondary batteries that use alkaline metals such as lithium and sodium, alkaline earth metals such as magnesium, or alloys and compounds thereof as negative electrode materials insert or intercalate negative electrode metal ions into the positive electrode material. As a result, the electric capacity and charge reversibility are ensured. The positive electrode material and the negative electrode material are called hosts, and the movable metal ions that are inserted and intercalated with respect to the host are called guests. A typical example of such a host / guest type non-aqueous electrolyte secondary battery is a lithium ion secondary battery. Secondary batteries are disclosed in, for example, Patent Documents 1 and 2 and Non-Patent Documents 1 to 5.
 リチウムイオン二次電池は、従来型の二次電池に比べてエネルギ密度が高く、電池の安全性を確保することが重要である。特に、正極材料の熱安定性は、リチウムイオン二次電池における安全性を決定する要因のひとつである。加熱、圧壊、短絡などの外的要因により温度が上昇し、正極材料の熱分解温度を超えると、発熱あるいは酸素放出が起きる。放出された酸素は、可燃性の有機電解質あるいは負極材料と反応し、電池の安全性が損なわれる虞がある。 Lithium ion secondary batteries have a higher energy density than conventional secondary batteries, and it is important to ensure battery safety. In particular, the thermal stability of the positive electrode material is one of the factors that determine the safety of lithium ion secondary batteries. When the temperature rises due to external factors such as heating, crushing, and short circuit and exceeds the thermal decomposition temperature of the positive electrode material, heat generation or oxygen release occurs. The released oxygen may react with the combustible organic electrolyte or the negative electrode material, and the safety of the battery may be impaired.
 熱安定性の問題は特に充電状態において顕著となる。充電状態では、リチウムイオンは負極材料に蓄積されており、正極材料は脱リチウム化されている。脱リチウム化された正極材料は化学的にエネルギの高い状態であり、熱分解温度はより低い。このため、正極材料は高温保存時に劣化しやすく、また温度上昇に伴って熱分解する可能性がある。 The problem of thermal stability is particularly noticeable in the charged state. In the charged state, lithium ions are accumulated in the negative electrode material, and the positive electrode material is delithiated. The delithiated cathode material is chemically high in energy and has a lower pyrolysis temperature. For this reason, the positive electrode material is likely to deteriorate during storage at high temperatures, and may be thermally decomposed as the temperature rises.
 金属酸化物型の正極材料である層状岩塩型LiMO(ただしMは遷移金属)においては、例えばLiCoOにおいては過充電状態において構造の不安定性が増加するために熱分解温度が下降し、200℃以上の温度において熱分解反応が発生し、正極材が自己発熱することで酸素が放出される可能性がある。また、スピネル型金属酸化物LiMnにおいては、高温保存時にマンガンが電解液中に溶出し、溶出したマンガンがセパレータの目詰まりをおこしたり、負極上に被膜を形成したりして電池抵抗の上昇を招き、材料が劣化する虞がある(特許文献1を参照)。以上のような正極群を用いたリチウムイオン二次電池では、信頼性および安全性の確保のため、保護回路によって過充電を防止する必要がある。このような保護回路および機械的諸機構は、現在の電池パックの相当体積を占めている。熱安定性が高い正極材料を採用して二次電池を構成することができれば、本質的な安全化が可能になると共に電池機構の簡略化、実効的エネルギ密度の向上に繋がる。 In layered rock salt type LiMO 2 (where M is a transition metal) which is a metal oxide type positive electrode material, for example, in LiCoO 2 , the instability of the structure increases in an overcharged state. There is a possibility that a thermal decomposition reaction occurs at a temperature of ℃ or higher and oxygen is released by self-heating of the positive electrode material. Further, in the spinel type metal oxide LiMn 2 O 4 , manganese is eluted in the electrolyte during storage at high temperature, and the eluted manganese causes clogging of the separator or forms a film on the negative electrode. The material may be deteriorated (see Patent Document 1). In a lithium ion secondary battery using the positive electrode group as described above, it is necessary to prevent overcharge by a protection circuit in order to ensure reliability and safety. Such protection circuits and mechanical mechanisms occupy a considerable volume of current battery packs. If a secondary battery can be constituted by using a positive electrode material having high thermal stability, it becomes possible to realize intrinsic safety, simplify the battery mechanism, and improve the effective energy density.
 オリビン型化合物LiFePOでは熱安定性が高いことが知られている。LiFePOの充電相であるFePO(Heterosite)は加熱に対して極めて安定であり、620℃以上に加熱しても、熱力学的により安定であるQuartz相に相転移するだけであり、酸素を放出しない。このように高い熱安定性を示す理由は、オリビン型化合物がリン酸骨格を有しているためである。リン酸型構造においてはリン(P)と酸素(O)が強固な共有結合で結ばれている。すなわち、酸素はリンによって固定化されており、発熱による酸素放出が起こりづらく、熱に対する安定性が高い。 The olivine type compound LiFePO 4 is known to have high thermal stability. The charge phase of LiFePO 4 , FePO 4 (Heterosite), is extremely stable with respect to heating, and even when heated to 620 ° C. or higher, it only undergoes a phase transition to the Quartz phase, which is more thermodynamically stable. Does not release. The reason for exhibiting such high thermal stability is that the olivine type compound has a phosphate skeleton. In the phosphoric acid type structure, phosphorus (P) and oxygen (O) are connected by a strong covalent bond. That is, oxygen is fixed by phosphorus, oxygen release due to heat generation is difficult to occur, and heat stability is high.
 以上のことから、リンと酸素との共有結合は、正極材料の熱安定性を確保するために有効な手段であると考えられる。熱安定性に優れた正極材料としては、リン酸型構造(P)を含有するポリアニオン正極群が最適であると考えられる。ポリアニオン正極材料としては、オリビン酸化合物LiMPO(例えば、非特許文献1、5を参照)、ピロリン酸化合物LiMP(例えば、非特許文献2~4を参照)などが提案されている。上記のリン酸型正極材料に関する詳細を以下に述べる。 From the above, it is considered that the covalent bond between phosphorus and oxygen is an effective means for ensuring the thermal stability of the positive electrode material. As a positive electrode material excellent in thermal stability, a polyanion positive electrode group containing a phosphoric acid type structure (P x O y ) is considered optimal. As polyanion positive electrode materials, olivic acid compound LiMPO 4 (for example, see Non-patent Documents 1 and 5), pyrophosphate compound Li 2 MP 2 O 7 (for example, refer to Non-Patent Documents 2 to 4) and the like have been proposed. Yes. The detail regarding said phosphoric acid type positive electrode material is described below.
 オリビン酸化合物LiMPOは、ポリアニオン(化学式(XO)y)で表される一連の正極材料群の一部として知られる。オリビン酸化合物はX=P(リン)である。化学組成式LiMPOに対して、M=Fe、Mn、Co、Ni等が用いられる。中でもオリビン型含リチウムリン酸鉄(LiFePO、0<x<1、以下オリビンFe)は、実用性が立証され、以降の研究が加速されてきた。オリビン型LiFePOは化学組成式あたりリチウムが1原子を含んでおり理論電気容量は160mAh/gである。実験でもその理論電気容量のほぼ全てを利用することができる。 The olivic acid compound LiMPO 4 is known as part of a series of positive electrode materials represented by a polyanion (chemical formula (XO 4 ) y ). The olivic acid compound is X = P (phosphorus). M = Fe, Mn, Co, Ni, or the like is used for the chemical composition formula LiMPO 4 . Among them, olivine-type lithium iron phosphate (Li x FePO 4 , 0 <x <1, hereinafter referred to as olivine Fe) has proved its practicality, and subsequent research has been accelerated. The olivine-type LiFePO 4 has one atom of lithium per chemical composition formula and a theoretical electric capacity of 160 mAh / g. In experiments, almost all of the theoretical electric capacity can be used.
 ピロリン酸化合物LiMPはMとしてFe、Mn、Co等を用いた正極材料である。M=FeはM=Mnよりも充放電特性が良く、電気容量の実験値は80~110mAh/gに達する(非特許文献2および4を参照)。しかしながら、この値は1電子反応に相当する容量であって、化学組成式LiMPにおけるリチウムイオン1つしか利用できていないことを意味する。ピロリン酸化合物が全てのリチウムイオンを充放電に利用できた場合の電気容量を理論電気容量と言い、それは220mAh/gである。 The pyrophosphate compound Li 2 MP 2 O 7 is a positive electrode material using Fe, Mn, Co or the like as M. M = Fe has better charge / discharge characteristics than M = Mn, and the experimental value of electric capacity reaches 80 to 110 mAh / g (see Non-Patent Documents 2 and 4). However, this value is a capacity corresponding to one-electron reaction, which means that only one lithium ion in the chemical composition formula Li 2 MP 2 O 7 can be used. The electric capacity when the pyrophosphate compound can use all the lithium ions for charging and discharging is called the theoretical electric capacity, which is 220 mAh / g.
 以上から、電気容量についてまとめる。オリビン型正極の理論電気容量は160mAh/gであって実験でもその容量を利用することが可能である。一方、ピロリン酸型正極の理論電気容量は220mAh/gであるが、実験ではその半分の110mAh/gしか利用することができない。電気容量が大きいほど、リチウムイオン電池の小型化・軽量化が可能になるため、もしピロリン酸型正極の容量を最大限に引き出すことができれば、オリビン型正極を上回る正極材料となり得る。 From the above, we summarize the electric capacity. The theoretical electric capacity of the olivine-type positive electrode is 160 mAh / g, and the capacity can be used in experiments. On the other hand, the theoretical electric capacity of the pyrophosphate-type positive electrode is 220 mAh / g, but only 110 mAh / g, which is half that, can be used in the experiment. The larger the electric capacity, the smaller and lighter the lithium ion battery can be. Therefore, if the capacity of the pyrophosphate-type positive electrode can be maximized, it can be a positive electrode material that exceeds the olivine-type positive electrode.
 高容量を実現させるための要因について、オリビン型正極材料LiFePOを例にして論じる。オリビン型LiFePOは一般的に理論容量よりもずっと低い実験電気容量しか持たないが、正極材料の粒子を微粒子化し、粒径を小さくすることで、電気容量が増大することが知られている。電極として動作するために必要な微粒子サイズは200nm以下である。LiFePOの理論容量160mAh/gを達成するためには、正極材料をさらに微粒子化することが必須である。 Factors for realizing a high capacity will be discussed taking the olivine-type positive electrode material LiFePO 4 as an example. Although olivine-type LiFePO 4 generally has an experimental electric capacity much lower than the theoretical capacity, it is known that the electric capacity increases by making the particles of the positive electrode material finer and reducing the particle diameter. The fine particle size necessary to operate as an electrode is 200 nm or less. In order to achieve the theoretical capacity of 160 mAh / g of LiFePO 4 , it is essential to further refine the positive electrode material.
 このような微粒子化による容量増大の理由は、インサーションされたリチウムイオンの移動距離に関係すると考えられている。粒径が大きければ、正極材料の粒子内におけるリチウムイオンの移動距離は長い。このような場合は、粒子内にある不純物や、原子位置交換欠陥(アンチサイト欠陥)、原子空孔によるイオンのトラップ、粒界などの不整合面に起因するイオン拡散経路の遮断など、様々な要因でリチウムイオンの運動が妨害される可能性が高い。 It is thought that the reason for the increase in capacity due to such micronization is related to the movement distance of the inserted lithium ions. If the particle size is large, the movement distance of lithium ions in the particles of the positive electrode material is long. In such cases, various impurities such as impurities in the particles, atomic position exchange defects (antisite defects), trapping of ions due to atomic vacancies, blocking of ion diffusion paths caused by mismatched surfaces such as grain boundaries, etc. There is a high possibility that the movement of lithium ions will be hindered by factors.
 LiFePOではリチウムの拡散経路が1次元的であることが知られている。このような1次元の拡散経路は、上記のような結晶欠陥の影響を受けやすい。すなわち1次元ネットワーク状リン酸化合物では、リチウムイオンは材料におけるネットワークを1次元的に動くため、結晶欠陥によりネットワークが容易に遮断されてしまう欠点がある。ひとつのリチウムの拡散ネットワークにアンチサイト欠陥などの結晶欠陥がひとつ存在しても、ネットワークの利用率はほとんど変わらない。ネットワークの利用率が変わらないことは、電気容量も減少しないことを意味する。 LiFePO 4 is known to have a one-dimensional lithium diffusion path. Such a one-dimensional diffusion path is susceptible to the above-described crystal defects. That is, in the one-dimensional network-like phosphoric acid compound, lithium ions move one-dimensionally through the network in the material, so that the network is easily interrupted by crystal defects. Even if one crystal defect such as an antisite defect exists in one lithium diffusion network, the utilization rate of the network hardly changes. The fact that the network utilization rate does not change means that the electric capacity does not decrease.
 しかし2個以上の結晶欠陥が発生すると、1次元ネットワークにおける欠陥間のリチウム格納サイトを利用することができなくなり、ネットワーク利用率が低下し、電気容量が低下する。2個以上の結晶欠陥をもつ1次元ネットワークの数は、微粒子サイズが増加するとともに急激に増加する。例えば、0.1%のアンチサイト欠陥を仮定した場合であっても、100%のネットワーク利用率を達成するためには粒径100nmが必要である。一方、粒径が1μmのオリビン型正極の微粒子では、ネットワーク利用率の理論値は50%まで低下し、大幅な電気容量低下をもたらす(非特許文献5)。 However, when two or more crystal defects occur, the lithium storage site between the defects in the one-dimensional network cannot be used, the network utilization rate decreases, and the electric capacity decreases. The number of one-dimensional networks having two or more crystal defects increases rapidly as the particle size increases. For example, even when assuming 0.1% antisite defects, a particle size of 100 nm is required to achieve 100% network utilization. On the other hand, in the case of olivine-type positive electrode fine particles having a particle diameter of 1 μm, the theoretical value of the network utilization rate decreases to 50%, resulting in a significant decrease in electric capacity (Non-Patent Document 5).
 一方、LiMPにおいては、微粒子化などの粒径制御することなしに、1μm程度の大きなサイズの粒子においても1電子理論容量が達成されている(非特許文献2)。粒径制御が不要で大きいサイズの粒子で充放電が可能であれば、微粒子化の加工プロセスを省略でき、表面修飾処理の制約が大幅に緩和され、電池のコスト低下、行程管理の容易化、性能障害要因の排除につながる。オリビン正極材料で必須であった黒鉛等の導電性材料による表面修飾処理が不要であれば、同様にコスト低下、行程容易化に加え、電極結着加工の容易性等の多くの利点がある。 On the other hand, in Li 2 MP 2 O 7 , a one-electron theoretical capacity is achieved even for particles having a large size of about 1 μm without controlling the particle size such as micronization (Non-patent Document 2). If large particle size control is not required and particle size control is possible, the micronization process can be omitted, the surface modification treatment restrictions are greatly relaxed, battery costs are reduced, and process management is simplified. This leads to the elimination of performance impediment factors. If surface modification treatment with a conductive material such as graphite, which is essential for the olivine cathode material, is unnecessary, there are many advantages such as cost reduction and ease of process, as well as ease of electrode binding.
特開2010-232001号公報JP 2010-23001 A 特表2006-523930号公報Special Table 2006-523930
 上述したように、ピロリン酸型正極は、電気容量だけでなく生産性の面からもオリビン型正極を上回る正極活性物質となり得る。正極の微粒子の粒径を極微細にすることなく、電気容量を増大させるためには、リチウムイオンの拡散ネットワークの次元を1より上げることが重要であると考えられる。ピロリン酸正極材料LiMPにおけるリチウムイオンの拡散ネットワークの次元は1より大きいと予想される。即ち、LiMPにおいてリチウムイオンは層状の構造をとっており、遷移金属層との交互積層構造となっており、オリビン型とは異なる次元のリチウム拡散ネットワークの存在が予想される。リチウムイオンが層内で2次元的に動いていれば、1より高い次元のリチウムイオン拡散ネットワークと言える。以上を纏めると、安全性及び電気容量への要求を満足する正極材料の条件としては、(1)潜在的に電気容量が大きいピロリン酸型結晶構造を持つ正極材料であること、(2)熱安定性の高いリン酸に基づく骨格を持つこと、(3)110mAh/gより高い電気容量を持つことである。しかしながら、これらの特徴を持つピロリン酸型正極材料はまだ実現されていない。 As described above, the pyrophosphate-type positive electrode can be a positive electrode active material that exceeds the olivine-type positive electrode not only in electric capacity but also in productivity. In order to increase the electric capacity without making the particle size of the fine particles of the positive electrode extremely fine, it is considered important to raise the dimension of the diffusion network of lithium ions from 1. The dimension of the diffusion network of lithium ions in the pyrophosphate cathode material Li 2 MP 2 O 7 is expected to be greater than 1. That is, in Li 2 MP 2 O 7 , lithium ions have a layered structure, and are alternately laminated with transition metal layers, and it is expected that a lithium diffusion network having a dimension different from the olivine type exists. If lithium ions are moving two-dimensionally within the layer, it can be said that the lithium ion diffusion network has a higher dimension than one. In summary, the conditions for the positive electrode material satisfying the requirements for safety and electric capacity are: (1) a positive electrode material having a potentially large electric capacity pyrophosphoric acid crystal structure, and (2) heat. It has a highly stable skeleton based on phosphoric acid, and (3) has an electric capacity higher than 110 mAh / g. However, pyrophosphate-type positive electrode materials having these characteristics have not been realized yet.
 本発明は、ピロリン酸型正極材料における放電容量向上のために提案されたものであり、その目的は、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、高放電容量が得られる二次電池用正極材料およびそれを用いた二次電池を提供することにある。 The present invention has been proposed to improve the discharge capacity of pyrophosphate-type positive electrode materials, and the object thereof is to have a crystal structure having a pyroskeleton-type P 2 O 7 structure having high thermal stability as a basic skeleton. Another object of the present invention is to provide a positive electrode material for a secondary battery capable of obtaining a high discharge capacity and a secondary battery using the same.
 上記目的を達成するための一実施形態として、化学組成式がA2-xMP7-δδを主成分とする二次電池用正極材料であって、Aはアルカリ金属から選ばれる少なくとも一種類の元素であり、Mは2価以上の多価イオンとなりうる遷移金属から選ばれる少なくとも一種類の元素であり、Zはハロゲン元素から選ばれる少なくとも一種類の元素であり、xは0≦x<2の範囲にあり、δは0<δ≦1.47の範囲にあることを特徴とする二次電池用正極材料とする。 As one embodiment for achieving the above object, a positive electrode material for a secondary battery having a chemical composition formula of A 2-x MP 2 O 7-δ Z δ as a main component, wherein A is selected from alkali metals At least one element, M is at least one element selected from transition metals that can be a divalent or higher valent ion, Z is at least one element selected from halogen elements, and x is 0 ≦ x <2 and δ is in a range of 0 <δ ≦ 1.47.
 また、正極と負極とを備えた二次電池において、前記正極には、前記二次電池用正極材料が用いられることを特徴とする二次電池とする。 Further, in the secondary battery including a positive electrode and a negative electrode, the positive electrode material for the secondary battery is used for the positive electrode.
 また、正極と負極とを備えた二次電池において、前記正極は、ピロリン酸型P構造を基本骨格とした結晶構造を有し、前記ピロリン酸型P構造を構成する酸素の一部がハロゲン元素で置換された正極材料を含むことを特徴とする二次電池とする。 Further, in the secondary battery including a positive electrode and a negative electrode, the positive electrode has a crystal structure having a pyrophosphate-type P 2 O 7 structure as a basic skeleton, and oxygen constituting the pyrophosphate-type P 2 O 7 structure A secondary battery including a positive electrode material partially substituted with a halogen element.
 本発明によれば、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造において、ピロリン酸型P構造を構成する酸素の一部をハロゲン元素で置換することにより、高放電容量が得られる二次電池用正極材料およびそれを用いた二次電池を提供することができる。 According to the present invention, a part of oxygen constituting the pyrophosphate-type P 2 O 7 structure is substituted with a halogen element in a crystal structure having a pyroskeleton-type P 2 O 7 structure having a high thermal stability as a basic skeleton. Thus, it is possible to provide a positive electrode material for a secondary battery that can obtain a high discharge capacity and a secondary battery using the same.
ピロリン酸型LiMP結晶構造を示す図である。It is a diagram showing a pyrophosphate type Li 2 MP 2 O 7 crystal structure. ピロリン酸型LiMP結晶構造におけるA層リチウムイオン拡散ネットワークを示す図である。Is a diagram showing an A layer of lithium ion diffusion network in pyrophosphate-type Li 2 MP 2 O 7 crystal structure. ピロリン酸型LiMP結晶構造におけるC層リチウムイオン拡散ネットワークを示す図である。Is a diagram showing the C layer lithium ion diffusion network in pyrophosphate-type Li 2 MP 2 O 7 crystal structure. ピロリン酸型LiMP結晶構造における孤立電子対付き酸素の存在を示した図である。It is a diagram showing the presence of a lone pair with oxygen in the pyrophosphate-type Li 2 MP 2 O 7 crystal structure. 実施の形態の例であるコイン型電池構造の断面図である。It is sectional drawing of the coin-type battery structure which is an example of embodiment. 第一原理計算により評価したリチウムの結合エネルギの比較を行った図である。It is the figure which performed the comparison of the binding energy of lithium evaluated by the first principle calculation.
 本発明者らは、上記の目的を達成するために、ピロリン酸型正極材料の充放電反応に伴うリチウム脱離および結晶構造変化について検討を重ねた。その結果、リチウムが脱離しづらい原因が単結合酸素の存在にあることを発見し、単結合酸素を異種元素で置換することにより結晶構造の不安定性を低下させ、これまでより大きな充放電容量を実現する方法を着想した。以下に充放電容量向上に至る正極材料設計の詳細を述べる。なお、リチウムが最も実用的なためリチウムを例に説明するが、アルカリ金属であれば適用可能である。 In order to achieve the above-mentioned object, the present inventors have repeatedly studied lithium desorption and crystal structure change accompanying the charge / discharge reaction of the pyrophosphate-type positive electrode material. As a result, it was discovered that the cause of the difficulty in desorption of lithium is the presence of single-bonded oxygen, and the instability of the crystal structure is reduced by substituting single-bonded oxygen with a different element, resulting in a higher charge / discharge capacity. Inspired how to achieve. Details of the positive electrode material design that leads to an improvement in charge / discharge capacity will be described below. Since lithium is the most practical, lithium will be described as an example, but any alkali metal can be used.
 まずピロリン酸型正極材料の結晶構造を図1に示す。結晶構造はbc面に沿ったリチウム層および遷移金属層(特に、2価以上の多価イオンとなりうる遷移金属であり、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Mo、Wからなる群の少なくとも一つの層)の交互積層構造からなる。遷移金属Mは周囲に酸素原子が配位してMO多面体構造(符号6に対応)をとる。MO多面体構造は、MOとMOの2種類が存在し、それらは辺共有結合したクラスタ形状をとる。MOとMOが結合した多面体クラスタの間にはリン酸構造(多面体)P(符号5に対応)が配置されており、クラスタ同士が接合されている。このため遷移金属層は充放電の際に層状構造を維持することができる。 First, the crystal structure of the pyrophosphate-type positive electrode material is shown in FIG. The crystal structure is a lithium layer and a transition metal layer along the bc plane (especially, transition metals that can be multivalent ions having two or more valences; V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, W At least one layer of the group consisting of: The transition metal M has an MO x polyhedral structure (corresponding to reference numeral 6) with oxygen atoms coordinated around it. There are two types of MO x polyhedron structures, MO 6 and MO 5 , which take a cluster shape in which edges are covalently connected. A phosphoric acid structure (polyhedron) P 2 O 7 (corresponding to reference numeral 5) is arranged between polyhedral clusters in which MO 6 and MO 5 are bonded, and the clusters are joined to each other. For this reason, the transition metal layer can maintain a layered structure during charging and discharging.
 一方、リチウム層は独立な二層が存在する。結晶学的に独立なリチウムサイトをLi1サイト1、Li2サイト2、Li3サイト3、Li4サイト4とすると、Li1サイト1とLi2サイト2のみからなるリチウム層と、LI3サイト3とLi4サイト4のみからなるリチウム層に分けられる。Li1サイト1とLi2サイト2からなるリチウム層をA層、Li3サイト3とLi4サイト4からなるリチウム層をC層とする。A層とC層に含有されるリチウムサイトの数は、単位胞7内にそれぞれ8ずつであり、リチウム密度は等しい。ただしリチウムサイトの配列(リチウム拡散ネットワークの形状)は異なる。 On the other hand, there are two independent lithium layers. If the crystallographically independent lithium sites are the Li1 site 1, the Li2 site 2, the Li3 site 3 and the Li4 site 4, the lithium layer consisting only of the Li1 site 1 and the Li2 site 2, and only the LI3 site 3 and the Li4 site 4 Divided into lithium layers. A lithium layer composed of the Li1 site 1 and the Li2 site 2 is defined as an A layer, and a lithium layer composed of the Li3 site 3 and the Li4 site 4 is defined as a C layer. The number of lithium sites contained in the A layer and the C layer is 8 in each unit cell 7, and the lithium density is equal. However, the arrangement of lithium sites (lithium diffusion network shape) is different.
 A層のリチウム拡散ネットワークを図2に示す。符号21はLi1サイト、符号22はLi2サイト、符号23は単位胞を示す。それぞれのリチウムサイトは他の3つのリチウムサイトと隣接している。リチウムの正極内拡散現象の素過程は、あるリチウムサイトから隣接する他のリチウムサイトへのイオンホッピングであると考えられる。従って、隣接サイトの数によって、リチウムイオン拡散ネットワークの次元を判断できる。例えば、よく知られているオリビン型正極材料LiFePOでは、隣接するリチウムサイトの数は2であるから、リチウムイオン拡散ネットワークは1次元的なトポロジを持っていると言える。一方、ピロリン酸型正極材料では、隣接サイト数が3であるから、リチウムイオン拡散ネットワークのトポロジは2次元的であると考えられる。同様に、C層のリチウム拡散経路ネットワークを図3に示す。符号31はLi3サイト、符号32はLi4サイト、符号33は単位胞を示す。Li3サイト31の隣接リチウムサイト数は4であり、Li4サイト32の隣接リチウムサイト数は3である。リチウム拡散ネットワークのトポロジは、A層と同様に2次元的であると考えられる。 A lithium diffusion network of layer A is shown in FIG. Reference numeral 21 denotes a Li1 site, reference numeral 22 denotes a Li2 site, and reference numeral 23 denotes a unit cell. Each lithium site is adjacent to the other three lithium sites. The elementary process of lithium diffusion in the positive electrode is considered to be ion hopping from one lithium site to another adjacent lithium site. Therefore, the dimension of the lithium ion diffusion network can be determined by the number of adjacent sites. For example, in the well-known olivine-type positive electrode material LiFePO 4 , the number of adjacent lithium sites is 2, so it can be said that the lithium ion diffusion network has a one-dimensional topology. On the other hand, in the pyrophosphate-type positive electrode material, since the number of adjacent sites is 3, the topology of the lithium ion diffusion network is considered to be two-dimensional. Similarly, the lithium diffusion path network of the C layer is shown in FIG. Reference numeral 31 denotes a Li3 site, reference numeral 32 denotes a Li4 site, and reference numeral 33 denotes a unit cell. The number of adjacent lithium sites in the Li3 site 31 is 4, and the number of adjacent lithium sites in the Li4 site 32 is 3. The topology of the lithium diffusion network is considered to be two-dimensional like the A layer.
 A層とC層におけるリチウム拡散ネットワークの相違が、どのように充放電特性に影響するかを調べるため、本発明者らは、第一原理計算理論に基づく計算機数値解析技術を用いて、ピロリン酸におけるリチウムの結合エネルギを計算した。なお、結合エネルギとは、リチウムがそのリチウムサイトと結合することによる安定化の指標であり、基準点として0eVを負極の状態(黒鉛にインターカレーションしたリチウムイオン)とした。計算結果を図6に示す。リチウムサイトLi1、Li2、Li3、Li4のそれぞれについて、結合エネルギは4.40eV、3.93eV、3.80eV、3.61eVとなった。結合エネルギが高いほど、リチウムイオンを引き抜きづらいことを意味する。従ってA層のリチウムイオンは引き抜きづらく、C層のリチウムイオンは引き抜きやすい。A層とC層に含有されるリチウムイオンの数は等しいため、現状で確認されている1電子反応は、C層へのリチウム脱挿入であることが示唆される。 In order to investigate how the difference in the lithium diffusion network between the A layer and the C layer affects the charge / discharge characteristics, the present inventors used a computer numerical analysis technique based on the first-principles calculation theory to determine pyrophosphoric acid. The binding energy of lithium in was calculated. The binding energy is an index of stabilization due to the binding of lithium to the lithium site, and 0 eV was used as a reference point in a negative electrode state (lithium ions intercalated with graphite). The calculation results are shown in FIG. For each of the lithium sites Li1, Li2, Li3, and Li4, the binding energy was 4.40 eV, 3.93 eV, 3.80 eV, and 3.61 eV. The higher the binding energy, the more difficult it is to extract lithium ions. Therefore, lithium ions in the A layer are difficult to extract, and lithium ions in the C layer are easy to extract. Since the number of lithium ions contained in the A layer and the C layer is the same, it is suggested that the one-electron reaction that has been confirmed at present is lithium desorption into the C layer.
 次に、A層とC層におけるリチウムイオンの動きやすさを検討する。A層ではLi1サイト21とLi2サイト22の両サイト間のエネルギ差は0.47eVである。リチウム拡散ネットワーク(図2)によると、リチウムイオンが拡散するためにはLi1サイト21とLi2サイト22の両方を通過しなくてはならないことが分かる。すなわち、リチウムイオンの拡散に際してエネルギは少なくとも0.47eV以上必要である。これはリチウムイオンが高いエネルギを持たなければA層では拡散できないことを示唆する。また、A層におけるリチウムイオンの律速に関連するサイトがLi1サイト21であることを意味している。一方、C層ではLi3サイト31とLi4サイト32の両サイト間のエネルギ差は0.19eVであり、A層におけるエネルギ差よりもずっと小さい。すなわちC層においてリチウムイオンは、A層に比べてずっと動きやすいことが示唆される。このエネルギ差は、ピロリン酸の充放電実験で確認されている1電子反応がC層で起こっていることを裏付ける。 Next, consider the ease of movement of lithium ions in the A and C layers. In the A layer, the energy difference between the Li1 site 21 and the Li2 site 22 is 0.47 eV. According to the lithium diffusion network (FIG. 2), it is understood that the lithium ions must pass through both the Li1 site 21 and the Li2 site 22 in order to diffuse. That is, at least 0.47 eV or more is required for the diffusion of lithium ions. This suggests that lithium ions cannot diffuse in the A layer unless they have high energy. It also means that the site related to the rate limiting of lithium ions in the A layer is the Li1 site 21. On the other hand, in the C layer, the energy difference between the Li3 site 31 and the Li4 site 32 is 0.19 eV, which is much smaller than the energy difference in the A layer. That is, it is suggested that lithium ions are much more mobile in the C layer than in the A layer. This energy difference confirms that the one-electron reaction confirmed in the pyrophosphoric acid charging / discharging experiment occurs in the C layer.
 次に、Li1サイト21がA層におけるリチウムイオン拡散を律速する機構について検討する。各リチウムサイトでは、リチウムには酸素が配位している。結晶構造から検討した結果、Li1サイト21では4つ、Li2サイト22では4つ、Li3サイト31では5つ、Li4サイト32では4つの酸素が配位していることが分かった。酸素はリチウムを吸着し固定化する働きを担う。しかし、リチウムサイトを取り囲む酸素の数は、どのサイトにおいても高々4個あるいは5個であって、大きな差はない。従って、リチウムイオンの吸着エネルギを決定している要因は、配位している酸素原子の数ではなく、酸素原子の化学的性質である。 Next, the mechanism by which the Li1 site 21 controls the lithium ion diffusion in the A layer will be examined. At each lithium site, oxygen is coordinated to lithium. As a result of examining from the crystal structure, it was found that four oxygen atoms were coordinated at the Li1 site 21, four oxygen atoms were coordinated at the Li2 site 22, five oxygen atoms were coordinated at the Li3 site 31, and four oxygen atoms were coordinated at the Li4 site 32. Oxygen is responsible for adsorbing and immobilizing lithium. However, the number of oxygen surrounding the lithium site is at most 4 or 5 at any site, and there is no significant difference. Therefore, the factor determining the adsorption energy of lithium ions is not the number of coordinated oxygen atoms but the chemical nature of the oxygen atoms.
 全ての酸素は、リン(P)と共有結合しており、熱的安定性を高める。また、多くの酸素は、リン以外に遷移金属とも結合しており、MO多面体とPO多面体との頂点共有結合、あるいはMO多面体とPO多面体の頂点共有結合を担っている。ところが、酸素の中には、リンのみと結合し、MO、MOとの結合を持たないものが存在することが分かった。特徴的な結晶の部分構造を図4に示す。符号41は孤立電子対付き酸素イオン、符号42は酸素イオン、符号43はリン酸(PO)多面体、符号44は酸化鉄多面体(MOx多面体)である。酸素は多面体構造の頂点位置を占有している。このうち、MOおよびMO(符号44に対応)のどちらにも配位していない酸素原子が存在する。このような酸素原子は、リンのみと単一の結合を持っており、リチウム脱離時(充電状態)では極めて不安定であると考えられる。以後、このようにリンのみと結合する酸素を孤立電子対付き酸素と呼ぶ。 All oxygen is covalently bonded to phosphorus (P) to increase thermal stability. Many oxygens are also bonded to transition metals in addition to phosphorus, and bear the apex covalent bond between the MO 6 polyhedron and the PO 4 polyhedron, or the apex covalent bond between the MO 5 polyhedron and the PO 4 polyhedron. However, it has been found that some oxygen bonds only with phosphorus and does not have a bond with MO 6 and MO 5 . A characteristic crystal partial structure is shown in FIG. Reference numeral 41 is an oxygen ion with a lone electron pair, reference numeral 42 is an oxygen ion, reference numeral 43 is a phosphoric acid (PO 4 ) polyhedron, and reference numeral 44 is an iron oxide polyhedron (MOx polyhedron). Oxygen occupies the apex position of the polyhedral structure. Among these, there are oxygen atoms that are not coordinated to either MO 6 or MO 5 (corresponding to reference numeral 44). Such an oxygen atom has only a single bond with phosphorus, and is considered to be extremely unstable during lithium desorption (charged state). Hereinafter, oxygen that binds only to phosphorus in this way is referred to as oxygen with lone pairs.
 リチウムサイトに配位する孤立電子対付き酸素の数を調べた結果、Li1サイト21では3つ、Li2サイト22では1つ、Li3サイト31では1つ、Li4サイト32では1つであった。なお、孤立電子対付き酸素の数は従来技術(結晶構造観察)で求めることができる。この結果から、本発明者らは、リチウムイオンの結合エネルギが高いLi1サイト21では孤立電子対の数が多いことを発見した。リチウムイオンの結合エネルギが高くなる理由は以下のように理解できる。このような孤立電子対付き酸素はリンのみとしか結合していないため、化学的に不安定な状態である。従って孤立電子対にリチウムイオンが配位すると、酸素が化学的に大きく安定な状態になる。このため、孤立電子対の数が多いサイトでは、リチウムイオンの結合エネルギが大きい。これは孤立電子対の数が多いLi1サイト21の配位環境が、リチウムイオン拡散を律速していることを意味する。 As a result of investigating the number of oxygen with lone pair coordinated to the lithium site, it was 3 at the Li1 site 21, 1 at the Li2 site 22, 1 at the Li3 site 31, and 1 at the Li4 site 32. In addition, the number of oxygen with a lone electron pair can be calculated | required by a prior art (crystal structure observation). From this result, the present inventors have found that the number of lone electron pairs is large at the Li1 site 21 where the binding energy of lithium ions is high. The reason why the binding energy of lithium ions is increased can be understood as follows. Since such oxygen with lone pair is bonded only to phosphorus, it is in a chemically unstable state. Therefore, when lithium ions are coordinated to a lone electron pair, oxygen becomes chemically large and stable. For this reason, the binding energy of lithium ions is large at a site having a large number of lone electron pairs. This means that the coordination environment of the Li1 site 21 having a large number of lone electron pairs controls the diffusion of lithium ions.
 孤立電子対はリチウムイオンの拡散に影響を与えているだけではなく、結晶構造の劣化にも影響している。脱リチウム状態では、孤立電子対は化学的に不安定な状態であるため、周囲の鉄イオンと配位して安定化しようとする。特に遷移金属に酸素が5つ配位している多面体MOに対して配位することでMOとなり、結晶構造全体を安定化する。リチウムを吸着せずに結晶構造が変化することで自発的に安定化することは、すなわち正極材料が劣化したことを意味する。このように多面体がMOになってしまうと、電池の放電時にリチウムを吸着することができず、不可逆容量の発生を引き起こす。従って結晶構造劣化を抑えるためには、孤立電子対の反応性を抑えることが必要である。 The lone pair of electrons not only affects the diffusion of lithium ions, but also affects the deterioration of the crystal structure. In the delithiated state, the lone pair is in a chemically unstable state, so it tries to stabilize by coordinating with surrounding iron ions. In particular, by coordinating with polyhedron MO 5 in which five oxygen atoms are coordinated with the transition metal, MO 6 is obtained , and the entire crystal structure is stabilized. Stable spontaneously by changing the crystal structure without adsorbing lithium means that the positive electrode material has deteriorated. When the polyhedron becomes MO 6 in this way, lithium cannot be adsorbed when the battery is discharged, causing irreversible capacity. Therefore, in order to suppress the crystal structure deterioration, it is necessary to suppress the reactivity of the lone pair of electrons.
 本発明者らは、上記のように明確にされた問題点を解決するため、孤立電子対付き酸素(手が2本)をハロゲン元素(手が1本)で置換することにより、反応性を抑えることを着想した。具体的には、ピロリン酸構造を形成しているP部分をPZ(Zはハロゲン元素)で置換することにより、孤立電子対の反応性を抑え、リチウムイオンの拡散性を向上させ、結晶構造の劣化を防止する。Zはハロゲン元素であって、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)などが適当である。特に、結晶構造を崩さない程度の大きさを持つイオンとして、フッ素あるいは塩素が好ましい。 In order to solve the problems clarified as described above, the present inventors have replaced the oxygen with lone pair (two hands) with a halogen element (one hand) to reduce the reactivity. Inspired to suppress. Specifically, by replacing the P 2 O 7 portion forming the pyrophosphate structure with P 2 O 6 Z (Z is a halogen element), the reactivity of the lone pair is suppressed, and the diffusibility of lithium ions To prevent deterioration of the crystal structure. Z is a halogen element, and fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and the like are suitable. In particular, fluorine or chlorine is preferable as the ion having a size that does not destroy the crystal structure.
 次に、置換するハロゲン元素の量について述べる。ピロリン酸型LiMPの結晶構造の単位胞には、8組成式に相当する12×8=96の原子が存在する。そのうち酸素原子の数は、7×8=56である。酸素原子のうち孤立電子対を有する酸素の数は12である。従って、ハロゲン元素置換が適切である酸素原子の割合の上限は、12/56=21%である。化学組成式では7つの酸素原子が存在するため、7×0.21=1.47個の酸素原子が置換可能である。この数値を用いると、化学組成式におけるハロゲン元素数の範囲を以下のように決定できる。添加するハロゲン元素Zの量をδとし、ハロゲン元素Zにより置換されたピロリン酸正極の化学組成式をLi2-xMP7-δδのように表記すると、0<δ≦1.47となる。ただし、ハロゲン元素の置換量が多すぎると、電気容量の低下につながり、また開回路電圧が低下する虞がある。従ってδは0.5以下が好ましい。 Next, the amount of halogen element to be substituted will be described. In the unit cell of the crystal structure of pyrophosphoric acid type Li 2 MP 2 O 7 , there are 12 × 8 = 96 atoms corresponding to 8 composition formulas. Among them, the number of oxygen atoms is 7 × 8 = 56. The number of oxygen atoms having a lone pair of oxygen atoms is 12. Therefore, the upper limit of the proportion of oxygen atoms for which halogen element substitution is appropriate is 12/56 = 21%. Since there are seven oxygen atoms in the chemical composition formula, 7 × 0.21 = 1.47 oxygen atoms can be substituted. Using this numerical value, the range of the number of halogen elements in the chemical composition formula can be determined as follows. When the amount of the halogen element Z to be added is δ and the chemical composition formula of the pyrophosphate positive electrode substituted with the halogen element Z is expressed as Li 2−x MP 2 O 7−δ Z δ , 0 <δ ≦ 1. 47. However, if the substitution amount of the halogen element is too large, the electric capacity may be reduced, and the open circuit voltage may be reduced. Accordingly, δ is preferably 0.5 or less.
 本実施の形態に係る正極材料である化合物は、公知の一般的方法を用いて製造することができ、その方法も、種々の方法が採用できる。具体的には、例えばLiFeP7―δδの場合は、酸化鉄(Fe)とリン酸リチウム化合物およびモノフルオロリン酸リチウム化合物(LiPOF)を混合し、アルゴンなどの不活性ガス雰囲気中で焼成して合成される。リン酸リチウム化合物としては、例えばLiPO、Li、LiPOからなる群より選択される一つである。 The compound which is the positive electrode material according to the present embodiment can be manufactured using a known general method, and various methods can be adopted as the method. Specifically, for example, in the case of Li 2 FeP 2 O 7-δ F δ , iron oxide (Fe 2 O 3 ), a lithium phosphate compound, and a lithium monofluorophosphate compound (Li 2 PO 3 F) are mixed. It is synthesized by firing in an inert gas atmosphere such as argon. The lithium phosphate compound is one selected from the group consisting of Li 3 PO 4 , Li 4 P 2 O 7 and LiPO 3 , for example.
 本実施の形態に係る上記正極材料を用いて非水電解質の二次電池用正極を作製する場合、上記材料は通常粉末状で用いればよく、その平均粒径は0.1~1μm程度とすればよい。平均粒径は、例えばレーザー回折式粒度分布測定装置で測定される値である。また、正極中における上記材料の含有量は、用いる材料の種類、結着材(バインダー)、導電剤の使用量等に応じて適宜設定すればよい。また、正極の作製においては、正極材料として所定の正極特性が得られる限りは、上記材料単独、又は他の従来から知られている正極材料との混合物であってもよい。 When producing a positive electrode for a secondary battery of a non-aqueous electrolyte using the positive electrode material according to the present embodiment, the material may be usually used in the form of powder, and the average particle diameter is about 0.1 to 1 μm. That's fine. The average particle diameter is a value measured by, for example, a laser diffraction particle size distribution measuring apparatus. Moreover, what is necessary is just to set suitably content of the said material in a positive electrode according to the kind of material to be used, a binder (binder), the usage-amount of a electrically conductive agent, etc. In the production of the positive electrode, the above material alone or a mixture with other conventionally known positive electrode materials may be used as long as predetermined positive electrode characteristics can be obtained as the positive electrode material.
 本実施の形態に係る二次電池の正極の作製に際しては、上記正極材料を用いる他は公知の正極の作成方法に従って行えばよい。例えば、上記材料の粉末を必要に応じて公知の結着材(ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等)、さらに必要に応じて公知の導電材(アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス、カーボンナノチューブ、カーボンナノホーン、グラフェンナノシート等)と混合した後、得られた混合粉末をステンレス鋼製等の支持体上に圧着成形したり、金属製容器に充填すればよい。あるいは、例えば、上記混合粉末を有機溶剤(N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N-N-ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合して得られたスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布する等の方法によっても本実施の形態に係る二次電池の電極を作製することができる。 The production of the positive electrode of the secondary battery according to the present embodiment may be performed in accordance with a known method for producing a positive electrode except that the positive electrode material is used. For example, if necessary, powders of the above materials may be combined with known binders (polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene butadiene rubber, acrylonitrile butadiene rubber, fluoro rubber, polyvinyl acetate, Polymethylmethacrylate, polyethylene, nitrocellulose, etc.) and further mixed with known conductive materials (acetylene black, carbon, graphite, natural graphite, artificial graphite, needle coke, carbon nanotube, carbon nanohorn, graphene nanosheet, etc.) if necessary Thereafter, the obtained mixed powder may be pressure-formed on a support made of stainless steel or filled into a metal container. Alternatively, for example, the mixed powder is mixed with an organic solvent (N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, tetrahydrofuran. The electrode of the secondary battery according to this embodiment can also be manufactured by a method such as applying a slurry obtained by mixing with a metal substrate such as aluminum, nickel, stainless steel, or copper.
 負極は、銅等からなる集電体に負極合剤を塗布して形成される。負極合剤は、材料、導電材、結着材などを有する。負極の材料としては、金属リチウムや、炭素材料、リチウムを挿入もしくは化合物の形成が可能な材料を用いることができ、炭素材料が特に好適である。炭素材料としては、天然黒鉛、人造黒鉛等の黒鉛類及び石炭系コークス、石炭系ピッチの炭化物、石油系コークス、石油系ピッチの炭化物、ピッチコークスの炭化物などの非晶質炭素がある。好ましくは、これら上記の炭素材料に種々の表面処理を施したものを用いることが望ましい。これらの炭素材料は一種類で用いるだけでなく、二種類以上を組み合わせて用いることもできる。また、リチウムを挿入もしくは化合物の形成が可能な材料としては、アルミニウム、スズ、ケイ素、インジウム、ガリウム、マグネシウム等の金属およびこれらの元素を含む合金、スズ、ケイ素等を含む金属酸化物が挙げられる。さらにまた、前述の金属や合金や金属酸化物と黒鉛系や非晶質炭素の炭素材料との複合材が挙げられる。 The negative electrode is formed by applying a negative electrode mixture to a current collector made of copper or the like. The negative electrode mixture includes a material, a conductive material, a binder, and the like. As a material for the negative electrode, metallic lithium, a carbon material, a material capable of inserting lithium or forming a compound can be used, and a carbon material is particularly suitable. Examples of the carbon material include graphites such as natural graphite and artificial graphite, and amorphous carbon such as coal-based coke, coal-based pitch carbide, petroleum-based coke, petroleum-based pitch carbide, and pitch-coke carbide. Preferably, these carbon materials are subjected to various surface treatments. These carbon materials can be used not only in one kind but also in combination of two or more kinds. Examples of the material capable of inserting lithium or forming a compound include metals such as aluminum, tin, silicon, indium, gallium, and magnesium, alloys containing these elements, and metal oxides containing tin, silicon, and the like. . Furthermore, the composite material of the above-mentioned metal, an alloy, a metal oxide, and the carbon material of a graphite type or an amorphous carbon is mentioned.
 図5は、本実施の形態に係る二次電池の一具体例であるコイン型リチウム二次電池の縦断面図である。本実施の形態では、直径6.8mm、厚さ2.1mmの寸法を有する電池を作製した。図5において、正極缶51は正極端子を兼ねており、耐食性の優れたステンレス鋼からなる。負極缶52は負極端子を兼ねており、正極缶51と同じ材質のステンレス鋼からなる。ガスケット53は正極缶51と負極缶52を絶縁しており、ポリプロピレン製である。正極缶51とガスケット53との接面および負極缶52とガスケット53との接面にはピッチが塗布されている。正極成型体(ペレット)54と負極成型体(ペレット)56との間には、ポリプロピレン製の不織布からなるセパレータ55が配されている。セパレータ55の設置の際に電解液を浸透させている。 FIG. 5 is a longitudinal sectional view of a coin-type lithium secondary battery which is a specific example of the secondary battery according to the present embodiment. In this embodiment, a battery having a diameter of 6.8 mm and a thickness of 2.1 mm was manufactured. In FIG. 5, a positive electrode can 51 also serves as a positive electrode terminal and is made of stainless steel having excellent corrosion resistance. The negative electrode can 52 also serves as a negative electrode terminal and is made of stainless steel made of the same material as the positive electrode can 51. The gasket 53 insulates the positive electrode can 51 and the negative electrode can 52 and is made of polypropylene. Pitch is applied to the contact surface between the positive electrode can 51 and the gasket 53 and the contact surface between the negative electrode can 52 and the gasket 53. A separator 55 made of a nonwoven fabric made of polypropylene is disposed between the positive electrode molded body (pellet) 54 and the negative electrode molded body (pellet) 56. The electrolyte solution is infiltrated when the separator 55 is installed.
 二次電池の形状はコイン型に限らず、電極の捲回による円筒形、例えば18650型による実施でもよい。また電極を積層させ角形として実施してもよい。 The shape of the secondary battery is not limited to the coin type, but may be a cylindrical shape obtained by winding an electrode, for example, an 18650 type. Alternatively, the electrodes may be stacked to form a square shape.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。なお、実施例において電池の作製および測定は、アルゴン雰囲気下のドライボックス内で行った。電池は、一回目は放電から開始し、次いで充放電を行った。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, the battery was manufactured and measured in a dry box under an argon atmosphere. The battery started from discharging for the first time, and then charged and discharged.
 本実施例では、原料として炭酸リチウム(LiCO)、リン酸2水素アンモニウム(NHPO)、酸化鉄Feを2:2:1所定モル比で混合し、その後、0.1モル比のモノフルオロリン酸リチウム化合物を添加し、キレート化剤として、クエン酸を添加して混合する。その後、加熱・撹拌しながら水分を蒸発させる。水分蒸発後、残った物質を回収して先駆体とし、この先駆体を雰囲気炉(アルゴンガス気流)を用いて800℃の焼成雰囲気で熱処理を4時間行い、フッ化ピロリン酸正極材料(LiFeP7―δδ)を作製する。 In this example, lithium carbonate (Li 2 CO 3 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and iron oxide Fe 2 O 3 were mixed in a 2: 2: 1 predetermined molar ratio as raw materials, and then , 0.1 mole ratio lithium monofluorophosphate compound is added, and citric acid is added and mixed as a chelating agent. Thereafter, the water is evaporated while heating and stirring. After the evaporation of moisture, the remaining substance was recovered to be a precursor, and this precursor was subjected to a heat treatment in a firing atmosphere at 800 ° C. for 4 hours using an atmosphere furnace (argon gas stream) to obtain a fluoropyrophosphate positive electrode material (Li 2 FeP 2 O 7-δ F δ ) is prepared.
 クエン酸の代わりに、他の有機酸、例えば、リンゴ酸、酒石酸、コハク酸等を用いることもできる。また、この有機酸は、クエン酸、リンゴ酸、酒石酸、コハク酸等のうち、複数種の有機酸を混合したものでもよい。 In place of citric acid, other organic acids such as malic acid, tartaric acid, succinic acid and the like can be used. The organic acid may be a mixture of a plurality of organic acids among citric acid, malic acid, tartaric acid, succinic acid, and the like.
 焼成後の試料を流星型ボールミル(FRITSCH製、Planetary micro mill pulverisette 7)を用いて1時間粉砕した。その後、ふるいにより50μm以上の粗粒を除去する。 The calcined sample was pulverized for 1 hour using a meteor-type ball mill (manufactured by FRITSCH, Planetary mill pulverisete 7). Thereafter, coarse particles of 50 μm or more are removed by sieving.
 自動X線回折装置(リガク社製:RINT-UltimaIII)を用い、いわゆる2θ/θ測定において、X線源:CuXα、出力40kV×40mAにてX線回折プロファイルを測定した。ピロリン酸型正極に特徴的な回折ピークが得られ、LiFeP7―δδが確認できる。なお、併せてエネルギ分散型X線元素分析の実施により、δ=0.3であることが確認できる。鉄に代えて、亜鉛やニッケル、コバルト等を用いることもできるが、鉄が最も実用的である。 Using an automatic X-ray diffractometer (manufactured by Rigaku Corporation: RINT-UltimaIII), in the so-called 2θ / θ measurement, an X-ray diffraction profile was measured with an X-ray source: CuXα and an output of 40 kV × 40 mA. A characteristic diffraction peak is obtained for the pyrophosphate-type positive electrode, and Li 2 FeP 2 O 7-δ F δ can be confirmed. In addition, it can be confirmed that δ = 0.3 by conducting energy dispersive X-ray elemental analysis. Instead of iron, zinc, nickel, cobalt or the like can be used, but iron is the most practical.
 本正極材料を正極成型体54に用いて図5に示す二次電池を製造し、カットオフ電位を4.8Vまた1.0Vとして充放電試験を実施すると、160mAh/gの放電容量が確認できる。この放電容量は、従来確認されていた放電容量110mAh/gより45%の容量増大に相当する。 When the secondary battery shown in FIG. 5 is manufactured by using this positive electrode material for the positive electrode molded body 54 and a charge / discharge test is performed with a cut-off potential of 4.8 V or 1.0 V, a discharge capacity of 160 mAh / g can be confirmed. . This discharge capacity corresponds to a 45% increase in capacity compared with the conventionally confirmed discharge capacity of 110 mAh / g.
 以上、本実施例によれば、ピロリン酸型Pの酸素の一部をハロゲン元素に置換することにより、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、高放電容量が得られる二次電池用正極材料およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained. There can be provided a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same.
 本実施例では、正極材料作成の原料としてLiPO、酸化マンガン(III)(Mn)を使用する。なおLiPOに対し重量比で5%のモノフルオロリン酸リチウム(LiPOF)を添加する。原料比でLi:Mn:Pが2:1:2となるよう秤量し、粉砕機で湿式粉砕混合する。粉末を乾燥させ、アルゴン気流下650℃にて焼成する。得られた試料はLiMnP7―δδであることが確認できる。本試料に対し、エネルギ分散型X線元素分析を実施することにより、δ=0.04であることが確認できる。 In this example, Li 3 PO 4 and manganese (III) oxide (Mn 2 O 3 ) are used as raw materials for preparing the positive electrode material. Note that 5% by weight of lithium monofluorophosphate (Li 2 PO 3 F) is added to Li 3 PO 4 by weight. Weigh so that Li: Mn: P is 2: 1: 2 in the raw material ratio, and wet pulverize and mix with a pulverizer. The powder is dried and fired at 650 ° C. under an argon stream. It can be confirmed that the obtained sample is Li 2 MnP 2 O 7-δ F δ . By performing energy dispersive X-ray elemental analysis on this sample, it can be confirmed that δ = 0.04.
 本正極材料を用いて製造した二次電池による充放電試験では、200mAh/gの放電容量が確認できる。この放電容量は実施例1よりも大きく、LiMnP7―δδにおけるフッ素置換効果が高いことを示す。 In a charge / discharge test using a secondary battery manufactured using this positive electrode material, a discharge capacity of 200 mAh / g can be confirmed. This discharge capacity is larger than that of Example 1, indicating that the fluorine substitution effect in Li 2 MnP 2 O 7-δ F δ is high.
 以上、本実施例によれば、ピロリン酸型Pの酸素の一部をハロゲン元素に置換することにより、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、高放電容量が得られる二次電池用正極材料およびそれを用いた二次電池を提供することができる。また、Mnを用いることにより、より高い放電容量を得ることができる。 As described above, according to the present example, a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained. There can be provided a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same. Moreover, a higher discharge capacity can be obtained by using Mn.
 本実施例では、正極材料作製の原料として炭酸リチウム、LiPO、二酸化コバルト、酸化ニッケルを使用し、原料比でLi:Co:Niが4.01:0.34:0.66となるように秤量し、粉砕機で湿式粉砕混合する。なおLiPOに対し重量比で5%のモノフルオロリン酸リチウム(LiPOF)を添加する。粉末は乾燥した後、高純度アルミナ容器に入れ、焼結性を高めるため大気中600℃で12時間の仮焼成を行う。次に、再び高純度アルミナ容器に入れ、大気中950℃、12時間保持の条件で本焼成し、空冷後、解砕分級する。得られた正極材料はLiCo1/3Ni2/37―δδである。本試料に対し、エネルギ分散型X線元素分析を実施することにより、δ=0.03であることが確認できる。本正極材料を用いて製造した二次電池による充放電試験では、120mAh/gの放電容量が確認できる。なお、正極材料の粒度分布を測定したところ、平均粒径は1μm(平均半径は0.5μm)である。 In this example, lithium carbonate, Li 3 PO 4 , cobalt dioxide, and nickel oxide are used as the raw material for producing the positive electrode material, and Li: Co: Ni is 4.01: 0.34: 0.66 in the raw material ratio. Weigh and mix with a pulverizer. Note that 5% by weight of lithium monofluorophosphate (Li 2 PO 3 F) is added to Li 3 PO 4 by weight. After the powder is dried, it is put in a high-purity alumina container and pre-baked for 12 hours at 600 ° C. in the atmosphere to enhance the sinterability. Next, it is again put into a high-purity alumina container, subjected to main firing under the condition of holding at 950 ° C. for 12 hours in the atmosphere, air-cooled, and crushed and classified. The obtained positive electrode material is Li 2 Co 1/3 Ni 2/3 P 2 O 7-δ F δ . By performing energy dispersive X-ray elemental analysis on this sample, it can be confirmed that δ = 0.03. In a charge / discharge test using a secondary battery manufactured using this positive electrode material, a discharge capacity of 120 mAh / g can be confirmed. When the particle size distribution of the positive electrode material was measured, the average particle size was 1 μm (the average radius was 0.5 μm).
 以上、本実施例によれば、ピロリン酸型Pの酸素の一部をハロゲン元素に置換することにより、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、高放電容量が得られる二次電池用正極材料およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained. There can be provided a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same.
 本実施例では、実施例1にて得られたLiFeP7―δδの結晶構造を基に、第一原理計算に基づく量子シミュレーション技術により、リチウムイオンからナトリウムイオンへのイオン交換シミュレーションを行った。全てのリチウムイオンをナトリウムイオンに置換することでイオン交換を計算機上で再現し、密度汎関数法および短距離ハバード相関項を考慮した一般化密度勾配近似を用いることにより、NaFeP7―δδ結晶構造最適化計算を実施した。ここで酸素に対するハロゲン置換数をδ=0.5とし、結晶構造および格子長の最適化を行った結果、LiFeP7―δδと等しい結晶構造を持つNaFeP7―δδが得られた。NaFeP7―δδの単位胞の体積は1127.7Åであり、LiFeP7―δδより6%程度大きかった。この結果は、ナトリウムイオンがリチウムイオンよりイオン半径が大きいことから説明でき、NaFeP7―δδが実験的に作成可能であることを示している。なお、本正極材料を用いて製造した二次電池による充放電試験では、120mAh/gの放電容量が確認できる。 In this example, based on the crystal structure of Li 2 FeP 2 O 7-δ F δ obtained in Example 1, ion exchange from lithium ions to sodium ions is performed by a quantum simulation technique based on first-principles calculations. A simulation was performed. By replacing all lithium ions with sodium ions, the ion exchange is reproduced on a computer, and by using a generalized density gradient approximation that takes into account the density functional theory and short-range Hubbard correlation terms, Na 2 FeP 2 O 7 -Δ F δ crystal structure optimization calculation was performed. Here, the number of halogen substitutions for oxygen was set to δ = 0.5, and the crystal structure and the lattice length were optimized. As a result, Na 2 FeP 2 O 7 having a crystal structure equal to Li 2 FeP 2 O 7-δ F δ F δ was obtained. Unit cell volume of Na 2 FeP 2 O 7-δ F δ is 1127.7Å 3, was about 6% greater than the Li 2 FeP 2 O 7-δ F δ. This result can be explained by the fact that sodium ions have a larger ionic radius than lithium ions, and shows that Na 2 FeP 2 O 7-δ F δ can be created experimentally. In addition, in the charge / discharge test by the secondary battery manufactured using this positive electrode material, the discharge capacity of 120 mAh / g can be confirmed.
 以上、本実施例によれば、ピロリン酸型Pの酸素の一部をハロゲン元素に置換することにより、熱安定性の高いピロリン酸型P構造を基本骨格とした結晶構造を有し、高放電容量が得られる二次電池用正極材料およびそれを用いた二次電池を提供することができる。 As described above, according to the present example, a part of oxygen in pyrophosphate type P 2 O 7 is substituted with a halogen element, so that the crystal structure having the pyrophosphate type P 2 O 7 structure with high thermal stability as a basic skeleton is obtained. There can be provided a positive electrode material for a secondary battery having a high discharge capacity and a secondary battery using the same.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1:Li1サイト、2:Li2サイト、3:Li3サイト、4:Li4サイト、5:リン酸多面体、6:酸化鉄多面体(MOx多面体)、7:単位胞、21:Li1サイト、22:Li2サイト、23:単位胞、31:Li3サイト、32:Li4サイト、33:単位胞
、41:孤立電子対付酸素イオン、42:酸素イオン、43:リン酸多面体、44:酸化鉄多面体(MOx多面体)、51:正極缶、52:負極缶、53:ガスケット、54:正極成型体、55:セパレータ、56:負極成型体。
1: Li1 site, 2: Li2 site, 3: Li3 site, 4: Li4 site, 5: phosphate polyhedron, 6: iron oxide polyhedron (MOx polyhedron), 7: unit cell, 21: Li1 site, 22: Li2 site , 23: unit cell, 31: Li3 site, 32: Li4 site, 33: unit cell, 41: oxygen ion with lone pair, 42: oxygen ion, 43: phosphate polyhedron, 44: iron oxide polyhedron (MOx polyhedron) , 51: positive electrode can, 52: negative electrode can, 53: gasket, 54: molded positive electrode, 55: separator, 56: molded negative electrode.

Claims (12)

  1.  化学組成式がA2-xMP7-δδを主成分とする二次電池用正極材料であって、Aはアルカリ金属から選ばれる少なくとも一種類の元素であり、Mは2価以上の多価イオンとなりうる遷移金属から選ばれる少なくとも一種類の元素であり、Zはハロゲン元素から選ばれる少なくとも一種類の元素であり、xは0≦x<2の範囲にあり、δは0<δ≦1.47の範囲にあることを特徴とする二次電池用正極材料。 A positive electrode material for a secondary battery having a chemical composition formula of A 2−x MP 2 O 7−δ Z δ as a main component, wherein A is at least one element selected from alkali metals, and M is divalent It is at least one element selected from transition metals that can be multivalent ions, Z is at least one element selected from halogen elements, x is in the range of 0 ≦ x <2, and δ is 0 <Δ ≦ 1.47, A positive electrode material for a secondary battery,
  2.  前記遷移金属Mは、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Mo、Wからなる群から選ばれた少なくとも一つであることを特徴とする請求項1に記載の二次電池用正極材料。 The secondary metal according to claim 1, wherein the transition metal M is at least one selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, and W. Positive electrode material for batteries.
  3.  前記ハロゲン元素Zは、F、Cl、Brからなる群から選ばれた少なくとも一つであることを特徴とする請求項1に記載の二次電池用正極材料。 The positive electrode material for a secondary battery according to claim 1, wherein the halogen element Z is at least one selected from the group consisting of F, Cl, and Br.
  4.  前記アルカリ金属AがLiであり、前記遷移金属MがFeであり、ハロゲン元素がFであり、前記化学組成式がLi2-xFeP7-δδで表されることを特徴とする請求項1に記載の二次電池用正極材料。 The alkali metal A is Li, the transition metal M is Fe, the halogen element is F, and the chemical composition formula is represented by Li 2-x FeP 2 O 7-δ F δ , The positive electrode material for a secondary battery according to claim 1.
  5.  前記アルカリ金属AがLiであり、前記遷移金属MがMnであり、ハロゲン元素がFであり、前記化学組成式がLi2-xMnP7-δδで表されることを特徴とする請求項1に記載の二次電池用正極材料。 The alkali metal A is Li, the transition metal M is Mn, the halogen element is F, and the chemical composition formula is represented by Li 2-x MnP 2 O 7-δ F δ , The positive electrode material for a secondary battery according to claim 1.
  6.  前記アルカリ金属AがLiであり、前記遷移金属MがV、Cr、Mn、Co、Niからなる群から選ばれた少なくとも1つであり、ZがF、Cl、Brからなる群から選ばれた少なくとも1つであり、前記化学組成式がLi2-xMP7-δδで表されることを特徴とする請求項1に記載の二次電池用正極材料。 The alkali metal A is Li, the transition metal M is at least one selected from the group consisting of V, Cr, Mn, Co and Ni, and Z is selected from the group consisting of F, Cl and Br 2. The positive electrode material for a secondary battery according to claim 1, wherein the chemical composition formula is at least one and the chemical composition formula is represented by Li 2−x MP 2 O 7−δ Z δ .
  7.  前記アルカリ金属AがNaであり、前記遷移金属MがFeであり、前記化学組成式がNa2-xFeP7-δδで表されることを特徴とする請求項1に記載の二次電池用正極材料。 2. The alkali metal A is Na, the transition metal M is Fe, and the chemical composition formula is represented by Na 2-x FeP 2 O 7-δ Z δ . Positive electrode material for secondary battery.
  8.  原料の一部にモノフルオロリン酸リチウム(LiPOF)を用いた、前記化学組成式で表される化合物からなることを特徴とする請求項1に記載の二次電池用正極材料。 2. The positive electrode material for a secondary battery according to claim 1, comprising a compound represented by the chemical composition formula using lithium monofluorophosphate (Li 2 PO 3 F) as a part of a raw material.
  9.  前記アルカリ金属AがLiであり、前記xが1以上2以下であることを特徴とする請求項8に記載の二次電池用正極材料。 The positive electrode material for a secondary battery according to claim 8, wherein the alkali metal A is Li and the x is 1 or more and 2 or less.
  10.  正極と負極とを備えた二次電池において、
     前記正極には、請求項1~9のいずれか1項に記載の二次電池用正極材料が用いられることを特徴とする二次電池。
    In a secondary battery comprising a positive electrode and a negative electrode,
    A secondary battery comprising the positive electrode material for a secondary battery according to any one of claims 1 to 9 as the positive electrode.
  11.  正極と負極とを備えた二次電池において、
     前記正極は、ピロリン酸型P構造を基本骨格とした結晶構造を有し、前記ピロリン酸型P構造を構成する酸素の一部がハロゲン元素で置換された正極材料を含むことを特徴とする二次電池。
    In a secondary battery comprising a positive electrode and a negative electrode,
    The positive electrode has a crystal structure having a pyrophosphoric acid type P 2 O 7 structure as a basic skeleton, and includes a positive electrode material in which a part of oxygen constituting the pyrophosphoric acid type P 2 O 7 structure is substituted with a halogen element. A secondary battery characterized by that.
  12.  前記正極材料はLi、Feを含み、前記ハロゲン元素はFであることを特徴とする請求項11に記載の二次電池。 The secondary battery according to claim 11, wherein the positive electrode material includes Li and Fe, and the halogen element is F.
PCT/JP2012/003452 2011-09-09 2012-05-28 Secondary battery positive electrode material and secondary battery using same WO2013035222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532403A JP5830540B2 (en) 2011-09-09 2012-05-28 Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011197188 2011-09-09
JP2011-197188 2011-09-09

Publications (1)

Publication Number Publication Date
WO2013035222A1 true WO2013035222A1 (en) 2013-03-14

Family

ID=47831704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003452 WO2013035222A1 (en) 2011-09-09 2012-05-28 Secondary battery positive electrode material and secondary battery using same

Country Status (2)

Country Link
JP (1) JP5830540B2 (en)
WO (1) WO2013035222A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181436A1 (en) * 2013-05-09 2014-11-13 株式会社日立製作所 Positive electrode active material for secondary batteries and secondary battery using same
JP2014535126A (en) * 2011-09-30 2014-12-25 ファラディオン リミテッド Condensed polyanion electrode
JP2016038996A (en) * 2014-08-06 2016-03-22 Fdk株式会社 Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2017182949A (en) * 2016-03-29 2017-10-05 Fdk株式会社 Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
WO2018003071A1 (en) * 2016-06-30 2018-01-04 富士通株式会社 Positive electrode material for secondary batteries, method for producing same, and lithium ion secondary battery
JP2018002560A (en) * 2016-07-05 2018-01-11 住友金属鉱山株式会社 Method of selecting substituent element of composite tungsten oxide and method of producing composite tungsten oxide
CN109980186A (en) * 2017-12-27 2019-07-05 中国电子科技集团公司第十八研究所 Modified metal pyrophosphate doped positive electrode material
WO2020031690A1 (en) * 2018-08-10 2020-02-13 日本化学工業株式会社 Method for producing lithium cobalt pyrophosphate, and method for producing lithium cobalt pyrophosphate-carbon complex
CN112313006A (en) * 2018-04-23 2021-02-02 株式会社Posco Lithium-adsorbing molded article and method for producing same
KR20230083343A (en) * 2021-01-21 2023-06-12 울산대학교 산학협력단 An electrode material in which a part of oxygen in lithium metal pyrophosphate is substituted with a halogen element, and a method for preparation thereof
CN117566709A (en) * 2023-11-30 2024-02-20 苏州博萃循环科技有限公司 Method for recycling waste lithium iron phosphate battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240006605A1 (en) * 2020-11-11 2024-01-04 Samsung Electronics Co., Ltd. Cathode active material, cathode and lithium secondary battery comprising same, and preparation method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624205B2 (en) * 2002-02-01 2005-03-02 株式会社産学連携機構九州 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP2009538495A (en) * 2005-09-02 2009-11-05 エイ 123 システムズ,インク. Nanocomposite electrodes and related equipment
JP2010260761A (en) * 2009-05-01 2010-11-18 Kyushu Univ Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2011040311A (en) * 2009-08-13 2011-02-24 Asahi Glass Co Ltd Electrolyte for secondary battery, and lithium ion secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008566B2 (en) * 2003-04-08 2006-03-07 Valence Technology, Inc. Oligo phosphate-based electrode active materials and methods of making same
EP2752925B1 (en) * 2011-08-29 2019-01-16 Toyota Jidosha Kabushiki Kaisha Use of a positive electrode material in a sodium battery, and sodium battery comprising said positive electrode active material
JP2014221690A (en) * 2011-09-05 2014-11-27 国立大学法人 東京大学 Method for producing lithium-containing acid salt compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624205B2 (en) * 2002-02-01 2005-03-02 株式会社産学連携機構九州 Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP2009538495A (en) * 2005-09-02 2009-11-05 エイ 123 システムズ,インク. Nanocomposite electrodes and related equipment
JP2010260761A (en) * 2009-05-01 2010-11-18 Kyushu Univ Method for manufacturing positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2011040311A (en) * 2009-08-13 2011-02-24 Asahi Glass Co Ltd Electrolyte for secondary battery, and lithium ion secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014535126A (en) * 2011-09-30 2014-12-25 ファラディオン リミテッド Condensed polyanion electrode
WO2014181436A1 (en) * 2013-05-09 2014-11-13 株式会社日立製作所 Positive electrode active material for secondary batteries and secondary battery using same
JP2016038996A (en) * 2014-08-06 2016-03-22 Fdk株式会社 Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2017182949A (en) * 2016-03-29 2017-10-05 Fdk株式会社 Method for manufacturing positive electrode substance material for all-solid battery, and positive electrode active substance material for all-solid battery
WO2018003071A1 (en) * 2016-06-30 2018-01-04 富士通株式会社 Positive electrode material for secondary batteries, method for producing same, and lithium ion secondary battery
JPWO2018003071A1 (en) * 2016-06-30 2019-01-24 富士通株式会社 Positive electrode material for secondary battery, method for producing the same, and lithium ion secondary battery
EP3480874A4 (en) * 2016-06-30 2019-05-08 Fujitsu Limited Positive electrode material for secondary batteries, method for producing same, and lithium ion secondary battery
JP2018002560A (en) * 2016-07-05 2018-01-11 住友金属鉱山株式会社 Method of selecting substituent element of composite tungsten oxide and method of producing composite tungsten oxide
CN109980186A (en) * 2017-12-27 2019-07-05 中国电子科技集团公司第十八研究所 Modified metal pyrophosphate doped positive electrode material
CN109980186B (en) * 2017-12-27 2021-12-03 中国电子科技集团公司第十八研究所 Modified metal pyrophosphate doped positive electrode material
CN112313006A (en) * 2018-04-23 2021-02-02 株式会社Posco Lithium-adsorbing molded article and method for producing same
CN112313006B (en) * 2018-04-23 2023-10-13 浦项股份有限公司 Lithium-adsorbing molded article and method for producing same
US12048912B2 (en) 2018-04-23 2024-07-30 Posco Co., Ltd Lithium-adsorptive molded object
JPWO2020031690A1 (en) * 2018-08-10 2021-04-01 日本化学工業株式会社 Method for Producing Lithium Cobalt Pyrophosphate and Method for Producing Lithium cobalt Pyrophosphate Carbon Composite
KR20210039462A (en) * 2018-08-10 2021-04-09 니폰 가가쿠 고교 가부시키가이샤 Method for producing tritium pyrophosphate and method for producing tritium pyrophosphate carbon composite
WO2020031690A1 (en) * 2018-08-10 2020-02-13 日本化学工業株式会社 Method for producing lithium cobalt pyrophosphate, and method for producing lithium cobalt pyrophosphate-carbon complex
KR102700307B1 (en) 2018-08-10 2024-08-30 니폰 가가쿠 고교 가부시키가이샤 Method for producing lithium cobalt triphosphate and method for producing lithium cobalt triphosphate carbon composite
KR20230083343A (en) * 2021-01-21 2023-06-12 울산대학교 산학협력단 An electrode material in which a part of oxygen in lithium metal pyrophosphate is substituted with a halogen element, and a method for preparation thereof
KR102606165B1 (en) * 2021-01-21 2023-11-29 울산대학교 산학협력단 An electrode material in which a part of oxygen in lithium metal pyrophosphate is substituted with a halogen element, and a method for preparation thereof
CN117566709A (en) * 2023-11-30 2024-02-20 苏州博萃循环科技有限公司 Method for recycling waste lithium iron phosphate battery

Also Published As

Publication number Publication date
JP5830540B2 (en) 2015-12-09
JPWO2013035222A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
JP5830540B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
Das et al. K+ and Mg2+ co-doped bipolar Na3V2 (PO4) 3: An ultrafast electrode for symmetric sodium ion full cell
CA2643861C (en) Electrochemical composition having cocrystalline structure and process of preparing same
JP5681796B2 (en) Positive electrode material for secondary battery and secondary battery using the same
US10026520B2 (en) Positive electrode active material for secondary battery
JP2019164961A (en) Alloy, negative electrode active material, negative electrode, and non-aqueous electrolyte storage element
JP2007335325A (en) Cathode active material for nonaqueous electrolyte secondary battery and battery
JP2011228246A (en) Method of producing negative electrode active material for lithium secondary battery and lithium secondary battery
US20130078519A1 (en) Production process for lithium-silicate-based compound
KR20130107926A (en) Positive active material, method of preparing the same and lithium secondary battery using the same
JP5810587B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
KR101352793B1 (en) Cathode Material for Secondary Battery and Manufacturing Method of the Same
JP2019220350A (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP6070222B2 (en) Non-aqueous secondary battery having positive electrode for non-aqueous secondary battery and positive electrode active material for non-aqueous secondary battery using the positive-electrode active material
Trussov et al. Synthesis, structure and electrochemical performance of Eldfellite, NaFe (SO4) 2, doped with SeO4, HPO4 and PO3F
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
WO2013054457A1 (en) Lithium silicate compound, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery using same
CA2635245A1 (en) Electrochemical composition and associated technology
WO2022163585A1 (en) Active material particles, electrode, power storage element, all-solid-state secondary cell, method for manufacturing active material particles, and power storage device
WO2012060084A1 (en) Lithium borate compound and method for producing same
WO2014181436A1 (en) Positive electrode active material for secondary batteries and secondary battery using same
JP2018150217A (en) Composite oxide, positive electrode active material, nonaqueous electrolyte electricity storage device and method for producing composite oxide
KR101948549B1 (en) Cathode Active Material for Secondary Battery
JP5598684B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery
JP7476867B2 (en) Sulfide solid electrolyte, battery, and method for producing sulfide solid electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013532403

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12830019

Country of ref document: EP

Kind code of ref document: A1