Nothing Special   »   [go: up one dir, main page]

WO2013027546A1 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
WO2013027546A1
WO2013027546A1 PCT/JP2012/069546 JP2012069546W WO2013027546A1 WO 2013027546 A1 WO2013027546 A1 WO 2013027546A1 JP 2012069546 W JP2012069546 W JP 2012069546W WO 2013027546 A1 WO2013027546 A1 WO 2013027546A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
temperature
unburned fuel
control unit
flow rate
Prior art date
Application number
PCT/JP2012/069546
Other languages
French (fr)
Japanese (ja)
Inventor
琢 石川
河合 健二
松下 智彦
Original Assignee
株式会社豊田自動織機
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, トヨタ自動車株式会社 filed Critical 株式会社豊田自動織機
Publication of WO2013027546A1 publication Critical patent/WO2013027546A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas purification device for purifying exhaust gas of an engine.
  • the exhaust gas purification device has, for example, an exhaust pipe, a filter that is provided in the exhaust pipe and collects particulate matter contained in the exhaust gas, and a regeneration mechanism that removes particulate matter accumulated on the filter.
  • the regeneration mechanism includes an unburned fuel adder that adds unburned fuel to the exhaust gas, and burns particulate matter deposited on the filter with the unburned fuel.
  • the regeneration mechanism described in Japanese Patent Application Laid-Open No. 2007-321614 has a NOx catalyst provided on the upstream side of the filter and a control unit that estimates the catalyst bed temperature from the exhaust gas temperature.
  • the control unit determines an upper limit flow rate threshold of the air amount according to the estimated catalyst bed temperature, and reduces the amount of unburned fuel to be added when the intake air amount of the engine is larger than the upper limit flow rate threshold. Control the adder. This suppresses that unburned fuel is discharged without being sufficiently oxidized.
  • the regeneration mechanism described in Japanese Patent Application Laid-Open No. 2005-83252 has a NOx catalyst provided on the upstream side of the filter and a control unit that calculates the total intake amount from the time of engine startup.
  • the control unit regenerates the exhaust gas purification device by adding the unburned fuel by controlling the unburned fuel adder when the total intake amount is larger than the reference value when other regeneration conditions are satisfied, and there is little Do not add unburned fuel.
  • the exhaust gas takes a large amount of heat away from the filter when the particulate matter burns, so that the filter can be prevented from exceeding the high temperature limit.
  • the amount of exhaust gas carrying away heat from the filter is small, so that it is possible to avoid exceeding the high temperature limit by not adding unburned fuel and not regenerating the filter. Thus, it can be suppressed that the purification function of the filter is deteriorated by exceeding the high temperature limit.
  • the present invention includes an exhaust pipe, a filter, and a regeneration mechanism.
  • the filter is provided in the exhaust pipe and collects particulate matter contained in the exhaust gas.
  • the regeneration mechanism removes particulate matter deposited on the filter.
  • the regeneration mechanism includes an unburned fuel adder, an exhaust gas temperature detector, an air flow rate detector, and a control unit.
  • the unburned fuel adder adds unburned fuel to the exhaust gas upstream of the filter.
  • the exhaust gas temperature detector detects the temperature of the exhaust gas.
  • the air flow rate detector detects an air flow rate supplied to the engine or an air flow rate discharged from the engine.
  • the control unit determines the lower limit temperature threshold based on the air flow rate obtained from the air flow rate detector. Further, the control unit controls the unburned fuel adder to add the unburned fuel to the exhaust gas when the temperature of the exhaust gas obtained from the exhaust gas temperature detector is higher than the lower limit temperature threshold.
  • the present inventor has found that when the wall temperature of the exhaust pipe is lower than a predetermined temperature, for example, when the temperature is lower than the boiling point of the unburned fuel, the unburned fuel may accumulate in the exhaust pipe wall as a liquid. I realized that there was.
  • the inventor has also noted that the higher the flow rate of exhaust gas (air) flowing through the exhaust pipe, the closer the wall temperature of the exhaust pipe becomes to the temperature of the exhaust gas detected by the exhaust gas temperature detector. That is, as the flow rate of the exhaust gas flowing through the exhaust pipe increases, the amount of the exhaust gas that touches the wall of the exhaust pipe increases, and the amount of heat transferred from the exhaust gas to the wall of the exhaust pipe increases.
  • the wall temperature of the exhaust pipe approaches the temperature of the exhaust gas, and the wall temperature of the exhaust pipe increases.
  • the flow rate of the exhaust gas is small, the exhaust gas mainly passes through the center of the exhaust pipe, and the amount of the exhaust gas that touches the wall of the exhaust pipe decreases. The difference becomes larger.
  • the unburned fuel is added when the condition that the wall temperature of the exhaust pipe reaches a predetermined temperature or more is satisfied. That is, the wall temperature of the exhaust pipe changes not only according to the temperature of the exhaust gas but also according to the flow rate of the exhaust gas, that is, the air flow rate.
  • the control unit determines a lower limit temperature threshold value as a temperature corresponding to the air flow rate, compares the lower limit temperature threshold value with a temperature related to the exhaust gas temperature, and determines whether or not to add unburned fuel. Therefore, unburned fuel can be added when the wall temperature of the exhaust pipe becomes equal to or higher than a predetermined temperature.
  • region which can add unburned fuel can be made wider compared with the form which does not judge whether unburned fuel is added irrespective of an air flow rate. Therefore, the regeneration time for burning the particulate matter can be extended, and the filter can be effectively regenerated. Further, unburned fuel can be prevented from accumulating in the exhaust pipe, and waste of fuel consumption is reduced.
  • An engine 10 shown in FIG. 1 is a diesel engine having an exhaust gas purification device 1.
  • the engine 10 includes a plurality of (for example, four) cylinders 11, an intake pipe 8, and an exhaust pipe 7.
  • the intake pipe 8 branches from one inlet and communicates with each cylinder 11.
  • the intake pipe 8 takes in fresh air (air) from the inlet and supplies it to each cylinder 11.
  • a flow rate detector 2 is provided in the intake pipe 8.
  • the flow rate detector 2 is an air flow meter, measures the flow rate of fresh air introduced from the intake pipe 8 into the engine 10, and transmits the air flow rate information to the control unit 6 as a detection signal.
  • An intake throttle valve 16 is provided downstream of the flow rate detector 2. The opening degree of the intake throttle valve 16 is transmitted to the control unit 6 by the throttle valve sensor 17 and controlled by a control signal from the control unit 6 via the throttle valve sensor 17.
  • the intake pipe 8 branches downstream of the intake throttle valve 16 and is connected to each cylinder 11.
  • Each cylinder 11 has a cylinder 11a and a piston 11b that moves in the cylinder 11a as shown in FIG.
  • a fuel injector 13 is provided in the cylinder 11.
  • the fuel injector 13 is connected to the fuel pump 14 via the common rail 15.
  • the fuel pump 14 is controlled by the control unit 6 to pump fuel from the fuel tank 12 and supply it to the fuel injector 13.
  • the fuel injector 13 is controlled by the control unit 6 to supply fuel to the combustion chamber in the cylinder 11.
  • the exhaust pipe 7 has an exhaust gas upstream pipe 7a, a first storage pipe 7b, a second storage pipe 7c, and an exhaust gas downstream pipe 7d as shown in FIG.
  • the exhaust gas upstream pipe 7a extends and collects from each cylinder 11 and is connected to the first storage pipe 7b.
  • the first storage pipe 7b has a larger diameter than the exhaust gas upstream pipe 7a and extends from the exhaust gas upstream pipe 7a.
  • the second storage tube 7c has a larger diameter than the first storage tube 7b and extends from the first storage tube 7b.
  • the exhaust gas downstream pipe 7d has a smaller diameter than the second storage pipe 7c and extends from the second storage pipe 7c.
  • An outlet for discharging the exhaust gas to the atmosphere is formed at the end of the exhaust gas downstream pipe 7d.
  • the exhaust gas purification apparatus 1 has a filter 4 and a regeneration mechanism.
  • the filter (DPF: Diesel Particular Filter) 4 is formed of ceramic, stainless steel or the like.
  • the filter 4 is stored in the second storage tube 7c.
  • the filter 4 allows passage of exhaust gas and captures particulate matter (PM) from the exhaust gas passing therethrough.
  • the regeneration mechanism is a mechanism for continuously regenerating the filter 4 and includes an oxidation catalyst 9 and an unburned fuel adder 3 as shown in FIG.
  • the oxidation catalyst 9 is stored in the first storage pipe 7 b upstream of the filter 4.
  • the oxidation catalyst 9 allows the exhaust gas to pass through and makes the nitrogen oxide (NOx) in the passing exhaust gas more nitrogen dioxide (NO2).
  • the oxidation catalyst 9 generates nitrogen dioxide at a predetermined temperature (for example, about 250 to 300 ° C.). Since nitrogen dioxide has a strong oxidizing action, the particulate matter deposited on the filter 4 is oxidized and removed (combusted) at a relatively low temperature (for example, about 200 ° C.).
  • the unburned fuel adder 3 is provided in the exhaust gas upstream pipe 7a upstream of the oxidation catalyst 9, as shown in FIG.
  • the unburned fuel adder 3 has a control valve connected to the fuel pump 14 and controlled by the control unit 6. When the control valve of the unburned fuel adder 3 is opened, unburned fuel is added from the fuel pump 14 to the exhaust gas in the exhaust pipe 7. The unburned fuel burns particulate matter deposited on the filter 4 in an atmosphere rich in nitrogen dioxide. Thereby, the filter 4 is continuously regenerated.
  • the exhaust pipe 7 is provided with an upstream exhaust gas temperature detector 5a, a downstream exhaust gas temperature detector 5b, and an A / F sensor 22, as shown in FIG.
  • the upstream side exhaust gas temperature detector 5a is a temperature sensor and is provided in the first storage pipe 7b.
  • the downstream exhaust gas temperature detector 5b is a temperature sensor and is provided in the second storage pipe 7c.
  • the upstream exhaust gas temperature detector 5 a detects the gas temperature of the exhaust gas upstream of the oxidation catalyst 9 and transmits the exhaust gas temperature information to the control unit 6 as a detection signal.
  • the downstream exhaust gas temperature detector 5 b detects the gas temperature of the exhaust gas downstream of the filter 4 and transmits the exhaust gas temperature information to the control unit 6 as a detection signal.
  • the A / F sensor 22 is provided in the exhaust gas downstream pipe 7d. The A / F sensor 22 detects the air-fuel ratio (the air mass divided by the fuel mass) and transmits the air-fuel ratio information to the control unit 6 as a detection signal.
  • the engine 10 is provided with an EGR (exhaust gas recirculation) system as shown in FIG.
  • the EGR system has an EGR pipe 18 and an EGR valve 19.
  • the EGR pipe 18 communicates the exhaust pipe 7 and the intake pipe 8 and returns a part of the exhaust gas discharged to the exhaust pipe 7 to the intake pipe 8.
  • the EGR valve 19 is controlled by the control unit 6 to adjust the opening, and adjusts the gas flow rate circulated by the EGR pipe 18.
  • the control unit 6 detects the air flow rate based on the opening amounts of the flow rate detector 2 and the EGR valve 19.
  • the control unit (ECU) 6 has a ROM for storing programs and data, a CPU for performing various processes, a RAM for storing processing results of the CPU, and an input / output port for exchanging information with the outside.
  • a rotational speed detector 20, an accelerator sensor 21, a throttle valve sensor 17, and the like are connected to the input port.
  • Rotational speed detector 20 has a position sensor that is provided in the vicinity of the crankshaft and detects the rotational position of the crankshaft, and detects the rotational speed of the crankshaft.
  • the rotational speed detector 20 transmits the rotational speed information of the crankshaft to the control unit 6 as a detection signal.
  • the accelerator sensor 21 is provided in the vicinity of the accelerator pedal and detects the amount by which the accelerator pedal is depressed.
  • the accelerator sensor 21 transmits accelerator pedal information corresponding to the amount of movement of the accelerator pedal to the control unit 6 as a detection signal.
  • the control unit 6 receives a signal from each device connected to the input port, and based on the received signal, the throttle valve sensor 17, the fuel injector 13, the fuel pump 14, and the unburned fuel adder connected to the output port. 3. Control the EGR valve 19 and the like.
  • the ROM of the control unit 6 stores a lower limit temperature threshold map used when executing filter regeneration.
  • the lower limit temperature threshold map is used for acquiring the lower limit temperature threshold used by the control unit 6 when determining whether or not unburned fuel is added to the exhaust gas.
  • the lower limit temperature threshold is a temperature at which the unburned fuel can be prevented from becoming liquid and collecting in the exhaust pipe 7 when the exhaust gas contacts the wall of the exhaust pipe 7.
  • the wall temperature of the exhaust pipe 7 depends on the exhaust gas temperature and the exhaust gas flow rate.
  • the wall temperature of the exhaust pipe 7 and the temperature of the exhaust gas usually have a difference, and the difference differs depending on the exhaust gas flow rate (air flow rate). That is, when the flow rate of the exhaust gas is small, the amount of the exhaust gas that contacts the wall of the exhaust pipe 7 is small, and the amount of energy for heat exchange is small. Therefore, the difference between the wall temperature of the exhaust pipe 7 and the temperature of the exhaust gas is large, and the wall temperature of the exhaust pipe 7 is lowered. On the other hand, when the flow rate of the exhaust gas is large, the amount of exhaust gas coming into contact with the wall of the exhaust pipe 7 is large, and the amount of energy for heat exchange is large. Therefore, the difference between the wall temperature of the exhaust pipe 7 and the temperature of the exhaust gas is reduced, and the wall temperature of the exhaust pipe 7 is increased.
  • the exhaust gas temperature may be relatively low when the exhaust gas flow rate (air flow rate) is large.
  • the temperature of the exhaust gas needs to be relatively high.
  • FIG. 2 in order to set the wall temperature of the exhaust pipe 7 to the temperature line 26 or higher, it is necessary to set the temperature of the exhaust gas to a region above the exhaust gas threshold temperature line 24 (PM regeneration addition possible region 25). There is.
  • the exhaust gas threshold temperature line 24 has a wider area where PM regeneration can be added as the air flow rate increases.
  • the PM regeneration addition possible region 25 on the upper side of the exhaust gas threshold temperature line 24 when unburned fuel is added, the fuel does not accumulate in the exhaust pipe 7, or the amount that accumulates is very small.
  • the lower region of the exhaust gas threshold temperature line 24 when unburned fuel is added to the exhaust gas, the unburned fuel tends to accumulate in the exhaust pipe 7.
  • the lower limit temperature threshold map is a map corresponding to FIG.
  • the control unit 6 determines the exhaust gas threshold temperature, which is the lower limit temperature threshold, from the air flow rate using the lower limit temperature threshold map.
  • the control unit 6 controls the unburned fuel adder 3 to add the unburned fuel to the exhaust gas.
  • the unburned fuel adder 3 is controlled so that the unburned fuel is not added to the exhaust gas.
  • the unburned fuel can be added to the exhaust gas in a temperature range that does not accumulate in the exhaust pipe 7 and in a wide range.
  • the accumulation of unburned fuel in the exhaust pipe 7 can be suppressed, and the generation of white smoke that can be generated when the accumulated unburned fuel is ejected into the atmosphere can be suppressed.
  • the process for regenerating the filter 4 will be described with reference to FIG. First, when it is determined that the filter needs to be regenerated based on the output of a differential pressure sensor (not shown) that measures the differential pressure across the filter 4, the control unit 6 starts the process of regenerating the filter 4.
  • the control unit 6 obtains the exhaust gas temperature based on the transmission signal of the upstream side exhaust gas temperature detector 5a (step S1).
  • the control unit 6 obtains the air flow rate based on the transmission signals from the flow rate detector 2 and the EGR valve 19 (step S2).
  • the control unit 6 obtains the exhaust gas temperature threshold from the air flow rate using the lower limit temperature threshold map (step S3).
  • the control unit 6 determines whether or not the temperature of the exhaust gas is higher than an exhaust gas temperature threshold value (step S4).
  • step S4 When the control unit 6 determines in step S4 that the temperature of the exhaust gas is higher than the exhaust gas temperature threshold, the control unit 6 permits the addition of PM regeneration (step S5). Then, the unburned fuel adder 3 is controlled so that the value of the downstream side exhaust gas temperature detector 5b falls within a predetermined range, and unburned fuel is added to the exhaust gas in the exhaust pipe 7 for a certain period (step).
  • step S6 Return to step 1.
  • step S4 when the control unit 6 determines that the temperature of the exhaust gas is lower than the exhaust gas temperature threshold in step S4, the control unit 6 prohibits the PM regeneration addition and closes the control valve of the unburned fuel adder 3. . Thereby, unburned fuel is not added to the exhaust gas in the exhaust pipe 7 (step S7). Then, the process returns to step S1.
  • Steps S1 to S7 are repeated until playback is completed.
  • the control unit 6 determines that the process of regenerating the filter 4 is completed (PM regeneration end) by the output of the differential pressure sensor as a result of the addition of unburned fuel in step S6, the process proceeds to step S8 and this process is terminated. To do.
  • the process for regenerating the filter 4 may be the process shown in FIG. 4 instead of FIG.
  • the control unit 6 when the control unit 6 first determines that the filter needs to be regenerated based on the output of a differential pressure sensor (not shown) that measures the pressure difference across the filter 4, the control unit 6 regenerates the filter 4. Start the process.
  • the control unit 6 obtains the exhaust gas temperature from the transmission signal of the upstream side exhaust gas temperature detector 5a (step S11).
  • the control unit 6 obtains the air flow rate from the transmission signals of the flow rate detector 2 and the EGR valve 19 (step S12).
  • the control unit 6 estimates the wall temperature of the exhaust pipe 7 from the exhaust gas temperature and the air flow rate (step S13).
  • the wall temperature is determined by using a calculation formula or a map from the exhaust gas temperature and the air flow rate, for example.
  • the control unit 6 obtains the wall temperature threshold value as the lower limit temperature threshold value using the wall temperature threshold value map (step S14).
  • the wall temperature threshold value map is stored in the ROM of the control unit 6 as a map determined in advance from, for example, the rotational speed detector 20, the accelerator sensor 21, the vehicle speed, and the like.
  • the control unit 6 obtains the wall temperature threshold using the wall temperature threshold map.
  • the control unit 6 determines whether or not the estimated wall temperature of the exhaust pipe 7 is higher than the wall temperature threshold (step S15).
  • control unit 6 determines that the wall temperature of the exhaust pipe 7 estimated in step S15 is higher than the wall temperature threshold, the control unit 6 permits PM regeneration addition (step S16). Then, the unburned fuel adder 3 is controlled to add the unburned fuel to the exhaust gas for a certain period so that the value of the downstream side exhaust gas temperature detector 5b falls within a predetermined range (step S17), and step S11. Return to.
  • step S15 When the control unit 6 determines that the wall temperature of the exhaust pipe 7 estimated in step S15 is lower than the wall temperature threshold, the control unit 6 prohibits PM regeneration addition and closes the control valve of the unburned fuel adder 3. . Thereby, unburned fuel is not added to exhaust gas (step S17). Then, the process returns to step S11.
  • Steps S11 to S18 are repeated until the reproduction is completed. If the control unit 6 determines that the process of regenerating the filter 4 is completed (PM regeneration end) by the output of the differential pressure sensor as a result of the addition of unburned fuel in step S17, the process proceeds to step S19, and this process is terminated. .
  • FIG. 5 shows the results of comparison of the regeneration of the filter 4 according to the present embodiment and the regeneration of the filter 4 according to the comparative embodiment.
  • the filter 4 is regenerated by lowering the lower limit temperature threshold as the air flow rate increases.
  • the lower limit temperature threshold is not a high temperature as shown by the temperature line 27 in FIG. 2, and even if the air flow rate is small, a relatively high temperature is set so that the amount of unburned fuel collected in the exhaust pipe 7 is small. To make it constant.
  • FIG. 5 shows a regeneration state when the vehicle is driven with a large air flow rate by the engine 10 and the temperature of the exhaust gas changes.
  • the regeneration process of the filter 4 is performed in the region 31.
  • the regeneration process of the filter 4 is performed in the region 32.
  • the particulate matter deposited on the filter 4 decreased in proportion to the regeneration processing time, and decreased according to the line 33 in FIG. 5 in this embodiment, and decreased according to the line 34 in the comparative embodiment. Therefore, this embodiment can finish the regeneration of the particulate matter deposited on the filter 4 earlier than the comparative embodiment.
  • the exhaust gas purification apparatus 1 includes the exhaust pipe 7, the filter 4, and the regeneration mechanism as shown in FIG.
  • the filter 4 is provided in the exhaust pipe 7 and collects particulate matter contained in the exhaust gas.
  • the regeneration mechanism removes the particulate matter deposited on the filter 4.
  • the regeneration mechanism includes an unburned fuel adder 3, an exhaust gas temperature detector (upstream exhaust gas temperature detector 5 a), a flow rate detector 2, and a control unit 6.
  • the unburned fuel adder 3 adds unburned fuel to the exhaust gas upstream of the filter 4.
  • the exhaust gas temperature detector detects the temperature of the exhaust gas.
  • the flow rate detector 2 detects the flow rate of air supplied to the engine 10.
  • the control unit 6 determines a lower limit temperature threshold value based on the air flow rate obtained from the opening amounts of the flow rate detector 2 and the EGR valve 19. Further, the control unit 6 controls the unburned fuel adder 3 to add unburned fuel to the exhaust gas when the temperature obtained from the temperature of the exhaust gas obtained from the exhaust gas temperature detector is higher than the lower limit temperature threshold. .
  • the inventor may store the unburned fuel in a liquid state on the wall of the exhaust pipe 7. Noticed.
  • the inventor has also noted that the wall temperature of the exhaust pipe 7 approaches the temperature of the exhaust gas as the flow rate of the exhaust gas (air) flowing through the exhaust pipe 7 increases. That is, as the flow rate of the exhaust gas flowing through the exhaust pipe 7 increases, the amount of exhaust gas that touches the wall of the exhaust pipe 7 increases, and the amount of heat transferred from the exhaust gas to the wall of the exhaust pipe 7 increases.
  • the wall temperature of the exhaust pipe 7 approaches the temperature of the exhaust gas, and the wall temperature of the exhaust pipe 7 increases.
  • the flow rate of the exhaust gas is small, the exhaust gas mainly passes through the central portion of the exhaust pipe 7 and the amount of the exhaust gas that touches the wall of the exhaust pipe 7 decreases, so the wall temperature of the exhaust pipe 7 and the exhaust gas The difference from the temperature increases.
  • the unburned fuel is added when the condition that the wall temperature of the exhaust pipe 7 is equal to or higher than a predetermined value is satisfied. That is, the wall temperature of the exhaust pipe 7 changes not only according to the temperature of the exhaust gas but also according to the flow rate of the exhaust gas, that is, the air flow rate.
  • the control unit 6 determines a lower limit temperature threshold value as a temperature corresponding to the air flow rate, compares the lower limit temperature threshold value with a temperature related to the exhaust gas temperature, and determines whether or not to add unburned fuel. . Therefore, unburned fuel can be added when the wall temperature of the exhaust pipe 7 becomes a predetermined temperature or higher.
  • region which can add unburned fuel can be made wider compared with the form which does not judge whether unburned fuel is added irrespective of an air flow rate. Therefore, the time for burning the particulate matter can be extended, and the filter 4 can be effectively regenerated. Further, unburned fuel can be prevented from accumulating in the exhaust pipe 7, and waste of fuel consumption can be reduced by terminating regeneration earlier.
  • the regeneration of the filter 4 of this embodiment is performed in consideration of the wall temperature of the exhaust pipe 7 in order to avoid unburned fuel from accumulating in the exhaust pipe 7.
  • the filter 4 is regenerated using the temperature of the exhaust gas without directly detecting the wall temperature of the exhaust pipe 7. Therefore, without using a sensor that is not easily mounted on the wall of the exhaust pipe 7, regeneration can be performed in consideration of the wall temperature of the exhaust pipe 7 using the temperature of the exhaust gas.
  • the control unit 6 has a control to decrease the lower limit temperature threshold as the air flow rate increases. Therefore, unburned fuel can be added corresponding to the wall temperature of the exhaust pipe 7. That is, the wall temperature of the exhaust pipe 7 becomes closer to the temperature of the exhaust gas as the air flow rate increases. Conversely, the exhaust gas temperature or the like necessary for setting the wall temperature of the exhaust pipe 7 to be equal to or higher than a predetermined temperature decreases as the air flow rate increases. Therefore, unburned fuel can be added in a wide area
  • the control unit 6 stores a map for determining the exhaust gas temperature threshold as the lower limit temperature threshold.
  • the control unit 6 adds the unburned fuel to the exhaust gas when the temperature of the exhaust gas obtained from the upstream side exhaust gas temperature detector 5a is higher than the exhaust gas temperature threshold (see FIG. 3). Therefore, the control unit 6 determines whether or not unburned fuel can be added based on the temperature of the exhaust gas.
  • the control unit 6 estimates the wall temperature of the exhaust pipe 7 from the air flow rate obtained from the flow rate detector 2 and the EGR valve 19 and the exhaust gas temperature obtained from the upstream side exhaust gas temperature detector 5a. To do.
  • the control unit 6 determines a wall temperature threshold value as a lower limit temperature threshold value from conditions other than the estimated wall temperature of the exhaust pipe 7 and the air flow rate.
  • the control unit 6 controls the unburned fuel adder 3 to add unburned fuel to the exhaust gas. Therefore, the control unit 6 determines whether or not unburned fuel can be added based on the wall temperature of the exhaust pipe 7.
  • the flow rate detector 2 uses an air flow meter that detects the flow rate of fresh air supplied to the engine 10. Accordingly, the air flow rate is directly measured by an air flow meter.
  • the exhaust pipe 7 has a portion having a different diameter downstream of the unburned fuel adder 3.
  • the exhaust gas upstream pipe 7a, the first storage pipe 7b, the second storage pipe 7c, and the exhaust gas downstream pipe 7d have mutually different diameters.
  • a portion where the flow of the exhaust gas is slow tends to occur, and there is a high possibility that the unburned fuel will accumulate as a liquid in the portion where the flow is slow.
  • the unburned fuel is added in consideration of the wall temperature of the exhaust pipe 7 so that the unburned fuel does not accumulate as a liquid.
  • the exhaust gas purification device 1 may have an air flow meter that detects the flow rate of air supplied to the engine as the flow rate detector 2 as in the above embodiment. Instead of this, the exhaust gas purification apparatus 1 may have an air flow meter that detects the flow rate of air discharged from the engine upstream of the unburned fuel adder 3.
  • the exhaust gas purifying apparatus 1 may use a temperature sensor and a supercharging pressure sensor instead of the flow rate detector 2 and the EGR valve 19 that detect the air flow rate.
  • the temperature sensor is provided upstream of the cylinder 11 and detects the temperature of the intake air.
  • the supercharging pressure sensor is provided upstream of the cylinder 11 and detects the pressure upstream of the cylinder 11 pressurized by a supercharger (not shown).
  • the temperature sensor and the supercharging pressure sensor transmit detection information to the control unit 6 as a detection signal.
  • the control unit 6 calculates the air flow rate from the pressure, the temperature, and the engine speed.
  • the engine speed is obtained from the rotational speed from the rotational speed detector 20.
  • the exhaust gas purification device 1 may use an A / F sensor 22 as the flow rate detector 2 that detects the air flow rate. That is, the A / F sensor 22 obtains the air-fuel ratio. A fuel injection amount injected into the cylinder 11 by the fuel injector 13 is obtained. The control unit 6 may calculate the air flow rate from the air-fuel ratio and the fuel injection amount.
  • the unburned fuel adder 3 may add unburned fuel into the exhaust gas of the exhaust pipe 7 as shown in FIG. Instead, the unburned fuel adder 3 may post-inject unburned fuel into the cylinder 11 after the combustion stroke.
  • the exhaust gas temperature detector (upstream exhaust gas temperature detector 5a) may be provided on the second storage pipe 7c of the exhaust pipe 7 or on the upstream side of the filter 4 as shown in FIG. Instead, an exhaust gas temperature detector may be provided in another place of the exhaust pipe 7.
  • the control unit 6 may perform the following control in addition to the above control. That is, the control unit 6 determines whether or not the heat removal due to the exhaust gas is greater than the temperature rise of the filter 4 due to the addition of unburned fuel. For example, the control unit 6 makes the determination from the detection value of the downstream side exhaust gas temperature detector 5b. When it is determined that heat removal is large, the control unit 6 stops adding unburned fuel.
  • the regeneration mechanism of the exhaust gas purification device 1 may burn the particulate matter deposited on the filter 4 in an atmosphere rich in nitrogen dioxide or burn in an oxygen atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An exhaust gas purification device (1) has an exhaust pipe (7), a filter (4), and a regeneration mechanism. The filter (4) is provided in the exhaust pipe (7) and collects particulates included in exhaust gas. The regeneration mechanism removes particulates accumulated on the filter (4). The regeneration mechanism has an unburned fuel adding device (3), an upstream side exhaust gas temperature detector (5a), a flow detector (2), and a control unit (6). The unburned fuel adding device (3) adds an unburned fuel to exhaust gas at the upstream of the filter (4). The upstream side exhaust gas temperature detector (5a) detects the temperature of the exhaust gas. The flow detector (2) detects an airflow quantity supplied to an engine (10). The control unit (6) determines a lower limit temperature threshold value according to the airflow quantity obtained from the opening degrees of the flow detector (2) and an EGR valve (19). When the temperature obtained from the temperature of the exhaust gas obtained by the upstream side exhaust gas temperature detector (5a) is higher than the lower limit temperature threshold value, the control unit (6) further controls the unburned fuel adding device (3) and adds the unburned fuel to the exhaust gas.

Description

排気ガス浄化装置Exhaust gas purification device
 本発明は、エンジンの排気ガスを浄化する排気ガス浄化装置に関する。 The present invention relates to an exhaust gas purification device for purifying exhaust gas of an engine.
 排気ガス浄化装置は、例えば排気管と、排気管に設けられて排気ガス中に含まれる粒子状物質を捕集するフィルタと、フィルタに堆積した粒子状物質を除去する再生機構を有する。再生機構は、排気ガスに未燃燃料を添加する未燃燃料添加器を有し、フィルタに堆積した粒子状物質を未燃燃料によって燃焼させる。特開2007-321614号公報に記載の再生機構は、フィルタの上流側に設けられるNOx触媒と、排気ガス温度から触媒の床温を推定する制御ユニットを有する。制御ユニットは、推定した触媒の床温に応じた空気量の上限流量閾値を決定し、上限流量閾値よりもエンジンの吸気量が多い場合に未燃燃料の添加量を少なくするように未燃燃料添加器を制御する。これにより未燃燃料が十分に酸化されずに排出されることを抑制する。 The exhaust gas purification device has, for example, an exhaust pipe, a filter that is provided in the exhaust pipe and collects particulate matter contained in the exhaust gas, and a regeneration mechanism that removes particulate matter accumulated on the filter. The regeneration mechanism includes an unburned fuel adder that adds unburned fuel to the exhaust gas, and burns particulate matter deposited on the filter with the unburned fuel. The regeneration mechanism described in Japanese Patent Application Laid-Open No. 2007-321614 has a NOx catalyst provided on the upstream side of the filter and a control unit that estimates the catalyst bed temperature from the exhaust gas temperature. The control unit determines an upper limit flow rate threshold of the air amount according to the estimated catalyst bed temperature, and reduces the amount of unburned fuel to be added when the intake air amount of the engine is larger than the upper limit flow rate threshold. Control the adder. This suppresses that unburned fuel is discharged without being sufficiently oxidized.
 特開2005-83252号公報に記載の再生機構は、フィルタの上流側に設けられるNOx触媒と、エンジン始動時からの総吸気量を算出する制御ユニットを有する。制御ユニットは、他の再生条件が満たされた時に総吸気量が基準値より多い場合に未燃燃料添加器を制御して未燃燃料を添加することで排気ガス浄化装置の再生を行い、少ない場合に未燃燃料を添加しない。これにより総吸気量が多い場合は、粒子状物質が燃焼した時に、排気ガスがフィルタから熱を持ち去る量が多いため、フィルタが高温限度を超えることが避けられる。総吸気量が少ない場合は、排気ガスがフィルタから熱を持ち去る量が少ないので、未燃燃料を添加せずフィルタの再生を行わないことによって高温限度を超えることが避けられる。かくして高温限度を超えることでフィルタの浄化機能が低下することが抑制され得る。 The regeneration mechanism described in Japanese Patent Application Laid-Open No. 2005-83252 has a NOx catalyst provided on the upstream side of the filter and a control unit that calculates the total intake amount from the time of engine startup. The control unit regenerates the exhaust gas purification device by adding the unburned fuel by controlling the unburned fuel adder when the total intake amount is larger than the reference value when other regeneration conditions are satisfied, and there is little Do not add unburned fuel. As a result, when the total intake air amount is large, the exhaust gas takes a large amount of heat away from the filter when the particulate matter burns, so that the filter can be prevented from exceeding the high temperature limit. When the total amount of intake air is small, the amount of exhaust gas carrying away heat from the filter is small, so that it is possible to avoid exceeding the high temperature limit by not adding unburned fuel and not regenerating the filter. Thus, it can be suppressed that the purification function of the filter is deteriorated by exceeding the high temperature limit.
 フィルタをさらに効率良く再生できる排気ガス浄化装置が従来必要とされている。 There has been a need for an exhaust gas purification device that can regenerate the filter more efficiently.
 1つの特徴によると本発明は、排気管とフィルタと再生機構を有する。フィルタは、排気管に設けられて排気ガス中に含まれる粒子状物質を捕集する。再生機構は、フィルタに堆積した粒子状物質を除去する。再生機構は、未燃燃料添加器と排気ガス温度検出器と空気流量検出器と制御ユニットを有する。未燃燃料添加器は、フィルタの上流において排気ガスに未燃燃料を添加する。排気ガス温度検出器は、排気ガスの温度を検出する。空気流量検出器は、エンジンに供給される空気流量またはエンジンから排出される空気流量を検出する。制御ユニットは、空気流量検出器から得た空気流量に基づいて下限温度閾値を決定する。さらに制御ユニットは、排気ガス温度検出器から得た排気ガスの温度が下限温度閾値よりも高い場合に未燃燃料添加器を制御して未燃燃料を排気ガスに添加する。 According to one characteristic, the present invention includes an exhaust pipe, a filter, and a regeneration mechanism. The filter is provided in the exhaust pipe and collects particulate matter contained in the exhaust gas. The regeneration mechanism removes particulate matter deposited on the filter. The regeneration mechanism includes an unburned fuel adder, an exhaust gas temperature detector, an air flow rate detector, and a control unit. The unburned fuel adder adds unburned fuel to the exhaust gas upstream of the filter. The exhaust gas temperature detector detects the temperature of the exhaust gas. The air flow rate detector detects an air flow rate supplied to the engine or an air flow rate discharged from the engine. The control unit determines the lower limit temperature threshold based on the air flow rate obtained from the air flow rate detector. Further, the control unit controls the unburned fuel adder to add the unburned fuel to the exhaust gas when the temperature of the exhaust gas obtained from the exhaust gas temperature detector is higher than the lower limit temperature threshold.
 本発明者は、誠意研究した結果、排気管の壁温度が所定温度よりも低い場合に、例えば未燃燃料の沸点よりも低い場合に、未燃燃料が排気管の壁に液状として溜まる場合があることに気付いた。また本発明者は、排気管を流れる排気ガス(空気)の流量が多いほど、排気管の壁温度が排気ガス温度検出器の検出する排気ガスの温度に近くなることに着目した。すなわち排気管を流れる排気ガスの流量が多いほど、排気ガスが排気管の壁に触れる量が大きくなり、排気ガスから排気管の壁に熱が移動する量が多くなる。したがって排気管を流れる排気ガスの流量が多いほど、排気管の壁温度は排気ガスの温度に近くなり、排気管の壁温度が高くなる。一方、排気ガスの流量が少ない場合、排気ガスは主に排気管の中心部を通過し、排気ガスが排気管の壁に触れる量が減少するので、排気管の壁温度と排気ガスの温度との差が大きくなる。 As a result of sincerity research, the present inventor has found that when the wall temperature of the exhaust pipe is lower than a predetermined temperature, for example, when the temperature is lower than the boiling point of the unburned fuel, the unburned fuel may accumulate in the exhaust pipe wall as a liquid. I realized that there was. The inventor has also noted that the higher the flow rate of exhaust gas (air) flowing through the exhaust pipe, the closer the wall temperature of the exhaust pipe becomes to the temperature of the exhaust gas detected by the exhaust gas temperature detector. That is, as the flow rate of the exhaust gas flowing through the exhaust pipe increases, the amount of the exhaust gas that touches the wall of the exhaust pipe increases, and the amount of heat transferred from the exhaust gas to the wall of the exhaust pipe increases. Therefore, as the flow rate of the exhaust gas flowing through the exhaust pipe increases, the wall temperature of the exhaust pipe approaches the temperature of the exhaust gas, and the wall temperature of the exhaust pipe increases. On the other hand, when the flow rate of the exhaust gas is small, the exhaust gas mainly passes through the center of the exhaust pipe, and the amount of the exhaust gas that touches the wall of the exhaust pipe decreases. The difference becomes larger.
 本発明によると、排気管の壁温度が所定温度以上になる条件を満たした際に未燃燃料を添加する。すなわち排気管の壁温度は、排気ガスの温度のみならず排気ガスの流量すなわち空気流量に応じて変化する。これに対して制御ユニットは、空気流量に応じる温度として下限温度閾値を決定し、下限温度閾値と排気ガス温度に関連する温度を比較して、未燃燃料を添加するか否かを決定する。そのため排気管の壁温度が所定温度以上になった際に未燃燃料を添加し得る。また空気流量に応じて未燃燃料を添加するため、空気流量に係らずに未燃燃料を添加するか否かを判断しない形態に比べて、未燃燃料を添加し得る領域を広くし得る。そのため粒子状物質を燃焼させる再生時間を長くすることができ、フィルタを効果的に再生し得る。また排気管に未燃燃料が溜まることを避けることができ、燃料消費の無駄が少なくなる。 According to the present invention, the unburned fuel is added when the condition that the wall temperature of the exhaust pipe reaches a predetermined temperature or more is satisfied. That is, the wall temperature of the exhaust pipe changes not only according to the temperature of the exhaust gas but also according to the flow rate of the exhaust gas, that is, the air flow rate. On the other hand, the control unit determines a lower limit temperature threshold value as a temperature corresponding to the air flow rate, compares the lower limit temperature threshold value with a temperature related to the exhaust gas temperature, and determines whether or not to add unburned fuel. Therefore, unburned fuel can be added when the wall temperature of the exhaust pipe becomes equal to or higher than a predetermined temperature. Moreover, since unburned fuel is added according to an air flow rate, the area | region which can add unburned fuel can be made wider compared with the form which does not judge whether unburned fuel is added irrespective of an air flow rate. Therefore, the regeneration time for burning the particulate matter can be extended, and the filter can be effectively regenerated. Further, unburned fuel can be prevented from accumulating in the exhaust pipe, and waste of fuel consumption is reduced.
排気ガス浄化装置を搭載したエンジンの構成図である。It is a block diagram of the engine carrying an exhaust-gas purification apparatus. 下限温度閾値を示す流量―温度線図である。It is a flow volume-temperature diagram which shows a minimum temperature threshold value. フィルタ再生のフローチャートである。It is a flowchart of filter reproduction | regeneration. フィルタ再生の他のフローチャートである。It is another flowchart of filter reproduction. 車両走行時におけるフィルタ再生と堆積PM量を示す図である。It is a figure which shows filter reproduction | regeneration and accumulated PM amount at the time of vehicle travel.
 本発明の一つの実施の形態を図1~5にしたがって説明する。図1に示すエンジン10は、排気ガス浄化装置1を有するディーゼルエンジンである。エンジン10は、複数(例えば4つ)の気筒11と吸気管8と排気管7を有する。 One embodiment of the present invention will be described with reference to FIGS. An engine 10 shown in FIG. 1 is a diesel engine having an exhaust gas purification device 1. The engine 10 includes a plurality of (for example, four) cylinders 11, an intake pipe 8, and an exhaust pipe 7.
 吸気管8は、図1に示すように一つの入口から分岐して各気筒11に連通する。吸気管8は、入口から新気(空気)を取り込み、各気筒11に供給する。吸気管8には流量検出器2が設けられる。流量検出器2は、エアフローメータであって、吸気管8からエンジン10に導入される新気の流量を測定し、空気流量情報を制御ユニット6に検知信号として発信する。流量検出器2の下流に吸気絞り弁16が設けられる。吸気絞り弁16の開度は、絞り弁センサ17によって制御ユニット6に発信され、絞り弁センサ17を介して制御ユニット6からの制御信号によって制御される。吸気管8は、吸気絞り弁16の吸気下流において分岐して各気筒11に接続される。 As shown in FIG. 1, the intake pipe 8 branches from one inlet and communicates with each cylinder 11. The intake pipe 8 takes in fresh air (air) from the inlet and supplies it to each cylinder 11. A flow rate detector 2 is provided in the intake pipe 8. The flow rate detector 2 is an air flow meter, measures the flow rate of fresh air introduced from the intake pipe 8 into the engine 10, and transmits the air flow rate information to the control unit 6 as a detection signal. An intake throttle valve 16 is provided downstream of the flow rate detector 2. The opening degree of the intake throttle valve 16 is transmitted to the control unit 6 by the throttle valve sensor 17 and controlled by a control signal from the control unit 6 via the throttle valve sensor 17. The intake pipe 8 branches downstream of the intake throttle valve 16 and is connected to each cylinder 11.
 各気筒11は、図1に示すようにシリンダ11aとシリンダ11a内を移動するピストン11bを有する。気筒11に燃料噴射器13が設けられる。燃料噴射器13は、コモンレール15を介して燃料ポンプ14に接続される。燃料ポンプ14は、制御ユニット6によって制御されて、燃料を燃料タンク12から汲み上げ、燃料噴射器13に供給する。燃料噴射器13は、制御ユニット6によって制御されて、気筒11内の燃焼室に燃料を供給する。 Each cylinder 11 has a cylinder 11a and a piston 11b that moves in the cylinder 11a as shown in FIG. A fuel injector 13 is provided in the cylinder 11. The fuel injector 13 is connected to the fuel pump 14 via the common rail 15. The fuel pump 14 is controlled by the control unit 6 to pump fuel from the fuel tank 12 and supply it to the fuel injector 13. The fuel injector 13 is controlled by the control unit 6 to supply fuel to the combustion chamber in the cylinder 11.
 排気管7は、図1に示すように排気ガス上流管7a、第一収納管7b、第二収納管7c、排気ガス下流管7dを有する。排気ガス上流管7aは、各気筒11から延出しかつ集合し、第一収納管7bに接続される。第一収納管7bは、排気ガス上流管7aよりも径が大きく、排気ガス上流管7aから延出する。第二収納管7cは、第一収納管7bよりも径が大きく、第一収納管7bから延出する。排気ガス下流管7dは、第二収納管7cよりも径が小さく、第二収納管7cから延出する。排気ガス下流管7dの端部には、排気ガスを大気に放出する出口が形成される。 The exhaust pipe 7 has an exhaust gas upstream pipe 7a, a first storage pipe 7b, a second storage pipe 7c, and an exhaust gas downstream pipe 7d as shown in FIG. The exhaust gas upstream pipe 7a extends and collects from each cylinder 11 and is connected to the first storage pipe 7b. The first storage pipe 7b has a larger diameter than the exhaust gas upstream pipe 7a and extends from the exhaust gas upstream pipe 7a. The second storage tube 7c has a larger diameter than the first storage tube 7b and extends from the first storage tube 7b. The exhaust gas downstream pipe 7d has a smaller diameter than the second storage pipe 7c and extends from the second storage pipe 7c. An outlet for discharging the exhaust gas to the atmosphere is formed at the end of the exhaust gas downstream pipe 7d.
 図1に示すように排気ガス浄化装置1は、フィルタ4と再生機構を有する。フィルタ(DPF:Diesel Particular Filter)4は、セラミック、ステンレス等から形成される。フィルタ4は、第二収納管7cに収納される。フィルタ4は、排気ガスの通過を許容し、通過する排気ガスから粒子状物質(PM:Particulate Matter)を捕捉する。 As shown in FIG. 1, the exhaust gas purification apparatus 1 has a filter 4 and a regeneration mechanism. The filter (DPF: Diesel Particular Filter) 4 is formed of ceramic, stainless steel or the like. The filter 4 is stored in the second storage tube 7c. The filter 4 allows passage of exhaust gas and captures particulate matter (PM) from the exhaust gas passing therethrough.
 再生機構は、フィルタ4を連続して再生させる機構であって、図1に示すように酸化触媒9と未燃燃料添加器3を有する。酸化触媒9は、フィルタ4の上流の第一収納管7bに収納される。酸化触媒9は、排気ガスが通過することを許容し、通過する排気ガス中の窒素酸化物(NOx)をより二酸化窒素(NO2)の多い状態にする。酸化触媒9は、所定温度(例えば250―300℃程度)において二酸化窒素を生成する。二酸化窒素は、強い酸化作用を有するため、フィルタ4に堆積した粒子状物質を比較的低い温度(例えば約200℃)にて酸化除去する(燃焼させる)。 The regeneration mechanism is a mechanism for continuously regenerating the filter 4 and includes an oxidation catalyst 9 and an unburned fuel adder 3 as shown in FIG. The oxidation catalyst 9 is stored in the first storage pipe 7 b upstream of the filter 4. The oxidation catalyst 9 allows the exhaust gas to pass through and makes the nitrogen oxide (NOx) in the passing exhaust gas more nitrogen dioxide (NO2). The oxidation catalyst 9 generates nitrogen dioxide at a predetermined temperature (for example, about 250 to 300 ° C.). Since nitrogen dioxide has a strong oxidizing action, the particulate matter deposited on the filter 4 is oxidized and removed (combusted) at a relatively low temperature (for example, about 200 ° C.).
 未燃燃料添加器3は、図1に示すように酸化触媒9の上流の排気ガス上流管7aに設けられる。未燃燃料添加器3は、燃料ポンプ14に接続され、制御ユニット6によって制御される制御弁を有する。未燃燃料添加器3の制御弁が開くことで、燃料ポンプ14から排気管7内の排気ガスに未燃燃料が添加される。未燃燃料は、フィルタ4に堆積した粒子状物質を二酸化窒素の多い雰囲気にて燃焼させる。これによりフィルタ4が連続して再生される。 The unburned fuel adder 3 is provided in the exhaust gas upstream pipe 7a upstream of the oxidation catalyst 9, as shown in FIG. The unburned fuel adder 3 has a control valve connected to the fuel pump 14 and controlled by the control unit 6. When the control valve of the unburned fuel adder 3 is opened, unburned fuel is added from the fuel pump 14 to the exhaust gas in the exhaust pipe 7. The unburned fuel burns particulate matter deposited on the filter 4 in an atmosphere rich in nitrogen dioxide. Thereby, the filter 4 is continuously regenerated.
 排気管7には、図1に示すように上流側排気ガス温度検出器5aと下流側排気ガス温度検出器5bとA/Fセンサ22が設けられる。上流側排気ガス温度検出器5aは、温度センサであって、第一収納管7bに設けられる。下流側排気ガス温度検出器5bは、温度センサであって、第二収納管7cに設けられる。 The exhaust pipe 7 is provided with an upstream exhaust gas temperature detector 5a, a downstream exhaust gas temperature detector 5b, and an A / F sensor 22, as shown in FIG. The upstream side exhaust gas temperature detector 5a is a temperature sensor and is provided in the first storage pipe 7b. The downstream exhaust gas temperature detector 5b is a temperature sensor and is provided in the second storage pipe 7c.
 上流側排気ガス温度検出器5aは、酸化触媒9の上流側の排気ガスのガス温度を検出して、排気ガス温度情報を制御ユニット6に検知信号として発信する。下流側排気ガス温度検出器5bは、フィルタ4の下流側の排気ガスのガス温度を検出して、排気ガス温度情報を制御ユニット6に検知信号として発信する。A/Fセンサ22は、排気ガス下流管7dに設けられる。A/Fセンサ22は、空燃比(空気質量を燃料質量で割ったもの)を検出して、空燃比情報を制御ユニット6に検知信号として発信する。 The upstream exhaust gas temperature detector 5 a detects the gas temperature of the exhaust gas upstream of the oxidation catalyst 9 and transmits the exhaust gas temperature information to the control unit 6 as a detection signal. The downstream exhaust gas temperature detector 5 b detects the gas temperature of the exhaust gas downstream of the filter 4 and transmits the exhaust gas temperature information to the control unit 6 as a detection signal. The A / F sensor 22 is provided in the exhaust gas downstream pipe 7d. The A / F sensor 22 detects the air-fuel ratio (the air mass divided by the fuel mass) and transmits the air-fuel ratio information to the control unit 6 as a detection signal.
 エンジン10には、図1に示すようにEGR(排気ガス再循環)システムが設けられる。EGRシステムは、EGR管18とEGR弁19を有する。EGR管18は、排気管7と吸気管8を連通して、排気管7に排出された排気ガスの一部を吸気管8に戻す。EGR弁19は、制御ユニット6によって制御されて開度が調整され、EGR管18によって循環するガス流量を調整する。制御ユニット6は、流量検出器2とEGR弁19の開度により空気流量を検出する。 The engine 10 is provided with an EGR (exhaust gas recirculation) system as shown in FIG. The EGR system has an EGR pipe 18 and an EGR valve 19. The EGR pipe 18 communicates the exhaust pipe 7 and the intake pipe 8 and returns a part of the exhaust gas discharged to the exhaust pipe 7 to the intake pipe 8. The EGR valve 19 is controlled by the control unit 6 to adjust the opening, and adjusts the gas flow rate circulated by the EGR pipe 18. The control unit 6 detects the air flow rate based on the opening amounts of the flow rate detector 2 and the EGR valve 19.
 制御ユニット(ECU)6は、プログラムとデータを記憶するROM、各種処理を行うCPU、CPUの処理結果等を記憶するRAM、外部との情報のやり取りを行う入・出力ポートを有する。入力ポートに回転速度検知器20とアクセルセンサ21と絞り弁センサ17等が接続される。 The control unit (ECU) 6 has a ROM for storing programs and data, a CPU for performing various processes, a RAM for storing processing results of the CPU, and an input / output port for exchanging information with the outside. A rotational speed detector 20, an accelerator sensor 21, a throttle valve sensor 17, and the like are connected to the input port.
 回転速度検知器20は、クランクシャフトの近傍に設けられてクランクシャフトの回転位置を検知する位置センサを有し、クランクシャフトの回転速度を検知する。回転速度検知器20は、クランクシャフトの回転速度情報を制御ユニット6に検知信号として発信する。アクセルセンサ21は、アクセルペダルの近傍に設けられてアクセルペダルが踏み込まれた量を検知する。アクセルセンサ21は、アクセルペダルの移動量に対応したアクセルペダル情報を制御ユニット6に検知信号として発信する。 Rotational speed detector 20 has a position sensor that is provided in the vicinity of the crankshaft and detects the rotational position of the crankshaft, and detects the rotational speed of the crankshaft. The rotational speed detector 20 transmits the rotational speed information of the crankshaft to the control unit 6 as a detection signal. The accelerator sensor 21 is provided in the vicinity of the accelerator pedal and detects the amount by which the accelerator pedal is depressed. The accelerator sensor 21 transmits accelerator pedal information corresponding to the amount of movement of the accelerator pedal to the control unit 6 as a detection signal.
 制御ユニット6は、入力ポートに接続された各機器から信号を受信し、受信した信号に基づいて出力ポートに接続された絞り弁センサ17、燃料噴射器13、燃料ポンプ14、未燃燃料添加器3、EGR弁19等を制御する。 The control unit 6 receives a signal from each device connected to the input port, and based on the received signal, the throttle valve sensor 17, the fuel injector 13, the fuel pump 14, and the unburned fuel adder connected to the output port. 3. Control the EGR valve 19 and the like.
 制御ユニット6のROMには、フィルタ再生を実行する際に使用する下限温度閾値マップが記憶される。下限温度閾値マップは、制御ユニット6が未燃燃料を排気ガスに添加の有無の判断時に利用する下限温度閾値を取得するために使用される。下限温度閾値は、排気ガスが排気管7の壁に接触した際に未燃燃料が液状になって排気管7に溜まることを避け得る温度である。 The ROM of the control unit 6 stores a lower limit temperature threshold map used when executing filter regeneration. The lower limit temperature threshold map is used for acquiring the lower limit temperature threshold used by the control unit 6 when determining whether or not unburned fuel is added to the exhaust gas. The lower limit temperature threshold is a temperature at which the unburned fuel can be prevented from becoming liquid and collecting in the exhaust pipe 7 when the exhaust gas contacts the wall of the exhaust pipe 7.
 排気管7の壁温度は、排気ガスの温度と排気ガスの流量に依存する。排気管7の壁温度と排気ガスの温度は、通常、差を有しており、その差は、排気ガス流量(空気流量)によって異なる。すなわち排気ガスの流量が少ない場合、排気ガスが排気管7の壁と接触する量が少なく、熱交換するエネルギ量が少ない。そのため排気管7の壁温度と排気ガスの温度の差が大きく、排気管7の壁温度が低くなる。一方、排気ガスの流量が多い場合は、排気ガスが排気管7の壁と接触する量が多く、熱交換するエネルギ量が多い。そのため排気管7の壁温度と排気ガスの温度の差が小さくなり、排気管7の壁温度が高くなる。 The wall temperature of the exhaust pipe 7 depends on the exhaust gas temperature and the exhaust gas flow rate. The wall temperature of the exhaust pipe 7 and the temperature of the exhaust gas usually have a difference, and the difference differs depending on the exhaust gas flow rate (air flow rate). That is, when the flow rate of the exhaust gas is small, the amount of the exhaust gas that contacts the wall of the exhaust pipe 7 is small, and the amount of energy for heat exchange is small. Therefore, the difference between the wall temperature of the exhaust pipe 7 and the temperature of the exhaust gas is large, and the wall temperature of the exhaust pipe 7 is lowered. On the other hand, when the flow rate of the exhaust gas is large, the amount of exhaust gas coming into contact with the wall of the exhaust pipe 7 is large, and the amount of energy for heat exchange is large. Therefore, the difference between the wall temperature of the exhaust pipe 7 and the temperature of the exhaust gas is reduced, and the wall temperature of the exhaust pipe 7 is increased.
 排気管7の壁温度を所定以上にするためには、排気ガスの流量(空気流量)が多い場合には、排気ガスの温度が比較的低くても良い。一方、排気ガスの流量が少ない場合には、排気ガスの温度が比較的高い必要がある。図2に示すように排気管7の壁温度を温度線26以上にするためには、排気ガスの温度を排気ガス閾値温度線24よりも上側の領域(PM再生添加可能領域25)にする必要がある。 In order to increase the wall temperature of the exhaust pipe 7 to a predetermined level or higher, the exhaust gas temperature may be relatively low when the exhaust gas flow rate (air flow rate) is large. On the other hand, when the flow rate of the exhaust gas is small, the temperature of the exhaust gas needs to be relatively high. As shown in FIG. 2, in order to set the wall temperature of the exhaust pipe 7 to the temperature line 26 or higher, it is necessary to set the temperature of the exhaust gas to a region above the exhaust gas threshold temperature line 24 (PM regeneration addition possible region 25). There is.
 図2に示すように排気ガス閾値温度線24は、空気流量が多くなるほどPM再生添加が可能な領域が広くなる。排気ガス閾値温度線24の上側のPM再生添加可能領域25では、未燃燃料を添加した際に燃料が排気管7に溜まらない、あるいは溜まる量が非常に少ない。一方、排気ガス閾値温度線24の下側領域では、排気ガスに未燃燃料を添加した場合、未燃燃料が排気管7に溜まりやすい。 As shown in FIG. 2, the exhaust gas threshold temperature line 24 has a wider area where PM regeneration can be added as the air flow rate increases. In the PM regeneration addition possible region 25 on the upper side of the exhaust gas threshold temperature line 24, when unburned fuel is added, the fuel does not accumulate in the exhaust pipe 7, or the amount that accumulates is very small. On the other hand, in the lower region of the exhaust gas threshold temperature line 24, when unburned fuel is added to the exhaust gas, the unburned fuel tends to accumulate in the exhaust pipe 7.
 下限温度閾値マップは、図2に対応するマップである。制御ユニット6は、下限温度閾値マップを用いて空気流量から下限温度閾値である排気ガス閾値温度を決定する。制御ユニット6は、排気ガス閾値温度よりも排気ガス温度が高い場合、すなわち図2に示すPM再生添加可能領域25において未燃燃料添加器3を制御して未燃燃料を排気ガスに添加する。排気ガス閾値温度よりも排気ガス温度が低い場合は、未燃燃料添加器3を制御して未燃燃料を排気ガスに添加しない。これにより未燃燃料は、排気管7に溜まらない温度領域でかつ広い領域で排気ガスに添加され得る。これにより排気管7に未燃燃料が溜まることが抑制され、かつ溜まった未燃燃料が大気に噴出することで生じ得る白煙の発生も抑制され得る。 The lower limit temperature threshold map is a map corresponding to FIG. The control unit 6 determines the exhaust gas threshold temperature, which is the lower limit temperature threshold, from the air flow rate using the lower limit temperature threshold map. When the exhaust gas temperature is higher than the exhaust gas threshold temperature, that is, in the PM regeneration addition possible region 25 shown in FIG. 2, the control unit 6 controls the unburned fuel adder 3 to add the unburned fuel to the exhaust gas. When the exhaust gas temperature is lower than the exhaust gas threshold temperature, the unburned fuel adder 3 is controlled so that the unburned fuel is not added to the exhaust gas. Thus, the unburned fuel can be added to the exhaust gas in a temperature range that does not accumulate in the exhaust pipe 7 and in a wide range. As a result, the accumulation of unburned fuel in the exhaust pipe 7 can be suppressed, and the generation of white smoke that can be generated when the accumulated unburned fuel is ejected into the atmosphere can be suppressed.
 フィルタ4を再生するプロセスを図3にしたがって説明する。先ず制御ユニット6がフィルタ4前後の差圧を測定する図示しない差圧センサの出力に基づいて、フィルタの再生が必要と判断した場合に、制御ユニット6はフィルタ4を再生するプロセスをスタートする。 The process for regenerating the filter 4 will be described with reference to FIG. First, when it is determined that the filter needs to be regenerated based on the output of a differential pressure sensor (not shown) that measures the differential pressure across the filter 4, the control unit 6 starts the process of regenerating the filter 4.
 制御ユニット6が上流側排気ガス温度検出器5aの発信信号に基づいて排気ガス温度を得る(ステップS1)。制御ユニット6が流量検出器2とEGR弁19からの発信信号に基づいて空気流量を得る(ステップS2)。制御ユニット6が下限温度閾値マップを用いて空気流量から排気ガス温度閾値を得る(ステップS3)。次に制御ユニット6は、排気ガスの温度が排気ガス温度閾値よりも高いか否かを判断する(ステップS4)。 The control unit 6 obtains the exhaust gas temperature based on the transmission signal of the upstream side exhaust gas temperature detector 5a (step S1). The control unit 6 obtains the air flow rate based on the transmission signals from the flow rate detector 2 and the EGR valve 19 (step S2). The control unit 6 obtains the exhaust gas temperature threshold from the air flow rate using the lower limit temperature threshold map (step S3). Next, the control unit 6 determines whether or not the temperature of the exhaust gas is higher than an exhaust gas temperature threshold value (step S4).
 制御ユニット6は、ステップS4において排気ガスの温度が排気ガス温度閾値よりも高いと判断した場合、PM再生添加を許可する(ステップS5)。そして、下流側排気ガス温度検出器5bの値が所定の範囲内になるように、未燃燃料添加器3を制御して未燃燃料を排気管7内の排気ガスに一定期間添加し(ステップS6)、ステップ1に戻る。 When the control unit 6 determines in step S4 that the temperature of the exhaust gas is higher than the exhaust gas temperature threshold, the control unit 6 permits the addition of PM regeneration (step S5). Then, the unburned fuel adder 3 is controlled so that the value of the downstream side exhaust gas temperature detector 5b falls within a predetermined range, and unburned fuel is added to the exhaust gas in the exhaust pipe 7 for a certain period (step). S6) Return to step 1.
 一方、ステップS4において排気ガスの温度が排気ガス温度閾値よりも低いと制御ユニット6が判断した場合、制御ユニット6は、PM再生添加を禁止して、未燃燃料添加器3の制御弁を閉じる。これにより未燃燃料は、排気管7内の排気ガスに添加されない(ステップS7)。そしてステップS1に戻る。 On the other hand, when the control unit 6 determines that the temperature of the exhaust gas is lower than the exhaust gas temperature threshold in step S4, the control unit 6 prohibits the PM regeneration addition and closes the control valve of the unburned fuel adder 3. . Thereby, unburned fuel is not added to the exhaust gas in the exhaust pipe 7 (step S7). Then, the process returns to step S1.
 再生が終了するまで上記ステップS1~S7を繰り返す。ステップS6による未燃燃料の添加の結果、差圧センサの出力により制御ユニット6がフィルタ4を再生するプロセスが終了(PM再生終了)したと判断した場合、ステップS8に移行し、このプロセスを終了する。 Steps S1 to S7 are repeated until playback is completed. When the control unit 6 determines that the process of regenerating the filter 4 is completed (PM regeneration end) by the output of the differential pressure sensor as a result of the addition of unburned fuel in step S6, the process proceeds to step S8 and this process is terminated. To do.
 フィルタ4を再生するプロセスは、図3に代えて図4に示すプロセスでも良い。図4のプロセスでは、先ず制御ユニット6がフィルタ4前後の差圧を測定する図示しない差圧センサの出力に基づいて、フィルタの再生が必要と判断した場合に、制御ユニット6はフィルタ4を再生するプロセスをスタートする。 The process for regenerating the filter 4 may be the process shown in FIG. 4 instead of FIG. In the process of FIG. 4, when the control unit 6 first determines that the filter needs to be regenerated based on the output of a differential pressure sensor (not shown) that measures the pressure difference across the filter 4, the control unit 6 regenerates the filter 4. Start the process.
 制御ユニット6が上流側排気ガス温度検出器5aの発信信号から排気ガス温度を得る(ステップS11)。制御ユニット6が流量検出器2とEGR弁19の発信信号から空気流量を得る(ステップS12)。制御ユニット6は、排気ガス温度と空気流量から排気管7の壁温度を推定する(ステップS13)。壁温度は、例えば排気ガス温度と空気流量から計算式を用いてあるいはマップを用いて決定される。 The control unit 6 obtains the exhaust gas temperature from the transmission signal of the upstream side exhaust gas temperature detector 5a (step S11). The control unit 6 obtains the air flow rate from the transmission signals of the flow rate detector 2 and the EGR valve 19 (step S12). The control unit 6 estimates the wall temperature of the exhaust pipe 7 from the exhaust gas temperature and the air flow rate (step S13). The wall temperature is determined by using a calculation formula or a map from the exhaust gas temperature and the air flow rate, for example.
 次に、制御ユニット6は、壁温度閾値マップを用いて下限温度閾値として壁温度閾値を得る(ステップS14)。壁温度閾値マップは、予め適合により、例えば回転速度検知器20、アクセルセンサ21、車両の速度等から決定されるマップとして制御ユニット6のROMに記憶される。制御ユニット6は、壁温度閾値マップを用いて壁温度閾値を得る。次に、制御ユニット6は、推定した排気管7の壁温度が壁温度閾値よりも高いか否か判断する(ステップS15)。 Next, the control unit 6 obtains the wall temperature threshold value as the lower limit temperature threshold value using the wall temperature threshold value map (step S14). The wall temperature threshold value map is stored in the ROM of the control unit 6 as a map determined in advance from, for example, the rotational speed detector 20, the accelerator sensor 21, the vehicle speed, and the like. The control unit 6 obtains the wall temperature threshold using the wall temperature threshold map. Next, the control unit 6 determines whether or not the estimated wall temperature of the exhaust pipe 7 is higher than the wall temperature threshold (step S15).
 制御ユニット6は、ステップS15において推定した排気管7の壁温度が壁温度閾値よりも高いと判断した場合、PM再生添加を許可する(ステップS16)。そして、下流側排気ガス温度検出器5bの値が所定の範囲内になるように、未燃燃料添加器3を制御して未燃燃料を一定期間排気ガスに添加し(ステップS17)、ステップS11に戻る。 When the control unit 6 determines that the wall temperature of the exhaust pipe 7 estimated in step S15 is higher than the wall temperature threshold, the control unit 6 permits PM regeneration addition (step S16). Then, the unburned fuel adder 3 is controlled to add the unburned fuel to the exhaust gas for a certain period so that the value of the downstream side exhaust gas temperature detector 5b falls within a predetermined range (step S17), and step S11. Return to.
 ステップS15において推定した排気管7の壁温度が壁温度閾値よりも低いと制御ユニット6が判断した場合、制御ユニット6は、PM再生添加を禁止し、未燃燃料添加器3の制御弁を閉じる。これにより未燃燃料は、排気ガスに添加されない(ステップS17)。そしてステップS11に戻る。 When the control unit 6 determines that the wall temperature of the exhaust pipe 7 estimated in step S15 is lower than the wall temperature threshold, the control unit 6 prohibits PM regeneration addition and closes the control valve of the unburned fuel adder 3. . Thereby, unburned fuel is not added to exhaust gas (step S17). Then, the process returns to step S11.
 再生が終了するまで上記ステップS11~S18を繰り返す。ステップS17による未燃燃料の添加の結果、差圧センサの出力により制御ユニット6がフィルタ4を再生するプロセスが終了(PM再生終了)したと判断した場合ステップS19に移行し、このプロセスを終了する。 Steps S11 to S18 are repeated until the reproduction is completed. If the control unit 6 determines that the process of regenerating the filter 4 is completed (PM regeneration end) by the output of the differential pressure sensor as a result of the addition of unburned fuel in step S17, the process proceeds to step S19, and this process is terminated. .
 図5は、本形態によるフィルタ4の再生と、比較形態によるフィルタ4の再生の比較をまとめた結果である。本形態では、図2に示すように空気流量が多いほど下限温度閾値を下げてフィルタ4の再生を行う。比較形態では、下限温度閾値を図2の温度線27に示すように空気流量によらずに、かつ空気流量が少ない場合でも未燃燃料が排気管7に溜まる量が少ないように比較的高い温度で一定にした。 FIG. 5 shows the results of comparison of the regeneration of the filter 4 according to the present embodiment and the regeneration of the filter 4 according to the comparative embodiment. In this embodiment, as shown in FIG. 2, the filter 4 is regenerated by lowering the lower limit temperature threshold as the air flow rate increases. In the comparative mode, the lower limit temperature threshold is not a high temperature as shown by the temperature line 27 in FIG. 2, and even if the air flow rate is small, a relatively high temperature is set so that the amount of unburned fuel collected in the exhaust pipe 7 is small. To make it constant.
 図5に、エンジン10で車両を空気流量が多い状態で走行させ、排気ガスの温度が変化した場合の再生状態を表す。本形態は領域31においてフィルタ4の再生処理が行われる。一方、比較形態では領域32においてフィルタ4の再生処理が行われる。フィルタ4に堆積した粒子状物質は、再生処理の時間に比例して減少して本形態では図5の線33に従って減少し、比較形態では線34に従い減少した。したがって本形態は、比較形態に比べてフィルタ4に堆積した粒子状物質の再生を早く終了させ得る。 FIG. 5 shows a regeneration state when the vehicle is driven with a large air flow rate by the engine 10 and the temperature of the exhaust gas changes. In this embodiment, the regeneration process of the filter 4 is performed in the region 31. On the other hand, in the comparative example, the regeneration process of the filter 4 is performed in the region 32. The particulate matter deposited on the filter 4 decreased in proportion to the regeneration processing time, and decreased according to the line 33 in FIG. 5 in this embodiment, and decreased according to the line 34 in the comparative embodiment. Therefore, this embodiment can finish the regeneration of the particulate matter deposited on the filter 4 earlier than the comparative embodiment.
 以上のように排気ガス浄化装置1は、図1に示すように排気管7とフィルタ4と再生機構を有する。フィルタ4は、排気管7に設けられて排気ガス中に含まれる粒子状物質を捕集する。再生機構は、フィルタ4に堆積した粒子状物質を除去する。再生機構は、未燃燃料添加器3と排気ガス温度検出器(上流側排気ガス温度検出器5a)と流量検出器2と制御ユニット6を有する。未燃燃料添加器3は、フィルタ4の上流において排気ガスに未燃燃料を添加する。排気ガス温度検出器は、排気ガスの温度を検出する。流量検出器2は、エンジン10に供給される空気流量を検出する。制御ユニット6は、流量検出器2とEGR弁19の開度から得た空気流量に基づいて下限温度閾値を決定する。さらに制御ユニット6は、排気ガス温度検出器から得た排気ガスの温度から得た温度が下限温度閾値よりも高い場合に未燃燃料添加器3を制御して未燃燃料を排気ガスに添加する。 As described above, the exhaust gas purification apparatus 1 includes the exhaust pipe 7, the filter 4, and the regeneration mechanism as shown in FIG. The filter 4 is provided in the exhaust pipe 7 and collects particulate matter contained in the exhaust gas. The regeneration mechanism removes the particulate matter deposited on the filter 4. The regeneration mechanism includes an unburned fuel adder 3, an exhaust gas temperature detector (upstream exhaust gas temperature detector 5 a), a flow rate detector 2, and a control unit 6. The unburned fuel adder 3 adds unburned fuel to the exhaust gas upstream of the filter 4. The exhaust gas temperature detector detects the temperature of the exhaust gas. The flow rate detector 2 detects the flow rate of air supplied to the engine 10. The control unit 6 determines a lower limit temperature threshold value based on the air flow rate obtained from the opening amounts of the flow rate detector 2 and the EGR valve 19. Further, the control unit 6 controls the unburned fuel adder 3 to add unburned fuel to the exhaust gas when the temperature obtained from the temperature of the exhaust gas obtained from the exhaust gas temperature detector is higher than the lower limit temperature threshold. .
 本発明者は、排気管7の壁温度が所定温度よりも低い場合に、例えば未燃燃料の沸点よりも低い場合に、未燃燃料が排気管7の壁に液状として溜まる場合があることに気付いた。また本発明者は、排気管7を流れる排気ガス(空気)の流量が多いほど、排気管7の壁温度が排気ガスの温度に近くなることに着目した。すなわち排気管7を流れる排気ガスの流量が多いほど、排気ガスが排気管7の壁に触れる量が大きくなり、排気ガスから排気管7の壁に熱が移動する量が多くなる。したがって排気管7を流れる排気ガスの流量が多いほど、排気管7の壁温度は排気ガスの温度に近くなり、排気管7の壁温度が高くなる。一方、排気ガスの流量が少ない場合、排気ガスは主に排気管7の中心部を通過し、排気ガスが排気管7の壁に触れる量が減少するので、排気管7の壁温度と排気ガスの温度との差が大きくなる。 When the wall temperature of the exhaust pipe 7 is lower than a predetermined temperature, for example, when the temperature of the exhaust pipe 7 is lower than the boiling point of the unburned fuel, the inventor may store the unburned fuel in a liquid state on the wall of the exhaust pipe 7. Noticed. The inventor has also noted that the wall temperature of the exhaust pipe 7 approaches the temperature of the exhaust gas as the flow rate of the exhaust gas (air) flowing through the exhaust pipe 7 increases. That is, as the flow rate of the exhaust gas flowing through the exhaust pipe 7 increases, the amount of exhaust gas that touches the wall of the exhaust pipe 7 increases, and the amount of heat transferred from the exhaust gas to the wall of the exhaust pipe 7 increases. Therefore, as the flow rate of the exhaust gas flowing through the exhaust pipe 7 increases, the wall temperature of the exhaust pipe 7 approaches the temperature of the exhaust gas, and the wall temperature of the exhaust pipe 7 increases. On the other hand, when the flow rate of the exhaust gas is small, the exhaust gas mainly passes through the central portion of the exhaust pipe 7 and the amount of the exhaust gas that touches the wall of the exhaust pipe 7 decreases, so the wall temperature of the exhaust pipe 7 and the exhaust gas The difference from the temperature increases.
 本形態によると、排気管7の壁温度が所定以上になる条件を満たした際に未燃燃料を添加する。すなわち排気管7の壁温度は、排気ガスの温度のみならず排気ガスの流量すなわち空気流量に応じて変化する。これに対して制御ユニット6は、空気流量に応じる温度として下限温度閾値を決定し、下限温度閾値と排気ガス温度に関連する温度を比較して、未燃燃料を添加するか否かを決定する。そのため排気管7の壁温度が所定温度以上になった際に未燃燃料を添加し得る。また空気流量に応じて未燃燃料を添加するため、空気流量に係らずに未燃燃料を添加するか否かを判断しない形態に比べて、未燃燃料を添加し得る領域を広くされ得る。そのため粒子状物質を燃焼させる時間を長くすることができ、フィルタ4を効果的に再生し得る。また排気管7に未燃燃料が溜まることを避けることができ、再生を早く終了させることで燃料消費の無駄が少なくなる。 According to this embodiment, the unburned fuel is added when the condition that the wall temperature of the exhaust pipe 7 is equal to or higher than a predetermined value is satisfied. That is, the wall temperature of the exhaust pipe 7 changes not only according to the temperature of the exhaust gas but also according to the flow rate of the exhaust gas, that is, the air flow rate. On the other hand, the control unit 6 determines a lower limit temperature threshold value as a temperature corresponding to the air flow rate, compares the lower limit temperature threshold value with a temperature related to the exhaust gas temperature, and determines whether or not to add unburned fuel. . Therefore, unburned fuel can be added when the wall temperature of the exhaust pipe 7 becomes a predetermined temperature or higher. Moreover, since unburned fuel is added according to an air flow rate, the area | region which can add unburned fuel can be made wider compared with the form which does not judge whether unburned fuel is added irrespective of an air flow rate. Therefore, the time for burning the particulate matter can be extended, and the filter 4 can be effectively regenerated. Further, unburned fuel can be prevented from accumulating in the exhaust pipe 7, and waste of fuel consumption can be reduced by terminating regeneration earlier.
 本形態のフィルタ4の再生は、排気管7に未燃燃料が溜まることを避けるために排気管7の壁温度を考慮した再生を行う。しかし排気管7の壁温度を直接検知することなく、排気ガスの温度を利用してフィルタ4の再生を行う。したがって排気管7の壁に装着することが容易でないセンサを用いることなく、排気ガスの温度を利用して簡易に排気管7の壁温度を考慮した再生を行い得る。 The regeneration of the filter 4 of this embodiment is performed in consideration of the wall temperature of the exhaust pipe 7 in order to avoid unburned fuel from accumulating in the exhaust pipe 7. However, the filter 4 is regenerated using the temperature of the exhaust gas without directly detecting the wall temperature of the exhaust pipe 7. Therefore, without using a sensor that is not easily mounted on the wall of the exhaust pipe 7, regeneration can be performed in consideration of the wall temperature of the exhaust pipe 7 using the temperature of the exhaust gas.
 制御ユニット6は、空気流量が多いほど下限温度閾値を小さくする制御を有する。したがって排気管7の壁温度に対応して未燃燃料が添加され得る。すなわち排気管7の壁温度は、空気流量が多いほど、排気ガスの温度に近くなり高くなる。逆に排気管7の壁温度を所定温度以上にするために必要な排気ガス温度等は、空気流量が多いほど小さくなる。したがって下限温度閾値を用いることで、未燃燃料を広い領域において添加し得る。 The control unit 6 has a control to decrease the lower limit temperature threshold as the air flow rate increases. Therefore, unburned fuel can be added corresponding to the wall temperature of the exhaust pipe 7. That is, the wall temperature of the exhaust pipe 7 becomes closer to the temperature of the exhaust gas as the air flow rate increases. Conversely, the exhaust gas temperature or the like necessary for setting the wall temperature of the exhaust pipe 7 to be equal to or higher than a predetermined temperature decreases as the air flow rate increases. Therefore, unburned fuel can be added in a wide area | region by using a minimum temperature threshold value.
 制御ユニット6は、下限温度閾値として排気ガス温度閾値を決定するマップを記憶する。そして制御ユニット6は、上流側排気ガス温度検出器5aから得た排気ガスの温度が排気ガス温度閾値よりも高い場合に未燃燃料を排気ガスに添加する(図3参照)。したがって制御ユニット6は、排気ガスの温度を基準として未燃燃料の添加の可否を決定する。 The control unit 6 stores a map for determining the exhaust gas temperature threshold as the lower limit temperature threshold. The control unit 6 adds the unburned fuel to the exhaust gas when the temperature of the exhaust gas obtained from the upstream side exhaust gas temperature detector 5a is higher than the exhaust gas temperature threshold (see FIG. 3). Therefore, the control unit 6 determines whether or not unburned fuel can be added based on the temperature of the exhaust gas.
 制御ユニット6は、図4を参照するように流量検出器2とEGR弁19から得た空気流量と、上流側排気ガス温度検出器5aから得た排気ガス温度から排気管7の壁温度を推定する。制御ユニット6は、推定した排気管7の壁温度と空気流量以外の条件から下限温度閾値としての壁温度閾値を決定する。そして制御ユニット6は、推定した排気管7の壁温度が壁温度閾値よりも高い場合に未燃燃料添加器3を制御して未燃燃料を排気ガスに添加する。したがって制御ユニット6は、排気管7の壁温度を基準として未燃燃料の添加の可否を決定する。 As shown in FIG. 4, the control unit 6 estimates the wall temperature of the exhaust pipe 7 from the air flow rate obtained from the flow rate detector 2 and the EGR valve 19 and the exhaust gas temperature obtained from the upstream side exhaust gas temperature detector 5a. To do. The control unit 6 determines a wall temperature threshold value as a lower limit temperature threshold value from conditions other than the estimated wall temperature of the exhaust pipe 7 and the air flow rate. When the estimated wall temperature of the exhaust pipe 7 is higher than the wall temperature threshold, the control unit 6 controls the unburned fuel adder 3 to add unburned fuel to the exhaust gas. Therefore, the control unit 6 determines whether or not unburned fuel can be added based on the wall temperature of the exhaust pipe 7.
 流量検出器2は、エンジン10に供給される新気の流量を検出するエアフローメータを利用する。したがって空気流量は、エアフローメータによって直接的に測定される。 The flow rate detector 2 uses an air flow meter that detects the flow rate of fresh air supplied to the engine 10. Accordingly, the air flow rate is directly measured by an air flow meter.
 排気管7は、図1に示すように未燃燃料添加器3の下流において径が異なる部分を有する。例えば排気ガス上流管7aと第一収納管7bと第二収納管7cと排気ガス下流管7dは、相互に異なる径を有する。径が異なる部分では、排気ガスの流れの遅い部分が生じやすく、流れの遅い部分において未燃燃料が液体として溜まる可能性が高い。これに対して本形態では、未燃燃料が液体として溜まらないように排気管7の壁温度を考慮して未燃燃料を添加する。 As shown in FIG. 1, the exhaust pipe 7 has a portion having a different diameter downstream of the unburned fuel adder 3. For example, the exhaust gas upstream pipe 7a, the first storage pipe 7b, the second storage pipe 7c, and the exhaust gas downstream pipe 7d have mutually different diameters. In the portions having different diameters, a portion where the flow of the exhaust gas is slow tends to occur, and there is a high possibility that the unburned fuel will accumulate as a liquid in the portion where the flow is slow. On the other hand, in this embodiment, the unburned fuel is added in consideration of the wall temperature of the exhaust pipe 7 so that the unburned fuel does not accumulate as a liquid.
 本発明の形態を上記構造を参照して説明したが、本発明の目的を逸脱せずに多くの交代、改良、変更が可能であることは当業者であれば明らかである。したがって本発明の形態は、添付された請求項の精神と目的を逸脱しない全ての交代、改良、変更を含み得る。例えば本発明の形態は、前記特別な構造に限定されず、下記のように変更が可能である。 Although the embodiments of the present invention have been described with reference to the above structure, it will be apparent to those skilled in the art that many substitutions, improvements, and changes can be made without departing from the object of the present invention. Accordingly, aspects of the invention may include all alterations, modifications, and changes that do not depart from the spirit and scope of the appended claims. For example, the form of the present invention is not limited to the special structure, and can be modified as follows.
 排気ガス浄化装置1は、上記実施の形態のように流量検出器2としてエンジンに供給される空気流量を検出するエアフローメータを有していても良い。これに代えて排気ガス浄化装置1は、未燃燃料添加器3の上流においてエンジンから排出される空気流量を検出するエアフローメータを有していても良い。 The exhaust gas purification device 1 may have an air flow meter that detects the flow rate of air supplied to the engine as the flow rate detector 2 as in the above embodiment. Instead of this, the exhaust gas purification apparatus 1 may have an air flow meter that detects the flow rate of air discharged from the engine upstream of the unburned fuel adder 3.
 排気ガス浄化装置1は、空気流量を検出する流量検出器2とEGR弁19の代わりに温度センサと過給圧センサを利用する形態でも良い。温度センサは、気筒11の上流に設けられて、吸入空気の温度を検出する。過給圧センサは、気筒11の上流に設けられて、図示省略の過給機によって加圧された気筒11の上流の圧力を検出する。温度センサと過給圧センサは、検出情報を制御ユニット6に検知信号として発信する。制御ユニット6は、前記圧力と前記温度とエンジン回転数から空気流量を算出する。エンジン回転数は、回転速度検知器20からの回転速度から得られる。 The exhaust gas purifying apparatus 1 may use a temperature sensor and a supercharging pressure sensor instead of the flow rate detector 2 and the EGR valve 19 that detect the air flow rate. The temperature sensor is provided upstream of the cylinder 11 and detects the temperature of the intake air. The supercharging pressure sensor is provided upstream of the cylinder 11 and detects the pressure upstream of the cylinder 11 pressurized by a supercharger (not shown). The temperature sensor and the supercharging pressure sensor transmit detection information to the control unit 6 as a detection signal. The control unit 6 calculates the air flow rate from the pressure, the temperature, and the engine speed. The engine speed is obtained from the rotational speed from the rotational speed detector 20.
 排気ガス浄化装置1は、空気流量を検出する流量検出器2としてA/Fセンサ22を利用しても良い。すなわちA/Fセンサ22が空燃比を得る。燃料噴射器13が気筒11に噴射した燃料噴射量を得る。制御ユニット6が空燃比と燃料噴射量から空気流量を算出しても良い。 The exhaust gas purification device 1 may use an A / F sensor 22 as the flow rate detector 2 that detects the air flow rate. That is, the A / F sensor 22 obtains the air-fuel ratio. A fuel injection amount injected into the cylinder 11 by the fuel injector 13 is obtained. The control unit 6 may calculate the air flow rate from the air-fuel ratio and the fuel injection amount.
 未燃燃料添加器3は、図1に示すように排気管7の排気ガス中に未燃燃料を添加しても良い。代わりに未燃燃料添加器3は、燃焼行程後の気筒11に未燃燃料をポスト噴射しても良い。 The unburned fuel adder 3 may add unburned fuel into the exhaust gas of the exhaust pipe 7 as shown in FIG. Instead, the unburned fuel adder 3 may post-inject unburned fuel into the cylinder 11 after the combustion stroke.
 排気ガス温度検出器(上流側排気ガス温度検出器5a)は、図1に示すように排気管7の第二収納管7c、あるいはフィルタ4の上流側に設けられても良い。代わりに排気ガス温度検出器が排気管7の他の場所に設けられても良い。 The exhaust gas temperature detector (upstream exhaust gas temperature detector 5a) may be provided on the second storage pipe 7c of the exhaust pipe 7 or on the upstream side of the filter 4 as shown in FIG. Instead, an exhaust gas temperature detector may be provided in another place of the exhaust pipe 7.
 制御ユニット6は、上記制御に加えて下記制御をしても良い。すなわち制御ユニット6は、排気ガスによる熱の持ち去りが未燃燃料の添加によるフィルタ4の昇温よりも大きいか否か判定する。例えば制御ユニット6は、下流側排気ガス温度検出器5bの検出値から前記判定をする。熱の持ち去りが大きいと判定した場合、制御ユニット6は、未燃燃料の添加を中止する。 The control unit 6 may perform the following control in addition to the above control. That is, the control unit 6 determines whether or not the heat removal due to the exhaust gas is greater than the temperature rise of the filter 4 due to the addition of unburned fuel. For example, the control unit 6 makes the determination from the detection value of the downstream side exhaust gas temperature detector 5b. When it is determined that heat removal is large, the control unit 6 stops adding unburned fuel.
 排気ガス浄化装置1の再生機構は、フィルタ4に堆積した粒子状物質を二酸化窒素の多い雰囲気下において燃焼しても良いし、酸素雰囲気において燃焼しても良い。 The regeneration mechanism of the exhaust gas purification device 1 may burn the particulate matter deposited on the filter 4 in an atmosphere rich in nitrogen dioxide or burn in an oxygen atmosphere.

Claims (6)

  1.  エンジンの排気ガス浄化装置であって、
     排気管と、前記排気管に設けられて排気ガス中に含まれる粒子状物質を捕集するフィルタと、前記フィルタに堆積した前記粒子状物質を除去する再生機構を有し、
     前記再生機構は、前記フィルタの上流において前記排気ガスに未燃燃料を添加する未燃燃料添加器と、前記排気ガスの温度を検出する排気ガス温度検出器と、前記エンジンに供給される空気流量または前記エンジンから排出される空気流量を検出する空気流量検出器と、前記空気流量検出器から得た前記空気流量に基づいて下限温度閾値を決定しかつ前記排気ガス温度検出器から得た前記排気ガスの温度が前記下限温度閾値よりも高い場合に前記未燃燃料添加器を制御して前記未燃燃料を前記排気ガスに添加する制御ユニットを有する排気ガス浄化装置。
    An exhaust gas purification device for an engine,
    An exhaust pipe, a filter provided in the exhaust pipe for collecting particulate matter contained in the exhaust gas, and a regeneration mechanism for removing the particulate matter deposited on the filter,
    The regeneration mechanism includes an unburned fuel adder for adding unburned fuel to the exhaust gas upstream of the filter, an exhaust gas temperature detector for detecting the temperature of the exhaust gas, and an air flow rate supplied to the engine Or an air flow detector for detecting an air flow discharged from the engine, and a lower limit temperature threshold value determined based on the air flow obtained from the air flow detector and the exhaust obtained from the exhaust gas temperature detector An exhaust gas purification apparatus comprising: a control unit that controls the unburned fuel adder to add the unburned fuel to the exhaust gas when a gas temperature is higher than the lower limit temperature threshold.
  2.  請求項1に記載の排気ガス浄化装置であって、さらに
     前記未燃燃料添加器と前記フィルタの間に配置された酸化触媒を有する排気ガス浄化装置。
    The exhaust gas purification apparatus according to claim 1, further comprising an oxidation catalyst disposed between the unburned fuel adder and the filter.
  3.  請求項1または2に記載の排気ガス浄化装置であって、
     前記制御ユニットは、前記空気流量が多いほど前記下限温度閾値を小さくする排気ガス浄化装置。
    The exhaust gas purification device according to claim 1 or 2,
    The exhaust gas purification apparatus, wherein the control unit decreases the lower limit temperature threshold as the air flow rate increases.
  4.  請求項1~3のいずれか1つに記載の排気ガス浄化装置であって、
     前記制御ユニットは、前記下限温度閾値として排気ガス温度閾値を決定するマップを記憶しており、前記排気ガスの温度が前記排気ガス温度閾値よりも高い場合に前記未燃燃料を前記排気ガスに添加する排気ガス浄化装置。
    The exhaust gas purifying device according to any one of claims 1 to 3,
    The control unit stores a map for determining an exhaust gas temperature threshold as the lower limit temperature threshold, and adds the unburned fuel to the exhaust gas when the temperature of the exhaust gas is higher than the exhaust gas temperature threshold. Exhaust gas purifier.
  5.  請求項1~3のいずれか1つに記載の排気ガス浄化装置であって、
     前記制御ユニットは、前記空気流量と前記排気ガス温度から前記排気管の壁温度を推定し、推定した前記排気管の壁温度と前記空気流量以外の条件からなるマップから壁温度閾値を決定し、推定した前記排気管の壁温度が前記壁温度閾値よりも高い場合に前記未燃燃料を前記排気ガスに添加する排気ガス浄化装置。
    The exhaust gas purifying device according to any one of claims 1 to 3,
    The control unit estimates the wall temperature of the exhaust pipe from the air flow rate and the exhaust gas temperature, determines a wall temperature threshold value from a map including conditions other than the estimated wall temperature of the exhaust pipe and the air flow rate, An exhaust gas purification device that adds the unburned fuel to the exhaust gas when the estimated wall temperature of the exhaust pipe is higher than the wall temperature threshold.
  6.  請求項1~5のいずれか1つに記載の排気ガス浄化装置であって、
     前記空気流量検出器は、前記エンジンに供給される新気の流量を検出するエアフローメータ、前記排気ガスに含まれる空気と燃料の比率を検出するA/Fセンサ、前記エンジンの気筒に供給される空気の圧力を検出する過給圧センサのうちの1つを利用する排気ガス浄化装置。
    The exhaust gas purifying device according to any one of claims 1 to 5,
    The air flow detector is supplied to an air flow meter that detects a flow rate of fresh air supplied to the engine, an A / F sensor that detects a ratio of air and fuel contained in the exhaust gas, and a cylinder of the engine. An exhaust gas purification apparatus using one of supercharging pressure sensors for detecting the pressure of air.
PCT/JP2012/069546 2011-08-22 2012-08-01 Exhaust gas purification device WO2013027546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011180380A JP2013044238A (en) 2011-08-22 2011-08-22 Exhaust emission control device
JP2011-180380 2011-08-22

Publications (1)

Publication Number Publication Date
WO2013027546A1 true WO2013027546A1 (en) 2013-02-28

Family

ID=47746297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069546 WO2013027546A1 (en) 2011-08-22 2012-08-01 Exhaust gas purification device

Country Status (3)

Country Link
JP (1) JP2013044238A (en)
TW (1) TW201315891A (en)
WO (1) WO2013027546A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351904A (en) * 2020-04-28 2020-06-30 西藏净源科技有限公司 Waste gas detection device integrating waste gas detection and purification
CN111677576A (en) * 2020-06-30 2020-09-18 潍柴动力股份有限公司 Temperature control method and device during DPF regeneration
CN115506877A (en) * 2021-06-22 2022-12-23 丰田自动车株式会社 Control device and control method for internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913158B2 (en) * 2013-03-11 2016-04-27 株式会社クボタ diesel engine
BR112017013464B1 (en) * 2014-12-22 2023-01-31 Yamaha Hatsudoki Kabushiki Kaisha ENGINE UNIT
ES2791149T3 (en) * 2014-12-22 2020-11-03 Yamaha Motor Co Ltd Air-cooled motor unit
JP6392658B2 (en) * 2014-12-24 2018-09-19 株式会社豊田自動織機 Diesel engine control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030927A (en) * 2000-07-17 2002-01-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005146979A (en) * 2003-11-14 2005-06-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009533597A (en) * 2006-04-14 2009-09-17 ルノー・エス・アー・エス Method and apparatus for monitoring regeneration of a pollution control system
JP2010071255A (en) * 2008-09-22 2010-04-02 Nippon Soken Inc Exhaust emission control device and exhaust emission control system of internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351153A (en) * 2004-06-10 2005-12-22 Toyota Motor Corp Catalytic deterioration determining device
JP2006152876A (en) * 2004-11-26 2006-06-15 Toyota Motor Corp Exhaust emission control system of internal combustion engine
JP4849823B2 (en) * 2005-05-13 2012-01-11 本田技研工業株式会社 Particulate filter regeneration control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030927A (en) * 2000-07-17 2002-01-31 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005146979A (en) * 2003-11-14 2005-06-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009533597A (en) * 2006-04-14 2009-09-17 ルノー・エス・アー・エス Method and apparatus for monitoring regeneration of a pollution control system
JP2010071255A (en) * 2008-09-22 2010-04-02 Nippon Soken Inc Exhaust emission control device and exhaust emission control system of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351904A (en) * 2020-04-28 2020-06-30 西藏净源科技有限公司 Waste gas detection device integrating waste gas detection and purification
CN111677576A (en) * 2020-06-30 2020-09-18 潍柴动力股份有限公司 Temperature control method and device during DPF regeneration
CN111677576B (en) * 2020-06-30 2022-06-24 潍柴动力股份有限公司 Temperature control method and device during DPF regeneration
CN115506877A (en) * 2021-06-22 2022-12-23 丰田自动车株式会社 Control device and control method for internal combustion engine

Also Published As

Publication number Publication date
TW201315891A (en) 2013-04-16
JP2013044238A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
WO2013027546A1 (en) Exhaust gas purification device
JP5876714B2 (en) Exhaust gas purification device control method
WO2007060785A1 (en) Method for control of exhaust gas purification system, and exhaust gas purification system
JP2008031854A (en) Exhaust emission control device for internal combustion engine
JPWO2007026809A1 (en) Particulate filter regeneration method
JP2009138704A (en) Exhaust emission aftertreatment device
JP2004340138A (en) System and method for pressure sensor diagnosis by computer
US20040139738A1 (en) Exhaust gas purification system of internal combustion engine
JP2009191694A (en) Exhaust emission control device of internal combustion engine
JP4544011B2 (en) Internal combustion engine exhaust purification system
JP2006090153A (en) Exhaust emission control device for internal combustion engine
JP2005201119A (en) Exhaust emission control device of internal combustion engine
JP2005240719A (en) Regeneration time detecting device for filter and regeneration control device for filter
KR101240937B1 (en) Regeneration method and apparatus of diesel particulate filter
JP4008867B2 (en) Exhaust purification equipment
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP4185882B2 (en) Exhaust purification device
JP6769281B2 (en) Internal combustion engine system
JP2005307746A (en) Exhaust emission control device
JP4052268B2 (en) Exhaust gas purification device for internal combustion engine
JP6183659B2 (en) Exhaust gas purification device
JP4032774B2 (en) Exhaust gas purification device for internal combustion engine
JP2006242072A (en) Exhaust emission control device for internal combustion engine
JP4070687B2 (en) Exhaust purification device
JP2010174794A (en) Exhaust emission control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826261

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826261

Country of ref document: EP

Kind code of ref document: A1