Nothing Special   »   [go: up one dir, main page]

WO2013022092A1 - Heptamer-type small guide nucleic acid capable of inducing apoptosis of human hematologic cancer cells - Google Patents

Heptamer-type small guide nucleic acid capable of inducing apoptosis of human hematologic cancer cells Download PDF

Info

Publication number
WO2013022092A1
WO2013022092A1 PCT/JP2012/070509 JP2012070509W WO2013022092A1 WO 2013022092 A1 WO2013022092 A1 WO 2013022092A1 JP 2012070509 W JP2012070509 W JP 2012070509W WO 2013022092 A1 WO2013022092 A1 WO 2013022092A1
Authority
WO
WIPO (PCT)
Prior art keywords
heptamer
nucleic acid
cancer cells
small guide
human
Prior art date
Application number
PCT/JP2012/070509
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013022092A9 (en
Inventor
正之 梨本
Original Assignee
学校法人新潟科学技術学園新潟薬科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人新潟科学技術学園新潟薬科大学 filed Critical 学校法人新潟科学技術学園新潟薬科大学
Priority to JP2013528082A priority Critical patent/JP5959522B2/en
Publication of WO2013022092A1 publication Critical patent/WO2013022092A1/en
Publication of WO2013022092A9 publication Critical patent/WO2013022092A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes

Definitions

  • the present invention relates to a heptamer-type small guide nucleic acid that efficiently induces apoptosis of human cancer cells by TRUE gene silencing.
  • TRUE gene silencing (tR Nase Z L - u tilizing ef ficaciousgene silencing) are developing a new gene silencing technology named (Patent Document 1, Non-Patent Document 1-4).
  • tRNase Z L is an enzyme with a large molecular weight of endoribonuclease (tRNase Z or 3'tRNase) that processes the 3 'end of tRNA, and excises the 3' end of precursor tRNA (Patent Document 1, Non-Patent Documents 5 and 6).
  • This TRUE gene silencing can cleave any portion of RNA by recognizing the pre-tRNA-like or micro-pre-tRNA-like complex formed by the target RNA and the synthetic small guide nucleic acid Based on the unique enzymatic properties of mammalian tRNase Z L (Non-patent Documents 7-13).
  • Small guide nucleic acids are 5′-half tRNA (Non-patent Document 8), 12-16-nt linear RNA (Non-patent Document 13), heptamer RNA (Non-patent Document 9), and hook type. There are four types of RNA (Non-patent Document 12).
  • Non-Patent Documents 1-4 HIV-1 expression in Jurkat cells was suppressed for more than 18 days by 5′-halfstRNA type sgRNA (Non-patent Document 2), and luciferase expression in mouse liver was suppressed by heptamer-type sg nucleic acid (Non-patent Document 3). ).
  • RNA interference RNA interference: RNAi
  • Non-patent Document 15 We also found that human cytosolic tRNase Z L regulates gene expression by cleaving mRNA under the direction of 5'-half tRNA, and PPM1F mRNA is the true target of tRNase Z L (Non-patent Document 15).
  • part of the microRNA containing miR-103 acts as a hook-type sg nucleic acid and can down-regulate gene expression via mRNA cleavage by cytosolic tRNase Z L (Non-patent document 16). From the above, it is clear that TRUE gene silencing functions on the basis of the newly elucidated physiological role of cytosolic tRNase Z L operated by small non-coding RNA in cells.
  • TRUE gene silencing is the use of sg nucleic acid as a therapeutic or prophylactic agent for diseases caused by expression of specific genes.
  • the inventors have already reported that intracellular mRNA levels encoding Bcl-2 and VEGF, which are promising as molecular targets for cancer treatment, are 5'-half tRNA type sg nucleic acid, 14-nt linear type sg It has been found that expression is suppressed by nucleic acid or heptamer-type sg nucleic acid (Non-patent Documents 1, 4, and 17).
  • heptamer type sg nucleic acid is most preferable from a pharmacological viewpoint. This is because heptamers (7-base nucleic acids) can be synthesized much more easily and cheaply than long sg nucleic acids. In addition, heptamer-type sg nucleic acid can be easily taken into cells without using stimulants (such as transfection reagents) (Non-patent Document 18). Japanese Patent No. 3660718 Tamura, M., Nashimoto, C., Miyake, N., Daikuhara, Y., Ochi, K. And Nashimoto, M.
  • Nashimoto, M. (1996) Specific cleavage of target RNAs from HIV-1 with 5 ′ half tRNA by mammalian tRNA 3 ′ processing endoribonuclease. RNA, 2, 2523-2524. Nashimoto, M., Geary, S., Tamura, M. and Kasper, R. (1998) RNA heptamers that directs RNA cleavage by mammalian tRNA 3 ′ processing endoribonuclease. Nucleic Acids Res., 26, 2565-2571. Nashimoto, M. (2000) Anomalous RNA substrates for mammalian tRNA 3′processing endoribonuclease. FEBS Letters, 472, 179-186.
  • heptamer-type sg nucleic acid effectively suppresses the expression of genes related to carcinogenesis.
  • an effect of reliably killing cancer cells is required.
  • heptamer-type sg nucleic acids that can target multiple types of cancer cells have a great advantage.
  • An object of the present invention is to provide a novel heptamer type sg nucleic acid capable of inducing apoptosis of two or more kinds of blood cancer cells.
  • a heptamer-type small guide nucleic acid consisting of a 7-base sequence of any one of SEQ ID NOs: 1 to 12 that induces apoptosis of two or more types of human blood cancer cells.
  • the heptamer type small guide nucleic acid according to (1) above wherein the human blood cancer cells are human leukemia cells and human myeloma cells.
  • the heptamer type small guide nucleic acid according to the above (1) wherein apoptosis of human hematological cancer cells is 80% or more cell death in 3 days.
  • the heptamer type sg nucleic acid of the present invention induces apoptosis of two or more types of human blood cancer cells. Therefore, the drug containing this heptamer type sg nucleic acid can be applied to a plurality of hematological cancers (lymphoma, leukemia and myeloma) by itself.
  • the heptamer-type sg nucleic acid of the present invention is any one of 12 types shown in Table 1.
  • heptamer-type sg nucleic acids can induce apoptosis of at least two different human blood cancer cells, as shown in the Examples below.
  • Hematological cancer cells are, for example, human leukemia cells and human myeloma cells. Induction of apoptosis also means that more than 80% of cancer cells are killed within 3 days.
  • heptamer-type sg nucleic acids can be produced by a method using known chemical synthesis or an enzymatic transcription method.
  • Known methods using chemical synthesis include the phosphoramidite method, phosphorothioate method, phosphotriester method, and the like.
  • ABI3900 high-throughput nucleic acid synthesizer manufactured by Applied Biosystems
  • NTS H- 6Nucleic acid synthesizer manufactured by Nippon Techno Service
  • OligoPilot10 nucleic acid synthesizer GE Healthcare
  • the enzymatic transcription method include transcription using RNA polymerase such as T7, T3, and SP6 RNA polymerase using a plasmid or DNA having a target base sequence as a template.
  • the heptamer sg nucleic acid produced by the synthesis method or transcription method is then purified by HPLC or the like.
  • heptamer-type sg nucleic acid is eluted from the column using a mixed solution of triethylammonium mmacetate (TEAA) or hexalamonium aacetate (HAA) and acetonitrile. Then, the elution solution is dialyzed for 10 hours with distilled water 1000 times the elution volume, and the dialysis solution is freeze-dried and stored frozen until use. When used, dissolve in distilled water to a final concentration of about 100 ⁇ M.
  • TEAA triethylammonium mmacetate
  • HAA hexalamonium aacetate
  • the nucleic acid used in the heptamer-type sg nucleic acid of the present invention may be any molecule as long as it is a polymer of nucleotides or molecules having functions equivalent to those of the nucleotides.
  • nucleotides include RNA, which is a polymer of ribonucleotides, DNA, which is a polymer of deoxyribonucleotides, a polymer in which RNA and DNA are mixed, and a nucleotide polymer containing nucleotide analogs.
  • RNA is particularly preferable.
  • Nucleotide analogs include, for example, ribonucleotides to improve or stabilize nuclease resistance, to increase affinity with complementary strand nucleic acids, to increase cell permeability, or to be visualized compared to RNA or DNA. , Deoxyribonucleotides, RNA or DNA modified molecules. Examples thereof include sugar moiety-modified nucleotide analogs and phosphodiester bond-modified nucleotide analogs.
  • the sugar moiety-modified nucleotide analog may be any one obtained by adding or substituting any chemical structural substance to part or all of the chemical structure of the sugar of the nucleotide.
  • any chemical structural substance for example, 2'-O-methyl Nucleotide analogues substituted with ribose, nucleotide analogues substituted with 2'-O-propylribose, nucleotide analogues substituted with 2'-methoxyethoxyribose, substituted with 2'-O-methoxyethylribose Nucleotide analogues, nucleotide analogues substituted with 2'-O- [2- (guanidinium) ethyl] ribose, nucleotide analogues substituted with 2'-O-fluororibose, introducing a bridging structure into the sugar moiety Bridged Nucleic Acid (BNA) having two circular structures, more specifically, a
  • the phosphodiester bond-modified nucleotide analog may be any one obtained by adding or substituting any chemical substance to a part or all of the chemical structure of the phosphodiester bond of a nucleotide.
  • Examples include nucleotide analogues substituted with thioate linkages, nucleotide analogues substituted with N3'-P5 'phosphoramidate linkages [Cell engineering, 16, 1463-1473 (1997)] [RNAi method And Antisense, Kodansha (2005)].
  • nucleotide analogues include atoms (for example, hydrogen atoms, oxygen atoms) or functional groups (for example, hydroxyl groups, amino groups) of nucleic acid base moieties, ribose moieties, phosphodiester bond moieties, etc.
  • a molecule to which another chemical substance is added such as lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, and a dye may be used.
  • Examples of molecules obtained by adding another chemical substance to nucleic acid include 5′-polyamine addition derivatives, cholesterol addition derivatives, steroid addition derivatives, bile acid addition derivatives, vitamin addition derivatives, Cy5 addition derivatives, Cy3 addition derivatives, and 6-FAM. Examples include addition derivatives, biotin addition derivatives, and the like.
  • the cancer therapeutic agent of the present invention contains one or more of the heptamer type sg nucleic acids of the present invention.
  • Two or more heptamer sg nucleic acids can be used in any combination. That is, the heptamer-type sg nucleic acid of the present invention alone can induce apoptosis of cancer cells by TRUE gene silencing for gene mRNA necessary for the survival of blood cancer cells.
  • each heptamer type sg nucleic acid cuts a different target gene mRNA or cuts a different part of the same target gene mRNA.
  • TRUE gene silencing of two or more gene mRNAs necessary for the survival of blood cancer cells becomes possible, and induces effective cancer cell apoptosis.
  • apoptosis of cancer cells can be effectively induced by combining the same target gene mRNAs that cleave different sites.
  • different blood cancer cells coexist depending on the patient, in that case, for example, those that are particularly effective for apoptosis of leukemia cells and those that are particularly effective for apoptosis of myeloma cells are combined. You can also.
  • the heptamer-type sg nucleic acid can be formulated alone, but is usually mixed together with one or more pharmacologically acceptable carriers, and any method well known in the technical field of pharmaceutics It is desirable to administer as a pharmaceutical preparation produced by
  • oral administration or parenteral administration such as buccal, respiratory tract, rectal, subcutaneous, intramuscular and intravenous is desirable. Can be given intravenously.
  • Preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like.
  • Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p-hydroxybenzoic acid Preservatives such as esters, and flavors such as strawberry flavor and peppermint can be used as additives.
  • emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p-hydroxybenzoic acid
  • Preservatives such as esters, and flavors such as strawberry flavor and peppermint can be used as additives.
  • excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl alcohol, hydroxy A binder such as propylcellulose and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.
  • Preparations suitable for parenteral administration include injections, suppositories, sprays and the like.
  • the injection is prepared using a carrier made of a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using a carrier such as cocoa butter, hydrogenated fat or carboxylic acid.
  • the spray is prepared using a carrier that does not irritate the recipient's oral cavity and airway mucosa, and that facilitates absorption by dispersing the active ingredient as fine particles.
  • the carrier include lactose and glycerin.
  • preparations such as aerosols and dry powders are possible.
  • the components exemplified as additives for oral preparations can also be added.
  • the dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, weight, etc., but is usually 10 ⁇ g / kg to 20 ⁇ g / kg per day for an adult.
  • the elution solution was dialyzed for 10 hours with distilled water 1000 times the elution volume, and the dialyzed solution was lyophilized and stored frozen until use. At the time of use, it was dissolved in distilled water to a final concentration of 100 ⁇ M, and the remaining solution was stored frozen.
  • sgRNA final concentration 1 ⁇ M
  • human cancer cell lines 1000 cells / 100 ⁇ l medium
  • MTT reagent Tetracolor One 6 ⁇ l, Biochemical Biobusiness Co., Ltd.
  • the number of viable cells was determined by measuring absorbance at 450 nm with a spectrophotometer after 3 hours and 6 hours (triplicate (Displayed as an average value).
  • leukemia cell HL60 leukemia cell HL60, myeloma cell KMM1 and RPMI-8226 were used, and the number of living cells was compared with that of the sgRNA non-administered group.
  • each sgRNA was introduced into normal cells HEK293, and the same MTT assay was performed.
  • results (2-1) MTT assay The results are as shown in Table 2.
  • the heptamer sgRNAs of SEQ ID NOs: 1-6 killed 80% or more of the three types of cancer cells in 3 days.
  • the heptamer sgRNAs of SEQ ID NOs: 7-12 killed 80% or more of the two types of cancer cells among the three types of cancer cells.
  • the death rate of normal cells HEK293 was 0%.
  • the heptamer sg nucleic acid of the present invention can effectively induce apoptosis of human blood cancer cells, and can prolong the life of an animal individual having cancer cells by the induction of apoptosis.
  • the heptamer sg nucleic acid of the present invention can effectively induce apoptosis of human blood cancer cells, and can prolong the life of an animal individual having cancer cells by the induction of apoptosis.
  • the present invention provides an effective treatment for human blood cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Provided are: a heptamer-type small guide (sg) nucleic acid which can induce the apoptosis of at least two types of human hematologic cancer cells and comprises any seven nucleotide sequences selected from SEQ ID NO: 1 to SEQ ID NO: 12; and a therapeutic agent for cancer, which contains the heptamer-type small guide nucleic acid as an active ingredient. A novel heptamer-type sg nucleic acid can be provided, which can induce the apoptosis of at least two types of hematologic cancer cells.

Description

ヒト血液がん細胞のアポトーシスを誘導するヘプタマー型スモールガイド核酸Heptamer-type small guide nucleic acid that induces apoptosis of human hematological cancer cells
 本発明は、TRUEジーンサイレンシングによってヒトがん細胞のアポトーシスを効率よく誘導するヘプタマー型スモールガイド核酸に関するものである。 The present invention relates to a heptamer-type small guide nucleic acid that efficiently induces apoptosis of human cancer cells by TRUE gene silencing.
 本発明の発明者らは、TRUEジーンサイレンシング(tRNase ZL-utilizing efficaciousgene silencing)と名付けた新しい遺伝子発現抑制技術を開発している(特許文献1、非特許文献1-4)。tRNase ZLは、tRNAの3’末端部をプロセシングするエンドリボヌクレアーゼ(tRNase Zまたは3’tRNase)の分子量の大きい種類の酵素であり、前駆体tRNAの3’末端部を切除する(特許文献1、非特許文献5、6)。このTRUEジーンサイレンシングは、標的RNAと合成スモールガイド核酸とによって形成されるpre-tRNA様またはマイクロpre-tRNA様複合体を認識することによって、いかなるRNAの任意箇所をも切断することができるという哺乳動物tRNase ZLのユニークな酵素的特性に基づいている(非特許文献7-13)。スモールガイド核酸(特にスモールガイドRNA)は、5’-half tRNA(非特許文献8)、12~16-nt直鎖RNA(非特許文献13)、ヘプタマー型RNA(非特許文献9)およびフック型RNA(非特許文献12)の4種に分けられる。 The inventors of the present invention, TRUE gene silencing (tR Nase Z L - u tilizing ef ficaciousgene silencing) are developing a new gene silencing technology named (Patent Document 1, Non-Patent Document 1-4). tRNase Z L is an enzyme with a large molecular weight of endoribonuclease (tRNase Z or 3'tRNase) that processes the 3 'end of tRNA, and excises the 3' end of precursor tRNA (Patent Document 1, Non-Patent Documents 5 and 6). This TRUE gene silencing can cleave any portion of RNA by recognizing the pre-tRNA-like or micro-pre-tRNA-like complex formed by the target RNA and the synthetic small guide nucleic acid Based on the unique enzymatic properties of mammalian tRNase Z L (Non-patent Documents 7-13). Small guide nucleic acids (particularly small guide RNA) are 5′-half tRNA (Non-patent Document 8), 12-16-nt linear RNA (Non-patent Document 13), heptamer RNA (Non-patent Document 9), and hook type. There are four types of RNA (Non-patent Document 12).
 発明者らは、様々なmRNAを標的とするスモールガイド核酸(以下、sg核酸と記載することがある)を、その発現プラスミドまたは2’-O-methyl RNAsを導入することによって、様々な哺乳動物細胞におけるTRUEジーンサイレンシングの有効性を実証している(非特許文献1-4)。例えば、Jurkat細胞におけるHIV-1発現は、5’-half tRNA型sgRNAによって18日間以上抑制され(非特許文献2)、マウス肝臓におけるルシフェラーゼ発現はヘプタマー型sg核酸によって抑制された(非特許文献3)。さらに、TRUEジーンサイレンシングの効果は、RNA干渉(RNA interference: RNAi)と同等であり(非特許文献3、14)、幾つかの場合ではRNAiの効果を凌ぐことも確認されている(非特許文献4)。 The inventors have introduced a small guide nucleic acid (hereinafter sometimes referred to as sg nucleic acid) targeting various mRNAs into various mammals by introducing the expression plasmid or 2′-O-methyl RNAs. It demonstrates the effectiveness of TRUE gene silencing in cells (Non-Patent Documents 1-4). For example, HIV-1 expression in Jurkat cells was suppressed for more than 18 days by 5′-halfstRNA type sgRNA (Non-patent Document 2), and luciferase expression in mouse liver was suppressed by heptamer-type sg nucleic acid (Non-patent Document 3). ). Furthermore, the effect of TRUE gene silencing is equivalent to RNA interference (RNA interference: RNAi) (Non-Patent Documents 3 and 14), and in some cases, it has been confirmed that it exceeds the effect of RNAi (Non-patent) Reference 4).
 また最近、発明者らは、tRNase ZLが核内だけでなくサイトゾルにも存在すること、そしてsg核酸として使用していたのと同一の5’-half tRNAが細胞質に存在することを見出している(非特許文献15)。また、発明者らは、ヒトサイトゾルtRNase ZLが、5’-half tRNAの指揮のもとでmRNAを切断することによって遺伝子発現を調節すること、そしてPPM1F mRNAがtRNase ZLの真の標的の一つであることを見出している(非特許文献15)。さらにまた、発明者らは、miR-103を含むマイクロRNAの一部がフック型sg核酸として働き、サイトゾルtRNase ZLによるmRNA切断を介して遺伝子発現を下方調節しえることを証明している(非特許文献16)。以上のことから、TRUEジーンサイレンシングは、細胞内の小さな非コードRNAによって作動されるサイトゾルtRNase ZLの新たに解明された生理学的役割を基礎として機能していることは明らかである。 Recently, the inventors have found that tRNase Z L is present not only in the nucleus but also in the cytosol, and that the same 5′-half tRNA used as sg nucleic acid is present in the cytoplasm. (Non-patent Document 15). We also found that human cytosolic tRNase Z L regulates gene expression by cleaving mRNA under the direction of 5'-half tRNA, and PPM1F mRNA is the true target of tRNase Z L (Non-patent Document 15). Furthermore, the inventors have demonstrated that part of the microRNA containing miR-103 acts as a hook-type sg nucleic acid and can down-regulate gene expression via mRNA cleavage by cytosolic tRNase Z L (Non-patent document 16). From the above, it is clear that TRUE gene silencing functions on the basis of the newly elucidated physiological role of cytosolic tRNase Z L operated by small non-coding RNA in cells.
 TRUEジーンサイレンシングの最終的な目的の一つは、特定遺伝子の発現を原因とする疾患治療剤または予防剤としてのsg核酸の使用である。例えば、発明者らは既に、がん治療の分子標的として有望視されているBcl-2およびVEGFをコードする細胞内mRNAレベルが、5’-half tRNA型sg核酸、14-nt直鎖型sg核酸またはヘプタマー型sg核酸によって発現抑制されることを見出している(非特許文献1、4、17)。 One of the ultimate goals of TRUE gene silencing is the use of sg nucleic acid as a therapeutic or prophylactic agent for diseases caused by expression of specific genes. For example, the inventors have already reported that intracellular mRNA levels encoding Bcl-2 and VEGF, which are promising as molecular targets for cancer treatment, are 5'-half tRNA type sg nucleic acid, 14-nt linear type sg It has been found that expression is suppressed by nucleic acid or heptamer-type sg nucleic acid (Non-patent Documents 1, 4, and 17).
 sg核酸を薬剤成分とする場合、薬理学的な視点からは、ヘプタマー型sg核酸が最も好ましい。何故ならば、ヘプタマー(7塩基核酸)は長鎖のsg核酸よりも遙かに簡便かつ安価に合成することができる。また、ヘプタマー型sg核酸は、刺激剤(トランスフェクション試薬等)を用いることなく容易に細胞内に取込ませることができる(非特許文献18)。
特許第3660718号公報 Tamura,M., Nashimoto,C., Miyake,N., Daikuhara,Y., Ochi,K. and Nashimoto,M.(2003) Intracellular mRNA cleavage by 3′ tRNase under the direction of 2′-O-methylRNA heptamers. Nucleic Acids Res., 31, 4354-4360. Habu,Y., Miyano-Kurosaki,N., Kitano,M., Endo,Y., Yukita,M., Ohira,S., Takaku,H., Nashimoto,M. and Takaku,H. (2005) Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL. Nucleic Acids Res., 33, 235-243. Nakashima,A., Takaku,H., Shibata,H.S., Negishi,Y., Takagi,M., Tamura,M. and Nashimoto,M. (2007) Gene-silencing by the tRNA maturase tRNase ZL under the direction of small guide RNA. Gene Therapy, 14, 78-85. Elbarbary,R.A., Takaku,H., Tamura,M. and Nashimoto,M. (2009) Inhibition of vascular endothelial growth factor expression by TRUE gene silencing. Biochem.and Biophys. Res. Commun., 379, 924-927. Nashimoto,M. (1997) Distribution of both lengths and 5′ terminal nucleotides of mammalian pre-tRNA 3′ trailers reflects properties of 3′processing endoribonuclease. Nucleic Acids Res., 25, 1148-1155. Takaku,H., Minagawa,A., Masamichi,T. and Nashimoto,M. (2003) A candidateprostate cancer susceptibility gene encodes tRNA 3′ processing endoriobonuclease. Nucleic Acids Res., 31, 2272-2278. Nashimoto,M. (1995) Conversion of mammalian tRNA 3′ processing endoribonuclease to four-base-recognizing RNA cutters. Nucleic Acids Res., 23, 3642-3647. Nashimoto,M. (1996) Specific cleavage of target RNAs from HIV-1 with 5′ half tRNA by mammalian tRNA 3′ processing endoribonuclease. RNA, 2, 2523-2524. Nashimoto,M., Geary,S., Tamura,M. and Kasper,R. (1998) RNA heptamers that directs RNA cleavage by mammalian tRNA 3′ processing endoribonuclease. Nucleic Acids Res., 26, 2565-2571. Nashimoto,M. (2000) Anomalous RNA substrates for mammalian tRNA 3′processing endoribonuclease. FEBS Letters, 472, 179-186. Takaku,H., Minagawa,A., Takagi,M. and Nashimoto,M. (2004) The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity. Nucleic Acids Res., 32, 4429-4438. Takaku,H., Minagawa,A., Takagi,M. and Nashimoto,M. (2004) A novel four-base-recognizing RNA cutter that can remove the single 3′ terminal nucleotides from RNA molecules. Nucleic Acids Res., 32, e91. Shibata,H.S., Takaku,H., Takagi,M. and Nashimoto,M. (2005) The T loop structure is dispensable for substrate recognition by tRNase ZL. J. Biol. Chem., 280, 22326-22334. Appasani,K. (2005) RNA interference technology: from basic science to drug development. Cambridge University Press, Cambridge. Elbarbary,R.A., Takaku,H., Uchiumi,N., Tamiya,H., Abe,M., Takahashi,M., Nishida,H. and Nashimoto,M. (2009) Modulation of gene expression by human cytosolic tRNase ZL through 5′-half-tRNA. PLoS ONE, 4, e5908. Elbarbary,R.A., Takaku,H., Uchiumi,N., Tamiya,H., Abe,M., Nishida,H. and Nashimoto,M. (2009) Human cytosolic tRNase ZL can downregulate gene expression through miRNA. FEBS Lett., 583, 3241-3246. Hu,W. and Kavanagh,J.J. (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol., 4, 721-729. Loke,S.L., Stein,C.A., Zhang X.H., Mori,K., Nakanishi,M., Subasinghe,C., Cohen,J.S. and Neckers,L.M. (1989) Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. USA, 86, 3474-3478.
When sg nucleic acid is used as a drug component, heptamer type sg nucleic acid is most preferable from a pharmacological viewpoint. This is because heptamers (7-base nucleic acids) can be synthesized much more easily and cheaply than long sg nucleic acids. In addition, heptamer-type sg nucleic acid can be easily taken into cells without using stimulants (such as transfection reagents) (Non-patent Document 18).
Japanese Patent No. 3660718 Tamura, M., Nashimoto, C., Miyake, N., Daikuhara, Y., Ochi, K. And Nashimoto, M. (2003) Intracellular mRNA cleavage by 3 ′ tRNase under the direction of 2′-O-methylRNA heptamers Nucleic Acids Res., 31, 4354-4360. Habu, Y., Miyano-Kurosaki, N., Kitano, M., Endo, Y., Yukita, M., Ohira, S., Takaku, H., Nashimoto, M. and Takaku, H. (2005) Inhibition of HIV-1 gene expression by retroviral vector-mediated small-guide RNAs that direct specific RNA cleavage by tRNase ZL. Nucleic Acids Res., 33, 235-243. Nakashima, A., Takaku, H., Shibata, HS, Negishi, Y., Takagi, M., Tamura, M. and Nashimoto, M. (2007) Gene-silencing by the tRNA maturase tRNase ZL under the direction of small guide RNA. Gene Therapy, 14, 78-85. Elbarbary, RA, Takaku, H., Tamura, M. And Nashimoto, M. (2009) Inhibition of vascular endothelial growth factor expression by TRUE gene silencing.Biochem.and Biophys.Res. Commun., 379, 924-927. Nashimoto, M. (1997) Distribution of both lengths and 5 ′ terminal nucleotides of mammalian pre-tRNA 3 ′ trailers representing properties of 3 ′ processing endoribonuclease. Nucleic Acids Res., 25, 1148-1155. Takaku, H., Minagawa, A., Masamichi, T. and Nashimoto, M. (2003) A candidate prostate cancer susceptibility gene encodes tRNA 3 ′ processing endoriobonuclease. Nucleic Acids Res., 31, 2272-2278. Nashimoto, M. (1995) Conversion of mammalian tRNA 3 ′ processing endoribonuclease to four-base-recognizing RNA cutters.Nucleic Acids Res., 23, 3642-3647. Nashimoto, M. (1996) Specific cleavage of target RNAs from HIV-1 with 5 ′ half tRNA by mammalian tRNA 3 ′ processing endoribonuclease. RNA, 2, 2523-2524. Nashimoto, M., Geary, S., Tamura, M. and Kasper, R. (1998) RNA heptamers that directs RNA cleavage by mammalian tRNA 3 ′ processing endoribonuclease. Nucleic Acids Res., 26, 2565-2571. Nashimoto, M. (2000) Anomalous RNA substrates for mammalian tRNA 3′processing endoribonuclease. FEBS Letters, 472, 179-186. Takaku, H., Minagawa, A., Takagi, M. And Nashimoto, M. (2004) The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity.Nucleic Acids Res., 32 , 4429-4438. Takaku, H., Minagawa, A., Takagi, M. And Nashimoto, M. (2004) A novel four-base-recognizing RNA cutter that can remove the single 3 ′ terminal nucleotides from RNA molecules.Nucleic Acids Res., 32 , e91. Shibata, HS, Takaku, H., Takagi, M. and Nashimoto, M. (2005) The T loop structure is dispensable for substrate recognition by tRNase ZL. J. Biol. Chem., 280, 22326-22334. Appasani, K. (2005) RNA interference technology: from basic science to drug development.Cambridge University Press, Cambridge. Elbarbary, RA, Takaku, H., Uchiumi, N., Tamiya, H., Abe, M., Takahashi, M., Nishida, H. And Nashimoto, M. (2009) Modulation of gene expression by human cytosolic tRNase ZL through 5′-half-tRNA. PLoS ONE, 4, e5908. Elbarbary, RA, Takaku, H., Uchiumi, N., Tamiya, H., Abe, M., Nishida, H. And Nashimoto, M. (2009) Human cytosolic tRNase ZL can downregulate gene expression through miRNA.FEBS Lett. , 583, 3241-3246. Hu, W. and Kavanagh, JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol., 4, 721-729. Loke, SL, Stein, CA, Zhang XH, Mori, K., Nakanishi, M., Subasinghe, C., Cohen, JS and Neckers, LM (1989) Characterization of oligonucleotide transport into living cells.Proc. Natl. Acad. Sci. USA, 86, 3474-3478.
 本発明者らによって、ヘプタマー型sg核酸が発がんに関連する遺伝子の発現を効果的に抑制することが示されている。しかしながら、がん治療の観点からは、がん細胞を確実に死滅させる効果が求められる。さらに、薬剤の製造やその使用上の利便性の観点からは、複数種のがん細胞を対象とすることのできるヘプタマー型sg核酸は、大きな利点を有している。 The inventors have shown that heptamer-type sg nucleic acid effectively suppresses the expression of genes related to carcinogenesis. However, from the viewpoint of cancer treatment, an effect of reliably killing cancer cells is required. Furthermore, from the viewpoint of convenience in production and use of drugs, heptamer-type sg nucleic acids that can target multiple types of cancer cells have a great advantage.
 本発明は、2種以上の血液がん細胞のアポトーシスを誘導することができる新規なヘプタマー型sg核酸を提供することを課題としている。 An object of the present invention is to provide a novel heptamer type sg nucleic acid capable of inducing apoptosis of two or more kinds of blood cancer cells.
 本発明者らは、(A、U、G、C)=16,384個もの膨大な数のヘプタマー型スモールガイド核酸から、正常細胞の生存に影響を及ぼすことなく、少なくとも2種のヒト血液がん細胞のアポトーシスを効果的に誘導する12種のヘプタマー型スモールガイド核酸を見出し、本発明を完成させた。すなわち、本発明は、前記の課題を解決するものとして以下の発明を提供する。
(1)2種以上のヒト血液がん細胞のアポトーシスを誘導する、配列番号1から12のいずれかの7塩基配列からなるヘプタマー型スモールガイド核酸。
(2)ヒト血液がん細胞がヒト白血病細胞およびヒト骨髄腫細胞である前記(1)のヘプタマー型スモールガイド核酸。
(3)ヒト血液がん細胞のアポトーシスが、3日間で80%以上の細胞死である前記(1)のヘプタマー型スモールガイド核酸。
(4)前記(1)に記載のヘプタマー型スモールガイド核酸の1種または2種以上を有効成分として含有するがん治療薬。
(5)ヒト白血病およびヒト骨髄腫の治療薬である前記(1)の癌治療薬。
The present inventors have obtained at least two types of human blood cancer from a huge number of (A, U, G, C) 7 = 16,384 heptamer type small guide nucleic acids without affecting the survival of normal cells. Twelve heptamer-type small guide nucleic acids that effectively induce cell apoptosis were found and the present invention was completed. That is, this invention provides the following invention as what solves the said subject.
(1) A heptamer-type small guide nucleic acid consisting of a 7-base sequence of any one of SEQ ID NOs: 1 to 12 that induces apoptosis of two or more types of human blood cancer cells.
(2) The heptamer type small guide nucleic acid according to (1) above, wherein the human blood cancer cells are human leukemia cells and human myeloma cells.
(3) The heptamer type small guide nucleic acid according to the above (1), wherein apoptosis of human hematological cancer cells is 80% or more cell death in 3 days.
(4) A cancer therapeutic agent containing one or more heptamer-type small guide nucleic acids according to (1) as an active ingredient.
(5) The cancer therapeutic agent according to (1) above, which is a therapeutic agent for human leukemia and human myeloma.
 本発明のヘプタマー型sg核酸は、2種以上のヒト血液がん細胞のアポトーシスを誘導する。従って、このヘプタマー型sg核酸を含有する薬剤は、それ単独で複数の血液がん(リンパ腫、白血病および骨髄腫)に適用することができる。 The heptamer type sg nucleic acid of the present invention induces apoptosis of two or more types of human blood cancer cells. Therefore, the drug containing this heptamer type sg nucleic acid can be applied to a plurality of hematological cancers (lymphoma, leukemia and myeloma) by itself.
RPMI-8226細胞に無効なsgRNA(mock)を導入した場合のフローサイトメトリー実験の結果である。It is the result of the flow cytometry experiment at the time of introduce | transducing ineffective sgRNA (mock) into RPMI-8226 cell. RPMI-8226細胞にHep1(PKCb)(配列番号1)を導入した場合のフローサイトメトリー実験の結果である。It is the result of the flow cytometry experiment at the time of introduce | transducing Hep1 (PKCb) (sequence number 1) into RPMI-8226 cell. RPMI-8226細胞にHep1(FGFR3)(配列番号2)を導入した場合のフローサイトメトリー実験の結果である。It is the result of the flow cytometry experiment at the time of introduce | transducing Hep1 (FGFR3) (sequence number 2) into RPMI-8226 cell. RPMI-8226細胞にHep2(FGFR3)(配列番号3)を導入した場合のフローサイトメトリー実験の結果である。It is the result of the flow cytometry experiment at the time of introduce | transducing Hep2 (FGFR3) (sequence number 3) into RPMI-8226 cell. HL60細胞に無効なsgRNA(mock)を導入した場合のフローサイトメトリー実験の結果である。なお、分析結果の図にはHL60細胞の代わりにファイル名「2000」を表記している。It is the result of the flow cytometry experiment at the time of introduce | transducing ineffective sgRNA (mock) into HL60 cell. In addition, the file name “2000” is written in place of the HL60 cells in the analysis results. HL60細胞にHep1(PKCb)(配列番号1)を導入した場合のフローサイトメトリー実験の結果である。なお、分析結果の図にはHL60細胞の代わりにファイル名「2000」を表記している。It is the result of the flow cytometry experiment at the time of introduce | transducing Hep1 (PKCb) (sequence number 1) in HL60 cell. In addition, the file name “2000” is written in place of the HL60 cells in the analysis results. HL60細胞にHep1(FGFR3)(配列番号2)を導入した場合のフローサイトメトリー実験の結果である。なお、分析結果の図にはHL60細胞の代わりにファイル名「2000」を表記している。It is the result of the flow cytometry experiment at the time of introduce | transducing Hep1 (FGFR3) (sequence number 2) in HL60 cell. In addition, the file name “2000” is written instead of HL60 cells in the analysis results. HL60細胞に無効なsgRNA(mock)を導入した場合のフローサイトメトリー実験の結果である。It is the result of the flow cytometry experiment at the time of introduce | transducing ineffective sgRNA (mock) into HL60 cell. HL60細胞にHep7(FGFR3)(配列番号10)を導入した場合のフローサイトメトリー実験の結果である。It is the result of the flow cytometry experiment at the time of introduce | transducing Hep7 (FGFR3) (sequence number 10) in HL60 cell.
 本発明のヘプタマー型sg核酸は、表1に示した12種のいずれか一つである。 The heptamer-type sg nucleic acid of the present invention is any one of 12 types shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1には各sgRNAの配列を示している。これら12種のヘプタマー型sgRNAは(A、U、G、C)=16,384個のオリゴヌクレオチドから、血液がん細胞のアポトーシス誘導効果を確認して選択されたものである。そのヌクレオチド配列から切断標的となる遺伝子mRNAが想定されるが、標的遺伝子は1つとは限らない。未知の遺伝子を含め、それぞれのオリゴヌクレオチドとアニールする7ヌクレオチド配列を有するmRNAが複数の遺伝子に由来する場合もある。従って、表1における「名前」の括弧内の記号はそれぞれのヘプタマー型sgRNAが切断標的とするmRNAを転写する遺伝子の1例を示したものである。 Table 1 shows the sequence of each sgRNA. These 12 heptamer sgRNAs were selected from (A, U, G, C) 7 = 16,384 oligonucleotides after confirming the apoptosis-inducing effect of hematological cancer cells. A gene mRNA that is a cleavage target is assumed from the nucleotide sequence, but the target gene is not limited to one. In some cases, mRNAs having 7 nucleotide sequences that anneal to each oligonucleotide, including unknown genes, are derived from multiple genes. Therefore, the symbol in parentheses of “name” in Table 1 shows an example of a gene that transcribes mRNA targeted for cleavage by each heptamer type sgRNA.
 これらのヘプタマー型sg核酸は、下記実施例に示したように、少なくとも2つの異なるヒト血液がん細胞のアポトーシスを誘導することができる。血液がん細胞は、例えばヒト白血病細胞およびヒト骨髄種細胞である。またアポトーシスの誘導は、がん細胞の80%以上を3日以内に死滅させることを意味する。 These heptamer-type sg nucleic acids can induce apoptosis of at least two different human blood cancer cells, as shown in the Examples below. Hematological cancer cells are, for example, human leukemia cells and human myeloma cells. Induction of apoptosis also means that more than 80% of cancer cells are killed within 3 days.
 これらのヘプタマー型sg核酸は、公知の化学合成を用いる方法、あるいは酵素的転写法等にて製造することができる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスフォロチオエート法、ホスホトリエステル法等をあげることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)やNTS H-6核酸合成機(日本テクノサービス社製)、OligoPilot10核酸合成機(GEヘルスケア社製)により合成することができる。酵素的転写法としては、目的の塩基配列を有するプラスミドまたはDNAを鋳型として、T7、T3、SP6RNAポリメラーゼ等のRNAポリメラーゼを用いた転写をあげることができる。合成法または転写法により製造したヘプタマー型sg核酸は、次いでHPLC等にて精製する。例えばHPLC精製時には、triethylammonium acetate (TEAA)またはhexylammonium acetate(HAA)とacetonitrileの混合溶液を用いて、ヘプタマー型sg核酸をカラムから溶出する。その後、溶出体積の1000倍量の蒸留水で溶出溶液を10時間透析し、透析溶液を凍結乾燥した後、使用時まで冷凍保存する。使用時には蒸留水で最終濃度が100μM程度になるように溶解する。 These heptamer-type sg nucleic acids can be produced by a method using known chemical synthesis or an enzymatic transcription method. Known methods using chemical synthesis include the phosphoramidite method, phosphorothioate method, phosphotriester method, and the like. For example, ABI3900 high-throughput nucleic acid synthesizer (manufactured by Applied Biosystems), NTS H- 6Nucleic acid synthesizer (manufactured by Nippon Techno Service), OligoPilot10 nucleic acid synthesizer (GE Healthcare) Examples of the enzymatic transcription method include transcription using RNA polymerase such as T7, T3, and SP6 RNA polymerase using a plasmid or DNA having a target base sequence as a template. The heptamer sg nucleic acid produced by the synthesis method or transcription method is then purified by HPLC or the like. For example, during HPLC purification, heptamer-type sg nucleic acid is eluted from the column using a mixed solution of triethylammonium mmacetate (TEAA) or hexalamonium aacetate (HAA) and acetonitrile. Then, the elution solution is dialyzed for 10 hours with distilled water 1000 times the elution volume, and the dialysis solution is freeze-dried and stored frozen until use. When used, dissolve in distilled water to a final concentration of about 100 μM.
 本発明のヘプタマー型sg核酸に用いられる核酸としては、ヌクレオチドまたはそのヌクレオチドと同等の機能を有する分子が重合した分子であればいかなるものでもよい。ヌクレオチドとしては、例えばリボヌクレオチドの重合体であるRNA、デオキシリボヌクレオチドの重合体であるDNA、RNAおよびDNAが混合した重合体、ヌクレオチド類似体を含むヌクレオチド重合体が、それぞれあげられる。特にRNAが好ましい。 The nucleic acid used in the heptamer-type sg nucleic acid of the present invention may be any molecule as long as it is a polymer of nucleotides or molecules having functions equivalent to those of the nucleotides. Examples of nucleotides include RNA, which is a polymer of ribonucleotides, DNA, which is a polymer of deoxyribonucleotides, a polymer in which RNA and DNA are mixed, and a nucleotide polymer containing nucleotide analogs. RNA is particularly preferable.
 ヌクレオチド類似体としては、例えばRNAまたはDNAと比較して、ヌクレアーゼ耐性の向上または安定化させるため、相補鎖核酸とのアフィニティーをあげるため、細胞透過性をあげるため、あるいは可視化させるために、リボヌクレオチド、デオキシリボヌクレオチド、RNAまたはDNAに修飾を施した分子を挙げるこことができる。例えば、糖部修飾ヌクレオチド類似体やリン酸ジエステル結合修飾ヌクレオチド類似体等があげられる。 Nucleotide analogs include, for example, ribonucleotides to improve or stabilize nuclease resistance, to increase affinity with complementary strand nucleic acids, to increase cell permeability, or to be visualized compared to RNA or DNA. , Deoxyribonucleotides, RNA or DNA modified molecules. Examples thereof include sugar moiety-modified nucleotide analogs and phosphodiester bond-modified nucleotide analogs.
 糖部修飾ヌクレオチド類似体とは、ヌクレオチドの糖の化学構造の一部あるいは全てに対し、任意の化学構造物質を付加あるいは置換したものであればいかなるものでもよく、例えば、2’-O-メチルリボースで置換されたヌクレオチド類似体、2’-O-プロピルリボースで置換されたヌクレオチド類似体、2’-メトキシエトキシリボースで置換されたヌクレオチド類似体、2’-O-メトキシエチルリボースで置換されたヌクレオチド類似体、2’-O-[2-(グアニジウム)エチル]リボースで置換されたヌクレオチド類似体、2’-O-フルオロリボースで置換されたヌクレオチド類似体、糖部に架橋構造を導入する
ことにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)、より具体的には、2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid:LNA)、エチレン架橋構造型人工核酸(Ethylene bridged nucleic acid:ENA)[Nucleic Acid Research, 32, e175 (2004)]等があげられ、さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)]、およびペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等をあげることができる。
The sugar moiety-modified nucleotide analog may be any one obtained by adding or substituting any chemical structural substance to part or all of the chemical structure of the sugar of the nucleotide. For example, 2'-O-methyl Nucleotide analogues substituted with ribose, nucleotide analogues substituted with 2'-O-propylribose, nucleotide analogues substituted with 2'-methoxyethoxyribose, substituted with 2'-O-methoxyethylribose Nucleotide analogues, nucleotide analogues substituted with 2'-O- [2- (guanidinium) ethyl] ribose, nucleotide analogues substituted with 2'-O-fluororibose, introducing a bridging structure into the sugar moiety Bridged Nucleic Acid (BNA) having two circular structures, more specifically, a 2′-position oxygen atom and a 4′-position carbon atom Locked Nucleic Acid (LNA) cross-linked via Tylene, Ethylene Bridged Nucleic Acid (ENA) [Nucleic Acid Research, 32, e175 (2004)], etc., and peptides Nucleic acid (PNA) [Acc. Chem. Res., 32, 624 (1999)], oxypeptide nucleic acid (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001)], and peptide ribonucleic acid (PRNA) ) [J. Am. Chem. Soc., 122, 6900 (2000)].
 リン酸ジエステル結合修飾ヌクレオチド類似体としては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の化学物質を付加あるいは置換したものであればいかなるものでもよく、例えば、ホスフォロチオエート結合に置換されたヌクレオチド類似体、N3'-P5'ホスフォアミデート結合に置換されたヌクレオチド類似体等をあげることができる[細胞工学, 16, 1463-1473 (1997)][RNAi法とアンチセンス法、講談社(2005)]。 The phosphodiester bond-modified nucleotide analog may be any one obtained by adding or substituting any chemical substance to a part or all of the chemical structure of the phosphodiester bond of a nucleotide. Examples include nucleotide analogues substituted with thioate linkages, nucleotide analogues substituted with N3'-P5 'phosphoramidate linkages [Cell engineering, 16, 1463-1473 (1997)] [RNAi method And Antisense, Kodansha (2005)].
 ヌクレオチド類似体としては、その他に、核酸の塩基部分、リボース部分、リン酸ジエステル結合部分等の原子(例えば、水素原子、酸素原子)もしくは官能基(例えば、水酸基、アミノ基)が他の原子(例えば、水素原子、硫黄原子)、官能基(例えば、アミノ基)、もしくは炭素数1~6のアルキル基で置換されたものまたは保護基(例えばメチル基またはアシル基)で保護されたもの、核酸に、例えば脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、色素など、別の化学物質を付加した分子等を用いてもよい。 Other nucleotide analogues include atoms (for example, hydrogen atoms, oxygen atoms) or functional groups (for example, hydroxyl groups, amino groups) of nucleic acid base moieties, ribose moieties, phosphodiester bond moieties, etc. For example, a hydrogen atom, a sulfur atom), a functional group (for example, an amino group), a group substituted with an alkyl group having 1 to 6 carbon atoms, or a group protected with a protecting group (for example, a methyl group or an acyl group), a nucleic acid In addition, for example, a molecule to which another chemical substance is added such as lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, and a dye may be used.
 核酸に別の化学物質を付加した分子としては、例えば、5’-ポリアミン付加誘導体、コレステロール付加誘導体、ステロイド付加誘導体、胆汁酸付加誘導体、ビタミン付加誘導体、Cy5付加誘導体、Cy3付加誘導体、6-FAM付加誘導体、およびビオチン付加誘導体等をあげることができる。 Examples of molecules obtained by adding another chemical substance to nucleic acid include 5′-polyamine addition derivatives, cholesterol addition derivatives, steroid addition derivatives, bile acid addition derivatives, vitamin addition derivatives, Cy5 addition derivatives, Cy3 addition derivatives, and 6-FAM. Examples include addition derivatives, biotin addition derivatives, and the like.
 本発明のがん治療薬は、本発明のヘプタマー型sg核酸の1種または2種以上を含有する。2種以上のヘプタマー型sg核酸は任意の組み合わせで使用することができる。すなわち、本発明のヘプタマー型sg核酸はそれぞれ単独で、血液がん細胞の生存に必要な遺伝子mRNAに対するTRUEジーンサイレンシングによってがん細胞のアポトーシスを誘導することができる。この場合、各ヘプタマー型sg核酸は、それぞれ異なる標的遺伝子mRNAを切断しているか、同一の標的遺伝子mRNAの異なる箇所を切断している。従って、2種以上のヘプタマー型sg核酸を組み合わせることによって、血液がん細胞の生存に必要な2種以上の遺伝子mRNAに対するTRUEジーンサイレンシングが可能となり、効果的ながん細胞アポトーシスを誘導することができる。あるいは同一の標的遺伝子mRNAでも別の箇所を切断するものを組み合わせることによってがん細胞のアポトーシスを効果的に誘導することができる。また、患者によっては異なる血液がん細胞が共存する場合が想定されるので、その場合は例えば、白血病細胞のアポトーシスに特に有効なものと、骨髄腫細胞のアポトーシスに特に有効なものなどを組み合わせることもできる。 The cancer therapeutic agent of the present invention contains one or more of the heptamer type sg nucleic acids of the present invention. Two or more heptamer sg nucleic acids can be used in any combination. That is, the heptamer-type sg nucleic acid of the present invention alone can induce apoptosis of cancer cells by TRUE gene silencing for gene mRNA necessary for the survival of blood cancer cells. In this case, each heptamer type sg nucleic acid cuts a different target gene mRNA or cuts a different part of the same target gene mRNA. Therefore, by combining two or more heptamer-type sg nucleic acids, TRUE gene silencing of two or more gene mRNAs necessary for the survival of blood cancer cells becomes possible, and induces effective cancer cell apoptosis. Can do. Alternatively, apoptosis of cancer cells can be effectively induced by combining the same target gene mRNAs that cleave different sites. In addition, since it is assumed that different blood cancer cells coexist depending on the patient, in that case, for example, those that are particularly effective for apoptosis of leukemia cells and those that are particularly effective for apoptosis of myeloma cells are combined. You can also.
 ヘプタマー型sg核酸はそれ単独で製剤化することもできるが、通常は薬理学的に許容される1つあるいはそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として投与するのが望ましい。 The heptamer-type sg nucleic acid can be formulated alone, but is usually mixed together with one or more pharmacologically acceptable carriers, and any method well known in the technical field of pharmaceutics It is desirable to administer as a pharmaceutical preparation produced by
 投与経路は、治療に際し最も効果的なものを使用するのが望ましく、経口投与、または口腔内、気道内、直腸内、皮下、筋肉内および静脈内などの非経口投与をあげることができ、望ましくは静脈内投与をあげることができる。 It is desirable to use the most effective route for treatment, and oral administration or parenteral administration such as buccal, respiratory tract, rectal, subcutaneous, intramuscular and intravenous is desirable. Can be given intravenously.
 経口投与に適当な製剤としては、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤などがあげられる。乳剤およびシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖などの糖類、ポリエチレングリコール、プロピレングリコールなどのグリコール類、ごま油、オリーブ油、大豆油などの油類、p-ヒドロキシ安息香酸エステル類などの防腐剤、ストロベリーフレーバー、ペパーミントなどのフレーバー類などを添加剤として用いて製造できる。カプセル剤、錠剤、散剤、顆粒剤などは、乳糖、ブドウ糖、ショ糖、マンニトールなどの賦形剤、デンプン、アルギン酸ナトリウムなどの崩壊剤、ステアリン酸マグネシウム、タルクなどの滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース、ゼラチンなどの結合剤、脂肪酸エステルなどの界面活性剤、グリセリンなどの可塑剤などを添加剤として用いて製造できる。 Preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, granules and the like. Liquid preparations such as emulsions and syrups include sugars such as water, sucrose, sorbitol and fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, p-hydroxybenzoic acid Preservatives such as esters, and flavors such as strawberry flavor and peppermint can be used as additives. Capsules, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate and talc, polyvinyl alcohol, hydroxy A binder such as propylcellulose and gelatin, a surfactant such as fatty acid ester, and a plasticizer such as glycerin can be used as additives.
 非経口投与に適当な製剤としては、注射剤、座剤、噴霧剤などがあげられる。注射剤は、塩溶液、ブドウ糖溶液あるいは両者の混合物からなる担体などを用いて調製される。座剤はカカオ脂、水素化脂肪またはカルボン酸などの担体を用いて調製される。また、噴霧剤は受容者の口腔および気道粘膜を刺激せず、かつ有効成分を微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。 Preparations suitable for parenteral administration include injections, suppositories, sprays and the like. The injection is prepared using a carrier made of a salt solution, a glucose solution, or a mixture of both. Suppositories are prepared using a carrier such as cocoa butter, hydrogenated fat or carboxylic acid. The spray is prepared using a carrier that does not irritate the recipient's oral cavity and airway mucosa, and that facilitates absorption by dispersing the active ingredient as fine particles.
 担体として具体的には乳糖、グリセリンなどが例示される。本発明で用いる核酸、さらには用いる担体の性質により、エアロゾル、ドライパウダーなどの製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。 Specific examples of the carrier include lactose and glycerin. Depending on the nature of the nucleic acid used in the present invention and the carrier used, preparations such as aerosols and dry powders are possible. In these parenteral preparations, the components exemplified as additives for oral preparations can also be added.
 投与量または投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより異なるが、通常成人1日当たり10 μg/kg~20 mg/kgである。 The dose or frequency of administration varies depending on the intended therapeutic effect, administration method, treatment period, age, weight, etc., but is usually 10 μg / kg to 20 μg / kg per day for an adult.
 以下、実施例を示して本発明をさらに詳細かつ具体的に説明するが、本発明は以下の例に限定されるものではない。 Hereinafter, the present invention will be described in more detail and specifically with reference to examples, but the present invention is not limited to the following examples.
(1)方法
(1-1)ヘプタマー型sgRNAの合成
 表1に示した12種のヘプタマー型sgRNA(配列番号1-12)を化学合成機にて合成した。
 各sgRNAは、5′末端および3′末端がリン酸化され、かつ2′-O-メチル化されている。合成後、各sgRNAはHPLCにて精製した。精製時には、hexylammonium acetate (HAA)とacetonitrileの混合溶液を用いて、合成sgRNAをカラムから溶出した。その後、溶出体積の1000倍量の蒸留水で溶出溶液を10時間透析し、透析した溶液を凍結乾燥した後、使用時まで冷凍保存した。使用時に蒸留水で最終濃度が100 μMになるように溶解し、残りの溶液は冷凍保存した。
(1) Method (1-1) Synthesis of heptamer sgRNA Twelve heptamer sgRNAs (SEQ ID NO: 1-12) shown in Table 1 were synthesized with a chemical synthesizer.
Each sgRNA is phosphorylated at the 5 'and 3' ends and is 2'-O-methylated. After synthesis, each sgRNA was purified by HPLC. At the time of purification, synthetic sgRNA was eluted from the column using a mixed solution of hexalamonium acetate (HAA) and acetonitrile. Thereafter, the elution solution was dialyzed for 10 hours with distilled water 1000 times the elution volume, and the dialyzed solution was lyophilized and stored frozen until use. At the time of use, it was dissolved in distilled water to a final concentration of 100 μM, and the remaining solution was stored frozen.
(1-2)MTTアッセイ
 ヒトがん細胞株(1000個/100 μl培地)の入った96ウエル培養プレートに、細胞内導入試薬なしで各sgRNA(最終濃度1 μM)を加え、37℃のCO2インキュベーターにて培養した。72時間後MTT試薬(テトラカラーワン6 μl、生化学バイオビジネス(株))を加え、3時間後と6時間後に分光光度計で450 nmの吸光度を測定することにより生細胞数の定量(triplicateの平均値として表示)を行なった。ヒトがん細胞株は、白血病細胞HL60、骨髄腫細胞KMM1およびRPMI-8226を使用し、生細胞数量をsgRNA非投与群と比較した。また対照として正常細胞HEK293に対して各sgRNAを導入し、同様のMTTアッセイを行なった。
(1-2) MTT assay Each sgRNA (final concentration 1 μM) is added to a 96-well culture plate containing human cancer cell lines (1000 cells / 100 μl medium) without an intracellular introduction reagent. The cells were cultured in 2 incubators. 72 hours later, MTT reagent (Tetracolor One 6 μl, Biochemical Biobusiness Co., Ltd.) was added, and the number of viable cells was determined by measuring absorbance at 450 nm with a spectrophotometer after 3 hours and 6 hours (triplicate (Displayed as an average value). As human cancer cell lines, leukemia cell HL60, myeloma cell KMM1 and RPMI-8226 were used, and the number of living cells was compared with that of the sgRNA non-administered group. As a control, each sgRNA was introduced into normal cells HEK293, and the same MTT assay was performed.
(1-3)フローサイトメトリー実験
 ヒトがん細胞株(1000個/100 μl培地)の入った96ウエル培養プレートに、細胞内導入試薬なしでsgRNA(最終濃度1 μM)を加え、37℃のCO2インキュベーターにて培養した。72時間後、細胞を室温にて15分間phycoerythrin-conjugated Annexin V(BD Pharmingen)および7-AAD(Sigma)により染色し、フローサイトメター(FACSCalibur)を用いて解析した。
(1-3) Flow cytometry experiment To a 96-well culture plate containing human cancer cell lines (1000 cells / 100 μl medium), add sgRNA (final concentration 1 μM) without intracellular introduction reagent. The cells were cultured in a CO 2 incubator. After 72 hours, cells were stained with phycoerythrin-conjugated Annexin V (BD Pharmingen) and 7-AAD (Sigma) for 15 minutes at room temperature and analyzed using flow cytometer (FACSCalibur).
(1-4)マウスゼノグラフト実験
 免疫不全マウスであるヌードマウスの皮下に、2 X 106個のヒト白血病細胞HL60を細胞外マトリクスと共に移植した。この移植部位に、各ヘプタマー型sgRNA(100 μM)を10 μl毎日1回(連続5日間)投与し、腫瘍の体積を毎日測定した。腫瘍体積が1500 mm3に達した時点で安楽死させた。グループあたり6から8匹のマウスを用いて実験を行い、各sgRNA投与グループの生存日数の中央値と非投与(あるいは効果のないヘプタマー型sgRNA投与)グループの生存日数の中央値の差をヘプタマー型sgRNAによる余命の延長日数とした。
(1-4) Mouse Xenograft Experiment 2 × 10 6 human leukemia cells HL60 and an extracellular matrix were transplanted subcutaneously into nude mice, which are immunodeficient mice. 10 μl of each heptamer type sgRNA (100 μM) was administered once daily (for 5 consecutive days) to this transplantation site, and the tumor volume was measured daily. Euthanasia was performed when the tumor volume reached 1500 mm 3 . Experiments were performed using 6 to 8 mice per group, and the difference between the median survival time of each sgRNA administration group and the median survival time of non-administration (or ineffective heptamer sgRNA administration) group was determined to be heptamer type This was defined as the number of days of life extension due to sgRNA.
(2)結果
(2-1)MTTアッセイ
 結果は表2に示したとおりである。配列番号1-6のヘプタマー型sgRNAは、3種のがん細胞の80%以上を3日間で死滅させた。また、配列番号7-12のヘプタマー型sgRNAは、3種のがん細胞のうち、2種の癌細胞の80%以上を死滅させた。一方、正常細胞HEK293の死滅率は0%であった。
(2) Results (2-1) MTT assay The results are as shown in Table 2. The heptamer sgRNAs of SEQ ID NOs: 1-6 killed 80% or more of the three types of cancer cells in 3 days. In addition, the heptamer sgRNAs of SEQ ID NOs: 7-12 killed 80% or more of the two types of cancer cells among the three types of cancer cells. On the other hand, the death rate of normal cells HEK293 was 0%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2-2)フローサイトメトリー実験
 結果は図1-4(骨髄細胞腫RPMI-8226)および図5-9(白血病細胞HL60)に示したとおりである。試験したヘプタマー型sgRNAは、効果のないヘプタマー型sgRNA(mock)に較べ、遙かに多くの細胞のアポトーシスを誘導することが確認された。
(2-3)マウスゼノグラフト実験
 結果は表2に示したとおりである。試験したヘプタマー型sgRNAは少なくとも3日、最大で26日間もHL60細胞移植マウスを延命させた。
(2-2) Flow cytometry experiment The results are as shown in Fig. 1-4 (myeloma tumor RPMI-8226) and Fig. 5-9 (leukemia cell HL60). The tested heptamer sgRNA was confirmed to induce apoptosis of far more cells than the ineffective heptamer sgRNA (mock).
(2-3) Mouse xenograft experiment The results are shown in Table 2. The tested heptamer sgRNA prolongs HL60 cell-transplanted mice for at least 3 days and up to 26 days.
 以上の結果から、本発明のヘプタマー型sg核酸は、ヒト血液がん細胞のアポトーシスを有効に誘導させること、またこのアポトーシスの誘導によりがん細胞を有する動物個体を延命させることが可能であることが確認された。 From the above results, the heptamer sg nucleic acid of the present invention can effectively induce apoptosis of human blood cancer cells, and can prolong the life of an animal individual having cancer cells by the induction of apoptosis. Was confirmed.
 本発明によって、ヒト血液がんに対する有効な治療法が提供される。 The present invention provides an effective treatment for human blood cancer.

Claims (5)

  1. 2種以上のヒト血液がん細胞のアポトーシスを誘導する、配列番号1から12のいずれかの7塩基配列からなるヘプタマー型スモールガイド核酸。 A heptamer-type small guide nucleic acid consisting of a 7-base sequence of any one of SEQ ID NOs: 1 to 12, which induces apoptosis of two or more types of human blood cancer cells.
  2. ヒト血液がん細胞がヒト白血病細胞およびヒト骨髄腫細胞である請求項1のヘプタマー型スモールガイド核酸。 The heptamer-type small guide nucleic acid according to claim 1, wherein the human blood cancer cells are human leukemia cells and human myeloma cells.
  3. ヒト血液がん細胞のアポトーシスが、3日間で80%以上の細胞死である請求項1のヘプタマー型スモールガイド核酸。 The heptamer-type small guide nucleic acid according to claim 1, wherein apoptosis of human blood cancer cells is 80% or more cell death in 3 days.
  4. 請求項1に記載のヘプタマー型スモールガイド核酸の1種または2種以上を有効成分として含有するがん治療薬。 The cancer therapeutic agent which contains 1 type, or 2 or more types of the heptamer type small guide nucleic acid of Claim 1 as an active ingredient.
  5. ヒト白血病およびヒト多発性骨髄腫の治療薬である請求項4のがん治療薬。 The therapeutic agent for cancer according to claim 4, which is a therapeutic agent for human leukemia and human multiple myeloma.
PCT/JP2012/070509 2011-08-11 2012-08-10 Heptamer-type small guide nucleic acid capable of inducing apoptosis of human hematologic cancer cells WO2013022092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013528082A JP5959522B2 (en) 2011-08-11 2012-08-10 Heptamer-type small guide nucleic acid that induces apoptosis of human hematological cancer cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011176322 2011-08-11
JP2011-176322 2011-08-11

Publications (2)

Publication Number Publication Date
WO2013022092A1 true WO2013022092A1 (en) 2013-02-14
WO2013022092A9 WO2013022092A9 (en) 2013-05-30

Family

ID=47668594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070509 WO2013022092A1 (en) 2011-08-11 2012-08-10 Heptamer-type small guide nucleic acid capable of inducing apoptosis of human hematologic cancer cells

Country Status (2)

Country Link
JP (1) JP5959522B2 (en)
WO (1) WO2013022092A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044974A1 (en) * 2017-08-31 2019-03-07 株式会社Veritas In Silico Small guide antisense nucleic acid and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009045443A2 (en) * 2007-10-02 2009-04-09 The University Of Rochester Methods and compositions related to synergistic responses to oncogenic mutations
JP2010518880A (en) * 2007-02-26 2010-06-03 クアーク・ファーマスーティカルス、インコーポレイテッド Inhibitors of RTP801 and their use in the treatment of diseases
US20100324119A1 (en) * 2009-05-18 2010-12-23 Mayo Foundation For Medical Education And Research Reducing irf4, dusp22, or flj43663 polypeptide expression
JP2010539895A (en) * 2007-09-22 2010-12-24 ザ ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ ダンディー Target regulation of gene expression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518880A (en) * 2007-02-26 2010-06-03 クアーク・ファーマスーティカルス、インコーポレイテッド Inhibitors of RTP801 and their use in the treatment of diseases
JP2010539895A (en) * 2007-09-22 2010-12-24 ザ ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ ダンディー Target regulation of gene expression
WO2009045443A2 (en) * 2007-10-02 2009-04-09 The University Of Rochester Methods and compositions related to synergistic responses to oncogenic mutations
US20100324119A1 (en) * 2009-05-18 2010-12-23 Mayo Foundation For Medical Education And Research Reducing irf4, dusp22, or flj43663 polypeptide expression

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BURKHART C. A. ET AL.: "Effects of MYCN Antisense Oligonucleotide Administration on Tumorigenesis in a Murine Model of Neuroblastoma", J. NATL. CANCER INST., vol. 95, no. 18, 2003, pages 1394 - 1403 *
NAKASHIMA A. ET AL.: "Gene silencing by the tRNA maturase tRNase ZL under the direction of small-guide RNA", GENE THERAPY, vol. 14, 2007, pages 78 - 85 *
NASHIMOTO M. ET AL.: "RNA heptamers that direct RNA cleavage by mammalian tRNA 3' processing endoribonuclease", NUCLEIC ACIDS RES., vol. 26, no. 11, 1998, pages 2565 - 2571 *
SANO T. ET AL.: "Expanding the utility of heptamer-type sgRNA for TRUE gene silencing", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 416, 28 November 2011 (2011-11-28), pages 427 - 432 *
TAMURA M. ET AL.: "Intracellular mRNA cleavage by 3' tRNase under the direction of 2' -O- methyl RNA heptamers", NUCLEIC ACIDS RES., vol. 31, no. 15, 2003, pages 4354 - 4360 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044974A1 (en) * 2017-08-31 2019-03-07 株式会社Veritas In Silico Small guide antisense nucleic acid and use thereof
JPWO2019044974A1 (en) * 2017-08-31 2020-12-03 株式会社Veritas In Silico Small Guide Antisense Nucleic Acids and Their Use

Also Published As

Publication number Publication date
JPWO2013022092A1 (en) 2015-03-05
JP5959522B2 (en) 2016-08-02
WO2013022092A9 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
CN111107853B (en) RNAi agents and compositions for inhibiting expression of apolipoprotein C-III (APOC 3)
JP6457645B2 (en) RNA interference agent for regulating GST-π gene
JP6472087B2 (en) Double-stranded agent for delivering therapeutic oligonucleotides
JP2021521796A (en) PCSK9-targeted oligonucleotides for the treatment of hypercholesterolemia and related conditions
US11926831B2 (en) SiRNA structures for high activity and reduced off target
KR20080066987A (en) Peptide-dicer substrate rna conjugates as delivery vehicles for sirna
AU2014306416A9 (en) Compositions and methods for modulating RNA
EA015563B1 (en) Small internally segmented interfering rna
US20150291957A1 (en) METHODS AND COMPOSITIONS TO PRODUCE ss-RNAi ACTIVITY WITH ENHANCED POTENCY
IL194419A (en) Dsrna for inhibiting the expression of human eg5 gene in a cell, a pharmaceutical composition comprising same, method and vector
US20150038549A1 (en) Methods and Compositions for Modulating Gene Expression Using Components That Self Assemble in Cells and Produce RNAi Activity
JP2022517742A (en) Compositions and Methods for Inhibiting HMGB1 Expression
JP5959522B2 (en) Heptamer-type small guide nucleic acid that induces apoptosis of human hematological cancer cells
JP5995849B2 (en) Heptamer-type small guide nucleic acid induces apoptosis of human leukemia cells
CN117858949A (en) RNAi agents for inhibiting expression of mucin 5AC (MUC 5 AC), compositions thereof, and methods of use thereof
EP3677680A1 (en) Small guide antisense nucleic acid and use thereof
JP6978561B2 (en) RNA Interfering Agent for Modulating the GST-π Gene
WO2011010737A1 (en) Guide nucleic acid for cleavage of micro-rna
EP4446414A1 (en) Antisense oligonucleotide complex
US20220047619A1 (en) Rna interference agents for gst-pi gene modulation
JP2012217421A (en) Lna modified heptamer-type small guide nucleic acid
JP2012217420A (en) Composition containing two kinds of heptamer-type small guide nucleic acid
NZ617944B2 (en) Methods and compositions for modulating gene expression using components that self assemble in cells and produce rnai activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821541

Country of ref document: EP

Kind code of ref document: A1