WO2013021646A1 - Analytical instrument and analysis method - Google Patents
Analytical instrument and analysis method Download PDFInfo
- Publication number
- WO2013021646A1 WO2013021646A1 PCT/JP2012/005061 JP2012005061W WO2013021646A1 WO 2013021646 A1 WO2013021646 A1 WO 2013021646A1 JP 2012005061 W JP2012005061 W JP 2012005061W WO 2013021646 A1 WO2013021646 A1 WO 2013021646A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- stirring
- reagent
- measurement
- measurement result
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00613—Quality control
- G01N35/00623—Quality control of instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00534—Mixing by a special element, e.g. stirrer
Definitions
- the present invention relates to an analysis apparatus and an analysis method capable of detecting an abnormality in stirring.
- the stirring of the reaction solution in the reaction container is performed after the sample or reagent is dispensed into the reaction container.
- agitation makes it possible to perform the required reaction correctly by homogenizing the substances in the reaction vessel, such as dispensed specimens and reagents, or dispensed reagents and diluents. There is an effect.
- Such agitation is performed, for example, by automatically inserting a spatula-like or bar-like object called a stir bar into the reaction vessel into the reaction vessel and vibrating or rotating the stir bar.
- stirring of the reaction solution in the reaction vessel is an essential element indispensable for obtaining accurate data, but a method for confirming stirring performance has not been established. Is the current situation.
- Patent Document 1 it is determined whether or not a sample dispensing process for dispensing a sample into a reaction container is performed normally, and whether or not a reagent dispensing process for dispensing a reagent into a reaction container is performed normally. It is described that it is determined. However, Patent Document 1 does not describe anything about how to detect a stirring abnormality.
- Patent Document 2 describes an analyzer capable of detecting an agitation abnormality.
- the analyzer described in Patent Document 2 requires the use of a dedicated solution for stirring performance evaluation in order to detect stirring abnormalities, and detection of stirring abnormalities is performed in a time zone different from the actual inspection. I need that.
- detection of abnormality in stirring by the analyzer described in Patent Document 2 is time consuming, expensive and labor intensive, and does not guarantee real-time inspection results.
- Patent Document 3 describes an analyzer that can eliminate unnecessary stirring depending on the liquidity of a sample and a reagent. However, Patent Document 3 does not describe anything about how to detect a stirring abnormality.
- the analyzer of the present invention comprises means for dispensing a reagent into a reaction solution, means for dispensing a specimen into a reaction container, means for stirring the reagent dispensed into the reaction container and the specimen, and the reaction A means for analyzing the reaction solution obtained by reacting the reagent and the sample dispensed in the container, and a predetermined time has elapsed since the reagent and the sample dispensed in the reaction container were stirred.
- the first measurement result is obtained, and after measuring the optical properties of the reaction liquid in the reaction vessel, Means for further stirring the reaction liquid, and means for obtaining the second measurement result by measuring the optical properties of the reaction liquid in the reaction container after further stirring the reaction liquid in the reaction container;
- the first Based on comparison with the results constant result and the second measurement, and means for detecting an abnormality of agitation of said reagent dispensed into the reaction vessel and the sample.
- the analysis apparatus further measures the optical property of the reaction solution in the reaction container when an abnormality in stirring of the reagent and the sample dispensed in the reaction container is detected, thereby Means for obtaining a measurement result and means for outputting the analysis result of the reaction solution based on the third measurement result as reference data may be further included.
- the analyzer may further include means for outputting information indicating that the agitation is abnormal when an abnormality in the agitation of the reagent and the specimen dispensed in the reaction container is detected. .
- the optical property of the reaction liquid in the reaction vessel is absorbance
- the means for detecting an abnormality in stirring is the absorbance acquired as the first measurement result and the absorbance acquired as the second measurement result. May be determined to be abnormal in stirring of the reagent and the sample dispensed in the reaction container.
- the optical property of the reaction liquid in the reaction vessel is the stability of absorbance
- the means for detecting an abnormality in the stirring is the stability of the absorbance obtained as the first measurement result and the second measurement.
- the means for obtaining the second measurement result does not use the measurement value measured at the first measurement point after further stirring the reaction solution in the reaction vessel, and further stirs the reaction solution in the reaction vessel.
- the second measurement result may be obtained using the measurement values measured at the second and subsequent measurement points after the measurement.
- the apparatus may further include means for allowing a user of the analyzer to set a timing for further stirring the reaction liquid in the reaction vessel.
- the timing for further stirring the reaction solution in the reaction vessel may be fixed.
- the stirring of the reaction solution in the reaction vessel is not performed in the circulation in which the reagent and the sample dispensed in the reaction vessel react, and the circulation of the circulation is performed without washing the reaction vessel in the circulation. It may be performed in the next lap.
- the analysis method of the present invention includes a step of dispensing a reagent into a reaction solution, a step of dispensing a sample into a reaction vessel, a step of stirring the reagent and the sample dispensed into the reaction vessel, and the reaction A step of analyzing a reaction solution obtained by reacting the reagent and the sample dispensed in the container, and a predetermined time has elapsed since the reagent and the sample dispensed in the reaction container were agitated After obtaining the first measurement result by measuring the optical properties of the reaction liquid in the reaction container, and after measuring the optical properties of the reaction liquid in the reaction container, A step of further stirring the reaction solution, and a step of obtaining a second measurement result by further measuring the optical properties of the reaction solution in the reaction vessel after further stirring the reaction solution in the reaction vessel. The first And detecting, based on comparison with the results constant result and the second measurement, the abnormal stirring of said reagent dispensed into the reaction vessel and the sample.
- “additional stirring” that is not required for the reaction process between the reagent and the specimen is performed.
- the optical properties (for example, absorbance) of the reaction solution in the reaction vessel are measured.
- Optical properties (eg, absorbance) of the reaction solution in the reaction vessel measured before “additional stirring” and optical properties (eg, absorbance) of the reaction solution in the reaction vessel measured after “additional stirring” Based on the comparison, an abnormality in stirring of the reagent and the sample within the reaction time course is detected.
- reference data for inferring correct data can be provided to a user of an analyzer when a stirring abnormality is detected.
- the figure which shows an example of the fundamental structure of the analyzer 1 of this invention The figure which shows an example of a logical structure of the analyzer 1 shown by FIG.
- the figure which shows an example of the item detailed condition setting screen The figure which shows the time sequence based on the operation
- FIG. 1 shows an example of a basic configuration of an analyzer 1 of the present invention.
- the analyzer 1 includes a reagent table 2 and 3, a reaction table 4, a reagent dispensing mechanism 6 and 7, a sample container transfer mechanism 8, a sample dispensing mechanism 11, an analysis optical system 12, and a cleaning mechanism 13.
- the control unit 15, the input unit 6, the display unit 17, and the stirring mechanism 20 are provided.
- the reagent tables 2 and 3 hold a plurality of reagent containers 2a and 3a arranged along the circumferential direction of the reagent tables 2 and 3, respectively, and are rotated by driving means (not shown). By rotating the reagent tables 2 and 3, a plurality of reagent containers 2 a and 3 a are transported along the circumferential direction of the reagent tables 2 and 3.
- the reaction table 4 holds a plurality of reaction vessels 5 arranged along the circumferential direction of the reaction table 4, and is rotated in the positive or negative direction indicated by the arrow by a driving means (not shown). By rotating the reaction table 4, the plurality of reaction containers 5 are transported along the circumferential direction of the reaction table 4.
- Reagents are dispensed into the reaction container 5 from the reagent containers 2 a and 3 a of the reagent tables 2 and 3 by the reagent dispensing mechanisms 6 and 7 provided in the vicinity of the reaction table 4.
- the reagent dispensing mechanisms 6 and 7 are respectively attached to arms 6a and 7a that rotate in the direction of an arrow in a horizontal plane, probes 6b and 7b that are attached to the arms 6a and 7a, and dispense the reagent, and probes 6b that are washed with water. , 7b for cleaning (not shown).
- the reaction vessel 5 is configured to hold a liquid.
- the reaction vessel 5 is made of an optically transparent material.
- the reaction vessel 5 is made of a material that transmits 80% or more of light included in analysis light (340 to 800 nm) emitted from an analysis optical system 12 described later, such as glass including heat-resistant glass, cyclic olefin, polystyrene, and the like. Made of synthetic resin.
- the specimen container transfer mechanism 8 transfers a plurality of racks 10 arranged in the feeder 9 one by one along the arrow direction.
- the rack 10 holds a plurality of sample containers 10a containing samples.
- the sample in the sample container 10a is distributed to each reaction container 5 by the sample dispensing mechanism 11 having the arm 11a and the probe 11b that rotate in the horizontal direction. Noted. For this reason, the specimen dispensing mechanism 11 has a cleaning means (not shown) for cleaning the probe 11b with cleaning water.
- the analysis optical system 12 optically analyzes the reaction solution obtained as a result of the reaction between the reagent and the sample.
- the analysis optical system 12 includes a light source 12a that emits analysis light (for example, analysis light having a wavelength of 340 nm to 800 nm) for analyzing the reaction solution, a spectroscopic unit 12b, and a light receiving unit 12c.
- the analysis light emitted from the light source 12a passes through the reaction solution in the reaction vessel 5 at the measurement point of the analyzer 1, and is received by the light receiving unit 12c provided at a position facing the spectroscopic unit 12b.
- the light receiving unit 12 c is connected to the control unit 15.
- the cleaning mechanism 13 sucks and discharges the reaction liquid in the reaction vessel 5 with the nozzle 13a, and then repeatedly injects and sucks a cleaning liquid such as a detergent and cleaning water with the nozzle 13a, thereby performing analysis by the analysis optical system 12.
- the reaction vessel 5 that has been completed is washed.
- the control unit 15 controls the operation of each unit of the analyzer 1 and measures the optical property (for example, absorbance) of the reaction liquid in the reaction vessel 5 based on the analysis light received by the light receiving unit 12c. Based on the measurement result, characteristics of the reaction solution (for example, components and concentration of the reaction solution) are analyzed.
- the control unit 15 can be implemented by, for example, a microcomputer.
- the control unit 15 includes an input unit 16 (for example, a keyboard) for inputting inputs (for example, analysis items and analysis conditions) from a user, and a display unit 17 (for example, a display panel) for displaying analysis results. And connected to.
- the stirring mechanism 20 is configured to stir the reagent and the sample dispensed in the reaction vessel 5. In this way, the reagent and the sample react with each other by stirring the reagent and the sample in the reaction container 5.
- the stirring mechanism 20 is configured to further stir the reaction solution obtained by the reaction between the reagent and the sample in the reaction vessel 5.
- the timing of stirring by the stirring device 20 is controlled according to a control signal from the control unit 15.
- the stirring device 20 any known type of stirring device can be used.
- the stirring mechanism 20 may use a stirring bar, may use vibration, or may use sound waves. Note that the position and number of the stirring mechanism 20 are not limited to the embodiment shown in FIG. 1 and may be any position and number.
- FIG. 2 shows an example of a logical configuration of the analysis apparatus 1 shown in FIG.
- the control unit 15 includes the reagent tables 2 and 3, the reaction table 4, the reagent dispensing mechanisms 6 and 7, the sample container transfer mechanism 8, the sample dispensing mechanism 11, the analysis optical system 12, and the cleaning mechanism 13. These are controlled by outputting control signals to the input unit 16, the display unit 17, and the stirring mechanism 20. (Basic operation of the analyzer 1 of the present invention) Next, the basic operation of the analyzer 1 shown in FIG. 1 will be described.
- Reagents are sequentially dispensed from the reagent containers 2 a and 3 a by the reagent dispensing mechanisms 6 and 7 into the plurality of reaction containers 5 conveyed along the circumferential direction of the reaction table 4 by the rotating reaction table 4.
- Samples are sequentially dispensed from the plurality of sample containers 10 a held in the rack 10 by the sample dispensing mechanism 11 to the reaction container 5 into which the reagent has been dispensed.
- the reagent and the sample dispensed in the reaction container 5 are sequentially stirred by the stirring mechanism 20 every time the reaction table 4 stops between the measurement points of the analyzer 1. Thereby, a reagent and a sample react.
- the analysis light transmitted through the reaction solution in the reaction vessel 5 is received by the light receiving unit 12c, and the control unit 15 receives characteristics of the reaction solution (for example, components of the reaction solution and Concentration) is analyzed. Then, after the analysis is completed, the reaction vessel 5 is washed by the washing mechanism 13 and then used again for analyzing the specimen.
- characteristics of the reaction solution for example, components of the reaction solution and Concentration
- FIG. 3 shows an example of the operation flow of the analyzer 1 shown in FIG. This operation flow is premised on the case where the user of the analyzer 1 can set a point for performing additional stirring for each analysis item in the analyzer 1 in which the timing of stirring can be freely set. This operation flow can be achieved by the control unit 15 controlling each unit shown in FIG. 2 according to the procedure shown in FIG.
- the first embodiment of the present invention is preferably applied mainly to a measurement system in which a measurement value (for example, absorbance) at the final measurement point of an item does not change.
- Step S1 The operation flow of the analyzer 1 starts.
- Step S2 An additional stirring setting screen is displayed.
- a screen “Do you use additional stirring? YES NO” is displayed on the display unit 17 as an additional stirring setting screen.
- additional stirring refers to stirring that is not required for the reaction process between the reagent and the specimen.
- the conventional “stirring” is stirring for the purpose of reacting the reagent and the sample within the reaction time course
- the “additional stirring” of the present invention is the reaction between the reagent and the sample. They are fundamentally different in that they are agitated after completion (that is, after completion of the reaction time course).
- “YES” is selected on the additional stirring setting screen shown in FIG. 4A
- the process proceeds to step S3.
- “NO” is selected on the additional agitation setting screen shown in FIG. 4a, the additional agitation setting is not performed, and a normal analysis operation without additional agitation is executed.
- Step S3 Item names to be measured before and after additional stirring are set.
- an “item name setting screen” is displayed on the display unit 17 as a screen for setting item names.
- the “item name setting screen” only item names whose last measurement point of the item name is two points or more before the last measurement point of the analyzer 1 are displayed.
- the user can select one item name to be measured before and after the additional stirring from the item names displayed on the “item name setting screen”.
- a case where the user selects item A will be described as an example.
- Step S4 Timing for performing additional stirring is set.
- an “item detailed condition setting screen” is displayed on the display unit 17 as a screen for setting a point at which additional stirring is performed.
- the point where the additional stirring is performed can be arbitrarily set between the final measurement point of the item and the final measurement point of the analyzer 1.
- Both the final measurement point of the item and the final measurement point of the analyzer 1 are predetermined. For example, when the final measurement point of the item A is the point 15 and the final measurement point of the analyzer 1 is the point 27, any point of the points 15 to 27 is used as a point where additional stirring is performed. Can be set.
- the user can set a point at which additional stirring is performed by inputting a number indicating the point at which additional stirring is performed in the area 40 of the “item detailed condition setting screen” via the input unit 16. .
- the point 20 is set as a point where the additional stirring of the item A is performed.
- the stirring is performed between the measurement point 19 and the measurement point 20.
- Step S5 The analysis operation of the analyzer 1 starts.
- Step S6 The analysis operation of item A of the analysis apparatus 1 starts.
- Step S7 At the final measurement point 15 of item A, measurement data is captured.
- the final measurement point of item A is the reagent dispensing / stirring performed before the final measurement point of item A, and the sample dispensing / stirring is performed. It is predetermined that the reaction is complete.
- Step S8 At the measurement point (for example, the measurement point 19) after the final measurement point 15 of the item A and before the point 20 set to perform additional stirring (for example, the measurement point 19), The optical properties of the reaction solution are measured by the analysis optical system 12. The measurement result by the analysis optical system 12 is analyzed by the control unit 15 and acquired as the first measurement result.
- Step S9 The additional stirring is performed by the stirring mechanism 20 at the point 20 set to perform the additional stirring.
- the timing of the additional stirring by the stirring mechanism 20 is controlled by the control unit 15.
- Step S10 The optical properties of the reaction solution in the reaction vessel 5 are measured by the analysis optical system 12 at a measurement point (for example, the measurement point 21) after the point 20 set to perform additional stirring. .
- the measurement result obtained by the analysis optical system 12 is analyzed by the control unit 15 and acquired as the second measurement result.
- the measurement point immediately after the point 20 set to perform additional agitation is not the measurement point 21 but the measurement point 20, but the measurement value measured at the measurement point 20 is not used and the measurement is performed. It is preferable to use a measurement value measured at the point 21 or a measurement value measured at a measurement point after the measurement point 21.
- Step S11 The first measurement result acquired at Step S8 (for example, the measurement value measured at the measurement point 19) and the second measurement result acquired at Step S10 (for example, the measurement measured at the measurement point 21) Value).
- Step S12 Based on the comparison in step S11, it is determined whether there is a stirring abnormality. For example, when the difference between the first measurement result (for example, the measurement value measured at the measurement point 19) and the second measurement result (for example, the measurement value measured at the measurement point 21) is larger than a predetermined threshold value. In addition, it may be determined that there is a stirring abnormality.
- the predetermined threshold may be set by the user of the analysis apparatus 1 using an “item detailed condition setting screen” as shown in FIG. The details of the determination logic for the presence or absence of abnormal stirring will be described later.
- step S12 determines whether there is a stirring abnormality. If the determination result in step S12 is “YES” (that is, if it is determined that there is a stirring abnormality), the process proceeds to step S15. In step S15, the measurement data of item A is marked with a poor agitation. If the determination result in step S12 is “NO” (that is, if it is determined that there is no abnormality in stirring), the process proceeds to step S13.
- Step S13 It is determined whether or not the analysis operation of the analyzer 1 is finished. When the last sample has been processed, the analysis operation of the analyzer 1 ends.
- Step S14 The operation flow of the analyzer 1 ends.
- FIG. 5a shows a time sequence based on the operation flow of the conventional analyzer.
- FIG. 5b shows a time sequence based on the operation flow of the first embodiment of the present invention.
- the time sequence of FIG. 5b shows that (i) additional stirring is added, (ii) measured values measured at two points before and after the additional stirring (eg, points It can be seen that the measured value measured at 19 and the measured value measured at point 21) are different from the time sequence of FIG. ⁇ Confirmation experiment>
- Embodiment 1 of this invention an example of the confirmation experiment for determining the presence or absence of stirring abnormality is demonstrated.
- the measurement item was serum albumin
- the measurement method was the BCG (Bromocresol Green) method.
- the total reaction time was about 15 minutes, and each measurement point was set by dividing the total reaction time into 28 equal parts.
- Reaction end position measurement point 3
- Data acquisition position Measurement point 5
- Additional stirring position Between measurement point 10 and measurement point 11
- How to determine stirring abnormality When the difference between the absorbance at measurement point 10 and the absorbance at measurement point 13 is 0.005 or more, the stirring is abnormal Is determined.
- FIG. 6a shows the change in absorbance when the stirring speed is set to a speed lower than the normal stirring speed (50% reduction in stirring speed).
- FIG. 6b is an enlarged view of FIG. 6a.
- the difference between the absorbance at the measurement point 10 and the absorbance at the measurement point 13 is 0.0356. Therefore, it is determined that the stirring is abnormal.
- FIG. 6c shows the change in absorbance when the stirring speed is set to a normal stirring speed.
- FIG. 6d is an enlarged view of FIG. 6c.
- the difference between the absorbance at the measurement point 10 and the absorbance at the measurement point 13 is 0.0006. Therefore, it is determined that there is no abnormal stirring.
- the second embodiment of the present invention is a modification of the first embodiment of the present invention.
- Embodiment 1 of the present invention an example has been described in which the user of the analyzer 1 can set the timing at which additional stirring is performed.
- Embodiment 2 of the present invention an example will be described in which the timing at which additional stirring is performed is fixed (that is, the user cannot set).
- step S4 ' is executed instead of step S4 shown in FIG.
- step S ⁇ b> 4 ′ a point where additional stirring is performed is displayed on the display unit 17. For example, when the point where the additional stirring of the item B is performed is fixed at the point 20, the point 20 is displayed on the display unit 17.
- Steps other than step S4 shown in FIG. 3 are the same as the operation flow shown in FIG. (Embodiment 3 of the present invention)
- the third embodiment of the present invention is a modification of the first embodiment of the present invention.
- the timing at which the additional stirring is performed is fixed (that is, the user cannot set).
- step S3 ′′ is executed instead of step S3 shown in FIG. 3.
- the last measurement point of the item name is displayed on the “item name setting screen”.
- the display of item names is limited so that only item names two points or more before the last measurement point of the analyzer 1 are displayed.
- all item names are displayed on the “item name setting screen” regardless of the final measurement point of the analyzer 1. For example, when the final measurement point of the item C is the same point 27 as the final measurement point of the analyzer 1, the item C is also displayed on the “item name setting screen”.
- step S4 ′′ is executed instead of step S4 shown in FIG. 3.
- step S4 ′′ a point where additional stirring is performed is displayed on the display unit 17.
- the measurement point on the first round of the reaction table 4 ie, from point 0 to point 27
- the measurement points on the second round of the reaction table 4 that is, points 28 to 54
- the point 28 is displayed on the display unit 17.
- steps other than steps S3 and S4 shown in FIG. 3 are the same as the operation flow shown in FIG.
- FIG. 5c shows a time sequence based on the operation flow of the third embodiment of the present invention. Comparing FIG. 5a and FIG. 5c, the time sequence of FIG. 5c is that (i) the last cleaning operation in the first round is skipped, and (ii) additional stirring is added in the second round. , (Iii) measured values measured at two points before and after additional stirring (for example, measured value measured at point 27 on the first round and measured value measured at point 1 (point 29) on the second round) ) Is used for the determination of agitation abnormality, which is different from the time sequence of FIG. 5a. (Embodiment 4 of the present invention) The fourth embodiment of the present invention is a modification of the first embodiment of the present invention. The difference from the first embodiment of the present invention is the part of the determination logic for the presence or absence of abnormal stirring.
- step S8 ' is executed instead of step S8 shown in FIG.
- step S8 ' the optical properties of the reaction liquid in the reaction vessel 5 are measured by the analysis optical system 12 at each of the measurement points 16 to 19.
- the measurement result by the analysis optical system 12 is analyzed by the control unit 15 and the average value of the measurement values measured at the measurement points 16 to 19 is calculated.
- the average value of the measurement values measured at the measurement points 16 to 19 is taken as the first measurement result.
- step S10 ' is executed instead of step S10 shown in FIG.
- step S10 ' the optical properties of the reaction liquid in the reaction vessel 5 are measured by the analysis optical system 12 at each of the measurement points 20 to 23.
- the measurement result by the analysis optical system 12 is analyzed by the control unit 15 and the average value of the measurement values measured at the measurement points 20 to 23 is calculated.
- the average value of the measurement values measured at the measurement points 20 to 23 is the second measurement result.
- steps other than steps S8 and S10 shown in FIG. 3 are the same as the operation flow shown in FIG.
- the presence or absence of abnormal stirring is determined based on the comparison of the average values of the measurement values measured at a plurality of measurement points.
- the fifth embodiment of the present invention is a modification of the first embodiment of the present invention. The difference from the first embodiment of the present invention is the part of the determination logic for the presence or absence of abnormal stirring.
- the fifth embodiment of the present invention is preferably applied mainly to a measurement system in which a measurement value (for example, absorbance) fluctuates (increases or decreases) at an item measurement point.
- step S8 ′′ is executed instead of step S8 shown in FIG. 3.
- step S8 ′′ the reaction liquid in the reaction vessel 5 is measured at each of the measurement points 18 and 19.
- Optical properties are measured by analytical optics 12.
- the measurement result by the analysis optical system 12 is analyzed by the control unit 15 and measured at the measurement point 21 from the measurement value (P18) measured at the measurement point 18 and the measurement value (P19) measured at the measurement point 19.
- the measured value is predicted.
- the predicted value (P21) calculated in this way is compared with the measured value actually measured at the measurement point 21 in step S11.
- steps other than step S8 shown in FIG. 3 are the same as the operation flow shown in FIG.
- the presence or absence of abnormal stirring is determined based on the comparison between the predicted value calculated from the measured values measured at a plurality of measurement points and the actual measured value.
- the (Embodiment 6 of the present invention) is a modification of the first embodiment of the present invention.
- step S15 ' is executed instead of step S15 shown in FIG.
- step S15 ′ the measurement data of item A is output in place of the remark of poor stirring in addition to the measurement data of item A, or in addition to the remark of poor stirring in the measurement data of item A. Is prevented. Thereby, the output of an inaccurate detection result can be prevented.
- step S15 ′′ may be executed instead of step S15 shown in FIG. 3.
- step S15 ′′ a remark of poor stirring is added to the measurement data of item A.
- the reaction vessel 5 In addition to being attached, or in addition to adding a remark of poor stirring to the measurement data of item A, at the measurement point (for example, measurement point 23) after it is determined that there is abnormal stirring, the reaction vessel 5 The optical properties of the reaction solution are further measured by the analysis optical system 12. The measurement result by the analysis optical system 12 is analyzed by the control unit 15 and acquired as the third measurement result.
- the analysis result of the reaction liquid based on the third measurement result is output as reference data in a manner that can be recognized by the user of the analyzer 1 (for example, the analysis result is used to infer correct data). It is displayed on the display unit 17 as reference data).
- reference data displayed on the display unit 17 as reference data.
- the user may be shown in advance the option of whether to use the measurement data after the additional stirring, or which measurement is used when the measurement data after the additional stirring is used.
- the user may be allowed to set whether to use point measurement data.
- Such a thing can be easily realized by adding a setting item in the “item detailed condition setting screen” shown in FIG. (Judgment logic for abnormal stirring)
- the following various determination logics can be adopted as the determination logic for the presence or absence of abnormal stirring in step S12 shown in FIG. Of these, the user may be able to set the determination logic.
- Decision logic 2 Calculated from measured values at several measurement points (P n ⁇ 1 , P n ⁇ 2 , P n ⁇ 3 , etc Before the point (P n ) where additional agitation is performed Measured values calculated from measured values at several measurement points (P n + 1 , P n + 2 , P n + 3 , etc After the average value of the measured values and the point at which additional stirring is performed (P n ) Whether or not the difference from the average value is greater than a predetermined threshold value.
- Decision logic 3 Calculated from measured values at several measurement points (P n ⁇ 1 , P n ⁇ 2 , P n ⁇ 3 ,%) Before the point (P n ) where additional stirring is performed Measured values calculated from measured values at several measurement points (P n + 1 , P n + 2 , P n + 3 , etc After the standard deviation of the measured values and the point (P n ) where additional stirring is performed. Whether the difference from the standard deviation is greater than a predetermined threshold value.
- Decision logic 4 Calculated from measured values at several measurement points (P n ⁇ 1 , P n ⁇ 2 , P n ⁇ 3 ,...) Before the point (P n ) where additional stirring is performed that, one after the measurement points of the point where the predicted value and the additional agitation of measure points additional stirring is carried out (P n) one after the measurement point of (P n + 1) is performed (P n) (P n + 1 ) Whether the difference from the actual measured value is larger than a predetermined threshold value.
- Decision logic 5 calculated from measured values at several measurement points (P n ⁇ 1 , P n ⁇ 2 , P n ⁇ 3 ,%) Before the point (P n ) where additional stirring is performed It is calculated from the measured value at some measurement points (P n + 1 , P n + 2 , P n + 3 , etc After the average change in absorbance before additional stirring and the point (P n ) at which additional stirring is performed. Whether the difference from the average change in absorbance after additional stirring is greater than a predetermined threshold value.
- the determination logics 1 to 3 described above are mainly determination logics suitable for items (for example, measurement systems for blood metal components such as magnesium) whose measurement values (for example, absorbance) at measurement points are already stable. .
- the determination logic 3 since the determination logic 3 has an advantage that a strict evaluation is possible because the variation of the measurement value is averaged, it requires measurement at several measurement points even after additional stirring. There is a drawback that the setting range of the point where the additional stirring is performed is narrowed.
- the determination logic 1 has an advantage that the setting range of the point where the additional agitation is performed is wide.
- the evaluation logic 1 evaluates the measurement value at one measurement point before and after the point where the additional agitation is performed. Have the disadvantage of being susceptible to variations in
- the determination logics 4 to 5 described above are suitable mainly for items in which the measurement value (for example, absorbance) at the measurement point does not converge but is still rising or falling (for example, antibody protein-related items such as immunoglobulin). Judgment logic.
- the calculation formula of the predicted value in the determination logic 4 is the same as the calculation formula described in (Embodiment 5 of the present invention).
- the advantage of the determination logic 4 is that the setting range of the point where additional stirring is performed is wide.
- the advantage of the determination logic 5 is that the influence of the variation in the measurement value is reduced.
- an abnormality in stirring that could not be detected by a conventional analyzer.
- a stirring abnormality that could not be detected by a conventional analyzer that employs a non-contact type stirring mechanism.
- an abnormality in stirring that could not be substantially detected even by a conventional analyzer that employs a contact type stirring function such as a stirring bar.
- the user of the analyzer can check the stirring mechanism of the analyzer and contact the service department if necessary to repair the stirring mechanism of the analyzer.
- output of measurement data can be prevented when a stirring abnormality is detected. Thereby, the output of an inaccurate detection result can be prevented. As a result, misjudgment and misdiagnosis on the clinical side do not occur, which can contribute to the health of the subject.
- the reaction solution in the reaction vessel after completion of the reaction has only been waited for to be discharged by the cleaning mechanism, but according to the present invention, the reaction solution in the reaction vessel after completion of the reaction is measured. It can be used to ensure that the value is correct.
- the reaction liquid in the reaction vessel is additionally stirred, so that there is no influence on the inspection data when there is no abnormality in stirring. It is possible not to reach.
- a result closer to the true value can be obtained by setting an additional measurement point after additional stirring. Is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Provided are an analytical instrument and an analysis method which can detect an abnormality in stirring. After the completion of a reaction time course, "additional stirring", which is unnecessary to the process of reaction of a reagent with a sample, is conducted. Before and after the additional stirring, an optical property (such as absorbance) of a reaction liquid in a reaction vessel is measured. Abnormality in the stirring of the reagent and the sample within the reaction time course is detected on the basis of comparison between the optical property (such as absorbance) of the reaction liquid in the reaction vessel as determined before the additional stirring and that of the reaction liquid in the reaction vessel after the additional stirring.
Description
本発明は、攪拌異常を検出することが可能な分析装置および分析方法に関する。
The present invention relates to an analysis apparatus and an analysis method capable of detecting an abnormality in stirring.
反応容器内の反応液の攪拌は、検体や試薬が反応容器に分注された後で行われる。一般に、攪拌は、分注された検体と試薬、あるいは、分注された試薬と希釈液など、反応容器の中にある物質を均一にすることによって、求められる反応を正しく行うことを可能にする作用がある。このような攪拌は、例えば、反応容器に攪拌棒と呼ばれるへら状あるいは棒状の物体を反応液に自動で差込み、攪拌棒を振動させる、あるいは、回転させることで行われる。
The stirring of the reaction solution in the reaction container is performed after the sample or reagent is dispensed into the reaction container. In general, agitation makes it possible to perform the required reaction correctly by homogenizing the substances in the reaction vessel, such as dispensed specimens and reagents, or dispensed reagents and diluents. There is an effect. Such agitation is performed, for example, by automatically inserting a spatula-like or bar-like object called a stir bar into the reaction vessel into the reaction vessel and vibrating or rotating the stir bar.
血液自動分析機などの分析装置において、反応容器内の反応液の攪拌は、正確なデータを得るために必要不可欠な重要要素であるが、攪拌性能を確認するための方法は確立されていないのが現状である。
In an analyzer such as an automated blood analyzer, stirring of the reaction solution in the reaction vessel is an essential element indispensable for obtaining accurate data, but a method for confirming stirring performance has not been established. Is the current situation.
特に、超音波を用いたり、反応容器そのものを振動攪拌するなど反応液に対して非接触の状態で反応液の攪拌を行う方法も提案され、実現されているが、このような非接触状態での反応液の攪拌は、目視で攪拌状態を確認することができないため、本当に攪拌が行われているのかどうかを確認するための方法が存在しない。また、目視で攪拌状態を確認することができたとしても、肉眼による確認には限界がある。
In particular, a method of stirring the reaction solution in a non-contact state with respect to the reaction solution, such as using ultrasonic waves or vibrating and stirring the reaction vessel itself, has been proposed and realized. In the stirring of the reaction solution, since the stirring state cannot be visually confirmed, there is no method for confirming whether the stirring is actually performed. Even if the stirring state can be confirmed visually, there is a limit to the confirmation with the naked eye.
特許文献1には、検体を反応容器に分注する検体分注処理が正常に行われたか否かを判定すること、試薬を反応容器に分注する試薬分注処理が正常に行われたか否かを判定することが記載されている。しかしながら、特許文献1には、どのようにして攪拌異常を検出するかについては何も記載されていない。
In Patent Document 1, it is determined whether or not a sample dispensing process for dispensing a sample into a reaction container is performed normally, and whether or not a reagent dispensing process for dispensing a reagent into a reaction container is performed normally. It is described that it is determined. However, Patent Document 1 does not describe anything about how to detect a stirring abnormality.
特許文献2には、攪拌異常を検出することが可能な分析装置が記載されている。しかしながら、特許文献2に記載の分析装置は、攪拌異常を検出するために攪拌性能評価用の専用の溶液を用いることを必要とし、攪拌異常の検出を実際の検査とは別の時間帯に行うことを必要とする。このように、特許文献2に記載の分析装置による攪拌異常の検出は、時間、費用、作業者の手間がかかる上に、リアルタイムの検査結果を保証するものとはなっていない。
Patent Document 2 describes an analyzer capable of detecting an agitation abnormality. However, the analyzer described in Patent Document 2 requires the use of a dedicated solution for stirring performance evaluation in order to detect stirring abnormalities, and detection of stirring abnormalities is performed in a time zone different from the actual inspection. I need that. As described above, detection of abnormality in stirring by the analyzer described in Patent Document 2 is time consuming, expensive and labor intensive, and does not guarantee real-time inspection results.
特許文献3には、試料と試薬の液性に応じて不必要な攪拌を排除することが可能な分析装置が記載されている。しかしながら、特許文献3には、どのようにして攪拌異常を検出するかについては何も記載されていない。
Patent Document 3 describes an analyzer that can eliminate unnecessary stirring depending on the liquidity of a sample and a reagent. However, Patent Document 3 does not describe anything about how to detect a stirring abnormality.
本発明の分析装置は、試薬を反応溶液に分注する手段と、検体を反応容器に分注する手段と、前記反応容器に分注された前記試薬および前記検体を攪拌する手段と、前記反応容器に分注された前記試薬および前記検体が反応することによって得られる反応液を分析する手段と、前記反応容器に分注された前記試薬および前記検体を攪拌してから所定の時間が経過した後に、前記反応容器内の反応液の光学的性質を測定することによって、第1の測定結果を取得する手段と、前記反応容器内の反応液の光学的性質を測定した後に、前記反応容器内の反応液をさらに攪拌する手段と、前記反応容器内の反応液をさらに攪拌した後に、前記反応容器内の反応液の光学的性質を測定することによって、第2の測定結果を取得する手段と、前記第1の測定結果と前記第2の測定結果との比較に基づいて、前記反応容器に分注された前記試薬および前記検体の攪拌の異常を検出する手段とを含む。
The analyzer of the present invention comprises means for dispensing a reagent into a reaction solution, means for dispensing a specimen into a reaction container, means for stirring the reagent dispensed into the reaction container and the specimen, and the reaction A means for analyzing the reaction solution obtained by reacting the reagent and the sample dispensed in the container, and a predetermined time has elapsed since the reagent and the sample dispensed in the reaction container were stirred. After measuring the optical properties of the reaction liquid in the reaction vessel, the first measurement result is obtained, and after measuring the optical properties of the reaction liquid in the reaction vessel, Means for further stirring the reaction liquid, and means for obtaining the second measurement result by measuring the optical properties of the reaction liquid in the reaction container after further stirring the reaction liquid in the reaction container; The first Based on comparison with the results constant result and the second measurement, and means for detecting an abnormality of agitation of said reagent dispensed into the reaction vessel and the sample.
前記分析装置は、前記反応容器に分注された前記試薬および前記検体の攪拌の異常が検出された場合に、前記反応容器内の反応液の光学的性質をさらに測定することによって、第3の測定結果を取得する手段と、前記第3の測定結果に基づく前記反応液の分析結果を参考データとして出力する手段とをさらに含んでいてもよい。
The analysis apparatus further measures the optical property of the reaction solution in the reaction container when an abnormality in stirring of the reagent and the sample dispensed in the reaction container is detected, thereby Means for obtaining a measurement result and means for outputting the analysis result of the reaction solution based on the third measurement result as reference data may be further included.
前記分析装置は、前記反応容器に分注された前記試薬および前記検体の攪拌の異常が検出された場合に、前記攪拌が異常であることを示す情報を出力する手段をさらに含んでいてもよい。
The analyzer may further include means for outputting information indicating that the agitation is abnormal when an abnormality in the agitation of the reagent and the specimen dispensed in the reaction container is detected. .
前記反応容器内の反応液の光学的性質は、吸光度であり、前記攪拌の異常を検出する手段は、前記第1の測定結果として取得された吸光度と前記第2の測定結果として取得された吸光度との差分が所定の閾値より大きい場合に、前記反応容器に分注された前記試薬および前記検体の攪拌が異常であると判定してもよい。
The optical property of the reaction liquid in the reaction vessel is absorbance, and the means for detecting an abnormality in stirring is the absorbance acquired as the first measurement result and the absorbance acquired as the second measurement result. May be determined to be abnormal in stirring of the reagent and the sample dispensed in the reaction container.
前記反応容器内の反応液の光学的性質は、吸光度の安定性であり、前記攪拌の異常を検出する手段は、前記第1の測定結果として取得された吸光度の安定性と前記第2の測定結果として取得された吸光度の安定性との差分が所定の閾値より大きい場合に、前記反応容器に分注された前記試薬および前記検体の攪拌が異常であると判定してもよい。
The optical property of the reaction liquid in the reaction vessel is the stability of absorbance, and the means for detecting an abnormality in the stirring is the stability of the absorbance obtained as the first measurement result and the second measurement. When the difference from the absorbance stability obtained as a result is larger than a predetermined threshold, it may be determined that stirring of the reagent and the sample dispensed in the reaction container is abnormal.
前記第2の測定結果を取得する手段は、前記反応容器内の反応液をさらに攪拌した後の最初の測定ポイントで測定された測定値を使用せず、前記反応容器内の反応液をさらに攪拌した後の2番目以降の測定ポイントで測定された測定値を使用して、前記第2の測定結果を取得してもよい。
The means for obtaining the second measurement result does not use the measurement value measured at the first measurement point after further stirring the reaction solution in the reaction vessel, and further stirs the reaction solution in the reaction vessel. The second measurement result may be obtained using the measurement values measured at the second and subsequent measurement points after the measurement.
前記装置は、前記反応容器内の反応液をさらに攪拌するタイミングを前記分析装置のユーザが設定することを可能にする手段をさらに含んでいてもよい。
The apparatus may further include means for allowing a user of the analyzer to set a timing for further stirring the reaction liquid in the reaction vessel.
前記反応容器内の反応液をさらに攪拌するタイミングは、固定されていてもよい。
The timing for further stirring the reaction solution in the reaction vessel may be fixed.
前記反応容器内の反応液をさらに攪拌することは、前記反応容器に分注された前記試薬および前記検体が反応する周回において行われず、前記周回において前記反応容器を洗浄することなく、前記周回の次の周回において行われてもよい。
The stirring of the reaction solution in the reaction vessel is not performed in the circulation in which the reagent and the sample dispensed in the reaction vessel react, and the circulation of the circulation is performed without washing the reaction vessel in the circulation. It may be performed in the next lap.
本発明の分析方法は、試薬を反応溶液に分注する工程と、検体を反応容器に分注する工程と、前記反応容器に分注された前記試薬および前記検体を攪拌する工程と、前記反応容器に分注された前記試薬および前記検体が反応することによって得られる反応液を分析する工程と、前記反応容器に分注された前記試薬および前記検体を攪拌してから所定の時間が経過した後に、前記反応容器内の反応液の光学的性質を測定することによって、第1の測定結果を取得する工程と、前記反応容器内の反応液の光学的性質を測定した後に、前記反応容器内の反応液をさらに攪拌する工程と、前記反応容器内の反応液をさらに攪拌した後に、前記反応容器内の反応液の光学的性質を測定することによって、第2の測定結果を取得する工程と、前記第1の測定結果と前記第2の測定結果との比較に基づいて、前記反応容器に分注された前記試薬および前記検体の攪拌の異常を検出する工程とを含む。
The analysis method of the present invention includes a step of dispensing a reagent into a reaction solution, a step of dispensing a sample into a reaction vessel, a step of stirring the reagent and the sample dispensed into the reaction vessel, and the reaction A step of analyzing a reaction solution obtained by reacting the reagent and the sample dispensed in the container, and a predetermined time has elapsed since the reagent and the sample dispensed in the reaction container were agitated After obtaining the first measurement result by measuring the optical properties of the reaction liquid in the reaction container, and after measuring the optical properties of the reaction liquid in the reaction container, A step of further stirring the reaction solution, and a step of obtaining a second measurement result by further measuring the optical properties of the reaction solution in the reaction vessel after further stirring the reaction solution in the reaction vessel. The first And detecting, based on comparison with the results constant result and the second measurement, the abnormal stirring of said reagent dispensed into the reaction vessel and the sample.
本発明によれば、反応タイムコースの終了後に、試薬と検体との反応過程には必要とされない「追加攪拌」が行われる。この「追加攪拌」の前後で、反応容器内の反応液の光学的性質(例えば、吸光度)が測定される。「追加攪拌」の前に測定された反応容器内の反応液の光学的性質(例えば、吸光度)と「追加攪拌」の後に測定された反応容器内の反応液の光学的性質(例えば、吸光度)との比較に基づいて、反応タイムコース内の試薬および検体の攪拌の異常が検出される。このように、本発明によれば、攪拌異常を検出することが可能な分析装置および分析方法を提供することができる。さらに、本発明において、攪拌異常が検出された場合に、反応容器内の反応液の光学的性質(例えば、吸光度)をさらに測定し、この測定結果に基づく反応液の分析結果を参考データとして出力するようにしてもよい。このように、本発明によれば、攪拌異常が検出された場合に、正しいデータを推認するための参考データを分析装置のユーザに提供することができる。
According to the present invention, after the reaction time course is completed, “additional stirring” that is not required for the reaction process between the reagent and the specimen is performed. Before and after this “additional stirring”, the optical properties (for example, absorbance) of the reaction solution in the reaction vessel are measured. Optical properties (eg, absorbance) of the reaction solution in the reaction vessel measured before “additional stirring” and optical properties (eg, absorbance) of the reaction solution in the reaction vessel measured after “additional stirring” Based on the comparison, an abnormality in stirring of the reagent and the sample within the reaction time course is detected. Thus, according to the present invention, it is possible to provide an analysis apparatus and an analysis method capable of detecting an agitation abnormality. Furthermore, in the present invention, when an abnormal stirring is detected, the optical properties (for example, absorbance) of the reaction solution in the reaction vessel are further measured, and the analysis result of the reaction solution based on this measurement result is output as reference data. You may make it do. Thus, according to the present invention, reference data for inferring correct data can be provided to a user of an analyzer when a stirring abnormality is detected.
以下、図面を参照しながら、本発明の実施の形態を説明する。
(本発明の分析装置1の基本的な構成)
図1は、本発明の分析装置1の基本的な構成の一例を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Basic configuration of the analyzer 1 of the present invention)
FIG. 1 shows an example of a basic configuration of an analyzer 1 of the present invention.
(本発明の分析装置1の基本的な構成)
図1は、本発明の分析装置1の基本的な構成の一例を示す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Basic configuration of the analyzer 1 of the present invention)
FIG. 1 shows an example of a basic configuration of an analyzer 1 of the present invention.
分析装置1は、試薬テーブル2、3と、反応テーブル4と、試薬分注機構6、7と、検体容器移送機構8と、検体分注機構11と、分析光学系12と、洗浄機構13と、制御部15と、入力部6と、表示部17と、攪拌機構20とを備えている。
The analyzer 1 includes a reagent table 2 and 3, a reaction table 4, a reagent dispensing mechanism 6 and 7, a sample container transfer mechanism 8, a sample dispensing mechanism 11, an analysis optical system 12, and a cleaning mechanism 13. The control unit 15, the input unit 6, the display unit 17, and the stirring mechanism 20 are provided.
試薬テーブル2、3は、それぞれ、試薬テーブル2、3の周方向に沿って配列されている複数の試薬容器2a、3aを保持し、図示しない駆動手段によって回転される。試薬テーブル2、3が回転されることによって、複数の試薬容器2a、3aが試薬テーブル2、3の周方向に沿って搬送される。
The reagent tables 2 and 3 hold a plurality of reagent containers 2a and 3a arranged along the circumferential direction of the reagent tables 2 and 3, respectively, and are rotated by driving means (not shown). By rotating the reagent tables 2 and 3, a plurality of reagent containers 2 a and 3 a are transported along the circumferential direction of the reagent tables 2 and 3.
反応テーブル4は、反応テーブル4の周方向に沿って配列されている複数の反応容器5を保持し、図示しない駆動手段によって矢印で示す正方向または負方向に回転される。反応テーブル4が回転されることによって、複数の反応容器5が反応テーブル4の周方向に沿って搬送される。
The reaction table 4 holds a plurality of reaction vessels 5 arranged along the circumferential direction of the reaction table 4, and is rotated in the positive or negative direction indicated by the arrow by a driving means (not shown). By rotating the reaction table 4, the plurality of reaction containers 5 are transported along the circumferential direction of the reaction table 4.
反応容器5には、反応テーブル4の近傍に設けられた試薬分注機構6、7によって試薬テーブル2、3の試薬容器2a、3aから試薬が分注される。試薬分注機構6、7は、それぞれ、水平面内を矢印方向に回動するアーム6a、7aと、アーム6a、7aに取り付けられ、試薬を分注するプローブ6b、7bと、洗浄水によってプローブ6b、7bを洗浄する洗浄手段(図示せず)とを含んでいる。
Reagents are dispensed into the reaction container 5 from the reagent containers 2 a and 3 a of the reagent tables 2 and 3 by the reagent dispensing mechanisms 6 and 7 provided in the vicinity of the reaction table 4. The reagent dispensing mechanisms 6 and 7 are respectively attached to arms 6a and 7a that rotate in the direction of an arrow in a horizontal plane, probes 6b and 7b that are attached to the arms 6a and 7a, and dispense the reagent, and probes 6b that are washed with water. , 7b for cleaning (not shown).
反応容器5は、液体を保持するように構成されている。また、反応容器5は、光学的に透明な材料で形成されている。例えば、反応容器5は、後述する分析光学系12から出射された分析光(340~800nm)に含まれる光の80%以上を透過する材料、例えば、耐熱ガラスを含むガラス、環状オレフィンやポリスチレン等の合成樹脂で形成されている。
The reaction vessel 5 is configured to hold a liquid. The reaction vessel 5 is made of an optically transparent material. For example, the reaction vessel 5 is made of a material that transmits 80% or more of light included in analysis light (340 to 800 nm) emitted from an analysis optical system 12 described later, such as glass including heat-resistant glass, cyclic olefin, polystyrene, and the like. Made of synthetic resin.
検体容器移送機構8は、フィーダ9に配列された複数のラック10を矢印方向に沿って1つずつ移送する。ラック10は、検体を収容した複数の検体容器10aを保持している。検体容器移送機構8によって移送されたラック10が停止する度に、水平方向に回動するアーム11aとプローブ11bとを有する検体分注機構11によって検体容器10a内の検体が各反応容器5へ分注される。このため、検体分注機構11は、洗浄水によってプローブ11bを洗浄する洗浄手段(図示せず)を有している。
The specimen container transfer mechanism 8 transfers a plurality of racks 10 arranged in the feeder 9 one by one along the arrow direction. The rack 10 holds a plurality of sample containers 10a containing samples. Each time the rack 10 transferred by the sample container transfer mechanism 8 stops, the sample in the sample container 10a is distributed to each reaction container 5 by the sample dispensing mechanism 11 having the arm 11a and the probe 11b that rotate in the horizontal direction. Noted. For this reason, the specimen dispensing mechanism 11 has a cleaning means (not shown) for cleaning the probe 11b with cleaning water.
分析光学系12は、試薬と検体とが反応した結果として得られる反応液を光学的に分析する。分析光学系12は、反応液を分析するための分析光(例えば、340nm~800nmの波長を有する分析光)を出射する光源12aと、分光部12bと、受光部12cとを有している。光源12aから出射された分析光は、分析装置1の測定ポイントにある反応容器5内の反応液を透過し、分光部12bと対向する位置に設けられている受光部12cによって受光される。受光部12cは、制御部15に接続されている。
The analysis optical system 12 optically analyzes the reaction solution obtained as a result of the reaction between the reagent and the sample. The analysis optical system 12 includes a light source 12a that emits analysis light (for example, analysis light having a wavelength of 340 nm to 800 nm) for analyzing the reaction solution, a spectroscopic unit 12b, and a light receiving unit 12c. The analysis light emitted from the light source 12a passes through the reaction solution in the reaction vessel 5 at the measurement point of the analyzer 1, and is received by the light receiving unit 12c provided at a position facing the spectroscopic unit 12b. The light receiving unit 12 c is connected to the control unit 15.
洗浄機構13は、ノズル13aによって反応容器5内の反応液を吸引して排出した後、ノズル13aによって洗剤や洗浄水等の洗浄液等を繰り返し注入し、吸引することにより、分析光学系12による分析が終了した反応容器5を洗浄する。
The cleaning mechanism 13 sucks and discharges the reaction liquid in the reaction vessel 5 with the nozzle 13a, and then repeatedly injects and sucks a cleaning liquid such as a detergent and cleaning water with the nozzle 13a, thereby performing analysis by the analysis optical system 12. The reaction vessel 5 that has been completed is washed.
制御部15は、分析装置1の各部の動作を制御するとともに、受光部12cによって受光された分析光に基づいて反応容器5内の反応液の光学的性質(例えば、吸光度)を測定し、その測定結果に基づいて反応液の特性(例えば、反応液の成分や濃度)を分析する。制御部15は、例えば、マイクロコンピュータ等によって実装されることが可能である。制御部15は、ユーザからの入力(例えば、分析項目や分析条件等)を入力するための入力部16(例えば、キーボード)と、分析結果を表示するための表示部17(例えば、ディスプレイパネル)とに接続されている。
The control unit 15 controls the operation of each unit of the analyzer 1 and measures the optical property (for example, absorbance) of the reaction liquid in the reaction vessel 5 based on the analysis light received by the light receiving unit 12c. Based on the measurement result, characteristics of the reaction solution (for example, components and concentration of the reaction solution) are analyzed. The control unit 15 can be implemented by, for example, a microcomputer. The control unit 15 includes an input unit 16 (for example, a keyboard) for inputting inputs (for example, analysis items and analysis conditions) from a user, and a display unit 17 (for example, a display panel) for displaying analysis results. And connected to.
攪拌機構20は、反応容器5に分注された試薬および検体を攪拌するように構成されている。このように、反応容器5内で試薬と検体とが攪拌されることによって、試薬と検体とが反応する。また、攪拌機構20は、反応容器5内で試薬と検体とが反応することによって得られる反応液をさらに攪拌するように構成されている。ここで、攪拌装置20による攪拌のタイミングは、制御部15からの制御信号に従って制御される。なお、攪拌装置20としては、公知の任意のタイプの攪拌装置を用いることが可能である。例えば、攪拌機構20は、攪拌棒を用いるものであってもよいし、振動を用いるものであってもよいし、音波を用いるものであってもよい。なお、攪拌機構20の位置、個数は、図1に示される実施形態には限定されず、任意の位置、個数であり得る。
The stirring mechanism 20 is configured to stir the reagent and the sample dispensed in the reaction vessel 5. In this way, the reagent and the sample react with each other by stirring the reagent and the sample in the reaction container 5. The stirring mechanism 20 is configured to further stir the reaction solution obtained by the reaction between the reagent and the sample in the reaction vessel 5. Here, the timing of stirring by the stirring device 20 is controlled according to a control signal from the control unit 15. As the stirring device 20, any known type of stirring device can be used. For example, the stirring mechanism 20 may use a stirring bar, may use vibration, or may use sound waves. Note that the position and number of the stirring mechanism 20 are not limited to the embodiment shown in FIG. 1 and may be any position and number.
図2は、図1に示される分析装置1の論理的な構成の一例を示す。制御部15は、試薬テーブル2、3と、反応テーブル4と、試薬分注機構6、7と、検体容器移送機構8と、検体分注機構11と、分析光学系12と、洗浄機構13と、入力部16と、表示部17と、攪拌機構20とに制御信号を出力することによって、これらを制御する。
(本発明の分析装置1の基本的な動作)
次に、図1に示される分析装置1の基本的な動作を説明する。 FIG. 2 shows an example of a logical configuration of the analysis apparatus 1 shown in FIG. Thecontrol unit 15 includes the reagent tables 2 and 3, the reaction table 4, the reagent dispensing mechanisms 6 and 7, the sample container transfer mechanism 8, the sample dispensing mechanism 11, the analysis optical system 12, and the cleaning mechanism 13. These are controlled by outputting control signals to the input unit 16, the display unit 17, and the stirring mechanism 20.
(Basic operation of the analyzer 1 of the present invention)
Next, the basic operation of the analyzer 1 shown in FIG. 1 will be described.
(本発明の分析装置1の基本的な動作)
次に、図1に示される分析装置1の基本的な動作を説明する。 FIG. 2 shows an example of a logical configuration of the analysis apparatus 1 shown in FIG. The
(Basic operation of the analyzer 1 of the present invention)
Next, the basic operation of the analyzer 1 shown in FIG. 1 will be described.
回転する反応テーブル4によって反応テーブル4の周方向に沿って搬送されてくる複数の反応容器5には、試薬分注機構6、7によって試薬容器2a、3aから試薬が順次分注される。試薬が分注された反応容器5には、検体分注機構11によってラック10に保持された複数の検体容器10aから検体が順次分注される。そして、反応容器5内に分注された試薬と検体とは、分析装置1の測定ポイント間で反応テーブル4が停止する度に、攪拌機構20によって順次攪拌される。これにより、試薬と検体とが反応する。反応容器5が分析光学系12を通過するとき、反応容器5内の反応液を透過した分析光が、受光部12cによって受光され、制御部15によって反応液の特性(例えば、反応液の成分や濃度)が分析される。そして、分析が終了した反応容器5は、洗浄機構13によって洗浄された後、再度、検体の分析に使用される。
Reagents are sequentially dispensed from the reagent containers 2 a and 3 a by the reagent dispensing mechanisms 6 and 7 into the plurality of reaction containers 5 conveyed along the circumferential direction of the reaction table 4 by the rotating reaction table 4. Samples are sequentially dispensed from the plurality of sample containers 10 a held in the rack 10 by the sample dispensing mechanism 11 to the reaction container 5 into which the reagent has been dispensed. The reagent and the sample dispensed in the reaction container 5 are sequentially stirred by the stirring mechanism 20 every time the reaction table 4 stops between the measurement points of the analyzer 1. Thereby, a reagent and a sample react. When the reaction vessel 5 passes through the analysis optical system 12, the analysis light transmitted through the reaction solution in the reaction vessel 5 is received by the light receiving unit 12c, and the control unit 15 receives characteristics of the reaction solution (for example, components of the reaction solution and Concentration) is analyzed. Then, after the analysis is completed, the reaction vessel 5 is washed by the washing mechanism 13 and then used again for analyzing the specimen.
なお、図1を参照して分析装置1の構成の一例を説明したが、分析装置1の構成は上述した構成に限定されない。例えば、図1に示す例では、試薬テーブルの数は2つだが、試薬テーブルの数は、2つに限定されない。試薬テーブルの数は、1つでもよいし、3つ以上でもよい。
(本発明の実施の形態1)
図3は、図1に示される分析装置1の動作フローの一例を示す。この動作フローは、攪拌のタイミングを自由に設定することができる分析装置1において、分析項目ごとに追加攪拌を行うポイントを分析装置1のユーザが設定することができる場合を前提としている。この動作フローは、図3に示される手順に従って、制御部15が、図2に示される各部を制御することによって達成されることが可能である。本発明の実施の形態1は、主として、項目の最終の測定ポイントでの測定値(例えば、吸光度)が変化しない測定系に適用することが好ましい。 In addition, although an example of the structure of the analyzer 1 was demonstrated with reference to FIG. 1, the structure of the analyzer 1 is not limited to the structure mentioned above. For example, in the example shown in FIG. 1, the number of reagent tables is two, but the number of reagent tables is not limited to two. The number of reagent tables may be one, or three or more.
(Embodiment 1 of the present invention)
FIG. 3 shows an example of the operation flow of the analyzer 1 shown in FIG. This operation flow is premised on the case where the user of the analyzer 1 can set a point for performing additional stirring for each analysis item in the analyzer 1 in which the timing of stirring can be freely set. This operation flow can be achieved by thecontrol unit 15 controlling each unit shown in FIG. 2 according to the procedure shown in FIG. The first embodiment of the present invention is preferably applied mainly to a measurement system in which a measurement value (for example, absorbance) at the final measurement point of an item does not change.
(本発明の実施の形態1)
図3は、図1に示される分析装置1の動作フローの一例を示す。この動作フローは、攪拌のタイミングを自由に設定することができる分析装置1において、分析項目ごとに追加攪拌を行うポイントを分析装置1のユーザが設定することができる場合を前提としている。この動作フローは、図3に示される手順に従って、制御部15が、図2に示される各部を制御することによって達成されることが可能である。本発明の実施の形態1は、主として、項目の最終の測定ポイントでの測定値(例えば、吸光度)が変化しない測定系に適用することが好ましい。 In addition, although an example of the structure of the analyzer 1 was demonstrated with reference to FIG. 1, the structure of the analyzer 1 is not limited to the structure mentioned above. For example, in the example shown in FIG. 1, the number of reagent tables is two, but the number of reagent tables is not limited to two. The number of reagent tables may be one, or three or more.
(Embodiment 1 of the present invention)
FIG. 3 shows an example of the operation flow of the analyzer 1 shown in FIG. This operation flow is premised on the case where the user of the analyzer 1 can set a point for performing additional stirring for each analysis item in the analyzer 1 in which the timing of stirring can be freely set. This operation flow can be achieved by the
ステップS1:分析装置1の動作フローがスタートする。
Step S1: The operation flow of the analyzer 1 starts.
ステップS2:追加攪拌設定画面が表示される。例えば、図4aに示されるように、「追加攪拌を使用しますか? YES NO」という画面が追加攪拌設定画面として表示部17に表示される。ここで、本願明細書において、「追加攪拌」とは、試薬と検体との反応過程には必要とされない攪拌をいう。言い換えると、従来の「攪拌」は、反応タイムコース内で試薬と検体とを反応させることを目的とした攪拌であるのに対し、本発明の「追加攪拌」は、試薬と検体との反応が終了した後(すなわち、反応タイムコース終了後)の攪拌である点で、両者は根本的に異なっている。図4aに示される追加攪拌設定画面において「YES」が選択されると、処理はステップS3に進む。図4aに示される追加攪拌設定画面において「NO」が選択されると、追加攪拌の設定は行われず、追加攪拌を伴わない通常の分析動作が実行される。
Step S2: An additional stirring setting screen is displayed. For example, as shown in FIG. 4a, a screen “Do you use additional stirring? YES NO” is displayed on the display unit 17 as an additional stirring setting screen. As used herein, “additional stirring” refers to stirring that is not required for the reaction process between the reagent and the specimen. In other words, the conventional “stirring” is stirring for the purpose of reacting the reagent and the sample within the reaction time course, whereas the “additional stirring” of the present invention is the reaction between the reagent and the sample. They are fundamentally different in that they are agitated after completion (that is, after completion of the reaction time course). When “YES” is selected on the additional stirring setting screen shown in FIG. 4A, the process proceeds to step S3. When “NO” is selected on the additional agitation setting screen shown in FIG. 4a, the additional agitation setting is not performed, and a normal analysis operation without additional agitation is executed.
ステップS3:追加攪拌の前後で測定されるべき項目名が設定される。例えば、図4bに示されるように、項目名を設定するための画面として「項目名設定画面」が表示部17に表示される。なお、「項目名設定画面」には、その項目名の最終の測定ポイントが分析装置1の最終の測定ポイントよりも2ポイント以上前の項目名のみが表示される。ユーザは、「項目名設定画面」に表示される項目名の中から、追加攪拌の前後で測定されるべき1つの項目名を選択することができる。以下、ユーザが項目Aを選択した場合を例にとり説明する。
Step S3: Item names to be measured before and after additional stirring are set. For example, as shown in FIG. 4B, an “item name setting screen” is displayed on the display unit 17 as a screen for setting item names. In the “item name setting screen”, only item names whose last measurement point of the item name is two points or more before the last measurement point of the analyzer 1 are displayed. The user can select one item name to be measured before and after the additional stirring from the item names displayed on the “item name setting screen”. Hereinafter, a case where the user selects item A will be described as an example.
ステップS4:追加攪拌が行われるタイミングが設定される。例えば、図4cに示されるように、追加攪拌が行われるポイントを設定するための画面として「項目詳細条件設定画面」が表示部17に表示される。追加攪拌が行われるポイントは、項目の最終の測定ポイントと、分析装置1の最終の測定ポイントとの間で任意に設定することが可能である。項目の最終の測定ポイントおよび分析装置1の最終の測定ポイントの両方は、予め決められている。例えば、項目Aの最終の測定ポイントがポイント15であり、分析装置1の最終の測定ポイントがポイント27である場合には、追加攪拌が行われるポイントとして、ポイント15~27のうちの任意のポイントを設定することが可能である。ユーザは、入力部16を介して、「項目詳細条件設定画面」の領域40に追加攪拌が行われるポイントを示す数字を入力することによって、追加攪拌が行われるポイントを設定することが可能である。以下、ユーザが項目Aの追加攪拌が行われるポイントとして、ポイント20を設定した場合を例にとり説明する。追加攪拌が行われるポイントとしてポイント20が設定された場合には、攪拌は、測定ポイント19と測定ポイント20との間で行われる。
Step S4: Timing for performing additional stirring is set. For example, as shown in FIG. 4c, an “item detailed condition setting screen” is displayed on the display unit 17 as a screen for setting a point at which additional stirring is performed. The point where the additional stirring is performed can be arbitrarily set between the final measurement point of the item and the final measurement point of the analyzer 1. Both the final measurement point of the item and the final measurement point of the analyzer 1 are predetermined. For example, when the final measurement point of the item A is the point 15 and the final measurement point of the analyzer 1 is the point 27, any point of the points 15 to 27 is used as a point where additional stirring is performed. Can be set. The user can set a point at which additional stirring is performed by inputting a number indicating the point at which additional stirring is performed in the area 40 of the “item detailed condition setting screen” via the input unit 16. . Hereinafter, the case where the user sets the point 20 as a point where the additional stirring of the item A is performed will be described as an example. When the point 20 is set as a point where the additional stirring is performed, the stirring is performed between the measurement point 19 and the measurement point 20.
ステップS5:分析装置1の分析動作がスタートする。
Step S5: The analysis operation of the analyzer 1 starts.
ステップS6:分析装置1の項目Aの分析動作がスタートする。
Step S6: The analysis operation of item A of the analysis apparatus 1 starts.
ステップS7:項目Aの最終の測定ポイント15において、測定データが取り込まれる。ここで、項目Aの最終の測定ポイントは、この項目Aの最終の測定ポイントよりも前に、試薬の分注・攪拌が行われ、検体の分注・攪拌が行われ、試薬と検体との反応が終了しているように予め決められている。
Step S7: At the final measurement point 15 of item A, measurement data is captured. Here, the final measurement point of item A is the reagent dispensing / stirring performed before the final measurement point of item A, and the sample dispensing / stirring is performed. It is predetermined that the reaction is complete.
ステップS8:項目Aの最終の測定ポイント15よりも後で、かつ、追加攪拌が行われるように設定されたポイント20よりも前の測定ポイント(例えば、測定ポイント19)において、反応容器5内の反応液の光学的性質が分析光学系12によって測定される。分析光学系12による測定結果は、制御部15によって分析され、第1の測定結果として取得される。
Step S8: At the measurement point (for example, the measurement point 19) after the final measurement point 15 of the item A and before the point 20 set to perform additional stirring (for example, the measurement point 19), The optical properties of the reaction solution are measured by the analysis optical system 12. The measurement result by the analysis optical system 12 is analyzed by the control unit 15 and acquired as the first measurement result.
ステップS9:追加攪拌が行われるように設定されたポイント20において、攪拌機構20によって追加攪拌が行われる。攪拌機構20による追加攪拌のタイミングは、制御部15によって制御される。
Step S9: The additional stirring is performed by the stirring mechanism 20 at the point 20 set to perform the additional stirring. The timing of the additional stirring by the stirring mechanism 20 is controlled by the control unit 15.
ステップS10:追加攪拌が行われるように設定されたポイント20よりも後の測定ポイント(例えば、測定ポイント21)において、反応容器5内の反応液の光学的性質が分析光学系12によって測定される。分析光学系12による測定結果は、制御部15によって分析され、第2の測定結果として取得される。ここで、追加攪拌が行われるように設定されたポイント20の直後の測定ポイントは、測定ポイント21ではなく、測定ポイント20であるが、測定ポイント20で測定された測定値を使用せず、測定ポイント21で測定された測定値、もしくは、測定ポイント21以降の測定ポイントで測定された測定値を使用することが好ましい。その理由は、追加攪拌の直後の測定ポイント20では、追加攪拌による液のゆれが収まっていなかったり、反応液への攪拌棒の侵入による温度の低下や攪拌棒を洗浄した際の水の持ち込みなどの影響で、安定しない測定値が得られることが多いからである。これらの測定値は、例えば、吸光度である。
Step S10: The optical properties of the reaction solution in the reaction vessel 5 are measured by the analysis optical system 12 at a measurement point (for example, the measurement point 21) after the point 20 set to perform additional stirring. . The measurement result obtained by the analysis optical system 12 is analyzed by the control unit 15 and acquired as the second measurement result. Here, the measurement point immediately after the point 20 set to perform additional agitation is not the measurement point 21 but the measurement point 20, but the measurement value measured at the measurement point 20 is not used and the measurement is performed. It is preferable to use a measurement value measured at the point 21 or a measurement value measured at a measurement point after the measurement point 21. The reason for this is that at the measurement point 20 immediately after the additional stirring, the shaking of the liquid due to the additional stirring is not settled, the temperature decreases due to the penetration of the stirring bar into the reaction liquid, or water is brought in when the stirring bar is washed. This is because an unstable measurement value is often obtained due to the influence of the above. These measured values are, for example, absorbance.
ステップS11:ステップS8で取得された第1の測定結果(例えば、測定ポイント19で測定された測定値)とステップS10で取得された第2の測定結果(例えば、測定ポイント21で測定された測定値)とが比較される。
Step S11: The first measurement result acquired at Step S8 (for example, the measurement value measured at the measurement point 19) and the second measurement result acquired at Step S10 (for example, the measurement measured at the measurement point 21) Value).
ステップS12:ステップS11における比較に基づいて、攪拌異常の有無が判定される。例えば、第1の測定結果(例えば、測定ポイント19で測定された測定値)と第2の測定結果(例えば、測定ポイント21で測定された測定値)との差分が所定の閾値よりも大きい場合に、攪拌異常ありと判定するようにしてもよい。なお、所定の閾値は、図4cに示されるような「項目詳細条件設定画面」を用いて、分析装置1のユーザによって設定可能であるようにしてもよい。なお、攪拌異常の有無の判定ロジックの詳細については、後述する。
Step S12: Based on the comparison in step S11, it is determined whether there is a stirring abnormality. For example, when the difference between the first measurement result (for example, the measurement value measured at the measurement point 19) and the second measurement result (for example, the measurement value measured at the measurement point 21) is larger than a predetermined threshold value. In addition, it may be determined that there is a stirring abnormality. Note that the predetermined threshold may be set by the user of the analysis apparatus 1 using an “item detailed condition setting screen” as shown in FIG. The details of the determination logic for the presence or absence of abnormal stirring will be described later.
ステップS12における判定結果が「YES」の場合(すなわち、攪拌異常ありと判定された場合)には、処理はステップS15に進む。ステップS15では、項目Aの測定データに攪拌不良のリマークがつけられる。ステップS12における判定結果が「NO」の場合(すなわち、攪拌異常なしと判定された場合)には、処理はステップS13に進む。
If the determination result in step S12 is “YES” (that is, if it is determined that there is a stirring abnormality), the process proceeds to step S15. In step S15, the measurement data of item A is marked with a poor agitation. If the determination result in step S12 is “NO” (that is, if it is determined that there is no abnormality in stirring), the process proceeds to step S13.
ステップS13:分析装置1の分析動作が終了か否かが判定される。最後の検体が処理されたところで、分析装置1の分析動作は終了となる。
Step S13: It is determined whether or not the analysis operation of the analyzer 1 is finished. When the last sample has been processed, the analysis operation of the analyzer 1 ends.
ステップS14:分析装置1の動作フローが終了する。
Step S14: The operation flow of the analyzer 1 ends.
図5aは、従来の分析装置の動作フローに基づくタイムシーケンスを示す。図5bは、本発明の実施の形態1の動作フローに基づくタイムシーケンスを示す。図5aと図5bとを対比すると、図5bのタイムシーケンスは、(i)追加攪拌が追加されている点、(ii)追加攪拌の前後の2つのポイントで測定された測定値(例えば、ポイント19で測定された測定値およびポイント21で測定された測定値)が攪拌異常の判定に使用されている点で、図5aのタイムシーケンスと異なっていることが分かる。
<確認実験>
以下、本発明の実施の形態1に基づいて、攪拌異常の有無を判定するための確認実験の一例を説明する。 FIG. 5a shows a time sequence based on the operation flow of the conventional analyzer. FIG. 5b shows a time sequence based on the operation flow of the first embodiment of the present invention. 5a and 5b, the time sequence of FIG. 5b shows that (i) additional stirring is added, (ii) measured values measured at two points before and after the additional stirring (eg, points It can be seen that the measured value measured at 19 and the measured value measured at point 21) are different from the time sequence of FIG.
<Confirmation experiment>
Hereinafter, based on Embodiment 1 of this invention, an example of the confirmation experiment for determining the presence or absence of stirring abnormality is demonstrated.
<確認実験>
以下、本発明の実施の形態1に基づいて、攪拌異常の有無を判定するための確認実験の一例を説明する。 FIG. 5a shows a time sequence based on the operation flow of the conventional analyzer. FIG. 5b shows a time sequence based on the operation flow of the first embodiment of the present invention. 5a and 5b, the time sequence of FIG. 5b shows that (i) additional stirring is added, (ii) measured values measured at two points before and after the additional stirring (eg, points It can be seen that the measured value measured at 19 and the measured value measured at point 21) are different from the time sequence of FIG.
<Confirmation experiment>
Hereinafter, based on Embodiment 1 of this invention, an example of the confirmation experiment for determining the presence or absence of stirring abnormality is demonstrated.
この確認実験において、測定項目は、血清アルブミンとし、測定法は、BCG(bromcresol green)法とした。また、全体の反応時間は約15分とし、各測定ポイントは、全体反応時間を均等に28分割して設定した。
In this confirmation experiment, the measurement item was serum albumin, and the measurement method was the BCG (Bromocresol Green) method. The total reaction time was about 15 minutes, and each measurement point was set by dividing the total reaction time into 28 equal parts.
また、この確認実験において、以下の条件設定を行った。
In this confirmation experiment, the following conditions were set.
反応終了位置:測定ポイント3
データ取り込み位置:測定ポイント5
追加攪拌位置:測定ポイント10と測定ポイント11との間
攪拌異常の判定の仕方:測定ポイント10での吸光度と測定ポイント13での吸光度との差分が0.005以上である場合、攪拌異常であると判定する。 Reaction end position:measurement point 3
Data acquisition position:Measurement point 5
Additional stirring position: Betweenmeasurement point 10 and measurement point 11 How to determine stirring abnormality: When the difference between the absorbance at measurement point 10 and the absorbance at measurement point 13 is 0.005 or more, the stirring is abnormal Is determined.
データ取り込み位置:測定ポイント5
追加攪拌位置:測定ポイント10と測定ポイント11との間
攪拌異常の判定の仕方:測定ポイント10での吸光度と測定ポイント13での吸光度との差分が0.005以上である場合、攪拌異常であると判定する。 Reaction end position:
Data acquisition position:
Additional stirring position: Between
図6aは、攪拌速度を正常な攪拌速度よりも低い速度(攪拌速度5割減)に設定した場合における吸光度の変化を示す。図6bは、図6aの拡大図である。図6aおよび図6bに示される例では、測定ポイント10での吸光度と測定ポイント13での吸光度との差分は、0.0356である。従って、攪拌異常であると判定される。
FIG. 6a shows the change in absorbance when the stirring speed is set to a speed lower than the normal stirring speed (50% reduction in stirring speed). FIG. 6b is an enlarged view of FIG. 6a. In the example shown in FIGS. 6a and 6b, the difference between the absorbance at the measurement point 10 and the absorbance at the measurement point 13 is 0.0356. Therefore, it is determined that the stirring is abnormal.
図6cは、攪拌速度を正常な攪拌速度に設定した場合における吸光度の変化を示す。図6dは、図6cの拡大図である。図6cおよび図6dに示される例では、測定ポイント10での吸光度と測定ポイント13での吸光度との差分は、0.0006である。従って、攪拌異常でないと判定される。
FIG. 6c shows the change in absorbance when the stirring speed is set to a normal stirring speed. FIG. 6d is an enlarged view of FIG. 6c. In the example shown in FIGS. 6 c and 6 d, the difference between the absorbance at the measurement point 10 and the absorbance at the measurement point 13 is 0.0006. Therefore, it is determined that there is no abnormal stirring.
このように、上記確認実験によれば、攪拌速度5割減の条件で攪拌を行った場合(すなわち、攪拌が十分に行われなかった場合)には、攪拌異常であると判定され、正常な攪拌速度の条件で攪拌を行った場合(すなわち、攪拌が十分に行われた場合)には、攪拌異常でないと判定されることが分かる。
(本発明の実施の形態2)
本発明の実施の形態2は、本発明の実施の形態1の変形例である。本発明の実施の形態1では、追加攪拌が行われるタイミングを分析装置1のユーザが設定することが可能である例を説明した。本発明の実施の形態2では、追加攪拌が行われるタイミングが固定されている(すなわち、ユーザが設定することが不可能である)例を説明する。 Thus, according to the above confirmation experiment, when stirring was performed under the condition where the stirring speed was reduced by 50% (that is, when stirring was not sufficiently performed), it was determined that stirring was abnormal and normal. It can be seen that when stirring is performed under the condition of the stirring speed (that is, when stirring is sufficiently performed), it is determined that there is no abnormal stirring.
(Embodiment 2 of the present invention)
The second embodiment of the present invention is a modification of the first embodiment of the present invention. In Embodiment 1 of the present invention, an example has been described in which the user of the analyzer 1 can set the timing at which additional stirring is performed. InEmbodiment 2 of the present invention, an example will be described in which the timing at which additional stirring is performed is fixed (that is, the user cannot set).
(本発明の実施の形態2)
本発明の実施の形態2は、本発明の実施の形態1の変形例である。本発明の実施の形態1では、追加攪拌が行われるタイミングを分析装置1のユーザが設定することが可能である例を説明した。本発明の実施の形態2では、追加攪拌が行われるタイミングが固定されている(すなわち、ユーザが設定することが不可能である)例を説明する。 Thus, according to the above confirmation experiment, when stirring was performed under the condition where the stirring speed was reduced by 50% (that is, when stirring was not sufficiently performed), it was determined that stirring was abnormal and normal. It can be seen that when stirring is performed under the condition of the stirring speed (that is, when stirring is sufficiently performed), it is determined that there is no abnormal stirring.
(
The second embodiment of the present invention is a modification of the first embodiment of the present invention. In Embodiment 1 of the present invention, an example has been described in which the user of the analyzer 1 can set the timing at which additional stirring is performed. In
本発明の実施の形態2では、図3に示されるステップS4の代わりに、ステップS4’が実行される。ステップS4’では、追加攪拌が行われるポイントが表示部17に表示される。例えば、項目Bの追加攪拌が行われるポイントがポイント20に固定されている場合には、ポイント20が表示部17に表示される。
In the second embodiment of the present invention, step S4 'is executed instead of step S4 shown in FIG. In step S <b> 4 ′, a point where additional stirring is performed is displayed on the display unit 17. For example, when the point where the additional stirring of the item B is performed is fixed at the point 20, the point 20 is displayed on the display unit 17.
なお、図3に示されるステップS4以外のステップは、図3に示される動作フローと同様である。
(本発明の実施の形態3)
本発明の実施の形態3は、本発明の実施の形態1の変形例である。本発明の実施の形態3では、本発明の実施の形態2と同様に、追加攪拌が行われるタイミングが固定されている(すなわち、ユーザが設定することが不可能である)例を説明する。 Steps other than step S4 shown in FIG. 3 are the same as the operation flow shown in FIG.
(Embodiment 3 of the present invention)
The third embodiment of the present invention is a modification of the first embodiment of the present invention. In the third embodiment of the present invention, as in the second embodiment of the present invention, an example will be described in which the timing at which the additional stirring is performed is fixed (that is, the user cannot set).
(本発明の実施の形態3)
本発明の実施の形態3は、本発明の実施の形態1の変形例である。本発明の実施の形態3では、本発明の実施の形態2と同様に、追加攪拌が行われるタイミングが固定されている(すなわち、ユーザが設定することが不可能である)例を説明する。 Steps other than step S4 shown in FIG. 3 are the same as the operation flow shown in FIG.
(
The third embodiment of the present invention is a modification of the first embodiment of the present invention. In the third embodiment of the present invention, as in the second embodiment of the present invention, an example will be described in which the timing at which the additional stirring is performed is fixed (that is, the user cannot set).
本発明の実施の形態3では、図3に示されるステップS3の代わりに、ステップS3”が実行される。ステップS3では、「項目名設定画面」には、その項目名の最終の測定ポイントが分析装置1の最終の測定ポイントよりも2ポイント以上前の項目名のみが表示されるように項目名の表示が制限されていた。これとは対照的に、ステップS3”では、「項目名設定画面」には、分析装置1の最終の測定ポイントにかかわらず、すべての項目名が表示される。例えば、項目Cの最終の測定ポイントが、分析装置1の最終の測定ポイントと同じポイント27である場合には、項目Cもまた「項目名設定画面」に表示される。
In the third embodiment of the present invention, step S3 ″ is executed instead of step S3 shown in FIG. 3. In step S3, the last measurement point of the item name is displayed on the “item name setting screen”. The display of item names is limited so that only item names two points or more before the last measurement point of the analyzer 1 are displayed. In contrast, in step S3 ″, all item names are displayed on the “item name setting screen” regardless of the final measurement point of the analyzer 1. For example, when the final measurement point of the item C is the same point 27 as the final measurement point of the analyzer 1, the item C is also displayed on the “item name setting screen”.
本発明の実施の形態3では、図3に示されるステップS4の代わりに、ステップS4”が実行される。ステップS4”では、追加攪拌が行われるポイントが表示部17に表示される。例えば、項目Cの最終の測定ポイントが、分析装置1の最終の測定ポイントと同じポイント27である場合には、反応テーブル4の1周目の測定ポイント(すなわち、ポイント0からポイント27まで)に加えて、自動的に、反応テーブル4の2周目の測定ポイント(すなわち、ポイント28からポイント54まで)が追加表示される。例えば、項目Cの追加攪拌が行われるポイントがポイント28に固定されている場合には、ポイント28が表示部17に表示される。項目Cの追加攪拌が行われるポイントがポイント28に固定されている場合には、攪拌は、反応テーブル4の1周目の分析装置1の最終の測定ポイント27と反応テーブル4の2周目の最初のポイント28との間で行われる。ただし、この場合、反応テーブル4の1周目の最後に通常行われる反応容器5の洗浄動作はスキップされ、反応容器5が洗浄されないままで、反応テーブル4の2周目に入ることになる。
In the third embodiment of the present invention, step S4 ″ is executed instead of step S4 shown in FIG. 3. In step S4 ″, a point where additional stirring is performed is displayed on the display unit 17. For example, when the final measurement point of item C is the same point 27 as the final measurement point of the analyzer 1, the measurement point on the first round of the reaction table 4 (ie, from point 0 to point 27) In addition, the measurement points on the second round of the reaction table 4 (that is, points 28 to 54) are automatically displayed. For example, when the point where the additional stirring of the item C is performed is fixed at the point 28, the point 28 is displayed on the display unit 17. When the point at which additional stirring of item C is performed is fixed at point 28, stirring is performed at the last measurement point 27 of the analyzer 1 on the first round of the reaction table 4 and on the second round of the reaction table 4. This is done between the first point 28. However, in this case, the washing operation of the reaction vessel 5 that is normally performed at the end of the first round of the reaction table 4 is skipped, and the reaction vessel 5 is not washed and enters the second round of the reaction table 4.
なお、図3に示されるステップS3、S4以外のステップは、図3に示される動作フローと同様である。
Note that steps other than steps S3 and S4 shown in FIG. 3 are the same as the operation flow shown in FIG.
図5cは、本発明の実施の形態3の動作フローに基づくタイムシーケンスを示す。図5aと図5cとを対比すると、図5cのタイムシーケンスは、(i)1周目の最後の洗浄動作がスキップされている点、(ii)2周目に追加攪拌が追加されている点、(iii)追加攪拌の前後の2つのポイントで測定された測定値(例えば、1周目のポイント27で測定された測定値および2周目のポイント1(ポイント29)で測定された測定値)が攪拌異常の判定に使用されている点で、図5aのタイムシーケンスと異なっていることが分かる。
(本発明の実施の形態4)
本発明の実施の形態4は、本発明の実施の形態1の変形例である。本発明の実施の形態1との違いは、攪拌異常の有無の判定ロジックの部分である。 FIG. 5c shows a time sequence based on the operation flow of the third embodiment of the present invention. Comparing FIG. 5a and FIG. 5c, the time sequence of FIG. 5c is that (i) the last cleaning operation in the first round is skipped, and (ii) additional stirring is added in the second round. , (Iii) measured values measured at two points before and after additional stirring (for example, measured value measured at point 27 on the first round and measured value measured at point 1 (point 29) on the second round) ) Is used for the determination of agitation abnormality, which is different from the time sequence of FIG. 5a.
(Embodiment 4 of the present invention)
The fourth embodiment of the present invention is a modification of the first embodiment of the present invention. The difference from the first embodiment of the present invention is the part of the determination logic for the presence or absence of abnormal stirring.
(本発明の実施の形態4)
本発明の実施の形態4は、本発明の実施の形態1の変形例である。本発明の実施の形態1との違いは、攪拌異常の有無の判定ロジックの部分である。 FIG. 5c shows a time sequence based on the operation flow of the third embodiment of the present invention. Comparing FIG. 5a and FIG. 5c, the time sequence of FIG. 5c is that (i) the last cleaning operation in the first round is skipped, and (ii) additional stirring is added in the second round. , (Iii) measured values measured at two points before and after additional stirring (for example, measured value measured at point 27 on the first round and measured value measured at point 1 (point 29) on the second round) ) Is used for the determination of agitation abnormality, which is different from the time sequence of FIG. 5a.
(
The fourth embodiment of the present invention is a modification of the first embodiment of the present invention. The difference from the first embodiment of the present invention is the part of the determination logic for the presence or absence of abnormal stirring.
本発明の実施の形態4では、図3に示されるステップS8の代わりに、ステップS8’が実行される。ステップS8’では、測定ポイント16~19のそれぞれにおいて、反応容器5内の反応液の光学的性質が分析光学系12によって測定される。分析光学系12による測定結果は、制御部15によって分析され、測定ポイント16~19で測定された測定値の平均値が算出される。測定ポイント16~19で測定された測定値の平均値が第1の測定結果とされる。
In the fourth embodiment of the present invention, step S8 'is executed instead of step S8 shown in FIG. In step S8 ', the optical properties of the reaction liquid in the reaction vessel 5 are measured by the analysis optical system 12 at each of the measurement points 16 to 19. The measurement result by the analysis optical system 12 is analyzed by the control unit 15 and the average value of the measurement values measured at the measurement points 16 to 19 is calculated. The average value of the measurement values measured at the measurement points 16 to 19 is taken as the first measurement result.
本発明の実施の形態4では、図3に示されるステップS10の代わりに、ステップS10’が実行される。ステップS10’では、測定ポイント20~23のそれぞれにおいて、反応容器5内の反応液の光学的性質が分析光学系12によって測定される。分析光学系12による測定結果は、制御部15によって分析され、測定ポイント20~23で測定された測定値の平均値が算出される。測定ポイント20~23で測定された測定値の平均値が第2の測定結果とされる。
In the fourth embodiment of the present invention, step S10 'is executed instead of step S10 shown in FIG. In step S10 ', the optical properties of the reaction liquid in the reaction vessel 5 are measured by the analysis optical system 12 at each of the measurement points 20 to 23. The measurement result by the analysis optical system 12 is analyzed by the control unit 15 and the average value of the measurement values measured at the measurement points 20 to 23 is calculated. The average value of the measurement values measured at the measurement points 20 to 23 is the second measurement result.
なお、図3に示されるステップS8、S10以外のステップは、図3に示される動作フローと同様である。
In addition, steps other than steps S8 and S10 shown in FIG. 3 are the same as the operation flow shown in FIG.
このように、本発明の実施の形態4によれば、複数の測定ポイントで測定された測定値の平均値の比較に基づいて、攪拌異常の有無が判定される。
(本発明の実施の形態5)
本発明の実施の形態5は、本発明の実施の形態1の変形例である。本発明の実施の形態1との違いは、攪拌異常の有無の判定ロジックの部分である。本発明の実施の形態5は、主として、項目の測定ポイントにおいて、測定値(例えば、吸光度)が変動(上昇または下降)している測定系に適用することが好ましい。 As described above, according to the fourth embodiment of the present invention, the presence or absence of abnormal stirring is determined based on the comparison of the average values of the measurement values measured at a plurality of measurement points.
(Embodiment 5 of the present invention)
The fifth embodiment of the present invention is a modification of the first embodiment of the present invention. The difference from the first embodiment of the present invention is the part of the determination logic for the presence or absence of abnormal stirring. The fifth embodiment of the present invention is preferably applied mainly to a measurement system in which a measurement value (for example, absorbance) fluctuates (increases or decreases) at an item measurement point.
(本発明の実施の形態5)
本発明の実施の形態5は、本発明の実施の形態1の変形例である。本発明の実施の形態1との違いは、攪拌異常の有無の判定ロジックの部分である。本発明の実施の形態5は、主として、項目の測定ポイントにおいて、測定値(例えば、吸光度)が変動(上昇または下降)している測定系に適用することが好ましい。 As described above, according to the fourth embodiment of the present invention, the presence or absence of abnormal stirring is determined based on the comparison of the average values of the measurement values measured at a plurality of measurement points.
(
The fifth embodiment of the present invention is a modification of the first embodiment of the present invention. The difference from the first embodiment of the present invention is the part of the determination logic for the presence or absence of abnormal stirring. The fifth embodiment of the present invention is preferably applied mainly to a measurement system in which a measurement value (for example, absorbance) fluctuates (increases or decreases) at an item measurement point.
本発明の実施の形態5では、図3に示されるステップS8の代わりに、ステップS8”が実行される。ステップS8”では、測定ポイント18、19のそれぞれにおいて、反応容器5内の反応液の光学的性質が分析光学系12によって測定される。分析光学系12による測定結果は、制御部15によって分析され、測定ポイント18で測定された測定値(P18)および測定ポイント19で測定された測定値(P19)から、測定ポイント21で測定される測定値が予測される。例えば、測定ポイント21で測定される測定値の予測値(P21)は、P21=P19+(P19-P18)×2という式によって算出される。このようにして算出された予測値(P21)が、ステップS11において測定ポイント21で実際に測定された測定値と比較されることになる。
In the fifth embodiment of the present invention, step S8 ″ is executed instead of step S8 shown in FIG. 3. In step S8 ″, the reaction liquid in the reaction vessel 5 is measured at each of the measurement points 18 and 19. Optical properties are measured by analytical optics 12. The measurement result by the analysis optical system 12 is analyzed by the control unit 15 and measured at the measurement point 21 from the measurement value (P18) measured at the measurement point 18 and the measurement value (P19) measured at the measurement point 19. The measured value is predicted. For example, the predicted value (P21) of the measurement value measured at the measurement point 21 is calculated by the equation P21 = P19 + (P19−P18) × 2. The predicted value (P21) calculated in this way is compared with the measured value actually measured at the measurement point 21 in step S11.
なお、図3に示されるステップS8以外のステップは、図3に示される動作フローと同様である。
Note that steps other than step S8 shown in FIG. 3 are the same as the operation flow shown in FIG.
このように、本発明の実施の形態5によれば、複数の測定ポイントで測定された測定値から算出された予測値と実際の測定値との比較に基づいて、攪拌異常の有無が判定される。
(本発明の実施の形態6)
本発明の実施の形態6は、本発明の実施の形態1の変形例である。 As described above, according to the fifth embodiment of the present invention, the presence or absence of abnormal stirring is determined based on the comparison between the predicted value calculated from the measured values measured at a plurality of measurement points and the actual measured value. The
(Embodiment 6 of the present invention)
The sixth embodiment of the present invention is a modification of the first embodiment of the present invention.
(本発明の実施の形態6)
本発明の実施の形態6は、本発明の実施の形態1の変形例である。 As described above, according to the fifth embodiment of the present invention, the presence or absence of abnormal stirring is determined based on the comparison between the predicted value calculated from the measured values measured at a plurality of measurement points and the actual measured value. The
(Embodiment 6 of the present invention)
The sixth embodiment of the present invention is a modification of the first embodiment of the present invention.
本発明の実施の形態6では、図3に示されるステップS15の代わりに、ステップS15’が実行される。ステップS15’では、項目Aの測定データに攪拌不良のリマークがつけられることに代えて、あるいは、項目Aの測定データに攪拌不良のリマークがつけられることに加えて、項目Aの測定データの出力が防止される。これにより、不正確な検出結果の出力を防止することができる。
In the sixth embodiment of the present invention, step S15 'is executed instead of step S15 shown in FIG. In step S15 ′, the measurement data of item A is output in place of the remark of poor stirring in addition to the measurement data of item A, or in addition to the remark of poor stirring in the measurement data of item A. Is prevented. Thereby, the output of an inaccurate detection result can be prevented.
あるいは、本発明の実施の形態6では、図3に示されるステップS15の代わりに、ステップS15”が実行されるようにしてもい。ステップS15”では、項目Aの測定データに攪拌不良のリマークがつけられることに代えて、あるいは、項目Aの測定データに攪拌不良のリマークがつけられることに加えて、攪拌異常ありと判定された後の測定ポイント(例えば、測定ポイント23)において、反応容器5内の反応液の光学的性質が分析光学系12によってさらに測定される。分析光学系12による測定結果は、制御部15によって分析され、第3の測定結果として取得される。この第3の測定結果に基づく反応液の分析結果は、分析装置1のユーザが認識することが可能な態様で参考データとして出力される(例えば、その分析結果は、正しいデータを推認するための参考データとして表示部17に表示される)。これにより、攪拌異常が検出された場合に、攪拌異常が検出されたことを単に分析装置1のユーザに知らせるばかりでなく、追加攪拌後の測定データを正しいデータを推認するための参考データとして分析装置1のユーザに提供することが可能になる。
Alternatively, in the sixth embodiment of the present invention, step S15 ″ may be executed instead of step S15 shown in FIG. 3. In step S15 ″, a remark of poor stirring is added to the measurement data of item A. In addition to being attached, or in addition to adding a remark of poor stirring to the measurement data of item A, at the measurement point (for example, measurement point 23) after it is determined that there is abnormal stirring, the reaction vessel 5 The optical properties of the reaction solution are further measured by the analysis optical system 12. The measurement result by the analysis optical system 12 is analyzed by the control unit 15 and acquired as the third measurement result. The analysis result of the reaction liquid based on the third measurement result is output as reference data in a manner that can be recognized by the user of the analyzer 1 (for example, the analysis result is used to infer correct data). It is displayed on the display unit 17 as reference data). Thus, when an abnormality in stirring is detected, not only the user of the analyzer 1 is informed that the abnormality in stirring is detected, but the measurement data after the additional stirring is analyzed as reference data for inferring correct data. It can be provided to the user of the device 1.
なお、攪拌異常が検出された場合、追加攪拌後の測定データを採用するかどうかの選択肢を事前にユーザに示すようにしてもよいし、追加攪拌後の測定データを採用する場合に、どの測定ポイントの測定データを採用するかをユーザが設定できるようにしてもよい。このようなことは、例えば、図4cに示される「項目詳細条件設定画面」において、設定項目を追加することによって容易に実現することが可能である。
(攪拌異常の有無の判定ロジック)
図3に示されるステップS12における攪拌異常の有無の判定ロジックとしては、以下に示す種々の判定ロジックを採用することができる。これらの中から、ユーザが判定ロジックを設定できるようにしてもよい。 In addition, when an abnormal stirring is detected, the user may be shown in advance the option of whether to use the measurement data after the additional stirring, or which measurement is used when the measurement data after the additional stirring is used. The user may be allowed to set whether to use point measurement data. Such a thing can be easily realized by adding a setting item in the “item detailed condition setting screen” shown in FIG.
(Judgment logic for abnormal stirring)
The following various determination logics can be adopted as the determination logic for the presence or absence of abnormal stirring in step S12 shown in FIG. Of these, the user may be able to set the determination logic.
(攪拌異常の有無の判定ロジック)
図3に示されるステップS12における攪拌異常の有無の判定ロジックとしては、以下に示す種々の判定ロジックを採用することができる。これらの中から、ユーザが判定ロジックを設定できるようにしてもよい。 In addition, when an abnormal stirring is detected, the user may be shown in advance the option of whether to use the measurement data after the additional stirring, or which measurement is used when the measurement data after the additional stirring is used. The user may be allowed to set whether to use point measurement data. Such a thing can be easily realized by adding a setting item in the “item detailed condition setting screen” shown in FIG.
(Judgment logic for abnormal stirring)
The following various determination logics can be adopted as the determination logic for the presence or absence of abnormal stirring in step S12 shown in FIG. Of these, the user may be able to set the determination logic.
判定ロジック1:追加攪拌が行われるポイント(Pn)の1つ前の測定ポイント(Pn-1)での測定値と追加攪拌が行われるポイント(Pn)の1つ後の測定ポイント(Pn+1)での測定値との差分が所定の閾値より大きいか否か。
Decision logic 1: point additional stirring is carried out (P n) 1 previous measurement point (P n-1) measured values and additional points that stirring is carried out at (P n) 1 one after measurement points of the ( Whether the difference from the measured value at P n + 1 ) is greater than a predetermined threshold value.
判定ロジック2:追加攪拌が行われるポイント(Pn)よりも前のいくつかの測定ポイント(Pn-1,Pn-2,Pn-3,・・・)での測定値から算出される測定値の平均値と追加攪拌が行われるポイント(Pn)よりも後のいくつかの測定ポイント(Pn+1,Pn+2,Pn+3,・・・)での測定値から算出される測定値の平均値との差分が所定の閾値より大きいか否か。
Decision logic 2: Calculated from measured values at several measurement points (P n−1 , P n−2 , P n−3 ,...) Before the point (P n ) where additional agitation is performed Measured values calculated from measured values at several measurement points (P n + 1 , P n + 2 , P n + 3 ,...) After the average value of the measured values and the point at which additional stirring is performed (P n ) Whether or not the difference from the average value is greater than a predetermined threshold value.
判定ロジック3:追加攪拌が行われるポイント(Pn)よりも前のいくつかの測定ポイント(Pn-1,Pn-2,Pn-3,・・・)での測定値から算出される測定値の標準偏差と追加攪拌が行われるポイント(Pn)よりも後のいくつかの測定ポイント(Pn+1,Pn+2,Pn+3,・・・)での測定値から算出される測定値の標準偏差との差分が所定の閾値より大きいか否か。
Decision logic 3: Calculated from measured values at several measurement points (P n−1 , P n−2 , P n−3 ,...) Before the point (P n ) where additional stirring is performed Measured values calculated from measured values at several measurement points (P n + 1 , P n + 2 , P n + 3 ,...) After the standard deviation of the measured values and the point (P n ) where additional stirring is performed. Whether the difference from the standard deviation is greater than a predetermined threshold value.
判定ロジック4:追加攪拌が行われるポイント(Pn)よりも前のいくつかの測定ポイント(Pn-1,Pn-2,Pn-3,・・・)での測定値から算出される、追加攪拌が行われるポイント(Pn)の1つ後の測定ポイント(Pn+1)の測定値の予測値と追加攪拌が行われるポイント(Pn)の1つ後の測定ポイント(Pn+1)の実際の測定値との差分が所定の閾値より大きいか否か。
Decision logic 4: Calculated from measured values at several measurement points (P n−1 , P n−2 , P n−3 ,...) Before the point (P n ) where additional stirring is performed that, one after the measurement points of the point where the predicted value and the additional agitation of measure points additional stirring is carried out (P n) one after the measurement point of (P n + 1) is performed (P n) (P n + 1 ) Whether the difference from the actual measured value is larger than a predetermined threshold value.
判定ロジック5:追加攪拌が行われるポイント(Pn)よりも前のいくつかの測定ポイント(Pn-1,Pn-2,Pn-3,・・・)での測定値から算出される追加攪拌前の吸光度平均変化量と追加攪拌が行われるポイント(Pn)よりも後のいくつかの測定ポイント(Pn+1,Pn+2,Pn+3,・・・)での測定値から算出される追加攪拌後の吸光度平均変化量との差分が所定の閾値より大きいか否か。
Decision logic 5: calculated from measured values at several measurement points (P n−1 , P n−2 , P n−3 ,...) Before the point (P n ) where additional stirring is performed It is calculated from the measured value at some measurement points (P n + 1 , P n + 2 , P n + 3 ,...) After the average change in absorbance before additional stirring and the point (P n ) at which additional stirring is performed. Whether the difference from the average change in absorbance after additional stirring is greater than a predetermined threshold value.
上述した判定ロジック1~3は、主として、測定ポイントでの測定値(例えば、吸光度)が既に安定している項目(例えば、マグネシウムなどの血中金属成分の測定系)に適した判定ロジックである。特に、判定ロジック3は、測定値のばらつきが平均化されるため、厳密な評価が可能であるという利点を有する一方で、追加攪拌後にもいくつかの測定ポイントでの測定を必要とするため、追加攪拌が行われるポイントの設定範囲が狭まるという欠点を有している。判定ロジック1は、追加攪拌が行われるポイントの設定範囲が広いという利点を有している一方で、追加攪拌が行われるポイントの1つ前後の測定ポイントでの測定値で評価するため、測定値のばらつきの影響を受けやすいという欠点を有している。
The determination logics 1 to 3 described above are mainly determination logics suitable for items (for example, measurement systems for blood metal components such as magnesium) whose measurement values (for example, absorbance) at measurement points are already stable. . In particular, since the determination logic 3 has an advantage that a strict evaluation is possible because the variation of the measurement value is averaged, it requires measurement at several measurement points even after additional stirring. There is a drawback that the setting range of the point where the additional stirring is performed is narrowed. The determination logic 1 has an advantage that the setting range of the point where the additional agitation is performed is wide. On the other hand, the evaluation logic 1 evaluates the measurement value at one measurement point before and after the point where the additional agitation is performed. Have the disadvantage of being susceptible to variations in
上述した判定ロジック4~5は、主として、測定ポイントでの測定値(例えば、吸光度)が収束せずにまだ上昇または下降している項目(例えば、イムノグロブリンなど抗体蛋白系の項目)に適した判定ロジックである。判定ロジック4における予測値の計算式は、(本発明の実施の形態5)において記載した計算式と同一である。判定ロジック4の利点は、追加攪拌が行われるポイントの設定範囲が広いことである。判定ロジック5の利点は、測定値のばらつきの影響が軽減されるということである。
The determination logics 4 to 5 described above are suitable mainly for items in which the measurement value (for example, absorbance) at the measurement point does not converge but is still rising or falling (for example, antibody protein-related items such as immunoglobulin). Judgment logic. The calculation formula of the predicted value in the determination logic 4 is the same as the calculation formula described in (Embodiment 5 of the present invention). The advantage of the determination logic 4 is that the setting range of the point where additional stirring is performed is wide. The advantage of the determination logic 5 is that the influence of the variation in the measurement value is reduced.
本発明の実施の形態1~6において上述したように、本発明によれば、従来の分析装置では検出することが不可能であった攪拌異常を検出することが可能である。特に、非接触タイプの攪拌機構を採用した従来の分析装置では検出することが不可能であった攪拌異常を検出することが可能である。また、攪拌棒などの接触タイプの攪拌機能を採用した従来の分析装置でも実質的に検出することが不可能であった攪拌異常を検出することが可能である。攪拌異常が検出された場合には、分析装置のユーザは、分析装置の攪拌機構を点検し、必要があればサービス部門に連絡して分析装置の攪拌機構の修理に当たらせることができる。
As described above in Embodiments 1 to 6 of the present invention, according to the present invention, it is possible to detect an abnormality in stirring that could not be detected by a conventional analyzer. In particular, it is possible to detect a stirring abnormality that could not be detected by a conventional analyzer that employs a non-contact type stirring mechanism. Further, it is possible to detect an abnormality in stirring that could not be substantially detected even by a conventional analyzer that employs a contact type stirring function such as a stirring bar. When a stirring abnormality is detected, the user of the analyzer can check the stirring mechanism of the analyzer and contact the service department if necessary to repair the stirring mechanism of the analyzer.
さらに、本発明によれば、攪拌異常が検出された場合には、測定データの出力を防止することができる。これにより、不正確な検出結果の出力を防止することができる。その結果、臨床側での誤判定、誤診断が発生しなくなり、被検査者の健康に寄与することができる。
Furthermore, according to the present invention, output of measurement data can be prevented when a stirring abnormality is detected. Thereby, the output of an inaccurate detection result can be prevented. As a result, misjudgment and misdiagnosis on the clinical side do not occur, which can contribute to the health of the subject.
さらに、従来、反応終了後の反応容器内の反応液は、洗浄機構によってただ排出されるのを待つだけであったが、本発明によれば、反応終了後の反応容器内の反応液を測定値が正しいかどうかを保証するために使用することが可能である。
Furthermore, conventionally, the reaction solution in the reaction vessel after completion of the reaction has only been waited for to be discharged by the cleaning mechanism, but according to the present invention, the reaction solution in the reaction vessel after completion of the reaction is measured. It can be used to ensure that the value is correct.
さらに、日常検査終了後に、新たに攪拌評価用の試験液を装置にセットして、攪拌機能が正常であるかどうか確認する従来の方法では、時間も費用も作業者の手間もかかっていたが、本発明によれば、リアルタイムに攪拌機能を評価することが可能であるため、時間も費用も作業者の手間もかからないようにすることが可能である。
Furthermore, in the conventional method of setting a new test solution for stirring evaluation after the daily inspection and checking whether the stirring function is normal, it takes time, money and labor. According to the present invention, since the stirring function can be evaluated in real time, it is possible to prevent time, cost, and labor of an operator from being taken.
さらに、本発明によれば、検査終了後(検査データ取り込み後)に、反応容器内の反応液に対して追加で攪拌を行うため、攪拌異常が無かった場合の検査データにはなんらの影響を及ぼさないようにすることが可能である。
Furthermore, according to the present invention, after the inspection is finished (after the inspection data is taken in), the reaction liquid in the reaction vessel is additionally stirred, so that there is no influence on the inspection data when there is no abnormality in stirring. It is possible not to reach.
さらに、本発明によれば、日常検査における、リアルタイムの検査を保証することができるとともに、リアルタイムで攪拌異常を検出することができる。このため、作業者は、迅速に再検査や異常の対処を行うことができる。
Furthermore, according to the present invention, it is possible to guarantee a real-time inspection in a daily inspection and to detect an abnormality in stirring in real time. For this reason, the operator can quickly perform re-examination and handling of abnormality.
さらに、本発明によれば、再検査による正確なデータを待っていられない緊急検体などについては、追加攪拌後の追加測定ポイントを設定しておくことによって、より真値に近い結果を得ることが可能である。
Furthermore, according to the present invention, for an emergency sample that cannot wait for accurate data by retesting, a result closer to the true value can be obtained by setting an additional measurement point after additional stirring. Is possible.
以上のように、本発明の好ましい実施の形態を用いて本発明を例示してきたが、本発明は、この実施の形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施の形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。
As described above, the present invention has been exemplified by using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge from the description of specific preferred embodiments of the present invention.
1 分析装置
2、3 試薬テーブル
2a、3a 試薬容器
4 反応テーブル
5 反応容器
6、7 試薬分注機構
6a、7a アーム
6b、7b プローブ
8 検体容器移送機構
9 フィーダ
10 ラック
10a 検体容器
11 検体分注機構
11a アーム
11b プローブ
12 分析光学系
12a 光源
12b 分光部
12c 受光部
13 洗浄機構
13a ノズル
15 制御部
16 入力部
17 表示部
20 攪拌機構 DESCRIPTION OF SYMBOLS 1 Analyzer 2, 3 Reagent table 2a, 3a Reagent container 4 Reaction table 5 Reaction container 6, 7 Reagent dispensing mechanism 6a, 7a Arm 6b, 7b Probe 8 Specimen container transfer mechanism 9 Feeder 10 Rack 10a Specimen container 11 Specimen dispensing Mechanism 11a arm 11b probe 12 analysis optical system 12a light source 12b spectroscopic unit 12c light receiving unit 13 cleaning mechanism 13a nozzle 15 control unit 16 input unit 17 display unit 20 stirring mechanism
2、3 試薬テーブル
2a、3a 試薬容器
4 反応テーブル
5 反応容器
6、7 試薬分注機構
6a、7a アーム
6b、7b プローブ
8 検体容器移送機構
9 フィーダ
10 ラック
10a 検体容器
11 検体分注機構
11a アーム
11b プローブ
12 分析光学系
12a 光源
12b 分光部
12c 受光部
13 洗浄機構
13a ノズル
15 制御部
16 入力部
17 表示部
20 攪拌機構 DESCRIPTION OF SYMBOLS 1
Claims (10)
- 試薬を反応溶液に分注する手段と、
検体を反応容器に分注する手段と、
前記反応容器に分注された前記試薬および前記検体を攪拌する手段と、
前記反応容器に分注された前記試薬および前記検体が反応することによって得られる反応液を分析する手段と、
前記反応容器に分注された前記試薬および前記検体を攪拌してから所定の時間が経過した後に、前記反応容器内の反応液の光学的性質を測定することによって、第1の測定結果を取得する手段と、
前記反応容器内の反応液の光学的性質を測定した後に、前記反応容器内の反応液をさらに攪拌する手段と、
前記反応容器内の反応液をさらに攪拌した後に、前記反応容器内の反応液の光学的性質を測定することによって、第2の測定結果を取得する手段と、
前記第1の測定結果と前記第2の測定結果との比較に基づいて、前記反応容器に分注された前記試薬および前記検体の攪拌の異常を検出する手段と
を含む分析装置。 Means for dispensing reagents into the reaction solution;
Means for dispensing the sample into the reaction vessel;
Means for stirring the reagent and the specimen dispensed in the reaction vessel;
Means for analyzing a reaction solution obtained by reacting the reagent and the sample dispensed in the reaction container;
The first measurement result is obtained by measuring the optical properties of the reaction solution in the reaction container after a predetermined time has elapsed after stirring the reagent and the specimen dispensed in the reaction container. Means to
Means for further stirring the reaction solution in the reaction vessel after measuring the optical properties of the reaction solution in the reaction vessel;
Means for obtaining a second measurement result by further measuring the optical properties of the reaction liquid in the reaction container after further stirring the reaction liquid in the reaction container;
An analyzer comprising: means for detecting an abnormality in stirring of the reagent and the sample dispensed in the reaction container based on a comparison between the first measurement result and the second measurement result. - 前記反応容器に分注された前記試薬および前記検体の攪拌の異常が検出された場合に、前記反応容器内の反応液の光学的性質をさらに測定することによって、第3の測定結果を取得する手段と、
前記第3の測定結果に基づく前記反応液の分析結果を参考データとして出力する手段と
をさらに含む、請求項1に記載の分析装置。 A third measurement result is obtained by further measuring the optical properties of the reaction solution in the reaction container when an abnormality in stirring of the reagent and the sample dispensed in the reaction container is detected. Means,
The analyzer according to claim 1, further comprising: means for outputting the analysis result of the reaction solution based on the third measurement result as reference data. - 前記反応容器に分注された前記試薬および前記検体の攪拌の異常が検出された場合に、前記攪拌が異常であることを示す情報を出力する手段をさらに含む、請求項1に記載の分析装置。 The analyzer according to claim 1, further comprising means for outputting information indicating that the stirring is abnormal when an abnormality in stirring of the reagent dispensed in the reaction container and the specimen is detected. .
- 前記反応容器内の反応液の光学的性質は、吸光度であり、
前記攪拌の異常を検出する手段は、前記第1の測定結果として取得された吸光度と前記第2の測定結果として取得された吸光度との差分が所定の閾値より大きい場合に、前記反応容器に分注された前記試薬および前記検体の攪拌が異常であると判定する、請求項1に記載の分析装置。 The optical property of the reaction solution in the reaction vessel is absorbance,
The means for detecting an abnormality in stirring is distributed to the reaction container when the difference between the absorbance acquired as the first measurement result and the absorbance acquired as the second measurement result is larger than a predetermined threshold. The analyzer according to claim 1, wherein stirring of the poured reagent and the specimen is determined to be abnormal. - 前記反応容器内の反応液の光学的性質は、吸光度の安定性であり、
前記攪拌の異常を検出する手段は、前記第1の測定結果として取得された吸光度の安定性と前記第2の測定結果として取得された吸光度の安定性との差分が所定の閾値より大きい場合に、前記反応容器に分注された前記試薬および前記検体の攪拌が異常であると判定する、請求項1に記載の分析装置。 The optical property of the reaction solution in the reaction vessel is the stability of absorbance,
The means for detecting an abnormality in stirring is when the difference between the stability of the absorbance acquired as the first measurement result and the stability of the absorbance acquired as the second measurement result is greater than a predetermined threshold. The analyzer according to claim 1, wherein the stirring of the reagent and the sample dispensed in the reaction container is determined to be abnormal. - 前記第2の測定結果を取得する手段は、前記反応容器内の反応液をさらに攪拌した後の最初の測定ポイントで測定された測定値を使用せず、前記反応容器内の反応液をさらに攪拌した後の2番目以降の測定ポイントで測定された測定値を使用して、前記第2の測定結果を取得する、請求項1に記載の分析装置。 The means for obtaining the second measurement result does not use the measurement value measured at the first measurement point after further stirring the reaction solution in the reaction vessel, and further stirs the reaction solution in the reaction vessel. The analyzer according to claim 1, wherein the second measurement result is acquired using measurement values measured at the second and subsequent measurement points after the measurement.
- 前記反応容器内の反応液をさらに攪拌するタイミングを前記分析装置のユーザが設定することを可能にする手段をさらに含む、請求項1に記載の分析装置。 The analyzer according to claim 1, further comprising means for allowing a user of the analyzer to set a timing for further stirring the reaction liquid in the reaction vessel.
- 前記反応容器内の反応液をさらに攪拌するタイミングは、固定されている、請求項1に記載の分析装置。 The analyzer according to claim 1, wherein the timing of further stirring the reaction solution in the reaction vessel is fixed.
- 前記反応容器内の反応液をさらに攪拌することは、前記反応容器に分注された前記試薬および前記検体が反応する周回において行われず、前記周回において前記反応容器を洗浄することなく、前記周回の次の周回において行われる、請求項8に記載の分析装置。 The stirring of the reaction solution in the reaction vessel is not performed in the circulation in which the reagent and the sample dispensed in the reaction vessel react, and the circulation of the circulation is performed without washing the reaction vessel in the circulation. The analyzer according to claim 8, which is performed in the next round.
- 試薬を反応溶液に分注する工程と、
検体を反応容器に分注する工程と、
前記反応容器に分注された前記試薬および前記検体を攪拌する工程と、
前記反応容器に分注された前記試薬および前記検体が反応することによって得られる反応液を分析する工程と、
前記反応容器に分注された前記試薬および前記検体を攪拌してから所定の時間が経過した後に、前記反応容器内の反応液の光学的性質を測定することによって、第1の測定結果を取得する工程と、
前記反応容器内の反応液の光学的性質を測定した後に、前記反応容器内の反応液をさらに攪拌する工程と、
前記反応容器内の反応液をさらに攪拌した後に、前記反応容器内の反応液の光学的性質を測定することによって、第2の測定結果を取得する工程と、
前記第1の測定結果と前記第2の測定結果との比較に基づいて、前記反応容器に分注された前記試薬および前記検体の攪拌の異常を検出する工程と
を含む分析方法。 Dispensing a reagent into the reaction solution;
Dispensing the sample into a reaction vessel;
Agitating the reagent and the sample dispensed in the reaction vessel;
Analyzing the reaction solution obtained by reacting the reagent dispensed into the reaction container and the specimen;
The first measurement result is obtained by measuring the optical properties of the reaction solution in the reaction container after a predetermined time has elapsed after stirring the reagent and the specimen dispensed in the reaction container. And a process of
A step of further stirring the reaction solution in the reaction vessel after measuring the optical properties of the reaction solution in the reaction vessel;
A step of obtaining a second measurement result by further measuring the optical properties of the reaction liquid in the reaction container after further stirring the reaction liquid in the reaction container;
And a step of detecting an abnormality in stirring of the reagent and the sample dispensed in the reaction container based on a comparison between the first measurement result and the second measurement result.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011173922A JP2013036891A (en) | 2011-08-09 | 2011-08-09 | Analyzer and analysis method |
JP2011-173922 | 2011-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013021646A1 true WO2013021646A1 (en) | 2013-02-14 |
Family
ID=47668181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005061 WO2013021646A1 (en) | 2011-08-09 | 2012-08-09 | Analytical instrument and analysis method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013036891A (en) |
WO (1) | WO2013021646A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113465967A (en) * | 2021-06-21 | 2021-10-01 | 中国原子能科学研究院 | Stirring performance test method and system of stirring device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7588546B2 (en) | 2021-04-16 | 2024-11-22 | 株式会社日立ハイテク | Automatic analysis device and automatic analysis method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0348161A (en) * | 1989-07-17 | 1991-03-01 | Hitachi Ltd | Plural item analyzer and operation thereof |
JPH09127124A (en) * | 1995-10-27 | 1997-05-16 | Hitachi Ltd | Automatic analyzer |
JPH11258242A (en) * | 1998-03-16 | 1999-09-24 | Olympus Optical Co Ltd | Method for processing measured data in automatic analyzer |
JP2005181106A (en) * | 2003-12-19 | 2005-07-07 | Wako Pure Chem Ind Ltd | Measuring method |
JP2007292495A (en) * | 2006-04-21 | 2007-11-08 | Olympus Corp | Analyzer, analysis method and analysis program |
JP2009150730A (en) * | 2007-12-19 | 2009-07-09 | Olympus Corp | Agitation determination method and analyzer |
JP2009162585A (en) * | 2007-12-28 | 2009-07-23 | Olympus Corp | Analyzer and analysis method |
JP2010160116A (en) * | 2009-01-09 | 2010-07-22 | Beckman Coulter Inc | Autoanalyzer |
JP2011027479A (en) * | 2009-07-22 | 2011-02-10 | Beckman Coulter Inc | Analyzer and stirrer driving method of the same |
-
2011
- 2011-08-09 JP JP2011173922A patent/JP2013036891A/en not_active Withdrawn
-
2012
- 2012-08-09 WO PCT/JP2012/005061 patent/WO2013021646A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0348161A (en) * | 1989-07-17 | 1991-03-01 | Hitachi Ltd | Plural item analyzer and operation thereof |
JPH09127124A (en) * | 1995-10-27 | 1997-05-16 | Hitachi Ltd | Automatic analyzer |
JPH11258242A (en) * | 1998-03-16 | 1999-09-24 | Olympus Optical Co Ltd | Method for processing measured data in automatic analyzer |
JP2005181106A (en) * | 2003-12-19 | 2005-07-07 | Wako Pure Chem Ind Ltd | Measuring method |
JP2007292495A (en) * | 2006-04-21 | 2007-11-08 | Olympus Corp | Analyzer, analysis method and analysis program |
JP2009150730A (en) * | 2007-12-19 | 2009-07-09 | Olympus Corp | Agitation determination method and analyzer |
JP2009162585A (en) * | 2007-12-28 | 2009-07-23 | Olympus Corp | Analyzer and analysis method |
JP2010160116A (en) * | 2009-01-09 | 2010-07-22 | Beckman Coulter Inc | Autoanalyzer |
JP2011027479A (en) * | 2009-07-22 | 2011-02-10 | Beckman Coulter Inc | Analyzer and stirrer driving method of the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113465967A (en) * | 2021-06-21 | 2021-10-01 | 中国原子能科学研究院 | Stirring performance test method and system of stirring device |
Also Published As
Publication number | Publication date |
---|---|
JP2013036891A (en) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9506942B2 (en) | Automatic analyzer and method for detecting measurement value abnormalities | |
JP5932540B2 (en) | Automatic analyzer | |
JP2009204409A (en) | Automatic analyzer | |
EP2881741B1 (en) | Automatic analysis device | |
WO2013021646A1 (en) | Analytical instrument and analysis method | |
JP2010256260A (en) | Automatic analyzer | |
JP5271929B2 (en) | Automatic analyzer | |
JP2009281802A (en) | Autoanalyzer and specimen searching system | |
JP2009204446A (en) | Automatic analyzer | |
JP7267712B2 (en) | Calibration curve generation method and automatic analyzer | |
JP2015158410A (en) | automatic analyzer | |
JP2015078963A (en) | Autoanalyzer | |
JP5264851B2 (en) | Automatic analyzer and reagent management method | |
JP5860643B2 (en) | Automatic analyzer | |
JPH10282099A (en) | Automatic analyzer | |
JP5134452B2 (en) | Automatic analyzer | |
JP7246498B2 (en) | COMBINED AUTOMATIC ANALYZER, SYSTEM, AND ABNORMALITY DETERMINATION METHOD | |
JP7448521B2 (en) | Data analysis methods, data analysis systems, and calculators | |
JP4825442B2 (en) | Accuracy control method of automatic analyzer for clinical examination, and automatic analyzer | |
JP2008058065A (en) | Autoanalyzer and automatic analysis method | |
JP6537895B2 (en) | Automatic analyzer | |
JP5839849B2 (en) | Automatic analyzer | |
JP6758821B2 (en) | Automatic analyzer | |
JP7237569B2 (en) | automatic analyzer | |
JP2017020956A (en) | Automatic analyzer, automatic analyzing method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12822831 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12822831 Country of ref document: EP Kind code of ref document: A1 |