WO2013018722A1 - 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法 - Google Patents
成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法 Download PDFInfo
- Publication number
- WO2013018722A1 WO2013018722A1 PCT/JP2012/069223 JP2012069223W WO2013018722A1 WO 2013018722 A1 WO2013018722 A1 WO 2013018722A1 JP 2012069223 W JP2012069223 W JP 2012069223W WO 2013018722 A1 WO2013018722 A1 WO 2013018722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- strength
- phase
- less
- producing
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 181
- 239000010959 steel Substances 0.000 title claims abstract description 181
- 238000004519 manufacturing process Methods 0.000 title claims description 37
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 102
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 44
- 230000009466 transformation Effects 0.000 claims abstract description 42
- 230000000717 retained effect Effects 0.000 claims description 61
- 238000001816 cooling Methods 0.000 claims description 54
- 238000010438 heat treatment Methods 0.000 claims description 46
- 229910000859 α-Fe Inorganic materials 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 33
- 238000000137 annealing Methods 0.000 claims description 32
- 238000005096 rolling process Methods 0.000 claims description 32
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 31
- 239000008397 galvanized steel Substances 0.000 claims description 31
- 238000003303 reheating Methods 0.000 claims description 31
- 238000011282 treatment Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 22
- 229910001563 bainite Inorganic materials 0.000 claims description 21
- 238000005097 cold rolling Methods 0.000 claims description 20
- 229910052742 iron Inorganic materials 0.000 claims description 17
- 238000005246 galvanizing Methods 0.000 claims description 11
- 229910052684 Cerium Inorganic materials 0.000 claims description 10
- 238000005098 hot rolling Methods 0.000 claims description 10
- 238000005554 pickling Methods 0.000 claims description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 10
- 230000009467 reduction Effects 0.000 claims description 9
- 238000005275 alloying Methods 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- 229910052749 magnesium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 238000007747 plating Methods 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 4
- 238000009713 electroplating Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 6
- 230000001965 increasing effect Effects 0.000 description 23
- 230000000694 effects Effects 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 150000001247 metal acetylides Chemical class 0.000 description 10
- 238000005728 strengthening Methods 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 230000001771 impaired effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910001035 Soft ferrite Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 229910001567 cementite Inorganic materials 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
Definitions
- the present invention relates to a high-strength steel sheet having high formability, a high-strength galvanized steel sheet, and methods for producing them.
- Patent Document 1 as a technique for improving the bendability of a high-strength steel sheet, in a steel sheet having a microstructure mainly composed of bainite and tempered martensite, the amount of Si contained in the steel is 0.6% or less by mass%.
- the predetermined bainite transformation temperature By cooling to a temperature lower than the predetermined bainite transformation temperature by 50 ° C. or more to promote transformation from austenite to bainite or martensite, the retained austenite having a martensite transformation point of ⁇ 196 ° C. or more contained in the structure
- a steel sheet having a tensile strength of 780 to 1470 MPa, a good shape and excellent bendability obtained by setting the volume ratio to 2% or less is disclosed.
- Patent Document 2 as a technique for improving the formability of a high-strength steel sheet, a hot-rolled steel sheet is cooled to 500 ° C. or less, wound up, reheated to 550 to 700 ° C., and then cold-rolled. And the continuous annealing step sequentially, the average particle size of the second phase including the retained austenite and further including the low-temperature transformation phase becomes fine, and the amount of retained austenite, the amount of dissolved C of the retained austenite, and the average particle size are predetermined.
- a method for improving ductility and stretch flangeability by satisfying the relational expression is disclosed.
- Patent Document 3 discloses a steel sheet in which the standard deviation of the hardness inside the steel sheet is reduced and the same hardness is provided throughout the steel sheet as a technique for improving the stretch flangeability of the high-strength steel sheet.
- Patent Document 4 discloses a steel sheet in which the hardness of a hard part is reduced by heat treatment and the difference in hardness from a soft part is reduced as a technique for improving the stretch flangeability of a high-strength steel sheet.
- Patent Document 5 discloses a steel sheet in which the hardness difference from the soft part is reduced by making the hard part a relatively soft bainite as a technique for improving the stretch flangeability of the high-strength steel sheet.
- Patent Document 6 as a technique for improving the stretch flangeability of a high-strength steel sheet, in a steel sheet having a structure composed of tempered martensite with an area ratio of 40 to 70% and the balance made of ferrite, Mn in the thickness direction cross section of the steel sheet is disclosed.
- a steel sheet in which the ratio between the upper limit value and the lower limit value of the concentration is reduced is disclosed.
- the high-strength steel sheet described in Patent Document 1 has a problem that in the steel sheet structure, there are few ferrites and residual austenite that improve ductility, and sufficient ductility cannot be obtained.
- Patent Document 2 The method for producing a high-strength steel sheet described in Patent Document 2 requires a large-scale reheating device, and thus has a problem that the production cost increases.
- the present invention has been made in view of the above-mentioned problems, and is capable of obtaining excellent ductility and stretch flangeability while ensuring high strength of a tensile maximum strength of 900 MPa or more. It is an object to provide a high-strength galvanized steel sheet and a manufacturing method thereof.
- the present inventors diligently studied a steel sheet structure and a manufacturing method for obtaining excellent ductility and stretch flangeability in a high-strength steel sheet.
- the martensitic transformation start temperature of the retained austenite phase is set to a predetermined range while keeping the ratio of the retained austenite phase in the steel sheet structure within a predetermined range by optimizing the steel components in the appropriate range and annealing conditions after cold rolling.
- a maximum tensile strength of 900 MPa or more is ensured.
- ductility and stretch flangeability were improved, and excellent formability was obtained.
- the present invention has been made as a result of further investigation based on the above findings, and the gist thereof is as follows.
- REM Contains 0.0001 to 0.5000% of 1 type or 2 types or more, with the balance being iron and impossible
- the steel is composed of mechanical impurities, and the steel sheet structure contains a retained austenite phase of 2 to 20% in volume fraction, and the martensite transformation point of the retained austenite phase is ⁇ 60 ° C. or less. High strength steel plate with excellent properties.
- the structure of the steel sheet further has a volume fraction of ferrite phase: 10 to 75%, bainitic ferrite phase and / or bainite phase: 10 to 50%, tempered martensite phase: 10 to 50%, and Fresh martensite phase: A high-strength steel sheet excellent in formability according to any one of the above (1) to (3), comprising 10% or less.
- Method for producing a high strength steel sheet excellent in formability characterized in that it comprises at least one or more performing annealing step reheating to 50 ° C. or higher.
- a method for producing a high-strength galvanized steel sheet excellent in formability characterized by performing zinc electroplating after producing a high-strength steel sheet by the method for producing a high-strength steel sheet according to (6).
- the starting temperature at which austenite ( ⁇ iron) transforms into martensite in the process of temperature reduction during the manufacture of steel sheet is the Ms point
- the residual austenite in the structure of the manufactured high-strength steel sheet of the present invention is the starting temperature at which the transformation to martensite referred to as Ms r point.
- Steel structure of the high-strength steel sheet of the present invention have from 2 to 20% residual austenite phase, Ms r point of the residual austenite phase is -60 ° C. or less.
- Such a retained austenite phase contained in the steel sheet structure of the high-strength steel sheet according to the present invention is stable against multiple cold treatments.
- the structure other than the retained austenite phase is not particularly limited as long as the tensile maximum strength of 900 MPa or more can be ensured.
- the volume fraction in the steel sheet structure is ferrite phase: 10 to 75%, bainitic ferrite phase and / or It preferably has a bainite phase: 10 to 50%, a tempered martensite phase: 10 to 50%, and a fresh martensite phase: 10% or less.
- the retained austenite phase has a characteristic that the strength and ductility are greatly improved, while generally it becomes a starting point of fracture and greatly deteriorates stretch flangeability.
- stability index as described above include those of the retained austenite phase martensitic transformation start temperature (Ms r point). Stable retained austenite high cleanliness austenite remaining is immersed for one hour in liquid nitrogen, the so-called cryogenic processing be performed without changing the amount of retained austenite, Ms r point temperature of liquid nitrogen (-198 ° C. ) And is very stable. Further, in general, the retained austenite gradually decreases by repeatedly performing the cryogenic treatment. However, in the high-strength steel sheet according to the present invention, the retained austenite does not decrease even after the five cryogenic treatments, and is extremely stable. It is.
- the volume fraction of the retained austenite phase in the steel sheet structure is preferably 4% or more, and more preferably 6% or more.
- the volume fraction of the retained austenite phase in the steel sheet structure is preferably 4% or more, and more preferably 6% or more.
- the ratio of the retained austenite phase to martensite transformation at ⁇ 198 ° C. is preferably 2% or less in terms of volume fraction.
- Ms r point of the residual austenite in the steel sheet structure in the -198 ° C. or less it becomes more stable retained austenite phase, ductility and stretch flangeability is further remarkably improved, since excellent formability is obtained .
- the volume fraction of retained austenite phase is X-ray analysis using a plane parallel to the plate surface of the steel sheet and a thickness of 1/4 as an observation surface, and an area fraction is calculated, which is regarded as the volume fraction.
- the quarter-thickness surface is mirror-finished by subjecting the base material to grinding and chemical polishing after the deep cooling treatment.
- n the number of chilling treatments
- V ⁇ (n) the retained austenite fraction after the nth chilling treatment
- V ⁇ (0) the retained austenite fraction in the base material.
- the ferrite phase is a structure effective for improving ductility, and is preferably contained in the steel sheet structure in a volume fraction of 10 to 75%. If the volume fraction of the ferrite phase in the steel sheet structure is less than 10%, sufficient ductility may not be obtained.
- the volume fraction of the ferrite phase contained in the steel sheet structure is more preferably 15% or more, and further preferably 20% or more, from the viewpoint of ductility. Since the ferrite phase is a soft structure, if the volume fraction exceeds 75%, sufficient strength may not be obtained.
- the volume fraction of the ferrite phase contained in the steel sheet structure is more preferably 65% or less, and further preferably 50% or less.
- the bainitic ferrite phase and / or bainite phase is a structure having an excellent balance between strength and ductility, and is preferably contained in the steel sheet structure in a volume fraction of 10 to 50%.
- the bainitic ferrite phase and / or bainite is a microstructure having an intermediate strength between a soft ferrite phase and a hard martensite phase, a tempered martensite phase and a retained austenite phase, and is 15% or more from the viewpoint of stretch flangeability. More preferably, 20% or more is more preferably included.
- the tempered martensite phase is a structure that greatly improves the tensile strength, and may be contained in the steel sheet structure in a volume fraction of 50% or less. From the viewpoint of tensile strength, the volume fraction of tempered martensite is preferably 10% or more. If the volume fraction of tempered martensite contained in the steel sheet structure exceeds 50%, the yield stress is excessively increased and the shape freezing property is deteriorated.
- the fresh martensite phase has the effect of greatly improving the tensile strength. However, since it becomes the starting point of fracture and greatly deteriorates the stretch flangeability, it is preferable to limit the volume fraction in the steel sheet structure to 15% or less. In order to enhance stretch flangeability, the volume fraction of the fresh martensite phase in the steel sheet structure is preferably 10% or less, and more preferably 5% or less.
- the steel sheet structure of the high-strength steel sheet of the present invention may further include a structure other than the above, such as a pearlite phase and / or a coarse cementite phase.
- a structure other than the above such as a pearlite phase and / or a coarse cementite phase.
- the pearlite phase and / or coarse cementite phase increases in the steel structure of the high-strength steel plate, there arises a problem that the bendability deteriorates. From this, the total volume fraction of the pearlite phase and / or coarse cementite phase contained in the steel sheet structure is preferably 10% or less, and more preferably 5% or less.
- the volume fraction of each structure included in the steel sheet structure of the high-strength steel sheet of the present invention can be measured by, for example, the following method.
- the volume fraction of the ferrite phase, bainitic ferrite phase, bainite phase, tempered martensite phase and fresh martensite phase contained in the steel sheet structure of the high-strength steel sheet of the present invention first, parallel to the rolling direction of the steel sheet. A sample is taken using a thick cross section as an observation surface. Then, the observation surface of this sample was polished and nital etched, and the range of 1/8 to 3/8 thickness of the plate thickness was observed with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope). The area fraction is then measured and taken as the volume fraction.
- FE-SEM Field Emission Scanning Electron Microscope
- C 0.075 to 0.300%
- C is an element necessary for obtaining a retained austenite phase, and is contained in order to achieve both excellent moldability and high strength.
- the content of C exceeds 0.300%, weldability becomes insufficient.
- the C content is more preferably 0.250% or less, and further preferably 0.220% or less.
- the content of C is less than 0.075%, it becomes difficult to obtain a sufficient amount of retained austenite phase, and strength and formability are deteriorated.
- the C content is more preferably 0.090% or more, and further preferably 0.100% or more.
- Si 0.70 to 2.50%
- Si is an element that makes it easy to obtain a retained austenite phase by suppressing the formation of iron-based carbides in the steel sheet, and is an element necessary for improving strength and formability. If the Si content exceeds 2.50%, the steel sheet becomes brittle and the ductility deteriorates. From the viewpoint of ductility, the Si content is more preferably 2.20% or less, and further preferably 2.00% or less. When the Si content is less than 0.70%, iron-based carbides are generated during cooling to room temperature after annealing, and a sufficient retained austenite phase cannot be obtained, resulting in deterioration of strength and formability. From the viewpoint of strength and formability, the lower limit value of Si is more preferably 0.90% or more, and further preferably 1.00% or more.
- Mn 1.30 to 3.50% Mn is added to increase the strength of the steel sheet. If the Mn content exceeds 3.50%, a coarse Mn-concentrated portion is generated at the central portion of the plate thickness of the steel sheet, and embrittlement is likely to occur, and troubles such as cracking of the cast slab are likely to occur. Moreover, when content of Mn exceeds 3.50%, there exists a problem that weldability also deteriorates. Therefore, the Mn content needs to be 3.50% or less. From the viewpoint of weldability, the Mn content is more preferably 3.20% or less, and further preferably 3.00% or less.
- the Mn content is less than 1.30%, a large amount of soft structure is formed during cooling after annealing, so it is difficult to ensure a maximum tensile strength of 900 MPa or more. Therefore, the Mn content needs to be 1.30% or more. In order to increase the strength of the steel sheet, the Mn content is more preferably 1.50% or more, and even more preferably 1.70% or more.
- P 0.001 to 0.030% P tends to segregate at the center of the plate thickness of the steel sheet and has a characteristic of embrittlement of the weld. If the P content exceeds 0.030%, the welded portion is significantly embrittled, so the P content is limited to 0.030% or less. Although the lower limit of the content of P is not particularly defined, the effect of the present invention is exhibited. However, if the content of P is less than 0.001%, the manufacturing cost is greatly increased, so 0.001% is the lower limit. To do.
- the upper limit of the S content is set to 0.0100% or less. Further, since S combines with Mn to form coarse MnS and lowers ductility and stretch flangeability, it is more preferably 0.0050% or less, and even more preferably 0.0025% or less.
- the lower limit of the S content is not particularly defined, and the effects of the present invention are exhibited. However, if the S content is less than 0.0001%, the manufacturing cost is greatly increased, so 0.0001% is set as the lower limit. To do.
- Al 0.005-1.500%
- Al is an element that makes it easy to obtain retained austenite by suppressing the formation of iron-based carbides, and increases the strength and formability of the steel sheet. If the Al content exceeds 1.500%, weldability deteriorates, so the upper limit is made 1.500%. From the viewpoint of weldability, the Al content is more preferably 1.200% or less, and further preferably 0.900% or less. Al is an element that is also effective as a deoxidizing material, but if the Al content is less than 0.005%, the effect as a deoxidizing material cannot be sufficiently obtained, so the lower limit of the Al content is 0.005%. And In order to obtain a sufficient deoxidation effect, the Al content is more preferably 0.010% or more.
- N 0.0001 to 0.0100% N forms coarse nitrides and degrades ductility and stretch flangeability, so it is necessary to suppress the addition amount. If the N content exceeds 0.0100%, this tendency becomes significant, so the upper limit of the N content is 0.0100%. Since N causes the generation of blowholes during welding, it is preferable that N be smaller. Although the lower limit of the N content is not particularly defined, the effect of the present invention is exhibited. However, if the N content is less than 0.0001%, the manufacturing cost is greatly increased, so 0.0001% is the lower limit. And
- O 0.0001 to 0.0100% Since O forms an oxide and deteriorates ductility and stretch flangeability, it is necessary to suppress the content. When the content of O exceeds 0.0100%, the deterioration of stretch flangeability becomes significant, so the upper limit of the O content is 0.0100% or less.
- the O content is more preferably 0.0080% or less, and further preferably 0.0060% or less.
- the lower limit of the content of O is not particularly defined, the effect of the present invention is exhibited. However, if the content of O is less than 0.0001%, the manufacturing cost is greatly increased, so 0.0001% is the lower limit. And
- the high-strength steel sheet of the present invention may further contain the following elements as necessary.
- Ti is an element that contributes to increasing the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization. If the Ti content exceeds 0.150%, precipitation of carbonitride increases and formability deteriorates, so the Ti content is set to 0.150% or less. From the viewpoint of moldability, the Ti content is more preferably 0.100% or less, and further preferably 0.070% or less. In order to sufficiently obtain the effect of increasing the strength due to Ti, the Ti content needs to be 0.005% or more. In order to increase the strength of the steel sheet, the Ti content is preferably 0.010% or more, and more preferably 0.015% or more.
- Nb is an element that contributes to increasing the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization. If the content of Nb exceeds 0.150%, the precipitation of carbonitride increases and the formability deteriorates, so the content of Nb needs to be 0.150% or less. From the viewpoint of moldability, the Nb content is preferably 0.100% or less, and more preferably 0.060% or less. In order to sufficiently obtain the effect of increasing the strength by Nb, the Nb content needs to be 0.005% or more. In order to increase the strength of the steel sheet, the Nb content is preferably 0.010% or more, and more preferably 0.015% or more.
- V 0.005 to 0.150%
- V is an element that contributes to increasing the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization. If the V content exceeds 0.150%, carbonitride precipitation increases and the formability deteriorates, so the content is set to 0.150% or less. In order to sufficiently obtain the strength increasing effect by V, the content needs to be 0.005% or more.
- B 0.0001 to 0.0100%
- B is an element that suppresses phase transformation at high temperatures and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the B content exceeds 0.0100%, the hot workability is impaired and the productivity decreases, so the B content is set to 0.0100% or less. From the viewpoint of productivity, the B content is preferably 0.0050% or less, and more preferably 0.0030% or less. In order to sufficiently obtain a high strength by B, the B content needs to be 0.0001% or more. In order to effectively increase the strength of the steel sheet, the B content is preferably 0.0003% or more, and more preferably 0.0005% or more.
- Mo 0.01 to 1.00%
- Mo is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Mo content exceeds 1.00%, the hot workability is impaired and the productivity decreases, so the Mo content is set to 1.00% or less. In order to sufficiently obtain the effect of increasing the strength by Mo, the content needs to be 0.01% or more.
- W 0.01-1.00% W is an element that suppresses phase transformation at high temperatures and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the W content exceeds 1.00%, hot workability is impaired and productivity is lowered, so the W content is set to 1.00% or less. In order to sufficiently obtain a high strength by W, the content needs to be 0.01% or more.
- Cr 0.01 to 2.00% Cr is an element that suppresses phase transformation at high temperatures and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Cr content exceeds 2.00%, hot workability is impaired and productivity is lowered, so the Cr content is 2.00% or less. In order to sufficiently obtain high strength by Cr, the content needs to be 0.01% or more.
- Ni 0.01-2.00%
- Ni is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Ni content exceeds 2.00%, weldability is impaired, so the Ni content is 2.00% or less. In order to sufficiently obtain high strength by Ni, the content needs to be 0.01% or more.
- Cu 0.01 to 2.00%
- Cu is an element that increases the strength by being present in the steel as fine particles, and can be added instead of a part of C and / or Mn. If the Cu content exceeds 2.00%, weldability is impaired, so the content is made 2.00% or less. In order to sufficiently obtain high strength by Cu, the content needs to be 0.01% or more.
- Ca, Ce, Mg, Zr, Hf, and REM in total 0.0001 to 0.5000% Ca, Ce, Mg, Zr, Hf, and REM are effective elements for improving formability, and one or more of them can be added. If the content of one or more of Ca, Ce, Mg, Zr, Hf and REM exceeds 0.5000% in total, the ductility may be adversely affected, so the total content of each element is 0. 5,000% or less. In order to sufficiently obtain the effect of improving the formability of the steel sheet, the total content of each element needs to be 0.0001% or more. From the viewpoint of moldability, the total content of each element is preferably 0.0005% or more, and more preferably 0.0010% or more.
- REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series.
- REM and Ce are often added by misch metal and may contain a lanthanoid series element in combination with La and Ce. Further, even when these lanthanoid series elements other than La and Ce are included as inevitable impurities, the effect of the present invention is exhibited. Further, even when the metal La or Ce is added, the effect of the present invention is exhibited.
- the component composition of this invention was demonstrated, as long as it is a range which does not impair the characteristic of the steel plate of this invention, you may contain elements other than an essential additive element as an impurity resulting from a raw material, for example.
- the high-strength steel sheet of the present invention can be a high-strength galvanized steel sheet having a galvanized layer or an alloyed galvanized layer formed on the surface.
- a galvanized layer on the surface of a high-strength steel plate, a steel plate having excellent corrosion resistance is obtained.
- the alloyed galvanized layer on the surface of the high-strength steel plate, the steel plate has excellent corrosion resistance and excellent paint adhesion.
- a slab having the above-described component composition is cast.
- a slab to be used for hot rolling for example, a continuous cast slab, a thin slab caster or the like can be used.
- a process such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.
- the slab heating temperature in the hot rolling process needs to be 1050 ° C. or higher. If the slab heating temperature is low, the finish rolling temperature is below the Ar 3 point. As a result, it becomes a two-phase rolling of a ferrite phase and an austenite phase, so that the hot rolled sheet structure becomes a heterogeneous mixed grain structure, and even if it undergoes cold rolling and annealing processes, the heterogeneous structure is not eliminated, ductility and bending Deteriorates. Further, when the finish rolling temperature is lowered, there is a concern that the rolling load increases, rolling becomes difficult, and the shape of the steel sheet after rolling is poor.
- the upper limit of the slab heating temperature is not particularly defined, and the effect of the present invention is exhibited. However, since it is not economically preferable to make the heating temperature excessively high, the upper limit of the slab heating temperature should be 1350 ° C. or less. Is preferred.
- Ar 3 points can be calculated by the following equation.
- Ar 3 (° C.) 901-325 ⁇ C + 33 ⁇ Si-92 ⁇ (Mn + Ni / 2 + Cr / 2) + Cu / 2 + Mo / 2) + 52 ⁇ Al
- C, Si, Mn, Ni, Cr, Cu, Mo, and Al are the contents (mass%) of each element.
- the hot rolling finish rolling temperature has a lower limit of 800 ° C. or a higher Ar 3 point, and an upper limit of 1000 ° C.
- the finish rolling temperature is less than 800 ° C.
- the finish rolling temperature is less than Ar 3 points, the hot rolling becomes a two-phase rolling of a ferrite phase and an austenite phase, and the structure of the hot rolled steel sheet may be a heterogeneous mixed grain structure.
- the upper limit of the finish rolling temperature is not particularly defined, and the effect of the present invention is exhibited. However, if the finish rolling temperature is excessively high, the slab heating temperature must be excessively high in order to secure the temperature. . Therefore, the upper limit temperature of the finish rolling temperature is preferably 1000 ° C. or less.
- the rolled steel sheet is wound up at 500 to 750 ° C.
- the coiling temperature is preferably 720 ° C. or lower, more preferably 700 ° C. or lower.
- the winding temperature is preferably 550 ° C. or higher, more preferably 600 ° C. or higher.
- the hot-rolled steel sheet manufactured in this way is subjected to pickling treatment.
- pickling it is possible to remove oxides on the surface of the steel sheet. It is important from the point of improving. Pickling may be performed only once or may be performed in multiple steps.
- the steel plate after pickling may be subjected to an annealing process as it is, but by performing cold rolling at a rolling reduction of 35 to 75%, a steel plate having an excellent shape with high thickness accuracy can be obtained. If the rolling reduction is less than 35%, it is difficult to keep the shape flat, and the ductility of the final product becomes poor, so the rolling reduction is set to 35% or more. When the rolling reduction exceeds 75%, the cold rolling load becomes excessively large and cold rolling becomes difficult. For this reason, the upper limit of the rolling reduction is set to 75%.
- the effect of the present invention is exhibited without particular limitation on the number of rolling passes and the rolling reduction for each pass.
- the rolled steel sheet is heated to a maximum heating temperature in the range of 740 to 1000 ° C.
- the maximum heating temperature is less than 740 ° C.
- the amount of austenite phase becomes insufficient, and it becomes difficult to secure a sufficient amount of hard structure in the subsequent phase transformation during cooling.
- the maximum heating temperature exceeds 1000 ° C., the grain size of the austenite phase becomes coarse, and it becomes difficult for the transformation to proceed during cooling, and it becomes difficult to sufficiently obtain a particularly soft ferrite structure.
- the heating up to the maximum heating temperature is (maximum heating temperature ⁇ 20) ° C. to the maximum heating temperature, that is, the heating rate during the last 20 ° C. during heating is 0.1 to 0.8 ° C./second. It is preferable.
- the heating rate between 20 ° C. up to the maximum heating temperature within the above range the effect of slowing the reverse transformation to the austenite phase is reduced and the number of defects in the initial austenite phase is reduced. It is done.
- the residence time when heated to the maximum heating temperature can be appropriately determined according to the maximum heating temperature and the like and is not particularly limited, but is preferably 10 seconds or more, more preferably 40 to 540 seconds.
- the average cooling rate in the above cooling temperature range is less than 1.0 ° C./second, the pearlite transformation proceeds during cooling, the untransformed austenite phase is reduced, and a sufficient hard structure cannot be obtained. In some cases, the maximum strength of 900 MPa or more cannot be ensured. When the average cooling rate exceeds 10.0 ° C./second, a soft ferrite structure may not be sufficiently generated.
- the residence time in the ferrite transformation temperature range from immediately after heating until the steel plate temperature reaches 700 ° C. is not particularly limited, but is preferably 20 to 1000 seconds. In order to sufficiently generate a soft ferrite phase, it is necessary to stop for 20 seconds or more in a ferrite transformation temperature range from immediately after annealing to a steel plate temperature of 700 ° C., and preferably for 30 seconds or more, It is more preferable to stop for 50 seconds or more. If the time for retaining in the ferrite transformation temperature range exceeds 1000 seconds, the ferrite transformation proceeds excessively and untransformed austenite is reduced, so that a sufficient hard structure cannot be obtained.
- secondary cooling is performed with an average cooling rate of 700 to 500 ° C. set to 5.0 to 200 ° C./second.
- the transformation from austenite after annealing to ferrite is reliably advanced.
- cooling is performed at an average cooling rate of 1 ° C./second to 10.0 ° C./second similar to the primary cooling from a temperature range exceeding 700 ° C., the formation of ferrite phase becomes insufficient, resulting in high strength. The ductility of the steel sheet cannot be ensured.
- the steel plate subjected to the above-described two-stage cooling treatment is retained in a temperature range of 350 to 450 ° C. for a time of 30 to 1000 seconds. If the residence temperature at this time is less than 350 ° C., fine iron-based carbides are generated, and the concentration of C into the austenite phase does not proceed, resulting in an unstable austenite phase. When the residence temperature exceeds 450 ° C., the solid solution limit of C in the austenite phase becomes low, and C is saturated in a small amount, so that the concentration of C does not progress and an unstable austenite phase is formed.
- the residence time is less than 30 seconds, the bainite transformation does not proceed sufficiently, the amount of C (carbon) discharged from the bainite phase to the austenite phase is small, the concentration of C into the austenite phase is insufficient, and is unstable. It becomes an austenite phase.
- the residence time exceeds 1000 seconds, generation of coarse iron-based carbide starts, and the C concentration in the austenite is lowered, so that an unstable austenite phase is formed.
- reheating from Bs point bainite transformation start temperature
- reheating from the Ms point or less than 350 ° C. to 350 ° C. or more is performed at least once.
- the residence in the above-mentioned temperature range of 350 to 450 ° C. is performed. May be.
- the Bs point (bainite transformation start temperature) can be calculated by the following equation.
- Bs (° C.) 820-290C / (1-VF) -37Si-90Mn-65Cr -50Ni + 70Al
- VF is the volume fraction of ferrite
- C, Mn, Cr, Ni, Al, and Si are addition amounts (mass%) of the respective elements.
- the Ms point (martensitic transformation start temperature) can be calculated by the following equation.
- Ms (° C.) 541-474C / (1-VF) -15Si-35Mn-17Cr -17Ni + 19Al
- VF is the volume fraction of ferrite
- C, Si, Mn, Cr, Ni, and Al are addition amounts (mass%) of the respective elements.
- a small piece of cold-rolled steel plate before passing through the continuous annealing line is cut out, and the small piece Is annealed with the same temperature history as when passing through the continuous annealing line, the change in volume of the ferrite phase of the small piece is measured, and the numerical value calculated using the result is taken as the volume fraction VF of the ferrite.
- the result of the first measurement may be used, and it is not necessary to measure each time. If the manufacturing conditions are to be changed significantly, measure again. Of course, the microstructure of the steel sheet actually manufactured may be observed and fed back to subsequent manufacturing.
- the start temperature is set to the Bs point or less than 500 ° C. in order to generate bainite nuclei that consume defects in austenite.
- the reason for setting the reheating temperature to 500 ° C. or higher is to inactivate the transformation nucleus and avoid the formation of iron-based carbides induced by excessive transformation in the high temperature range.
- the start temperature is set to the Ms point or less than 350 ° C. in order to generate martensite nuclei that consume defects in austenite.
- the reason why the reheating temperature is set to 350 ° C. or higher is to prevent fine iron-based carbides that prevent C concentration in the austenite phase from forming in martensite and / or bainite by leaving it below 350 ° C. Because.
- the annealed steel sheet may be subjected to cold rolling of about 0.03 to 0.80% for the purpose of shape correction. At this time, if the cold rolling rate after annealing becomes too high, the soft ferrite phase may be work-hardened and the ductility may be significantly deteriorated. Therefore, the rolling rate is preferably within the above range.
- the steel sheet after annealing may be electroplated with zinc to obtain a high-strength galvanized steel sheet.
- the hot-dip galvanized steel plate may be applied to the steel plate after annealing to obtain a high-strength galvanized steel plate.
- between the maximum heating temperature and room temperature for example, cool to 500 ° C., reheat, and then dip galvanize by immersing in a zinc bath. Can do.
- the steel plate is immersed in a galvanizing bath to produce a high-strength galvanized steel plate. be able to.
- an alloying treatment of the plating layer on the steel sheet surface may be further performed at a temperature of 470 to 650 ° C.
- a Zn—Fe alloy formed by alloying the galvanized layer is formed on the surface, and a high-strength galvanized steel sheet excellent in rust prevention is obtained.
- the reheating from the Bs point or less than 500 ° C. to 500 ° C. or more, or the reheating from the Ms point or less than 350 ° C. to 350 ° C. or more can be performed by heating the alloying treatment.
- the steel plate before the annealing step may be preliminarily plated with one or more selected from Ni, Cu, Co, and Fe.
- a film made of a complex oxide containing P oxide and / or P may be formed on the high-strength steel plate having a galvanized layer formed on the surface.
- the high-strength steel sheet, the high-strength galvanized steel sheet excellent in formability of the present invention, and the production methods thereof will be described more specifically using examples.
- the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. Is included.
- the average heating rate between (maximum heating temperature ⁇ 20 ° C.) and the maximum heating temperature is set to the average heating rate described in Tables 7 to 10, and heating is performed up to the maximum heating temperature described in Tables 7 to 10. did.
- the first cooling step primary cooling
- cooling is performed at the average cooling rate described in Tables 7 to 10
- the second cooling step from 700 ° C. to 500 ° C. ( (Secondary cooling), cooling was performed at an average cooling rate described in Tables 7 to 10.
- reheating from the Bs point or 480 ° C. or lower to 500 ° C. or higher is performed 1 to 3 times (reheating steps 1, 2 and 4), and the reheating from the Ms point or 350 ° C. or lower to 350 ° C. or higher is performed. It applied once or twice (reheating process 3, 5).
- the suspension was carried out in the range of 300 to 450 ° C. for the time shown in Tables 11 to 14, and then cooled to room temperature through the reheating steps 4 and 5.
- the steel types of each experimental example are as follows: cold rolled steel plate (CR), hot rolled steel plate (HR), galvanized steel plate (EG), hot dip galvanized steel plate (GI), alloyed hot dip galvanized steel plate (GA ), Hot-rolled alloyed hot-dip galvanized steel sheet (HR-GA) (same in each table below).
- Experimental Examples 13, 23, 33, 91, 95, 107, and 114 are examples in which an electroplating process was performed after the annealing step to obtain a galvanized steel sheet (EG).
- Experimental Examples 4, 18, 43, 83, and 87 were immersed in a galvanizing bath after the second cooling step and before the retention treatment in the range of 350 to 450 ° C. to obtain hot dip galvanized steel sheets (GI). It is an example.
- Experimental Examples 48, 53, 58, 98, and 103 are examples of hot-dip galvanized steel sheets (GI) that were immersed in a galvanizing bath and then cooled to room temperature after a retention treatment in the range of 300 to 450 ° C. .
- GI hot-dip galvanized steel sheets
- Experimental Examples 9, 63, and 90 are examples in which a film made of a P-based composite oxide is further provided on the surface of the plating layer.
- Tables 15 to 18 show the analysis results of the microstructures in the steel plates of Experimental Examples 1 to 127.
- the amount of retained austenite was measured by performing X-ray diffraction on a 1 ⁇ 4 thickness plane parallel to the plate surface.
- the other is the result of measuring the fraction of the microstructure in the range of 1/8 thickness to 3/8 thickness, cut out the plate thickness section parallel to the rolling direction, and after nital etching the mirror-polished section, It was determined by observing using a field emission scanning electron microscope (FE-SEM: Field emission scanning electron microscope).
- Tables 19 to 22 show the measurement results of the retained austenite fraction and the amount of dissolved C in the retained austenite after the cryogenic treatment test, and are measured by performing X-ray diffraction on a 1 ⁇ 4 thickness plane parallel to the plate surface. did. Measurement of ms r point, liquid nitrogen (-198 ° C.) and ethanol cooled using liquid nitrogen prepared in 20 ° C. increments up to 0 °C collar 100 ° C., retained austenite amount after holding for 1 hour each temperature the rate is measured, the austenite fraction was Ms r point of maximum residual austenite phase with a temperature of which decreases.
- the immersion treatment in liquid nitrogen is taken out after being immersed in liquid nitrogen for 1 hour or more, left in the air, and counted as one time until reaching room temperature.
- the measurement of the retained austenite fraction was measured at the time when the first, third, and tenth times were completed, and “ ⁇ ” indicates that the retained austenite fraction does not change, and “ ⁇ ” indicates that the retained austenite fraction has decreased. evaluated.
- Tables 23 to 26 are characteristic evaluations of the steel plates of Experimental Examples 1 to 127. At this time, a tensile test piece in accordance with JIS Z 2201 was taken from the steel sheets of Experimental Examples 1 to 127, and a tensile test was conducted in accordance with JIS Z 2241 to yield strength (YS), tensile strength (TS), and total elongation. (EL) was measured.
- JIS Z 2201 yield strength
- TS tensile strength
- EL total elongation.
- Fig. 2 shows the relationship between tensile strength (TS) and total elongation (EL)
- Fig. 3 shows the relationship between tensile strength (TS) and hole expansion ratio ( ⁇ ), which is an index of stretch flangeability.
- All the steel plates of the present invention satisfy TS ⁇ 900 MPa, TS ⁇ EL ⁇ 17000 MPa ⁇ %, and TS ⁇ ⁇ ⁇ 24000 MPa ⁇ %. There is no steel plate satisfying all of these in the comparative steel plate.
- Experimental Example 115 is an example in which the completion temperature of hot rolling is low, and the microstructure becomes inhomogeneous in one direction, so that ductility and stretch flangeability are inferior.
- Experimental Example 28 is an example in which the maximum heating temperature in the annealing process is high, the soft structure is not sufficiently generated, and the ductility is inferior.
- Experimental Example 32 is an example in which the maximum heating temperature in the annealing process is low, and includes a large number of coarse iron-based carbides that are the starting points of fracture, and therefore has poor ductility and stretch flangeability.
- Experimental Example 37 is an example in which the average cooling rate of the first cooling step (primary cooling) is high, the soft structure is not sufficiently generated, and the ductility and stretch flangeability are inferior.
- Experimental Example 42 is an example in which the average cooling rate in the first cooling step (primary cooling) is low, coarse iron-based carbides are generated, and stretch flangeability is inferior.
- Experimental example 47 has a low cooling rate in the second cooling step (secondary cooling), coarse iron-based carbides are generated, and stretch flangeability is inferior.
- Experimental example 52 is an example in which the reheating treatment is not performed, the retained austenite phase is unstable, and the stretch flangeability is inferior.
- Experimental Examples 57, 66, and 82 are examples in which only reheating from the Bs point or 480 ° C. or lower to 500 ° C. or higher is performed, the residual austenite phase is unstable, and the stretch flangeability is inferior.
- Experimental Examples 62 and 70 are examples in which only reheating from the Ms point or 350 ° C. or lower to 350 ° C. or higher is performed, the retained austenite is unstable, and the stretch flangeability is inferior.
- Experimental Examples 116 to 118 are examples in which the component composition deviates from a predetermined range, and none of the characteristics has been obtained.
- the present invention for example, in a member obtained by pressing a steel sheet by pressing or the like, excellent ductility and stretch flangeability can be obtained while ensuring a high tensile strength of 900 MPa or more. Strength and formability can be obtained simultaneously.
- the present invention particularly to the field of automobile members, etc., especially by applying to the automobile field, it is possible to improve the safety associated with the strengthening of the vehicle body, and to improve the moldability during member processing. Benefits such as improvement can be fully enjoyed, and their social contribution is immeasurable.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrochemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
- Metal Rolling (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
残留オーステナイト相は、強度及び延性を大きく向上させる一方で、一般的には破壊の起点となって伸びフランジ性を大きく劣化させるという特性がある。
ここで、nは深冷処理の回数、Vγ(n)はn回目の深冷処理後の残留オーステナイト分率、 Vγ(0)は母材中の残留オーステナイト分率を、それぞれ示す。
フェライト相は、延性の向上に有効な組織であり、鋼板組織中において体積分率で10~75%含まれていることが好ましい。鋼板組織中のフェライト相の体積分率が10%未満である場合、十分な延性が得られないおそれがある。鋼板組織中に含まれるフェライト相の体積分率は、延性の観点から15%以上含まれることがより好ましく、20%以上含まれることがさらに好ましい。フェライト相は軟質な組織であるため、体積分率が75%を超えると十分な強度が得られない場合がある。鋼板の引張強度を十分に高めるには、鋼板組織中に含まれるフェライト相の体積分率を65%以下とすることがより好ましく、50%以下とすることがさらに好ましい。
ベイニティックフェライト相及び/又はベイナイト相は、強度と延性のバランスに優れた組織であり、鋼板組織中に体積分率で10~50%含まれていることが好ましい。ベイニティックフェライト相及び/又はベイナイトは、軟質なフェライト相と硬質なマルテンサイト相、焼戻しマルテンサイト相及び残留オーステナイト相の中間の強度を有するミクロ組織であり、伸びフランジ性の観点から15%以上含まれることがより好ましく、20%以上含まれることがさらに好ましい。ベイニティックフェライト相及び/又はベイナイトの体積分率が50%を超えると、降伏応力が過度に高まり、形状凍結性が劣化するため好ましくない。
焼戻しマルテンサイト相は、引張強度を大きく向上させる組織であり、鋼板組織に体積分率で50%以下含まれていてもよい。引張強度の観点から、焼戻しマルテンサイトの体積分率は10%以上とすることが好ましい。鋼板組織に含まれる焼戻しマルテンサイトの体積分率が50%を超えると、降伏応力が過度に高まり、形状凍結性が劣化するため好ましくない。
フレッシュマルテンサイト相は、引張強度を大きく向上させる効果がある。しかし、破壊の起点となって伸びフランジ性を大きく劣化させるので、鋼板組織中における体積分率で15%以下に制限することが好ましい。伸びフランジ性を高めるには、鋼板組織中におけるフレッシュマルテンサイト相の体積分率を10%以下とすることがより好ましく、5%以下とすることがさらに好ましい。
本発明の高強度鋼板の鋼板組織には、さらに、パーライト相及び/又は粗大なセメンタイト相等、上記以外の組織が含まれていてもよい。しかしながら、高強度鋼板の鋼板組織中にパーライト相及び/又は粗大なセメンタイト相が多くなると、曲げ性が劣化するという問題が生じる。このことから、鋼板組織中に含まれるパーライト相及び/又は粗大なセメンタイト相の体積分率は、合計で10%以下であることが好ましく、5%以下であることがより好ましい。
Cは、残留オーステナイト相を得るために必要な元素であり、優れた成形性と高強度を両立するために含有される。Cの含有量が0.300%を超えると、溶接性が不十分となる。溶接性の観点からは、Cの含有量は0.250%以下であることがより好ましく、0.220%以下であることがさらに好ましい。Cの含有量が0.075%未満であると、十分な量の残留オーステナイト相を得ることが困難となり、強度及び成形性が低下する。強度及び成形性の観点からは、Cの含有量は0.090%以上であることがより好ましく、0.100%以上であることがさらに好ましい。
Siは、鋼板における鉄系炭化物の生成を抑制することによって残留オーステナイト相を得やすくする元素であり、強度と成形性を高めるために必要な元素である。Siの含有量が2.50%を超えると鋼板が脆化し、延性が劣化する。延性の観点からは、Siの含有量は2.20%以下であることがより好ましく、2.00%以下であることがさらに好ましい。Siの含有量が0.70%未満では焼鈍後に室温まで冷却する間に鉄系炭化物が生成し、十分に残留オーステナイト相が得られず、強度及び成形性が劣化する。強度及び成形性の観点からは、Siの下限値は0.90%以上であることがより好ましく、1.00%以上がさらに好ましい。
Mnは、鋼板の強度を高めるために添加される。Mnの含有量が3.50%を超えると、鋼板の板厚中央部に粗大なMn濃化部が生じ、脆化が起こりやすくなり、鋳造したスラブが割れる等のトラブルが起こりやすい。また、Mnの含有量が3.50%を超えると、溶接性も劣化するという問題がある。したがって、Mnの含有量は3.50%以下とする必要がある。溶接性の観点からは、Mnの含有量は3.20%以下であることがより好ましく、3.00%以下であることがさらに好ましい。Mnの含有量が1.30%未満であると、焼鈍後の冷却中に軟質な組織が多量に形成されるので、900MPa以上の引張最大強度を確保することが難しくなる。したがって、Mnの含有量を1.30%以上とする必要がある。また、鋼板の強度を高めるため、Mnの含有量は1.50%以上であることがより好ましく、1.70%以上であることがさらに好ましい。
Pは、鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる特性がある。Pの含有量が0.030%を超えると溶接部が大幅に脆化するので、Pの含有量は0.030%以下に制限する。Pの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Pの含有量を0.001%未満とすると製造コストが大幅に増加するので、0.001%を下限とする。
Sは、溶接性並びに鋳造時及び熱延時の製造性に悪影響を及ぼす。したがって、Sの含有量の上限値は0.0100%以下とする。また、SはMnと結びついて粗大なMnSを形成して延性や伸びフランジ性を低下させるので、0.0050%以下とすることがより好ましく、0.0025%以下とすることがさらに好ましい。Sの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Sの含有量を0.0001%未満とすると製造コストが大幅に増加するので、0.0001%を下限とする。
Alは、鉄系炭化物の生成を抑えて残留オーステナイトを得やすくする元素であり、鋼板の強度及び成形性を高める。Alの含有量が1.500%を超えると溶接性が悪化するので、上限は1.500%とする。溶接性の観点からは、Alの含有量は1.200%以下とすることがより好ましく、0.900%以下とすることがさらに好ましい。Alは脱酸材としても有効な元素であるが、Alの含有量が0.005%未満では脱酸材としての効果が十分に得られないので、Alの含有量の下限は0.005%とする。脱酸の効果を十分に得るには、Al量は0.010%以上とすることがより好ましい。
Nは、粗大な窒化物を形成し、延性及び伸びフランジ性を劣化させるので、添加量を抑える必要がある。Nの含有量が0.0100%を超えると、この傾向が顕著となるので、N含有量の上限は0.0100%とする。Nは溶接時のブローホール発生の原因になるので、より少ない方が好ましい。Nの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Nの含有量を0.0001%未満にすると、製造コストが大幅に増加するので、0.0001%を下限とする。
Oは、酸化物を形成し、延性及び伸びフランジ性を劣化させるので、含有量を抑える必要がある。Oの含有量が0.0100%を超えると、伸びフランジ性の劣化が顕著となるので、O含有量の上限は0.0100%以下とする。Oの含有量は0.0080%以下であることがより好ましく、0.0060%以下であることがさらに好ましい。Oの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Oの含有量を0.0001%未満とすると、製造コストが大幅に増加するので、0.0001%を下限とする。
Tiは、析出物強化、フェライト結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化により、鋼板の強度上昇に寄与する元素である。Tiの含有量が0.150%を超えると、炭窒化物の析出が多くなって成形性が劣化するので、Tiの含有量は0.150%以下とする。成形性の観点からは、Tiの含有量は0.100%以下であることがより好ましく、0.070%以下であることがさらに好ましい。Tiによる強度上昇効果を十分に得るには、Tiの含有量は0.005%以上とする必要がある。鋼板の高強度化には、Tiの含有量は0.010%以上であることが好ましく、0.015%以上であることがより好ましい。
Nbは、析出物強化、フェライト結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化により、鋼板の強度上昇に寄与する元素である。Nbの含有量が0.150%を超えると、炭窒化物の析出が多くなって成形性が劣化するので、Nbの含有量は0.150%以下とする必要がある。成形性の観点からは、Nbの含有量は0.100%以下であることが好ましく、0.060%以下であることがより好ましい。Nbによる強度上昇効果を十分に得るには、Nbの含有量は0.005%以上である必要がある。鋼板の高強度化には、Nbの含有量は0.010%以上であることが好ましく、0.015%以上であることがより好ましい。
Vは、析出物強化、フェライト結晶粒の成長抑制による細粒強化及び再結晶の抑制を通じた転位強化により、鋼板の強度上昇に寄与する元素である。Vの含有量が0.150%を超えると、炭窒化物の析出が多くなって成形性が劣化するので、含有量は0.150%以下とする。Vによる強度上昇効果を十分に得るには、含有量が0.005%以上である必要がある。
Bは、高温での相変態を抑制し、高強度化に有効な元素であり、C及び/又はMnの一部に代えて添加してもよい。Bの含有量が0.0100%を超えると、熱間での加工性が損なわれ生産性が低下するので、Bの含有量は0.0100%以下とする。生産性の観点からは、Bの含有量は0.0050%以下であることが好ましく、0.0030%以下であることがより好ましい。Bによる高強度化を十分に得るには、Bの含有量を0.0001%以上とする必要がある。鋼板を効果的に高強度化するためには、Bの含有量が0.0003%以上であることが好ましく、0.0005%以上であることがより好ましい。
Moは、高温での相変態を抑制し、高強度化に有効な元素であり、C及び/又はMnの一部に代えて添加してもよい。Moの含有量が1.00%を超えると、熱間での加工性が損なわれて生産性が低下するので、Moの含有量は1.00%以下とする。Moによる高強度化の効果を十分に得るには、その含有量が0.01%以上である必要がある。
Wは、高温での相変態を抑制し、高強度化に有効な元素であり、C及び/又はMnの一部に代えて添加してもよい。Wの含有量が1.00%を超えると、熱間での加工性が損なわれて生産性が低下するので、Wの含有量は1.00%以下とする。Wによる高強度化を十分に得るには、含有量が0.01%以上である必要がある。
Crは、高温での相変態を抑制し、高強度化に有効な元素であり、C及び/又はMnの一部に代えて添加してもよい。Crの含有量が2.00%を超えると、熱間での加工性が損なわれて生産性が低下するので、Crの含有量は2.00%以下とする。Crによる高強度化を十分に得るためには、その含有量が0.01%以上である必要がある。
Niは、高温での相変態を抑制し、高強度化に有効な元素であり、C及び/又はMnの一部に代えて添加してもよい。Niの含有量が2.00%を超えると、溶接性が損なわれるので、Niの含有量は2.00%以下とする。Niによる高強度化を十分に得るためには、その含有量が0.01%以上である必要がある。
Cuは、微細な粒子として鋼中に存在することで強度を高める元素であり、C及び/又はMnの一部に替えて添加することができる。Cuの含有量が2.00%を超えると、溶接性が損なわれるので、その含有量は2.00%以下とする。Cuによる高強度化を十分に得るには、その含有量が0.01%以上である必要がある。
Ca、Ce、Mg、Zr、Hf、REMは、成形性の改善に有効な元素であり、1種又は2種以上を添加することができる。Ca、Ce、Mg、Zr、Hf及びREMの1種又は2種以上の含有量が合計で0.5000%を超えると、かえって延性を損なうおそれがあるので、各元素の含有量の合計は0.5000%以下とする。鋼板の成形性を改善する効果を十分に得るためには、各元素の含有量の合計が0.0001%以上である必要がある。成形性の観点からは、各元素の含有量の合計は、0.0005%以上であることが好ましく、0.0010%以上であることがより好ましい。ここで、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明において、REMやCeはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。また、不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだ場合でも本発明の効果は発揮される。またさらに、金属LaやCeを添加した場合でも、本発明の効果は発揮される。
+Cu/2+Mo/2)+52×Al
Bs(℃)=820-290C/(1-VF)-37Si-90Mn-65Cr
-50Ni+70Al
上式において、VFはフェライトの体積分率であり、C、Mn、Cr、Ni、Al、Siはそれぞれの元素の添加量(質量%)である。
Ms(℃)=541-474C/(1-VF)-15Si-35Mn-17Cr
-17Ni+19Al
上式において、VFはフェライトの体積分率であり、C、Si、Mn、Cr、Ni、Alはそれぞれの元素の添加量(質量%)である。
Claims (10)
- 質量%で、
C :0.075~0.300%、
Si:0.70~2.50%、
Mn:1.30~3.50%、
P :0.001~0.030%、
S :0.0001~0.0100%、
Al:0.005~1.500%、
N :0.0001~0.0100%、
O :0.0001~0.0100%
を含有し、選択元素として、
Ti:0.005~0.150%、
Nb:0.005~0.150%、
B:0.0001~0.0100%、
Cr:0.01~2.00%、
Ni:0.01~2.00%、
Cu:0.01~2.00%、
Mo:0.01~1.00%、
V:0.005~0.150%、
Ca、Ce、Mg、Zr、Hf、REMの1種又は2種以上:合計で0.0001~0.5000%
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなる鋼であり、
鋼板の組織が、体積分率で2~20%の残留オーステナイト相を含み、
前記残留オーステナイト相のマルテンサイト変態点が-60℃以下であることを特徴とする成形性に優れた高強度鋼板。 - 前記残留オーステナイト相の-198℃でマルテンサイト変態する割合が、体積分率で、全残留オーステナイト相の2%以下であることを特徴とする請求項1に記載の成形性に優れた高強度鋼板。
- 前記残留オーステナイト相のマルテンサイト変態点が-198℃以下であることを特徴とする請求項1又は請求項2に記載の成形性に優れた高強度鋼板。
- 鋼板の組織が、さらに、体積分率で、
フェライト相;10~75%、
ベイニティックフェライト相及び/又はベイナイト相:10~50%、
焼戻しマルテンサイト相:10~50%、並びに、
フレッシュマルテンサイト相:10%以下、
を含むことを特徴とする請求項1又は2に記載の成形性に優れた高強度鋼板。 - 請求項1又は2に記載の高強度鋼板の表面に亜鉛めっき層が形成されてなることを特徴とする成形性に優れた高強度亜鉛めっき鋼板。
- 質量%で、
C :0.075~0.300%、
Si:0.70~2.50%、
Mn:1.30~3.50%、
P :0.001~0.030%、
S :0.0001~0.0100%、
Al:0.005~1.500%、
N :0.0001~0.0100%、
O :0.0001~0.0100%
を含有し、選択元素として、
Ti:0.005~0.150%、
Nb:0.005~0.150%、
B:0.0001~0.0100%、
Cr:0.01~2.00%、
Ni:0.01~2.00%、
Cu:0.01~2.00%、
Mo:0.01~1.00%、
V:0.005~0.150%、
Ca、Ce、Mg、Zr、Hf、REMの1種又は2種以上:合計で0.0001~0.5000%
の1種又は2種以上を含有し、残部が鉄及び不可避的不純物からなるスラブを、直接又は一旦冷却した後に1050℃以上に加熱し、Ar3点以上で圧延を完了して鋼板とし、500~750℃の温度で巻き取る熱間圧延工程と、
巻き取った鋼板を、酸洗後に圧下率35~75%の圧下率で冷延する冷延工程と、
前記冷延工程後の鋼板を、最高加熱温度740~1000℃まで加熱した後、該最高加熱温度~700℃までの平均冷却速度を1.0~10.0℃/秒、700~500℃の平均冷却速度を5.0~200℃/秒として冷却し、次いで、350~450℃で30~1000秒滞留させ、その後、室温まで冷却し、かつ、前記最高加熱温度から室温まで冷却する間に、Bs点あるいは500℃未満から500℃以上への再加熱を少なくとも1回以上、Ms点あるいは350℃未満から350℃以上への再加熱を少なくとも1回以上施す焼鈍工程
を備えることを特徴とする成形性に優れた高強度鋼板の製造方法。 - 請求項6に記載の高強度鋼板の製造方法で高強度鋼板を製造した後、亜鉛電気めっきを施すことを特徴とする成形性に優れた高強度亜鉛めっき鋼板の製造方法。
- 請求項6に記載の高強度鋼板の製造方法において、前記焼鈍工程で前記最高加熱温度から室温までの間で冷却する際、前記冷延工程後の鋼板を亜鉛浴に浸漬することにより、溶融亜鉛めっきを施すことを特徴とする成形性に優れた高強度亜鉛めっき鋼板の製造方法。
- 請求項6に記載の高強度鋼板の製造方法において、前記焼鈍工程の後に、溶融亜鉛めっきを施すことを特徴とする成形性に優れた高強度亜鉛めっき鋼板の製造方法。
- 前記溶融亜鉛めっきを施した後に、470~650℃の温度で合金化処理を施すことを特徴とする請求項8又は9に記載の成形性に優れた高強度亜鉛めっき鋼板の製造方法。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014107478/02A RU2557862C1 (ru) | 2011-07-29 | 2012-07-27 | Высокопрочный стальной лист и высокопрочный гальванизированный стальной лист, превосходные по формуемости, и способы их изготовления |
BR112014002198-8A BR112014002198B1 (pt) | 2011-07-29 | 2012-07-27 | Chapa de aço de alta resistência e chapa de aço galvanizada de alta resistência excelentes em capacidade de conformação e métodos de produção das mesmas |
PL12819665T PL2738276T3 (pl) | 2011-07-29 | 2012-07-27 | Blacha stalowa cienka ocynkowana o dużej wytrzymałości i blacha stalowa cienka o dużej wytrzymałości mająca doskonałą formowalność oraz sposób ich wytwarzania |
JP2013502946A JP5252142B1 (ja) | 2011-07-29 | 2012-07-27 | 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法 |
CN201280037789.7A CN103717774B (zh) | 2011-07-29 | 2012-07-27 | 成形性优异的高强度钢板、高强度镀锌钢板及它们的制造方法 |
EP12819665.6A EP2738276B1 (en) | 2011-07-29 | 2012-07-27 | High-strength galvanized steel sheet and high-strength steel sheet having superior moldability, and method for producing each |
MX2014001117A MX357839B (es) | 2011-07-29 | 2012-07-27 | Hoja de acero platinada con zinc de alta resistencia y lámina de acero de alta resistencia que tiene maleabilidad superior y método para producir cada una de ellas. |
US14/235,550 US9896751B2 (en) | 2011-07-29 | 2012-07-27 | High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of same |
ES12819665T ES2733452T3 (es) | 2011-07-29 | 2012-07-27 | Lámina de acero galvanizada de alta resistencia y lámina de acero de alta resistencia con moldeabilidad superior, y método para producirlas |
CA2843179A CA2843179C (en) | 2011-07-29 | 2012-07-27 | High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of same |
KR1020147001802A KR101624057B1 (ko) | 2011-07-29 | 2012-07-27 | 성형성이 우수한 고강도 강판, 고강도 아연 도금 강판 및 그들의 제조 방법 |
ZA2014/01305A ZA201401305B (en) | 2011-07-29 | 2014-02-20 | High-strength steel sheet and high-strength galvanised steel sheet excellent in shapeability and methods of production of same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-167722 | 2011-07-29 | ||
JP2011167722 | 2011-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018722A1 true WO2013018722A1 (ja) | 2013-02-07 |
Family
ID=47629245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069223 WO2013018722A1 (ja) | 2011-07-29 | 2012-07-27 | 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法 |
Country Status (14)
Country | Link |
---|---|
US (1) | US9896751B2 (ja) |
EP (1) | EP2738276B1 (ja) |
JP (1) | JP5252142B1 (ja) |
KR (1) | KR101624057B1 (ja) |
CN (1) | CN103717774B (ja) |
BR (1) | BR112014002198B1 (ja) |
CA (1) | CA2843179C (ja) |
ES (1) | ES2733452T3 (ja) |
MX (1) | MX357839B (ja) |
PL (1) | PL2738276T3 (ja) |
RU (1) | RU2557862C1 (ja) |
TW (1) | TWI494447B (ja) |
WO (1) | WO2013018722A1 (ja) |
ZA (1) | ZA201401305B (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104278194A (zh) * | 2013-07-08 | 2015-01-14 | 鞍钢股份有限公司 | 一种具有高强度高塑性的汽车用冷轧钢板及其生产方法 |
EP2881484A4 (en) * | 2012-08-06 | 2016-04-13 | Nippon Steel & Sumitomo Metal Corp | COLD-ROLLED STEEL PLATE, MANUFACTURING METHOD AND HOT-COATED MOLDING BODY |
JP2016180140A (ja) * | 2015-03-23 | 2016-10-13 | 株式会社神戸製鋼所 | 成形性に優れた高強度鋼板 |
JPWO2021070925A1 (ja) * | 2019-10-09 | 2021-04-15 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120220B (zh) * | 2014-07-29 | 2016-11-23 | 东北大学 | 一种汽车用双相钢的热处理方法 |
MX2017001689A (es) | 2014-08-07 | 2017-04-27 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo de produccion para la misma, y metodo de produccion para lamina de acero galvanizada de alta resistencia. |
MX2017001529A (es) * | 2014-08-07 | 2017-05-11 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo de produccion para la misma, y metodo de produccion para lamina de acero galvanizada de alta resistencia. |
CN106574340B (zh) * | 2014-08-07 | 2018-04-10 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法 |
JP5971434B2 (ja) | 2014-08-28 | 2016-08-17 | Jfeスチール株式会社 | 伸びフランジ性、伸びフランジ性の面内安定性および曲げ性に優れた高強度溶融亜鉛めっき鋼板ならびにその製造方法 |
EP3187608B1 (en) | 2014-08-28 | 2018-12-12 | JFE Steel Corporation | High-strength hot dip galvanized steel sheet and method for manufacturing the same |
DE102015001438A1 (de) | 2015-02-04 | 2016-08-18 | Bernhard Engl | Flexible Wärmebehandlungsanlage für metalisches Band |
CN104611632A (zh) * | 2015-02-10 | 2015-05-13 | 苏州科胜仓储物流设备有限公司 | 一种耐磨抗冲击型牛腿梁用型材及其焊接工艺 |
CN104789890A (zh) * | 2015-03-20 | 2015-07-22 | 苏州科胜仓储物流设备有限公司 | 一种具有锌镍合金涂层的高强度钢板及其热处理工艺 |
CN105177441A (zh) * | 2015-08-31 | 2015-12-23 | 铜陵市大明玛钢有限责任公司 | 用于液晶屏幕框架的冷轧钢板制作工艺 |
WO2017109540A1 (en) | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet |
KR101714930B1 (ko) * | 2015-12-23 | 2017-03-10 | 주식회사 포스코 | 구멍확장성이 우수한 초고강도 강판 및 그 제조방법 |
MX2018008975A (es) * | 2016-01-22 | 2018-09-03 | Jfe Steel Corp | Lamina de acero de alta resistencia y metodo para producir la misma. |
MX2018007364A (es) | 2016-03-25 | 2018-08-15 | Nippon Steel & Sumitomo Metal Corp | Lamina de acero de alta resistencia y lamina de acero galvanizada de alta resistencia. |
EP3436613B1 (en) * | 2016-03-30 | 2020-05-27 | Tata Steel Limited | A hot rolled high strength steel (hrhss) product with tensile strength of 1000 -1200 mpa and total elongation of 16%-17% |
US11993823B2 (en) | 2016-05-10 | 2024-05-28 | United States Steel Corporation | High strength annealed steel products and annealing processes for making the same |
KR101758567B1 (ko) | 2016-06-23 | 2017-07-17 | 주식회사 포스코 | 강도 및 성형성이 우수한 클래드 강판 및 그 제조방법 |
CN106222574B (zh) * | 2016-08-24 | 2017-09-19 | 宁波乾豪金属制品有限公司 | 一种耐腐蚀的弹簧悬架 |
DE102016011047A1 (de) | 2016-09-13 | 2018-03-15 | Sms Group Gmbh | Flexible Wärmebehandlungsanlage für metallisches Band in horizontaler Bauweise |
US11168375B2 (en) | 2016-09-21 | 2021-11-09 | Jfe Steel Corporation | Steel pipe or tube for pressure vessels, method of producing steel pipe or tube for pressure vessels, and composite pressure vessel liner |
WO2018055425A1 (en) | 2016-09-22 | 2018-03-29 | Arcelormittal | High strength and high formability steel sheet and manufacturing method |
WO2018115933A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof |
WO2018115936A1 (en) | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
WO2018115935A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
EP3604582B1 (en) * | 2017-03-31 | 2022-01-26 | Nippon Steel Corporation | Cold-rolled steel sheet and hot-dip galvanized cold-rolled steel sheet |
JP6338038B1 (ja) * | 2017-11-15 | 2018-06-06 | 新日鐵住金株式会社 | 高強度冷延鋼板 |
JP6525114B1 (ja) * | 2017-11-29 | 2019-06-05 | Jfeスチール株式会社 | 高強度亜鉛めっき鋼板およびその製造方法 |
WO2019122961A1 (en) | 2017-12-19 | 2019-06-27 | Arcelormittal | High strength and high formability steel sheet and manufacturing method |
CN109023055B (zh) * | 2018-08-16 | 2020-08-28 | 敬业钢铁有限公司 | 一种高强度高成形性汽车钢板及其生产工艺 |
TWI667356B (zh) * | 2018-12-11 | 2019-08-01 | 日商新日鐵住金股份有限公司 | High-strength steel sheet excellent in moldability and impact resistance, and method for producing high-strength steel sheet excellent in moldability and impact resistance |
CN110306134A (zh) * | 2019-07-06 | 2019-10-08 | 太仓欧克仓储设备有限公司 | 一种冲压类钣金的预处理工艺 |
CN111187985A (zh) * | 2020-02-17 | 2020-05-22 | 本钢板材股份有限公司 | 一种具有高扩孔性能和疲劳寿命的热轧延伸凸缘钢及其制备工艺 |
CN112375973B (zh) * | 2020-10-26 | 2022-12-20 | 佛山科学技术学院 | 一种用于建筑幕墙工程的高强钢结构件及其热处理工艺 |
CN114908287B (zh) * | 2022-04-11 | 2023-04-14 | 武汉科技大学 | 一种低合金轻量化高强汽车用钢及生产方法 |
CN115627424B (zh) * | 2022-11-07 | 2023-08-18 | 鞍钢股份有限公司 | 一种1.5GPa级高塑性冷轧DH钢及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10280090A (ja) | 1997-04-10 | 1998-10-20 | Nippon Steel Corp | 形状が良好で曲げ性に優れた高強度冷延鋼板とその製造方法 |
JP2003183775A (ja) | 2001-10-05 | 2003-07-03 | Jfe Steel Kk | 冷延鋼板製造用母板、高強度高延性冷延鋼板およびそれらの製造方法 |
JP2004263270A (ja) | 2003-03-04 | 2004-09-24 | Jfe Steel Kk | 焼付け硬化性に優れる超高強度冷延鋼板およびその製造方法 |
JP2005120459A (ja) * | 2003-10-20 | 2005-05-12 | Nippon Steel Corp | 形状凍結性と焼付硬化性に優れた冷延鋼板及びその製造方法 |
JP2005513271A (ja) * | 2001-12-27 | 2005-05-12 | ポスコ | 成形性及び溶接性に優れた高強度冷延鋼板とその製造方法 |
JP2007154283A (ja) * | 2005-12-07 | 2007-06-21 | Jfe Steel Kk | 成形性および形状凍結性に優れる高強度鋼板 |
JP2007162078A (ja) * | 2005-12-14 | 2007-06-28 | Nippon Steel Corp | 高強度鋼板及びその製造方法 |
JP2007302918A (ja) | 2006-05-09 | 2007-11-22 | Nippon Steel Corp | 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法 |
JP2008266779A (ja) | 2007-03-23 | 2008-11-06 | Fujifilm Corp | 導電性材料の製造方法及び製造装置 |
JP2010065307A (ja) | 2008-09-12 | 2010-03-25 | Kobe Steel Ltd | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 |
JP2010196115A (ja) * | 2009-02-25 | 2010-09-09 | Jfe Steel Corp | 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法 |
JP2011140695A (ja) * | 2010-01-07 | 2011-07-21 | Kobe Steel Ltd | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6254698B1 (en) * | 1997-12-19 | 2001-07-03 | Exxonmobile Upstream Research Company | Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof |
JP3492176B2 (ja) * | 1997-12-26 | 2004-02-03 | 新日本製鐵株式会社 | 高い動的変形抵抗を有する良加工性高強度鋼板とその製造方法 |
ATE469991T1 (de) * | 2003-04-10 | 2010-06-15 | Nippon Steel Corp | Ein herstellungsverfahren für feuerverzinktes stahlblech mit hoher festigkeit |
JP4235030B2 (ja) * | 2003-05-21 | 2009-03-04 | 新日本製鐵株式会社 | 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板 |
JP4214006B2 (ja) * | 2003-06-19 | 2009-01-28 | 新日本製鐵株式会社 | 成形性に優れた高強度鋼板およびその製造方法 |
RU2277594C1 (ru) * | 2005-03-30 | 2006-06-10 | Открытое акционерное общество "Северсталь" | Способ производства холоднокатаных листов для глубокой вытяжки |
JP5369663B2 (ja) | 2008-01-31 | 2013-12-18 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5644095B2 (ja) | 2009-11-30 | 2014-12-24 | 新日鐵住金株式会社 | 延性及び耐遅れ破壊特性の良好な引張最大強度900MPa以上を有する高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法 |
BR112012013042B1 (pt) | 2009-11-30 | 2022-07-19 | Nippon Steel Corporation | Chapa de aço de alta resistência com resistência máxima à tração de 900 mpa ou mais e métodos de produção da mesma |
ES2617477T3 (es) * | 2010-09-16 | 2017-06-19 | Nippon Steel & Sumitomo Metal Corporation | Lámina de acero laminada en frío de alta resistencia con excelente ductilidad y expansibilidad, y lámina de acero galvanizada de alta resistencia, y método para fabricar las mismas |
-
2012
- 2012-07-27 CN CN201280037789.7A patent/CN103717774B/zh active Active
- 2012-07-27 CA CA2843179A patent/CA2843179C/en not_active Expired - Fee Related
- 2012-07-27 BR BR112014002198-8A patent/BR112014002198B1/pt not_active IP Right Cessation
- 2012-07-27 KR KR1020147001802A patent/KR101624057B1/ko active IP Right Grant
- 2012-07-27 ES ES12819665T patent/ES2733452T3/es active Active
- 2012-07-27 EP EP12819665.6A patent/EP2738276B1/en active Active
- 2012-07-27 RU RU2014107478/02A patent/RU2557862C1/ru not_active IP Right Cessation
- 2012-07-27 WO PCT/JP2012/069223 patent/WO2013018722A1/ja active Application Filing
- 2012-07-27 JP JP2013502946A patent/JP5252142B1/ja active Active
- 2012-07-27 TW TW101127270A patent/TWI494447B/zh not_active IP Right Cessation
- 2012-07-27 US US14/235,550 patent/US9896751B2/en active Active
- 2012-07-27 PL PL12819665T patent/PL2738276T3/pl unknown
- 2012-07-27 MX MX2014001117A patent/MX357839B/es active IP Right Grant
-
2014
- 2014-02-20 ZA ZA2014/01305A patent/ZA201401305B/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10280090A (ja) | 1997-04-10 | 1998-10-20 | Nippon Steel Corp | 形状が良好で曲げ性に優れた高強度冷延鋼板とその製造方法 |
JP2003183775A (ja) | 2001-10-05 | 2003-07-03 | Jfe Steel Kk | 冷延鋼板製造用母板、高強度高延性冷延鋼板およびそれらの製造方法 |
JP2005513271A (ja) * | 2001-12-27 | 2005-05-12 | ポスコ | 成形性及び溶接性に優れた高強度冷延鋼板とその製造方法 |
JP2004263270A (ja) | 2003-03-04 | 2004-09-24 | Jfe Steel Kk | 焼付け硬化性に優れる超高強度冷延鋼板およびその製造方法 |
JP2005120459A (ja) * | 2003-10-20 | 2005-05-12 | Nippon Steel Corp | 形状凍結性と焼付硬化性に優れた冷延鋼板及びその製造方法 |
JP2007154283A (ja) * | 2005-12-07 | 2007-06-21 | Jfe Steel Kk | 成形性および形状凍結性に優れる高強度鋼板 |
JP2007162078A (ja) * | 2005-12-14 | 2007-06-28 | Nippon Steel Corp | 高強度鋼板及びその製造方法 |
JP2007302918A (ja) | 2006-05-09 | 2007-11-22 | Nippon Steel Corp | 穴拡げ性と成形性に優れた高強度鋼板及びその製造方法 |
JP2008266779A (ja) | 2007-03-23 | 2008-11-06 | Fujifilm Corp | 導電性材料の製造方法及び製造装置 |
JP2010065307A (ja) | 2008-09-12 | 2010-03-25 | Kobe Steel Ltd | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 |
JP2010196115A (ja) * | 2009-02-25 | 2010-09-09 | Jfe Steel Corp | 加工性および耐衝撃性に優れた高強度冷延鋼板およびその製造方法 |
JP2011140695A (ja) * | 2010-01-07 | 2011-07-21 | Kobe Steel Ltd | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2881484A4 (en) * | 2012-08-06 | 2016-04-13 | Nippon Steel & Sumitomo Metal Corp | COLD-ROLLED STEEL PLATE, MANUFACTURING METHOD AND HOT-COATED MOLDING BODY |
US10072324B2 (en) | 2012-08-06 | 2018-09-11 | Nippon Steel & Sumitomo Metal Corporation | Cold-rolled steel sheet and method for manufacturing same, and hot-stamp formed body |
CN104278194A (zh) * | 2013-07-08 | 2015-01-14 | 鞍钢股份有限公司 | 一种具有高强度高塑性的汽车用冷轧钢板及其生产方法 |
CN104278194B (zh) * | 2013-07-08 | 2016-12-28 | 鞍钢股份有限公司 | 一种具有高强度高塑性的汽车用冷轧钢板及其生产方法 |
JP2016180140A (ja) * | 2015-03-23 | 2016-10-13 | 株式会社神戸製鋼所 | 成形性に優れた高強度鋼板 |
JPWO2021070925A1 (ja) * | 2019-10-09 | 2021-04-15 | ||
WO2021070925A1 (ja) * | 2019-10-09 | 2021-04-15 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
KR20220033516A (ko) * | 2019-10-09 | 2022-03-16 | 닛폰세이테츠 가부시키가이샤 | 강판 및 그 제조 방법 |
JP7364933B2 (ja) | 2019-10-09 | 2023-10-19 | 日本製鉄株式会社 | 鋼板及びその製造方法 |
KR102705294B1 (ko) | 2019-10-09 | 2024-09-12 | 닛폰세이테츠 가부시키가이샤 | 강판 및 그 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20140026628A (ko) | 2014-03-05 |
PL2738276T3 (pl) | 2019-11-29 |
ZA201401305B (en) | 2015-01-28 |
BR112014002198B1 (pt) | 2019-04-24 |
CA2843179A1 (en) | 2013-02-07 |
ES2733452T3 (es) | 2019-11-29 |
EP2738276B1 (en) | 2019-04-24 |
RU2557862C1 (ru) | 2015-07-27 |
CA2843179C (en) | 2016-10-04 |
MX357839B (es) | 2018-07-26 |
MX2014001117A (es) | 2014-02-27 |
CN103717774A (zh) | 2014-04-09 |
US20140162088A1 (en) | 2014-06-12 |
JPWO2013018722A1 (ja) | 2015-03-05 |
TW201309813A (zh) | 2013-03-01 |
JP5252142B1 (ja) | 2013-07-31 |
EP2738276A4 (en) | 2015-10-21 |
BR112014002198A2 (pt) | 2017-02-21 |
US9896751B2 (en) | 2018-02-20 |
KR101624057B1 (ko) | 2016-05-24 |
EP2738276A1 (en) | 2014-06-04 |
CN103717774B (zh) | 2015-11-25 |
TWI494447B (zh) | 2015-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5252142B1 (ja) | 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法 | |
JP6443592B1 (ja) | 高強度鋼板 | |
KR101570629B1 (ko) | 내충격 특성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법, 및, 고강도 합금화 용융 아연 도금 강판 및 그 제조 방법 | |
JP5352793B2 (ja) | 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5834717B2 (ja) | 高降伏比を有する溶融亜鉛めっき鋼板およびその製造方法 | |
JP4772927B2 (ja) | 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法 | |
US7534312B2 (en) | Steel plate exhibiting excellent workability and method for producing the same | |
JP5780171B2 (ja) | 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法 | |
JP5821260B2 (ja) | 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法 | |
RU2684655C1 (ru) | Сверхпрочная многофазная сталь и способ производства холоднокатаной стальной полосы из нее | |
WO2013118679A1 (ja) | 高強度冷延鋼板及びその製造方法 | |
WO2014020640A1 (ja) | 成形性及び形状凍結性に優れた高強度溶融亜鉛めっき鋼板、並びにその製造方法 | |
WO2013018723A1 (ja) | 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法 | |
JP2010275627A (ja) | 加工性に優れた高強度鋼板および高強度溶融亜鉛めっき鋼板並びにそれらの製造方法 | |
JP7164024B2 (ja) | 高強度鋼板およびその製造方法 | |
JP2008255442A (ja) | 高張力合金化溶融亜鉛めっき鋼板とその製造方法 | |
JP6750771B1 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP7136335B2 (ja) | 高強度鋼板及びその製造方法 | |
WO2013069210A1 (ja) | 高張力熱延めっき鋼板およびその製造方法 | |
JP2004315882A (ja) | 穴拡げ性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法 | |
JP7078202B1 (ja) | 高強度鋼板およびその製造方法 | |
CN114945690A (zh) | 钢板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013502946 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12819665 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147001802 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2843179 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14235550 Country of ref document: US Ref document number: MX/A/2014/001117 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012819665 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014107478 Country of ref document: RU Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014002198 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014002198 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140129 |