Nothing Special   »   [go: up one dir, main page]

WO2013018155A1 - 強誘電体膜およびその製造方法 - Google Patents

強誘電体膜およびその製造方法 Download PDF

Info

Publication number
WO2013018155A1
WO2013018155A1 PCT/JP2011/067437 JP2011067437W WO2013018155A1 WO 2013018155 A1 WO2013018155 A1 WO 2013018155A1 JP 2011067437 W JP2011067437 W JP 2011067437W WO 2013018155 A1 WO2013018155 A1 WO 2013018155A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
ferroelectric
crystalline oxide
material film
forming material
Prior art date
Application number
PCT/JP2011/067437
Other languages
English (en)
French (fr)
Inventor
健 木島
本多 祐二
Original Assignee
株式会社ユーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユーテック filed Critical 株式会社ユーテック
Priority to PCT/JP2011/067437 priority Critical patent/WO2013018155A1/ja
Priority to JP2013526623A priority patent/JP5799294B2/ja
Priority to US14/235,626 priority patent/US9486834B2/en
Publication of WO2013018155A1 publication Critical patent/WO2013018155A1/ja
Priority to US15/288,056 priority patent/US9793464B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension

Definitions

  • the present invention relates to a ferroelectric film and a manufacturing method thereof.
  • PZT Pb (Zr, Ti) O 3
  • a (111) -oriented Pt film is formed on a 4-inch wafer, and a PZT sol-gel solution is spin-coated on the Pt film by a spin coater.
  • the applied PZT sol-gel solution is heated and held on a hot plate and dried to remove moisture, and then heated and held on a hot plate held at a higher temperature to perform temporary baking. This is repeated a plurality of times to produce PZT amorphous.
  • PZT crystallization is performed by subjecting the PZT amorphous material after the pre-baking to an annealing treatment using a pressure lamp annealing apparatus (RTA: “rapidly” thermal annealing).
  • RTA pressure lamp annealing apparatus
  • This crystallized PZT film has a perovskite structure.
  • PZT has a Tc of 300 ° C or higher and has good ferroelectricity and piezoelectricity.
  • Tc 300 ° C or higher
  • An object of one embodiment of the present invention is to manufacture a ferroelectric film made of a lead-free material.
  • (1) to (17) describe a plurality of aspects of the present invention.
  • Comprising A ferroelectric film characterized in that X satisfies the following formula. 0.3 ⁇ X ⁇ 0.7
  • the ferroelectric film according to claim 1, wherein the crystalline oxide is a bismuth layer-structured ferroelectric having a pseudo perovskite structure or a tungsten bronze ferroelectric.
  • a ferroelectric film characterized by the following.
  • a ferroelectric film, wherein the crystalline oxide has a thickness of 2 to 30 nm.
  • the thickness of the crystalline oxide is the thickness when the crystalline oxide is formed only on one of the upper and lower sides of the (K 1-X Na X ) NbO 3 film or BiFeO 3 film. This means that when the crystalline oxide is formed both above and below the (K 1-X Na X ) NbO 3 film or BiFeO 3 film, it means the total thickness of both.
  • the ferroelectric film wherein the (K 1-X Na X ) NbO 3 film or BiFeO 3 film is formed by a sol-gel method.
  • a ferroelectric film comprising the (K 1-X Na X ) NbO 3 film or BiFeO 3 film and the crystalline oxide formed on at least one of the upper and lower layers is laminated.
  • a ferroelectric film comprising the (K 1-X Na X ) NbO 3 film or BiFeO 3 film and the crystalline oxide formed on at least one of the upper and lower layers is laminated.
  • a coating film is formed on the substrate by applying a sol-gel solution containing K, Na and Nb on the substrate by spin coating.
  • a ferroelectric material film is formed on the substrate, Forming an island-like or film-like first crystalline oxide forming material film on the ferroelectric material film;
  • the ferroelectric material film and the first crystalline oxide forming material film are heat-treated in an oxygen atmosphere to crystallize the ferroelectric material film and the first crystalline oxide forming material film.
  • Formed ferroelectric film A method for producing a ferroelectric film, wherein the first crystalline oxide obtained by crystallizing the first crystalline oxide forming material film is preferentially oriented to (001).
  • the bismuth layered structure ferroelectric is Bi 4 Ti 3 O 12 or (Bi 4 ⁇ x La x ) Ti 3 O 12 , wherein x satisfies the following formula. 0 ⁇ x ⁇ 1
  • a second crystalline oxide forming material film preferentially oriented in an island shape or a film shape (001) is formed on the substrate,
  • the coating film is formed on the second crystalline oxide forming material film,
  • the ferroelectric material film, the first crystalline oxide forming material film, and the second crystalline oxide forming material film are heat-treated in an oxygen atmosphere,
  • a method for producing a ferroelectric film, wherein the second crystalline oxide obtained by crystallizing the second crystalline oxide forming material film is preferentially oriented to (001).
  • a sol-gel solution containing K, Na, and Nb is applied onto the first crystalline oxide forming material film by a spin coating method to be applied onto the first crystalline oxide forming material film.
  • Forming a film By prefiring the coating film, a ferroelectric material film is formed on the first crystalline oxide forming material film, Forming a shielding film on the ferroelectric material film; By suppressing the separation of K and Na from the ferroelectric material film by the shielding film while heat-treating the ferroelectric material film and the first crystalline oxide forming material film in an oxygen atmosphere.
  • a ferroelectric material film comprising a plurality of coating films is formed by repeating the formation of the coating film and the preliminary baking a plurality of times. Manufacturing method.
  • the ferroelectric film is a (K 1-X Na X ) NbO 3 film having a perovskite structure, and X satisfies the following formula. 0.3 ⁇ X ⁇ 0.7
  • a ferroelectric film made of a lead-free material can be produced.
  • FIG. 6 is a characteristic diagram showing the results of evaluating a ferroelectric film of Sample 1. It is a figure which shows the typical XRD chart of c-axis orientation PZT.
  • FIG. 1 is a cross-sectional view schematically showing a ferroelectric film according to one embodiment of the present invention.
  • the ferroelectric film according to the present embodiment is a (K 1-X Na X ) NbO 3 film 12 having a perovskite structure, and X preferably satisfies the following formula (1). (1) 0.3 ⁇ X ⁇ 0.7
  • the (K 1-X Na X ) NbO 3 film 12 is used as the ferroelectric film, but a BiFeO 3 film may be used as the ferroelectric film.
  • This BiFeO 3 was also announced in the dielectric properties of multiferroic BiFeO 3 thin film, for example, at the 3rd Osaka University Institute of Industrial Science, Nano Techno Center (Nanotechnology Prediction, Formation and Evaluation, November 1, 2006).
  • it is known to have good ferroelectric hysteresis, and since large ferroelectricity leads to large piezoelectricity, it can be used as a ferroelectric film made of a non-lead material.
  • Crystalline oxides 11 and 13 are formed on at least one of the top and bottom of the (K 1-X Na X ) NbO 3 film 12.
  • the crystalline oxides 11 and 13 are preferentially oriented to (001).
  • the preferential orientation means a case where the strongest peak in the ⁇ -2 ⁇ analysis chart when the X-ray structure analysis is performed is twice or more the next strongest peak. This will be specifically described with reference to FIG. However, the XRD reflection intensity on the vertical axis in FIG. 5 is analog intensity display (cps), and logarithmic display is not used. Next to the strongest (001) of each peak of PZT is (110), but since there is an intensity difference of 2 times or more, (001) is called a preferred orientation.
  • the (K 1-X Na X ) NbO 3 film can be oriented to (001), and as a result, the piezoelectric characteristics can be improved. it can.
  • the crystalline oxides 11 and 13 are preferably bismuth layered structure ferroelectrics or tungsten-bronze ferroelectrics having a pseudo perovskite structure.
  • Bismuth layer structure ferroelectrics are known to have anisotropy in the crystal growth direction due to their unique crystal structure (Paper, Takeshi Kijima et al .: Jpn.J.Appl.Phys.35 (1996). ) 1246). Bismuth layer-structured ferroelectrics are quickly crystallized by preferential orientation (001) and crystallized (eg (001) -oriented (001) orientation on a (111) -oriented Pt film).
  • Bi 4 Ti 3 O 12 that is BIT or (Bi 4 ⁇ x La x ) Ti 3 O 12 that is BLT can be cited as the bismuth layered structure ferroelectric.
  • Bi 3.25 La 0.75) is Ti 3 O 12.
  • X satisfies the following formula. 0 ⁇ x ⁇ 1
  • the tungsten-bronze compound is based on the structure A x BO 3 (x ⁇ 1) in which a part of the A-site ion in the perovskite structure ABO 3 is missing, and is generally expressed by a composition formula in the form of an integral multiple of the whole.
  • FIG. 3 shows a typical tungsten-bronze crystal structure.
  • the oxygen octahedron composed of six oxygen ions centered on the B site ion exhibits ferroelectricity by being slightly rotated or inclined as the electric field changes.
  • a typical lead-free piezoelectric ceramic material having this structure is Ba 2 NaNb 5 O 15 .
  • This ferroelectric film is made of a perovskite ferroelectric represented by (K 1-X Na X ) NbO 3 , and X satisfies the above formula (1).
  • a base film oriented in a predetermined crystal plane is formed on a substrate such as a 6-inch Si wafer.
  • a (111) -oriented Pt film or an Ir film is used as the base film.
  • a crystalline oxide 11 preliminarily oriented at (001) is formed on the base film.
  • This crystalline oxide 11 may be an island-like or film-like crystalline oxide.
  • a coating film is formed on the base film, and this coating film is pre-baked.
  • a crystalline oxide forming material film made of a coating film may be formed on the base film. Note that a crystalline oxide-forming material film composed of a plurality of coating films may be formed by repeating the above-described formation of the coating film and temporary baking a plurality of times.
  • This sol-gel solution contains a raw material solution containing a heteropolyacid containing K, Na, and Nb, polar solvents, and unsaturated fatty acids.
  • the total concentration of K, Na and Nb contained in the sol-gel solution is preferably 10 to 50 mol%.
  • the sol-gel solution is composed of a heteropolyacid ion having a Keggin structure in which the molecular structure is non-centrosymmetric and expressing nonlinearity, and at least one polyatom of the heteropolyacid ion is missing, or A heteropolyacid ion in which some polyatoms of the heteropolyacid ion are substituted with other atoms is included as a part of the precursor structure of the ferroelectric ceramic.
  • heteropolyacid ion is represented by the general formula: [X M 1 1 O 3 9 ] n ⁇ (wherein X is a heteroatom, M is a polyatom, and n is a valence). It may have a structure, and includes the above heteropolyacid ion as a part of the precursor structure of the ferroelectric ceramic.
  • the heteropolyacid ion is included as a part of the precursor structure of the ferroelectric ceramics. It is a waste.
  • heteroatoms are made of the group consisting of B, Si, P, S, Ge, As, Mn, Fe, Co, and polyatoms are Mo, V, W, Ti, Al, Nb, It may be made of a group consisting of Ta, and may contain the heteropolyacid ion as a part of the precursor structure of the ferroelectric ceramic.
  • Polar solvents are methyl ethyl ketone, 1,4-dioxane, 1,2-dimethoxyethane, acetamide, N-methyl-2-pyrrolidone, acetonitrile, dichloromethane, nitromethane, trichloromethane, dimethylformamide, monomethylformamide, or a combination of several It is.
  • the unsaturated fatty acid is a mono-unsaturated fatty acid, a di-unsaturated fatty acid, a tri-unsaturated fatty acid, a tetra-unsaturated fatty acid, a penta-unsaturated fatty acid, or a hexa-unsaturated fatty acid or a combination of a plurality of them.
  • Examples of monounsaturated fatty acids include crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid, and any one or more of these You may use as a combination.
  • diunsaturated fatty acid examples include linoleic acid, eicosadienoic acid, and docosadienoic acid, and may be used as any one or a combination thereof.
  • triunsaturated fatty acid examples include linolenic acid, pinolenic acid, eleostearic acid, mead acid, dihomo- ⁇ -linolenic acid, and eicosatrienoic acid, and may be used as any one or a combination of these. good.
  • tetraunsaturated fatty acid examples include stearidonic acid, arachidonic acid, eicosatetraenoic acid, and adrenic acid, and any or a combination of these may be used.
  • pentaunsaturated fatty acids examples include boseopentaenoic acid, eicosapentaenoic acid, ozbond acid, sardine acid, and tetracosapentaenoic acid, and any or a combination of these may be used.
  • hexaunsaturated fatty acid examples include docosahexaenoic acid and nisic acid, and any one or a combination of these may be used.
  • the sol-gel solution is applied on the crystalline oxide 11 or the crystalline oxide forming material film that has been preferentially oriented to (001) in advance.
  • the result of measuring the contact of the sol-gel solution with the substrate was 20 ° or less.
  • the contact angle with the substrate may be 1 to 40 ° (preferably 1 to 20 °).
  • the sol-gel solution is applied by a spin coating method. Thereby, a coating film is formed on the crystalline oxide 11 or the crystalline oxide forming material film, and this coating film is temporarily fired at a temperature of 25 to 450 ° C. (preferably a temperature of 450 ° C.). Then, a (K 1-X Na X ) NbO 3 material film made of a coating film is formed on the crystalline oxide 11 or the crystalline oxide forming material film. It should be noted that the formation and provisional baking of the coating film are repeated a plurality of times, thereby forming (K 1-X Na X ) NbO 3 consisting of a plurality of coating films on the crystalline oxide 11 or the crystalline oxide forming material film. A material film may be formed.
  • the crystalline oxide 13 or the crystalline oxide forming material film preliminarily oriented to (001) is formed on the (K 1-X Na X ) NbO 3 material film.
  • the crystalline oxide 13 or the crystalline oxide forming material film the same film as the crystalline oxide 11 or the crystalline oxide forming material film can be used.
  • Crystalline oxide forming material film, (K 1-X Na X ) NbO 3 material film, and crystalline oxide forming material film are heat-treated in an oxygen atmosphere at a temperature of 450 to 900 ° C. (preferably 900 ° C.). By doing so, they can be crystallized.
  • the heat treatment conditions at this time are preferably in the pressure range of 0.0993 to 1.986 MPa.
  • the heat treatment conditions at this time are preferably 1-5 min firing at a pressurized oxygen atmosphere of 2-20 atm and a heating rate of 50-150 ° C./sec.
  • (K 1-X Na X) NbO 3 material film at the time of crystallization in a batch (K 1-X Na X) NbO 3 film thickness of the material layer is 300nm or more.
  • the crystalline oxides 11 and 13 obtained by crystallizing the crystalline oxide forming material film in this way are preferentially oriented to (001), and the crystallized (K 1-X Na X ) NbO 3 film. 12, X preferably satisfies the following formula (1). (1) 0.3 ⁇ X ⁇ 0.7
  • the (K 1-X Na X ) NbO 3 film 12 contains almost no bubbles even if it is a thick film having a thickness of 500 nm or more. In other words, a good thick film can be formed by forming the film in this way. The reason is that the organic component disappears almost in the film thickness direction, hardly shrinks in the substrate plane, and is offset to the extent caused by oxidation. Therefore, the substrate is hardly warped.
  • the total thickness of the crystalline oxides 11 and 13 crystallized as described above is 1 to 30 nm, preferably 15 to 25 nm, and more preferably 20 nm.
  • the crystalline oxides 11 and 13 are formed both above and below the ferroelectric film 12, but the crystalline oxide is formed on at least one of the top and bottom of the ferroelectric film 12. It may be formed.
  • the thickness of the one crystalline oxide is 1 to 30 nm, preferably 15 to 25 nm. And more preferably 20 nm.
  • the crystals in the crystalline oxides 11 and 13 serve as nuclei for crystallization of the (K 1-X Na X ) NbO 3 material film, they are not easily crystallized to a perovskite structure (K 1-X Na X ) NbO 3. It becomes possible to rapidly advance the crystallization of the material film. Since the crystalline oxides 11 and 13 thus act as nuclei for crystallization, it is sufficient that the crystalline oxide is formed on at least one of the (K 1-X Na X ) NbO 3 material film.
  • the crystalline oxides 11 and 13 preferably have a higher dielectric constant than the (K 1-X Na X ) NbO 3 film 12 which is a ferroelectric film.
  • the high dielectric constant means that the dielectric constant of the entire crystalline oxides 11 and 13 is higher than the dielectric constant of the entire ferroelectric film 12 and means a so-called real dielectric constant.
  • the (K 1-X Na X ) NbO 3 film 12 that is a ferroelectric film made of a lead-free material can be produced.
  • the (K 1-X Na X ) NbO 3 film can be oriented and crystallized to (001). As a result, the piezoelectric characteristics of the (K 1-X Na X ) NbO 3 film can be improved.
  • (K 1-X Na X ) NbO 3 material film is subjected to the heat treatment for crystallization in a state of being sandwiched between the crystalline oxide 11 and the crystalline oxide 13, (K 1 -X Na X) NbO 3 can suppress the K and Na in the material film comes off, it is possible to improve the quality of which has been crystallized (K 1-X Na X) NbO 3 film 12.
  • the crystalline oxides 11 and 13 may be removed after the (K 1-X Na X ) NbO 3 material film is crystallized.
  • a removing method at this time for example, an etching method is used.
  • a ferroelectric film is formed by laminating the crystalline oxide 11, the (K 1-X Na x ) NbO 3 film 12, and the crystalline oxide 13 in this order.
  • a plurality of ferroelectric films each including the (K 1-X Na X ) NbO 3 film 13 and the crystalline oxide 11 formed on at least one of the upper and lower layers may be stacked.
  • a 10-30 nm Ti film is formed on a 6-inch Si wafer through a silicon oxide film by sputtering. In detail, it formed by RF sputtering method.
  • the Ti film serves as an adhesion layer of platinum and silicon oxide.
  • the Ti film was formed under the conditions of an argon gas pressure of 0.2 Pa and a power output of 0.12 kW for a film formation time of 20 minutes.
  • the substrate temperature was 200 ° C.
  • the Ti film is subjected to heat treatment at a temperature of 650 ° C. for 5 minutes by RTA (Rapid Thermal Thermal).
  • the test was performed at 9.9 atm and 100 ° C./sec in an oxygen atmosphere.
  • a 100 nm first Pt film is formed on the Ti film at a temperature of 550 to 650 ° C. by sputtering.
  • the film was formed in a film formation time of 25 minutes with a power output of argon gas pressure 0.4 Pa and DC power 100W.
  • a second Pt film having a thickness of 100 nm is formed on the first Pt film at room temperature by an evaporation method.
  • the film was formed for 4 minutes with a power output of 3.3 ⁇ 10 ⁇ 3 Torr and 10 kV.
  • a Bi 4 Ti 3 O 12 or (Bi 3.25 La 0.75 ) Ti 3 O 12 material film for forming a crystalline oxide preferentially oriented to (001) is formed on the Si wafer. Film.
  • the film formation conditions at this time are as follows.
  • a hot plate at 200 ° C. (Ceramic hot plate AHS-300 manufactured by ASONE Corporation) After being left in the air for 0.5 min, it was left in the air for 1 min on a 450 ° C. hot plate (AHS-300), and then cooled to room temperature. In this way, a material film of Bi 4 Ti 3 O 12 or (Bi 3.25 La 0.75 ) Ti 3 O 12 having a thickness of 20 nm was formed on the Si wafer.
  • the sol-gel solution contains a raw material solution containing a heteropolyacid containing K, Na, and Nb, polar solvents, and unsaturated fatty acids.
  • the raw material solution for forming a (K 1-X Na X ) NbO 3 film comprises a mixture with a heteropolyacid, and a (X 1 M m O n ) x- type polyacid in which a heteroatom is inserted into a metal oxyacid skeleton It is.
  • Polar solvents are methyl ethyl ketone, 1,4-dioxane, 1,2-dimethoxyethane, acetamide, N-methyl-2-pyrrolidone, acetonitrile, dichloromethane, nitromethane, trichloromethane, dimethylformamide, monomethylformamide, or a combination of several It is.
  • Unsaturated fatty acids include monounsaturated fatty acids such as crotonic acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, and nervonic acid.
  • Linoleic acid, eicosadienoic acid, docosadienoic acid, and triunsaturated fatty acids include linolenic acid, pinolenic acid, eleostearic acid, mead acid, dihomo- ⁇ -linolenic acid, eicosatrienoic acid, tetra
  • unsaturated fatty acid cocoons include stearidonic acid, arachidonic acid, eicosatetraenoic acid, and adrenic acid.
  • pentaunsaturated fatty acids include cocoon, boseopentaenoic acid, eicosapentaenoic acid, ozbonded acid, succinic acid, and tetracosapentaenoic acid.
  • Docosahexa Examples include acid and nisic acid.
  • the Bi 4 Ti 3 O 12 or (Bi 3.25 La 0.75) Ti 3 O spin coating sol-gel solution onto 12 material film the Bi 4 Ti 3 O 12 or ( Bi 3.25 La 0.75 )
  • a first coating film is formed on the Ti 3 O 12 material film. Specifically, 500 ⁇ L of the sol-gel solution was applied, and it was raised from 0 to 500 rpm in 3 seconds, held at 500 rpm for 3 seconds, and then rotated at 2000 rpm for 60 seconds and then stopped.
  • the first coating film is heated at a temperature of 200 ° C. for 1 minute by a hot plate, and then pre-baked at a temperature of 450 ° C. for 1 minute.
  • a first ferroelectric material amorphous film having a thickness of 125 nm is formed on the Bi 4 Ti 3 O 12 or (Bi 3.25 La 0.75 ) Ti 3 O 12 material film.
  • a second-layer coating film is formed on the first-layer ferroelectric material film by the same method as the first-layer coating film.
  • the second coating film is heated and pre-baked in the same manner as the first coating film.
  • a second-layer ferroelectric material film having a thickness of 125 nm is formed on the first-layer ferroelectric material film.
  • a third-layer coating film is formed on the second-layer ferroelectric material film by the same method as the second-layer coating film.
  • the third-layer coating film is heated and temporarily fired in the same manner as the first-layer coating film.
  • a third ferroelectric material film having a thickness of 125 nm is formed on the second ferroelectric material film.
  • a 12-layer ferroelectric material film is formed. In this way, a ferroelectric material film having a thickness of 1.5 ⁇ m consisting of 12 layers can be formed.
  • a Bi 4 Ti 3 O 12 or (Bi 3.25 La 0.75 ) Ti 3 O 12 material for forming a crystalline oxide preferentially oriented in (001) on this ferroelectric material film A film is formed.
  • the film formation conditions at this time are the same as those of the Bi 4 Ti 3 O 12 or (Bi 3.25 La 0.75 ) Ti 3 O 12 material film.
  • the ferroelectric material film, Bi 4 Ti 3 O 12 or (Bi 3.25 La 0.75 ) Ti 3 O 12 material film is subjected to heat treatment by pressure RTA to crystallize these films.
  • the heat treatment conditions at this time were as follows: in an oxygen atmosphere pressurized at an oxygen partial pressure of 9.9 atm, the temperature was raised to 900 ° C. instantaneously at a rate of temperature increase of 100 ° C./sec. I went there.
  • a 1.5 ⁇ m ferroelectric film is formed.
  • a thicker ferroelectric film may be formed, or a thin ferroelectric film may be formed. May be.
  • FIG. 4 is a characteristic diagram showing the results of evaluating the ferroelectric film of Sample 1. Note that the horizontal axis of FIG. 4 indicates the applied voltage (Volts), and the vertical axis of FIG. 4 indicates the displacement (%). FIG. 4 shows the results of evaluation by driving the ferroelectric film with a bipolar pulse of ⁇ 10 V at a frequency of 700 Hz. As shown in FIG. 4, it was confirmed that the ferroelectric film of Sample 1 has excellent piezoelectric characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

 非鉛の材料からなる強誘電体膜を作製することを課題とする。本発明の一態様による強誘電体膜は、ペロブスカイト構造からなる(K1-XNa)NbO膜またはBiFeO膜と、前記(K1-XNa)NbO膜またはBiFeO膜の上及び下の少なくとも一方に形成された(001)に優先配向した結晶性酸化物と、を具備し、Xが下記式を満たす。 0.3≦X≦0.7

Description

強誘電体膜およびその製造方法
 本発明は、強誘電体膜およびその製造方法に関する。
 従来のPb(Zr,Ti)O3(以下、「PZT」という。)膜の製造方法について説明する。
 4インチウエハ上に例えば(111)に配向したPt膜を形成し、このPt膜上にスピンコータによってPZTゾルゲル溶液を回転塗布する。次に、この塗布されたPZTゾルゲル溶液をホットプレート上で加熱保持して乾燥させ、水分を除去した後、さらに高温に保持したホットプレート上で加熱保持して仮焼成を行う。これを複数回繰り返しPZTアモルファスを生成する。
 次いで、仮焼成を行った後のPZTアモルファスに加圧式ランプアニール装置(RTA: rapidly thermal anneal)を用いてアニール処理を行ってPZT結晶化を行う。この結晶化されたPZT膜はペロブスカイト構造からなる。(例えば特許文献1参照)
 一方、PZTはTcが300℃以上に存在し、良好な強誘電性と圧電性を有するが、産業界全体が鉛フリーを目指す中において、鉛フリー化の達成が課題である。
WO2006/087777
 上述したように産業界において非鉛の材料からなる強誘電体膜の作製が求められている。
 本発明の一態様は、非鉛の材料からなる強誘電体膜を作製することを課題とする。
 下記の(1)~(17)は、本発明の複数の態様について説明するものである。
(1)ペロブスカイト構造からなる(K1-XNa)NbO膜またはBiFeO膜と、
 前記(K1-XNa)NbO膜またはBiFeO膜の上及び下の少なくとも一方に形成された(001)に優先配向した結晶性酸化物と、
を具備し、
 Xが下記式を満たすことを特徴とする強誘電体膜。
 0.3≦X≦0.7
(2)上記(1)において、
 前記結晶性酸化物は、疑ペロブスカイト構造を有するビスマス層状構造強誘電体またはタングステン・ブロンズ型強誘電体であることを特徴とする強誘電体膜。
(3)上記(1)または(2)において、
 前記ビスマス層状構造強誘電体は、(Bi2+(Am-13m+12-(m=1~5)またはBim-13m+3(m=1~5)であることを特徴とする強誘電体膜。
(4)上記(2)または(3)において、
 前記ビスマス層状構造強誘電体は、BiTi12または(Bi4-xLa)Ti12であり、xは下記式を満たすことを特徴とする強誘電体膜。
 0<x<1
(5)上記(1)乃至(4)のいずれか一項において、
 前記結晶性酸化物は、島状又は膜状に形成されていることを特徴とする強誘電体膜。
(6)上記(1)乃至(5)のいずれか一項において、
 前記結晶性酸化物の厚さは2~30nmであることを特徴とする強誘電体膜。
 ここでいう結晶性酸化物の厚さは、結晶性酸化物が(K1-XNa)NbO膜またはBiFeO膜の上及び下の一方のみに形成されている場合はその厚さを意味し、結晶性酸化物が(K1-XNa)NbO膜またはBiFeO膜の上及び下の両方に形成されている場合はその両方の合計厚さを意味する。
(7)上記(1)乃至(6)のいずれか一項において、
 前記(K1-XNa)NbO膜またはBiFeO膜は、ゾルゲル法により形成されていることを特徴とする強誘電体膜。
(8)上記(1)乃至(7)のいずれか一項において、
 前記(K1-XNa)NbO膜またはBiFeO膜と、その上及び下の少なくとも一方に形成された前記結晶性酸化物とを具備する強誘電体膜が積層されていることを特徴とする強誘電体膜。
(9)基板上にK、Na及びNbを含有するゾルゲル溶液をスピンコート法により塗布することにより、前記基板上に塗布膜を形成し、
 前記塗布膜を仮焼成することにより、前記基板上に強誘電体材料膜を形成し、
 前記強誘電体材料膜上に島状又は膜状の第1の結晶性酸化物形成用材料膜を形成し、
 前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を酸素雰囲気で熱処理することにより、前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を結晶化した強誘電体膜を形成し、
 前記第1の結晶性酸化物形成用材料膜を結晶化した第1の結晶性酸化物は(001)に優先配向していることを特徴とする強誘電体膜の製造方法。
(10)上記(9)において、
 前記第1の結晶性酸化物は、疑ペロブスカイト構造を有するビスマス層状構造強誘電体またはタングステン・ブロンズ型強誘電体であることを特徴とする強誘電体膜の製造方法。
(11)上記(10)において、
 前記ビスマス層状構造強誘電体は、BiTi12または(Bi4-xLa)Ti12であり、xは下記式を満たすことを特徴とする強誘電体膜の製造方法。
 0<x<1
(12)上記(9)乃至(11)のいずれか一項において、
 前記基板上に塗布膜を形成する前に、前記基板上に島状又は膜状の(001)に優先配向した第2の結晶性酸化物形成用材料膜を形成しておき、
 前記塗布膜は、前記第2の結晶性酸化物形成用材料膜上に形成され、
 前記強誘電体材料膜、前記第1の結晶性酸化物形成用材料膜および前記第2の結晶性酸化物形成用材料膜が酸素雰囲気で熱処理され、
 前記第2の結晶性酸化物形成用材料膜を結晶化した第2の結晶性酸化物は(001)に優先配向していることを特徴とする強誘電体膜の製造方法。
(13)基板上に、島状又は膜状の第1の結晶性酸化物形成用材料膜を形成し、
 前記第1の結晶性酸化物形成用材料膜上に、K、Na及びNbを含有するゾルゲル溶液をスピンコート法により塗布することにより、前記第1の結晶性酸化物形成用材料膜上に塗布膜を形成し、
 前記塗布膜を仮焼成することにより、前記第1の結晶性酸化物形成用材料膜上に強誘電体材料膜を形成し、
 前記強誘電体材料膜上に遮蔽膜を形成し、
 前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を酸素雰囲気で熱処理しながら前記遮蔽膜によってK及びNaが前記強誘電体材料膜中から離脱するのを抑制することにより、前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を結晶化した強誘電体膜を形成し、
 前記第1の結晶性酸化物形成用材料膜を結晶化した第1の結晶性酸化物は(001)に優先配向していることを特徴とする強誘電体膜の製造方法。
(14)上記(9)乃至(13)のいずれか一項において、
 前記ゾルゲル溶液に含有する前記K、Na及びNbの合計濃度は、10~50mol%であることを特徴とする強誘電体膜の製造方法。
(15)上記(9)乃至(14)のいずれか一項において、
 前記強誘電体材料膜を形成する際、前記塗布膜の形成及び前記仮焼成を複数回繰り返すことにより、複数の塗布膜からなる強誘電体材料膜を形成することを特徴とする強誘電体膜の製造方法。
(16)上記(9)乃至(15)のいずれか一項において、
 前記熱処理は、0.0993~1.986MPaの圧力範囲で行うことを特徴とする強誘電体膜の製造方法。
(17)上記(9)乃至(16)のいずれか一項において、
 前記強誘電体膜は、ペロブスカイト構造からなる(K1-XNa)NbO膜であり、Xが下記式を満たすことを特徴とする強誘電体膜の製造方法。
 0.3≦X≦0.7
 本発明の一態様によれば、非鉛の材料からなる強誘電体膜を作製することができる。
本発明の一態様に係る強誘電体膜を模式的に示す断面図である。 ビスマス層状構造強誘電体であるBIT(BLT)の結晶構造を示す図である。 タングステン・ブロンズ型結晶構造を模式的に示す図である。 サンプル1の強誘電体膜の評価を行った結果を示す特性図である。 c軸配向PZTの代表的XRDチャートを示す図である。
 以下では、本発明の実施形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 図1は、本発明の一態様に係る強誘電体膜を模式的に示す断面図である。
 本実施形態による強誘電体膜は、ペロブスカイト構造からなる(K1-XNa)NbO膜12であり、Xは下記式(1)を満たすことが好ましい。
 (1)0.3≦X≦0.7
 なお、本実施形態では、強誘電体膜として(K1-XNa)NbO膜12を用いているが、強誘電体膜としてBiFeO膜を用いても良い。このBiFeOは、例えば第3回大阪大学産業科学研究所ナノテクノセンター研究会(ナノテクノロジによる予測、形成、評価 平成18年11月1日)マルチフェロイックBiFeO薄膜の誘電特性においても発表されているように、良好な強誘電ヒステリシスを有することが知られており、大きな強誘電性は大きな圧電性に繋がることから非鉛の材料からなる強誘電体膜として用いることができる。
 (K1-XNa)NbO膜12の上及び下の少なくとも一方には結晶性酸化物11,13が形成されている。
 結晶性酸化物11,13は、(001)に優先配向したものである。優先配向とは、X線構造解析を行った際のΘ-2Θ解析チャートの各ピークの最も強いものが次に強いものの2倍以上である場合をいう。例えば図5を用いて具体的に説明する。ただし、図5の縦軸のXRD反射強度はアナログ強度表示(cps)であり、対数表示を用いていない。PZTの各ピークの最も強い(001)の次は(110)であるが、2倍以上の強度差があるので、(001)を優先配向と呼ぶ。
 結晶性酸化物11,13を(001)に優先配向させることにより、(K1-XNa)NbO膜を(001)に配向させることができ、その結果、圧電特性を向上させることができる。
 結晶性酸化物11,13は、疑ペロブスカイト構造を有するビスマス層状構造強誘電体またはタングステン・ブロンズ型強誘電体であることが好ましい。
 ビスマス層状構造強誘電体は、その特異な結晶構造より、結晶成長方向に異方性を有することが知られている(論文、Takeshi Kijima et al.:Jpn.J.Appl.Phys.35(1996)1246)。ビスマス層状構造強誘電体は、素早く(001)に優先配向して結晶化される特性(例えば(111)配向したPt膜の上でも勝手にc軸配向である(001)配向して結晶化される特性)を有しており、一般式(Bi2+(Am-13m+12-(m=1~5)またはBim-13m+3(m=1~5)で表される結晶構造であり、(Bi2+層の間に複数の疑ペロブスカイト構造が挟まれた構造をしている。ここでmは、単位格子における疑ペロブスカイト層中の酸素八面体の数を示している。この強誘電体については、タングステン・ブロンズ型強誘電体と同様にBサイトイオンを中心とした酸素八面体がわずかに回転や傾斜することによって強誘電性を示すと考えられ、タングステン・ブロンズ構造と同様に圧電異方性が大きい。
 ビスマス層状構造強誘電体は、図2に示すように、例えばBITであるBiTi12またはBLTである(Bi4-xLa)Ti12が挙げられ、具体的には(Bi3.25La0.75)Ti12である。なお、xは下記式を満たす。
 0<x<1
 タングステン・ブロンズ型強誘電体の結晶構造は、タングステン酸ナトリウム(NaWO),x=0.0~1.0の研究を通じて見出された結晶構造であり、タングステン酸ナトリウムはx=1.0組成で黄金色を呈することから、一般にタングステン・ブロンズ型結晶構造と呼ばれている。タングステン・ブロンズ化合物はペロブスカイト構造ABOにおけるAサイトイオンの一部が欠損した構造ABO(x<1)を基本としており、一般に全体を整数倍した形の組成式で表現される。図3に、典型的なタングステン・ブロンズ型結晶構造を示す。本構造の強誘電体については、Bサイトイオンを中心とした6個の酸素イオンから構成される酸素八面体が電界の変化にともない、わずかに回転や傾斜することによって強誘電性を発現する。この構造の代表的な無鉛圧電セラミックス材料としては、BaNaNb15がある。
 次に、本実施形態による強誘電体膜の製造方法について図1を参照しつつ詳細に説明する。この強誘電体膜は、(K1-XNa)NbOで表わされるペロブスカイト構造強誘電体からなり、Xは上記式(1)を満たす。
(基板)
 例えば6インチSiウエハのような基板上に所定の結晶面に配向した下地膜を形成する。この下地膜には、例えば(111)配向させたPt膜またはIr膜が用いられる。
 次に、下地膜上に(001)にあらかじめ優先配向した結晶性酸化物11を形成する。この結晶性酸化物11は、島状又は膜状の結晶性酸化物であってもよい。
 または、(001)に優先配向した結晶性酸化物を形成するための公知のゾルゲル溶液をスピンコート法により塗布することにより下地膜上に塗布膜を形成し、この塗布膜を仮焼成することにより、下地膜上に塗布膜からなる結晶性酸化物形成用材料膜を成膜したものでもよい。なお、上記の塗布膜の形成及び仮焼成を複数回繰り返すことにより、複数の塗布膜からなる結晶性酸化物形成用材料膜を成膜してもよい。
 次に、(K1-XNa)NbO膜12を形成するためのゾルゲル溶液を用意する。このゾルゲル溶液は、K、Na及びNbを含むヘテロポリ酸を含む原料溶液と、極性溶媒類と不飽和脂肪酸類を含有する。ゾルゲル溶液に含有するK、Na及びNbの合計濃度は、10~50mol%であるとよい。
 前記ゾルゲル溶液は、分子構造が非中心対称化され、非線形を発現しているケギン型構造を有するヘテロポリ酸イオンを構成要素とし、前記ヘテロポリ酸イオンのポリ原子が少なくとも1つ欠損しているか、または、ヘテロポリ酸イオンの一部のポリ原子が他の原子で置換されているヘテロポリ酸イオンを強誘電体セラミックスの前駆体構造の一部として含むものである。
 前記ヘテロポリ酸イオンが、次の一般式: [ X M  M ′ 1 2 - y O 4 0 ] n - ( 式中、Xはヘテロ原子、M はポリ原子、M ′ はM とは異なるポリ原子、n は価数、y = 1 ~ 1 1 である。) で表されるケギン型構造を有するものであり、上記のヘテロポリ酸イオンを強誘電体セラミックスの前駆体構造の一部として含むものである。
 また、前記ヘテロポリ酸イオンが、一般式: [ X M 1 1 O 3 9 ] n - ( 式中、X はヘテロ原子、M はポリ原子、n は価数である。) で表されるケギン型構造を有するものであっても良く、上記のヘテロポリ酸イオンを強誘電体セラミックスの前駆体構造の一部として含むものである。
 また、前記ヘテロポリ酸イオンが、次の一般式: [ X M  M ′ 1 1 - z O 3 9 ] n - ( 式中、Xはヘテロ原子、M はポリ原子、M ′ はM とは異なるポリ原子、n は価数、z = 1 ~ 1 0 である。) で表されるケギン型構造を有するものであり、上記のヘテロポリ酸イオンを強誘電体セラミックスの前駆体構造の一部として含むものである。
 前記ヘテロポリ酸イオンの内、ヘテロ原子が、B、Si、P、S、Ge、As、Mn、Fe、Coからなる群より成り、ポリ原子が、Mo、V、W、Ti、Al、Nb、Taからなる群より成ることも可能であり、上記のヘテロポリ酸イオンを強誘電体セラミックスの前駆体構造の一部として含むものであっても良い。
 極性溶媒類は、メチルエチルケトン 、1,4-ジオキサン 、1,2-ジメトキシエタン アセトアミド 、N-メチル-2-ピロリドン、アセトニトリル 、ジクロロメタン 、ニトロメタン 、トリクロロメタン 、ジメチルホルムアミド 、モノメチルホルムアミド の何れかまたは複数の組み合わせである。
 不飽和脂肪酸は、モノ不飽和脂肪酸、ジ不飽和脂肪酸、トリ不飽和脂肪酸、テトラ不飽和脂肪酸、ペンタ不飽和脂肪酸およびヘキサ不飽和脂肪酸のいずれかまたは複数の組み合わせである。
 モノ不飽和脂肪酸としては、例えば、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸が挙げられ、これらのいずれかまたは複数の組み合わせとして用いても良い。
 ジ不飽和脂肪酸としては、例えば、リノール酸、エイコサジエン酸、ドコサジエン酸が挙げられ、これらのいずれかまたは複数の組み合わせとして用いても良い。
 トリ不飽和脂肪酸としては、例えば、リノレン酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸が挙げられ、これらのいずれかまたは複数の組み合わせとして用いても良い。
 テトラ不飽和脂肪酸としては、例えば、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸が挙げられ、これらのいずれかまたは複数の組み合わせとして用いても良い。
 ペンタ不飽和脂肪酸としては、例えば、ボセオペンタエン酸、エイコサペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸が挙げられ、これらのいずれかまたは複数の組み合わせとして用いても良い。
 ヘキサ不飽和脂肪酸としては、例えば、ドコサヘキサエン酸、ニシン酸が挙げられ、これらのいずれかまたは複数の組み合わせとして用いても良い。
 次に、あらかじめ(001)に優先配向した結晶性酸化物11または結晶性酸化物形成用材料膜の上に上記のゾルゲル溶液を塗布する。このゾルゲル溶液の基板との接触を測定した結果は20°以下であった。なお、基板との接触角は1~40°(好ましくは1~20°)であれば良い。
 ゾルゲル溶液の塗布は、スピンコート法により行う。これにより、結晶性酸化物11または結晶性酸化物形成用材料膜の上に塗布膜を形成し、この塗布膜を25~450℃の温度(好ましくは450℃の温度)で仮焼成することにより、結晶性酸化物11または結晶性酸化物形成用材料膜の上に塗布膜からなる(K1-XNa)NbO材料膜を成膜する。なお、この塗布膜の形成及び仮焼成を複数回繰り返すことにより、結晶性酸化物11または結晶性酸化物形成用材料膜の上に複数の塗布膜からなる(K1-XNa)NbO材料膜を成膜してもよい。
 次に、(K1-XNa)NbO材料膜上にあらかじめ(001)に優先配向した結晶性酸化物13または結晶性酸化物形成用材料膜を成膜する。この結晶性酸化物13または結晶性酸化物形成用材料膜は、上記の結晶性酸化物11または結晶性酸化物形成用材料膜と同様のものを用いることができる。
(結晶化方法)
 結晶性酸化物形成用材料膜、(K1-XNa)NbO材料膜及び結晶性酸化物形成用材料膜を450~900℃の温度(好ましくは900℃の温度)の酸素雰囲気で熱処理することにより、それらを結晶化することができる。この際の熱処理条件は、0.0993~1.986MPaの圧力範囲で行うとよい。また、この際の熱処理条件は、加圧酸素雰囲気2~20atm、50~150℃/secの昇温速度で、1~5min焼成するとよい。また、(K1-XNa)NbO材料膜を一括で結晶化する際の(K1-XNa)NbO材料膜の膜厚は300nm以上であることが好ましい。
 このようにして結晶性酸化物形成用材料膜を結晶化した結晶性酸化物11,13は(001)に優先配向しており、また結晶化された(K1-XNa)NbO膜12は、Xが下記式(1)を満たすことが好ましい。
 (1)0.3≦X≦0.7
 この(K1-XNa)NbO膜12は、膜厚500nm以上の厚い膜であっても気泡をほとんど含まない。言い換えると、このようにして成膜することにより、良好な厚い膜を形成することができる。その理由は、殆ど膜厚方向に有機成分が消失するような構造からなっており、基板面内では殆ど収縮せず、酸化による膨張と相殺される程度である。したがって殆ど基板に反りはないのである。
 なお、上記の(K1-XNa)NbO材料膜の成膜及び結晶化を繰り返すことにより、膜厚2μm以上の(K1-XNa)NbO膜12を形成することも可能である。
 また上記のようにして結晶化された結晶性酸化物11,13の合計厚さは、1~30nmであり、好ましくは15~25nmであり、より好ましくは20nmである。
 なお、図1では、強誘電体膜12の上及び下の両方に結晶性酸化物11,13を形成しているが、強誘電体膜12の上及び下の少なくとも一方に結晶性酸化物を形成してもよい。このように結晶性酸化物が強誘電体膜の上及び下の一方のみに形成されている場合は、その一方の結晶性酸化物の厚さが、1~30nmであり、好ましくは15~25nmであり、より好ましくは20nmである。
 結晶性酸化物11,13における結晶が(K1-XNa)NbO材料膜を結晶化する際の核となるため、ペロブスカイト構造に結晶化されにくい(K1-XNa)NbO材料膜の結晶化を迅速に進めることが可能となる。このように結晶性酸化物11,13が結晶化の核として作用するため、(K1-XNa)NbO材料膜の少なくとも一方に結晶性酸化物が形成されていればよい。
 (K1-XNa)NbO材料膜の下にのみ結晶性酸化物11を形成する場合は、(K1-XNa)NbO材料膜の上には遮蔽膜を形成しておくとよい。この遮蔽膜は、(K1-XNa)NbO材料膜を酸素雰囲気で熱処理して結晶化する際にK及びNaが(K1-XNa)NbO材料膜中から離脱するのを抑制するために機能するものであれば、種々のものを用いることができる。
 また、結晶性酸化物11,13は、強誘電体膜である(K1-XNa)NbO膜12に比べて誘電率が高いことが好ましい。ここでいう誘電率が高いこととは、結晶性酸化物11,13全体の誘電率が強誘電体膜12全体の誘電率より高いことを意味し、いわゆる実質誘電率を意味する。これにより、結晶性酸化物11,13及び(K1-XNa)NbO膜12に直列に電圧を印加した際に、誘電率が低い(K1-XNa)NbO膜12に電界が加えられる。
 本実施形態によれば、非鉛の材料からなる強誘電体膜である(K1-XNa)NbO膜12を作製することができる。
 また、本実施形態では、(001)に優先配向した結晶性酸化物11,13を用いることにより、(K1-XNa)NbO膜を(001)に配向して結晶化させることができ、その結果、(K1-XNa)NbO膜の圧電特性を向上させることができる。
 また、本実施形態によれば、(K1-XNa)NbO材料膜を、結晶性酸化物11と結晶性酸化物13によって挟んだ状態で結晶化の熱処理を行うため、(K1-XNa)NbO材料膜中のKとNaが抜けることを抑制でき、結晶化された(K1-XNa)NbO膜12の膜質を向上させることができる。
 また、(K1-XNa)NbO材料膜に結晶化の熱処理を行う際に加圧酸素雰囲気とすることにより、(K1-XNa)NbO材料膜中のKとNaが抜けることを抑制でき、結晶化された(K1-XNa)NbO膜12の膜質を向上させることができる。
 また、結晶性酸化物11,13は、(K1-XNa)NbO材料膜を結晶化した後に除去してもよい。この際の除去方法は、例えばエッチング法を用いる。
 また、本実施形態では、図1に示すように結晶性酸化物11、(K1-XNa)NbO膜12、結晶性酸化物13の順に積層した強誘電体膜を形成しているが、(K1-XNa)NbO膜13と、その上及び下の少なくとも一方に形成された結晶性酸化物11とを具備する強誘電体膜を複数積層させてもよい。
 6インチSiウエハ上に酸化シリコン膜を介して10~30nmのTi膜をスパッタ法により成膜する。詳細には、RFスパッタリング方法により、形成した。Ti膜は白金と酸化シリコンの密着層の役割をしている。Ti膜の成膜条件はアルゴンガス圧0.2Pa、0.12kWの電源出力で20分の成膜時間で形成した。基板温度は200℃で行った。
 次に、RTA(Rapid Thermal Anneal)によりTi膜に650℃の温度で5分間の熱処理を施す。酸素雰囲気で9.9atm、100℃/secで行った。
 次に、Ti膜上に100nmの第1のPt膜をスパッタ法により550~650℃の温度で成膜する。アルゴンガス圧0.4Pa、DCパワー100Wの電源出力で25分の成膜時間で形成した。
 次に、第1のPt膜上に100nmの第2のPt膜を蒸着法により常温で成膜する。
3.3×10-3Torr、10kVの電源出力で4分の成膜時間で形成した。
 次に、RTAによりSiウエハに650~750℃の温度で1~5分間の熱処理を施す。このようにして表面に(111)配向させたPt膜を形成した6インチSiウエハを用意する。
 次に、このSiウエハ上に(001)に優先配向した結晶性酸化物を形成するためのBiTi12または(Bi3.25La0.75)Ti12の材料膜を成膜する。この際の成膜条件は下記のとおりである。
 BiTi12または(Bi3.25La0.75)Ti12の材料膜形成用ゾルゲル溶液としては、豊島製作所製、nブタノールを溶媒とするBi10%過剰のBi:La:Ti=3.65:0.75:3の比率で金属元素を混在した8重量%濃度のゾルゲル溶液を用いた。本溶液を用いて、BiTi12または(Bi3.25La0.75)Ti12の材料膜のスピンコート形成を行った。スピンコータはミカサ株式会社製MS-A200を用いて行った。先ず300rpmで5秒、2000rpmで30~60秒回転させた後、徐々に3000rpmまで回転を上昇させて10秒回転させた後、200℃のホットプレート(アズワン株式会社製セラミックホットプレートAHS-300)上に0.5min、大気中で放置した後、450℃のホットプレート(同AHS-300)上で1min、同じく大気中で放置した後、室温まで冷却した。このようにして、厚さ20nmのBiTi12または(Bi3.25La0.75)Ti12の材料膜をSiウエハ上に形成した。
 次に、上記のBiTi12または(Bi3.25La0.75)Ti12の材料膜との接触角が40°以下、好ましくは20°以下であるゾルゲル溶液を用意する。詳細には、ゾルゲル溶液は、K、Na及びNbを含むヘテロポリ酸を含む原料溶液と、極性溶媒類と不飽和脂肪酸類を含有する。
 (K1-XNa)NbO膜形成用原料溶液は、ヘテロポリ酸との混合からなり、ヘテロ原子が金属酸素酸骨格に挿入された(XlMmOn)x-型のポリ酸である。ポリ原子:M=Mo,V,W,Ti,Al,Nb,Taからなり、ヘテロ原子はHおよびC以外の元素を意味し、好ましくは、M=B,Si,P,S,Ge,As,Fe,Co,Biからなる酸化物膜形成用ゾルゲル溶液である。
 極性溶媒類は、メチルエチルケトン 、1,4-ジオキサン 、1,2-ジメトキシエタン アセトアミド 、N-メチル-2-ピロリドン、アセトニトリル 、ジクロロメタン 、ニトロメタン 、トリクロロメタン 、ジメチルホルムアミド 、モノメチルホルムアミド の何れかまたは複数の組み合わせである。
 不飽和脂肪酸類は、モノ不飽和脂肪酸として、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸が挙げられ、ジ不飽和脂肪酸として、リノール酸、エイコサジエン酸、ドコサジエン酸が挙げられ、トリ不飽和脂肪酸として、リノレン酸、ピノレン酸、エレオステアリン酸、ミード酸、ジホモ-γ-リノレン酸、エイコサトリエン酸が挙げられ、テトラ不飽和脂肪酸 として、ステアリドン酸、アラキドン酸、エイコサテトラエン酸、アドレン酸が挙げられ、ペンタ不飽和脂肪酸として 、ボセオペンタエン酸、エイコサペンタエン酸、オズボンド酸、イワシ酸、テトラコサペンタエン酸が挙げられ、ヘキサ不飽和脂肪酸として 、ドコサヘキサエン酸、ニシン酸が挙げられる。
 次に、BiTi12または(Bi3.25La0.75)Ti12の材料膜上にゾルゲル溶液をスピンコート法により塗布することにより、このBiTi12または(Bi3.25La0.75)Ti12の材料膜上に1層目の塗布膜が形成される。詳細には、500μLのゾルゲル溶液を塗布し、0~500rpmまで3secで上昇させ、500rpmで3sec保持した後、2000rpmで60sec回転後、停止させた。
 次に、ホットプレートにより1層目の塗布膜を200℃の温度で1分間加熱し、その後、450℃の温度で1分間仮焼成する。これにより、BiTi12または(Bi3.25La0.75)Ti12の材料膜上に膜厚125nmの1層目の強誘電体材料アモルファス膜が形成される。
 次いで、1層目の塗布膜と同様の方法で、1層目の強誘電体材料膜上に2層目の塗布膜を形成する。次いで、1層目の塗布膜と同様の方法で、2層目の塗布膜を加熱し、仮焼成する。これにより、1層目の強誘電体材料膜上に膜厚125nmの2層目の強誘電体材料膜が形成される。
 次いで、2層目の塗布膜と同様の方法で、2層目の強誘電体材料膜上に3層目の塗布膜を形成する。次いで、1層目の塗布膜と同様の方法で、3層目の塗布膜を加熱し、仮焼成する。これにより、2層目の強誘電体材料膜上に膜厚125nmの3層目の強誘電体材料膜が形成される。これを繰り返すことにより12層の強誘電体材料膜が形成される。このようにして12層からなる膜厚1.5μmの強誘電体材料膜を成膜することができる。
 次に、この強誘電体材料膜上に(001)に優先配向した結晶性酸化物を形成するためのBiTi12または(Bi3.25La0.75)Ti12の材料膜を成膜する。この際の成膜条件は上記のBiTi12または(Bi3.25La0.75)Ti12の材料膜と同様である。
 次に、加圧RTAにより強誘電体材料膜、BiTi12または(Bi3.25La0.75)Ti12の材料膜に熱処理を施すことにより、これらの膜を結晶化して強誘電体膜である(K1-XNa)NbO膜、(001)に優先配向したBiTi12または(Bi3.25La0.75)Ti12の結晶化膜を形成する。この際の熱処理条件は、酸素分圧9.9atmで加圧された酸素雰囲気中で、昇温速度100℃/secで、温度が900℃まで瞬時に昇温し、1min保持することにより結晶化を行ったのである。
 なお、本実施例では、1.5μmの強誘電体膜を形成しているが、さらに膜厚の厚い強誘電体膜を形成してもよいし、膜厚の薄い強誘電体膜を形成してもよい。
 図4は、サンプル1の強誘電体膜の評価を行った結果を示す特性図である。なお、図4の横軸は印加電圧(Volts)を示し、図4の縦軸は変位(%)を示している。
 図4は、周波数700Hzで±10Vのバイポーラパルスで強誘電体膜を駆動させて評価した結果である。
 図4に示すように、サンプル1の強誘電体膜は、優れた圧電特性を有することが確認された。
 11…結晶性酸化物
 12…(K1-XNa)NbO膜(強誘電体膜)
 13…結晶性酸化物

Claims (17)

  1.  ペロブスカイト構造からなる(K1-XNa)NbO膜またはBiFeO膜と、
     前記(K1-XNa)NbO膜またはBiFeO膜の上及び下の少なくとも一方に形成された(001)に優先配向した結晶性酸化物と、
    を具備し、
     Xが下記式を満たすことを特徴とする強誘電体膜。
     0.3≦X≦0.7
  2.  請求項1において、
     前記結晶性酸化物は、疑ペロブスカイト構造を有するビスマス層状構造強誘電体またはタングステン・ブロンズ型強誘電体であることを特徴とする強誘電体膜。
  3.  請求項1または2において、
     前記ビスマス層状構造強誘電体は、(Bi2+(Am-13m+12-(m=1~5)またはBim-13m+3(m=1~5)であることを特徴とする強誘電体膜。
  4.  請求項2または3において、
     前記ビスマス層状構造強誘電体は、BiTi12または(Bi4-xLa)Ti12であり、xは下記式を満たすことを特徴とする強誘電体膜。
     0<x<1
  5.  請求項1乃至4のいずれか一項において、
     前記結晶性酸化物は、島状又は膜状に形成されていることを特徴とする強誘電体膜。
  6.  請求項1乃至5のいずれか一項において、
     前記結晶性酸化物の厚さは2~30nmであることを特徴とする強誘電体膜。
  7.  請求項1乃至6のいずれか一項において、
     前記(K1-XNa)NbO膜またはBiFeO膜は、ゾルゲル法により形成されていることを特徴とする強誘電体膜。
  8.  請求項1乃至7のいずれか一項において、
     前記(K1-XNa)NbO膜またはBiFeO膜と、その上及び下の少なくとも一方に形成された前記結晶性酸化物とを具備する強誘電体膜が積層されていることを特徴とする強誘電体膜。
  9.  基板上にK、Na及びNbを含有するゾルゲル溶液をスピンコート法により塗布することにより、前記基板上に塗布膜を形成し、
     前記塗布膜を仮焼成することにより、前記基板上に強誘電体材料膜を形成し、
     前記強誘電体材料膜上に島状又は膜状の第1の結晶性酸化物形成用材料膜を形成し、
     前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を酸素雰囲気で熱処理することにより、前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を結晶化した強誘電体膜を形成し、
     前記第1の結晶性酸化物形成用材料膜を結晶化した第1の結晶性酸化物は(001)に優先配向していることを特徴とする強誘電体膜の製造方法。
  10.  請求項9において、
     前記第1の結晶性酸化物は、疑ペロブスカイト構造を有するビスマス層状構造強誘電体またはタングステン・ブロンズ型強誘電体であることを特徴とする強誘電体膜の製造方法。
  11.  請求項10において、
     前記ビスマス層状構造強誘電体は、BiTi12または(Bi4-xLa)Ti12であり、xは下記式を満たすことを特徴とする強誘電体膜の製造方法。
     0<x<1
  12.  請求項9乃至11のいずれか一項において、
     前記基板上に塗布膜を形成する前に、前記基板上に島状又は膜状の(001)に優先配向した第2の結晶性酸化物形成用材料膜を形成しておき、
     前記塗布膜は、前記第2の結晶性酸化物形成用材料膜上に形成され、
     前記強誘電体材料膜、前記第1の結晶性酸化物形成用材料膜および前記第2の結晶性酸化物形成用材料膜が酸素雰囲気で熱処理され、
     前記第2の結晶性酸化物形成用材料膜を結晶化した第2の結晶性酸化物は(001)に優先配向していることを特徴とする強誘電体膜の製造方法。
  13.  基板上に、島状又は膜状の第1の結晶性酸化物形成用材料膜を形成し、
     前記第1の結晶性酸化物形成用材料膜上に、K、Na及びNbを含有するゾルゲル溶液をスピンコート法により塗布することにより、前記第1の結晶性酸化物形成用材料膜上に塗布膜を形成し、
     前記塗布膜を仮焼成することにより、前記第1の結晶性酸化物形成用材料膜上に強誘電体材料膜を形成し、
     前記強誘電体材料膜上に遮蔽膜を形成し、
     前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を酸素雰囲気で熱処理しながら前記遮蔽膜によってK及びNaが前記強誘電体材料膜中から離脱するのを抑制することにより、前記強誘電体材料膜及び前記第1の結晶性酸化物形成用材料膜を結晶化した強誘電体膜を形成し、
     前記第1の結晶性酸化物形成用材料膜を結晶化した第1の結晶性酸化物膜は(001)に優先配向していることを特徴とする強誘電体膜の製造方法。
  14.  請求項9乃至13のいずれか一項において、
     前記ゾルゲル溶液に含有する前記K、Na及びNbの合計濃度は、10~50mol%であることを特徴とする強誘電体膜の製造方法。
  15.  請求項9乃至14のいずれか一項において、
     前記強誘電体材料膜を形成する際、前記塗布膜の形成及び前記仮焼成を複数回繰り返すことにより、複数の塗布膜からなる強誘電体材料膜を形成することを特徴とする強誘電体膜の製造方法。
  16.  請求項9乃至15のいずれか一項において、
     前記熱処理は、0.0993~1.986MPaの圧力範囲で行うことを特徴とする強誘電体膜の製造方法。
  17.  請求項9乃至16のいずれか一項において、
     前記強誘電体膜は、ペロブスカイト構造からなる(K1-XNa)NbO膜であり、Xが下記式を満たすことを特徴とする強誘電体膜の製造方法。
     0.3≦X≦0.7
PCT/JP2011/067437 2011-07-29 2011-07-29 強誘電体膜およびその製造方法 WO2013018155A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/067437 WO2013018155A1 (ja) 2011-07-29 2011-07-29 強誘電体膜およびその製造方法
JP2013526623A JP5799294B2 (ja) 2011-07-29 2011-07-29 強誘電体膜
US14/235,626 US9486834B2 (en) 2011-07-29 2011-07-29 Ferroelectric film and method for manufacturing the same
US15/288,056 US9793464B2 (en) 2011-07-29 2016-10-07 Ferroelectric film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067437 WO2013018155A1 (ja) 2011-07-29 2011-07-29 強誘電体膜およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/235,626 A-371-Of-International US9486834B2 (en) 2011-07-29 2011-07-29 Ferroelectric film and method for manufacturing the same
US15/288,056 Division US9793464B2 (en) 2011-07-29 2016-10-07 Ferroelectric film and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013018155A1 true WO2013018155A1 (ja) 2013-02-07

Family

ID=47628728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067437 WO2013018155A1 (ja) 2011-07-29 2011-07-29 強誘電体膜およびその製造方法

Country Status (3)

Country Link
US (2) US9486834B2 (ja)
JP (1) JP5799294B2 (ja)
WO (1) WO2013018155A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840724A (ja) * 1994-08-02 1996-02-13 Toda Kogyo Corp 球状複合体粒子粉末及びその製造方法
JP2015008182A (ja) * 2013-06-25 2015-01-15 株式会社リコー 強誘電体膜の成膜方法並びに成膜装置
JP2015026692A (ja) * 2013-07-25 2015-02-05 株式会社ユーテック 結晶化方法及び加圧式ランプアニール装置
JP2015026693A (ja) * 2013-07-25 2015-02-05 株式会社ユーテック 膜の製造方法及びマルチチャンバー装置
JP2015082541A (ja) * 2013-10-22 2015-04-27 株式会社リコー 電気−機械変換素子とその製造方法及び電気−機械変換素子を備えた液滴吐出ヘッド、インクカートリッジ並びに画像形成装置
WO2016121204A1 (ja) * 2015-01-26 2016-08-04 株式会社ユーテック 加圧式ランプアニール装置、強誘電体膜及びその製造方法
US11730803B2 (en) 2014-11-07 2023-08-22 Case Western Reserve University Cancer immunotherapy using virus particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431242B2 (en) * 2010-01-21 2016-08-30 Youtec Co., Ltd. PBNZT ferroelectric film, sol-gel solution, film forming method and method for producing ferroelectric film
CN106111482B (zh) * 2016-08-09 2020-02-14 南京邮电大学 一种刮涂制备铁酸铋薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273706A (ja) * 2002-03-18 2003-09-26 Seiko Epson Corp 表面弾性波素子、周波数フィルタ、発振器、電子回路、及び電子機器
JP2009117785A (ja) * 2007-10-15 2009-05-28 Hitachi Cable Ltd 圧電薄膜付き基板
JP2010067756A (ja) * 2008-09-10 2010-03-25 Fujifilm Corp 圧電体膜、圧電素子、及び液体吐出装置
JP2011046129A (ja) * 2009-08-27 2011-03-10 Seiko Epson Corp 液体噴射ヘッド及びそれを用いた液体噴射装置
JP2011146623A (ja) * 2010-01-18 2011-07-28 Hitachi Cable Ltd 圧電薄膜素子及び圧電薄膜デバイス

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200059A (ja) * 1997-01-10 1998-07-31 Sharp Corp 強誘電体薄膜素子及びその製造方法
JP3975518B2 (ja) * 1997-08-21 2007-09-12 株式会社豊田中央研究所 圧電セラミックス
US7008669B2 (en) * 2001-06-13 2006-03-07 Seiko Epson Corporation Ceramic and method of manufacturing the same, dielectric capacitor, semiconductor device, and element
JP2004107179A (ja) * 2002-09-20 2004-04-08 Canon Inc 圧電体前駆体ゾル、圧電体膜の製造方法、圧電体素子およびインクジェット記録ヘッド
JP3873935B2 (ja) * 2003-06-18 2007-01-31 セイコーエプソン株式会社 強誘電体メモリ素子
JP2006086368A (ja) * 2004-09-16 2006-03-30 Seiko Epson Corp 圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振子、および電子機器
JP4541985B2 (ja) * 2004-10-29 2010-09-08 株式会社デンソー 多結晶体の製造方法
WO2006087777A1 (ja) 2005-02-16 2006-08-24 Youtec Co., Ltd. 加圧式ランプアニール装置、加圧式ランプアニール処理方法、薄膜及び電子部品
JP4442471B2 (ja) * 2005-03-04 2010-03-31 セイコーエプソン株式会社 ニオブ酸カリウム堆積体およびその製造方法、圧電薄膜振動子、周波数フィルタ、発振器、電子回路、並びに、電子機器
JP4171918B2 (ja) * 2005-03-29 2008-10-29 セイコーエプソン株式会社 圧電体膜積層体およびその製造方法、表面弾性波素子、周波数フィルタ、発振器、電子回路、並びに、電子機器
JP5044902B2 (ja) * 2005-08-01 2012-10-10 日立電線株式会社 圧電薄膜素子
JP4735840B2 (ja) * 2005-12-06 2011-07-27 セイコーエプソン株式会社 圧電体積層体、表面弾性波素子、薄膜圧電共振子および圧電アクチュエータ
US7456548B2 (en) * 2006-05-09 2008-11-25 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator, and ink jet recording head
JP2009130182A (ja) * 2007-11-26 2009-06-11 Hitachi Cable Ltd 圧電薄膜素子
JP5272687B2 (ja) * 2008-01-24 2013-08-28 日立電線株式会社 圧電薄膜素子、それを用いたセンサ及びアクチュエータ
US7754351B2 (en) * 2008-05-08 2010-07-13 Wisconsin Alumni Research Foundation (Warf) Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage
JP4835813B1 (ja) * 2010-04-15 2011-12-14 パナソニック株式会社 圧電体薄膜、インクジェットヘッド、インクジェットヘッドを用いて画像を形成する方法、角速度センサ、角速度センサを用いて角速度を測定する方法、圧電発電素子ならびに圧電発電素子を用いた発電方法
US9277869B2 (en) * 2012-11-28 2016-03-08 Tdk Corporation Thin-film piezoelectric element, thin-film piezoelectric actuator, thin-film piezoelectric sensor, hard disk drive, and inkjet printer apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273706A (ja) * 2002-03-18 2003-09-26 Seiko Epson Corp 表面弾性波素子、周波数フィルタ、発振器、電子回路、及び電子機器
JP2009117785A (ja) * 2007-10-15 2009-05-28 Hitachi Cable Ltd 圧電薄膜付き基板
JP2010067756A (ja) * 2008-09-10 2010-03-25 Fujifilm Corp 圧電体膜、圧電素子、及び液体吐出装置
JP2011046129A (ja) * 2009-08-27 2011-03-10 Seiko Epson Corp 液体噴射ヘッド及びそれを用いた液体噴射装置
JP2011146623A (ja) * 2010-01-18 2011-07-28 Hitachi Cable Ltd 圧電薄膜素子及び圧電薄膜デバイス

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840724A (ja) * 1994-08-02 1996-02-13 Toda Kogyo Corp 球状複合体粒子粉末及びその製造方法
JP2015008182A (ja) * 2013-06-25 2015-01-15 株式会社リコー 強誘電体膜の成膜方法並びに成膜装置
JP2015026692A (ja) * 2013-07-25 2015-02-05 株式会社ユーテック 結晶化方法及び加圧式ランプアニール装置
JP2015026693A (ja) * 2013-07-25 2015-02-05 株式会社ユーテック 膜の製造方法及びマルチチャンバー装置
JP2015082541A (ja) * 2013-10-22 2015-04-27 株式会社リコー 電気−機械変換素子とその製造方法及び電気−機械変換素子を備えた液滴吐出ヘッド、インクカートリッジ並びに画像形成装置
US11730803B2 (en) 2014-11-07 2023-08-22 Case Western Reserve University Cancer immunotherapy using virus particles
WO2016121204A1 (ja) * 2015-01-26 2016-08-04 株式会社ユーテック 加圧式ランプアニール装置、強誘電体膜及びその製造方法
JPWO2016121204A1 (ja) * 2015-01-26 2017-12-21 株式会社ユーテック 加圧式ランプアニール装置、強誘電体膜及びその製造方法

Also Published As

Publication number Publication date
US20170025597A1 (en) 2017-01-26
US20140242379A1 (en) 2014-08-28
US9486834B2 (en) 2016-11-08
JPWO2013018155A1 (ja) 2015-02-23
US9793464B2 (en) 2017-10-17
JP5799294B2 (ja) 2015-10-21

Similar Documents

Publication Publication Date Title
JP5799294B2 (ja) 強誘電体膜
JP5903591B2 (ja) 強誘電体膜、ゾルゲル溶液、成膜方法及び強誘電体膜の製造方法
JP5930852B2 (ja) 強誘電体結晶膜の製造方法
US11527706B2 (en) Film structure body and method for manufacturing the same
US10243134B2 (en) Piezoelectric film and piezoelectric ceramics
US20180230603A1 (en) Electrode, ferroelectric ceramics and manufacturing method thereof
WO2012008041A1 (ja) 強誘電体膜、ゾルゲル溶液、成膜方法及び強誘電体膜の製造方法
WO2022168800A1 (ja) 積層構造体及びその製造方法
US20180298484A1 (en) Ferroelectric film and manufacturing method thereof
JP6040449B2 (ja) 強誘電体膜
CN115623851A (zh) 一种柔性可弯曲压电氧化物薄膜及其制备方法和应用
JP5982613B2 (ja) 強誘電体膜の製造方法
JP5857341B2 (ja) 強誘電体膜の製造方法
JP5866593B2 (ja) 強誘電体膜、成膜方法及び強誘電体膜の製造方法
TWI717498B (zh) 膜構造體及其製造方法
WO2017002738A1 (ja) 強誘電体セラミックス及びその製造方法
JP6216808B2 (ja) 強誘電体結晶膜及びその製造方法
WO2012164753A1 (ja) 強誘電体膜の製造方法、強誘電体膜及び圧電素子
Remiens et al. PMN-PT thin films grown by sputtering on silicon substrate: influence of the annealing temperature on the physico-chemical and electrical properties of the films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013526623

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14235626

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11870414

Country of ref document: EP

Kind code of ref document: A1