Nothing Special   »   [go: up one dir, main page]

WO2013014299A1 - Device and method for generating electricity from pressurized water and at least one explosive material - Google Patents

Device and method for generating electricity from pressurized water and at least one explosive material Download PDF

Info

Publication number
WO2013014299A1
WO2013014299A1 PCT/ES2011/000253 ES2011000253W WO2013014299A1 WO 2013014299 A1 WO2013014299 A1 WO 2013014299A1 ES 2011000253 W ES2011000253 W ES 2011000253W WO 2013014299 A1 WO2013014299 A1 WO 2013014299A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosive material
hydraulic pressure
chamber
water
piston
Prior art date
Application number
PCT/ES2011/000253
Other languages
Spanish (es)
French (fr)
Inventor
Antonio IBAÑEZ DE ALBA
Original Assignee
GARCÍA VÁZQUEZ, Maria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GARCÍA VÁZQUEZ, Maria filed Critical GARCÍA VÁZQUEZ, Maria
Priority to PCT/ES2011/000253 priority Critical patent/WO2013014299A1/en
Publication of WO2013014299A1 publication Critical patent/WO2013014299A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/06Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting

Definitions

  • the present invention relates to the field of electricity generation. More specifically, it is directed to a new device for generating electricity from explosive materials.
  • the need for execution and development of the invention originates from the high energy dependence that exists both in Europe and in Spain, together with the forecast of strong increases in the energy cost due to its indexation to the price of oil.
  • the external energy dependence of Spain is greater than the average of the European Union.
  • the degree of self-sufficiency of primary energy has been up to 23% until 2010, which means that in Spain 77% of the primary energy consumed is imported from abroad.
  • the electricity production plant object of the invention is based on the use of the instantaneous energy produced in the explosion generated for its transformation into pressurized water and, finally, electricity.
  • a new device for generating electricity from pressurized water and at least one explosive material characterized in that it comprises a piston formed by a combustion chamber and a hydraulic pressure generating chamber is the object of this invention.
  • Said piston allows to take advantage of the expansion energy of the gases formed during the detonation of the energy materials used in the device.
  • the combustion chamber may comprise at least one inlet valve of explosive material and a gas outlet valve, and is located at one end of the piston.
  • the hydraulic pressure generation chamber is preferably located, which has at least one hydraulic flow outlet valve and at least one water inlet valve.
  • At least one pressurized reservoir connected to at least one hydroelectric turbine is located.
  • the combustion chamber may additionally comprise a cooling circuit in order to control the temperature increase generated during the explosion.
  • the plant may also be used in reverse osmosis processes in desalination plants.
  • the object of this invention is also a power plant characterized in that it comprises at least one device for generating electricity as described above.
  • the plant may comprise a set of pistons, preferably 6, designed to act sequentially to maintain a constant pressure and flow rate in the hydraulic circuit.
  • each piston can perform up to 240 generation cycles per hour. In this way, the power generation capacity is 0.711 kWh per cycle and piston, so the power available to each piston is approximately 171 kW.
  • the plant may comprise at least one pre-treatment installation of the explosive material used as raw material to, depending on its origin, make adjustments in its parameters to adapt its combustion in the plant.
  • Said installation may comprise at least one container, preferably a tank with stirring, for the addition of at least one additive to the energy material.
  • stirring will be continuous to ensure a good mixture.
  • the design flow of the feed will preferably be 0.6 m 3 / h.
  • the installation or facilities for pretreatment of the raw material will allow on-site processing energy materials (eg ammonium nitrate) to minimize transport and storage risks, and to obtain a cost reduction.
  • on-site processing energy materials eg ammonium nitrate
  • control unit may in turn comprise solenoid valves for the control of the closing and opening of the different circuits that compose it.
  • control unit may comprise at least one electronic controller in charge of activating and regulating the pressure compensating valves that supply the different pressure water injection pipes of the plant.
  • the described plant can be located underwater, buried or on the surface.
  • at least one compartment for the storage of explosives may be located on the surface.
  • this explosive storage compartment can be connected to the combustion chamber by means of at least one valve for regulating the supply of the explosive material. In this way, it is possible to control the supply of said explosive material, preferably mechanically and automatically, depending on the amount of pressurized water that is desired to be generated.
  • the plant may comprise at least one cooling tower, which will generally be the only equipment in the plant located outside. However, as indicated above, the plant will be suitable for working both on the surface, and buried underground or underwater.
  • the plant may in turn incorporate an external water supply circuit for cooling the entire system and loading water into the hydraulic pressure generating chamber.
  • the object of this invention is a process for generating electrical energy from pressurized water and at least one explosive material by using a device as previously described.
  • described Said procedure is characterized in that it comprises:
  • the gases produced in the explosion are expanded by moving the piston piston and pressurizing the water located in the hydraulic pressure generating chamber to a working pressure preferably between 10 and 1,000 bar;
  • the hydraulic flow outlet valve is then opened, generating a hydraulic flow equivalent to the capacity of the hydraulic pressure generating chamber, where said hydraulic flow is sent to at least one pressurized reservoir at a lower pressure, preferably between 5 and 300 bar;
  • the generation of electricity is carried out by the action of a set of pistons, within which combustion of the raw material used occurs.
  • the adiabatic expansion of the gases generated in the reaction generates useful work and hydraulic pressure to power a series of hydroelectric turbines, thus generating electrical energy.
  • the thermodynamic cycle that follows is similar to that of a gasoline combustion engine or Otto cycle.
  • the process may comprise an additional step of storing and recovering the process water.
  • Said storage can be carried out in tanks, and the recovery can include the use of water in a closed circuit, so that once the water has been used, it can be recovered again in the process.
  • any material capable of detonating can be used so as to generate useful energy in the form of gas expansion that can be converted into electrical energy.
  • materials among which are fertilizers (ammonium nitrate, etc.), commercial explosives (Alnafo, Nagolita, Riod ⁇ n, Ammonite, etc.), other materials (nitric acid, ammonia , etc.), as well as recycled materials such as materials from explosives demilitarization programs or the recycling of pyrotechnic materials used in the automotive sector (airbags), fireworks, nautical signaling flares, pyrotechnic pretensioners, etc.
  • fertilizers ammonium nitrate, etc.
  • commercial explosives Alnafo, Nagolita, Riod ⁇ n, Ammonite, etc.
  • other materials nitric acid, ammonia , etc.
  • recycled materials such as materials from explosives demilitarization programs or the recycling of pyrotechnic materials used in the automotive sector (airbags), fireworks, nautical signaling flares,
  • a hazardous waste is obtained from which an energy use is obtained, as well as an economic and environmental benefit.
  • a kilogram of a mixture by weight of 91% ammonium nitrate, 4% diesel and 5% aluminum produces a pressure of 7.2 GPa.
  • Other products reach 20.4 GPa instantaneous detonation pressure.
  • the type of explosive material that can be used as a raw material is not a limiting feature of the invention, and any type of material capable of exploding can be used.
  • the process may comprise a pre-treatment stage of the explosive fuel to achieve its conditioning, as well as a post-treatment of the combustion gases produced. These treatments allow to minimize the amount of pollutants emitted into the atmosphere and decrease their emission temperature. Likewise, the residual heat will produce steam, which can be introduced into a steam turbine, increasing the capacity of electrical energy produced.
  • the pre-treatment stage of the explosive fuel may comprise the addition of additives, as well as the drying and milling of the explosive material prior to its introduction into the combustion chamber.
  • the post-treatment stage of the combustion gases may comprise a separation stage in at least one cyclone separator, so that gases separated from the ashes can be introduced into at least one recovery boiler in which steam and gases are generated. Said steam can be sent in at least one turbine for the additional generation of electricity, where the residual steam can be condensed and used in the recovery boiler itself.
  • the gases generated in the recovery boiler can be treated before being sent to the atmosphere in a treatment system such as at least one activated carbon filter.
  • the estimation of the operation of a nominal power plant of IMW is of a production of 8,100 MWh / year for a consumption of 2,291 Tons / year of explosive material / fuel, with an emission of 0.099 kg C0 2 / kWh. Thanks to the novel device object of this invention, it is possible to achieve yields greater than 90% in the turbines of the installation. This is because when the explosion occurs in contact with water, it is pressurized and sent directly to the turbines, avoiding friction losses. Also, when the explosion occurs, gases that are sent and preferably treated in cleaning filters are released, where they can be completely decontaminated. After cleaning, the gases can be released back into the atmosphere, so that the operation of the system presents a virtually zero level of pollution and is capable of operating at all times with environmentally friendly fuels.
  • the plant object of the present invention manages to maintain low generation costs and a generation of C0 2 lower than other technologies (four times less than a combined cycle plant), being an alternative to a future scenario of high energy costs .
  • An additional advantage of the central object of the invention is the fact that it is composed of modular parts, which makes it possible for the installation thereof to be carried out at any location, although it will be especially preferred, for economic reasons, its location in areas near the sea, rivers, reservoirs, etc. Also, such presentation in modular parts will make it possible to carry out quick and effective replacements and repairs of the parts that require it.
  • the plant has an itinerant character, thus being able to be used, for example, in isolated areas or sites with low electricity supply;
  • the plant object of this invention offers an immediate availability to produce electricity, only comparable to the energy of traditional hydroelectric power plants.
  • one of the fundamental advantages of the invention consists in the possibility of not having to develop large electrical networks for distribution to the points of consumption, so that electricity will be distributed to the points where it is required depending on the electricity needs of each moment;
  • pressurized water in other embodiments of the invention any other type of fluid could be used, such as gases, so that the generated pressurized gas could be used in turbines of compressed air .
  • Figure 1 shows a detail view of a piston of the device of the invention comprising a chamber of combustion, a piston and a hydraulic pressure generating chamber;
  • Figure 2 represents a three-dimensional view of a piston assembly as detailed in Figure 1;
  • Figure 3 represents a view of the power generation plant object of the invention.
  • the charge of explosive material (ammonium nitrate) to each piston (1) was 200 g per cycle, the number of cycles per hour being equal to 240.
  • this Prior to feeding the Ammonium nitrate piston, this was subjected to a pre-treatment stage in a stirring tank (8), a drying drum (9) and a rotating ball mill (10).
  • ammonium nitrate was introduced on the one hand and a series of additives on the other to provide nitrate with the appropriate characteristics. Stirring was continued to ensure a good mixture, and the feed design flow rate of 0.6 m 3 / h.
  • the equipment chosen was a high efficiency stir tank with simple impeller Quiansheng model XB12.
  • the heating method in the drying drum (9) was by indirect contact through the cylinder wall, which is heated by the passage of gases.
  • the particles cross a relatively short section, as they slide, while their humidity decreases in the same way they descend.
  • the particles were subjected to grinding in the ball mill (10) until a particle size of less than 95 mm was obtained, the average particle size being 50 mm. In this equipment, the flow was 0.28 Tn / hour of fertilizer.
  • ammonium nitrate used had a carbon content greater than 10%.
  • the pistons (1) were designed to have a combustion chamber (2) with a pressure range of 20 to 150 bars and a hydraulic pressure generation chamber (4) with a pressure range of 20 to 80 bars.
  • the hydroelectric turbine selected was a Francis turbine model FHE 500-08 with horizontal axis position.
  • a cyclone (7) for particle separation specifically a centrifugal manifold with tangential air inlet to the cyclone cylinder body. Since the gases have a high temperature, the cyclone separator (7) must have the ability to operate at high temperatures. The separated ashes were stored in an ash storage tank (11).
  • the cooled gases are conducted to an activated carbon filter (15) to remove the ammonia and nitrogen oxides that the gas stream contains.
  • Active carbon in its various varieties, has a large specific surface and has the property of fixing harmful or odorous gaseous molecules. Once the gases are treated they are expelled into the atmosphere.
  • the active carbon equipment chosen was of the PROTECT VENTSORB 70 type.
  • the gases produced in the combustion chamber (2) leave at a temperature of about 250 ° C. It is possible to take advantage of said temperature to produce steam that feeds a pre-designed steam turbine.
  • the equipment selected for this is a recovery boiler (12). With this I know It also reduces the emission temperature of gases into the atmosphere.
  • the selected steam boiler is a Viessman mixed recovery model 200 RW / RS boiler with conventional burner and two gas passages and the steam turbine (13) chosen was a Siemens SST-100, single-shell gas turbine, and with reducer for generator drive.
  • the useful work generated would be around 13,000 kJ / kg, generating a usable energy for the fuel load used (per cycle and per piston) of 0.71 kWh. Being the energy generated per hour by the plant (6 pistons 240 cycles / hour) of 1 M h, the annual production would be in values close to 8.15 GWh (with the hypothesis of availability of 93%).
  • the following table specifies the estimates of main consumption and emissions of the plant, establishing a closed water reuse circuit, so that the actual consumption is only due to losses or evaporations:
  • the contamination by greenhouse gases (C0 2 ) for the plant of the invention is approximately 10% of the grams emitted per kWh of the thermal coal plant and 29% of the grams emitted per kWh of the combined cycle plant and which is the one with the lowest level of carbon dioxide missions produces:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The subject matter of the present invention is a device for generating electricity from pressurized water and at least one explosive material, which is characterized in that it comprises: (a) at least one piston that comprises a combustion chamber and a hydraulic pressure generation chamber, wherein said combustion chamber is located at one of the ends of the piston and comprises at least one explosive-material inlet valve and at least one gas-outlet valve, and wherein the hydraulic pressure generation chamber is located at the other end of the piston, which chamber has at least one hydraulic-flow outlet valve and at least one water-inlet valve; (b) downstream of the hydraulic pressure generation chamber there is at least one pressurized reservoir connected to at least one hydroelectric turbine for generating electricity. A further subject matter of the invention is a power plant that comprises said device and the use thereof for generating electricity.

Description

Dispositivo y procedimiento para la generación de electricidad a partir de agua presurizada y de al menos un material explosivo Campo técnico de la invención  Device and method for generating electricity from pressurized water and at least one explosive material Technical field of the invention
La presente invención se refiere al campo de la generación de electricidad. Más concretamente, se dirige a un nuevo dispositivo para la generación de electricidad a partir de materiales explosivos.  The present invention relates to the field of electricity generation. More specifically, it is directed to a new device for generating electricity from explosive materials.
Estado de la técnica anterior a la invención State of the art prior to the invention
La necesidad de ejecución y desarrollo de la invención está originada en la alta dependencia energética que se vive tanto en Europa como en España, conjuntamente a la previsión de fuertes incrementos en el coste energético por su indexación al precio del petróleo. La dependencia energética externa de España es mayor que la media de la Unión Europea. El grado de autoabastecimiento de energía primaria (relación entre producción interior y consumo total de energía) ha sido hasta el año 2010 del 23%, lo que supone que en España el 77% de la energía primaria consumida es importada del exterior.  The need for execution and development of the invention originates from the high energy dependence that exists both in Europe and in Spain, together with the forecast of strong increases in the energy cost due to its indexation to the price of oil. The external energy dependence of Spain is greater than the average of the European Union. The degree of self-sufficiency of primary energy (relationship between internal production and total energy consumption) has been up to 23% until 2010, which means that in Spain 77% of the primary energy consumed is imported from abroad.
En el momento actual existen muy diversas formas y tipos de generar electricidad, entre las que cabe mencionar las centrales térmicas, hidroeléctricas, nucleares, eólicas, fotovoltaicas , etc.  At the present time there are many different ways and types of generating electricity, including thermal, hydroelectric, nuclear, wind, photovoltaic, etc.
Tecnologías como la generación de energía mediante instalaciones termosolar o fotovoltaicas son costosas y solo sostenibles mediante primas o subvenciones a la producción, dado sus costes superiores a 20 c€/kWh.  Technologies such as the generation of energy through solar thermal or photovoltaic installations are expensive and only sustainable through premiums or production subsidies, given their costs exceeding € 20 c / kWh.
Otras tecnologías como la producción eólica tiene limitaciones por normativa para su instalación en tierra, y su instalación en mar (offshore) tiene costes de producción superiores a los 15 c€/kWh.  Other technologies such as wind production have limitations due to regulations for their installation on land, and their installation at sea (offshore) has production costs above 15 c € / kWh.
Tecnologías como la energía nuclear con costes de 1 c€/kWh o el ciclo combinado con 3 c€/kWh son alternativas viables, aunque la generación de residuos radiactivos en la primera y la alta tasa de generación de C02 (0, 40 kg/k h) en la segunda limitarán en el futuro su implantación. Es por tanto objeto de esta invención presentar una nueva alternativa para la generación de electricidad, de una manera eficaz, sencilla y económica, ofreciendo la posibilidad de operar con una gran variedad de materiales explosivos, tanto sólidos como líquidos, como fuente de alimentación al sistema . Technologies such as nuclear energy with costs of 1 c € / kWh or the combined cycle with 3 c € / kWh are viable alternatives, although the generation of radioactive waste in the first and the high generation rate of C0 2 (0, 40 kg / kh) in the second, they will limit their implementation in the future. Is by Both object of this invention present a new alternative for the generation of electricity, in an efficient, simple and economical way, offering the possibility of operating with a great variety of explosive materials, both solid and liquid, as a power supply to the system.
De este modo, la central de producción de electricidad objeto de la invención está basada en el aprovechamiento de la energía instantánea producida en la explosión generada para su transformación en agua presurizada y, finalmente, en electricidad.  In this way, the electricity production plant object of the invention is based on the use of the instantaneous energy produced in the explosion generated for its transformation into pressurized water and, finally, electricity.
En la literatura de patentes no se ha encontrado hasta el momento ninguna referencia en la que se describa la posibilidad de controlar y aprovechar la energía generada en una explosión para su transformación en agua a presión, y finalmente en electricidad, por lo que la presente invención supone una atractiva alternativa a las fuentes de producción de electricidad ya conocidas en el estado de la técnica.  In the patent literature no reference has been found so far describing the possibility of controlling and harnessing the energy generated in an explosion for its transformation into pressurized water, and finally into electricity, whereby the present invention It is an attractive alternative to the sources of electricity production already known in the state of the art.
Como antecedente más próximo a la presente invención cabe citar la solicitud internacional PCT/ES2010/070019, donde se describe un procedimiento para la generación de energía piroeléctrica a partir de la detonación controlada de al menos un material explosivo situado en el interior de al menos una cámara de explosión.  As a precedent closest to the present invention, the international application PCT / ES2010 / 070019, which describes a process for generating pyroelectric energy from the controlled detonation of at least one explosive material located inside at least one explosion chamber
Descripción detallada de la invención Detailed description of the invention
De este modo, es objeto de esta invención un nuevo dispositivo para la generación de electricidad a partir de agua presurizada y de al menos un material explosivo caracterizado por que comprende un pistón formado por una cámara de combustión y una cámara de generación de presión hidráulica. Dicho pistón permite aprovechar la energía de expansión de los gases formados durante la detonación de los materiales energéticos utilizados en el dispositivo. De manera particular, la cámara de combustión puede comprender al menos una válvula de entrada de material explosivo y una válvula de salida de gases, y se encuentra situada en uno de los extremos del pistón. En el extremo opuesto del pistón se encuentra preferentemente localizada la cámara de generación de presión hidráulica, la cual dispone de al menos una válvula de salida de caudal hidráulico y al menos una válvula de entrada de agua. A continuación de la cámara de generación de presión hidráulica se encuentra situado al menos un depósito presurizado conectado a al menos una turbina hidroeléctrica . Thus, a new device for generating electricity from pressurized water and at least one explosive material characterized in that it comprises a piston formed by a combustion chamber and a hydraulic pressure generating chamber is the object of this invention. Said piston allows to take advantage of the expansion energy of the gases formed during the detonation of the energy materials used in the device. In particular, the combustion chamber may comprise at least one inlet valve of explosive material and a gas outlet valve, and is located at one end of the piston. At the opposite end of the piston is The hydraulic pressure generation chamber is preferably located, which has at least one hydraulic flow outlet valve and at least one water inlet valve. Next to the hydraulic pressure generation chamber, at least one pressurized reservoir connected to at least one hydroelectric turbine is located.
En una realización particular de la invención, la cámara de combustión puede comprender adicionalmente un circuito de refrigeración con objeto de controlar el aumento de temperatura generado durante la explosión.  In a particular embodiment of the invention, the combustion chamber may additionally comprise a cooling circuit in order to control the temperature increase generated during the explosion.
Debido a la alta presión generada, la central podrá asimismo emplearse en procesos de osmosis inversa en plantas desalinizadoras .  Due to the high pressure generated, the plant may also be used in reverse osmosis processes in desalination plants.
Es asimismo objeto de esta invención una central eléctrica caracterizada por que comprende al menos un dispositivo de generación de electricidad según ha sido anteriormente descrito. En una realización particular de la invención, la central puede comprender un conjunto de pistones, preferentemente 6, diseñados para actuar de forma secuencial para mantener una presión y caudal constante en el circuito hidráulico. De manera preferente, cada pistón puede realizar hasta 240 ciclos de generación por hora. De este modo, la capacidad de generación de energía es de 0,711 kWh por ciclo y pistón, por lo que la potencia que dispone cada pistón es de aproximadamente 171 kW.  The object of this invention is also a power plant characterized in that it comprises at least one device for generating electricity as described above. In a particular embodiment of the invention, the plant may comprise a set of pistons, preferably 6, designed to act sequentially to maintain a constant pressure and flow rate in the hydraulic circuit. Preferably, each piston can perform up to 240 generation cycles per hour. In this way, the power generation capacity is 0.711 kWh per cycle and piston, so the power available to each piston is approximately 171 kW.
Adicionalmente, la central puede comprender al menos una instalación de pre-tratamiento del material explosivo empleado como materia prima para, en función de su origen, realizar ajustes en sus parámetros para adecuar su combustión en la planta. Dicha instalación puede comprender al menos un recipiente, preferentemente un tanque con agitación, para la adición de al menos un aditivo al material energético. De manera preferida, la agitación será continua para asegurar una buena mezcla. El caudal de diseño de la alimentación será preferentemente de 0,6 m3/h. Additionally, the plant may comprise at least one pre-treatment installation of the explosive material used as raw material to, depending on its origin, make adjustments in its parameters to adapt its combustion in the plant. Said installation may comprise at least one container, preferably a tank with stirring, for the addition of at least one additive to the energy material. Preferably, stirring will be continuous to ensure a good mixture. The design flow of the feed will preferably be 0.6 m 3 / h.
Asimismo, la instalación o instalaciones de pre- tratamiento de la materia prima permitirá procesar in-situ materiales energéticos (p.e. nitrato amónico) para minimizar riesgos de transporte y almacenamiento, y para obtener una reducción de costes. Likewise, the installation or facilities for pretreatment of the raw material will allow on-site processing energy materials (eg ammonium nitrate) to minimize transport and storage risks, and to obtain a cost reduction.
De manera general, la central podrá comprender a su vez electroválvulas para el control del cierre y apertura de los distintos circuitos que la componen.  In general, the control unit may in turn comprise solenoid valves for the control of the closing and opening of the different circuits that compose it.
Asimismo, en una realización preferida de la invención, la central podrá comprender al menos un controlador electrónico encargado de activar y regular las válvulas compensadoras de presión que abastecen las distintas conducciones de inyección de agua a presión de la planta.  Likewise, in a preferred embodiment of the invention, the control unit may comprise at least one electronic controller in charge of activating and regulating the pressure compensating valves that supply the different pressure water injection pipes of the plant.
La central descrita puede encontrarse ubicada bajo el agua, enterrada o en superficie. En una realización particular de la invención en la que la central se encuentre enterrada, podrá encontrarse situado en superficie al menos un compartimento para el almacenamiento de explosivos. De manera particular, este compartimento de almacenamiento de explosivos puede encontrarse conectado a la cámara de combustión mediante al menos una válvula de regulación del suministro del material explosivo. De este modo, es posible controlar la alimentación de dicho material explosivo, preferentemente de manera mecánica y automatizada, en función de la cantidad de agua presurizada que se desee generar.  The described plant can be located underwater, buried or on the surface. In a particular embodiment of the invention in which the plant is buried, at least one compartment for the storage of explosives may be located on the surface. In particular, this explosive storage compartment can be connected to the combustion chamber by means of at least one valve for regulating the supply of the explosive material. In this way, it is possible to control the supply of said explosive material, preferably mechanically and automatically, depending on the amount of pressurized water that is desired to be generated.
Adicionalmente a la turbina hidroeléctrica, la central puede comprender al menos una torre de refrigeración, los cuales serán generalmente los únicos equipos de la planta situados en el exterior. No obstante, como se ha indicado anteriormente, la central será adecuada para trabajar tanto en superficie, como enterrada bajo tierra o bajo el agua.  In addition to the hydroelectric turbine, the plant may comprise at least one cooling tower, which will generally be the only equipment in the plant located outside. However, as indicated above, the plant will be suitable for working both on the surface, and buried underground or underwater.
Finalmente, la planta podrá incorporar a su vez un circuito de alimentación de agua externa para la refrigeración de todo el sistema y carga de agua a la cámara de generación de presión hidráulica.  Finally, the plant may in turn incorporate an external water supply circuit for cooling the entire system and loading water into the hydraulic pressure generating chamber.
A su vez, es objeto de esta invención un procedimiento para la generación de energía eléctrica a partir de agua presurizada y de al menos un material explosivo mediante el empleo de un dispositivo según ha sido anteriormente descrito. Dicho procedimiento se caracteriza por que comprende : In turn, the object of this invention is a process for generating electrical energy from pressurized water and at least one explosive material by using a device as previously described. described Said procedure is characterized in that it comprises:
(a) alimentar un material explosivo a al menos una cámara de combustión que comprende una válvula de entrada de material explosivo y una válvula de salida de gases, estando dicha cámara de combustión localizada en uno de los extremos de un pistón, de modo que el extremo opuesto de dicho pistón dispone de una cámara de generación de presión hidráulica con al menos una válvula de salida de caudal hidráulico y al menos una válvula de entrada de agua;  (a) feeding an explosive material to at least one combustion chamber comprising an explosive material inlet valve and a gas outlet valve, said combustion chamber being located at one of the ends of a piston, so that the opposite end of said piston has a hydraulic pressure generating chamber with at least one hydraulic flow outlet valve and at least one water inlet valve;
(b) alimentar un volumen de agua a la cámara de generación de presión hidráulica;  (b) feed a volume of water to the hydraulic pressure generating chamber;
(c) detonar del material explosivo, dando lugar a una presión de entre 25 y 250.000 bar y más preferentemente, entre (c) detonate the explosive material, resulting in a pressure of between 25 and 250,000 bar and more preferably, between
100 y 250.000 bar. Los gases producidos en la explosión se expansionan moviendo el émbolo del pistón y presurizando el agua localizada en la cámara de generación de presión hidráulica hasta una presión de trabajo preferentemente comprendida entre 10 y 1.000 bar;100 and 250,000 bar. The gases produced in the explosion are expanded by moving the piston piston and pressurizing the water located in the hydraulic pressure generating chamber to a working pressure preferably between 10 and 1,000 bar;
(d) a continuación, la válvula de salida de caudal hidráulico se abre, generando un caudal hidráulico equivalente a la capacidad de la cámara de generación de presión hidráulica, donde dicho caudal hidráulico es enviado a al menos un depósito presurizado a una presión inferior, preferentemente de entre 5 y 300 bar; (d) the hydraulic flow outlet valve is then opened, generating a hydraulic flow equivalent to the capacity of the hydraulic pressure generating chamber, where said hydraulic flow is sent to at least one pressurized reservoir at a lower pressure, preferably between 5 and 300 bar;
(e) posteriormente, la válvula de salida de gases de la cámara de combustión se abre, liberando un caudal determinado de gases generados en la combustión, al mismo tiempo que la válvula de entrada de agua se abre y comienza a llenarse de nuevo la cámara de generación de presión hidráulica;  (e) subsequently, the combustion chamber gas outlet valve opens, releasing a certain flow rate of gases generated in the combustion, at the same time that the water inlet valve opens and the chamber begins to refill of hydraulic pressure generation;
(f) asimismo, el agua procedente del depósito presurizado es inyectada a al menos una turbina hidroeléctrica a una presión superior a 1 bar y preferentemente comprendida entre 1 y 300 bar, generando electricidad. Una vez llena la cámara de generación de presión hidráulica puede comenzar de nuevo el proceso, dando lugar a un nuevo ciclo de generación. (f) Likewise, water from the pressurized reservoir is injected into at least one hydroelectric turbine at a pressure greater than 1 bar and preferably between 1 and 300 bar, generating electricity. Once the hydraulic pressure generation chamber is filled, the process can begin again, leading to a new generation cycle.
De este modo, en una realización particular de la invención, la generación de electricidad se lleva a cabo mediante la acción de un conjunto de pistones, dentro de los cuales se produce la combustión de la materia prima utilizada. La expansión adiabática de los gases generados en la reacción genera un trabajo útil y la presión hidráulica para alimentar una serie de turbinas hidroeléctricas, generando asi energía eléctrica. El ciclo termodinámico que sigue es similar al de un motor de combustión de gasolina o ciclo de Otto.  Thus, in a particular embodiment of the invention, the generation of electricity is carried out by the action of a set of pistons, within which combustion of the raw material used occurs. The adiabatic expansion of the gases generated in the reaction generates useful work and hydraulic pressure to power a series of hydroelectric turbines, thus generating electrical energy. The thermodynamic cycle that follows is similar to that of a gasoline combustion engine or Otto cycle.
En una realización preferida de la invención, el procedimiento puede comprender una etapa adicional de almacenamiento y recuperación del agua del proceso. Dicho almacenamiento puede llevarse a cabo en depósitos, y la recuperación puede comprender la utilización del agua en un circuito cerrado, de modo que una vez el agua haya sido utilizada, puede ser recuperada nuevamente en el procedimiento .  In a preferred embodiment of the invention, the process may comprise an additional step of storing and recovering the process water. Said storage can be carried out in tanks, and the recovery can include the use of water in a closed circuit, so that once the water has been used, it can be recovered again in the process.
Como material explosivo puede emplearse cualquier material con capacidad de detonar, ya sea en forma líquida, sólida o gelatinosa, de modo que permita generar una energía útil en forma de expansión de gases que pueda ser convertida en energía eléctrica. De este modo, es posible emplear una gran variedad de materiales, entre los que se encuentran fertilizantes (nitrato de amonio, etc.), explosivos comerciales (Alnafo, Nagolita, Riodín, Amonita, etc.), otros materiales (ácido nítrico, amoniaco, etc.), así como materiales reciclados como por ejemplo materiales provenientes de programas de desmilitarización de explosivos o del reciclaje de materiales pirotécnicos usados en el sector de la automoción (airbags) , fuegos artificiales, bengalas de señalización náuticas, pretensores pirotécnicos, etc. De este modo, se consigue dar salida a un residuo peligroso del que se obtiene un aprovechamiento energético, así como un beneficio económico y ambiental. Asi por ejemplo, un kilogramo de una mezcla en peso de 91% de nitrato amónico, 4% de gasóleo y 5% de aluminio produce una presión de 7,2 GPa. Otros productos alcanzan 20,4 GPa de presión de detonación instantánea. No obstante, el tipo de material explosivo que se puede emplear como materia prima no es una característica limitativa de la invención, pudiéndose emplear cualquier tipo de material con capacidad de explosionar. As explosive material, any material capable of detonating, either in liquid, solid or gelatinous form, can be used so as to generate useful energy in the form of gas expansion that can be converted into electrical energy. Thus, it is possible to use a wide variety of materials, among which are fertilizers (ammonium nitrate, etc.), commercial explosives (Alnafo, Nagolita, Riodín, Ammonite, etc.), other materials (nitric acid, ammonia , etc.), as well as recycled materials such as materials from explosives demilitarization programs or the recycling of pyrotechnic materials used in the automotive sector (airbags), fireworks, nautical signaling flares, pyrotechnic pretensioners, etc. In this way, a hazardous waste is obtained from which an energy use is obtained, as well as an economic and environmental benefit. Thus, for example, a kilogram of a mixture by weight of 91% ammonium nitrate, 4% diesel and 5% aluminum produces a pressure of 7.2 GPa. Other products reach 20.4 GPa instantaneous detonation pressure. However, the type of explosive material that can be used as a raw material is not a limiting feature of the invention, and any type of material capable of exploding can be used.
En una realización preferida de la invención, el procedimiento puede comprender una etapa de pre-tratamiento del combustible explosivo para conseguir su acondicionamiento, así como un post-tratamiento de los gases de combustión producidos. Estos tratamientos permiten minimizar la cantidad de contaminantes emitidos a la atmósfera y disminuir su temperatura de emisión. Asimismo, el calor residual producirá vapor, el cual puede ser introducido en una turbina de vapor, aumentando la capacidad de energía eléctrica producida.  In a preferred embodiment of the invention, the process may comprise a pre-treatment stage of the explosive fuel to achieve its conditioning, as well as a post-treatment of the combustion gases produced. These treatments allow to minimize the amount of pollutants emitted into the atmosphere and decrease their emission temperature. Likewise, the residual heat will produce steam, which can be introduced into a steam turbine, increasing the capacity of electrical energy produced.
De manera particular, la etapa de pre-tratamiento del combustible explosivo puede comprender la adición de aditivos, así como el secado y molienda del material explosivo previamente a su introducción en la cámara de combustión. A su vez, la etapa de post-tratamiento de los gases de combustión puede comprender una etapa de separación en al menos un separador ciclónico, de modo que los gases separados de las cenizas pueden ser introducidos en al menos una caldera de recuperación en la que se genera vapor y gases. Dicho vapor puede ser enviado en al menos una turbina para la generación adicional de electricidad, donde el vapor residual puede ser condensado y empleado en la propia caldera de recuperación. Por otra parte, los gases generados en la caldera de recuperación pueden ser tratados previamente a su envío a la atmósfera en un sistema de tratamiento como por ejemplo, al menos un filtro de carbón activo.  In particular, the pre-treatment stage of the explosive fuel may comprise the addition of additives, as well as the drying and milling of the explosive material prior to its introduction into the combustion chamber. In turn, the post-treatment stage of the combustion gases may comprise a separation stage in at least one cyclone separator, so that gases separated from the ashes can be introduced into at least one recovery boiler in which steam and gases are generated. Said steam can be sent in at least one turbine for the additional generation of electricity, where the residual steam can be condensed and used in the recovery boiler itself. On the other hand, the gases generated in the recovery boiler can be treated before being sent to the atmosphere in a treatment system such as at least one activated carbon filter.
La estimación del funcionamiento de una central de potencia nominal de IMW es de una producción de 8.100 MWh/año para un consumo de 2.291 Toneladas/año de material explosivo/combustible, con una emisión de 0,099 kg C02/kWh. Gracias al novedoso dispositivo objeto de esta invención, es posible alcanzar rendimientos superiores al 90% en las turbinas de la instalación. Ello es debido a que al producirse la explosión en contacto con el agua, ésta se presuriza y se envía directamente hacia las turbinas, evitando pérdidas por rozamiento. Asimismo, al producirse la explosión se liberan gases que son enviados y tratados preferentemente en filtros de limpieza, donde pueden quedar totalmente descontaminados. Tras su limpieza, los gases pueden desprenderse de nuevo a la atmósfera, de modo que el funcionamiento del sistema presenta un nivel prácticamente nulo de contaminación y es capaz de operar en todo momento con combustibles respetuosos con el medio ambiente. The estimation of the operation of a nominal power plant of IMW is of a production of 8,100 MWh / year for a consumption of 2,291 Tons / year of explosive material / fuel, with an emission of 0.099 kg C0 2 / kWh. Thanks to the novel device object of this invention, it is possible to achieve yields greater than 90% in the turbines of the installation. This is because when the explosion occurs in contact with water, it is pressurized and sent directly to the turbines, avoiding friction losses. Also, when the explosion occurs, gases that are sent and preferably treated in cleaning filters are released, where they can be completely decontaminated. After cleaning, the gases can be released back into the atmosphere, so that the operation of the system presents a virtually zero level of pollution and is capable of operating at all times with environmentally friendly fuels.
De este modo, la central objeto de la presente invención consigue mantener costes de generación bajos y una generación de C02 menor que otras tecnologías (cuatro veces menor que una planta de ciclo combinado) , siendo una alternativa ante un escenario futuro de altos costes energéticos . In this way, the plant object of the present invention manages to maintain low generation costs and a generation of C0 2 lower than other technologies (four times less than a combined cycle plant), being an alternative to a future scenario of high energy costs .
Una ventaja adicional de la central objeto de la invención es el hecho de componerse de piezas modulares, lo cual hace posible que la instalación de la misma pueda llevarse a cabo en cualquier emplazamiento, si bien será especialmente preferido, por motivos económicos, su emplazamiento en zonas próximas al mar, ríos, embalses, etc. Asimismo, dicha presentación en piezas modulares hará posible que se lleven a cabo rápidos y efectivos reemplazos y reparaciones de las piezas que así lo requieran.  An additional advantage of the central object of the invention is the fact that it is composed of modular parts, which makes it possible for the installation thereof to be carried out at any location, although it will be especially preferred, for economic reasons, its location in areas near the sea, rivers, reservoirs, etc. Also, such presentation in modular parts will make it possible to carry out quick and effective replacements and repairs of the parts that require it.
Otras ventajas que de manera adicional ofrece la presente invención son las que se resumen a continuación:  Other advantages that the present invention additionally offers are those summarized below:
En primer lugar, por las características que la definen, así como por su gran sencillez, la planta presenta un carácter itinerante, pudiéndose así emplear, por ejemplo, en zonas aisladas o emplazamientos de bajo suministro de electricidad;  In the first place, due to the characteristics that define it, as well as its great simplicity, the plant has an itinerant character, thus being able to be used, for example, in isolated areas or sites with low electricity supply;
Asimismo, ofrece la ventaja de ser una de las únicas fuentes disponibles de manera inmediata para la obtención de electricidad, basándose en una tecnología de turbinas W It also offers the advantage of being one of the only sources available immediately for obtaining electricity, based on a turbine technology W
9 hidráulicas. Ello es especialmente ventajoso en aquellos periodos en los que el consumo energético se dispara como ocurre por ejemplo en verano, asi como en horas punta en las que se requiera un suministro extra de energía. Así, en comparación con otras fuentes energéticas como las centrales térmicas, las cuales requieren habitualmente al menos 4 días para entrar en funcionamiento, la planta objeto de esta invención ofrece una disponibilidad inmediata de producir electricidad, únicamente comparable a la energía de las centrales hidroeléctricas tradicionales;  9 hydraulic. This is especially advantageous in those periods in which energy consumption skyrockets, as in the case of summer, as well as during peak hours when an extra energy supply is required. Thus, in comparison with other energy sources such as thermal power plants, which usually require at least 4 days to enter into operation, the plant object of this invention offers an immediate availability to produce electricity, only comparable to the energy of traditional hydroelectric power plants. ;
Adicionalmente, una de las ventajas fundamentales de la invención consiste en la posibilidad de no tener que desarrollar grandes redes eléctricas para su distribución a los puntos de consumo, de modo que la electricidad será distribuida a los puntos en los que sea requerida en función de las necesidades de electricidad de cada momento;  Additionally, one of the fundamental advantages of the invention consists in the possibility of not having to develop large electrical networks for distribution to the points of consumption, so that electricity will be distributed to the points where it is required depending on the electricity needs of each moment;
Finalmente, es de resaltar el carácter ecológico de la invención, al tratarse de una fuente de energía limpia, no contaminante, con una emisión de gases dentro de normativa medioambiental y una baja generación de CO2 por kWh generado. Es asimismo ventajoso la posibilidad que ofrece de operar con cualquier tipo de materiales energéticos (nitrato amónico, pirotécnicos, explosivos,...), tanto sólidos como líquidos, evitando así la dependencia de materias primas derivadas del petróleo. Finally, it is worth highlighting the ecological nature of the invention, as it is a clean, non-polluting source of energy, with an emission of gases within environmental regulations and a low generation of CO 2 per kWh generated. It is also advantageous to offer the possibility of operating with any type of energy materials (ammonium nitrate, pyrotechnics, explosives, ...), both solid and liquid, thus avoiding dependence on petroleum-derived raw materials.
Si bien la descripción anterior se ha centrado en una realización en la que se emplea agua presurizada, en otras realizaciones de la invención podría utilizarse cualquier otro tipo de fluido, como por ejemplo gases, de modo que el gas presurizado generado podría emplearse en turbinas de aire comprimido .  While the above description has focused on an embodiment in which pressurized water is used, in other embodiments of the invention any other type of fluid could be used, such as gases, so that the generated pressurized gas could be used in turbines of compressed air .
Breve descripción de las figuras Brief description of the figures
Con objeto de lograr una mejor comprensión de la invención, acompañando a la presente memoria se presentan las siguientes figuras:  In order to achieve a better understanding of the invention, accompanying the present specification the following figures are presented:
La figura 1 muestra una vista en detalle de un pistón del dispositivo de la invención que comprende una cámara de combustión, un émbolo y una cámara de generación de presión hidráulica; Figure 1 shows a detail view of a piston of the device of the invention comprising a chamber of combustion, a piston and a hydraulic pressure generating chamber;
La figura 2 representa una vista tridimensional de un conjunto de pistones según se ha detallado en la figura 1;  Figure 2 represents a three-dimensional view of a piston assembly as detailed in Figure 1;
La figura 3 representa una vista de la central de generación eléctrica objeto de la invención.  Figure 3 represents a view of the power generation plant object of the invention.
Relación de referencias en las figuras: List of references in the figures:
1. Pistón;  1. Piston;
2. Cámara de combustión;  2. Combustion chamber;
3. Émbolo;  3. Plunger;
4. Cámara de generación de presión hidráulica;  4. Hydraulic pressure generation chamber;
5. Depósito presurizado;  5. Pressurized deposit;
6. Turbina hidroeléctrica;  6. Hydro turbine;
7. Ciclón;  7. Cyclone;
8. Tanque de agitación;  8. Stirring tank;
9. Tambor secador;  9. Drum dryer;
10. Molino de bolas;  10. Ball mill;
11. Depósito de almacenamiento de cenizas;  11. Ash storage tank;
12. Caldera de recuperación;  12. Recovery boiler;
13. Turbina de vapor;  13. Steam turbine;
14. Condensador;  14. Condenser;
15. Filtro de carbón activo.  15. Activated carbon filter.
Descripción detallada de la invención Detailed description of the invention
A continuación se describe una realización preferida de la invención, con carácter ilustrativo y no limitante de la misma, y en referencia a las figuras que acompañan a esta descripción.  A preferred embodiment of the invention is described below, illustrative and not limiting thereof, and referring to the figures accompanying this description.
En este ejemplo de realización particular de la invención, la carga de material explosivo (nitrato amónico) a cada pistón (1) fue de 200 g por ciclo, siendo el número de ciclos por hora igual a 240. De manera previa a la alimentación al pistón del nitrato amónico, éste fue sometido a una etapa de pre-tratamiento en un tanque de agitación (8) , un tambor secador (9) y un molino de bolas (10) rotatorio. En el tanque de agitación (8) se introdujo por un lado el nitrato de amonio y por otro una serie de aditivos para dotar al nitrato de las características adecuadas. La agitación fue continua para asegurar una buena mezcla, y el caudal de diseño de la alimentación de 0,6 m3/h. El equipo elegido fue un tanque de agitación de alta eficiencia con impulsor simple Quiansheng modelo XB12. In this particular embodiment of the invention, the charge of explosive material (ammonium nitrate) to each piston (1) was 200 g per cycle, the number of cycles per hour being equal to 240. Prior to feeding the Ammonium nitrate piston, this was subjected to a pre-treatment stage in a stirring tank (8), a drying drum (9) and a rotating ball mill (10). In the agitation tank (8), ammonium nitrate was introduced on the one hand and a series of additives on the other to provide nitrate with the appropriate characteristics. Stirring was continued to ensure a good mixture, and the feed design flow rate of 0.6 m 3 / h. The equipment chosen was a high efficiency stir tank with simple impeller Quiansheng model XB12.
A su vez, el método de calentamiento en el tambor secador (9) fue por contacto indirecto a través de la pared del cilindro, que se calienta por el paso de los gases. Las partículas atraviesan una sección relativamente corta, a medida que se deslizan, mientras su humedad disminuye de la misma manera en que descienden.  In turn, the heating method in the drying drum (9) was by indirect contact through the cylinder wall, which is heated by the passage of gases. The particles cross a relatively short section, as they slide, while their humidity decreases in the same way they descend.
Finalmente, las partículas fueron sometidas a molienda en el molino de bolas (10) hasta obtener un tamaño de partícula inferior a 95 mm, siendo el tamaño medio de partícula de 50 mm. En este equipo, el flujo fue de 0,28 Tn/hora de fertilizante .  Finally, the particles were subjected to grinding in the ball mill (10) until a particle size of less than 95 mm was obtained, the average particle size being 50 mm. In this equipment, the flow was 0.28 Tn / hour of fertilizer.
En la siguiente tabla se recogen las características del nitrato de amonio utilizado como materia prima en la central :  The following table shows the characteristics of the ammonium nitrate used as raw material in the plant:
Figure imgf000013_0001
Figure imgf000013_0001
Asimismo, el nitrato amónico utilizado presentaba un contenido de carbón superior al 10%. Also, the ammonium nitrate used had a carbon content greater than 10%.
En la siguiente tabla se muestran las características más importantes del nitrato de amonio como explosivo:  The following table shows the most important characteristics of ammonium nitrate as an explosive:
Velocidad VolumenSpeed Volume
Densidad Balance Presión Density Balance Pressure
Composición detonación de gases  Composition detonation of gases
(kg/m3) de 02 (Gpa) (kg / m 3 ) of 0 2 (Gpa)
(m/s) d/kg) 95% nitrato (m / s) d / kg) 95% nitrate
de amonio  ammonium
750 -1,4% 6, 62 5353 981 5% aceite  750 -1.4% 6, 62 5353 981 5% oil
mineral  mineral
Los pistones (1) fueron diseñados para disponer de una cámara de combustión (2) con un rango de presiones de 20 a 150 bares y una cámara de generación de presión hidráulica (4) con un rango de presiones de 20 a 80 bares. The pistons (1) were designed to have a combustion chamber (2) with a pressure range of 20 to 150 bars and a hydraulic pressure generation chamber (4) with a pressure range of 20 to 80 bars.
La turbina hidroeléctrica seleccionada fue una turbina Francis modelo FHE 500-08 con posición horizontal del eje.  The hydroelectric turbine selected was a Francis turbine model FHE 500-08 with horizontal axis position.
En el diseño de la instalación se tuvo en cuenta que los gases emitidos contienen algunas sustancias nocivas para el medio ambiente y aunque la concentración a la que salen está por debajo de los limites de la normativa, se diseñaron una serie de tratamientos con objeto de disminuir los contaminantes emitidos a la atmósfera y aprovechar el calor de los gases de salida de la cámara de combustión.  In the design of the installation, it was taken into account that the emitted gases contain some substances harmful to the environment and although the concentration at which they leave is below the limits of the regulations, a series of treatments were designed in order to reduce the pollutants emitted into the atmosphere and take advantage of the heat of the combustion chamber exhaust gases.
Con el fin de minimizar los daños medioambientales, se dispuso de un ciclón (7) para la separación de partículas, concretamente un colector centrífugo con entrada de aire tangencial al cuerpo del cilindro tipo ciclón. Puesto que los gases tienen una temperatura alta, el separador ciclón (7) tiene que tener la capacidad de funcionar con altas temperaturas. Las cenizas separadas fueron almacenadas en un depósito de almacenamiento de cenizas (11) .  In order to minimize environmental damage, a cyclone (7) for particle separation, specifically a centrifugal manifold with tangential air inlet to the cyclone cylinder body, was arranged. Since the gases have a high temperature, the cyclone separator (7) must have the ability to operate at high temperatures. The separated ashes were stored in an ash storage tank (11).
Asimismo, los gases enfriados son conducidos hasta un filtro de carbón activo (15) para eliminar el amoniaco y óxidos de nitrógeno que contiene la corriente de los gases. El carbón activo, en sus diversas variedades, posee una gran superficie específica y tiene la propiedad de fijar moléculas gaseosas perjudiciales u olorosas. Una vez que los gases son tratados son expulsados a la atmósfera. El equipo de carbón activo elegido fue del tipo PROTECT VENTSORB 70.  Also, the cooled gases are conducted to an activated carbon filter (15) to remove the ammonia and nitrogen oxides that the gas stream contains. Active carbon, in its various varieties, has a large specific surface and has the property of fixing harmful or odorous gaseous molecules. Once the gases are treated they are expelled into the atmosphere. The active carbon equipment chosen was of the PROTECT VENTSORB 70 type.
Los gases producidos en la cámara de combustión (2) salen a una temperatura de unos 250°C. Es posible aprovechar dicha temperatura para producir vapor que sirva de alimentación a una turbina de vapor prediseñada. El equipo seleccionado para ello es una caldera de recuperación (12) . Con esto se consigue además disminuir la temperatura de emisión de los gases a la atmósfera. The gases produced in the combustion chamber (2) leave at a temperature of about 250 ° C. It is possible to take advantage of said temperature to produce steam that feeds a pre-designed steam turbine. The equipment selected for this is a recovery boiler (12). With this I know It also reduces the emission temperature of gases into the atmosphere.
La caldera de vapor seleccionada es una caldera de recuperación Viessman mixta modelo 200 RW/RS con quemador convencional y dos pasos de gases y la turbina de vapor (13) elegida fue una turbina de gas Siemens modelo SST-100, de carcasa simple, y con reductor para accionamiento de generador .  The selected steam boiler is a Viessman mixed recovery model 200 RW / RS boiler with conventional burner and two gas passages and the steam turbine (13) chosen was a Siemens SST-100, single-shell gas turbine, and with reducer for generator drive.
A continuación se resumen los principales datos cuantitativos de la central:  The main quantitative data of the plant are summarized below:
Volumen de gases: 981 1/kg; Volume of gases: 981 1 / kg;
Presión de explosión: 55.000 bar;  Burst pressure: 55,000 bar;
Coeficiente isentrópico gases: 1,33;  Isentropic gas coefficient: 1.33;
Carga materia prima: 200 g/pistón/ciclo; Raw material load: 200 g / piston / cycle;
N° ciclos por pistón: 240 ciclos/hora; N ° cycles per piston: 240 cycles / hour;
Caudal hidráulico generado: 1,1 m3/s; Hydraulic flow generated: 1.1 m 3 / s;
Presión hidráulica: 10 bares;  Hydraulic pressure: 10 bars;
Salto hidráulico equivalente: 100 metros  Equivalent hydraulic jump: 100 meters
Para el cálculo del la energía generada se ha supuesto que los gases se expanden en la cámara de combustión de un volumen inicial de 12.600 cm3 hasta un volumen final de 42.000 cm3 con un factor de expansión de 200. El trabajo útil generado por los gases en expansión se ha calculado suponiendo una expansión isentrópica de los mismos, adiabática y sin variación de entropía. Esta hipótesis de cálculo es correcta dada la velocidad de expansión después de la detonación del combustible. For the calculation of the energy generated, it has been assumed that the gases expand in the combustion chamber from an initial volume of 12,600 cm 3 to a final volume of 42,000 cm 3 with an expansion factor of 200. The useful work generated by the Expanding gases have been calculated assuming an isentropic expansion of them, adiabatic and without entropy variation. This calculation hypothesis is correct given the speed of expansion after the detonation of the fuel.
Este trabajo útil se utilizará para presurizar el circuito hidráulico a unas presiones de 10 bares, generando un caudal medio de 1,1 m3/s. Se supone una eficiencia del conjunto de alternador-turbina del 90%. This useful work will be used to pressurize the hydraulic circuit at pressures of 10 bar, generating an average flow rate of 1.1 m 3 / s. An efficiency of the alternator-turbine assembly of 90% is assumed.
El trabajo útil generado estaría entorno a los 13.000 kJ/kg, generando una energía aprovechable para la carga de combustible utilizada (por ciclo y por pistón) de 0,71 kWh. Siendo la energía generada por hora por la central (6 pistones 240 ciclos/hora) de 1 M h, la producción anual estaría en valores próximos a 8,15 GWh (con la hipótesis de disponibilidad del 93%) . En la siguiente tabla se especifica las estimaciones de consumos y emisiones principales de la planta, estableciéndose un circuito cerrado de reutilización del agua, de tal forma que el consumo real sólo es debido a pérdidas o a evaporaciones: The useful work generated would be around 13,000 kJ / kg, generating a usable energy for the fuel load used (per cycle and per piston) of 0.71 kWh. Being the energy generated per hour by the plant (6 pistons 240 cycles / hour) of 1 M h, the annual production would be in values close to 8.15 GWh (with the hypothesis of availability of 93%). The following table specifies the estimates of main consumption and emissions of the plant, establishing a closed water reuse circuit, so that the actual consumption is only due to losses or evaporations:
Figure imgf000016_0001
Figure imgf000016_0001
Haciendo una comparativa con otras tecnologías, se puede apreciar como la contaminación por gases de efecto invernadero (C02) para la central de la invención es aproximadamente el 10% de los gramos emitidos por kWh la central de carbón térmica y del 29% de los gramos emitidos por kWh de la central de ciclo combinado y que es la que menor nivel de misiones de dióxido de carbono produce: Making a comparison with other technologies, it can be seen how the contamination by greenhouse gases (C0 2 ) for the plant of the invention is approximately 10% of the grams emitted per kWh of the thermal coal plant and 29% of the grams emitted per kWh of the combined cycle plant and which is the one with the lowest level of carbon dioxide missions produces:
NOx COV s CO N20NOx VOC s CO N 2 0
Tecnología C02 so2 Technology C0 2 or 2
(g/kwh) (g/kWh) (g/kWh) (g/kWh) (g/kWh) (g/kWh) (g / kwh) (g / kWh) (g / kWh) (g / kWh) (g / kWh) (g / kWh)
Carbón Central Central coal
909, 00 12, 60  909.00 12, 60
térmica 4, 10 0, 10 0, 17 0,45 convencional  thermal 4, 10 0, 10 0, 17 0.45 conventional
Fuelóleo  Fuel oil
Central  Central
727,00 8,00 2, 600 0, 10  727.00 8.00 2, 600 0, 10
térmica 0, 16 0, 42 convencional  thermal 0, 16 0, 42 conventional
Gas natural  Natural gas
Central  Central
482, 00 0, 01 1, 00 0, 01  482, 00 0, 01 1, 00 0, 01
térmica 0, 19 0, 19 convencional  thermal 0, 19 0, 19 conventional
Carbón Central  Central coal
de lecho 884, 00 0,84 0, 42 n.d. n.d. n.d. fluidificado  of bed 884.00 0.84 0.42 n.d. n.d. n.d. fluidized
Gas natural  Natural gas
Central de  Center of
345, 00 0, 00 0,27  345.00 0.00 0.27
ciclo — — 0, 13 combinado  cycle - - 0, 13 combined
CENTRAL de la  CENTRAL of the
99,00  99.00
INVENCIÓN — 0,065 — 0,986 — Además se observa que mientras el resto emite compuestos de azufre, la central de la invención no presenta este tipo de emisión, lo mismo que ocurre para emisiones de compuestos orgánicos volátiles (COV's) y de óxido nitroso (N20) . Estos datos indican que la combustión del nitrato representa una ventaja medioambiental frente a otras fuentes de energía actuales . INVENTION - 0.065 - 0.986 - Furthermore, it is observed that while the rest emit sulfur compounds, the plant of the invention does not present this type of emission, the same as for volatile organic compound (VOC) and nitrous oxide (N 2 0) emissions. These data indicate that nitrate combustion represents an environmental advantage over other current energy sources.

Claims

Reivindicaciones Claims
1. Dispositivo para la generación de electricidad a partir de agua presurizada y de al menos un material explosivo caracterizado por que comprende: 1. Device for generating electricity from pressurized water and at least one explosive material characterized in that it comprises:
(a) al menos un pistón que comprende una cámara de combustión y una cámara de generación de presión hidráulica, donde dicha cámara de combustión se encuentra situada en uno de los extremos del pistón y comprende al menos una válvula de entrada de material explosivo y al menos una válvula de salida de gases, y donde en el extremo opuesto del pistón se encuentra localizada la cámara de generación de presión hidráulica, la cual dispone de al menos una válvula de salida de caudal hidráulico y de al menos una válvula de entrada de agua;  (a) at least one piston comprising a combustion chamber and a hydraulic pressure generation chamber, wherein said combustion chamber is located at one end of the piston and comprises at least one inlet valve of explosive material and at the less a gas outlet valve, and where the hydraulic pressure generating chamber is located at the opposite end of the piston, which has at least one hydraulic flow outlet valve and at least one water inlet valve ;
(b) a continuación de la cámara de generación de presión hidráulica se localiza al menos un depósito presurizado conectado a al menos una turbina hidroeléctrica para la generación de electricidad.  (b) following the hydraulic pressure generation chamber, at least one pressurized reservoir connected to at least one hydroelectric turbine for the generation of electricity is located.
2. Central eléctrica caracterizada por que comprende al menos un dispositivo de acuerdo a la reivindicación 1. 2. Power plant characterized in that it comprises at least one device according to claim 1.
3. Central, de acuerdo a la reivindicación 2, donde el número de pistones es igual a 6. 3. Central, according to claim 2, wherein the number of pistons is equal to 6.
4. Central, de acuerdo a la reivindicación 2 o 3, caracterizada por que comprende adicionalmente al menos una instalación de pre-tratamiento del material explosivo empleado como materia prima. 4. Central, according to claim 2 or 3, characterized in that it additionally comprises at least one pre-treatment installation of the explosive material used as raw material.
5. Central, de acuerdo a la reivindicación 4, donde dicha instalación de pre-tratamiento comprende al menos un recipiente para la adición de al menos un aditivo al material explosivo, al menos un equipo de secado y al menos un equipo para la molienda del material explosivo. 5. Central, according to claim 4, wherein said pre-treatment installation comprises at least one container for adding at least one additive to the explosive material, at least one drying equipment and at least one equipment for grinding the explosive material
6. Central, de acuerdo a una cualquiera de las reivindicaciones 2 a 5, caracterizada por que se encuentra ubicada bajo el agua, enterrada o en superficie. 6. Central, according to any one of claims 2 to 5, characterized in that it is located underwater, buried or on the surface.
7. Central, de acuerdo a una cualquiera de las reivindicaciones 2 a 6, caracterizada por que comprende adicionalmente al menos una torre de refrigeración. 7. Central according to any one of claims 2 to 6, characterized in that it additionally comprises at least one cooling tower.
8. Central, de acuerdo a una cualquiera de las reivindicaciones 2 a 7, caracterizada porque presenta a su vez un circuito de alimentación de agua externa para la refrigeración de toda la central y para cargar de agua la cámara de generación de presión hidráulica. 8. Central, according to any one of claims 2 to 7, characterized in that it also has an external water supply circuit for cooling the entire plant and for charging the hydraulic pressure generating chamber with water.
9. Procedimiento para la generación de electricidad a partir de agua presurizada y de al menos un material explosivo mediante el empleo de un dispositivo según la reivindicación 1, caracterizado por que comprende: 9. Method for generating electricity from pressurized water and at least one explosive material by using a device according to claim 1, characterized in that it comprises:
(a) alimentar un material explosivo a al menos una cámara de combustión que comprende una válvula de entrada de material explosivo y una válvula de salida de gases, estando dicha cámara de combustión localizada en uno de los extremos de un pistón, de modo que el extremo opuesto de dicho pistón dispone de una cámara de generación de presión hidráulica con al menos una válvula de salida de caudal hidráulico y al menos una válvula de entrada de agua;  (a) feeding an explosive material to at least one combustion chamber comprising an explosive material inlet valve and a gas outlet valve, said combustion chamber being located at one of the ends of a piston, so that the opposite end of said piston has a hydraulic pressure generating chamber with at least one hydraulic flow outlet valve and at least one water inlet valve;
(b) alimentar un volumen de agua a la cámara de generación de presión hidráulica;  (b) feed a volume of water to the hydraulic pressure generating chamber;
(c) detonar del material explosivo, generando gases que se expansionan moviendo el émbolo del pistón y presurizando el agua localizada en la cámara de generación de presión hidráulica; (c) detonate the explosive material, generating gases that expand by moving the piston piston and pressurizing the water located in the hydraulic pressure generating chamber;
(d) a continuación, la válvula de salida de caudal hidráulico se abre, generando un caudal hidráulico equivalente a la capacidad de la cámara de generación de presión hidráulica, donde dicho caudal hidráulico es enviado a al menos un depósito presurizado; (e) posteriormente, la válvula de salida de gases de la cámara de combustión se abre, liberando un caudal determinado de gases generados en la combustión, al tiempo que la válvula de entrada de agua se abre y comienza a llenarse de nuevo la cámara de generación de presión hidráulica; (d) the hydraulic flow outlet valve is then opened, generating a hydraulic flow equivalent to the capacity of the hydraulic pressure generating chamber, where said hydraulic flow is sent to at least one pressurized reservoir; (e) subsequently, the combustion chamber gas outlet valve opens, releasing a certain flow rate of gases generated in the combustion, while the water inlet valve opens and the filling chamber begins to refill. hydraulic pressure generation;
(f) asimismo, el agua procedente del depósito presurizado es inyectada a al menos una turbina hidroeléctrica, generando electricidad.  (f) Likewise, water from the pressurized reservoir is injected into at least one hydroelectric turbine, generating electricity.
10. Procedimiento, de acuerdo a la reivindicación 9, donde una vez llena la cámara de generación de presión hidráulica comienza de nuevo el procedimiento, dando lugar a un nuevo ciclo de generación. 10. Procedure, according to claim 9, where once the hydraulic pressure generation chamber is filled, the procedure begins again, giving rise to a new generation cycle.
11. Procedimiento, de acuerdo a la reivindicación 9 o 10, caracterizado por que comprende una etapa adicional de almacenamiento y recuperación del agua de proceso, operando en circuito cerrado. 11. Method, according to claim 9 or 10, characterized in that it comprises an additional stage of storage and recovery of the process water, operating in a closed circuit.
12. Procedimiento, de acuerdo a una cualquiera de las reivindicaciones 9 a 11, donde el material explosivo es seleccionado entre un material sólido y/o liquido. 12. Method according to any one of claims 9 to 11, wherein the explosive material is selected from a solid and / or liquid material.
13. Procedimiento, de acuerdo a la reivindicación 12, donde el material explosivo es seleccionado de un grupo que consiste en fertilizantes, explosivos comerciales y materiales reciclados. 13. Method according to claim 12, wherein the explosive material is selected from a group consisting of fertilizers, commercial explosives and recycled materials.
14. Procedimiento, de acuerdo a la reivindicación 13, donde el fertilizante es nitrato de amonio . 14. Process according to claim 13, wherein the fertilizer is ammonium nitrate.
15. Procedimiento, de acuerdo a la reivindicación 13, donde dicho material reciclado es seleccionado entre materiales provenientes de programas de desmilitarización de explosivos o del reciclaje de materiales pirotécnicos . 15. Method according to claim 13, wherein said recycled material is selected from materials from explosives demilitarization programs or from recycling of pyrotechnic materials.
16. Procedimiento, de acuerdo a una cualquiera de las reivindicaciones 9 a 15, caracterizado por que comprende una etapa adicional de pre-tratamiento del material explosivo empleado en el procedimiento. 16. Process according to any one of claims 9 to 15, characterized in that it comprises an additional stage of pre-treatment of the explosive material used in the process.
17. Procedimiento, de acuerdo a la reivindicación 16, donde dicho pre-tratamiento comprende la adición de al menos un aditivo al material explosivo, asi como el secado y la molienda de dicho material explosivo . 17. Method according to claim 16, wherein said pretreatment comprises adding at least one additive to the explosive material, as well as drying and milling said explosive material.
18. Procedimiento, de acuerdo a una cualquiera de las reivindicaciones 9 a 16, caracterizado por que comprende asimismo al menos una etapa de post-tratamiento de los gases de combustión generados en el procedimiento. 18. Method according to any one of claims 9 to 16, characterized in that it also comprises at least one post-treatment stage of the combustion gases generated in the process.
19. Procedimiento, de acuerdo la reivindicación 18, donde dicho post-tratamiento de los gases de combustión comprende una etapa de separación en al menos un separador ciclónico, asi como la introducción de los gases separados en al menos una caldera de recuperación en la que se genera vapor y gases . 19. The method according to claim 18, wherein said post-treatment of the flue gases comprises a separation stage in at least one cyclone separator, as well as the introduction of the separated gases into at least one recovery boiler in which steam and gases are generated.
20. Procedimiento, de acuerdo la reivindicación 19, donde dicho vapor es enviado a al menos una turbina para la generación adicional de electricidad. 20. Method according to claim 19, wherein said steam is sent to at least one turbine for additional electricity generation.
21. Procedimiento, de acuerdo la reivindicación 19, donde los gases generados en la caldera de recuperación son tratados previamente a su envió a la atmósfera en al menos un filtro de carbón activo. 21. Method according to claim 19, wherein the gases generated in the recovery boiler are treated prior to being sent to the atmosphere in at least one activated carbon filter.
22. Procedimiento, de acuerdo a una cualquiera de las reivindicaciones 9 a 21, donde en lugar de agua se emplea un gas que, una vez presurizado, es empleado en turbinas de aire comprimido. 22. Method according to any one of claims 9 to 21, wherein instead of water a gas is used which, once pressurized, is used in compressed air turbines.
23. Uso de un dispositivo de acuerdo a la reivindicación 1 en procesos de osmosis inversa en plantas desalinizadoras. 23. Use of a device according to claim 1 in reverse osmosis processes in desalination plants.
PCT/ES2011/000253 2011-07-27 2011-07-27 Device and method for generating electricity from pressurized water and at least one explosive material WO2013014299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/000253 WO2013014299A1 (en) 2011-07-27 2011-07-27 Device and method for generating electricity from pressurized water and at least one explosive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/000253 WO2013014299A1 (en) 2011-07-27 2011-07-27 Device and method for generating electricity from pressurized water and at least one explosive material

Publications (1)

Publication Number Publication Date
WO2013014299A1 true WO2013014299A1 (en) 2013-01-31

Family

ID=47600544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/000253 WO2013014299A1 (en) 2011-07-27 2011-07-27 Device and method for generating electricity from pressurized water and at least one explosive material

Country Status (1)

Country Link
WO (1) WO2013014299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000070A1 (en) 2013-07-03 2015-01-08 Alphora Research Inc. Synthetic process for preparation of macrocyclic c1-keto analogs of halichondrin b and intermediates useful therein including intermediates containing -so2-(p-tolyl) groups

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2612961A1 (en) * 1976-03-26 1977-10-06 Hans J Wendt Electronically controlled IC prime mover unit - has accumulator and powered pistons displacing fluid to drive motor
FR2585769A1 (en) * 1985-08-01 1987-02-06 Malherbe Andre Device for the continuous production of mechanical energy by pyrotechnical means
WO2007091270A2 (en) * 2006-02-09 2007-08-16 Joshua Waldhorn Anaerobic deflagration internal piston engines, anaerobic fuels and vehicles comprising the same
US20080230477A1 (en) * 2006-07-31 2008-09-25 Gueorgui Milev Mihaylov Blast energy accumulator and energy conversion device and method
WO2010081929A1 (en) * 2009-01-17 2010-07-22 Oema Ingenieros, S.L. Method for generating pyroelectric energy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2612961A1 (en) * 1976-03-26 1977-10-06 Hans J Wendt Electronically controlled IC prime mover unit - has accumulator and powered pistons displacing fluid to drive motor
FR2585769A1 (en) * 1985-08-01 1987-02-06 Malherbe Andre Device for the continuous production of mechanical energy by pyrotechnical means
WO2007091270A2 (en) * 2006-02-09 2007-08-16 Joshua Waldhorn Anaerobic deflagration internal piston engines, anaerobic fuels and vehicles comprising the same
US20080230477A1 (en) * 2006-07-31 2008-09-25 Gueorgui Milev Mihaylov Blast energy accumulator and energy conversion device and method
WO2010081929A1 (en) * 2009-01-17 2010-07-22 Oema Ingenieros, S.L. Method for generating pyroelectric energy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199741, Derwent World Patents Index; AN 1977-J3402Y *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015000070A1 (en) 2013-07-03 2015-01-08 Alphora Research Inc. Synthetic process for preparation of macrocyclic c1-keto analogs of halichondrin b and intermediates useful therein including intermediates containing -so2-(p-tolyl) groups

Similar Documents

Publication Publication Date Title
US6955052B2 (en) Thermal gas compression engine
AU595421B2 (en) Power plant using CO2 as a working fluid
Breeze Gas-Turbine power generation
ES2758543T3 (en) Thermochemical use of carbonaceous materials, particularly for emission-free energy generation
ES2363959B2 (en) METHOD FOR STORAGE THERMAL SOLAR ENERGY.
ES2968869T3 (en) Hydrogen energy storage
US20170002731A1 (en) System and modality to generate power from liquid jet in heat engine and more
CN109441574A (en) Nearly zero carbon emission integral coal gasification cogeneration technique for peak regulation
CN101946070B (en) Method of converting solar heat energy
EP3812033A1 (en) Method and device for generating low-carbon-emission energy from fossils
CN107191289A (en) Pure oxygen oxygen-enriched combusting mover device and the vehicles and system using the device
CN101371026A (en) Water combustion technology-the haase cycle
JP2018031067A (en) Generator of "mixture gas containing pressurized water vapor and hho gas" and utilization method thereof
WO2013014299A1 (en) Device and method for generating electricity from pressurized water and at least one explosive material
RU2613756C1 (en) Ship gas turbine plant with exhaust gases heat utilization
Miljkovic Injection power cycle applied in OTEC power plants
DE102006062741B4 (en) Process for the recovery, storage and treatment of liquid work equipment and a method for using the work equipment on a rotary swivel piston engine
CN206738005U (en) A kind of gas electricity system
JP2015193679A (en) Engine mechanism of rotary piston engine vehicle
Balaji et al. Carbon capture and storage using renewable energy sources: a review
CN106089437B (en) Supercritical carbon dioxide low temperature dynamical system
ES2755325T3 (en) Combustion procedure for solid, liquid, or gaseous hydrocarbon (HC) starting materials in a heat engine, heat engine, and system for producing energy from hydrocarbon (HC) materials
US20100089058A1 (en) Combustion Powered Hydroelectric Sequential Turbines
RU2826039C1 (en) Energy-safe combined power plant
US20200271310A1 (en) Bulk Energy Storage Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870062

Country of ref document: EP

Kind code of ref document: A1