WO2013011859A1 - Current sensor - Google Patents
Current sensor Download PDFInfo
- Publication number
- WO2013011859A1 WO2013011859A1 PCT/JP2012/067506 JP2012067506W WO2013011859A1 WO 2013011859 A1 WO2013011859 A1 WO 2013011859A1 JP 2012067506 W JP2012067506 W JP 2012067506W WO 2013011859 A1 WO2013011859 A1 WO 2013011859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- sensor
- output
- magnetic sensor
- magnetic
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
Definitions
- the present invention relates to a current sensor that measures current without contact.
- Patent Document 1 discloses a current sensor using a magnetoresistive effect element as an element for a magnetic sensor.
- the effect of variations in characteristics of each magnetoresistive element appears as a magnetic sensor output (hereinafter referred to as an offset) in a zero magnetic field.
- the offset varies depending on the temperature, but if the temperature of the magnetic sensor differs depending on the position of the magnetic sensor in the current sensor (for example, the inner side where heat is easily trapped and the outer side where it is easily affected by outside air temperature), the offset of each magnetic sensor Therefore, when such a magnetic sensor is used, the current measurement accuracy of the current sensor is lowered.
- the present invention has been made in view of such a point, and an object thereof is to provide a current sensor capable of suppressing a decrease in current measurement accuracy due to an influence of an offset of a magnetic sensor output.
- the current sensor of the present invention includes a plurality of current lines each including a set of magnetic sensors arranged so as to sandwich a target current line and a substrate on which the set of magnetic sensors is arranged. Calculate the difference between the output of each of the corresponding current sensor units and the set of magnetic sensors in each current sensor unit, and remove the influence of the adjacent current line from the output of each current sensor unit to measure the current of the current being measured.
- a pair of magnetic sensors included in the current sensor unit are connected to each other by a ground terminal of each magnetic sensor and a ground electrode provided on the substrate so that the temperatures thereof are substantially equal to each other. It is characterized by being.
- the ground terminals are connected to each other, so that the temperatures of the magnetic sensors become substantially equal and vary depending on the temperature.
- the output offset is approximately equal. Since the offsets are almost equal, if the output difference between the two magnetic sensors is calculated, the offset is canceled out and its influence can be reduced. Moreover, since the output of the current sensor unit corresponding to a plurality of current lines is used, the influence of the current flowing through the current line other than the current line through which the current to be measured flows can be reduced.
- the pair of magnetic sensors included in the current sensor unit have the same temperature characteristics of the offset change.
- the magnitude of the offset can be considered by dividing it into a magnitude of the offset at a reference temperature (for example, 25 ° C.) and a change due to temperature. Even if the magnitude of the offset at the reference temperature is slightly different for a set of magnetic sensors, the influence can be removed by calculation. On the other hand, if the amount of change due to temperature differs for a set of magnetic sensors, the difference becomes an error and cannot be removed. Therefore, the error can be minimized by making the temperature characteristics of the offset change substantially equal.
- the set of magnetic sensors included in the current sensor unit has a sensitivity axis so that the influence of the current flowing through the current line appears in the opposite polarity in the output of the set of magnetic sensors. It is preferable that they are arranged in the same direction. According to this configuration, the influence of the offset can be sufficiently reduced by taking the difference between the outputs of the magnetic sensors.
- a first current sensor unit including a first magnetic sensor and a second magnetic sensor disposed so as to sandwich a first current line through which a current to be measured flows, and the measured current
- a second current sensor unit including a third magnetic sensor and a fourth magnetic sensor arranged to sandwich a second current line through which a current different from the current flows.
- the sensitivity coefficient X 11 related to the current flowing through the first current line of the first current sensor unit, and the current flowing through the second current line of the second current sensor unit.
- Sensitivity coefficient X 22 sensitivity coefficient X 12 related to the current flowing through the second current line of the first current sensor unit, sensitivity coefficient related to current flowing through the first current line of the second current sensor unit X 21 , the difference ⁇ V 1 between the output of the first magnetic sensor and the output of the second magnetic sensor, and the difference ⁇ V 2 between the output of the third magnetic sensor and the output of the fourth magnetic sensor
- the current value I 1 of the current to be measured that flows through the first current line can be calculated from the following expression (7) that is used.
- a first current sensor unit including a first magnetic sensor and a second magnetic sensor disposed so as to sandwich a first current line through which a current to be measured flows, and the measured current
- a second current sensor unit including a third magnetic sensor and a fourth magnetic sensor disposed so as to sandwich a second current line through which a second current different from the current flows
- a third current sensor unit including a fifth magnetic sensor and a sixth magnetic sensor disposed so as to sandwich a third current line through which a third current different from the second current flows.
- the sensitivity coefficient X mn relating to the current flowing through the n-th current line (n is a natural number of 1 to 3) of the m-th current sensor unit (m is a natural number of 1 to 3),
- the current value I 1 of the current to be measured flowing through the first current line is expressed by the following equation (18) expressed using the difference ⁇ V 3 between the output of the magnetic sensor and the output of the sixth magnetic sensor.
- D satisfies the following formula (21).
- the present invention it is possible to provide a current sensor that can suppress a decrease in current measurement accuracy due to the influence of an offset of the magnetic sensor output.
- FIG. 4 is a schematic diagram illustrating a configuration example of a current sensor according to Embodiment 1.
- FIG. 2 is a block diagram showing a configuration of a current sensor according to Embodiment 1.
- FIG. 3 is a block diagram illustrating a configuration example of a current sensor unit according to Embodiment 1.
- FIG. 3 is a circuit diagram illustrating a configuration example of a magnetic sensor according to Embodiment 1.
- FIG. It is a block diagram which shows the modification of the current sensor unit which concerns on Embodiment 1.
- FIG. It is a characteristic view which shows a mode that the influence of offset is reduced.
- 6 is a schematic diagram illustrating a configuration example of a current sensor according to Embodiment 2.
- FIG. 6 is a block diagram illustrating a configuration of a current sensor according to Embodiment 2.
- FIG. 6 is a block diagram illustrating a configuration of a current sensor according to Embodiment 2.
- FIG. 1 is a schematic diagram illustrating a configuration example of a current sensor 1 according to the present embodiment.
- the direction corresponding to the lower left direction (Y + direction) of FIG. 1 is the front
- the direction corresponding to the upper right direction (Y ⁇ direction) is the rear
- the direction corresponding to the left direction (X ⁇ direction) is the left
- the page The direction corresponding to the right direction (X + direction) is called right
- the direction corresponding to the upward direction (Z + direction) on the page is called up
- the direction corresponding to the down direction (Z ⁇ direction) on the page is called down.
- the current sensor 1 shown in FIG. 1 includes a first current sensor unit 1a disposed close to the first current line 2a through which the measured current Ia flows, and a second current line 2b through which the adjacent current Ib flows. And a second current sensor unit 1b arranged close to each other.
- the first current sensor unit 1a has a thin plate-like first substrate 12a partially cut away so that the first current line 2a can be arranged, and a substantially rectangular parallelepiped shape arranged on the main surface of the first substrate 12a.
- the first magnetic sensor 11a and the second magnetic sensor 11b are included.
- the second current sensor unit 1b has a thin plate-like second substrate 12b partially cut away so that the second current line 2b can be arranged, and a substantially rectangular parallelepiped shape arranged on the main surface of the second substrate 12b.
- a third magnetic sensor 11c and a fourth magnetic sensor 11d are included.
- the arrows attached to the magnetic sensors indicate the directions of the sensitivity axes
- the arrows attached to the current lines indicate the directions of currents flowing through the current lines
- the arrows arranged around the lines indicate the direction of the induced magnetic field due to the current flowing through each current line.
- the first magnetic sensor 11a and the second magnetic sensor 11b are arranged on one main surface of the first substrate 12a so that the distance from the first current line 2a extending in the vertical direction is substantially equal. Further, the first magnetic sensor 11a and the second magnetic sensor 11b are arranged such that the sensitivity axes are directed in substantially the same direction. For this reason, the first magnetic sensor 11a and the second magnetic sensor 11b receive the induced magnetic field Ha caused by the current Ia to be measured and generate outputs having opposite polarities.
- the influence of the external magnetic field can be reduced by taking the difference between the output of the first magnetic sensor 11a and the output of the second magnetic sensor 11b. . Further, the offset of the output of the first magnetic sensor 11a and the offset of the output of the second magnetic sensor 11b can be offset to reduce the influence of the offset.
- the relationship between the third magnetic sensor 11c and the fourth magnetic sensor 11d and the second current line 2b is the same. That is, the third magnetic sensor 11c and the fourth magnetic sensor 11d are arranged on one main surface of the second substrate 12b so that the distance from the second current line 2b extending in the vertical direction is substantially equal. Further, the third magnetic sensor 11c and the fourth magnetic sensor 11d are arranged so that the sensitivity axes are directed in substantially the same direction, so that outputs of opposite polarities are generated under the influence of the induced magnetic field Hb by the adjacent current Ib. It has become. Thereby, the influence of an external magnetic field can be reduced. Further, the influence of offset can be reduced.
- the current sensor 1 is close to the second current line 2b in addition to the first current sensor unit 1a including the first magnetic sensor 11a and the second magnetic sensor 11b. And a second current sensor unit 1b including a third magnetic sensor 11c and a fourth magnetic sensor 11d.
- the correction can be made in consideration of the influence of the adjacent current Ib flowing through the second current line 2b, so that the measured current Ia can be calculated with high accuracy. A specific process related to the calculation of the current Ia to be measured will be described later.
- Each of the magnetic sensors (11a to 11d) includes a plurality of terminals, and is connected to the first substrate 12a or the second substrate 12b via each terminal. At least one of the terminals included in each of the magnetic sensors (11a to 11d) is a ground terminal, and the ground terminal is connected to a ground electrode provided on the first substrate 12a or a ground electrode provided on the second substrate 12b. ing. Specifically, the ground terminal 11a_GND of the first magnetic sensor 11a is connected to the ground electrode 12a_GND provided on the first substrate 12a, and the ground terminal 11b_GND of the second magnetic sensor 11b is provided on the first substrate 12a. It is connected to the ground electrode 12a_GND.
- the ground terminal 11c_GND of the third magnetic sensor 11c is connected to the ground electrode 12b_GND provided on the second substrate 12b
- the ground terminal 11d_GND of the fourth magnetic sensor 11d is connected to the ground electrode 12b_GND provided on the second substrate 12b. It is connected to the. That is, the first magnetic sensor 11a and the second magnetic sensor 11b are connected via the ground terminal 11a_GND, the ground terminal 11b_GND, and the ground electrode 12a_GND
- the third magnetic sensor 11c and the fourth magnetic sensor 11d are connected to the ground terminal 11c_GND.
- the first substrate 12a and the second substrate 12b are substrates having a substantially U-shaped planar shape on which a wiring pattern is formed.
- a first current line 2a extending in a direction substantially orthogonal to the first main surface of the first substrate 12a is disposed in a space that forms a substantially U-shaped notch.
- the first substrate 12a is arranged in a plane substantially perpendicular to the direction of flow of the current Ia to be measured.
- a second current line 2b extending in a direction substantially orthogonal to the first main surface of the second substrate 12b is disposed in a space that forms a substantially U-shaped notch. Is done. That is, the second substrate 12b is disposed in a plane substantially perpendicular to the direction in which the adjacent current Ib flows.
- the ground electrode 12a_GND is provided on the first main surface of the first substrate 12a.
- a ground electrode 12b_GND is provided on the first main surface of the second substrate 12b.
- the ground electrode 12a_GND and the ground electrode 12b_GND are connected to a ground GND (not shown).
- the ground electrode 12a_GND applies a ground voltage by the ground GND to the first magnetic sensor 11a connected via the ground terminal 11a_GND and the second magnetic sensor 11b connected via the ground terminal 11b_GND, and is connected to one side.
- the heat of one magnetic sensor can be transferred to the other magnetic sensor.
- the ground electrode 12b_GND applies a ground voltage by the ground GND to the third magnetic sensor 11c connected through the ground terminal 11c_GND and the fourth magnetic sensor 11d connected through the ground terminal 11d_GND, and is connected to the ground electrode 12b_GND.
- the heat of one magnetic sensor can be transferred to the other magnetic sensor. Thereby, the temperature of a set of magnetic sensors included in the same current sensor unit becomes substantially equal.
- the ground electrodes 12a_GND and 12b_GND are made of a material having high conductivity and thermal conductivity in order to apply a ground voltage to each magnetic sensor so that heat transfer between the magnetic sensors is performed appropriately. It is desirable that Examples of such a material include silver, copper, gold, and aluminum.
- first substrate 12a and the second substrate 12b have wirings (not shown) for supplying a power supply voltage to the magnetic sensors (11a to 11d) and wirings for transmitting input / output signals of the magnetic sensors (11a to 11d). (Not shown) is provided.
- the first substrate 12a and the second substrate 12b may be provided with an arithmetic device (not shown).
- FIG. 2 is a block diagram illustrating a configuration example of the current sensor 1 including the first current sensor unit 1a and the second current sensor unit 1b.
- the current sensor 1 includes an arithmetic device 1d that calculates the current value of the current Ia to be measured from the output of the first current sensor unit 1a and the output of the second current sensor unit 1b.
- the current sensor 1 includes the first current sensor unit 1a corresponding to the first current line 2a and the second current sensor unit 1b corresponding to the second current line 2b, and an operation for calculating these outputs.
- the arithmetic device 1d may be provided outside the current sensor 1. That is, the current sensor 1 may be configured by a current measurement module that does not include the arithmetic device 1d. In this case, the current measurement module includes a first current sensor unit 1a and a second current sensor unit 1b.
- FIG. 3 is a block diagram showing a specific configuration example of the first current sensor unit 1a.
- FIG. 4 is a circuit diagram showing a configuration example of the first magnetic sensor 11a and the second magnetic sensor 11b.
- the first current sensor unit 1a includes a magnetic balance type first magnetic sensor 11a and a second magnetic sensor 11b, and a first control circuit that controls the first magnetic sensor 11a and the second magnetic sensor 11b. 13a and a second control circuit 13b, and an arithmetic device 14a that calculates a voltage difference between the output on the first magnetic sensor 11a side and the output on the second magnetic sensor 11b side.
- the first magnetic sensor 11a and the second magnetic sensor 11b include feedback coils 111a and 111b arranged to generate a magnetic field in a direction that cancels the induced magnetic field Ha generated by the current Ia to be measured, and four magnetoresistive elements M1.
- the first magnetic sensor 11a and the second magnetic sensor 11b may be magnetic proportional magnetic sensors that do not include the feedback coils 111a and 111b. Further, the number of magnetoresistive elements constituting the bridge circuits 112a and 112b is not limited to four.
- the bridge circuits 112a and 112b may be configured by combining any number of magnetoresistance effect elements and fixed resistance elements.
- first magnetic sensor 11a and the second magnetic sensor 11b magnetic sensors having substantially equal temperature characteristics of output offset change are used. This is to sufficiently suppress the influence of offset in the magnetic sensor output.
- a magnetic sensor with small variations in element characteristics may be used, such as a magnetic sensor manufactured using the same substrate or a magnetic sensor manufactured using the same lot.
- the influence of the offset of the magnetic sensor can be offset by simple correction using only this pair. .
- the first control circuit 13a and the second control circuit 13b amplify the differential outputs of the bridge circuits 112a and 112b, and control the feedback currents of the feedback coils 111a and 111b.
- I / V amplifiers 132a and 132b for converting to voltage.
- the first control circuit 13a and the second control circuit 13b have a function of correcting the absolute value of the offset voltage. Thereby, the influence of the offset in the 1st magnetic sensor 11a and the 2nd magnetic sensor 11b can fully be reduced.
- the offset correction is performed, for example, by increasing or decreasing the voltage value of each output so that the absolute value of the offset at a predetermined reference temperature (for example, 25 ° C.) becomes substantially equal.
- the function for correcting the absolute value of the offset voltage may be included in the arithmetic device 14a or the arithmetic device 1d.
- the computing device 14a is configured to be able to output the difference between the output voltages from the control circuits 13a and 13b (that is, the output voltages of the I / V amplifiers 132a and 132b).
- the arithmetic device 14a is composed of, for example, a differential amplifier.
- the influence of an external magnetic field such as geomagnetism can be canceled by the arithmetic processing in the arithmetic device 14a.
- the offset of the output on the first magnetic sensor 11a side and the offset of the output on the second magnetic sensor 11b side can be offset. Thereby, the current value can be measured with high accuracy.
- the feedback coils 111a and 111b are arranged in the vicinity of the magnetoresistive elements M1 to M4 constituting the bridge circuits 112a and 112b, and cancel the induced magnetic field Ha generated by the current Ia to be measured. Generates a canceling magnetic field.
- the magnetoresistive elements M1 to M4 of the bridge circuits 112a and 112b GMR (Giant Magneto Resistance) elements, TMR (Tunnel Magneto Resistance) elements, or the like are used.
- the magnetoresistive element has a characteristic that the resistance value is changed by an induced magnetic field from the current to be measured.
- One power supply terminal a of the bridge circuits 112a and 112b is connected to the power supply Vdd, and the other power supply terminal b is connected to the ground GND.
- the power supply terminal b corresponds to the ground terminal 11a_GND and the ground terminal 11b_GND shown in FIG.
- the outputs from the two output terminals c and d of the bridge circuits 112a and 112b are differentially amplified by the differential / current amplifiers 131a and 131b, respectively.
- the feedback coils 111a and 111b receive the feedback current through the terminals e and f. Flowing. When the feedback current flows through the feedback coils 111a and 111b, a cancellation magnetic field that cancels the induced magnetic field Ha is generated by the feedback current.
- the currents flowing through the feedback coils 111a and 111b when the induced magnetic field Ha and the canceling magnetic field are balanced are converted into voltages by the I / V amplifiers 132a and 132b, respectively, and the first magnetic sensor 11a. Side output and output on the second magnetic sensor 11b side.
- the structure of a current sensor unit is not limited to this.
- the arithmetic device 1d shown in FIG. 2 may have the function of the arithmetic device 14a.
- Each magnetic sensor is not limited to a magnetic sensor using a magnetoresistive element.
- a magnetic sensor using a Hall element may be applied.
- the configuration of the second current sensor unit 1b is the same as that of the first current sensor unit 1a. That is, the second current sensor unit 1b includes a third magnetic sensor 11c and a fourth magnetic sensor 11d, a third control circuit 13c and a fourth control circuit 13d that control the third magnetic sensor 11c and the fourth magnetic sensor 11d, An arithmetic device 14b that calculates a voltage difference between the output on the third magnetic sensor 11c side and the output on the fourth magnetic sensor 11d side is provided.
- the configurations of the third magnetic sensor 11c and the fourth magnetic sensor 11d are the same as the configurations of the first magnetic sensor 11a and the second magnetic sensor 11b, and the configurations of the third control circuit 13c and the fourth control circuit 13d are the same.
- the third magnetic sensor 11c and the fourth magnetic sensor 11d include the feedback coils 111c and 111d arranged to generate a magnetic field in a direction that cancels the induction magnetic field Hb generated by the adjacent current Ib, and four magnetoresistive elements. And bridge circuits 112c and 112d composed of M1 to M4.
- the third control circuit 13c and the fourth control circuit 13d amplify the differential outputs of the bridge circuits 112c and 112d, and control the feedback currents of the feedback coils 111c and 111d.
- I / V amplifiers 132c and 132d for converting a current into a voltage.
- the third control circuit 13c and the fourth control circuit 13d have a function of correcting the absolute value of the offset voltage in the same manner as the first control circuit 13a and the second control circuit 13b.
- the first control circuit 13a, the second control circuit 13b, the calculation device 14a, the calculation device 1d, etc. determine the absolute value of the offset at a predetermined reference temperature (for example, 25 ° C.). Correction is performed so as to be substantially equal. Thereby, the influence of offset can be reduced sufficiently. Further, in the current sensor 1 according to the present embodiment, the temperature characteristics of the output offset change are substantially equal in a set of magnetic sensors included in the same current sensor unit. Thereby, by combining with the above correction, the offset of a set of magnetic sensors included in the same current sensor unit can be made substantially equal regardless of the temperature of the magnetic sensors. Therefore, by taking the difference between the sensor outputs, it is possible to sufficiently reduce the influence of the offset that varies depending on the temperature.
- a predetermined reference temperature for example, 25 ° C.
- FIG. 6 is a characteristic diagram showing how the influence of offset is reduced.
- FIG. 6A shows the temperature characteristics of the offset voltage in the first magnetic sensor 11a and the second magnetic sensor 11b. As shown in FIG. 6A, in the first magnetic sensor 11a and the second magnetic sensor 11b, the values of the offset voltage at the same temperature are different, but the slopes of the curves indicating the temperature characteristics are substantially equal. That is, the temperature characteristics of the offset change are substantially equal.
- FIG. 6B shows the temperature characteristics of the offset voltage after correction and the difference therebetween. As shown in FIG.
- the offset voltages of the two magnetic sensors are corrected by correcting the output of the magnetic sensors so that the offset voltages are substantially equal under a certain temperature condition (for example, 25 ° C.).
- the curves indicating the temperature characteristics can be made substantially coincident.
- the difference between the offset of the first magnetic sensor 11a and the offset of the second magnetic sensor 11b can be made substantially zero by making the temperatures of the first magnetic sensor 11a and the second magnetic sensor 11b substantially equal.
- the arithmetic device 14a When the output from the first magnetic sensor 11a and the first control circuit 13a and the output from the second magnetic sensor 11b and the second control circuit 13b are input to the arithmetic device 14a, the arithmetic device 14a is set to a predetermined temperature ( For example, a correction value that makes the offset voltages of the two outputs substantially equal at 25 ° C. is added to the output, and the corrected output (V 1A ) on the first magnetic sensor 11a side and the corrected second magnetic sensor The output (V 1B ) on the 11b side is obtained. Then, the arithmetic device 14a calculates the difference between the output (V 1A ) and the output (V 1B ) to obtain the output ( ⁇ V 1 ) of the first current sensor unit 1a.
- a predetermined temperature For example, a correction value that makes the offset voltages of the two outputs substantially equal at 25 ° C. is added to the output, and the corrected output (V 1A ) on the first magnetic sensor 11
- the corrected output (voltage) V 1A on the first magnetic sensor 11a side passes the current value of the measured current Ia flowing through the first current line 2a through I 1 and the second current line 2b.
- the current value of the adjacent current Ib is I 2
- the sensitivity coefficient relating to the current flowing through the first current line 2a of the first current sensor unit 1a is X 11
- the second current line 2b of the first current sensor unit 1a is passed through.
- the sensitivity coefficient relating to the flowing current is represented by the equation (1), where X 12 is the corrected offset voltage and V O1 is the corrected offset voltage.
- the sensitivity coefficient is a coefficient indicating the relationship between the current flowing through a certain current line and each sensor output.
- the sensitivity coefficient related to the current flowing through the first current line 2a of the first current sensor unit 1a is the current value flowing through the first current line 2a and the sensor output (or the first magnetic sensor 11a side). The relationship with the sensor output on the second magnetic sensor 11b side) is shown.
- the sensitivity coefficient corresponds to a value obtained by dividing the sensor output by the current value flowing through the current line.
- the sensitivity coefficient for current second flowing through the current line 2b of the first current sensor unit 1a is X 12
- the current value of the adjacent current Ib flowing through the second current line 2b is represented by X 12 I 2 .
- the temperature characteristics of the offset change of a pair of magnetic sensors (here, the first magnetic sensor 11a and the second magnetic sensor 11b) existing in the same current sensor unit. Since they are substantially equal, the offset voltage after correction in the sensor output on the first magnetic sensor 11a side and the sensor output on the second magnetic sensor 11b side are expressed as expressed by the above formulas (1) and (2). The corrected offset voltage is substantially equal even at a temperature other than the predetermined temperature.
- the arithmetic device 14a calculates the difference between the output (V 1A ) represented by the above formula ( 1 ) and the output (V 1B ) represented by the above formula (2). Thereby, the output ( ⁇ V 1 ) of the first current sensor unit 1a represented by the expression (3) is obtained. As shown in Expression (3), the offset voltage term is canceled in the output ( ⁇ V 1 ) of the first current sensor unit 1a. Thus, by calculating the difference between the output (V 1A ) and the output (V 1B ), it is possible to sufficiently remove the influence of the offset and increase the current measurement accuracy.
- the output from the third magnetic sensor 11c and the third control circuit 13c and the output from the fourth magnetic sensor 11d and the fourth control circuit 13d are input to the arithmetic device 14b on the second current sensor unit 1b side.
- the arithmetic device 14b adds a correction value so that the offset voltages of the two outputs become substantially equal at a predetermined temperature (for example, 25 ° C.), and outputs the corrected output on the third magnetic sensor 11c side ( V 2A ) and the corrected output (V 2B ) on the fourth magnetic sensor 11d side are obtained.
- the arithmetic device 14a calculates the difference between the output (V 2A ) and the output (V 2B ) to obtain the output ( ⁇ V 2 ) of the second current sensor unit 1b.
- the calculation device 14b calculates the difference between the output (V 2A ) expressed by the above formula (4) and the output (V 2B ) expressed by the above formula (5), and is expressed by the formula (6).
- the output ( ⁇ V 2 ) of the second current sensor unit 1b is obtained.
- the arithmetic device 14a outputs the output ( ⁇ V 1 ) of the first current sensor unit 1a obtained by the arithmetic processing described above to the arithmetic device 1d.
- the computing device 14b outputs the output ( ⁇ V 2 ) of the second current sensor unit 1b to the computing device 1d.
- the current value I 1 of the current Ia to be measured and the current value I 2 of the adjacent current Ib are expressed as in Expressions (7) and (8) using ⁇ V 1 and ⁇ V 2 .
- Computing device 1d when calculating the current value I 1 to be measured current Ia based on the equation (7), and outputs the calculation result to the outside.
- the arithmetic unit 1d based on the equation (8) is calculated current value I 2 of the adjacent current Ib, may be output to the outside together with the calculation result of the current value I 1 of the current to be measured Ia.
- the current sensor 1 is configured so that the temperatures of the pair of magnetic sensors arranged so as to sandwich the current line are substantially equal, and thus varies depending on the temperature.
- the influence of the offset of the magnetic sensor output can be appropriately removed.
- the output of the current sensor unit corresponding to each of the plurality of current lines is used, the influence of the current flowing through the current line other than the current line through which the current to be measured flows can be eliminated. As a result, it is possible to suppress a decrease in current measurement accuracy.
- FIG. 7 is a schematic diagram showing a configuration example of the current sensor 1 ′ according to the present embodiment.
- the current sensor 1 ′ includes a first current sensor unit 1 a disposed close to the first current line 2 a through which the measurement current Ia flows, and a second current through which the adjacent current Ib flows.
- a second current sensor unit 1b arranged close to the line 2b; and a third current sensor unit 1c arranged close to the third current line 2c through which the adjacent current Ic flows.
- the configuration of each current sensor unit (1a to 1c) is the same as the configuration of each current sensor unit (1a, 1b) in the first embodiment.
- FIG. 8 is a block diagram illustrating a configuration example of a current sensor 1 ′ including a first current sensor unit 1a, a second current sensor unit 1b, and a third current sensor unit 1c.
- the current sensor 1 ′ has a current Ia to be measured from the output of the first current sensor unit 1a, the output of the second current sensor unit 1b, and the output of the third current sensor unit 1c.
- An arithmetic device 1d for calculating a value is provided. Note that the arithmetic device 1d may be provided outside the current sensor 1 ′. In other words, the current sensor 1 ′ may not include the arithmetic device 1d.
- the measured current Ia is calculated by the following arithmetic processing.
- the calculation device 14a of the first current sensor unit 1a If the output from the first magnetic sensor 11a and the first control circuit 13a and the output from the second magnetic sensor 11b and the second control circuit 13b are input to the calculation device 14a of the first current sensor unit 1a, the calculation is performed.
- the device 14a corrects the offset voltages of the two outputs to be substantially equal at a predetermined temperature (for example, 25 ° C.), and corrects the output (V 1A ) on the first magnetic sensor 11a side and the corrected first voltage. 2
- the output (V 1B ) on the magnetic sensor 11b side is obtained.
- the arithmetic device 14a calculates the difference between the output (V 1A ) and the output (V 1B ) to obtain the output ( ⁇ V 1 ) of the first current sensor unit 1a.
- the corrected output (voltage) V 1A on the first magnetic sensor 11a side passes the current value of the measured current Ia flowing through the first current line 2a through I 1 and the second current line 2b.
- the current value of the adjacent current Ib is I 2
- the current value of the adjacent current Ic flowing through the third current line 2c is I 3
- the sensitivity coefficient regarding the current flowing through the first current line 2a of the first current sensor unit 1a is X 11 is a sensitivity coefficient related to a current flowing through the second current line 2b of the first current sensor unit 1a
- X 12 is a sensitivity coefficient related to a current flowing through the third current line 2c of the first current sensor unit 1a.
- the coefficient is represented by X 13
- the offset voltage after correction is represented by V O1 .
- the computing device 14a computes the difference between the output (V 1A ) represented by the above formula (9) and the output (V 1B ) represented by the above formula (10). Thereby, the output ( ⁇ V 1 ) of the first current sensor unit 1a represented by the equation (11) is obtained.
- the output from the third magnetic sensor 11c and the third control circuit 13c and the output from the fourth magnetic sensor 11d and the fourth control circuit 13d are input to the arithmetic device 14b of the second current sensor unit 1b.
- the arithmetic device 14b corrects the offset voltages of the two outputs to be substantially equal at a predetermined temperature (for example, 25 ° C.), and corrects the corrected output (V 2A ) on the third magnetic sensor 11c side.
- the output (V 2B ) on the subsequent fourth magnetic sensor 11d side is obtained.
- the arithmetic device 14a calculates the difference between the output (V 2A ) and the output (V 2B ) to obtain the output ( ⁇ V 2 ) of the second current sensor unit 1b.
- the later offset voltage is expressed by Expression (12) as V O2 .
- the arithmetic device 14b calculates the difference between the output (V 2A ) expressed by the above formula (12) and the output (V 2B ) expressed by the above formula (13), and is expressed by the formula (14).
- the output ( ⁇ V 2 ) of the second current sensor unit 1b is obtained.
- the arithmetic unit (not shown) of the third current sensor unit 1c includes the outputs from the fifth magnetic sensor 11e and the fifth control circuit (not shown), the sixth magnetic sensor 11f and the sixth control circuit (not shown). ), The arithmetic unit of the third current sensor unit 1c corrects the offset voltages of the two outputs to be substantially equal at a predetermined temperature (for example, 25 ° C.), and after correction The output (V 3A ) on the fifth magnetic sensor 11e side and the output (V 3B ) on the sixth magnetic sensor 11f side after correction are obtained. Then, the arithmetic device calculates the difference between the output (V 3A ) and the output (V 3B ) to obtain the output ( ⁇ V 3 ) of the third current sensor unit 1c.
- a predetermined temperature for example, 25 ° C.
- the later offset voltage is expressed by Expression (15) as V O3 .
- the output of the sixth magnetic sensor 11f side (voltage) V 3B is similarly represented by the formula (16).
- the arithmetic unit of the third current sensor unit 1c calculates the difference between the output (V 3A ) expressed by the above formula (15) and the output (V 3B ) expressed by the above formula (16), The output ( ⁇ V 3 ) of the third current sensor unit 1c represented by (17) is obtained.
- the arithmetic device 14a outputs the output ( ⁇ V 1 ) of the first current sensor unit 1a obtained by the arithmetic processing described above to the arithmetic device 1d.
- the computing device 14b outputs the output ( ⁇ V 2 ) of the second current sensor unit 1b to the computing device 1d.
- the arithmetic device of the third current sensor unit 1c outputs the output ( ⁇ V 3 ) of the third current sensor unit 1c to the arithmetic device 1d.
- the current sensor 1 is configured so that the temperatures of the pair of magnetic sensors arranged so as to sandwich the current line are substantially equal, and thus varies depending on the temperature.
- the influence of the offset of the magnetic sensor output can be appropriately removed.
- the output of the current sensor unit corresponding to each of the plurality of current lines is used, the influence of the current flowing through the current line other than the current line through which the current to be measured flows can be eliminated. As a result, it is possible to suppress a decrease in current measurement accuracy.
- the present invention is not limited to the above embodiment, and can be implemented with various modifications.
- the number of current sensor units included in the current sensor may be four or more.
- the current value of the current to be measured can be accurately calculated by using the outputs of all the current sensor units.
- the arrangement of each current sensor unit included in the current sensor is not limited to the arrangement of the above embodiment. As long as at least the influence (sensitivity coefficient) of the current flowing through each current line is known for each current sensor unit, the arrangement of each current sensor unit may be arbitrary.
- the temperature characteristics of the offset change of the outputs of a pair of magnetic sensors included in the same current sensor unit are substantially equal. However, these characteristics are not necessarily substantially equal. As long as the required current measurement accuracy can be obtained in the required temperature range, the temperature characteristics of the offset may be slightly different.
- the current sensor of the present invention can be used, for example, to detect the magnitude of a current for driving a motor of an electric vehicle or a hybrid car.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
The purpose of the present invention is to provide a current sensor capable of preventing current measurement accuracy from decreasing due to the effect of the output offset of a magnetic sensor. The current sensor comprises: a plurality of current sensor units (1a, 1b) corresponding to a plurality of current lines, each current sensor unit comprising a set of magnetic sensors (11a to 11d) disposed so as to sandwich a current line (2a, 2b) and a substrate (12a, 12b) on which the respective set of magnetic sensors is disposed; and a calculation device for calculating the difference between the outputs of the respective set of magnetic sensors of each current sensor unit and, by removing the effects of the adjacent current line from the output of each current sensor unit, calculating the value of a current to be measured. In each set of magnetic sensors included in the current sensor units, the magnetic sensors are connected to each other so that the temperatures thereof become substantially equal to each other, said magnetic sensors being connected to each other by the ground terminals (11a_GND to 11d_GND) of the magnetic sensors and a ground electrode (12a_GND, 12b_GND) provided on the respective substrate.
Description
本発明は、非接触で電流を測定する電流センサに関する。
The present invention relates to a current sensor that measures current without contact.
電気自動車やハイブリッドカーにおけるモータ駆動技術などの分野では比較的大きな電流が取り扱われるため、大電流を非接触で測定可能な電流センサが求められている。そして、このような電流センサとして、被測定電流によって生じる磁界の変化を磁気センサによって検出する方式のものが実用化されている。例えば、特許文献1には、磁気センサ用の素子として磁気抵抗効果素子を用いた電流センサが開示されている。
In fields such as motor drive technology in electric vehicles and hybrid cars, a relatively large current is handled, so a current sensor capable of measuring a large current in a contactless manner is required. As such a current sensor, a system that detects a change in a magnetic field caused by a current to be measured by a magnetic sensor has been put into practical use. For example, Patent Document 1 discloses a current sensor using a magnetoresistive effect element as an element for a magnetic sensor.
上述した磁界変化を検出する方式の電流センサにおいて、被測定電流が通流する導電体に近接して配置された導電体に電流が通流する場合、当該導電体を通流する電流による磁界の影響を受けて電流測定精度が低下することがある。この問題を解決するために、n個の導電体のそれぞれに対して2個の磁気センサが隣接するようにn+1個の磁気センサを配置した電流センサが提案されている(例えば、特許文献2参照)。この構成によれば、近接する電流の影響を補正できるため、電流測定精度の低下を防ぐことができる。
In the above-described current sensor for detecting a change in magnetic field, when a current flows through a conductor arranged close to the conductor through which the current to be measured flows, the magnetic field generated by the current flowing through the conductor The current measurement accuracy may be affected. In order to solve this problem, a current sensor in which n + 1 magnetic sensors are arranged so that two magnetic sensors are adjacent to each of n conductors has been proposed (for example, see Patent Document 2). ). According to this configuration, it is possible to correct the influence of the adjacent current, and thus it is possible to prevent a decrease in current measurement accuracy.
ところで、磁気抵抗効果素子をはじめとする磁気センサ用の素子には、プロセスばらつきなどに起因する特性ばらつきが存在する。例えば、複数の磁気抵抗効果素子の電圧降下を利用する磁気センサにおいて、各磁気抵抗効果素子の特性ばらつきの影響はゼロ磁場における磁気センサ出力(以下、オフセットと呼ぶ)となって現れる。オフセットは温度によって変化するが、電流センサ内における磁気センサの位置(例えば、熱のこもりやすい内側と、外気温の影響を受けやすい外側など)によって磁気センサの温度が異なる場合、各磁気センサのオフセットが異なるため、このような磁気センサを用いると電流センサの電流測定精度が低下する。
By the way, in the elements for magnetic sensors including the magnetoresistive effect element, there is a characteristic variation due to a process variation. For example, in a magnetic sensor that uses voltage drops of a plurality of magnetoresistive elements, the effect of variations in characteristics of each magnetoresistive element appears as a magnetic sensor output (hereinafter referred to as an offset) in a zero magnetic field. The offset varies depending on the temperature, but if the temperature of the magnetic sensor differs depending on the position of the magnetic sensor in the current sensor (for example, the inner side where heat is easily trapped and the outer side where it is easily affected by outside air temperature), the offset of each magnetic sensor Therefore, when such a magnetic sensor is used, the current measurement accuracy of the current sensor is lowered.
本発明はかかる点に鑑みてなされたものであり、磁気センサ出力のオフセットの影響による電流測定精度の低下を抑制可能な電流センサを提供することを目的とする。
The present invention has been made in view of such a point, and an object thereof is to provide a current sensor capable of suppressing a decrease in current measurement accuracy due to an influence of an offset of a magnetic sensor output.
本発明の電流センサは、対象の電流線を挟むように配置された一組の磁気センサと、当該一組の磁気センサが配置される基板と、をそれぞれ含んで構成された複数の電流線に対応する複数の電流センサユニットと、各電流センサユニットにおける前記一組の磁気センサの出力の差を算出し、各電流センサユニットの出力から隣接する電流線の影響を除去して被測定電流の電流値を算出する演算装置と、を備え、前記電流センサユニットに含まれる一組の磁気センサは、その温度が略等しくなるように各磁気センサの接地端子及び基板に設けられた接地電極により互いに接続されていることを特徴とする。
The current sensor of the present invention includes a plurality of current lines each including a set of magnetic sensors arranged so as to sandwich a target current line and a substrate on which the set of magnetic sensors is arranged. Calculate the difference between the output of each of the corresponding current sensor units and the set of magnetic sensors in each current sensor unit, and remove the influence of the adjacent current line from the output of each current sensor unit to measure the current of the current being measured. A pair of magnetic sensors included in the current sensor unit are connected to each other by a ground terminal of each magnetic sensor and a ground electrode provided on the substrate so that the temperatures thereof are substantially equal to each other. It is characterized by being.
この構成によれば、電流線を挟むように配置された一組の磁気センサにおいて、接地端子同士が接続されているため、磁気センサの温度が略等しくなり、温度に依存して変動する磁気センサ出力のオフセットがほぼ等しくなる。オフセットがほぼ等しいので、2つの磁気センサの出力差を演算すれば、オフセットが相殺され、その影響を低減することができる。また、複数の電流線に対応する電流センサユニットの出力を用いているため、被測定電流が通流する電流線以外の電流線を通流する電流の影響を低減することができる。
According to this configuration, in the set of magnetic sensors arranged so as to sandwich the current line, the ground terminals are connected to each other, so that the temperatures of the magnetic sensors become substantially equal and vary depending on the temperature. The output offset is approximately equal. Since the offsets are almost equal, if the output difference between the two magnetic sensors is calculated, the offset is canceled out and its influence can be reduced. Moreover, since the output of the current sensor unit corresponding to a plurality of current lines is used, the influence of the current flowing through the current line other than the current line through which the current to be measured flows can be reduced.
本発明の電流センサにおいて、前記電流センサユニットに含まれる一組の磁気センサは、オフセット変化の温度特性が等しいことが特に好ましい。オフセットの大きさは、基準温度(例えば25℃)でのオフセットの大きさと、温度による変化に分けて考えることができる。基準温度でのオフセットの大きさは、一組の磁気センサで若干異なっていても演算で影響を取り除くことができる。一方、温度による変化量は、一組の磁気センサで異なっていれば、その差が誤差となり取り除くことは不可能である。よって、オフセット変化の温度特性を略等しくすることによって、誤差を最小にできる。
In the current sensor of the present invention, it is particularly preferable that the pair of magnetic sensors included in the current sensor unit have the same temperature characteristics of the offset change. The magnitude of the offset can be considered by dividing it into a magnitude of the offset at a reference temperature (for example, 25 ° C.) and a change due to temperature. Even if the magnitude of the offset at the reference temperature is slightly different for a set of magnetic sensors, the influence can be removed by calculation. On the other hand, if the amount of change due to temperature differs for a set of magnetic sensors, the difference becomes an error and cannot be removed. Therefore, the error can be minimized by making the temperature characteristics of the offset change substantially equal.
本発明の電流センサにおいて、前記電流センサユニットに含まれる一組の磁気センサは、前記電流線を通流する電流の影響が前記一組の磁気センサの出力において逆極性で現れるように感度軸を同一方向に向けて配置されることが好ましい。この構成によれば、磁気センサの出力の差を取ることでオフセットの影響を十分に低減することができる。
In the current sensor of the present invention, the set of magnetic sensors included in the current sensor unit has a sensitivity axis so that the influence of the current flowing through the current line appears in the opposite polarity in the output of the set of magnetic sensors. It is preferable that they are arranged in the same direction. According to this configuration, the influence of the offset can be sufficiently reduced by taking the difference between the outputs of the magnetic sensors.
本発明の電流センサにおいて、被測定電流が通流する第1の電流線を挟むように配置された第1の磁気センサ及び第2の磁気センサを含む第1の電流センサユニットと、前記被測定電流とは異なる電流が通流する第2の電流線を挟むように配置された第3の磁気センサ及び第4の磁気センサを含む第2の電流センサユニットと、を備えても良い。
In the current sensor of the present invention, a first current sensor unit including a first magnetic sensor and a second magnetic sensor disposed so as to sandwich a first current line through which a current to be measured flows, and the measured current And a second current sensor unit including a third magnetic sensor and a fourth magnetic sensor arranged to sandwich a second current line through which a current different from the current flows.
本発明の電流センサにおいて、第1の電流センサユニットの前記第1の電流線を通流する電流に関する感度係数X11、第2の電流センサユニットの前記第2の電流線を通流する電流に関する感度係数X22、第1の電流センサユニットの前記第2の電流線を通流する電流に関する感度係数X12、第2の電流センサユニットの前記第1の電流線を通流する電流に関する感度係数X21、前記第1の磁気センサの出力と前記第2の磁気センサの出力との差ΔV1、及び前記第3の磁気センサの出力と前記第4の磁気センサの出力との差ΔV2を用いて表される下記式(7)から前記第1の電流線を通流する前記被測定電流の電流値I1を算出することができる。
In the current sensor of the present invention, the sensitivity coefficient X 11 related to the current flowing through the first current line of the first current sensor unit, and the current flowing through the second current line of the second current sensor unit. Sensitivity coefficient X 22 , sensitivity coefficient X 12 related to the current flowing through the second current line of the first current sensor unit, sensitivity coefficient related to current flowing through the first current line of the second current sensor unit X 21 , the difference ΔV 1 between the output of the first magnetic sensor and the output of the second magnetic sensor, and the difference ΔV 2 between the output of the third magnetic sensor and the output of the fourth magnetic sensor The current value I 1 of the current to be measured that flows through the first current line can be calculated from the following expression (7) that is used.
本発明の電流センサにおいて、被測定電流が通流する第1の電流線を挟むように配置された第1の磁気センサ及び第2の磁気センサを含む第1の電流センサユニットと、前記被測定電流とは異なる第2の電流が通流する第2の電流線を挟むように配置された第3の磁気センサ及び第4の磁気センサを含む第2の電流センサユニットと、前記被測定電流及び前記第2の電流とは異なる第3の電流が通流する第3の電流線を挟むように配置された第5の磁気センサ及び第6の磁気センサを含む第3の電流センサユニットと、を備えても良い。
In the current sensor of the present invention, a first current sensor unit including a first magnetic sensor and a second magnetic sensor disposed so as to sandwich a first current line through which a current to be measured flows, and the measured current A second current sensor unit including a third magnetic sensor and a fourth magnetic sensor disposed so as to sandwich a second current line through which a second current different from the current flows; A third current sensor unit including a fifth magnetic sensor and a sixth magnetic sensor disposed so as to sandwich a third current line through which a third current different from the second current flows. You may prepare.
本発明の電流センサにおいて、第mの電流センサユニット(mは1~3の自然数)の前記第nの電流線(nは1~3の自然数)を通流する電流に関する感度係数Xmn、前記第1の磁気センサの出力と前記第2の磁気センサの出力との差ΔV1、前記第3の磁気センサの出力と前記第4の磁気センサの出力との差ΔV2、及び前記第5の磁気センサの出力と前記第6の磁気センサの出力との差ΔV3を用いて表される下記式(18)から前記第1の電流線を通流する前記被測定電流の電流値I1を算出することができる。
ただし、Dは下記式(21)を満たす。
In the current sensor of the present invention, the sensitivity coefficient X mn relating to the current flowing through the n-th current line (n is a natural number of 1 to 3) of the m-th current sensor unit (m is a natural number of 1 to 3), The difference ΔV 1 between the output of the first magnetic sensor and the output of the second magnetic sensor, the difference ΔV 2 between the output of the third magnetic sensor and the output of the fourth magnetic sensor, and the fifth The current value I 1 of the current to be measured flowing through the first current line is expressed by the following equation (18) expressed using the difference ΔV 3 between the output of the magnetic sensor and the output of the sixth magnetic sensor. Can be calculated.
However, D satisfies the following formula (21).
本発明によれば、磁気センサ出力のオフセットの影響による電流測定精度の低下を抑制可能な電流センサを提供することができる。
According to the present invention, it is possible to provide a current sensor that can suppress a decrease in current measurement accuracy due to the influence of an offset of the magnetic sensor output.
(実施の形態1)
以下、本発明の電流センサについて添付図面を参照して説明する。図1は、本実施の形態に係る電流センサ1の構成例を示す模式図である。以下、図1の紙面左下方向(Y+方向)に対応する方向を前、紙面右上方向(Y-方向)に対応する方向を後、紙面左方向(X-方向)に対応する方向を左、紙面右方向(X+方向)に対応する方向を右、紙面上方向(Z+方向)に対応する方向を上、紙面下方向(Z-方向)に対応する方向を下、と呼ぶ。 (Embodiment 1)
Hereinafter, the current sensor of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram illustrating a configuration example of acurrent sensor 1 according to the present embodiment. In the following, the direction corresponding to the lower left direction (Y + direction) of FIG. 1 is the front, the direction corresponding to the upper right direction (Y− direction) is the rear, the direction corresponding to the left direction (X− direction) is the left, the page The direction corresponding to the right direction (X + direction) is called right, the direction corresponding to the upward direction (Z + direction) on the page is called up, and the direction corresponding to the down direction (Z− direction) on the page is called down.
以下、本発明の電流センサについて添付図面を参照して説明する。図1は、本実施の形態に係る電流センサ1の構成例を示す模式図である。以下、図1の紙面左下方向(Y+方向)に対応する方向を前、紙面右上方向(Y-方向)に対応する方向を後、紙面左方向(X-方向)に対応する方向を左、紙面右方向(X+方向)に対応する方向を右、紙面上方向(Z+方向)に対応する方向を上、紙面下方向(Z-方向)に対応する方向を下、と呼ぶ。 (Embodiment 1)
Hereinafter, the current sensor of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram illustrating a configuration example of a
図1に示す電流センサ1は、被測定電流Iaが通流する第1電流線2aに近接して配置された第1電流センサユニット1aと、隣接電流Ibが通流する第2電流線2bに近接して配置された第2電流センサユニット1bとを備える。第1電流センサユニット1aは、第1電流線2aが配置可能なように一部が切り欠かれた薄板状の第1基板12aと、第1基板12aの主表面に配置された略直方体状の第1磁気センサ11a及び第2磁気センサ11bとを含んで構成されている。第2電流センサユニット1bは、第2電流線2bが配置可能なように一部が切り欠かれた薄板状の第2基板12bと、第2基板12bの主表面に配置された略直方体状の第3磁気センサ11c及び第4磁気センサ11dとを含んで構成されている。なお、図1中、各磁気センサに付される矢印は、それぞれの感度軸の向きを示し、各電流線に付される矢印は、各電流線を通流する電流の向きを示し、各電流線の周囲に配置される矢印は、各電流線を通流する電流による誘導磁界の向きを示す。また、ここでは計算式の簡略化のため、各電流センサユニットにおいて左右方向に対称にセンサユニットを配置した例を示すが、センサユニットの配置が左右方向に非対称であっても計算の本質は同じであり、得られる効果に変わりはない。
The current sensor 1 shown in FIG. 1 includes a first current sensor unit 1a disposed close to the first current line 2a through which the measured current Ia flows, and a second current line 2b through which the adjacent current Ib flows. And a second current sensor unit 1b arranged close to each other. The first current sensor unit 1a has a thin plate-like first substrate 12a partially cut away so that the first current line 2a can be arranged, and a substantially rectangular parallelepiped shape arranged on the main surface of the first substrate 12a. The first magnetic sensor 11a and the second magnetic sensor 11b are included. The second current sensor unit 1b has a thin plate-like second substrate 12b partially cut away so that the second current line 2b can be arranged, and a substantially rectangular parallelepiped shape arranged on the main surface of the second substrate 12b. A third magnetic sensor 11c and a fourth magnetic sensor 11d are included. In FIG. 1, the arrows attached to the magnetic sensors indicate the directions of the sensitivity axes, the arrows attached to the current lines indicate the directions of currents flowing through the current lines, The arrows arranged around the lines indicate the direction of the induced magnetic field due to the current flowing through each current line. In addition, here, in order to simplify the calculation formula, an example is shown in which sensor units are arranged symmetrically in the left-right direction in each current sensor unit, but the essence of calculation is the same even if the arrangement of sensor units is asymmetric in the left-right direction And the obtained effect is unchanged.
第1磁気センサ11a及び第2磁気センサ11bは、上下方向に延在する第1電流線2aからの距離が略等しくなるように第1基板12aの一方の主表面に配置されている。また、第1磁気センサ11a及び第2磁気センサ11bは、感度軸が略同一方向を向くように配置されている。このため、第1磁気センサ11a及び第2磁気センサ11bは、被測定電流Iaによる誘導磁界Haを受けて互いに逆極性の出力を発生するようになっている。第1磁気センサ11a及び第2磁気センサ11bをこのように配置することで、第1磁気センサ11aの出力と第2磁気センサ11bの出力の差を取って外部磁界の影響を低減することができる。また、第1磁気センサ11aの出力のオフセットと、第2磁気センサ11bの出力のオフセットとを相殺して、オフセットの影響を低減することができる。
The first magnetic sensor 11a and the second magnetic sensor 11b are arranged on one main surface of the first substrate 12a so that the distance from the first current line 2a extending in the vertical direction is substantially equal. Further, the first magnetic sensor 11a and the second magnetic sensor 11b are arranged such that the sensitivity axes are directed in substantially the same direction. For this reason, the first magnetic sensor 11a and the second magnetic sensor 11b receive the induced magnetic field Ha caused by the current Ia to be measured and generate outputs having opposite polarities. By arranging the first magnetic sensor 11a and the second magnetic sensor 11b in this way, the influence of the external magnetic field can be reduced by taking the difference between the output of the first magnetic sensor 11a and the output of the second magnetic sensor 11b. . Further, the offset of the output of the first magnetic sensor 11a and the offset of the output of the second magnetic sensor 11b can be offset to reduce the influence of the offset.
第3磁気センサ11c及び第4磁気センサ11dと、第2電流線2bとの関係も同様である。すなわち、第3磁気センサ11c及び第4磁気センサ11dは、上下方向に延在する第2電流線2bからの距離が略等しくなるように第2基板12bの一方の主表面に配置されている。また、第3磁気センサ11c及び第4磁気センサ11dは、感度軸が略同一方向を向くように配置されており、隣接電流Ibによる誘導磁界Hbの影響を受けて互いに逆極性の出力を生じるようになっている。これにより、外部磁界の影響を低減することができる。また、オフセットの影響を低減することができる。
The relationship between the third magnetic sensor 11c and the fourth magnetic sensor 11d and the second current line 2b is the same. That is, the third magnetic sensor 11c and the fourth magnetic sensor 11d are arranged on one main surface of the second substrate 12b so that the distance from the second current line 2b extending in the vertical direction is substantially equal. Further, the third magnetic sensor 11c and the fourth magnetic sensor 11d are arranged so that the sensitivity axes are directed in substantially the same direction, so that outputs of opposite polarities are generated under the influence of the induced magnetic field Hb by the adjacent current Ib. It has become. Thereby, the influence of an external magnetic field can be reduced. Further, the influence of offset can be reduced.
本実施の形態に係る電流センサ1は、上述したように、第1磁気センサ11a及び第2磁気センサ11bを含んで構成される第1電流センサユニット1aに加え、第2電流線2bに近接して配置され、第3磁気センサ11c及び第4磁気センサ11dを含んで構成される第2電流センサユニット1bを備えている。これにより、第2電流線2bを通流する隣接電流Ibの影響を考慮して補正することが可能になるため、被測定電流Iaを高い精度で算出することができる。なお、被測定電流Iaの算出に係る具体的な処理については後述する。
As described above, the current sensor 1 according to the present embodiment is close to the second current line 2b in addition to the first current sensor unit 1a including the first magnetic sensor 11a and the second magnetic sensor 11b. And a second current sensor unit 1b including a third magnetic sensor 11c and a fourth magnetic sensor 11d. As a result, the correction can be made in consideration of the influence of the adjacent current Ib flowing through the second current line 2b, so that the measured current Ia can be calculated with high accuracy. A specific process related to the calculation of the current Ia to be measured will be described later.
各磁気センサ(11a~11d)は、それぞれ複数の端子を備えており、各端子を介して第1基板12a又は第2基板12bと接続されている。各磁気センサ(11a~11d)が備える端子の少なくとも一つは接地端子であり、当該接地端子は第1基板12aに設けられた接地電極、又は第2基板12bに設けられた接地電極に接続されている。具体的には、第1磁気センサ11aの接地端子11a_GNDは第1基板12aに設けられた接地電極12a_GNDに接続されており、第2磁気センサ11bの接地端子11b_GNDは第1基板12aに設けられた接地電極12a_GNDに接続されている。また、第3磁気センサ11cの接地端子11c_GNDは第2基板12bに設けられた接地電極12b_GNDに接続されており、第4磁気センサ11dの接地端子11d_GNDは第2基板12bに設けられた接地電極12b_GNDに接続されている。つまり、第1磁気センサ11a及び第2磁気センサ11bは、接地端子11a_GND、接地端子11b_GND、接地電極12a_GNDを介して接続されており、第3磁気センサ11c及び第4磁気センサ11dは、接地端子11c_GND、接地端子11d_GND、接地電極12b_GNDを介して接続されている。
Each of the magnetic sensors (11a to 11d) includes a plurality of terminals, and is connected to the first substrate 12a or the second substrate 12b via each terminal. At least one of the terminals included in each of the magnetic sensors (11a to 11d) is a ground terminal, and the ground terminal is connected to a ground electrode provided on the first substrate 12a or a ground electrode provided on the second substrate 12b. ing. Specifically, the ground terminal 11a_GND of the first magnetic sensor 11a is connected to the ground electrode 12a_GND provided on the first substrate 12a, and the ground terminal 11b_GND of the second magnetic sensor 11b is provided on the first substrate 12a. It is connected to the ground electrode 12a_GND. The ground terminal 11c_GND of the third magnetic sensor 11c is connected to the ground electrode 12b_GND provided on the second substrate 12b, and the ground terminal 11d_GND of the fourth magnetic sensor 11d is connected to the ground electrode 12b_GND provided on the second substrate 12b. It is connected to the. That is, the first magnetic sensor 11a and the second magnetic sensor 11b are connected via the ground terminal 11a_GND, the ground terminal 11b_GND, and the ground electrode 12a_GND, and the third magnetic sensor 11c and the fourth magnetic sensor 11d are connected to the ground terminal 11c_GND. Are connected via a ground terminal 11d_GND and a ground electrode 12b_GND.
第1基板12a及び第2基板12bは、配線パターンが形成された略U字型の平面形状を有する基板である。第1基板12aにおいて、略U字型の切り欠き部を構成する空間には、第1基板12aの第1主表面に対して略直交する方向に延在する第1電流線2aが配置される。すなわち、第1基板12aは、被測定電流Iaの通流方向に略垂直な面内に配置される。また、第2基板12bにおいて、略U字型の切り欠き部を構成する空間には、第2基板12bの第1主表面に対して略直交する方向に延在する第2電流線2bが配置される。すなわち、第2基板12bは、隣接電流Ibの通流方向に略垂直な面内に配置される。
The first substrate 12a and the second substrate 12b are substrates having a substantially U-shaped planar shape on which a wiring pattern is formed. In the first substrate 12a, a first current line 2a extending in a direction substantially orthogonal to the first main surface of the first substrate 12a is disposed in a space that forms a substantially U-shaped notch. . That is, the first substrate 12a is arranged in a plane substantially perpendicular to the direction of flow of the current Ia to be measured. In the second substrate 12b, a second current line 2b extending in a direction substantially orthogonal to the first main surface of the second substrate 12b is disposed in a space that forms a substantially U-shaped notch. Is done. That is, the second substrate 12b is disposed in a plane substantially perpendicular to the direction in which the adjacent current Ib flows.
第1基板12aの第1主表面には、上述したように、接地電極12a_GNDが設けられている。また、第2基板12bの第1主表面には、接地電極12b_GNDが設けられている。接地電極12a_GND、及び接地電極12b_GNDは不図示のグランドGNDに接続されている。接地電極12a_GNDは、接地端子11a_GNDを介して接続される第1磁気センサ11aと、接地端子11b_GNDを介して接続される第2磁気センサ11bとにグランドGNDによる接地電圧を与えると共に、接続された一方の磁気センサの熱が他方の磁気センサに移動できるように構成されている。接地電極12b_GNDは、接地端子11c_GNDを介して接続される第3磁気センサ11cと、接地端子11d_GNDを介して接続される第4磁気センサ11dとにグランドGNDによる接地電圧を与えると共に、接続された一方の磁気センサの熱が他方の磁気センサに移動できるように構成されている。これにより、同一の電流センサユニットに含まれる一組の磁気センサの温度は略等しくなる。なお、各磁気センサに接地電圧を与え、磁気センサ間の熱の移動が適切に行われるようにするためには、接地電極12a_GND、12b_GNDは、導電率及び熱伝導率の高い材料を用いて構成されることが望ましい。このような材料としては、例えば、銀、銅、金、アルミニウムなどがある。
As described above, the ground electrode 12a_GND is provided on the first main surface of the first substrate 12a. A ground electrode 12b_GND is provided on the first main surface of the second substrate 12b. The ground electrode 12a_GND and the ground electrode 12b_GND are connected to a ground GND (not shown). The ground electrode 12a_GND applies a ground voltage by the ground GND to the first magnetic sensor 11a connected via the ground terminal 11a_GND and the second magnetic sensor 11b connected via the ground terminal 11b_GND, and is connected to one side. The heat of one magnetic sensor can be transferred to the other magnetic sensor. The ground electrode 12b_GND applies a ground voltage by the ground GND to the third magnetic sensor 11c connected through the ground terminal 11c_GND and the fourth magnetic sensor 11d connected through the ground terminal 11d_GND, and is connected to the ground electrode 12b_GND. The heat of one magnetic sensor can be transferred to the other magnetic sensor. Thereby, the temperature of a set of magnetic sensors included in the same current sensor unit becomes substantially equal. The ground electrodes 12a_GND and 12b_GND are made of a material having high conductivity and thermal conductivity in order to apply a ground voltage to each magnetic sensor so that heat transfer between the magnetic sensors is performed appropriately. It is desirable that Examples of such a material include silver, copper, gold, and aluminum.
また、第1基板12a及び第2基板12bには、各磁気センサ(11a~11d)に電源電圧を与える配線(不図示)や、各磁気センサ(11a~11d)の入出力信号を伝送する配線(不図示)などが設けられている。第1基板12a及び第2基板12bには、上述した各磁気センサ(11a~11d)、接地電極12a_GND、12b_GNDの他に、不図示の演算装置などが配置されていても良い。
Further, the first substrate 12a and the second substrate 12b have wirings (not shown) for supplying a power supply voltage to the magnetic sensors (11a to 11d) and wirings for transmitting input / output signals of the magnetic sensors (11a to 11d). (Not shown) is provided. In addition to the magnetic sensors (11a to 11d) and the ground electrodes 12a_GND and 12b_GND, the first substrate 12a and the second substrate 12b may be provided with an arithmetic device (not shown).
図2は、第1電流センサユニット1aと、第2電流センサユニット1bとを備える電流センサ1の構成例を示すブロック図である。図2に示すように、電流センサ1は、第1電流センサユニット1aの出力と、第2電流センサユニット1bの出力とから、被測定電流Iaの電流値を算出する演算装置1dを備えている。このように、電流センサ1が、第1電流線2aに対応する第1電流センサユニット1a、及び第2電流線2bに対応する第2電流センサユニット1bを有し、これらの出力を演算する演算装置1dを備えることで、後述するように隣接電流Ibの影響を補正して被測定電流Iaの電流値を高精度に算出することができる。なお、演算装置1dは、電流センサ1の外部に設けられても良い。つまり、電流センサ1は、演算装置1dを含まない電流測定モジュールによって構成されていても良い。この場合、電流測定モジュールには、第1電流センサユニット1a、及び第2電流センサユニット1bが含まれる。
FIG. 2 is a block diagram illustrating a configuration example of the current sensor 1 including the first current sensor unit 1a and the second current sensor unit 1b. As shown in FIG. 2, the current sensor 1 includes an arithmetic device 1d that calculates the current value of the current Ia to be measured from the output of the first current sensor unit 1a and the output of the second current sensor unit 1b. . As described above, the current sensor 1 includes the first current sensor unit 1a corresponding to the first current line 2a and the second current sensor unit 1b corresponding to the second current line 2b, and an operation for calculating these outputs. By providing the device 1d, the influence of the adjacent current Ib can be corrected and the current value of the measured current Ia can be calculated with high accuracy as will be described later. Note that the arithmetic device 1d may be provided outside the current sensor 1. That is, the current sensor 1 may be configured by a current measurement module that does not include the arithmetic device 1d. In this case, the current measurement module includes a first current sensor unit 1a and a second current sensor unit 1b.
図3は、第1電流センサユニット1aの具体的な構成例を示すブロック図である。図4は、第1磁気センサ11a及び第2磁気センサ11bの構成例を示す回路図である。
FIG. 3 is a block diagram showing a specific configuration example of the first current sensor unit 1a. FIG. 4 is a circuit diagram showing a configuration example of the first magnetic sensor 11a and the second magnetic sensor 11b.
図3に示すように、第1電流センサユニット1aは、磁気平衡式の第1磁気センサ11a及び第2磁気センサ11bと、第1磁気センサ11a及び第2磁気センサ11bを制御する第1制御回路13a及び第2制御回路13bと、第1磁気センサ11a側の出力と第2磁気センサ11b側の出力との電圧差を算出する演算装置14aとを備える。
As shown in FIG. 3, the first current sensor unit 1a includes a magnetic balance type first magnetic sensor 11a and a second magnetic sensor 11b, and a first control circuit that controls the first magnetic sensor 11a and the second magnetic sensor 11b. 13a and a second control circuit 13b, and an arithmetic device 14a that calculates a voltage difference between the output on the first magnetic sensor 11a side and the output on the second magnetic sensor 11b side.
第1磁気センサ11a及び第2磁気センサ11bは、被測定電流Iaによって発生する誘導磁界Haを打ち消す方向の磁界を発生可能に配置されたフィードバックコイル111a、111bと、4個の磁気抵抗効果素子M1~M4で構成されるブリッジ回路112a、112bとを含む。なお、第1磁気センサ11a及び第2磁気センサ11bは、フィードバックコイル111a、111bを有しない磁気比例式の磁気センサであっても良い。また、ブリッジ回路112a、112bを構成する磁気抵抗効果素子の数は4個に限られない。任意の数の磁気抵抗効果素子と固定抵抗素子とを組み合わせてブリッジ回路112a、112bを構成しても良い。
The first magnetic sensor 11a and the second magnetic sensor 11b include feedback coils 111a and 111b arranged to generate a magnetic field in a direction that cancels the induced magnetic field Ha generated by the current Ia to be measured, and four magnetoresistive elements M1. To bridge circuits 112a and 112b configured by M4. The first magnetic sensor 11a and the second magnetic sensor 11b may be magnetic proportional magnetic sensors that do not include the feedback coils 111a and 111b. Further, the number of magnetoresistive elements constituting the bridge circuits 112a and 112b is not limited to four. The bridge circuits 112a and 112b may be configured by combining any number of magnetoresistance effect elements and fixed resistance elements.
第1磁気センサ11a及び第2磁気センサ11bとしては、出力のオフセット変化の温度特性が略等しい磁気センサを用いる。これは、磁気センサ出力におけるオフセットの影響を十分に抑えるためである。具体的には、例えば、同一基板を用いて製造された磁気センサや、同一ロットによって製造された磁気センサのように、素子特性のばらつきが小さい磁気センサを用いればよい。このように、同一の電流センサユニットに含まれる一組の磁気センサにおいてオフセット変化の温度特性が略等しくなっていると、この一組だけでの簡単な補正で磁気センサのオフセットの影響を相殺できる。
As the first magnetic sensor 11a and the second magnetic sensor 11b, magnetic sensors having substantially equal temperature characteristics of output offset change are used. This is to sufficiently suppress the influence of offset in the magnetic sensor output. Specifically, for example, a magnetic sensor with small variations in element characteristics may be used, such as a magnetic sensor manufactured using the same substrate or a magnetic sensor manufactured using the same lot. As described above, when the temperature characteristics of the offset change are substantially equal in a pair of magnetic sensors included in the same current sensor unit, the influence of the offset of the magnetic sensor can be offset by simple correction using only this pair. .
第1制御回路13a及び第2制御回路13bは、ブリッジ回路112a、112bの差動出力を増幅し、フィードバックコイル111a、111bのフィードバック電流を制御する差動・電流アンプ131a、131bと、フィードバック電流を電圧に変換するI/Vアンプ132a、132bとを含む。また、第1制御回路13a及び第2制御回路13bは、オフセット電圧の絶対値を補正する機能を有している。これにより、第1磁気センサ11a及び第2磁気センサ11bにおけるオフセットの影響を十分に低減できる。オフセットの補正は、例えば、基準となる所定温度(例えば25℃)におけるオフセットの絶対値が略等しくなるように各出力の電圧値を増減することで行う。なお、オフセット電圧の絶対値を補正する機能は、演算装置14aや演算装置1dが有していても良い。
The first control circuit 13a and the second control circuit 13b amplify the differential outputs of the bridge circuits 112a and 112b, and control the feedback currents of the feedback coils 111a and 111b. I / V amplifiers 132a and 132b for converting to voltage. The first control circuit 13a and the second control circuit 13b have a function of correcting the absolute value of the offset voltage. Thereby, the influence of the offset in the 1st magnetic sensor 11a and the 2nd magnetic sensor 11b can fully be reduced. The offset correction is performed, for example, by increasing or decreasing the voltage value of each output so that the absolute value of the offset at a predetermined reference temperature (for example, 25 ° C.) becomes substantially equal. The function for correcting the absolute value of the offset voltage may be included in the arithmetic device 14a or the arithmetic device 1d.
演算装置14aは、制御回路13a、13bからの出力電圧(すなわち、I/Vアンプ132a、132bの出力電圧)の差をとって出力できるように構成されている。演算装置14aは、例えば、差動アンプで構成される。演算装置14aにおける演算処理によって、地磁気などの外部磁場の影響を相殺することができる。また、第1磁気センサ11a側の出力のオフセットと、第2磁気センサ11b側の出力のオフセットとを相殺することができる。これにより、電流値を高精度に測定できる。
The computing device 14a is configured to be able to output the difference between the output voltages from the control circuits 13a and 13b (that is, the output voltages of the I / V amplifiers 132a and 132b). The arithmetic device 14a is composed of, for example, a differential amplifier. The influence of an external magnetic field such as geomagnetism can be canceled by the arithmetic processing in the arithmetic device 14a. Further, the offset of the output on the first magnetic sensor 11a side and the offset of the output on the second magnetic sensor 11b side can be offset. Thereby, the current value can be measured with high accuracy.
図4に示すように、フィードバックコイル111a、111bは、ブリッジ回路112a、112bを構成する磁気抵抗効果素子M1~M4の近傍に配置されており、被測定電流Iaにより発生する誘導磁界Haを相殺するキャンセル磁界を発生する。ブリッジ回路112a、112bの磁気抵抗効果素子M1~M4としては、GMR(Giant Magneto Resistance)素子やTMR(Tunnel Magneto Resistance)素子などが用いられる。磁気抵抗効果素子は、被測定電流からの誘導磁界により抵抗値が変化するという特性を有する。このような特性を有する磁気抵抗効果素子を用いてブリッジ回路112a、112bを構成することで、高感度の電流センサ1を実現できる。
As shown in FIG. 4, the feedback coils 111a and 111b are arranged in the vicinity of the magnetoresistive elements M1 to M4 constituting the bridge circuits 112a and 112b, and cancel the induced magnetic field Ha generated by the current Ia to be measured. Generates a canceling magnetic field. As the magnetoresistive elements M1 to M4 of the bridge circuits 112a and 112b, GMR (Giant Magneto Resistance) elements, TMR (Tunnel Magneto Resistance) elements, or the like are used. The magnetoresistive element has a characteristic that the resistance value is changed by an induced magnetic field from the current to be measured. By configuring the bridge circuits 112a and 112b using magnetoresistive elements having such characteristics, a highly sensitive current sensor 1 can be realized.
ブリッジ回路112a、112bの一方の電源端子aは電源Vddと接続され、もう一方の電源端子bはグランドGNDと接続される。この電源端子bは、図1に示す接地端子11a_GND及び接地端子11b_GNDに対応するものである。ブリッジ回路112a、112bがそれぞれ有する2個の出力端子c、dからの出力は、差動・電流アンプ131a、131bで差動増幅され、フィードバックコイル111a、111bには端子e、fを通じてフィードバック電流が流れる。フィードバック電流がフィードバックコイル111a、111bを流れると、当該フィードバック電流によって、誘導磁界Haを相殺するキャンセル磁界が発生する。そして、誘導磁界Haとキャンセル磁界とが相殺される平衡状態となったときにフィードバックコイル111a、111bを流れる電流が、I/Vアンプ132a、132bで電圧に変換され、それぞれ、第1磁気センサ11a側の出力、及び第2磁気センサ11b側の出力となる。
One power supply terminal a of the bridge circuits 112a and 112b is connected to the power supply Vdd, and the other power supply terminal b is connected to the ground GND. The power supply terminal b corresponds to the ground terminal 11a_GND and the ground terminal 11b_GND shown in FIG. The outputs from the two output terminals c and d of the bridge circuits 112a and 112b are differentially amplified by the differential / current amplifiers 131a and 131b, respectively. The feedback coils 111a and 111b receive the feedback current through the terminals e and f. Flowing. When the feedback current flows through the feedback coils 111a and 111b, a cancellation magnetic field that cancels the induced magnetic field Ha is generated by the feedback current. Then, the currents flowing through the feedback coils 111a and 111b when the induced magnetic field Ha and the canceling magnetic field are balanced are converted into voltages by the I / V amplifiers 132a and 132b, respectively, and the first magnetic sensor 11a. Side output and output on the second magnetic sensor 11b side.
なお、図3では、演算装置14aを含む第1電流センサユニット1aを例示したが、電流センサユニットの構成はこれに限定されない。例えば、図5に示すように、演算装置14aを含まない構成としても良い。この場合、図2に示す演算装置1dに、演算装置14aの機能を持たせれば良い。また、各磁気センサは、磁気抵抗効果素子を用いる磁気センサに限られない。例えば、ホール素子を用いる磁気センサを適用しても良い。
In addition, in FIG. 3, although the 1st current sensor unit 1a including the arithmetic unit 14a was illustrated, the structure of a current sensor unit is not limited to this. For example, as shown in FIG. 5, it is good also as a structure which does not include the arithmetic unit 14a. In this case, the arithmetic device 1d shown in FIG. 2 may have the function of the arithmetic device 14a. Each magnetic sensor is not limited to a magnetic sensor using a magnetoresistive element. For example, a magnetic sensor using a Hall element may be applied.
第2電流センサユニット1bの構成は、第1電流センサユニット1aと同様である。すなわち、第2電流センサユニット1bは、第3磁気センサ11c及び第4磁気センサ11dと、第3磁気センサ11c及び第4磁気センサ11dを制御する第3制御回路13c及び第4制御回路13dと、第3磁気センサ11c側の出力と第4磁気センサ11d側の出力との電圧差を算出する演算装置14bとを備える。また、第3磁気センサ11c及び第4磁気センサ11dの構成は、第1磁気センサ11a及び第2磁気センサ11bの構成と同様であり、第3制御回路13c及び第4制御回路13dの構成は第1制御回路13a及び第2制御回路13bと同様である。つまり、第3磁気センサ11c及び第4磁気センサ11dは、隣接電流Ibによって発生する誘導磁界Hbを打ち消す方向の磁界を発生可能に配置されたフィードバックコイル111c、111dと、4個の磁気抵抗効果素子M1~M4で構成されるブリッジ回路112c、112dとを含む。また、第3制御回路13c及び第4制御回路13dは、ブリッジ回路112c、112dの差動出力を増幅し、フィードバックコイル111c、111dのフィードバック電流を制御する差動・電流アンプ131c、131dと、フィードバック電流を電圧に変換するI/Vアンプ132c、132dとを含む。また、第3制御回路13c及び第4制御回路13dは、第1制御回路13a及び第2制御回路13bと同様にオフセット電圧の絶対値を補正する機能を有している。
The configuration of the second current sensor unit 1b is the same as that of the first current sensor unit 1a. That is, the second current sensor unit 1b includes a third magnetic sensor 11c and a fourth magnetic sensor 11d, a third control circuit 13c and a fourth control circuit 13d that control the third magnetic sensor 11c and the fourth magnetic sensor 11d, An arithmetic device 14b that calculates a voltage difference between the output on the third magnetic sensor 11c side and the output on the fourth magnetic sensor 11d side is provided. The configurations of the third magnetic sensor 11c and the fourth magnetic sensor 11d are the same as the configurations of the first magnetic sensor 11a and the second magnetic sensor 11b, and the configurations of the third control circuit 13c and the fourth control circuit 13d are the same. The same as the first control circuit 13a and the second control circuit 13b. That is, the third magnetic sensor 11c and the fourth magnetic sensor 11d include the feedback coils 111c and 111d arranged to generate a magnetic field in a direction that cancels the induction magnetic field Hb generated by the adjacent current Ib, and four magnetoresistive elements. And bridge circuits 112c and 112d composed of M1 to M4. The third control circuit 13c and the fourth control circuit 13d amplify the differential outputs of the bridge circuits 112c and 112d, and control the feedback currents of the feedback coils 111c and 111d. I / V amplifiers 132c and 132d for converting a current into a voltage. The third control circuit 13c and the fourth control circuit 13d have a function of correcting the absolute value of the offset voltage in the same manner as the first control circuit 13a and the second control circuit 13b.
上述した電流センサ1において、各磁気センサ(11a~11d)の出力には通常、オフセットが存在する。そして、このオフセットは、温度に依存して変動する。オフセットが温度に関わらず一定であれば、単純にセンサ出力の差を取るだけでオフセットの影響を十分に低減できるが、このようにオフセットが温度特性を有していると、単純に差を取るだけではオフセットの影響を十分に低減できない。これは、各磁気センサの温度に応じてオフセットの値も異なってくるためである。そこで、本実施の形態に係る電流センサ1では、同一の電流センサユニットに含まれる一組の磁気センサを接地端子及び接地電極によって接続し、これらの温度が略等しくなるようにした上で各センサ出力の差を取るようにする。これにより、温度に依存して変動するオフセットの影響を低減することができる。
In the current sensor 1 described above, there is usually an offset in the output of each magnetic sensor (11a to 11d). This offset varies depending on the temperature. If the offset is constant regardless of the temperature, the effect of the offset can be reduced sufficiently by simply taking the difference in sensor output. However, if the offset has temperature characteristics in this way, the difference is simply taken. It is not possible to sufficiently reduce the influence of offset. This is because the offset value varies depending on the temperature of each magnetic sensor. Therefore, in the current sensor 1 according to the present embodiment, a set of magnetic sensors included in the same current sensor unit are connected by a ground terminal and a ground electrode so that their temperatures are approximately equal to each other. Try to take the difference in output. Thereby, the influence of the offset which fluctuates depending on the temperature can be reduced.
各センサ出力の差を演算する前には、第1制御回路13a、第2制御回路13b、演算装置14a、演算装置1dなどによって、基準となる所定温度(例えば25℃)におけるオフセットの絶対値が略等しくなるように補正を行っておく。これにより、オフセットの影響を十分に低減することができる。また、本実施の形態に係る電流センサ1では、同一の電流センサユニットに含まれる一組の磁気センサにおいて、出力のオフセット変化の温度特性が略等しくなっている。これにより、上記補正と組み合わせることで、同一の電流センサユニットに含まれる一組の磁気センサのオフセットを磁気センサの温度によらず略等しくできる。このため、各センサ出力の差を取ることで、温度に依存して変動するオフセットの影響を十分に低減することができる。
Before calculating the difference between the sensor outputs, the first control circuit 13a, the second control circuit 13b, the calculation device 14a, the calculation device 1d, etc. determine the absolute value of the offset at a predetermined reference temperature (for example, 25 ° C.). Correction is performed so as to be substantially equal. Thereby, the influence of offset can be reduced sufficiently. Further, in the current sensor 1 according to the present embodiment, the temperature characteristics of the output offset change are substantially equal in a set of magnetic sensors included in the same current sensor unit. Thereby, by combining with the above correction, the offset of a set of magnetic sensors included in the same current sensor unit can be made substantially equal regardless of the temperature of the magnetic sensors. Therefore, by taking the difference between the sensor outputs, it is possible to sufficiently reduce the influence of the offset that varies depending on the temperature.
図6は、オフセットの影響が低減される様子を示す特性図である。図6Aには、第1磁気センサ11a及び第2磁気センサ11bにおけるオフセット電圧の温度特性を示す。図6Aに示すように、第1磁気センサ11a及び第2磁気センサ11bにおいて、同一温度でのオフセット電圧の値は異なっているが、温度特性を示す曲線の傾きは略等しくなっている。すなわち、オフセット変化の温度特性が略等しくなっている。図6Bには、補正後のオフセット電圧の温度特性、及びその差を示す。図6Bに示すように、温度特性の傾きが等しい場合、ある温度条件(例えば25℃)においてオフセット電圧が略等しくなるように磁気センサの出力を補正することで、2個の磁気センサのオフセット電圧の温度特性を示す曲線を略一致させることができる。この場合、第1磁気センサ11a及び第2磁気センサ11bの温度を略等しくすることで、第1磁気センサ11aのオフセットと第2磁気センサ11bのオフセットとの差をほぼゼロにできる。
FIG. 6 is a characteristic diagram showing how the influence of offset is reduced. FIG. 6A shows the temperature characteristics of the offset voltage in the first magnetic sensor 11a and the second magnetic sensor 11b. As shown in FIG. 6A, in the first magnetic sensor 11a and the second magnetic sensor 11b, the values of the offset voltage at the same temperature are different, but the slopes of the curves indicating the temperature characteristics are substantially equal. That is, the temperature characteristics of the offset change are substantially equal. FIG. 6B shows the temperature characteristics of the offset voltage after correction and the difference therebetween. As shown in FIG. 6B, when the slopes of the temperature characteristics are equal, the offset voltages of the two magnetic sensors are corrected by correcting the output of the magnetic sensors so that the offset voltages are substantially equal under a certain temperature condition (for example, 25 ° C.). The curves indicating the temperature characteristics can be made substantially coincident. In this case, the difference between the offset of the first magnetic sensor 11a and the offset of the second magnetic sensor 11b can be made substantially zero by making the temperatures of the first magnetic sensor 11a and the second magnetic sensor 11b substantially equal.
次に、本実施の形態に係る電流センサ1の演算装置14a、14b、及び演算装置1dにおいて被測定電流Iaを算出するために行われる演算処理について説明する。
Next, calculation processing performed to calculate the measured current Ia in the calculation devices 14a and 14b and the calculation device 1d of the current sensor 1 according to the present embodiment will be described.
まず、第1電流センサユニット1a側の演算装置14aにおける演算処理について説明する。演算装置14aに、第1磁気センサ11a及び第1制御回路13aからの出力と、第2磁気センサ11b及び第2制御回路13bからの出力とが入力されると、演算装置14aは、所定温度(例えば25℃)において上記2個の出力のオフセット電圧が略等しくなるような補正値を出力に加えて、補正後の第1磁気センサ11a側の出力(V1A)及び補正後の第2磁気センサ11b側の出力(V1B)を得る。そして、演算装置14aは、出力(V1A)と出力(V1B)との差を演算して第1電流センサユニット1aの出力(ΔV1)とする。
First, arithmetic processing in the arithmetic device 14a on the first current sensor unit 1a side will be described. When the output from the first magnetic sensor 11a and the first control circuit 13a and the output from the second magnetic sensor 11b and the second control circuit 13b are input to the arithmetic device 14a, the arithmetic device 14a is set to a predetermined temperature ( For example, a correction value that makes the offset voltages of the two outputs substantially equal at 25 ° C. is added to the output, and the corrected output (V 1A ) on the first magnetic sensor 11a side and the corrected second magnetic sensor The output (V 1B ) on the 11b side is obtained. Then, the arithmetic device 14a calculates the difference between the output (V 1A ) and the output (V 1B ) to obtain the output (ΔV 1 ) of the first current sensor unit 1a.
ここで、補正後の第1磁気センサ11a側の出力(電圧)V1Aは、第1電流線2aを通流する被測定電流Iaの電流値をI1、第2電流線2bを通流する隣接電流Ibの電流値をI2、第1電流センサユニット1aの第1電流線2aを通流する電流に関する感度係数をX11、第1の電流センサユニット1aの第2の電流線2bを通流する電流に関する感度係数をX12、補正後のオフセット電圧をVO1として式(1)で表される。
Here, the corrected output (voltage) V 1A on the first magnetic sensor 11a side passes the current value of the measured current Ia flowing through the first current line 2a through I 1 and the second current line 2b. The current value of the adjacent current Ib is I 2 , the sensitivity coefficient relating to the current flowing through the first current line 2a of the first current sensor unit 1a is X 11 , and the second current line 2b of the first current sensor unit 1a is passed through. The sensitivity coefficient relating to the flowing current is represented by the equation (1), where X 12 is the corrected offset voltage and V O1 is the corrected offset voltage.
また、第2磁気センサ11b側の出力(電圧)V1Bは、同様に式(2)で表される。
Further, the output (voltage) V 1B on the second magnetic sensor 11b side is similarly expressed by Expression (2).
なお、感度係数とは、ある電流線を通流する電流と各センサ出力との関係を示す係数である。例えば、「第1電流センサユニット1aの第1電流線2aを通流する電流に関する感度係数」は、第1電流線2aを通流する電流値と、第1磁気センサ11a側のセンサ出力(又は第2磁気センサ11b側のセンサ出力)との関係を示す。具体的には、感度係数は、センサ出力を、電流線を通流する電流値で割った値に相当する。このため、例えば、第1の電流センサユニット1aの第2の電流線2bを通流する電流に関する感度係数がX12である場合、第2電流線2bを通流する隣接電流Ibの電流値をI2とすると、第1磁気センサ11a側のセンサ出力(又は第2磁気センサ11b側のセンサ出力)はX12I2で表される。
The sensitivity coefficient is a coefficient indicating the relationship between the current flowing through a certain current line and each sensor output. For example, “the sensitivity coefficient related to the current flowing through the first current line 2a of the first current sensor unit 1a” is the current value flowing through the first current line 2a and the sensor output (or the first magnetic sensor 11a side). The relationship with the sensor output on the second magnetic sensor 11b side) is shown. Specifically, the sensitivity coefficient corresponds to a value obtained by dividing the sensor output by the current value flowing through the current line. Thus, for example, when the sensitivity coefficient for current second flowing through the current line 2b of the first current sensor unit 1a is X 12, the current value of the adjacent current Ib flowing through the second current line 2b If I 2 , the sensor output on the first magnetic sensor 11a side (or the sensor output on the second magnetic sensor 11b side) is represented by X 12 I 2 .
また、本実施の形態に係る電流センサ1において、同一の電流センサユニット内に存在する一組の磁気センサ(ここでは、第1磁気センサ11aと第2磁気センサ11b)のオフセット変化の温度特性が略等しくなっているため、上記式(1)、(2)で表されるように、第1磁気センサ11a側のセンサ出力における補正後のオフセット電圧と、第2磁気センサ11b側のセンサ出力における補正後のオフセット電圧とは、所定温度以外においても略等しくなる。
In addition, in the current sensor 1 according to the present embodiment, the temperature characteristics of the offset change of a pair of magnetic sensors (here, the first magnetic sensor 11a and the second magnetic sensor 11b) existing in the same current sensor unit. Since they are substantially equal, the offset voltage after correction in the sensor output on the first magnetic sensor 11a side and the sensor output on the second magnetic sensor 11b side are expressed as expressed by the above formulas (1) and (2). The corrected offset voltage is substantially equal even at a temperature other than the predetermined temperature.
演算装置14aは、上記式(1)で表される出力(V1A)と、上記式(2)で表される出力(V1B)との差を演算する。これにより、式(3)で表される第1電流センサユニット1aの出力(ΔV1)を得る。式(3)に示されるように、第1電流センサユニット1aの出力(ΔV1)において、オフセット電圧の項はキャンセルされている。このように、出力(V1A)と、出力(V1B)との差を演算することによって、オフセットの影響を十分に除去して電流測定精度を高めることができる。
The arithmetic device 14a calculates the difference between the output (V 1A ) represented by the above formula ( 1 ) and the output (V 1B ) represented by the above formula (2). Thereby, the output (ΔV 1 ) of the first current sensor unit 1a represented by the expression (3) is obtained. As shown in Expression (3), the offset voltage term is canceled in the output (ΔV 1 ) of the first current sensor unit 1a. Thus, by calculating the difference between the output (V 1A ) and the output (V 1B ), it is possible to sufficiently remove the influence of the offset and increase the current measurement accuracy.
同様に、第2電流センサユニット1b側の演算装置14bに、第3磁気センサ11c及び第3制御回路13cからの出力と、第4磁気センサ11d及び第4制御回路13dからの出力とが入力されると、演算装置14bは、所定温度(例えば25℃)において上記2個の出力のオフセット電圧が略等しくなるような補正値を出力に加えて、補正後の第3磁気センサ11c側の出力(V2A)及び補正後の第4磁気センサ11d側の出力(V2B)を得る。そして、演算装置14aは、出力(V2A)と出力(V2B)との差を演算して第2電流センサユニット1bの出力(ΔV2)とする。
Similarly, the output from the third magnetic sensor 11c and the third control circuit 13c and the output from the fourth magnetic sensor 11d and the fourth control circuit 13d are input to the arithmetic device 14b on the second current sensor unit 1b side. Then, the arithmetic device 14b adds a correction value so that the offset voltages of the two outputs become substantially equal at a predetermined temperature (for example, 25 ° C.), and outputs the corrected output on the third magnetic sensor 11c side ( V 2A ) and the corrected output (V 2B ) on the fourth magnetic sensor 11d side are obtained. Then, the arithmetic device 14a calculates the difference between the output (V 2A ) and the output (V 2B ) to obtain the output (ΔV 2 ) of the second current sensor unit 1b.
第3磁気センサ11c側の出力(電圧)V2Aは、第1電流線2aを通流する被測定電流Iaの電流値をI1、第2電流線2bを通流する隣接電流Ibの電流値をI2、第2電流センサユニット1bの第1電流線2aを通流する電流に関する感度係数をX21、第2の電流センサユニット1bの第2の電流線2bを通流する電流に関する感度係数をX22、補正後のオフセット電圧をVO2として式(4)で表される。
The output of the third magnetic sensor 11c side (voltage) V 2A, the current values of the adjacent current Ib the current value of the measured current Ia flowing through the first current line 2a to I 1, flowing through the second current line 2b I 2 , the sensitivity coefficient related to the current flowing through the first current line 2a of the second current sensor unit 1b is X 21 , and the sensitivity coefficient related to the current flowing through the second current line 2b of the second current sensor unit 1b Is represented by Equation (4) where X 22 is X 22 and the corrected offset voltage is V O2 .
また、第4磁気センサ11d側の出力(電圧)V2Bは、同様に式(5)で表される。
Similarly, the output (voltage) V 2B on the fourth magnetic sensor 11d side is expressed by the equation (5).
演算装置14bは、上記式(4)で表される出力(V2A)と、上記式(5)で表される出力(V2B)との差を演算して、式(6)で表される第2電流センサユニット1bの出力(ΔV2)を得る。
The calculation device 14b calculates the difference between the output (V 2A ) expressed by the above formula (4) and the output (V 2B ) expressed by the above formula (5), and is expressed by the formula (6). The output (ΔV 2 ) of the second current sensor unit 1b is obtained.
演算装置14aは、上述した演算処理によって得られた第1電流センサユニット1aの出力(ΔV1)を演算装置1dに出力する。また、演算装置14bは、第2電流センサユニット1bの出力(ΔV2)を演算装置1dに出力する。被測定電流Iaの電流値I1、及び隣接電流Ibの電流値I2は、ΔV1、及びΔV2を用いて式(7)、(8)のように表される。このため、演算装置1dは、第1電流センサユニット1aの出力(ΔV1)、及び第2電流センサユニット1bの出力(ΔV2)を用いて、被測定電流Iaの電流値I1を算出することができる。
The arithmetic device 14a outputs the output (ΔV 1 ) of the first current sensor unit 1a obtained by the arithmetic processing described above to the arithmetic device 1d. The computing device 14b outputs the output (ΔV 2 ) of the second current sensor unit 1b to the computing device 1d. The current value I 1 of the current Ia to be measured and the current value I 2 of the adjacent current Ib are expressed as in Expressions (7) and (8) using ΔV 1 and ΔV 2 . Therefore, the arithmetic unit 1d, the output of the first current sensor unit 1a ([Delta] V 1), and with output ([Delta] V 2) of the second current sensor unit 1b, and calculates a current value I 1 of the current to be measured Ia be able to.
演算装置1dは、上記式(7)に基づいて被測定電流Iaの電流値I1を算出すると、算出結果を外部に出力する。なお、演算装置1dは、上記式(8)に基づいて隣接電流Ibの電流値I2を算出し、被測定電流Iaの電流値I1の算出結果とともに外部に出力しても良い。
Computing device 1d, when calculating the current value I 1 to be measured current Ia based on the equation (7), and outputs the calculation result to the outside. The arithmetic unit 1d, based on the equation (8) is calculated current value I 2 of the adjacent current Ib, may be output to the outside together with the calculation result of the current value I 1 of the current to be measured Ia.
このように、本実施の形態に係る電流センサ1は、電流線を挟むように配置された一組の磁気センサの温度が略等しくなるように構成されているため、温度に依存して変動する磁気センサ出力のオフセットの影響を適切に除去することができる。また、複数の電流線のそれぞれに対応する電流センサユニットの出力を用いているため、被測定電流が通流する電流線以外の電流線を通流する電流の影響を除去することができる。その結果、電流測定精度の低下を抑制することが可能である。
As described above, the current sensor 1 according to the present embodiment is configured so that the temperatures of the pair of magnetic sensors arranged so as to sandwich the current line are substantially equal, and thus varies depending on the temperature. The influence of the offset of the magnetic sensor output can be appropriately removed. Further, since the output of the current sensor unit corresponding to each of the plurality of current lines is used, the influence of the current flowing through the current line other than the current line through which the current to be measured flows can be eliminated. As a result, it is possible to suppress a decrease in current measurement accuracy.
(実施の形態2)
本実施の形態では、図1に示される電流センサ1の変形例について説明する。なお、以下の説明において、実施の形態1と共通する部分の説明は省略する。 (Embodiment 2)
In the present embodiment, a modification of thecurrent sensor 1 shown in FIG. 1 will be described. In the following description, description of parts common to the first embodiment is omitted.
本実施の形態では、図1に示される電流センサ1の変形例について説明する。なお、以下の説明において、実施の形態1と共通する部分の説明は省略する。 (Embodiment 2)
In the present embodiment, a modification of the
図7は、本実施の形態に係る電流センサ1´の構成例を示す模式図である。図7に示すように、電流センサ1´は、測定電流Iaが通流する第1電流線2aに近接して配置された第1電流センサユニット1aと、隣接電流Ibが通流する第2電流線2bに近接して配置された第2電流センサユニット1bと、隣接電流Icが通流する第3電流線2cに近接して配置された第3電流センサユニット1cと、を備える。各電流センサユニット(1a~1c)の構成は、実施の形態1における各電流センサユニット(1a、1b)の構成と同様である。
FIG. 7 is a schematic diagram showing a configuration example of the current sensor 1 ′ according to the present embodiment. As shown in FIG. 7, the current sensor 1 ′ includes a first current sensor unit 1 a disposed close to the first current line 2 a through which the measurement current Ia flows, and a second current through which the adjacent current Ib flows. A second current sensor unit 1b arranged close to the line 2b; and a third current sensor unit 1c arranged close to the third current line 2c through which the adjacent current Ic flows. The configuration of each current sensor unit (1a to 1c) is the same as the configuration of each current sensor unit (1a, 1b) in the first embodiment.
図8は、第1電流センサユニット1aと、第2電流センサユニット1bと、第3電流センサユニット1cと、を備える電流センサ1´の構成例を示すブロック図である。図8に示すように、電流センサ1´は、第1電流センサユニット1aの出力と、第2電流センサユニット1bの出力と、第3電流センサユニット1cの出力とから、被測定電流Iaの電流値を算出する演算装置1dを備えている。なお、演算装置1dは、電流センサ1´の外部に設けられても良い。つまり、電流センサ1´は演算装置1dを含まなくとも良い。
FIG. 8 is a block diagram illustrating a configuration example of a current sensor 1 ′ including a first current sensor unit 1a, a second current sensor unit 1b, and a third current sensor unit 1c. As shown in FIG. 8, the current sensor 1 ′ has a current Ia to be measured from the output of the first current sensor unit 1a, the output of the second current sensor unit 1b, and the output of the third current sensor unit 1c. An arithmetic device 1d for calculating a value is provided. Note that the arithmetic device 1d may be provided outside the current sensor 1 ′. In other words, the current sensor 1 ′ may not include the arithmetic device 1d.
この電流センサ1´において、被測定電流Iaの算出は以下の演算処理によって行われる。
In the current sensor 1 ′, the measured current Ia is calculated by the following arithmetic processing.
第1電流センサユニット1aの演算装置14aに、第1磁気センサ11a及び第1制御回路13aからの出力と、第2磁気センサ11b及び第2制御回路13bからの出力とが入力されると、演算装置14aは、所定温度(例えば25℃)において上記2個の出力のオフセット電圧が略等しくなるように補正して、補正後の第1磁気センサ11a側の出力(V1A)及び補正後の第2磁気センサ11b側の出力(V1B)を得る。そして、演算装置14aは、出力(V1A)と出力(V1B)との差を演算して第1電流センサユニット1aの出力(ΔV1)とする。
If the output from the first magnetic sensor 11a and the first control circuit 13a and the output from the second magnetic sensor 11b and the second control circuit 13b are input to the calculation device 14a of the first current sensor unit 1a, the calculation is performed. The device 14a corrects the offset voltages of the two outputs to be substantially equal at a predetermined temperature (for example, 25 ° C.), and corrects the output (V 1A ) on the first magnetic sensor 11a side and the corrected first voltage. 2 The output (V 1B ) on the magnetic sensor 11b side is obtained. Then, the arithmetic device 14a calculates the difference between the output (V 1A ) and the output (V 1B ) to obtain the output (ΔV 1 ) of the first current sensor unit 1a.
ここで、補正後の第1磁気センサ11a側の出力(電圧)V1Aは、第1電流線2aを通流する被測定電流Iaの電流値をI1、第2電流線2bを通流する隣接電流Ibの電流値をI2、第3電流線2cを通流する隣接電流Icの電流値をI3、第1電流センサユニット1aの第1電流線2aを通流する電流に関する感度係数をX11、第1の電流センサユニット1aの第2の電流線2bを通流する電流に関する感度係数をX12、第1の電流センサユニット1aの第3の電流線2cを通流する電流に関する感度係数をX13、補正後のオフセット電圧をVO1として式(9)で表される。
Here, the corrected output (voltage) V 1A on the first magnetic sensor 11a side passes the current value of the measured current Ia flowing through the first current line 2a through I 1 and the second current line 2b. The current value of the adjacent current Ib is I 2 , the current value of the adjacent current Ic flowing through the third current line 2c is I 3 , and the sensitivity coefficient regarding the current flowing through the first current line 2a of the first current sensor unit 1a is X 11 is a sensitivity coefficient related to a current flowing through the second current line 2b of the first current sensor unit 1a, and X 12 is a sensitivity coefficient related to a current flowing through the third current line 2c of the first current sensor unit 1a. The coefficient is represented by X 13 , and the offset voltage after correction is represented by V O1 .
第2磁気センサ11b側の出力(電圧)V1Bは、同様に式(10)で表される。
Similarly, the output (voltage) V 1B on the second magnetic sensor 11b side is expressed by Expression (10).
次に、演算装置14aは、上記式(9)で表される出力(V1A)と、上記式(10)で表される出力(V1B)との差を演算する。これにより、式(11)で表される第1電流センサユニット1aの出力(ΔV1)を得る。
Next, the computing device 14a computes the difference between the output (V 1A ) represented by the above formula (9) and the output (V 1B ) represented by the above formula (10). Thereby, the output (ΔV 1 ) of the first current sensor unit 1a represented by the equation (11) is obtained.
同様に、第2電流センサユニット1bの演算装置14bに、第3磁気センサ11c及び第3制御回路13cからの出力と、第4磁気センサ11d及び第4制御回路13dからの出力とが入力されると、演算装置14bは、所定温度(例えば25℃)において上記2個の出力のオフセット電圧が略等しくなるように補正して、補正後の第3磁気センサ11c側の出力(V2A)及び補正後の第4磁気センサ11d側の出力(V2B)を得る。そして、演算装置14aは、出力(V2A)と出力(V2B)との差を演算して第2電流センサユニット1bの出力(ΔV2)とする。
Similarly, the output from the third magnetic sensor 11c and the third control circuit 13c and the output from the fourth magnetic sensor 11d and the fourth control circuit 13d are input to the arithmetic device 14b of the second current sensor unit 1b. Then, the arithmetic device 14b corrects the offset voltages of the two outputs to be substantially equal at a predetermined temperature (for example, 25 ° C.), and corrects the corrected output (V 2A ) on the third magnetic sensor 11c side. The output (V 2B ) on the subsequent fourth magnetic sensor 11d side is obtained. Then, the arithmetic device 14a calculates the difference between the output (V 2A ) and the output (V 2B ) to obtain the output (ΔV 2 ) of the second current sensor unit 1b.
第3磁気センサ11c側の出力(電圧)V2Aは、第1電流線2aを通流する被測定電流Iaの電流値をI1、第2電流線2bを通流する隣接電流Ibの電流値をI2、第3電流線2cを通流する隣接電流Icの電流値をI3、第2電流センサユニット1bの第1電流線2aを通流する電流に関する感度係数をX21、第2の電流センサユニット1bの第2の電流線2bを通流する電流に関する感度係数をX22、第2の電流センサユニット1bの第3の電流線2cを通流する電流に関する感度係数をX23、補正後のオフセット電圧をVO2として式(12)で表される。
The output of the third magnetic sensor 11c side (voltage) V 2A, the current values of the adjacent current Ib the current value of the measured current Ia flowing through the first current line 2a to I 1, flowing through the second current line 2b I 2 , the current value of the adjacent current Ic flowing through the third current line 2 c is I 3 , the sensitivity coefficient regarding the current flowing through the first current line 2 a of the second current sensor unit 1 b is X 21 , the second The sensitivity coefficient related to the current flowing through the second current line 2b of the current sensor unit 1b is X 22 and the sensitivity coefficient related to the current flowing through the third current line 2c of the second current sensor unit 1b is corrected to X 23 . The later offset voltage is expressed by Expression (12) as V O2 .
第4磁気センサ11d側の出力(電圧)V2Bは、同様に式(13)で表される。
Similarly, the output (voltage) V 2B on the fourth magnetic sensor 11d side is expressed by Expression (13).
演算装置14bは、上記式(12)で表される出力(V2A)と、上記式(13)で表される出力(V2B)との差を演算して、式(14)で表される第2電流センサユニット1bの出力(ΔV2)を得る。
The arithmetic device 14b calculates the difference between the output (V 2A ) expressed by the above formula (12) and the output (V 2B ) expressed by the above formula (13), and is expressed by the formula (14). The output (ΔV 2 ) of the second current sensor unit 1b is obtained.
同様に、第3電流センサユニット1cの演算装置(不図示)に、第5磁気センサ11e及び第5制御回路(不図示)からの出力と、第6磁気センサ11f及び第6制御回路(不図示)からの出力とが入力されると、第3電流センサユニット1cの演算装置は、所定温度(例えば25℃)において上記2個の出力のオフセット電圧が略等しくなるように補正して、補正後の第5磁気センサ11e側の出力(V3A)及び補正後の第6磁気センサ11f側の出力(V3B)を得る。そして、演算装置は、出力(V3A)と出力(V3B)との差を演算して第3電流センサユニット1cの出力(ΔV3)とする。
Similarly, the arithmetic unit (not shown) of the third current sensor unit 1c includes the outputs from the fifth magnetic sensor 11e and the fifth control circuit (not shown), the sixth magnetic sensor 11f and the sixth control circuit (not shown). ), The arithmetic unit of the third current sensor unit 1c corrects the offset voltages of the two outputs to be substantially equal at a predetermined temperature (for example, 25 ° C.), and after correction The output (V 3A ) on the fifth magnetic sensor 11e side and the output (V 3B ) on the sixth magnetic sensor 11f side after correction are obtained. Then, the arithmetic device calculates the difference between the output (V 3A ) and the output (V 3B ) to obtain the output (ΔV 3 ) of the third current sensor unit 1c.
第5磁気センサ11e側の出力(電圧)V3Aは、第1電流線2aを通流する被測定電流Iaの電流値をI1、第2電流線2bを通流する隣接電流Ibの電流値をI2、第3電流線2cを通流する隣接電流Icの電流値をI3、第3電流センサユニット1cの第1電流線2aを通流する電流に関する感度係数をX31、第3の電流センサユニット1cの第2の電流線2bを通流する電流に関する感度係数をX32、第3の電流センサユニット1cの第3の電流線2cを通流する電流に関する感度係数をX33、補正後のオフセット電圧をVO3として式(15)で表される。
The output of the fifth magnetic sensor 11e side (voltage) V 3A, the current value of the adjacent current Ib the current value of the measured current Ia flowing through the first current line 2a to I 1, flowing through the second current line 2b I 2 , the current value of the adjacent current Ic flowing through the third current line 2 c is I 3 , the sensitivity coefficient regarding the current flowing through the first current line 2 a of the third current sensor unit 1 c is X 31 , the third The sensitivity coefficient related to the current flowing through the second current line 2b of the current sensor unit 1c is X 32 , and the sensitivity coefficient related to the current flowing through the third current line 2c of the third current sensor unit 1c is corrected to X 33 . The later offset voltage is expressed by Expression (15) as V O3 .
第6磁気センサ11f側の出力(電圧)V3Bは、同様に式(16)で表される。
The output of the sixth magnetic sensor 11f side (voltage) V 3B is similarly represented by the formula (16).
第3電流センサユニット1cの演算装置は、上記式(15)で表される出力(V3A)と、上記式(16)で表される出力(V3B)との差を演算して、式(17)で表される第3電流センサユニット1cの出力(ΔV3)を得る。
The arithmetic unit of the third current sensor unit 1c calculates the difference between the output (V 3A ) expressed by the above formula (15) and the output (V 3B ) expressed by the above formula (16), The output (ΔV 3 ) of the third current sensor unit 1c represented by (17) is obtained.
演算装置14aは、上述した演算処理によって得られた第1電流センサユニット1aの出力(ΔV1)を演算装置1dに出力する。また、演算装置14bは、第2電流センサユニット1bの出力(ΔV2)を演算装置1dに出力する。また、第3電流センサユニット1cの演算装置は、第3電流センサユニット1cの出力(ΔV3)を演算装置1dに出力する。被測定電流Iaの電流値I1、隣接電流Ibの電流値I2、及び隣接電流Icの電流値I3は、ΔV1、ΔV2、及びΔV3を用いて式(18)、(19)、(20)のように表される。演算装置1dは、第1電流センサユニット1aの出力(ΔV1)、第2電流センサユニット1bの出力(ΔV2)、及び第3電流センサユニット1cの出力(ΔV3)を用いて、被測定電流Iaの電流値I1を算出することができる。
The arithmetic device 14a outputs the output (ΔV 1 ) of the first current sensor unit 1a obtained by the arithmetic processing described above to the arithmetic device 1d. The computing device 14b outputs the output (ΔV 2 ) of the second current sensor unit 1b to the computing device 1d. The arithmetic device of the third current sensor unit 1c outputs the output (ΔV 3 ) of the third current sensor unit 1c to the arithmetic device 1d. Current value I 1 of the measured currents Ia, a current value I 2 of the adjacent current Ib, and the current value I 3 of the adjacent current Ic, using [Delta] V 1, [Delta] V 2, and [Delta] V 3 (18), (19) , (20). Arithmetic unit 1d, the output of the first current sensor unit 1a ([Delta] V 1), the output of the second current sensor unit 1b ([Delta] V 2), and with outputs ([Delta] V 3) of the third current sensor unit 1c, to be measured it can be calculated current value I 1 of the current Ia.
なお、式(18)、(19)、(20)において、Dは式(21)を満たす。
In Expressions (18), (19), and (20), D satisfies Expression (21).
演算装置1dは、上記式(18)、(21)に基づいて被測定電流Iaの電流値I1を算出すると、算出結果を外部に出力する。なお、演算装置1dは、上記式(19)、(21)に基づいて隣接電流Ibの電流値I2を算出し、上記式(20)、(21)に基づいて隣接電流Icの電流値I3を算出し、被測定電流Iaの電流値I1の算出結果とともに外部に出力しても良い。
Arithmetic unit 1d, the above equation (18), calculating the current value I 1 of the measured current Ia based on the (21), and outputs the calculation result to the outside. The arithmetic unit 1d, the above equation (19), to calculate a current value I 2 of the adjacent current Ib based on the (21), the equation (20), the current value I of the adjacent currents Ic based on the (21) 3 is calculated, it may be output to the outside together with the calculation result of the current value I 1 of the current to be measured Ia.
このように、本実施の形態に係る電流センサ1は、電流線を挟むように配置された一組の磁気センサの温度が略等しくなるように構成されているため、温度に依存して変動する磁気センサ出力のオフセットの影響を適切に除去することができる。また、複数の電流線のそれぞれに対応する電流センサユニットの出力を用いているため、被測定電流が通流する電流線以外の電流線を通流する電流の影響を除去することができる。その結果、電流測定精度の低下を抑制することが可能である。
As described above, the current sensor 1 according to the present embodiment is configured so that the temperatures of the pair of magnetic sensors arranged so as to sandwich the current line are substantially equal, and thus varies depending on the temperature. The influence of the offset of the magnetic sensor output can be appropriately removed. Further, since the output of the current sensor unit corresponding to each of the plurality of current lines is used, the influence of the current flowing through the current line other than the current line through which the current to be measured flows can be eliminated. As a result, it is possible to suppress a decrease in current measurement accuracy.
なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、電流センサに含まれる電流センサユニットの数は4個以上であっても良い。この場合、全ての電流センサユニットの出力を用いることで、被測定電流の電流値を精度よく算出することができる。また、電流センサに含まれる各電流センサユニットの配置は上記実施の形態の配置に限られない。少なくとも、各電流センサユニットに対して各電流線を通流する電流の影響(感度係数)が分かっていれば、各電流センサユニットの配置は任意で良い。
Note that the present invention is not limited to the above embodiment, and can be implemented with various modifications. For example, the number of current sensor units included in the current sensor may be four or more. In this case, the current value of the current to be measured can be accurately calculated by using the outputs of all the current sensor units. Further, the arrangement of each current sensor unit included in the current sensor is not limited to the arrangement of the above embodiment. As long as at least the influence (sensitivity coefficient) of the current flowing through each current line is known for each current sensor unit, the arrangement of each current sensor unit may be arbitrary.
また、上記実施の形態において、同一の電流センサユニットに含まれる一組の磁気センサの出力のオフセット変化の温度特性を略等しくしているが、この特性は、必ずしも略等しくなくて良い。必要とされる温度範囲において必要な電流測定精度が得られるのであれば、オフセットの温度特性は多少異なっていても良い。
In the above-described embodiment, the temperature characteristics of the offset change of the outputs of a pair of magnetic sensors included in the same current sensor unit are substantially equal. However, these characteristics are not necessarily substantially equal. As long as the required current measurement accuracy can be obtained in the required temperature range, the temperature characteristics of the offset may be slightly different.
本発明の電流センサは、例えば、電気自動車やハイブリッドカーのモータ駆動用の電流の大きさを検知するために用いることが可能である。
The current sensor of the present invention can be used, for example, to detect the magnitude of a current for driving a motor of an electric vehicle or a hybrid car.
本出願は、2011年7月21日出願の特願2011-159812に基づく。この内容は、全てここに含めておく。
This application is based on Japanese Patent Application No. 2011-159812 filed on July 21, 2011. All this content is included here.
Claims (7)
- 対象の電流線を挟むように配置された一組の磁気センサと、当該一組の磁気センサが配置される基板と、をそれぞれ含んで構成された複数の電流線に対応する複数の電流センサユニットと、
各電流センサユニットにおける前記一組の磁気センサの出力の差を算出し、各電流センサユニットの出力から隣接する電流線の影響を除去して被測定電流の電流値を算出する演算装置と、を備え、
前記電流センサユニットに含まれる一組の磁気センサは、その温度が略等しくなるように各磁気センサの接地端子及び基板に設けられた接地電極により互いに接続されていることを特徴とする電流センサ。 A plurality of current sensor units corresponding to a plurality of current lines each including a set of magnetic sensors arranged so as to sandwich the target current line and a substrate on which the set of magnetic sensors is arranged When,
An arithmetic unit that calculates a difference between outputs of the pair of magnetic sensors in each current sensor unit, and calculates a current value of a current to be measured by removing an influence of an adjacent current line from the output of each current sensor unit; Prepared,
A pair of magnetic sensors included in the current sensor unit are connected to each other by a ground terminal of each magnetic sensor and a ground electrode provided on the substrate so that the temperatures thereof are substantially equal. - 前記電流センサユニットに含まれる一組の磁気センサは、オフセット変化の温度特性が等しいことを特徴とする請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the set of magnetic sensors included in the current sensor unit have the same temperature characteristics of offset change.
- 前記電流センサユニットに含まれる一組の磁気センサは、前記電流線を通流する電流の影響が前記一組の磁気センサの出力において逆極性で現れるように感度軸を同一方向に向けて配置されたことを特徴とする請求項1又は請求項2に記載の電流センサ。 The pair of magnetic sensors included in the current sensor unit are arranged with the sensitivity axes in the same direction so that the influence of the current flowing through the current line appears in the opposite polarity in the output of the pair of magnetic sensors. The current sensor according to claim 1, wherein the current sensor is a current sensor.
- 被測定電流が通流する第1の電流線を挟むように配置された第1の磁気センサ及び第2の磁気センサを含む第1の電流センサユニットと、前記被測定電流とは異なる電流が通流する第2の電流線を挟むように配置された第3の磁気センサ及び第4の磁気センサを含む第2の電流センサユニットと、を備えたことを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。 A first current sensor unit including a first magnetic sensor and a second magnetic sensor disposed so as to sandwich a first current line through which a current to be measured flows, and a current different from the current to be measured are passed. 3. A second current sensor unit including a third magnetic sensor and a fourth magnetic sensor arranged so as to sandwich a second current line flowing therethrough. 5. The current sensor according to any one of the above.
- 第1の電流センサユニットの前記第1の電流線を通流する電流に関する感度係数X11、第2の電流センサユニットの前記第2の電流線を通流する電流に関する感度係数X22、第1の電流センサユニットの前記第2の電流線を通流する電流に関する感度係数X12、第2の電流センサユニットの前記第1の電流線を通流する電流に関する感度係数X21、前記第1の磁気センサの出力と前記第2の磁気センサの出力との差ΔV1、及び前記第3の磁気センサの出力と前記第4の磁気センサの出力との差ΔV2を用いて表される下記式(7)から前記第1の電流線を通流する前記被測定電流の電流値I1を算出することを特徴とする請求項4に記載の電流センサ。
- 被測定電流が通流する第1の電流線を挟むように配置された第1の磁気センサ及び第2の磁気センサを含む第1の電流センサユニットと、前記被測定電流とは異なる第2の電流が通流する第2の電流線を挟むように配置された第3の磁気センサ及び第4の磁気センサを含む第2の電流センサユニットと、前記被測定電流及び前記第2の電流とは異なる第3の電流が通流する第3の電流線を挟むように配置された第5の磁気センサ及び第6の磁気センサを含む第3の電流センサユニットと、を備えたことを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。 A first current sensor unit including a first magnetic sensor and a second magnetic sensor arranged so as to sandwich a first current line through which a current to be measured flows, and a second current different from the current to be measured What is the second current sensor unit including the third magnetic sensor and the fourth magnetic sensor disposed so as to sandwich the second current line through which the current flows, and the current to be measured and the second current? And a third current sensor unit including a fifth magnetic sensor and a sixth magnetic sensor arranged so as to sandwich a third current line through which a different third current flows. The current sensor according to claim 1.
- 第mの電流センサユニット(mは1~3の自然数)の前記第nの電流線(nは1~3の自然数)を通流する電流に関する感度係数Xmn、前記第1の磁気センサの出力と前記第2の磁気センサの出力との差ΔV1、前記第3の磁気センサの出力と前記第4の磁気センサの出力との差ΔV2、及び前記第5の磁気センサの出力と前記第6の磁気センサの出力との差ΔV3を用いて表される下記式(18)から前記第1の電流線を通流する前記被測定電流の電流値I1を算出することを特徴とする請求項6に記載の電流センサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013524660A JP5688572B2 (en) | 2011-07-21 | 2012-07-09 | Current sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-159812 | 2011-07-21 | ||
JP2011159812 | 2011-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011859A1 true WO2013011859A1 (en) | 2013-01-24 |
Family
ID=47558037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067506 WO2013011859A1 (en) | 2011-07-21 | 2012-07-09 | Current sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5688572B2 (en) |
WO (1) | WO2013011859A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105518472A (en) * | 2013-09-05 | 2016-04-20 | 旭化成微电子株式会社 | Current sensor |
JP2016142568A (en) * | 2015-01-30 | 2016-08-08 | アルプス・グリーンデバイス株式会社 | Current sensor and current measurement system |
WO2017094336A1 (en) * | 2015-12-03 | 2017-06-08 | アルプス電気株式会社 | Magnetic field detection device |
WO2019016822A1 (en) * | 2017-07-17 | 2019-01-24 | Maglab Llc | A combination current sensing device |
US11536748B2 (en) | 2020-08-04 | 2022-12-27 | Aisin Corporation | Current sensor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9810722B2 (en) | 2015-09-23 | 2017-11-07 | Faraday & Future Inc. | Dual gap current sensor for multi phase conduction system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62152269U (en) * | 1986-03-18 | 1987-09-26 | ||
JP2002162423A (en) * | 2000-11-28 | 2002-06-07 | Nishimu Electronics Industries Co Ltd | Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof |
JP2002243766A (en) * | 2001-02-16 | 2002-08-28 | Fuji Electric Co Ltd | Current sensor |
WO2006090769A1 (en) * | 2005-02-23 | 2006-08-31 | Asahi Kasei Emd Corporation | Current measuring instrument |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19910801B4 (en) * | 1999-03-11 | 2004-06-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device and method for measuring current |
JP2002156390A (en) * | 2000-11-21 | 2002-05-31 | Na:Kk | Current sensor |
-
2012
- 2012-07-09 JP JP2013524660A patent/JP5688572B2/en not_active Expired - Fee Related
- 2012-07-09 WO PCT/JP2012/067506 patent/WO2013011859A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62152269U (en) * | 1986-03-18 | 1987-09-26 | ||
JP2002162423A (en) * | 2000-11-28 | 2002-06-07 | Nishimu Electronics Industries Co Ltd | Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof |
JP2002243766A (en) * | 2001-02-16 | 2002-08-28 | Fuji Electric Co Ltd | Current sensor |
WO2006090769A1 (en) * | 2005-02-23 | 2006-08-31 | Asahi Kasei Emd Corporation | Current measuring instrument |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105518472A (en) * | 2013-09-05 | 2016-04-20 | 旭化成微电子株式会社 | Current sensor |
JP2016142568A (en) * | 2015-01-30 | 2016-08-08 | アルプス・グリーンデバイス株式会社 | Current sensor and current measurement system |
WO2017094336A1 (en) * | 2015-12-03 | 2017-06-08 | アルプス電気株式会社 | Magnetic field detection device |
JPWO2017094336A1 (en) * | 2015-12-03 | 2018-09-27 | アルプス電気株式会社 | Magnetic field detector |
WO2019016822A1 (en) * | 2017-07-17 | 2019-01-24 | Maglab Llc | A combination current sensing device |
US11536748B2 (en) | 2020-08-04 | 2022-12-27 | Aisin Corporation | Current sensor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013011859A1 (en) | 2015-02-23 |
JP5688572B2 (en) | 2015-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9435829B2 (en) | Current sensor | |
JP5648246B2 (en) | Current sensor | |
EP2871488B1 (en) | Hall electromotive force compensation device and hall electromotive force compensation method | |
JP5688572B2 (en) | Current sensor | |
JP5728719B2 (en) | Current sensor | |
JP5906488B2 (en) | Current sensor | |
EP2466325B1 (en) | Stray-field sensor circuit and method | |
WO2012050048A1 (en) | Current sensor | |
US9933462B2 (en) | Current sensor and current measuring device | |
US10498198B2 (en) | Magnetic sensor | |
JP5816958B2 (en) | Current sensor | |
JP6384677B2 (en) | Current sensor | |
WO2013038867A1 (en) | Electric-current sensor | |
JP5487403B2 (en) | Current sensor | |
JP5891516B2 (en) | Current sensor | |
JP2010286415A (en) | Current sensor unit | |
JP5504483B2 (en) | Current sensor | |
JP5504488B2 (en) | Current sensor | |
JP5703470B2 (en) | Current sensor | |
JP2012225872A (en) | Current sensor | |
WO2024257579A1 (en) | Electric current sensor | |
CN114062755A (en) | Current sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12815111 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013524660 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12815111 Country of ref document: EP Kind code of ref document: A1 |