WO2013008801A1 - 多孔膜及びこれを用いた反射板 - Google Patents
多孔膜及びこれを用いた反射板 Download PDFInfo
- Publication number
- WO2013008801A1 WO2013008801A1 PCT/JP2012/067536 JP2012067536W WO2013008801A1 WO 2013008801 A1 WO2013008801 A1 WO 2013008801A1 JP 2012067536 W JP2012067536 W JP 2012067536W WO 2013008801 A1 WO2013008801 A1 WO 2013008801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- carbon atoms
- porous membrane
- bond
- Prior art date
Links
- BGEOXTFZINTZNO-UHFFFAOYSA-N CC(C)C1C(C(O)=O)=CC(C(C)(CCC2)C(CC3)C2(C)C(OC)=O)=C3C1 Chemical compound CC(C)C1C(C(O)=O)=CC(C(C)(CCC2)C(CC3)C2(C)C(OC)=O)=C3C1 BGEOXTFZINTZNO-UHFFFAOYSA-N 0.000 description 1
- DTMDTRWVOXWBPD-UHFFFAOYSA-N CC(C)c(cc(CCC1C2(C)CCCC1(C)C(O)=O)c2c1)c1C(O)=O Chemical compound CC(C)c(cc(CCC1C2(C)CCCC1(C)C(O)=O)c2c1)c1C(O)=O DTMDTRWVOXWBPD-UHFFFAOYSA-N 0.000 description 1
- HFNSWUWOTLFFOE-UHFFFAOYSA-N CC(C)c(cc(CCC1C2(C)CCCC1(C)C(OC)=O)c2c1)c1C(C)=O Chemical compound CC(C)c(cc(CCC1C2(C)CCCC1(C)C(OC)=O)c2c1)c1C(C)=O HFNSWUWOTLFFOE-UHFFFAOYSA-N 0.000 description 1
- PGZCJOPTDHWYES-UHFFFAOYSA-N CC(C)c1cc(CCC2C3(C)CCCC2(C)C(OC)=O)c3cc1 Chemical compound CC(C)c1cc(CCC2C3(C)CCCC2(C)C(OC)=O)c3cc1 PGZCJOPTDHWYES-UHFFFAOYSA-N 0.000 description 1
- NFWKVWVWBFBAOV-UHFFFAOYSA-N CC(C)c1ccc(C(C)(CCC2)C(CC3)C2(C)C(O)=O)c3c1 Chemical compound CC(C)c1ccc(C(C)(CCC2)C(CC3)C2(C)C(O)=O)c3c1 NFWKVWVWBFBAOV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/28—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
Definitions
- the present invention relates to a porous film and a reflector using the same.
- Some film and sheet materials containing pores exhibit light reflectivity, and because of their heat insulation, cushioning, and light weight, for example, electronic device lighting members, general household lighting members, internal lighting signs, etc. It is used as a reflective material.
- light reflectors that exhibit higher reflectivity, have heat resistance, and are light in applications for liquid crystal reflectors. Therefore, as a technique applicable to the reflector, a porous stretched resin that is stretched under atmospheric pressure by contacting the inert gas with the inert gas under pressure when molding the resin film.
- Patent Documents 1 and 2 There is a film (Patent Documents 1 and 2).
- Patent Document 3 There is also a reflective film in which voids are formed by mixing and stretching inorganic particles in polyethylene terephthalate (Patent Document 3). Since the porous film made of such a stretched resin film has fine irregularities formed on the surface by the pores, the diffuse reflectance with respect to the total reflectance becomes high when reflecting visible light, Suitable for use.
- Patent Documents 1 to 3 use a polymer derived from fossil fuel, and from the viewpoint of recent environmental problems, it is an alternative to one derived from a natural resource with a low equivalent carbon dioxide emission. Is desired.
- a porous film derived from a natural resource has insufficient heat resistance and could not be used for a reflector.
- the present applicant has paid attention to an abietan compound derived from natural resources and succeeded in making it a polymer. And the physical property of the polymer was confirmed, and it discovered that high heat resistance and moisture-and-water resistance could be expressed (Unexamined-Japanese-Patent No.
- the polymer can be formed into a porous film having independent pores by a simple method such as a solution casting method.
- the formation of such independent pores is a phenomenon peculiar to the above polymer, and even if the same method is used, the cellulose ester which is a biomass polymer becomes a through hole.
- the present invention aims to provide a porous film that has environmental compatibility by using a plant-derived compound, has excellent heat resistance, and exhibits a high reflectance with respect to visible light, and a reflector using the porous film. To do.
- a porous membrane comprising a specific polymer containing a skeleton derived from dehydroabietic acid as a repeating unit and having pores therein.
- R A and R B represent an alkyl group or alkenyl group having 1 to 6 carbon atoms.
- N and m represent an integer of 0 to 3.
- m represents an integer of 0 to 5.
- Ring Cy represents a hetero atom.
- a saturated or unsaturated 6-membered ring or 7-membered ring which may be included is represented, wherein * and ** represent a bond incorporated in the main chain, and * may be a bond extending from RA .
- L 13 is an alkylene group, an alkenylene group, an alkynylene group, an arylene group, an oxygen atom, a carbonyl group, or a single bond
- L 12 is a carbonyl group or a carbonyloxy group [3] ]
- L 21 and L 22 in Formula A2 are a carbonyl group or a carbonyloxy group
- L 23 is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, an alkylene group, an alkenylene group, an arylene group, or a single bond
- the porous film according to any one of [1] to [6].
- X, Y and Z are each independently —O—, —S—, —NR—, — (C ⁇ O) —, —O (C ⁇ O) —, — (C ⁇ O) O—, — ( C ⁇ O) NR— and a divalent linking group selected from the group consisting of combinations thereof.
- R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 24 carbon atoms. * Is a bond incorporated in the main chain.
- mz is an integer of 0 to 3.
- R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 24 carbon atoms.
- the porous film of the present invention and the reflector using the porous film use a plant-derived compound, and have environmental compatibility that greatly contributes to reduction of the equivalent amount of carbon dioxide emission. Furthermore, it has excellent effects of being excellent in heat resistance and reflectance, resistant to heat shrinkage, and being able to easily form a porous film having independent pores by a solution casting method.
- the porous membrane of the present invention is made of a specific polymer using a plant-derived compound.
- This porous membrane has a very high heat resistance despite being derived from a plant, and is resistant to heat shrinkage. This reason includes an unclear point, but is estimated as follows. That is, the specific polymer has a unique matrix created in the resin by two-dimensionally connecting the three-dimensionally chemically stable tricyclic moieties having a skeleton derived from dehydroabietic acid. it is conceivable that. There is no such material, and conventional biomass polymers obtained using biomass resources are usually inferior in heat resistance.
- the specific polymer used in the present invention can use a raw material derived from biomass resources, it exhibits excellent heat resistance as described above. Hereinafter, it demonstrates in detail centering on the preferable embodiment of this invention.
- the specific polymer of the present invention uses dehydroabietic acid represented by the following formula (AA) or a derivative thereof as a raw material monomer. Even a homopolymer obtained by polymerizing this may be a copolymer obtained by polymerizing the raw material monomer and another monomer. That is, the specific polymer has a repeating unit containing a skeleton derived from dehydroabietic acid in its molecular structure.
- the “skeleton derived from dehydroabietic acid” only needs to have a structure derived from the above-mentioned dehydroabietic acid, in other words, dehydroabietic acid within a range where a desired effect is achieved.
- Any structural skeleton that can be derivatized from the above is acceptable.
- Preferable examples include the following.
- the skeleton derived from dehydroabietic acid may further have a substituent.
- substituents include an alkyl group, an alkoxy group, a halogen atom, a hydroxyl group, a carbonyl group, a nitro group, and an amino group.
- (AA-1), (AA-3), and (AA-10) are preferable, and (AA-1) is most preferable.
- R A and R B represent an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 1 to 6 carbon atoms.
- n represents 0-3.
- m represents 0-5.
- Ring Cy represents a saturated or unsaturated 6-membered or 7-membered ring which may contain a hetero atom.
- * and ** represent a bond incorporated into the main chain. * May be a bond extending from RA .
- R B is preferably a methyl group.
- R A is preferably an alkyl group having 1 to 4 carbon atoms, and more preferably an i-propyl group.
- Cy is preferably a cyclohexane ring or a cyclohexene ring, and more preferably a cyclohexane ring.
- n and m are preferably 1.
- the above formula (U) is preferably the following formula (U1).
- R A , R B , m, and n are as defined in the above formula (U).
- R C has the same meaning as R B.
- p is an integer of 0 to 2, and is preferably 0.
- Dehydroabietic acid is one of the components constituting rosin contained in pine resin of plant origin. That is, since a material of natural origin can be used as its substrate, it is offset in the amount of carbon dioxide emission, and the equivalent emission amount can be greatly reduced as compared with a plastic material of fossil fuel origin. It is an environmentally-friendly material derived from biomass resources that is desired as a next-generation material.
- the skeleton derived from the above dehydroabietic acid and the skeleton represented by the formulas U, U1 or U2 may be collectively referred to as a dehydroabietane main skeleton, and this may be abbreviated as “DHA main skeleton”. There is.
- examples of the skeleton structure important in a preferred embodiment of the present invention include those represented by the following formulas U3 and U4.
- the thing of the following formula U3 is called a dehydroabietane skeleton (DA skeleton), and the thing of the formula U4 is called a dehydroabietic acid skeleton (DAA skeleton).
- the specific polymer is preferably selected from a polymer containing a repeating unit represented by the following formula A01 or A02, more preferably selected from a polymer containing a repeating unit represented by the formula A11 or A12. It is particularly preferable that the polymer is selected from polymers containing a repeating unit represented by A1 or A2.
- R A , R B , R C , m, n, and p have the same meanings as the above formulas (U) and (U1).
- R C has the same meaning as R B.
- L 11 , L 12 , L 21 , L 22 , and L 23 represent a divalent linking group. * Represents a bond.
- L 11 When it is a repeating unit derived from polycarboxylic acid L 11 : * -CO-L 13 -** or * -L 13 -CO-** (L 13 represents a linking group. See below for details. )
- L 12 , L 21 , L 22 Carbonyl group
- L 23 Oxygen atom, sulfur atom, carbonyl group, sulfonyl group, alkylene group, alkenylene group, arylene group, or single bond
- L 12 , L 21 , L 22 When a repeating unit derived from a polyol L 11 : * -L 1A -O-** (L 1A represents a linking group. See below for details.)
- L 12 , L 21 , L 22 * — CH 2 —O — ** L 23 is as defined above.
- the linking group L 11 is preferably bonded to the carbon atom shown at the 2-position in the formula.
- the linking group L 23 is bonded to the carbon atom represented by the 2-position and 2'-position in the formula.
- the structural unit having the DHA main skeleton may constitute a homopolymer alone, but in the present invention, it is preferred that the copolymer component together constitute a copolymer. Specifically, it is preferable to form a polyester together with the polycarboxylic acid and polyol exemplified below. Preferred examples of the copolymer component include those represented by the following formula (II).
- Specific polymer A in the present invention may have a structural unit represented by the following formula (II) as a copolymerization component.
- G 1 is an alkane linking group (alkanediyl, alkanetriyl, alkanetetrayl, etc.), an alkene linking group (alkenediyl, alkenetriyl, alkenetetrayl, etc.), an aryl linking group (aryldiyl, aryltriyl, aryltetrayl, etc.) ), A heteroaryl linking group (heteroaryldiyl, heteroaryltriyl, heteroaryltetrayl, etc.).
- G 1 is an alkane linking group, a combination thereof, or an alkene linking group, it may be chained or cyclic, and when it is chained, it may be linear or branched.
- One or more hydrogen atoms of the alkane linking group, alkene linking group, aryl linking group, or heteroaryl linking group may be substituted with a specific substituent or may be unsubstituted. Examples of the substituent when substituted include the substituent T described later, and among them, an alkyl group and an alkenyl group are preferable.
- one or more carbon atoms constituting the alkane linking group and the alkene linking group may be substituted with a heteroatom, and examples of the heteroatom when substituted include an oxygen atom, a nitrogen atom, and a sulfur atom.
- an oxygen atom is preferable (typically, a part of the alkylene chain is linked to an ether bond and linked).
- carbon number means that the number of carbon atoms is not included when it has a substituent.
- G 1 is an alkane linking group (preferably an alkylene group) or an alkene linking group (preferably an alkenylene group), it preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms.
- the alkylene group and alkenylene group may be substituted or unsubstituted, and a part thereof may be substituted with a hetero atom as described above.
- Ra is preferably an alkyl group or an alkenyl group having 6 to 18 carbon atoms, and C 18 H 37 , C 16 H 33 , C 12 H 25 , C 8 H 17 , C 18 H 35 , C 16 H 31 , C 12 H 23, and more preferably C 8 H 15.
- Rb is preferably a cycloalkylene group having 4 to 12 carbon atoms, and more preferably a cyclohexanediyl group.
- G 1 is an aryl linking group (preferably an arylene group) or a heteroaryl linking group (preferably a heteroarylene group), it preferably has 3 to 24 carbon atoms, and more preferably 6 to 12 carbon atoms. Specific examples include a substituted or unsubstituted benzene linking group (preferably a phenylene group).
- G 1 may be a linking group obtained by combining an alkane linking group, an alkene linking group, an aryl linking group, and a heteroaryl linking group.
- a linking group in which an alkane linking group (preferably an alkylene group) and an aryl linking group (preferably an arylene group) are combined and the like may be mentioned.
- -Ph-Me-Ph- (Ph: phenylene group, Me: methylene group)
- -Ph-Pr-Ph- Ph: phenylene group, Pr: propane-2,2-diyl group).
- ⁇ X, Y, Z X, Y and Z are each independently —O—, —S—, —NR—, — (C ⁇ O) —, —O (C ⁇ O) —, — (C ⁇ O) O—, — ( C ⁇ O) NR— and a divalent linking group selected from the group consisting of combinations thereof.
- Preferred is —O—, — (C ⁇ O) O—, — (C ⁇ O) NH—, or — (C ⁇ O) —.
- R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 24 carbon atoms.
- ⁇ Mz mz represents an integer of 0 to 3.
- the copolymer component preferably includes a ring structure, and preferably has an aromatic or aromatic heterocyclic structure. It is preferred that the ring structure is present within the predetermined linking group G 1.
- linking group broadly means that connects two structural portions, and is used in the sense of including atoms and single bonds.
- the bonding mode is not particularly limited.
- the weight average molecular weight of the specific polymer is not limited, but is preferably 5,000 to 700,000, more preferably 10,000 to 500,000. When the weight average molecular weight is within this range, heat resistance suitable for the reflector is realized and improved.
- the weight average molecular weight in this invention is the value obtained by the molecular weight measurement (polystyrene conversion) by gel permeation chromatography (GPC). In this specification, unless otherwise specified, molecular weight is determined using N-methyl-2-pyrrolidone as a carrier and TSK-gel Super AWM-H (trade name) manufactured by Tosoh Corporation as a column. Indicates.
- the glass transition temperature (Tg) is not limited, but is preferably 100 ° C. or higher, more preferably 150 to 400 ° C., and still more preferably 150 to 350 ° C. When the glass transition temperature is within this range, the polyester polymer is particularly excellent in heat resistance and can be suitably used for a reflector.
- the glass transition temperature is determined using a differential scanning calorimeter (DSC) in a temperature range of 30 to 400 ° C. under a nitrogen stream at a rate of 10 ° C./min. Measure under the following conditions.
- DSC differential scanning calorimeter
- the intersection of the baseline before and after the transition and the tangent of the maximum slope of the transition slope are read from the above.
- the midpoint glass transition temperature is read from the midpoint of the transition, and this is defined as Tg in the present case when the sample is powder.
- a dynamic viscoelasticity measuring device may be used to measure the Tg of the film and define it as Tg.
- the Tg of the film is determined by the method and conditions described in the examples below.
- the density of the specific polymer is not limited, but is preferably 1.4 g / cm 3 or less, more preferably 0.80 g / cm 3 to 1.3 g / cm 3 , and still more preferably 0.9 g / cm 3 to 1. .25 g / cm 3 .
- the density of a polyester-type polymer says the value measured at 25 degreeC using a precision hydrometer (the SHIMAZU company make, brand name: precision hydrometer AUW120D).
- the density here is synonymous with the density (A) of the non-porous film shape
- the specific polymer includes derivatives obtained by further subjecting a polymer having a repeating unit containing a DHA main skeleton to chemical treatment.
- the DHA main skeleton constituting the specific polymer or a repeating unit having a dimer skeleton thereof is particularly Although not limited, from the viewpoint of heat resistance and density, the total amount of the structural part constituting the repeating unit (for example, the total amount of the repeating unit derived from the polycarboxylic acid compound and the repeating unit derived from the polyol compound of the ester polymer below), It is preferably 10 mol% or more, more preferably 20 mol% or more, more preferably 30 mol% or more, and further preferably 40 mol% or more.
- the specific polymer may be a copolymer containing at least one other repeating unit that does not contain the DHA main skeleton, if necessary.
- a molecule or its structure is specified by adding “compound” at the end, etc., it is used to mean a salt, a complex, or an ion in addition to the compound itself.
- group when a specific group of atoms is referred to with the word “group” added to the end of a substituent or a linking group, it means that the group may have an arbitrary substituent. Examples of the substituent that may be further included in the linking group include the following substituent T.
- substituent T examples include the following.
- An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
- alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
- an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
- a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
- each of the groups listed as the substituent T may be further substituted with the substituent T described above.
- the compound or substituent / linking group contains an alkyl group / alkylene group, alkenyl group / alkenylene group, etc.
- these may be cyclic or chain-like, and may be linear or branched, and substituted as described above. It may be substituted or unsubstituted.
- an aryl group, a heterocyclic group, etc. may be monocyclic or condensed and may be similarly substituted or unsubstituted.
- linking groups L 11 , L 12 , L 21 , L 22 , and L 23 there are five linking groups L 11 , L 12 , L 21 , L 22 , and L 23 in Formulas A01, A11, A1 (hereinafter Formula A1 and the like), A02, A12, and A2 (hereinafter Formula A2 and the like). but for the four connecting group other than L 23, (1) polyester-based polymer [I], those respectively preferred in the two (2) polyester-based polymer [II] different.
- (1) a polyester polymer is preferable in that high performance is obtained, and the contents of a preferable linking group will be described below in that order.
- the polyester may have an oxycarbonyl group as a linking group and may have a polycarbonate structure.
- Polyester polymer [I] ⁇ Repeating unit derived from dicarboxylic acid compound> ⁇ Repeating unit represented by Formula A1 ⁇ ⁇ L 11 L 11 in the formula A1 and the like is * -CO-L 13 -** or * -L 13 -CO-** (* is 5, 6, 7, 8, 9, 10-hexahydrophenanthrene ring (mother nucleus). ) Represents a bond on the side, and ** represents a bond on the opposite side.
- L 13 is preferably an alkylene group, an alkenylene group, an alkynylene group, an arylene group, an oxygen atom, a carbonyl group, or a single bond.
- the term “linking group” is used in the sense of including an atom or a single bond as long as it connects two structural parts.
- the alkylene group and alkenylene group may be linear or branched, or cyclic.
- L 13 is an alkylene group having 2 to 10 carbon atoms, an alkenylene group having 2 to 10 carbon atoms, an arylene group having 6 to 18 carbon atoms, an oxygen atom, a carbonyl group, a single bond, or a single bond thereof, from the viewpoint of heat resistance
- a combination is preferred. More preferably, it is a chain alkylene group or carbonylalkylene group having 2 to 4 carbon atoms, a cyclic alkylene group or carbonylalkylene group having 5 to 6 carbon atoms, or a chain alkenylene group or carbonylalkenylene group having 2 to 4 carbon atoms.
- linking group represented by L 13 include the following, but the present invention is not construed as being limited thereto.
- the bond * is the side bonded to the hydrophenanthrene ring, and the bond ** means the opposite side.
- L 13 in formula (A1) and the like is preferably a single bond, (L1-ex-4), (L1-ex-10) or (Ll-ex-12) from the viewpoint of heat resistance. More preferably, it is a bond.
- the linking group L 11 may be bonded to any of the carbon atoms at the 1-position, 2-position, and 4-position in the formula, but is bonded to the carbon atom shown at the 2-position or 4-position. It is preferable that it is a thing couple
- This bonding position is the same as in (2) polyester polymer [II] described later.
- the position numbers of the carbon atoms in the above formula correspond to the 11th position, the 2nd position is the 12th position, the 3rd position is the 13th position, and the 4th position is the 14th position with respect to the position number of the abietane.
- ⁇ L 12 L 12 is preferably a carbonyl group or a carbonyloxy group.
- the DHA main skeleton constitutes the DAA skeleton.
- polyester-based polymer [I] Another preferred embodiment of the polyester-based polymer [I] is that a dimer structure in which two dehydroabietane main skeletons are bonded directly or via a linking group is repeated as a part of the main chain. It is included in the unit.
- the repeating unit containing this dimer structure is represented by the above formula (A2), for example.
- Repeating unit represented by Formula A2 ⁇ ⁇ L 21, L 22 L 21 and L 22 in formula A2 and the like are preferably a carbonyl group or a carbonyloxy group. This means that the specific polymer of this embodiment has a repeating unit containing a DAA skeleton, like L 12 above.
- ⁇ L 23 L 23 is preferably an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, an alkylene group, an alkenylene group, an arylene group, or a single bond.
- the alkylene group and alkenylene group may be linear or branched, or cyclic.
- the linking group represented by L 23 is a single bond, an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, an alkylene group having 2 to 10 carbon atoms, an alkenylene group having 2 to 10 carbon atoms, and It is preferably composed of at least one selected from the group consisting of an arylene group having 6 to 18 carbon atoms, an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, a chain alkylene group having 2 to 4 carbon atoms, Selected from the group consisting of a cyclic alkylene group having 5 to 6 carbon atoms, a chain alkenylene group having 2 to 4 carbon atoms, a cyclic alkenylene group having 5 to 6 carbon atoms, and an arylene group having 6 to 8 carbon atoms. More preferably, it is a divalent linking group composed of at least one kind, or a single bond
- the alkylene group, alkenylene group and arylene group constituting the linking group represented by L 23 may have a substituent, if possible.
- substituent in the alkylene group, alkenylene group, and arylene group include the substituent T.
- Specific examples of the linking group represented by L 23, may be mentioned the following linking groups, the present invention is not limited thereto.
- L 23 is preferably (L2-ex-2), (L2-ex-5), (L2-ex-9) or (L2-ex-11) from the viewpoint of heat resistance, and (L2 -Ex-2) is more preferable.
- the linking group L 11 may be bonded to any carbon atom in the 1-position, 2-position, 4-position, 1′-position, 2′-position, and 4′-position in the formula.
- Preferred are those bonded to the carbon atoms shown in the 4th, 4th, 2 'and 4' positions (however, it is a combination connecting two hydrophenanthrene rings), and the 2nd and 2 'positions. More preferably, it is bonded to the carbon atom represented by This bonding position is also the same for the (2) polyester polymer [II] described later.
- a repeating unit comprising a DHA main skeleton or a dimer skeleton thereof for example, the repeating unit represented by the formula (A1) and the formula (A2)
- the total content of the repeating unit represented by A2) is not particularly limited, but when the total amount of the repeating unit derived from the dicarboxylic acid compound is 50 mol%, it is 10 mol% or more from the viewpoint of heat resistance and density. It is preferably 15 mol% or more, more preferably 20 mol% or more.
- the content rate of the structural unit derived from polycarboxylic acid in polyester is 50 mol% normally, and it becomes an upper limit typically.
- the polyester polymer [I] of this embodiment may be a copolymer with other polycarboxylic acid compounds.
- a polycarboxylic acid compound usually used for constituting the polyester-based polymer [I] can be used without particular limitation.
- the polycarboxylic acid compounds described in 63-91 and the like can be used.
- Examples of other polycarboxylic acid compounds include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid, and aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid, dicyclohexanedicarboxylic acid, and adipic acid.
- aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid
- aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid, dicyclohexanedicarboxylic acid, and adipic acid.
- the content of the repeating unit derived from the other polycarboxylic acid compound in the polyester polymer [I] is not particularly limited as long as the effects of the present invention are not impaired.
- the content of the repeating units derived from other polycarboxylic acid compounds is preferably 40 mol% or less in the repeating units derived from the polycarboxylic acid compounds constituting the polyester polymer [I]. More preferably, it is at most mol%.
- the polyester polymer [I] of the present embodiment preferably contains the above-mentioned copolymerization component (formula II, II-1) as a repeating unit derived from a polyol compound.
- the copolymer component contains at least one repeating unit derived from a polyol compound having a ring structure.
- the ring structure included in the polyol compound may be included in the side chain portion of the polyester polymer [I] or may be included so as to constitute a part of the main chain. Therefore, the ring structure contained in the polyol compound preferably constitutes a part of the main chain. This further improves heat resistance.
- the ring structure contained in the polyol compound may be an aliphatic ring or an aromatic ring, and may be a hydrocarbon ring or a heterocyclic ring. Further, the aliphatic ring may contain an unsaturated bond.
- the number of rings contained in the polyol compound is not particularly limited, but may be, for example, 1 to 5, preferably 1 to 3, and more preferably 1 to 2 from the viewpoint of heat resistance.
- the structure may be a structure in which two or more monocycles are linked by a covalent bond or a linking group, or may be a condensed ring structure.
- repeating unit derived from the polyol compound having a ring structure examples include, for example, cyclohexanediol, cyclohexanedimethanol, 1,4-bis (2-hydroxyethoxy) benzene, 1,4-bis (2-hydroxypropoxy). Examples thereof include a repeating unit derived from benzene, 4-hydroxyethylphenol, and the like, and a repeating unit derived from a diol compound represented by the following formula (B1).
- the repeating unit derived from a polyol compound having a ring structure is preferably a repeating unit derived from a polyol compound represented by the following formula (B1) from the viewpoint of heat resistance.
- L 3 represents a divalent linking group composed of at least one selected from the group consisting of an oxygen atom, a carbonyl group, a sulfonyl group, and an alkylene group, or a single bond.
- each L 3 may be the same or different.
- R 1 and R 2 each independently represent a substituent selected from the group consisting of a halogen atom, an alkyl group, and an alkoxy group, and may be bonded to each other to form a ring.
- each R 1 and R 2 may be the same or different.
- n1 and n2 each independently represent an integer from 0 to 4, and n3 represents an integer from 0 to 2.
- the alkylene group constituting the divalent linking group in L 3 may be a linear or branched chain alkylene group or a cyclic alkylene group.
- the number of carbon atoms of the alkylene group is preferably 1 to 6 and more preferably 1 to 4 from the viewpoint of heat resistance. Note that the carbon number of the alkylene group here does not include the carbon number of the substituent described later.
- the alkylene group may have a substituent such as a linear or cyclic alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 18 carbon atoms, or the like.
- the number of substituents in the alkylene group may be two or more. When the alkylene group has two or more substituents, the two or more substituents may be the same or different, and are connected to each other to form a ring. May be.
- R 1 and R 2 each independently represents a substituent selected from the group consisting of a halogen atom, an alkyl group, and an alkoxy group, but from the viewpoint of heat resistance, a fluorine atom, a chlorine atom, a carbon number of 1 to 8 A substituent selected from the group consisting of an alkyl group and an alkoxy group having 1 to 8 carbon atoms is preferable.
- N1 and n2 each independently represents an integer of 0 to 4, preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0.
- n3 represents an integer of 0 to 2, and is preferably 0 or 1.
- repeating unit represented by the formula (B1) Specific examples of the repeating unit represented by the formula (B1) are shown below, but the present invention is not limited thereto.
- the repeating unit represented by the formula (B1) from the viewpoint of heat resistance, the above (B1-ex-1), (B1-ex-2), (B1-ex-3), (B1-ex-4) ), (B1-ex-5), (B1-ex-6), (B1-ex-7) (B1-ex-9) or (B1-ex-11). Ex-1), (B1-ex-2) or (B1-ex-3) is more preferable.
- the content of the repeating unit represented by the formula (B1) in the repeating unit derived from the polyol compound constituting the polyester polymer [I] is not particularly limited, but the total amount of the repeating unit derived from the polyol compound is 50 mol. %, From the viewpoint of heat resistance and density, it is preferably 10 mol% or more, more preferably 20 mol% or more, more preferably 30 mol% or more, and more preferably 40 mol% or more. More preferably it is.
- the polyester-based polymer [I] may contain at least one repeating unit derived from another polyol compound not containing a ring structure.
- a polyol compound usually used for constituting the polyester polymer [I] can be used without particular limitation, and examples thereof include ethylene glycol, 1,2-propanediol, 1, 3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,12-dodecanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, etc. And diol compounds.
- the content of the repeating unit derived from a polyol compound not containing a ring structure is the same as that containing the ring structure in its preferred range.
- the polyester polymer [I] of the present embodiment is preferably a combination having at least one of the following structures as a repeating unit derived from a polycarboxylic acid compound from the viewpoint of heat resistance.
- the content ratio of the repeating unit derived from the dicarboxylic acid compound and the repeating unit derived from the diol compound constituting the polyester polymer [I] of the present embodiment is particularly Although not limited, it is usually 1: 1.
- the dehydroabietic acid used in the production of the polyester polymer [I] of the present embodiment can be obtained from rosin, for example.
- the constituents contained in rosin vary depending on the method of collection and the place of production of the pine, but specifically, abietic acid (1), neoabietic acid (2), parastrinic acid (3), levopimaric acid (4), dehydro It is a mixture of diterpene resin acids such as abietic acid (5), pimaric acid (6) and isopimaric acid (7).
- each compound represented by (1) to (4) is disproportionated by heat treatment in the presence of a certain kind of metal catalyst, and dehydroabietic acid (5) And dihydroabietic acid (8) having the following structure. That is, the dehydroabietic acid (5) necessary for producing the polyester polymer [I] of the present invention can be obtained relatively easily by subjecting rosin, which is a mixture of various resin acids, to an appropriate chemical treatment. And can be manufactured industrially at low cost. Dihydroabietic acid (8) and dehydroabietic acid (5) can be easily separated by a known method.
- the step of synthesizing the polyester polymer [I] having the repeating unit represented by the above formula (A1) or (A2) and the repeating unit represented by the formula (B1) is represented by the formula (B1).
- the diol compound forming a repeating unit and the dicarboxylic acid compound forming the repeating unit represented by the above formula (A1) or (A2) or a dicarboxylic acid halide derivative or a diester derivative thereof as a derivative are overlapped by a known method. It can be synthesized by condensation.
- This series of steps can be divided into two types of schemes 1 and 2 below.
- the following reaction scheme is an example in the present invention, and the present invention is not construed as being limited by this description.
- Specific methods for synthesizing polymers include, for example, the methods described in New Polymer Experimental Science 3, Polymer Synthesis / Reaction (2), pp. 78-95, Kyoritsu Publishing (1996) (for example, transesterification method). , Direct esterification method, melt polymerization method such as acid halide method, low-frequency solution polymerization method, high temperature solution polycondensation method, interfacial polycondensation method, etc.). In the present invention, acid chloride method and interfacial polycondensation method are particularly suitable. Preferably used.
- the transesterification method is a method of synthesizing a polyester-based polymer [I] by subjecting a polyol compound and a polycarboxylic acid ester derivative in a molten state or a solution state to dealcoholization polycondensation by heating in the presence of a catalyst if necessary. is there.
- the direct esterification method is a method of synthesizing a polyester polymer [I] by dehydrating polycondensation of a polyol compound and a polycarboxylic acid compound in the presence of a catalyst in a molten state or a solution state under heating.
- a polyester polymer [I] is synthesized by heating a polyol compound and a polycarboxylic acid halide derivative in a molten state or in a solution state, if necessary, in the presence of a catalyst and dehydrohalogenating polycondensation. Is the method.
- a polyester compound [I] is prepared by dissolving a polyol compound in water, the polycarboxylic acid compound or a derivative thereof in an organic solvent, and polycondensing at a water / organic solvent interface using a phase transfer catalyst. ].
- the dimer of dehydroabietic acid (DAA) in Scheme 2 can be synthesized by the method described in JP2011-26569A. Specifically, when connecting the L 23 represents a single bond, can be advanced a catalytic amount of N, the reaction by the addition of N- dimethylformamide with oxalyl chloride. When L 23 is a methylene group, a method of replacing the oxalyl chloride with dichloromethane is exemplified. Alternatively, as in the following synthesis example, DAA may be mixed with formalin and the reaction may be advanced by adding a catalytic amount of trifluoroacetic acid.
- the linking groups are preferably as follows.
- ⁇ L 11 L 11 is a single bond or * -L 1A -O-**. * Represents a bond on the hydrophenanthrene ring side, and ** represents the opposite bond.
- the single bond or divalent linking group represented by L 1A is not particularly limited, and examples of the linking group include — (C n H 2n ) —, —CO (C n H 2n ) —, (here N is an integer of 1 to 12, preferably 1 to 8, which may be linear, branched or cyclic, and may further have a substituent, and may be one of the carbon atoms constituting the molecular chain.
- One or more may be replaced with an oxygen atom).
- the atom bonded to L 1A is an oxygen atom, it is preferably — (CH 2 ) 4 —, — (CH 2 ) 5 —, or — (CH 2 ) 6 —.
- the atom bonded to L 1A is a carbonyl group, preferably — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 5 —, —CO (CH 2 ) 2 —, —CO ( CH 2 ) 3 —, —CO (CH 2 ) 4 — and the like.
- ⁇ L 12, L 21, L 22 L 12 is * —CH 2 —O — **. * Represents a bond on the hydrophenanthrene ring side, and ** represents the opposite bond.
- ⁇ L 23 L 23 is (1) has the same meaning as L 23 in the polyester polymer [I], the preferred range is also the same.
- the polymer of this embodiment is compoundable by the following scheme 3, for example.
- the following are examples of reaction pathways, and the present invention is not construed as being limited thereto.
- the following has illustrated the aspect shown by the said Formula (A1), since it is the same except making it a dimer which has two abietan main frame
- the dimerization is the same as in the case of the polyester polymer [I].
- the dicarboxylic acid compound can be synthesized in the same manner as (I) of the polyester.
- the reaction from the dicarboxy compound (i) in which a carboxy group is introduced into abietic acid to the dimethylol compound (ii) may be performed by a normal reduction reaction.
- the reduction reaction can be rapidly advanced by reducing with aluminum hydride.
- JP, 2011-026569, A can refer to the above-mentioned (1) manufacturing method of polyester polymer [I], and the details of a compound. (2) For details of the production method and compounds of the polyester-based polymer [II], JP-A-2011-074249 can be referred to.
- the porous film of the present invention contains the specific polymer and has pores therein.
- the term “hole” refers to a hole (hole) that is surrounded by a resin partition and includes air.
- the holes are preferably independent holes.
- the independent hole means a hole closed by a resin partition (no gap), and does not include a through hole.
- the independent holes are preferable because light can be efficiently scattered.
- the average pore diameter is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
- the average pore diameter is preferably 0.5 ⁇ m or more. If it is smaller than this, light may be transmitted without being scattered. More preferably, it is 1 ⁇ m or more.
- the average pore diameter in the present invention refers to a value obtained by observing a cross section with an SEM, randomly selecting 20 voids, and averaging the diameters.
- the thickness of the porous film is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more.
- the upper limit of the film thickness is not particularly limited, but when used for a reflector, it is practical that it is 500 ⁇ m or less.
- the film thickness in the present invention is a value measured with a digital linear gauge DG-525H (manufactured by Ono Sokki Co., Ltd.). The measurement is performed at three locations, and the average value is obtained.
- the density of the porous film is preferably 0.7 g / cm 3 or less, more preferably 0.4 g / cm 3 or less, and particularly preferably 0.3 g / cm 3 or less.
- the minimum of a density does not have a restriction
- the density is a value measured at 25 ° C. with a precision specific gravity meter AUW120D (manufactured by SHIMADZU).
- the density (B) of the porous membrane resin was divided by the density (A) of the nonporous film produced by a hot press method (see, for example, JP-A-2006-229028). Say the value (B / A). These densities are measured at 25 ° C.
- the density (A) of the nonporous film can be determined as follows. Using a precision specific gravity meter AUW120D (manufactured by SHIMADZU), calculation is performed from the weight in air and water (buoyancy method).
- the porosity of the resin constituting the porous film in the present invention is preferably 5 to 99%, more preferably 40 to 95%.
- the porous film of the present invention preferably has a diffuse reflectance of 90% or more with respect to a wavelength of 300 to 800 nm. More preferably, it is 95% or more. If the reflectance is less than 90%, sufficient brightness may not be obtained when the backlight unit is incorporated.
- the reflectance in the present invention is an average of values measured in a wavelength range of 300 to 800 nm with a spectrophotometer (UV-3101C: manufactured by Shimadzu Corporation).
- UV-3101C UV-3101C: manufactured by Shimadzu Corporation
- the white board which hardened the fine powder of barium sulfate was used for the standard white board.
- Glossiness The glossiness conforms to the definition described in JIS standard Z8741.
- the glossiness of the porous film is not particularly limited and can be appropriately selected according to the purpose.
- the glossiness is 50 or more.
- 60 or more is more preferable, 70 or more is further preferable, and 80 or more is particularly preferable. Having such glossiness is preferable because uniform reflection can be obtained.
- the glossiness is a value measured using a variable angle glossmeter VG-1001P (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.) under the conditions of 60 ° (°) incidence of light including a wavelength of 400 to 800 nm and 60 ° light reception. To do.
- the porous film of the present invention has a heat shrinkage rate of 85 ° C in both directions perpendicular to each other, preferably 0.3% or less, more preferably 0.2% or less, and most preferably 0.1% or less. It is. When the heat shrinkage rate is within this range, a porous film having high heat resistance that is not deformed by the heat of the light source when used as a reflector in a backlight unit can be obtained.
- the heat shrinkage rate is obtained when a film sample (0.5 cm ⁇ 2.0 cm piece) is prepared and heated at 100 ° C. for 5 hours by the tensile load method of TMA (manufactured by Rigaku Corporation, TMA8310) under the condition of a tensile load of 100 mN. The amount of dimensional change is measured and divided by the sample length before the measurement (note that when it shrinks, it shows a negative value, but it is expressed in absolute value).
- the porous film of the present invention is formed by a solution casting method.
- Japanese Patent Publication No. 55-38366 can be referred to for the solution casting method.
- a method for phase separation from the polymer solution is usually used for the porous membrane, but the method according to the present invention is preferably used.
- the porous membrane is formed through phase separation (spinodal decomposition) and coacervation. Such a process may be formed in the process of volatilization of a single parent solvent, or may be formed in the process of volatilization of a mixed solvent of the parent solvent / anti-solvent, and may be induced by heat (cooling). In some cases.
- Non-solvent induction can be accomplished by exposure to non-solvent vapor or immersion in a non-solvent bath, or a combination of both.
- the parent solvent is a solvent capable of sufficiently dissolving the specific polymer
- the poor solvent is a solvent that does not substantially dissolve the specific polymer but swells
- the non-solvent substantially dissolves and swells the specific polymer. It is a solvent that does not.
- Good solvent Solvent that dissolves 5 to 100% by mass of solute at 25 ° C.
- the parent solvent, the poor solvent, and the non-solvent are relative definitions determined by a dissolving action and a swelling action with respect to a specific polymer. Therefore, such a definition and a specific example of the solvent should be uniquely associated. I can't. That is, depending on the type of the specific polymer used, the types of the parent solvent, the poor solvent, and the non-solvent may be different or may be changed. However, these relationships are based on the chemical and physical properties of the specific polymer, and any person skilled in the art can easily select the specific polymer and three types of solvents based on ordinary knowledge. In this method of the present invention, these relationships need not be particularly problematic.
- the parent solvent is preferably one that dissolves the polymer.
- the poor solvent preferably swells the polymer but does not dissolve it.
- the non-solvent is preferably one that does not swell or does not interfere at all.
- the method for dissolving and mixing the specific polymer, the parent solvent, the poor solvent and the non-solvent is not particularly limited.
- the method of adding the poor solvent and the non-solvent after dissolving the specific polymer in the parent solvent, the specific polymer as the parent solvent There are several tens of methods, such as a method of adding a part of a poor solvent and dissolving, adding the remaining poor solvent to this solution, and further adding a non-solvent, and any of these methods can be used.
- a stable solution is a solution in which a specific polymer is not gelled or phase-separated in the solution.
- the amount of the parent solvent in the solvent is larger than the amount of each of the other solvents, or What is necessary is just to employ
- Organic solvents used in the specific polymer solution include aromatic hydrocarbons such as xylene and toluene, diphthalyl phthalate, phthalic acid esters such as dimethoxyoxyethyl phthalate and dimethyl phthalate, phosphorus such as triphenyl phosphate, and tricresyl phosphate.
- Acid esters glycerol triacetate, polyhydric alcohol esters such as ethyl phthalyl ethyl glycolate or methyl phthalyl ethyl glycolate, mineral oils such as kerosene and kerosene, ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, methylene chloride, Halogenated hydrocarbons such as chloroform or 1,1-dichloroethane, esters such as methyl acetate or ethyl acetate, N-methyl-2-pyrrolidone (N P), N, N- dimethyl formamide (DMF), N, and the like such as nitrogen compounds N- dimethylacetamide (DMAc).
- N P N-methyl-2-pyrrolidone
- DMF N- dimethyl formamide
- solvents can be used alone or as a mixed solvent of two or more solvents.
- An appropriate solvent must be selected according to the linking group and degree of polymerization of the specific polymer used.
- the specific polymer concentration varies depending on the type of the specific polymer and the type of the solvent, but it is preferable that the concentration is high to some extent from the relationship of forming a continuous porous film, for example, around 15% by mass. preferable.
- the solubility of the specific polymer is not high, it is preferable that the specific polymer is high in terms of forming a film.
- the specific polymer solution thus prepared is cast (drawn) to a thickness of 50 to 3000 ⁇ m on a support such as a glass plate, a plastic film or a metal plate using an applicator.
- a support such as a glass plate, a plastic film or a metal plate using an applicator.
- the porous film can be obtained by peeling and drying the film from the support after the solvent volatilization.
- phase separation is promoted by induction of non- (poor) solvent, after application or after volatilization of a part of the solvent, or after exposure to the vapor of non- (poor) solvent for a certain period of time, )
- the whole support is immersed in a solvent to induce phase separation and form a porous membrane.
- the non-poor solvent has high mutual solubility with the parent solvent, and a poor solvent or a non-solvent is used for the specific polymer. Anything can be used as long as the above requirements are satisfied, but alcohols such as methanol, ethanol or isopropanol, and water are preferable from the viewpoint of ease of handling, low cost, and safety.
- the temperature of the resin solution during casting is intended to be room temperature, but depending on the solvent system used, it is cast at a high temperature of around 100 ° C and then cooled in air or cooled to room temperature or a low temperature below room temperature. It is also performed by immersing in a liquid and quenching.
- FIG. 1 shows a schematic perspective view of a backlight of a liquid crystal device using the reflector of the present invention.
- a lamp reflector 5 having the reflective film 1 made of the porous film detailed in the above embodiment on the surface of the reflector base 51 is shown. This is also a broad reflector.
- light from the light emitting lamp 4 surrounded by the lamp reflector 5 enters the light guide plate 2 and is sent to the liquid crystal panel through the diffusion plate 3.
- the reflection plate 6 composed of the reflection film 1 and the reflection base material 61 is provided. Therefore, according to this embodiment, the high light reflectivity of the reflective film 1 made of a porous film can be obtained, and light can be supplied to the liquid crystal panel more efficiently.
- the reflective film of this embodiment withstands heat generated by the light emitting lamp, is resistant to thermal contraction, satisfies such required characteristics of the liquid crystal display device, and functions well.
- the usage form of the porous film of the present invention is not limited to the above, and can be suitably used for, for example, a fluorescent lamp, an incandescent lamp, or a light source cover of an LED light, and exhibits the above-described advantages. Reference can be made to JP-A No. 2006-8942, JP-A No. 2009-244749, JP-A No. 2011-25473, and the like for usage forms as such a light source cover.
- Dicarboxylic acid (a-2) was synthesized according to the following synthesis route.
- the obtained product was dried, dissolved in 100 ml of N, N-dimethylformamide by heating, and poured into 1000 ml of methanol little by little for reprecipitation. The reprecipitate was collected and dried to obtain 10.8 g of a white solid of PE-1.
- the obtained polyester polymer (dehydroabietic acid polymer, PE-1) had a weight average molecular weight of 95,000 according to GPC measurement (solvent: NMP).
- a polyester polymer (PE-2) was synthesized in the same manner as in the synthesis example of PE-1, except that the dicarboxylic acid compound and the diol compound were changed to the compounds shown in Table 1 in Synthesis Example 1, respectively.
- To (PE-10) were obtained.
- the glass transition temperature in Table 1 is a value obtained by measuring a powder sample with a differential scanning calorimeter (DSC).
- Example 1 and Comparative Example 1 3 g of the polymer PE-1 was dissolved in N-methylpyrrolidone at a concentration of 12% by mass, and this was pressure filtered through a filter paper having a filtration accuracy of 0.01 mm (manufactured by Toyo Filter Paper Co., Ltd., # 63) to prepare a dope ( Test 101).
- the prepared dope was cast on a glass substrate with a clearance of 1.0 mm using a doctor blade. After casting, it was exposed to air having a humidity of 85% RH for 5 minutes, and then immersed in a water bath for 30 minutes.
- the obtained film was vacuum-dried at 120 ° C. and 1 Torr for 3 hours to produce a porous film.
- the film thickness was 120 ⁇ m (0.12 mm).
- the photograph which observed the obtained film cross section with the electron microscope is shown in FIG. It turns out that it is a porous film
- a film was produced in the same manner as in the test 102 except that the polymer PE-1 was changed to the polymer shown in the table.
- the film thickness is shown in Table 1.
- UXZ1 thickness 0.23 mm
- Teijin DuPont which is a light reflecting film
- UXZ1 is a biaxially stretched film obtained by mixing PET with barium sulfate (Japanese Patent Laid-Open No. 2011-25473) (c12).
- MCPET thickness: 1.00 mm
- Furukawa Electric which is a light reflecting film
- MCPET is a film obtained by impregnating PET with CO 2 and foaming it (Japanese Patent Laid-Open No. 2009-244749) (c13).
- the standard white plate was a white plate hardened with fine barium sulfate powder.
- Glossiness measurement Using a variable angle gloss meter VG-1001DP (trade name, manufactured by Nippon Denshoku Industries Co., Ltd.), light with a wavelength of 400 to 800 nm is measured under conditions of 60 ° (°) incidence and 60 ° light reception to obtain a glossiness. It was. (Glass transition temperature (Tg)) A 5 mm ⁇ 22 mm strip test piece was cut out from the obtained film, and this was tangent loss (tan ⁇ ) in a temperature range of 25 ° C. to 350 ° C.
- the cross section of the porous film was observed by SEM, and 20 voids were selected at random and the diameters were averaged.
- the pore diameter was evaluated by the bubble point method, which is an evaluation of the through-pore diameter of a porous material based on JIS K 3832 and ASTM F316-86. It was judged that it was not a through-hole, that is, an independent hole, with the result that a measured value was not obtained.
- thermo conductivity k / ⁇ ⁇ Cp ⁇ : temperature diffusivity
- k thermal conductivity (Js ⁇ 1 m ⁇ 1 K ⁇ 1 )
- ⁇ Density (kg m ⁇ 3 )
- Cp specific heat capacity (J kg ⁇ 1 K ⁇ 1 )
- the thermal diffusivity was measured using Model LaserPIT manufactured by ULVAC-RIKO, and the specific heat capacity was measured using DSC6200S manufactured by SII to calculate the thermal conductivity.
- All the films of the examples have independent holes and high reflectivity. In addition, it has excellent heat resistance such as low thermal shrinkage and low thermal conductivity, and also has excellent properties such that the glass transition temperature is extremely higher than that of the comparative example. All of these films can withstand the heat from the light source and have high reflectivity, so that it can be seen that they are suitable as a reflector.
- Example 2 and Comparative Example 2 Evaluation tests for reflectance, glossiness, and heat shrinkage were performed in the same manner except that PE-1 used in Test 101 was changed as shown in the following table. As a result, in all the test bodies, the result of “A” was obtained, and it was confirmed that good performance was achieved.
- ⁇ Performance evaluation> ⁇ Reflectance and gloss When the result of PE-1 is 100 A: 80 or more B: 60 or more and less than 80 C: Less than 60 ⁇ Heat shrinkage When the result of PE-1 is 100 A: 5 times or less B : More than 5 times Less than 10 times C: More than 10 times
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polyesters Or Polycarbonates (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Optical Elements Other Than Lenses (AREA)
- Planar Illumination Modules (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
【課題】植物起源の化合物を利用することによる環境適合性を有し、耐熱性に優れ、しかも可視光に対し高い反射率を示す多孔膜及びこれを用いた反射板を提供する。 【解決手段】デヒドロアビエチン酸に由来する骨格を繰り返し単位に含む特定重合体を含んでなり、内部に空孔を有する多孔膜。
Description
本発明は多孔膜及びこれを用いた反射板に関する。
空孔を含有するフィルムやシート材には光の反射性を示すものがあり、その断熱性やクッション性、軽量性から、例えば電子機器の照明用部材、一般家庭照明用部材、内照看板などの反射材として使用されている。特に近年では、液晶テレビやコンピュータの普及とともに、液晶反射板用途において、より高い反射率を示し、耐熱性を有し、軽量な反射板が求められている。
そこで、前記反射板に応用可能な技術として、樹脂フィルムを成形する際、加圧下で不活性ガスと接触させて、樹脂フィルムに不活性ガスを含浸させ、大気圧下で延伸した多孔性延伸樹脂フィルムがある(特許文献1、2)。また、ポリエチレンテレフタレートに無機粒子を混ぜて延伸することでボイドの形成を行っている反射フィルムもある(特許文献3)。このような延伸樹脂フィルムからなる多孔膜は、その空孔により表面に微細な凹凸が形成されることから、可視光を反射させた場合に全反射率に対する拡散反射率が高くなり、反射板の用途に好適である。
そこで、前記反射板に応用可能な技術として、樹脂フィルムを成形する際、加圧下で不活性ガスと接触させて、樹脂フィルムに不活性ガスを含浸させ、大気圧下で延伸した多孔性延伸樹脂フィルムがある(特許文献1、2)。また、ポリエチレンテレフタレートに無機粒子を混ぜて延伸することでボイドの形成を行っている反射フィルムもある(特許文献3)。このような延伸樹脂フィルムからなる多孔膜は、その空孔により表面に微細な凹凸が形成されることから、可視光を反射させた場合に全反射率に対する拡散反射率が高くなり、反射板の用途に好適である。
しかし、特許文献1~3に記載されているフィルムには化石燃料由来のポリマーが用いられており、昨今の環境問題の観点からは二酸化炭素の換算排出量の低い天然資源由来のものへの代替が望まれる。天然資源由来の多孔膜は従来、耐熱性が十分でなく、反射板に用いることができなかった。また、より簡便な方法で独立孔を形成した多孔膜を得ることが要望されていた。
ところで、本出願人は先に天然資源由来のアビエタン系の化合物に注目し、これを重合体とすることに成功した。そしてその重合体の物性を確認し、高耐熱性および耐湿耐水性を発現させることができることを見出した(特開2011-26569号公報、特開2011-74249号公報)。その後の研究開発を通じ、上記重合体を溶液キャスト法等の簡便な方法で独立孔を有する多孔膜にできることを発見した。このような独立孔の形成は上記重合体特有の現象であり、同じ方法を用いてもバイオマスポリマーであるセルロースエステルでは貫通孔になってしまう。
ところで、本出願人は先に天然資源由来のアビエタン系の化合物に注目し、これを重合体とすることに成功した。そしてその重合体の物性を確認し、高耐熱性および耐湿耐水性を発現させることができることを見出した(特開2011-26569号公報、特開2011-74249号公報)。その後の研究開発を通じ、上記重合体を溶液キャスト法等の簡便な方法で独立孔を有する多孔膜にできることを発見した。このような独立孔の形成は上記重合体特有の現象であり、同じ方法を用いてもバイオマスポリマーであるセルロースエステルでは貫通孔になってしまう。
すなわち本発明は、植物起源の化合物を利用することによる環境適合性を有し、耐熱性に優れ、しかも可視光に対し高い反射率を示す多孔膜及びこれを用いた反射板の提供を目的とする。
前記課題は下記の手段により解決された。
〔1〕デヒドロアビエチン酸に由来する骨格を繰り返し単位に含む特定重合体を含んでなり、内部に空孔を有する多孔膜。
〔2〕デヒドロアビエチン酸に由来する骨格が下記式(U)で表される構造を含む〔1〕に記載の多孔膜。
(RA及びRBは炭素原子数1~6のアルキル基もしくはアルケニル基を表す。n、mは0~3の整数を表す。mは0~5の整数を表す。環Cyはヘテロ原子を含んでもよい飽和もしくは不飽和の6員環もしくは7員環を表す。式中、*,**は主鎖に組み込まれる結合手を表す。*はRAから延びる結合手であってもよい。)
〔3〕特定重合体が下記式A1又はA2で表される繰り返し単位を主鎖に含む重合体から選ばれる〔1〕又は〔2〕に記載の多孔膜。
(式中、L11、L12、L21、L22、及びL23は、2価の連結基を表す。*は主鎖に組み込まれる結合手を表す。)
〔4〕式A1中、連結基L11が式中2位で示される炭素原子と結合した〔1〕~〔3〕のいずれか1項に記載の多孔膜。
〔5〕式A2中、連結基L23が式中2位及び2’位で示される炭素原子と結合した〔1〕~〔4〕のいずれか1項に記載の多孔膜。
〔6〕式A1中のL11が、*-L13-CO-**または*-CO-L13-**(*はヒドロフェナントレン環側の結合手を表す。**はその逆の結合手を表す。)で表され、L13が、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、酸素原子、カルボニル基、又は単結合であり、L12がカルボニル基もしくはカルボニルオキシ基である〔3〕または〔4〕に記載の多孔膜。
〔7〕式A2中のL21及びL22がカルボニル基もしくはカルボニルオキシ基であり、L23が酸素原子、硫黄原子、カルボニル基、スルホニル基、アルキレン基、アルケニレン基、アリーレン基、又は単結合である〔1〕~〔6〕のいずれか1項に記載の多孔膜。
〔8〕さらに、特定重合体が、環構造を含むジオール化合物由来の繰り返し単位を含む〔1〕~〔7〕のいずれか1項に記載の多孔膜。
〔9〕共重合成分が、下記式(II)で表される〔8〕に記載の多硬膜。
[G1はアルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、またはこれらを組み合わせた連結基を表す。X、Y、Zはそれぞれ独立に、-O-、-S-、-NR-、-(C=O)-、-O(C=O)-、-(C=O)O-、-(C=O)NR-、及びこれらの組合せからなる群より選ばれる二価の連結基を表す。Rは水素原子もしくは炭素数1~6のアルキル基、炭素数6~24のアリール基を表す。*は主鎖に組み込まれる結合手である。mzは0~3の整数である。Rは水素原子もしくは炭素数1~6のアルキル基、炭素数6~24のアリール基を表す。]
〔10〕式(II)が下記式(B1)で表される〔8〕に記載の多孔膜。
(L3は、酸素原子、カルボニル基、スルホニル基、アルキレン基、又は単結合である。L3が複数存在するとき、そのそれぞれは同じでも異なっていてもよい。R1及びR2は、それぞれ独立して、ハロゲン原子、アルキル基、アルコキシ基を表し、互いに結合して環を形成していてもよい。R1及びR2が複数存在するとき、そのそれぞれは同じでも異なっていてもよい。n1及びn2はそれぞれ独立して0~4の整数を表す。n3は0~2の整数を表す。*は結合手を表す。)
〔11〕共重合成分が環構造を含む〔1〕~〔10〕のいずれか1項に記載の多硬膜。
〔12〕空孔が、平均孔径が0.5μm以上50μm以下の独立孔である〔1〕~〔11〕のいずれか1項に記載の多孔膜。
〔13〕多孔膜の密度が0.05~0.7g/cm3である〔1〕~〔12〕のいずれか1項に記載の多孔膜。
〔14〕空孔が相分離を利用した溶液キャスト法で製造される〔1〕~〔13〕のいずれか1項に記載の多孔膜。
〔15〕〔1〕~〔14〕のいずれか1項に記載の多孔膜を含んでなる反射板。
〔1〕デヒドロアビエチン酸に由来する骨格を繰り返し単位に含む特定重合体を含んでなり、内部に空孔を有する多孔膜。
〔2〕デヒドロアビエチン酸に由来する骨格が下記式(U)で表される構造を含む〔1〕に記載の多孔膜。
〔3〕特定重合体が下記式A1又はA2で表される繰り返し単位を主鎖に含む重合体から選ばれる〔1〕又は〔2〕に記載の多孔膜。
〔4〕式A1中、連結基L11が式中2位で示される炭素原子と結合した〔1〕~〔3〕のいずれか1項に記載の多孔膜。
〔5〕式A2中、連結基L23が式中2位及び2’位で示される炭素原子と結合した〔1〕~〔4〕のいずれか1項に記載の多孔膜。
〔6〕式A1中のL11が、*-L13-CO-**または*-CO-L13-**(*はヒドロフェナントレン環側の結合手を表す。**はその逆の結合手を表す。)で表され、L13が、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、酸素原子、カルボニル基、又は単結合であり、L12がカルボニル基もしくはカルボニルオキシ基である〔3〕または〔4〕に記載の多孔膜。
〔7〕式A2中のL21及びL22がカルボニル基もしくはカルボニルオキシ基であり、L23が酸素原子、硫黄原子、カルボニル基、スルホニル基、アルキレン基、アルケニレン基、アリーレン基、又は単結合である〔1〕~〔6〕のいずれか1項に記載の多孔膜。
〔8〕さらに、特定重合体が、環構造を含むジオール化合物由来の繰り返し単位を含む〔1〕~〔7〕のいずれか1項に記載の多孔膜。
〔9〕共重合成分が、下記式(II)で表される〔8〕に記載の多硬膜。
〔10〕式(II)が下記式(B1)で表される〔8〕に記載の多孔膜。
〔11〕共重合成分が環構造を含む〔1〕~〔10〕のいずれか1項に記載の多硬膜。
〔12〕空孔が、平均孔径が0.5μm以上50μm以下の独立孔である〔1〕~〔11〕のいずれか1項に記載の多孔膜。
〔13〕多孔膜の密度が0.05~0.7g/cm3である〔1〕~〔12〕のいずれか1項に記載の多孔膜。
〔14〕空孔が相分離を利用した溶液キャスト法で製造される〔1〕~〔13〕のいずれか1項に記載の多孔膜。
〔15〕〔1〕~〔14〕のいずれか1項に記載の多孔膜を含んでなる反射板。
本発明の多孔膜及びこれを用いた反射板は、植物起源の化合物を利用したものであり、二酸化炭素の換算排出量の低減に大いに資する環境適合性を有する。さらに、耐熱性、反射率に優れ、熱収縮に強く、しかも溶液キャスト法により簡便に独立孔を有する多孔膜とすることができるという優れた効果を有する。
本発明の多孔膜は、植物起源の化合物を利用した特定重合体からなる。この多孔膜は植物由来でありながら非常に高い耐熱性を有し、熱収縮に強い。この理由は未解明の点を含むが、以下のように推定される。すなわち、上記特定重合体は、デヒドロアビエチン酸に由来する骨格を有する化学構造的に安定した三環状部分が母格として二次元的に連結したことにより、特有のマトリックスが樹脂中に作出されるためと考えられる。このような材料はこれまでなく、特にバイオマス資源を用いて得られる従来のバイオマスポリマーは、通常、耐熱性に劣る。本発明に利用される上記特定重合体は、バイオマス資源に由来する原料を用いることができるにも拘らず、上記のごとく優れた耐熱性を示す。以下、本発明の好ましい実施態様を中心に詳細に説明する。
[特定重合体]
(デヒドロアビエチン酸に由来する骨格を含む繰り返し単位)
本発明の特定重合体は、下記式(AA)で表されるデヒドロアビエチン酸又はその誘導体を原料モノマーとして使用する。これを重合させて得られる単独重合体であっても、当該原料モノマーと他のモノマーとを重合させて得られる共重合体であってもよい。すなわち、上記特定重合体は、その分子構造中にデヒドロアビエチン酸に由来する骨格を含む繰り返し単位を有してなる。
(デヒドロアビエチン酸に由来する骨格を含む繰り返し単位)
本発明の特定重合体は、下記式(AA)で表されるデヒドロアビエチン酸又はその誘導体を原料モノマーとして使用する。これを重合させて得られる単独重合体であっても、当該原料モノマーと他のモノマーとを重合させて得られる共重合体であってもよい。すなわち、上記特定重合体は、その分子構造中にデヒドロアビエチン酸に由来する骨格を含む繰り返し単位を有してなる。
ここで、本発明において「デヒドロアビエチン酸に由来する骨格」とは、上記のデヒドロアビエチン酸に由来する構造を有していればよく、言い変えれば、所望の効果を奏する範囲で、デヒドロアビエチン酸から誘導化できる構造骨格であればよい。好ましい例としては下記が挙げられる。
「デヒドロアビエチン酸に由来する骨格」はさらに置換基を有してもよい。有してもよい置換基の例としては、アルキル基、アルコキシ基、ハロゲン原子、水酸基、カルボニル基、ニトロ基、アミノ基などが挙げられる
好ましくは(AA-1)、(AA-3)、(AA-10)であり、最も好ましくは(AA-1)である。
本発明の特定重合体においては、式化していうと、前記デヒドロアビエチン酸に由来する骨格として下記式(U)で表される構造を含むことが好ましい。
上記式(U)は下記式(U1)であることが好ましい。RA、RB、m、nは前記式(U)と同義である。RCはRBと同義である。pは0~2の整数であり、0であることが好ましい。
さらに、上記式(U)は下記式(U2)であることが好ましい。
デヒドロアビエチン酸は、植物起源の松脂に含まれるロジンを構成する成分の1つである。すなわち、天然起源の材料をその基質として利用することができるため、二酸化炭素の排出量において相殺され、化石燃料起源のプラスチック材料に比し、大幅にその換算排出量を削減することができる。次世代材料として望まれる環境適合型の、バイオマス資源由来の素材である。なお、上記デヒドロアビエチン酸に由来する骨格、式U、U1ないしはU2で表される骨格を総称してデヒドロアビエタン主骨格と呼ぶことがあり、これを「DHA主骨格」と省略して呼ぶことがある。
さらに、本発明の好ましい実施形態において重要な骨格構造として、下記式U3及びU4で表されるものが挙げられる。下記式U3のものをデヒドロアビエタン骨格(DA骨格)と呼び、式U4のものをデヒドロアビエチン酸骨格(DAA骨格)という。
さらに、本発明の好ましい実施形態において重要な骨格構造として、下記式U3及びU4で表されるものが挙げられる。下記式U3のものをデヒドロアビエタン骨格(DA骨格)と呼び、式U4のものをデヒドロアビエチン酸骨格(DAA骨格)という。
前記特定重合体は、下記式A01又はA02で表される繰り返し単位を含む重合体から選ばれることが好ましく、式A11又はA12で表される繰り返し単位を含む重合体から選ばれることがより好ましく、A1又はA2で表される繰り返し単位を含む重合体から選ばれることが特に好ましい。なお、下記式中、RA、RB、RC、m、n、pは前記式(U)、(U1)と同義である。RCはRBと同義である。
式中、L11、L12、L21、L22、及びL23は、2価の連結基を表す。*は結合手を表す。これらの連結基の好ましい範囲は、後記各重合体の好ましい実施形態の説明の中で述べるが、まとめて好ましいものを示すと下記のとおりである。
(1)ポリカルボン酸由来の繰り返し単位であるとき
L11:*-CO-L13-**または*-L13-CO-**(L13は連結基を表す。その詳細は後記参照。)
L12、L21、L22:カルボニル基
L23:酸素原子、硫黄原子、カルボニル基、スルホニル基、アルキレン基、アルケニレン基、アリーレン基、又は単結合
(2)ポリオール由来の繰り返し単位であるとき
L11:*-L1A-O-**(L1Aは連結基を表す。その詳細は後記参照。)
L12、L21、L22:*-CH2-O-**
L23:前記と同義
L11:*-CO-L13-**または*-L13-CO-**(L13は連結基を表す。その詳細は後記参照。)
L12、L21、L22:カルボニル基
L23:酸素原子、硫黄原子、カルボニル基、スルホニル基、アルキレン基、アルケニレン基、アリーレン基、又は単結合
(2)ポリオール由来の繰り返し単位であるとき
L11:*-L1A-O-**(L1Aは連結基を表す。その詳細は後記参照。)
L12、L21、L22:*-CH2-O-**
L23:前記と同義
前記式A1中、連結基L11が式中2位で示される炭素原子と結合したことが好ましい。前記式A2中、連結基L23が式中2位及び2’位で示される炭素原子と結合したことが好ましい。
上記DHA主骨格を有する構成単位は、これ単独でホモポリマーを構成していてもよいが、本発明において好ましくは、共重合体成分ともにコポリマーを構成していることが好ましい。具体的には、下記で例示するポリカルボン酸やポリオールとともにポリエステルを形成していることが好ましい。好ましい共重合成分としては、下記式(II)で表されるものが挙げられる。
本発明における特定重合体Aは下記式(II)で表される構造単位を共重合成分として有していてもよい。
G1はアルカン連結基(アルカンジイル、アルカントリイル、アルカンテトライル等)、アルケン連結基(アルケンジイル、アルケントリイル、アルケンテトライル等)、アリール連結基(アリールジイル、アリールトリイル、アリールテトライル等)、ヘテロアリール連結基(ヘテロアリールジイル、ヘテロアリールトリイル、ヘテロアリールテトライル等)を表す。G1がアルカン連結基、またはそれらの組合せもしくはアルケン連結基であるとき、鎖状であっても環状であってもよく、これが鎖状のとき直鎖であっても分岐であってもよい。アルカン連結基、アルケン連結基、アリール連結基、またはヘテロアリール連結基はその一つ以上の水素原子が特定の置換基に置換されていても、無置換でもよい。置換されているときの置換基としては、後記置換基Tが挙げられ、なかでもアルキル基、アルケニル基が好ましい。また、アルカン連結基およびアルケン連結基を構成する一つ以上の炭素原子がヘテロ原子によって置換されていてもよく、置換されているときのヘテロ原子としては、酸素原子、窒素原子、硫黄原子が挙げられ、なかでも酸素原子が好ましい(典型的にはアルキレン鎖の一部がエーテル結合に置き換わり連結された形である。)。なお、炭素数とは置換基を有する場合、その炭素原子の数を含まない意味である。
G1がアルカン連結基(好ましくはアルキレン基)またはアルケン連結基(好ましくはアルケニレン基)であるとき、炭素数2~30であることが好ましく、炭素数2~20がより好ましい。アルキレン基、アルケニレン基は、置換または無置換であってもよく、一部がヘテロ原子に置換されていてよいことは上記のとおりである。さらに具体的には、-(CH2)4-、-(CH2)5-、-(CH2)8-、-(CH2)10-、-(CHRa)CH2-、-CH2-Rb-CH2-、-(CH2CH2O)2-CH2CH2-、-(CH2CH2O)3-CH2CH2-がより好ましい。Raは炭素数6~18のアルキル基またはアルケニル基であることが好ましく、C18H37、C16H33、C12H25、C8H17、C18H35、C16H31、C12H23、C8H15であることがより好ましい。Rbは炭素数4~12のシクロアルキレン基が好ましく、シクロヘキサンジイル基がより好ましい。
G1がアリール連結基(好ましくはアリールレン基)またはヘテロアリール連結基(好ましくはヘテロアリーレン基)であるとき、炭素数3~24であることが好ましく、炭素数6~12がより好ましい。具体的には置換もしくは無置換のベンゼン連結基(好ましくはフェニレン基)が挙げられる。なお、G1はアルカン連結基、アルケン連結基、アリール連結基、およびヘテロアリール連結基を組み合わせた連結基であってもよい。例えば、アルカン連結基(好ましくはアルキレン基)とアリール連結基(好ましくはアリーレン基)を組み合わせて連結した連結基等が挙げられ、-Ph-Me-Ph-(Ph:フェニレン基、Me:メチレン基)、-Ph-Pr-Ph-(Ph:フェニレン基、Pr:プロパン-2,2-ジイル基)などが挙げられる。
・X、Y、Z
X、Y、Zはそれぞれ独立に、-O-、-S-、-NR-、-(C=O)-、-O(C=O)-、-(C=O)O-、-(C=O)NR-、及びこれらの組合せからなる群より選ばれる二価の連結基を表す。好ましくは、-O-、-(C=O)O-、-(C=O)NH-、又は-(C=O)-である。前記Rは水素原子もしくは炭素数1~6のアルキル基、炭素数6~24のアリール基を表す。
X、Y、Zはそれぞれ独立に、-O-、-S-、-NR-、-(C=O)-、-O(C=O)-、-(C=O)O-、-(C=O)NR-、及びこれらの組合せからなる群より選ばれる二価の連結基を表す。好ましくは、-O-、-(C=O)O-、-(C=O)NH-、又は-(C=O)-である。前記Rは水素原子もしくは炭素数1~6のアルキル基、炭素数6~24のアリール基を表す。
・mz
mzは0~3の整数を表す。
mzは0~3の整数を表す。
前記式(II)がポリオール由来の場合は、下記式(II-1)で表されるものが好ましい。
前記式(II)がポリカルボン酸由来の場合は、下記式(II-2)で表されるものが好ましい。
前記式(II)がポリアミン由来の場合は、下記式(II-3)で表されるものが好ましい。
前記共重合成分は環構造を含むことが好ましく、芳香族もしくは芳香族複素環構造を有することが好ましい。この環構造は前記連結基G1内にあることが好ましい。なお、本明細書においては、「連結基」という用語を、2つの構造部を連結するものを広く意味し、原子や単結合を含む意味で用いる。
(分子量等)
本発明における特定重合体は、DHA主骨格を主鎖の一部を構成するように含んでいれば、その結合態様は特に限定されるものではない。前記特定重合体の重量平均分子量は限定的でないが、好ましくは5,000~700,000、より好ましくは10,000~500,000である。重量平均分子量がこの範囲であることにより、反射板に適した、耐熱性が実現され良好となる。なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフェィー(GPC)による分子量測定(ポリスチレン換算)で得られた値である。なお、本明細書では特に断らない限り、キャリアとしてはN-メチル-2-ピロリドンを用い、カラムとしてはトーソー(TOSOH)株式会社製 TSK-gel Super AWM-H(商品名)用いた値で分子量を示す。
本発明における特定重合体は、DHA主骨格を主鎖の一部を構成するように含んでいれば、その結合態様は特に限定されるものではない。前記特定重合体の重量平均分子量は限定的でないが、好ましくは5,000~700,000、より好ましくは10,000~500,000である。重量平均分子量がこの範囲であることにより、反射板に適した、耐熱性が実現され良好となる。なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフェィー(GPC)による分子量測定(ポリスチレン換算)で得られた値である。なお、本明細書では特に断らない限り、キャリアとしてはN-メチル-2-ピロリドンを用い、カラムとしてはトーソー(TOSOH)株式会社製 TSK-gel Super AWM-H(商品名)用いた値で分子量を示す。
ガラス転移温度(Tg)は限定的でないが、好ましくは100℃以上、より好ましくは150~400℃、更に好ましくは150~350℃である。ガラス転移温度がこの範囲であることにより、ポリエステル系重合体は、特に耐熱性に優れ、反射板に好適に用いることができる。前記ガラス転移温度は、試料が粉体の場合、示差走査熱量計(DSC)を用い、30~400℃の温度範囲について、窒素気流下に昇温速度10℃/min.の条件で測定する。具体的には実験化学講座(日本化学会編、丸善株式会社発行)第5版6巻の48ページから49ページにあるように、転移前後のベースラインと転移スロープの最大傾斜の接線との交点から補外ガラス転移開始温度と補外ガラス転移終了温度を読み取る。さらに転移の中点から中間点ガラス転移温度を読み取り、これを本件では試料が粉体の場合のTgとする。本発明においては、上記に代え、後述するとおり、動的粘弾性測定装置(DMA)を用い、フィルムのTgを測定し、それをTgとして定義してもよい。フィルムのTgは特に断らない限り、後記実施例で示した方法及び条件により求めるものとする。
前記特定重合体の密度は限定的でないが、好ましくは1.4g/cm3以下、より好ましくは0.80g/cm3~1.3g/cm3、更に好ましくは0.9g/cm3~1.25g/cm3である。密度がこの範囲であることにより、高い密着性と耐折れ性とが実現され、フレキシブルプリント基板等への利用に良好となる。なお、ポリエステル系重合体の密度は、精密比重計(SHIMAZU社製、商品名:精密比重計AUW120D)を用いて25℃で測定される値をいう。なお、ここでの密度は、後記空隙率で説明する熱プレスにより成形した無孔フィルムの密度(A)と同義である。
なお、前記特定重合体には、DHA主骨格を含む繰返し単位を有するものに対して、更に化学処理等を施した誘導体も含む。
前記特定重合体を構成するDHA主骨格もしくはその二量体骨格を有する繰り返し単位(例えば、式(A1)で表される繰り返し単位及び式(A2)で表される繰り返し単位の総含有率は特に制限されないが、繰り返し単位を構成する構造部の総量(例えば下記エステル系重合体のポリカルボン酸化合物由来の繰り返し単位およびポリオール化合物由来の繰り返し単位の総量)に対し、耐熱性と密度の観点から、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、30モル%以上であることがより好ましく、40モル%以上であることが更に好ましい。
前記特定重合体は、必要に応じて、DHA主骨格を含まないその他の繰り返し単位の少なくとも1種を含んだ共重合体であってもよい。
本明細書において、末尾に「化合物」と付すなどして分子ないしその構造を特定するときには、当該化合物そのものに加え、その塩、錯体、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の置換基を伴ったあるいは所定の形態で修飾された誘導体を含む意味である。また、本明細書において置換基ないし連結基に関して「基」という語を末尾に付して特定の原子群を呼ぶときには、その基に任意の置換基を有していてもよい意味である。上記、連結基にさらに有してもよい置換基としては、下記置換基Tが挙げられる。
置換基Tとしては、下記のものが挙げられる。
アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基((好ましくは炭素原子数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基((好ましくは炭素原子数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
(連結形態)
式A01、A11、A1(以下式A1等)、A02、A12、およびA2(以下式A2等)には、L11、L12、L21、L22、L23の5つの連結基が存在するが、L23以外の4つの連結基については、(1)ポリエステル系重合体[I]、(2)ポリエステル系重合体[II]の2種においてそれぞれ好ましいものが異なる。中でも、本発明においては、(1)ポリエステル系重合体が高い性能が得られる点で好ましく、その順で以下に好ましい連結基の内容について説明する。なお、本明細書においてポリエステルとは、連結基にオキシカルボニル基があればよく、ポリカーボネート構造をとっていてもよい。
式A01、A11、A1(以下式A1等)、A02、A12、およびA2(以下式A2等)には、L11、L12、L21、L22、L23の5つの連結基が存在するが、L23以外の4つの連結基については、(1)ポリエステル系重合体[I]、(2)ポリエステル系重合体[II]の2種においてそれぞれ好ましいものが異なる。中でも、本発明においては、(1)ポリエステル系重合体が高い性能が得られる点で好ましく、その順で以下に好ましい連結基の内容について説明する。なお、本明細書においてポリエステルとは、連結基にオキシカルボニル基があればよく、ポリカーボネート構造をとっていてもよい。
(1)ポリエステル系重合体[I]
<ジカルボン酸化合物由来の繰り返し単位>
~式A1で表される繰り返し単位~
・L11
式A1等中のL11は、*-CO-L13-**又は*-L13-CO-**(*は5,6,7,8,9,10-ヘキサヒドロフェナントレン環(母核)側の結合手を表す。**はその逆の結合手を表す。)であることが好ましい。L13は、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、酸素原子、カルボニル基、又は単結合であることが好ましい。なお、本明細書においては、「連結基」という用語を、2つの構造部を連結するものであれば、原子や単結合を含む意味で用いる。
<ジカルボン酸化合物由来の繰り返し単位>
~式A1で表される繰り返し単位~
・L11
式A1等中のL11は、*-CO-L13-**又は*-L13-CO-**(*は5,6,7,8,9,10-ヘキサヒドロフェナントレン環(母核)側の結合手を表す。**はその逆の結合手を表す。)であることが好ましい。L13は、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、酸素原子、カルボニル基、又は単結合であることが好ましい。なお、本明細書においては、「連結基」という用語を、2つの構造部を連結するものであれば、原子や単結合を含む意味で用いる。
前記アルキレン基及びアルケニレン基は、直鎖又は分岐鎖の鎖状であっても、環状であってもよい。L13は、耐熱性の観点から、炭素数2~10のアルキレン基、炭素数2~10のアルケニレン基、炭素数6~18のアリーレン基、酸素原子、カルボニル基、又は単結合、あるいはそれらの組合せであることが好ましい。より好ましくは、炭素数2~4の鎖状のアルキレン基もしくはカルボニルアルキレン基、炭素数5~6の環状のアルキレン基もしくはカルボニルアルキレン基、炭素数2~4の鎖状のアルケニレン基もしくはカルボニルアルケニレン基、炭素数5~6の環状のアルケニレン基もしくはカルボニルアルケニレン基、炭素数6~10のアリーレン基もしくはカルボニルアリーレン基、酸素原子、又は単結合である。
L13で表される連結基の具体例として以下のものを挙げることができるが、本発明がこれに限定して解釈されるものではない。なお、以下の例示化学構造式では、結合手*はヒドロフェナントレン環に結合する側であり、結合手**がその反対側を意味する。
式(A1)等におけるL13としては、耐熱性の観点から、単結合、(L1-ex-4)、(L1-ex-10)又は(Ll-ex-12)であることが好ましく、単結合であることがより好ましい。
前記式A1等中、連結基L11は式中1位、2位、4位のいずれの炭素原子に結合するものであってもよいが、2位もしくは4位で示される炭素原子と結合したものであることが好ましく、2位で示される炭素原子と結合したものであることがより好ましい。なお、この結合位置は、後述する(2)ポリエステル重合体[II]についても同様である。なお、上記式中の炭素原子の位置番号は、アビエタンの位置番号に対して、1位が11位、2位が12位、3位が13位、4位が14位に相当する。
・L12
L12は、カルボニル基もしくはカルボニルオキシ基であることが好ましい。換言すると、このポリエステル系重合体[I]に係る実施形態においては、DHA主骨格がDAA骨格を構成している。
L12は、カルボニル基もしくはカルボニルオキシ基であることが好ましい。換言すると、このポリエステル系重合体[I]に係る実施形態においては、DHA主骨格がDAA骨格を構成している。
前記ポリエステル系重合体[I]の好適な態様のもう一つは、2つのデヒドロアビエタン主骨格が直接又は連結基を介して結合してなる二量体構造を、主鎖の一部として繰り返し単位中に含むものである。この二量体構造を含む繰り返し単位は、例えば、上記式(A2)で表される。
~式A2で表される繰り返し単位~
・L21、L22
式A2等中のL21及びL22及は、カルボニル基もしくはカルボニルオキシ基であることが好ましい。このことは、上記L12と同様に、本実施形態の特定重合体が、DAA骨格を含む繰り返し単位を有して構成されていることを意味する。
・L21、L22
式A2等中のL21及びL22及は、カルボニル基もしくはカルボニルオキシ基であることが好ましい。このことは、上記L12と同様に、本実施形態の特定重合体が、DAA骨格を含む繰り返し単位を有して構成されていることを意味する。
・L23
L23は、酸素原子、硫黄原子、カルボニル基、スルホニル基、アルキレン基、アルケニレン基、アリーレン基、又は単結合であることが好ましい。前記アルキレン基及びアルケニレン基は、直鎖又は分岐鎖の鎖状であっても、環状であってもよい。L23で表される連結基は、耐熱性の観点から、単結合、酸素原子、硫黄原子、カルボニル基、スルホニル基、炭素数2~10のアルキレン基、炭素数2~10のアルケニレン基、及び炭素数6~18のアリーレン基からなる群から選択される少なくとも1種から構成されることが好ましく、酸素原子、硫黄原子、カルボニル基、スルホニル基、炭素数2~4の鎖状のアルキレン基、炭素数5~6の環状のアルキレン基、炭素数2~4の鎖状のアルケニレン基、炭素数5~6の環状のアルケニレン基、及び炭素数6~8のアリーレン基からなる群から選択される少なくとも1種から構成される2価の連結基、又は単結合であることがより好ましい。
L23は、酸素原子、硫黄原子、カルボニル基、スルホニル基、アルキレン基、アルケニレン基、アリーレン基、又は単結合であることが好ましい。前記アルキレン基及びアルケニレン基は、直鎖又は分岐鎖の鎖状であっても、環状であってもよい。L23で表される連結基は、耐熱性の観点から、単結合、酸素原子、硫黄原子、カルボニル基、スルホニル基、炭素数2~10のアルキレン基、炭素数2~10のアルケニレン基、及び炭素数6~18のアリーレン基からなる群から選択される少なくとも1種から構成されることが好ましく、酸素原子、硫黄原子、カルボニル基、スルホニル基、炭素数2~4の鎖状のアルキレン基、炭素数5~6の環状のアルキレン基、炭素数2~4の鎖状のアルケニレン基、炭素数5~6の環状のアルケニレン基、及び炭素数6~8のアリーレン基からなる群から選択される少なくとも1種から構成される2価の連結基、又は単結合であることがより好ましい。
L23で表される連結基を構成するアルキレン基、アルケニレン基及びアリーレン基は可能な場合には置換基を有していてもよい。アルキレン基、アルケニレン基及びアリーレン基における置換基としては、前記置換基Tを挙げることができる。L23で表される連結基の具体例として、以下の連結基を挙げることができるが、本発明はこれらに限定されない。
L23としては、耐熱性の観点から、(L2-ex-2)、(L2-ex-5)、(L2-ex-9)又は(L2-ex-11)であることが好ましく、(L2-ex-2)であることがより好ましい。
前記式A2等中、連結基L11は式中1位、2位、4位、1’位、2’位、4’位のいずれの炭素原子に結合するものであってもよいが、2位、4位、2’位、及び4’位で示される炭素原子と結合したものであることが好ましく(ただし、2つのヒドロフェナントレン環を連結する組合せである。)、2位及び2’位で示される炭素原子と結合したものであることがより好ましい。なお、この結合位置は、後述する(2)ポリエステル系重合体[II]についても同様である。
前記ポリエステル系重合体[I]を構成するポリカルボン酸化合物由来の繰り返し単位中におけるDHA主骨格ないしその二量体骨格からなる繰り返し単位(例えば、式(A1)で表される繰り返し単位及び式(A2)で表される繰り返し単位)の総含有率は特に制限されないが、ジカルボン酸化合物由来の繰り返し単位の総量を50モル%とした場合、耐熱性と密度の観点から、10モル%以上であることが好ましく、15モル%以上であることがより好ましく、20モル%以上であることが更に好ましい。なお、ポリエステル中のポリカルボン酸由来の構成単位の含有率は通常50モル%であり、典型的にはそれが上限となる。
本実施形態のポリエステル系重合体[I]は、その他のポリカルボン酸化合物との共重合体であってもよい。その他のポリカルボン酸化合物しては、ポリエステル系重合体[I]を構成するのに通常用いられるポリカルボン酸化合物を特に制限なく用いることができ、例えば、合成高分子V(朝倉書店)P.63-91等に記載のポリカルボン酸化合物を用いることができる。
その他のポリカルボン酸化合物としては例えば、テレフタル酸、イソフタル酸、及びナフタレンジカルボン酸等の芳香族ジカルボン酸類や、シクロヘキサンジカルボン酸、ジシクロヘキサンジカルボン酸、アジピン酸等の脂肪族ジカルボン酸類が挙げられる。前記ポリエステル系重合体[I]におけるその他のポリカルボン酸化合物由来の繰り返し単位の含有率は、本発明の効果を損なわない範囲であれば特に制限されない。例えば、その他のポリカルボン酸化合物由来の繰り返し単位の含有率は、前記ポリエステル系重合体[I]を構成するポリカルボン酸化合物由来の繰り返し単位中に、40モル%以下であることが好ましく、30モル%以下であることがより好ましい。
<ポリオール化合物由来の繰り返し単位>
・環構造を含むポリオール化合物
本実施形態のポリエステル系重合体[I]は、前述の共重合成分(式II、II-1)をポリオール化合物由来の繰り返し単位として含むことが好ましい。なかでも、その共重合体成分として環構造を有するポリオール化合物由来の繰り返し単位を少なくとも1種を含むことが好ましい。前記ポリオール化合物に含まれる環構造は、ポリエステル系重合体[I]の側鎖部分に含まれていても、主鎖の一部を構成するように含まれていてもよいが、耐熱性の観点から、ポリオール化合物に含まれる環構造が主鎖の一部を構成していることが好ましい。これによりさらに耐熱性が向上する。
・環構造を含むポリオール化合物
本実施形態のポリエステル系重合体[I]は、前述の共重合成分(式II、II-1)をポリオール化合物由来の繰り返し単位として含むことが好ましい。なかでも、その共重合体成分として環構造を有するポリオール化合物由来の繰り返し単位を少なくとも1種を含むことが好ましい。前記ポリオール化合物に含まれる環構造は、ポリエステル系重合体[I]の側鎖部分に含まれていても、主鎖の一部を構成するように含まれていてもよいが、耐熱性の観点から、ポリオール化合物に含まれる環構造が主鎖の一部を構成していることが好ましい。これによりさらに耐熱性が向上する。
前記ポリオール化合物に含まれる環構造は、脂肪族環であっても、芳香族環であってもよく、また炭化水素環であってもヘテロ環であってもよい。さらに脂肪族環は不飽和結合を含むものであってもよい。またポリオール化合物に含まれる環の数は特に制限されないが、例えば1~5とすることができ、耐熱性の観点から、1~3であることが好ましく、1~2であることがより好ましい。ポリオール化合物が2以上の環構造を含む場合、2以上の単環が共有結合又は連結基で連結した構造であっても、縮環構造であってもよい。
前記環構造を有するポリオール化合物由来の繰り返し単位の具体例としては、例えば、シクロヘキサンジオール、シクロヘキサンジメタノール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、1,4-ビス(2-ヒドロキシプロポキシ)ベンゼン、及び4-ヒドロキシエチルフェノール等に由来する繰り返し単位や、下記式(B1)で表されるジオール化合物由来の繰り返し単位を挙げることができる。前記環構造を有するポリオール化合物由来の繰り返し単位は、耐熱性の観点から、下記式(B1)で表されるポリオール化合物由来の繰り返し単位であることが好ましい。
式(B1)中、L3は、酸素原子、カルボニル基、スルホニル基、及びアルキレン基からなる群から選ばれる少なくとも1種から構成される2価の連結基、又は、単結合を表す。L3が複数存在する場合、それぞれのL3は同じでも異なっていてもよい。R1及びR2はそれぞれ独立して、ハロゲン原子、アルキル基、及びアルコキシ基からなる群から選ばれる置換基を表し、互いに結合して環を形成してもよい。またR1及びR2が複数存在する場合、それぞれのR1及びR2は同じでも異なっていてもよい。n1及びn2はそれぞれ独立して0~4までの整数を表し、n3は0~2までの整数を表す。
L3における2価の連結基を構成するアルキレン基は、直鎖や分岐鎖の鎖状アルキレン基であっても、環状アルキレン基であってもよい。またアルキレン基の炭素数は、耐熱性の観点から、1~6であることが好ましく、1~4であることがより好ましい。なお、ここでいうアルキレン基の炭素数には、後述する置換基の炭素数を含まないものとする。さらにアルキレン基は、炭素数1~6の鎖状又は環状アルキル基、炭素数6~18のアリール基等の置換基を有していてもよい。アルキレン基における置換基の数は2以上であってもよく、アルキレン基が2以上の置換基を有する場合、2以上の置換基は同一でも異なっていてもよく、また互いに連結して環を形成してもよい。
R1及びR2はそれぞれ独立して、ハロゲン原子、アルキル基、及びアルコキシ基からなる群から選ばれる置換基を表すが、耐熱性の観点から、フッ素原子、塩素原子、炭素数1~8のアルキル基、及び炭素数1~8のアルコキシ基からなる群から選ばれる置換基であることが好ましい。
n1及びn2はそれぞれ独立して0~4の整数を表すが、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることがさらに好ましい。n3は0~2の整数を表すが、0又は1であることが好ましい。
以下に式(B1)で表される繰り返し単位の具体例を示すが、本発明はこれらに限定されない。
式(B1)で表される繰り返し単位としては、耐熱性の観点から、上記(B1-ex-1)、(B1-ex-2)、(B1-ex-3)、(B1-ex-4)、(B1-ex-5)、(B1-ex-6)、(B1-ex-7)(B1-ex-9)又は(B1-ex-11)であることが好ましく、上記(B1-ex-1)、(B1-ex-2)又は(B1-ex-3)であることがより好ましい。
前記ポリエステル系重合体[I]を構成するポリオール化合物由来の繰り返し単位中における、式(B1)で表される繰り返し単位の含有率は特に制限されないが、ポリオール化合物由来の繰り返し単位の総量を50モル%とした場合、耐熱性と密度の観点から、10モル%以上であることが好ましく、20モル%以上であることがより好ましく、30モル%以上であることがより好ましく、40モル%以上であることが更に好ましい。
・環構造を含まないポリオール化合物
前記ポリエステル系重合体[I]は、環構造を含まないその他のポリオール化合物由来の繰り返し単位の少なくとも1種を含むものであってもよい。環構造を含まないポリオール化合物としては、ポリエステル系重合体[I]を構成するのに通常用いられるポリオール化合物を特に制限なく用いることができ、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等といったジオール化合物が挙げられる。
前記ポリエステル系重合体[I]における環構造を含まないポリオール化合物由来の繰り返し単位の含有率は、その好ましい範囲において、前記環構造を含むものと同様である。
前記ポリエステル系重合体[I]は、環構造を含まないその他のポリオール化合物由来の繰り返し単位の少なくとも1種を含むものであってもよい。環構造を含まないポリオール化合物としては、ポリエステル系重合体[I]を構成するのに通常用いられるポリオール化合物を特に制限なく用いることができ、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等といったジオール化合物が挙げられる。
前記ポリエステル系重合体[I]における環構造を含まないポリオール化合物由来の繰り返し単位の含有率は、その好ましい範囲において、前記環構造を含むものと同様である。
本実施形態のポリエステル系重合体[I]は、耐熱性の観点から、ポリカルボン酸化合物由来の繰り返し単位として、下記の構造の少なくとも1つずつを有する組合せに係るものであることが好ましい。
・ポリカルボン酸化合物由来の繰り返し単位
式(A1)・・・L11がカルボニル基、化学式(L1-ex-4)、(L1-ex-10)又は(L1-ex-12)、L12がカルボニル基
式(A2)・・・L23が化学式(L2-ex-2)、(L2-ex-5)、(L2-ex-9)又は(L2-ex-11)、L21及びL22がカルボニル基
・ポリオール化合物由来の繰り返し単位
化学式(B1-ex-1)、(B1-ex-2)、(B1-ex-3)、(B1-ex-4)、(B1-ex-5)、(B1-ex-6)又は(B1-ex-11)
式(A1)・・・L11がカルボニル基、化学式(L1-ex-4)、(L1-ex-10)又は(L1-ex-12)、L12がカルボニル基
式(A2)・・・L23が化学式(L2-ex-2)、(L2-ex-5)、(L2-ex-9)又は(L2-ex-11)、L21及びL22がカルボニル基
・ポリオール化合物由来の繰り返し単位
化学式(B1-ex-1)、(B1-ex-2)、(B1-ex-3)、(B1-ex-4)、(B1-ex-5)、(B1-ex-6)又は(B1-ex-11)
より好ましくは下記である。
・ポリカルボン酸化合物由来の繰り返し単位
式(A1)・・・L11がカルボニル基
式(A2)・・・L23が(L2-ex-2)、L21及びL22がカルボニル基
・ポリオール化合物由来の繰り返し単位
化学式(B1-ex-1)、(B1-ex-2)、(B1-ex-3)又は(B1-ex-4)
・ポリカルボン酸化合物由来の繰り返し単位
式(A1)・・・L11がカルボニル基
式(A2)・・・L23が(L2-ex-2)、L21及びL22がカルボニル基
・ポリオール化合物由来の繰り返し単位
化学式(B1-ex-1)、(B1-ex-2)、(B1-ex-3)又は(B1-ex-4)
本実施形態のポリエステル系重合体[I]を構成するジカルボン酸化合物由来の繰り返し単位とジオール化合物由来の繰り返し単位の含有比率(ジカルボン酸化合物由来の繰り返し単位:ジアミン化合物由来の繰り返し単位)は、特に制限されないが、通常1:1である。
(ポリエステル系重合体[I]の製造方法)
本実施形態のポリエステル系重合体[I]の製造に用いるデヒドロアビエチン酸は、例えば、ロジンから得ることができる。ロジンに含まれる構成成分は、これら採取の方法や松の産地により異なるが、的には、アビエチン酸(1)、ネオアビエチン酸(2)、パラストリン酸(3)、レボピマール酸(4)、デヒドロアビエチン酸(5)、ピマール酸(6)、イソピマール酸(7)等のジテルペン系樹脂酸の混合物である。これらのジテルペン系樹脂酸のうち、(1)から(4)で表される各化合物は、ある種の金属触媒の存在下、加熱処理することにより不均化を起こし、デヒドロアビエチン酸(5)と、下記構造のジヒドロアビエチン酸(8)に変性する。即ち、本発明のポリエステル系重合体[I]を製造する上で必要なデヒドロアビエチン酸(5)は、種々の樹脂酸の混合物であるロジンに適切な化学処理を施すことにより比較的容易に得ることができ、工業的にも安価に製造することができる。なお、ジヒドロアビエチン酸(8)とデヒドロアビエチン酸(5)とは、公知の方法により容易に分離できる。
本実施形態のポリエステル系重合体[I]の製造に用いるデヒドロアビエチン酸は、例えば、ロジンから得ることができる。ロジンに含まれる構成成分は、これら採取の方法や松の産地により異なるが、的には、アビエチン酸(1)、ネオアビエチン酸(2)、パラストリン酸(3)、レボピマール酸(4)、デヒドロアビエチン酸(5)、ピマール酸(6)、イソピマール酸(7)等のジテルペン系樹脂酸の混合物である。これらのジテルペン系樹脂酸のうち、(1)から(4)で表される各化合物は、ある種の金属触媒の存在下、加熱処理することにより不均化を起こし、デヒドロアビエチン酸(5)と、下記構造のジヒドロアビエチン酸(8)に変性する。即ち、本発明のポリエステル系重合体[I]を製造する上で必要なデヒドロアビエチン酸(5)は、種々の樹脂酸の混合物であるロジンに適切な化学処理を施すことにより比較的容易に得ることができ、工業的にも安価に製造することができる。なお、ジヒドロアビエチン酸(8)とデヒドロアビエチン酸(5)とは、公知の方法により容易に分離できる。
例えば、上記の式(A1)又は(A2)で表される繰り返し単位及び式(B1)で表される繰り返し単位を有するポリエステル系重合体[I]を合成する工程は、式(B1)で表される繰り返し単位をなすジオール化合物と、上記の式(A1)又は(A2)で表される繰り返し単位をなすジカルボン酸化合物又はその誘導体であるジカルボン酸ハライド誘導体もしくはジエステル誘導体とを公知の方法で重縮合させることにより合成することができる。この一連の工程をスキームにすると下記スキーム1及び2の2通りに分けて説明することができる。なお、下記の反応スキームは本発明における1例であり、この説明により本発明が限定して解釈されるものではない。
重合体の具体的な合成方法としては、例えば、新高分子実験学3、高分子の合成・反応(2)、78~95頁、共立出版(1996年)に記載の方法(例えば、エステル交換法、直接エステル化法、酸ハライド法等の溶融重合法、低音溶液重合法、高温溶液重縮合法、界面重縮合法など)などが挙げられ、本発明では特に酸クロリド法及び界面重縮合法が好ましく用いられる。
エステル交換法は、ポリオール化合物とポリカルボン酸エステル誘導体とを溶融状態又は溶液状態で、必要により触媒の存在下に加熱することにより脱アルコール重縮合させポリエステル系重合体[I]を合成する方法である。
直接エステル化法は、ポリオール化合物とポリカルボン酸化合物とを溶融状態又は溶液状態で触媒の存在下に、加熱下において脱水重縮合させることによりポリエステル系重合体[I]を合成する方法である。
酸ハライド法は、ポリオール化合物とポリカルボン酸ハライド誘導体とを溶融状態又は溶液状態で、必要により触媒の存在下に加熱し脱ハロゲン化水素重縮合させることによりポリエステル系重合体[I]を合成する方法である。
界面重合法は、ポリオール化合物を水、前記ポリカルボン酸化合物又はその誘導体を有機溶媒に溶解させ、相問移動触媒を使用して水/有機溶媒界面で重縮合させることによりポリエステル系重合体[I]を合成する方法である。
なお、スキーム2のデヒドロアビエチン酸(DAA)の二量化体は、特開2011-26569記載の方法で合成できる。具体的には、L23を単結合で連結する場合、オキサリルクロリドを用い触媒量のN,N-ジメチルホルムアミドを添加して反応を進行させることができる。L23をメチレン基とする場合には、上記オキサリルクロリドをジクロロメタンに代える方法などが挙げられる。あるいは、下記合成例のように、DAAをホルマリンと混合し、触媒量のトリフルオロ酢酸を添加することで反応を進行させてもよい。
(2)ポリエステル系重合体[II]
本実施形態においては連結基がそれぞれ以下のものであることが好ましい。
・L11
L11は、単結合、又は*-L1A-O-**である。*はヒドロフェナントレン環側の結合手を表し、**はその逆の結合手を表す。L1Aで示される単結合もしくは二価の連結基としては特に限定的ではないが、連結基としては、例えば、-(CnH2n)-、-CO(CnH2n)-、(ここで、nは1~12、好ましくは1~8の整数であり、直鎖でも分岐でも環状でもよくまた、更に置換基を有していてもよい。また、分子鎖を構成する炭素原子の1つ以上が、酸素原子に置き換わった構造であってもよい。)等が挙げられる。L1Aに結合する原子が酸素原子のときには、好ましくは-(CH2)4-、-(CH2)5-、又は-(CH2)6-等である。L1Aに結合する原子がカルボニル基のときには、好ましくは-(CH2)3-、-(CH2)4-、-(CH2)5-、-CO(CH2)2-、-CO(CH2)3-、又は-CO(CH2)4-等である。
本実施形態においては連結基がそれぞれ以下のものであることが好ましい。
・L11
L11は、単結合、又は*-L1A-O-**である。*はヒドロフェナントレン環側の結合手を表し、**はその逆の結合手を表す。L1Aで示される単結合もしくは二価の連結基としては特に限定的ではないが、連結基としては、例えば、-(CnH2n)-、-CO(CnH2n)-、(ここで、nは1~12、好ましくは1~8の整数であり、直鎖でも分岐でも環状でもよくまた、更に置換基を有していてもよい。また、分子鎖を構成する炭素原子の1つ以上が、酸素原子に置き換わった構造であってもよい。)等が挙げられる。L1Aに結合する原子が酸素原子のときには、好ましくは-(CH2)4-、-(CH2)5-、又は-(CH2)6-等である。L1Aに結合する原子がカルボニル基のときには、好ましくは-(CH2)3-、-(CH2)4-、-(CH2)5-、-CO(CH2)2-、-CO(CH2)3-、又は-CO(CH2)4-等である。
・L12、L21、L22
L12は、*-CH2-O-**である。*はヒドロフェナントレン環側の結合手を表し、**はその逆の結合手を表す。
・L23
L23は、(1)ポリエステル系重合体[I]におけるL23と同義であり、好ましい範囲も同じである。
L12は、*-CH2-O-**である。*はヒドロフェナントレン環側の結合手を表し、**はその逆の結合手を表す。
・L23
L23は、(1)ポリエステル系重合体[I]におけるL23と同義であり、好ましい範囲も同じである。
(ポリエステル系重合体[II]の製造方法)
本実施形態の重合体は、例えば、以下のスキーム3で合成することができる。以下は、反応経路の例示であり、本発明がこれに限定して解釈されるものではない。なお、下記は上記式(A1)で示される態様を例示しているが、アビエタン主骨格を2つもつ2量体とする以外同様であるので式(A2)のものについては省略する。2量体化については、前記ポリエステル系重合体[I]の場合と同様である。
本実施形態の重合体は、例えば、以下のスキーム3で合成することができる。以下は、反応経路の例示であり、本発明がこれに限定して解釈されるものではない。なお、下記は上記式(A1)で示される態様を例示しているが、アビエタン主骨格を2つもつ2量体とする以外同様であるので式(A2)のものについては省略する。2量体化については、前記ポリエステル系重合体[I]の場合と同様である。
(i)のジカルボン酸体の合成は前記ポリエステルの(I)と同様にして行うことができる。アビエチン酸にカルボキシ基を導入したジカルボキシ化合物(i)からジメチロール化合物(ii)への反応は、通常の還元反応によればよい。例えば、水素化アルミで還元することにより、上記還元反応を速やかに進行させることができる。ジメチロール化合物(ii)からポリカルボン酸クロリド化合物との反応によりポリエステル(iii)を得る反応は、例えば、後述する合成例を参照することができる。
上記(1)ポリエステル系重合体[I]の製造方法や化合物の詳細については、特開2011-026569号公報を参照することができる。(2)ポリエステル系重合体[II]の製造方法や化合物の詳細については、特開2011-074249号公報を参照することができる。
[多孔膜]
本発明の多孔膜は、上記特定重合体を含み、内部に空孔を有する。ここで空孔とは、樹脂の隔壁で囲まれた空間であり空気を含む孔(穴)のことをいう。空孔は独立孔であることが好ましい。独立孔とは樹脂の隔壁で閉じている(隙間がない)孔をいい、貫通孔を含まない意味である。独立孔であることにより効率的に光を散乱させることができ好ましい。
本発明の多孔膜は、上記特定重合体を含み、内部に空孔を有する。ここで空孔とは、樹脂の隔壁で囲まれた空間であり空気を含む孔(穴)のことをいう。空孔は独立孔であることが好ましい。独立孔とは樹脂の隔壁で閉じている(隙間がない)孔をいい、貫通孔を含まない意味である。独立孔であることにより効率的に光を散乱させることができ好ましい。
(多孔膜の特性)
・平均孔径
平均孔径が大きすぎると、入射光が光反射板の内部まで浸透したり、気泡界面での乱反射の回数が減少したりするため、拡散反射率が低下する傾向がある。また、特に液晶表示装置のバックライト装置においてシート状の反射板を用いる場合には、反射板の端部からの光損失により反射板表面に戻る光量が減少するため、拡散反射率が低下する。平均孔径は50μm以下であることが好ましく、30μm以下であることがより好ましい。なお、平均気泡径(平均孔径)が可視光の波長よりも小さくなると入射光が透過するので、平均孔径は少なくとも可視光の波長以上であることが必要である。平均孔径は0.5μm以上であることが好ましい。これより小さいと光が散乱されず透過することがある。さらに好ましくは1μm以上である。なお、本発明における平均孔径とは、断面をSEMで観察し、ランダムに20個の空隙を選んでその径を平均した値をいう。
・平均孔径
平均孔径が大きすぎると、入射光が光反射板の内部まで浸透したり、気泡界面での乱反射の回数が減少したりするため、拡散反射率が低下する傾向がある。また、特に液晶表示装置のバックライト装置においてシート状の反射板を用いる場合には、反射板の端部からの光損失により反射板表面に戻る光量が減少するため、拡散反射率が低下する。平均孔径は50μm以下であることが好ましく、30μm以下であることがより好ましい。なお、平均気泡径(平均孔径)が可視光の波長よりも小さくなると入射光が透過するので、平均孔径は少なくとも可視光の波長以上であることが必要である。平均孔径は0.5μm以上であることが好ましい。これより小さいと光が散乱されず透過することがある。さらに好ましくは1μm以上である。なお、本発明における平均孔径とは、断面をSEMで観察し、ランダムに20個の空隙を選んでその径を平均した値をいう。
・膜厚
多孔膜の厚さが薄すぎると、反射板として用いたとき、他の要件を満たしていても、光反射板背面への光の漏洩が多くなるため拡散反射率が低下する。また、多孔膜の厚さが薄すぎると、所定形状に成形した場合に、形状保持性に劣る。多孔膜の厚さは30μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることがより好ましい。膜厚の上限は特に制限はないが、反射板に用いる場合、500μm以下であることが実際的である。
本発明における膜厚はデジタルリニアゲージDG-525H(小野測器社製)にて測定した値とする。測定は3箇所行い、その平均値を求める。
多孔膜の厚さが薄すぎると、反射板として用いたとき、他の要件を満たしていても、光反射板背面への光の漏洩が多くなるため拡散反射率が低下する。また、多孔膜の厚さが薄すぎると、所定形状に成形した場合に、形状保持性に劣る。多孔膜の厚さは30μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることがより好ましい。膜厚の上限は特に制限はないが、反射板に用いる場合、500μm以下であることが実際的である。
本発明における膜厚はデジタルリニアゲージDG-525H(小野測器社製)にて測定した値とする。測定は3箇所行い、その平均値を求める。
・密度
多孔膜の密度が大きすぎる、すなわち空隙率が小さくなると、反射板として用いたとき、他の要件を満たしていても、発泡していない樹脂部分における光吸収や光反射板の透明化による光透過などにより光損失が大きくなるため拡散反射率が低下する。なお、多孔膜の密度は0.7g/cm3以下が好ましく、0.4g/cm3以下であることがより好ましく、0.3g/cm3以下であることが特に好ましい。密度の下限は特に制限はないが、独立孔を保持する観点から0.05g/cm3以上であることが好ましい。
本発明において密度は精密比重計AUW120D(SHIMADZU社製)で25℃で測定した値とする。
なお、樹脂の空隙率として求める場合には、前記多孔膜樹脂の密度(B)を熱プレス法(例えば特開2006-229028号公報参照)で製造した無孔フィルムの密度(A)で除した値(B/A)を言う。これらの密度は、25℃で測定したものとする。無孔フィルムの密度(A)は下記のようにして求めることができる。
精密比重計AUW120D(SHIMADZU社製)用い、空気中と水中の重量から計算する(浮力法)。
ρ=(Wa/Wa-Wl)×ρl
ρ:試料の密度
Wa:空気中で測定した試料の重量
Wl:水中で測定した試料の重量
Ρl:水の密度(25℃)
本発明における多孔膜を構成する樹脂の空隙率は、5~99%であることが好ましく、40~95%であることがより好ましい。
多孔膜の密度が大きすぎる、すなわち空隙率が小さくなると、反射板として用いたとき、他の要件を満たしていても、発泡していない樹脂部分における光吸収や光反射板の透明化による光透過などにより光損失が大きくなるため拡散反射率が低下する。なお、多孔膜の密度は0.7g/cm3以下が好ましく、0.4g/cm3以下であることがより好ましく、0.3g/cm3以下であることが特に好ましい。密度の下限は特に制限はないが、独立孔を保持する観点から0.05g/cm3以上であることが好ましい。
本発明において密度は精密比重計AUW120D(SHIMADZU社製)で25℃で測定した値とする。
なお、樹脂の空隙率として求める場合には、前記多孔膜樹脂の密度(B)を熱プレス法(例えば特開2006-229028号公報参照)で製造した無孔フィルムの密度(A)で除した値(B/A)を言う。これらの密度は、25℃で測定したものとする。無孔フィルムの密度(A)は下記のようにして求めることができる。
精密比重計AUW120D(SHIMADZU社製)用い、空気中と水中の重量から計算する(浮力法)。
ρ=(Wa/Wa-Wl)×ρl
ρ:試料の密度
Wa:空気中で測定した試料の重量
Wl:水中で測定した試料の重量
Ρl:水の密度(25℃)
本発明における多孔膜を構成する樹脂の空隙率は、5~99%であることが好ましく、40~95%であることがより好ましい。
・反射率
本発明の多孔膜は、波長300~800nmに対する拡散反射率が90%以上であることが好ましい。さらに好ましくは95%以上である。反射率が90%未満であるとバックライトユニットに組み込んだときに十分な輝度を得ることができない場合がある。
本発明における反射率は分光光度計(UV-3101C:島津製作所社製)により300~800nm波長域で測定した値の平均とする。なお、標準白色板には硫酸バリウムの微粉末を固めた白板を用いた。
・光沢度
前記光沢度とは、JIS規格のZ8741に記載される定義に準ずる。
前記多孔膜の光沢度としては、特に制限はなく、目的に応じて適宜選択することができ、入射角60度以下で、波長400~800nmの光を入射して測定したときに、50以上が好ましく、60以上がより好ましく、70以上が更に好ましく、80以上が特に好ましい。このような光沢度を有することで均一な反射を得ることができであり好ましい。
光沢度は変角光沢計VG-1001P(商品名、日本電色工業社製)を用いて、波長400~800nmを含む光を60度(°)入射、60度受光の条件で測定した値とする。
本発明の多孔膜は、波長300~800nmに対する拡散反射率が90%以上であることが好ましい。さらに好ましくは95%以上である。反射率が90%未満であるとバックライトユニットに組み込んだときに十分な輝度を得ることができない場合がある。
本発明における反射率は分光光度計(UV-3101C:島津製作所社製)により300~800nm波長域で測定した値の平均とする。なお、標準白色板には硫酸バリウムの微粉末を固めた白板を用いた。
・光沢度
前記光沢度とは、JIS規格のZ8741に記載される定義に準ずる。
前記多孔膜の光沢度としては、特に制限はなく、目的に応じて適宜選択することができ、入射角60度以下で、波長400~800nmの光を入射して測定したときに、50以上が好ましく、60以上がより好ましく、70以上が更に好ましく、80以上が特に好ましい。このような光沢度を有することで均一な反射を得ることができであり好ましい。
光沢度は変角光沢計VG-1001P(商品名、日本電色工業社製)を用いて、波長400~800nmを含む光を60度(°)入射、60度受光の条件で測定した値とする。
・熱収縮率
本発明の多孔膜は、85℃の熱収縮率が、直交する2方向ともに、好ましくは0.3%以下、さらに好ましくは0.2%以下、最も好ましくは0.1%以下である。この範囲の熱収縮率であることで、バックライトユニットに反射板として用いたときに光源の熱で変形することのない、高い耐熱性を備える多孔膜を得ることができる。
熱収縮率は、フィルムサンプル(0.5cm×2.0cm片)を作製し、引張荷重100mNの条件下、TMA(リガク社製、TMA8310)の引張荷重法にて100℃で5時間加熱した場合の寸法変化量を測定し、測定前のサンプル長で除した値とする(なお、収縮するとマイナスの値を示すが、絶対値で表記した)。
本発明の多孔膜は、85℃の熱収縮率が、直交する2方向ともに、好ましくは0.3%以下、さらに好ましくは0.2%以下、最も好ましくは0.1%以下である。この範囲の熱収縮率であることで、バックライトユニットに反射板として用いたときに光源の熱で変形することのない、高い耐熱性を備える多孔膜を得ることができる。
熱収縮率は、フィルムサンプル(0.5cm×2.0cm片)を作製し、引張荷重100mNの条件下、TMA(リガク社製、TMA8310)の引張荷重法にて100℃で5時間加熱した場合の寸法変化量を測定し、測定前のサンプル長で除した値とする(なお、収縮するとマイナスの値を示すが、絶対値で表記した)。
(製膜方法)
本発明の多孔膜は溶液キャスト法によって形成される。溶液キャスト法については特公昭55-38366号公報を参照することができる。
多孔膜は通常ポリマー溶液中から相分離させる方法が使用されるが、本発明においても掛かる方法が好ましく使用される。多孔膜は相分離(スピノーダル分解)、コアセルベーションを経て形成される。このようなプロセスは単一の親溶媒の揮発過程で形成される場合もあれば、親溶媒/貧溶媒の混合溶媒の揮発過程で形成される場合もある、さらに熱(冷却)によって誘起される場合もある。また親溶媒のポリマー溶液に対して非溶媒の誘起によって相分離を促進させることも可能である。非溶媒による誘起は、非溶媒蒸気による暴露もしくは非溶媒浴への浸漬、またはその両方の組み合わせが用いられる。ここで、親溶媒は上記特定重合体を十分溶解しうる溶媒を、貧溶媒は上記特定重合体を実質的に溶解しないが膨潤させる溶媒、非溶媒は上記特定重合体を実質的に溶解、膨潤させない溶媒である。なお、各溶媒をその物性で敢えて定義するとすれば、下記のとおりである。
良溶媒:25℃で溶質を5~100質量%溶解させる溶媒
貧溶媒:25℃で溶質を0.1~5質量%未満溶解させる溶媒
非溶媒:25℃で溶質を0.1質量%未満しか溶解させない溶媒(全く溶解しないものを含む)
本発明の多孔膜は溶液キャスト法によって形成される。溶液キャスト法については特公昭55-38366号公報を参照することができる。
多孔膜は通常ポリマー溶液中から相分離させる方法が使用されるが、本発明においても掛かる方法が好ましく使用される。多孔膜は相分離(スピノーダル分解)、コアセルベーションを経て形成される。このようなプロセスは単一の親溶媒の揮発過程で形成される場合もあれば、親溶媒/貧溶媒の混合溶媒の揮発過程で形成される場合もある、さらに熱(冷却)によって誘起される場合もある。また親溶媒のポリマー溶液に対して非溶媒の誘起によって相分離を促進させることも可能である。非溶媒による誘起は、非溶媒蒸気による暴露もしくは非溶媒浴への浸漬、またはその両方の組み合わせが用いられる。ここで、親溶媒は上記特定重合体を十分溶解しうる溶媒を、貧溶媒は上記特定重合体を実質的に溶解しないが膨潤させる溶媒、非溶媒は上記特定重合体を実質的に溶解、膨潤させない溶媒である。なお、各溶媒をその物性で敢えて定義するとすれば、下記のとおりである。
良溶媒:25℃で溶質を5~100質量%溶解させる溶媒
貧溶媒:25℃で溶質を0.1~5質量%未満溶解させる溶媒
非溶媒:25℃で溶質を0.1質量%未満しか溶解させない溶媒(全く溶解しないものを含む)
本発明において、親溶媒、貧溶媒、非溶媒は、特定重合体に対する溶解作用、膨潤作用によって決定される相対的な定義であるから、かかる定義と溶媒の具体例とを一義的に対応させることはできない。すなわち、用いた特定重合体の種類によって親溶媒、貧溶媒、非溶媒の種類が異なったり、あるいは入れ変わったりすることがある。しかし、これらの関係は特定重合体の化学的、物理的性質に基づくものであり、当業者であれば誰もが通常の知識に基づいて特定重合体と三種類の溶媒を容易に選択できるので、本発明におけるこの方法においてはこれらの関係を特に問題にする必要はないであろう。上記親溶媒は重合体を溶かすものであることが好ましい。貧溶媒は重合体を膨潤させるが溶かさないものであることが好ましい。非溶媒は膨潤すらさせない、あるいはまったく干渉しないものであることが好ましい。
特定重合体、親溶媒、貧溶媒及び非溶媒の溶解混合方法は特に制限されず、例えば特定重合体を親溶媒に溶解した後、貧溶媒と非溶媒を加える方法、特定重合体を親溶媒と貧溶媒の一部の混合物に加えて溶解し、この溶液に残りの貧溶媒を加え、さらに非溶媒を加える方法など数十種類の方法があって、そのいずれの方法も用いることができる。その他、各溶媒の混合比率、混合時の温度(溶媒の沸点以下が好ましいという条件はある)などの条件には何ら特殊な制約はない。さらに、ある場合は、貧溶媒と非溶媒の一方が使用されないことがある。すなわち、無機塩などを使用することによって親溶媒と、貧溶媒又は非溶媒を組合せればよいこともある。しかしながら、調製された特定重合体溶液が安定であれば、以後の操作が簡単になるので、安定な溶液となるように溶解、混合を行うことが望ましい。安定な溶液とは、特定重合体が溶液中でゲル化や相分離することのない溶液であり、そのためには溶媒中の親溶媒の量を他の溶媒のそれぞれの量より多くしたり、あるいは特定重合体を親溶媒の全部と貧溶媒の一部との混合物に加えて溶解させたりするなどの手段を採用すればよい。
特定重合体、親溶媒、貧溶媒及び非溶媒の溶解混合方法は特に制限されず、例えば特定重合体を親溶媒に溶解した後、貧溶媒と非溶媒を加える方法、特定重合体を親溶媒と貧溶媒の一部の混合物に加えて溶解し、この溶液に残りの貧溶媒を加え、さらに非溶媒を加える方法など数十種類の方法があって、そのいずれの方法も用いることができる。その他、各溶媒の混合比率、混合時の温度(溶媒の沸点以下が好ましいという条件はある)などの条件には何ら特殊な制約はない。さらに、ある場合は、貧溶媒と非溶媒の一方が使用されないことがある。すなわち、無機塩などを使用することによって親溶媒と、貧溶媒又は非溶媒を組合せればよいこともある。しかしながら、調製された特定重合体溶液が安定であれば、以後の操作が簡単になるので、安定な溶液となるように溶解、混合を行うことが望ましい。安定な溶液とは、特定重合体が溶液中でゲル化や相分離することのない溶液であり、そのためには溶媒中の親溶媒の量を他の溶媒のそれぞれの量より多くしたり、あるいは特定重合体を親溶媒の全部と貧溶媒の一部との混合物に加えて溶解させたりするなどの手段を採用すればよい。
特定重合体溶液に用いる有機溶媒にはキシレン、トルエンの如き芳香族炭化水素、ジオクチルフタレート、ジメトキシオキシエチルフタレートあるいはジメチルフタレートの如きフタル酸エステル、トリフェニルフォスフェート、あるいはトリクレジルフォスフェートの如きリン酸エステル類、グリセロールトリアセテート、エチルフタリルエチルグリコレートあるいはメチルフタリルエチルグリコレートの如き多価アルコールエステル類、灯油やケロシンの如き鉱油、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンの如きケトン類、メチレンクロライド、クロロホルムあるいは1,1-ジクロルエタンの如きハロゲン化炭化水素類、酢酸メチルあるいは酢酸エチルの如きエステル類、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)の如き窒素化合物などがある。
これらの溶媒を単独あるいは二つ以上の溶媒による混合溶媒として用いることができる。使用する特定重合体の連結基や重合度によって、適切な溶媒を選択しなければならない。この特定重合体溶液において特定重合体濃度としては、特定重合体の種類や溶媒の種類によっても異なるが、連続した多孔膜を形成する関係からある程度濃度が高い方が好ましく、例えば15質量%前後が好ましい。特定重合体の溶解度は高くはないが、膜を形成する関係で高い方が好ましい。
このようにして調製した特定重合体溶液はアプリケーターを用いてガラス板、プラスチックフィルムあるいは金属板の如き支持体上に50から3000μmの厚さに流延(引き延)される。親溶媒、もしくは親溶媒/貧溶媒の混合溶媒の揮発過程で相分離が起こる場合は、溶媒揮発後、膜を支持体から剥離・乾燥すれば多孔膜が得られる。
非(貧)溶媒の誘起により相分離を促進する場合は、塗布後、直ちにあるいは溶媒の一部を揮発させた後、もしくは一定時間、非(貧)溶媒の蒸気に暴露した後、非(貧)溶媒中に支持体ごと浸漬して相分離を誘起し、多孔膜を形成する。非(貧)溶媒は親溶媒と相互に溶解性が高く、且つ特定重合体に対して貧溶媒あるいは非溶媒が使用される。上記要件を満たせば何でも使用可能であるが、取扱い性のよさ、安価であることや安全性などから、メタノール、エタノールあるいはイソプロパノールの如きアルコール類や水が好ましい。流延する時の樹脂溶液温度は室温であることが的だが、使用する溶媒系によっては100℃前後の高温で流延し、空気中で冷却したりあるいは室温あるいは室温以下の低温に冷却した凝固液中に浸漬して急冷したりすることも行われる。
非(貧)溶媒の誘起により相分離を促進する場合は、塗布後、直ちにあるいは溶媒の一部を揮発させた後、もしくは一定時間、非(貧)溶媒の蒸気に暴露した後、非(貧)溶媒中に支持体ごと浸漬して相分離を誘起し、多孔膜を形成する。非(貧)溶媒は親溶媒と相互に溶解性が高く、且つ特定重合体に対して貧溶媒あるいは非溶媒が使用される。上記要件を満たせば何でも使用可能であるが、取扱い性のよさ、安価であることや安全性などから、メタノール、エタノールあるいはイソプロパノールの如きアルコール類や水が好ましい。流延する時の樹脂溶液温度は室温であることが的だが、使用する溶媒系によっては100℃前後の高温で流延し、空気中で冷却したりあるいは室温あるいは室温以下の低温に冷却した凝固液中に浸漬して急冷したりすることも行われる。
[反射板]
本発明の反射板は本発明の多孔膜を用いたものであれば特に制限はない。多孔膜のみで形成されていても、支持体を有していてもよい。
図1に本発明の反射板を用いた液晶装置のバックライトの模式的な斜視図を示す。バックライト10においては、上記実施形態で詳述した多孔膜からなる反射膜1をリフレクタ基材51の表面に有するランプリフレクタ5が示されている。これも広義の反射板といえる。本装置では、このランプリフレクタ5に囲まれた発光ランプ4からの光が導光板2に入り、拡散板3を通して液晶パネルへと送られる。このとき導光板2から下へ漏れた光を反射して再利用するために、反射膜1と反射基材61からなる反射板6が設けられている。したがって、本実施形態によれば、多孔膜からなる反射膜1の高い光反射性が得られ、より効率的に光を液晶パネルに供給することができる。また、本実施形態の反射膜は発光ランプが発する熱に耐え、熱収縮に強く、液晶表示装置のそうした要求特性を満たし、良好に機能する。
本発明の多孔膜の利用形態は上記に限定されるものではなく、例えば蛍光灯や白熱電球、あるいはLEDライトの光源カバーなどにも好適に利用でき、上記の利点を発揮する。こうした光源カバーとしての利用形態などは、特開2006-8942号公報、特開2009-244749号公報、特開2011-25473号公報等を参照することができる。
本発明の反射板は本発明の多孔膜を用いたものであれば特に制限はない。多孔膜のみで形成されていても、支持体を有していてもよい。
図1に本発明の反射板を用いた液晶装置のバックライトの模式的な斜視図を示す。バックライト10においては、上記実施形態で詳述した多孔膜からなる反射膜1をリフレクタ基材51の表面に有するランプリフレクタ5が示されている。これも広義の反射板といえる。本装置では、このランプリフレクタ5に囲まれた発光ランプ4からの光が導光板2に入り、拡散板3を通して液晶パネルへと送られる。このとき導光板2から下へ漏れた光を反射して再利用するために、反射膜1と反射基材61からなる反射板6が設けられている。したがって、本実施形態によれば、多孔膜からなる反射膜1の高い光反射性が得られ、より効率的に光を液晶パネルに供給することができる。また、本実施形態の反射膜は発光ランプが発する熱に耐え、熱収縮に強く、液晶表示装置のそうした要求特性を満たし、良好に機能する。
本発明の多孔膜の利用形態は上記に限定されるものではなく、例えば蛍光灯や白熱電球、あるいはLEDライトの光源カバーなどにも好適に利用でき、上記の利点を発揮する。こうした光源カバーとしての利用形態などは、特開2006-8942号公報、特開2009-244749号公報、特開2011-25473号公報等を参照することができる。
以下に、実施例により本発明についてさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。
<合成例1> DAAモノマー合成
デヒドロアビエチン酸重合体の合成に用いる1,2-カルボキシデヒドロアビエチン酸(a-1)を、下記合成経路に従って合成した。
デヒドロアビエチン酸重合体の合成に用いる1,2-カルボキシデヒドロアビエチン酸(a-1)を、下記合成経路に従って合成した。
92%デヒドロアビエチン酸(上記化学式(A)、荒川化学工業製)60.0gと塩化メチレン120mlの混合物に、塩化オキサリル26.8gを室温で滴下した。3時間撹拌した後、溶媒を減圧留去し、そこにメタノール32.0gを滴下した。室温で3時間撹拌後、過剰のメタノールを減圧留去し、化合物(B)の白色結晶62.8gを得た。
化合物(B)62.8g、塩化アセチル18.8gおよび塩化メチレン160mlの混合物に無水塩化アルミニウム58.6gを少量ずつ3~5℃で加えた。5~8℃で2時間撹拌した後、反応液を1000gの氷水に注いだ。酢酸エチル400mlを加えて有機層を抽出した。食塩水で洗浄、無水塩化マグネシウムで乾燥した後、溶媒を減圧留去し、残渣に冷メタノール100mlを加えて析出した化合物(C)の白色結晶をろ取した(収量65.6g)。
水酸化ナトリウム64.0gを水200mlに溶かし、そこに臭素51.2gを8~10℃で滴下した。さらに、化合物(C)35.6gをジメトキシエタン200mlに溶かした液を10~12℃で滴下した。室温で2時間攪拌した後、反応液を6N冷希塩酸に注いで酸性とし、析出した白色結晶を濾取した。結晶をメタノールから再結晶して化合物(D)の結晶29.8gを得た。
化合物(D)20.4gに対して10wt%水酸化ナトリウム水100gを加えて攪拌した。その後、反応系を外設130℃にて昇温し、緩やかに還流させた。そのまま3時間攪拌し、反応を薄層クロマトグラフィーにてチェックした後、反応系の温度を室温まで冷却した。冷却した1N塩酸250mLに反応系の内容物をゆっくりと添加し、酸析させた。そのものをヌッチェにてろ取し、水をかけ洗いすることでろ液を中性にした。固体を取り出し、乾燥させることで12-カルボキシデヒドロアビエチン酸(a-1)19.2gを得た。
<合成例2>
化合物(a-1)の結晶13.76gを塩化メチレン160mlに分散し、塩化オキサリル11.18gおよびジメチルホルムアミド0.6mlを加えて5時間加熱還流した。この間結晶は完全に溶解した。放冷後、溶媒を減圧留去し、残渣に酢酸エチル20mlとn-ヘキサン60mlを加え、化合物(a-1)の酸クロリド(a-1’)の白色沈殿を濾取、減圧乾燥した。収量は13gであった。
ジカルボン酸(a-2)を、下記合成経路に従って合成した。
92%デヒドロアビエチン酸(上記化学式(A)、荒川化学工業製)120g、36%ホルマリン20ml及び塩化メチレン200mlの混合物に、10~15℃でトリフルオロ酢酸200mlを滴下した。15~20℃で8時間攪拌した後、塩化メチレンとトリフルオロ酢酸を減圧留去した。残渣に水2lを加え、灰白色結晶を濾過、十分に水洗した。乾燥後、1lの熱n-ヘキサンを加えて1時間攪拌し、放冷後、(a-2)の白色結晶を濾取した。収量は118gであった。
<合成例3>
以下のスキームに従ってポリエステル系重合体(PE-1)を合成した。
以下のスキームに従ってポリエステル系重合体(PE-1)を合成した。
ハイドロキノン2.03g、N,N-ジメチルアミノピリジン7.05gをN,N-ジメチルアセトアミド100mlに溶解させた。系内の温度を10℃まで冷却し、そこに上記で得られたジカルボン酸化合物(a-1)の酸クロリド誘導体(a-1’)10.5gを少量ずつ加えた。反応液は徐々に粘稠となった。室温で8時間撹拌した後、反応液にメタノール1Lを加え、生成したPE-1を濾別、メタノールで洗浄した。得られたものを乾燥後、N,N-ジメチルホルムアミド100mlに加熱溶解し、メタノール1000mlに少量ずつ注いで再沈殿させた。再沈殿物を回収し、乾燥後、PE-1の白色固体10.8gを得た。得られたポリエステル重合体(デヒドロアビエチン酸重合体、PE-1)のGPC測定(溶媒:NMP)による重量平均分子量は95000であった。
合成例1において、ジカルボン酸化合物及びジオール化合物を下記表1に記載した化合物にそれぞれ変更したこと以外は、PE-1の合成例に記載の方法と同様にして、ポリエステル系重合体(PE-2)~(PE-10)を得た。表1におけるガラス転移温度は粉末試料を示差走査熱量計(DSC)によって測定して求めた値である。
表1中、ジカルボン酸化合物、ジオール化合物における括弧内の数字は、ポリエステル系重合体製造時の仕込み量(モル%)を示す。なお、ジカルボン酸化合物、ジオール化合物の総量を100モル%とした。また以下にジカルボン酸化合物、ジオール化合物の構造を示す。
(実施例1・比較例1)
ポリマーPE-1 3gをN-メチルピロリドンに12質量%の濃度で溶解させ、これを濾過精度0.01mmの濾紙(東洋濾紙(株)製、#63)で加圧ろ過しドープを作製した(試験101)。
作製したドープをドクターブレードを用い、クリアランス1.0mmでガラス基板上に流延した。流延後、湿度85%RHの空気に5分間暴露し、その後水浴へ30分流水浸漬した。得られたフィルムを120℃、1Torrで3時間真空乾燥させ多孔フィルムを作製した。膜厚は120μm(0.12mm)であった。得られたフィルム断面を電子顕微鏡で観察した写真を図2に示す。微細な独立孔が形成された多孔膜であることがわかる。
ポリマーPE-1 3gをN-メチルピロリドンに12質量%の濃度で溶解させ、これを濾過精度0.01mmの濾紙(東洋濾紙(株)製、#63)で加圧ろ過しドープを作製した(試験101)。
作製したドープをドクターブレードを用い、クリアランス1.0mmでガラス基板上に流延した。流延後、湿度85%RHの空気に5分間暴露し、その後水浴へ30分流水浸漬した。得られたフィルムを120℃、1Torrで3時間真空乾燥させ多孔フィルムを作製した。膜厚は120μm(0.12mm)であった。得られたフィルム断面を電子顕微鏡で観察した写真を図2に示す。微細な独立孔が形成された多孔膜であることがわかる。
ポリマーPE-1 3gをメチレンクロライド/メタノール(85/15)混合溶媒に12質量%の濃度で溶解させ、これを濾過精度0.01mmの濾紙(東洋濾紙(株)製、#63)で加圧ろ過しドープを作製した(試験102)。
作製したドープをドクターブレードを用い、クリアランス1.0mmでガラス基板上に流延した。流延後、室温で6時間静置し、40℃で30分、100℃で30分加熱乾燥させ、その後140℃、1Torrで1時間真空乾燥させフィルムを作製した。膜厚は90μm(0.09mm)であった。
作製したドープをドクターブレードを用い、クリアランス1.0mmでガラス基板上に流延した。流延後、室温で6時間静置し、40℃で30分、100℃で30分加熱乾燥させ、その後140℃、1Torrで1時間真空乾燥させフィルムを作製した。膜厚は90μm(0.09mm)であった。
ポリマーPE-1を表に記載のポリマーに変えた以外は試験102と同様にしてフィルムを作製した。膜厚は表1に示した。
ポリマーC(セルロースアセテート:L70ダイセル社製)3gをメチレンクロライド/メタノール(85/15)混合溶媒に12質量%の濃度で溶解させ、これを濾過精度0.01mmの濾紙(東洋濾紙(株)製、#63)で加圧ろ過しドープを作製した。
作製したドープをドクターブレードを用い、クリアランス1.0mmでガラス基板上に流延した。流延後、室温で6時間静置し、40℃で30分、100℃で30分加熱乾燥させ、その後140℃、1Torrで1時間真空乾燥させフィルムを作製した(c11)。膜厚は120μm(0.12mm)であった。
作製したドープをドクターブレードを用い、クリアランス1.0mmでガラス基板上に流延した。流延後、室温で6時間静置し、40℃で30分、100℃で30分加熱乾燥させ、その後140℃、1Torrで1時間真空乾燥させフィルムを作製した(c11)。膜厚は120μm(0.12mm)であった。
光反射フィルムである帝人デュポン製の商品名:UXZ1(厚さ0.23mm)を比較例2の反射板とした。UXZ1は、PETに硫酸バリウムを混ぜて二軸延伸したフィルムである(特開2011-25473号公報)(c12)。
光反射フィルムである古河電工の商品名:MCPET(厚さ1.00mm)を比較例3の反射板とした。MCPETはPETにCO2を含浸させて発泡させたフィルムである(特開2009-244749号公報)(c13)。
-評価方法-
実施例及び比較例のフィルム(反射板)について、下記の測定、評価を行った。
(膜厚測定)
得られたフィルムの厚さをデジタルリニアゲージDG-525H(小野測器社製)にて測定した。測定は3箇所行い、その平均値を求めた。
(密度(比重)の測定)
得られたフィルムの密度(比重)を精密比重計AUW120D(SHIMADZU社製)にて25℃で測定した。
(反射率)
反射率は分光光度計(UV-3101C:島津製作所社製)により300~800nm波長域で測定した。なお、標準白色版には硫酸バリウムの微粉末を固めた白板を用いた。
(光沢度の測定)
変角光沢計VG-1001DP(商品名、日本電色工業社製)を用いて、波長400~800nmを含む光を60度(°)入射、60度受光の条件で測定し、光沢度を得た。
(ガラス転移温度(Tg))
得られたフィルムから5mm×22mmの短冊状試験片を切り出し、これを動的粘弾性測定装置Rheogel-E4000(UBM社製)にて、引っ張りモードで温度範囲25℃~350℃の正接損失(tanδ)を測定した。正接損失(tanδ)が極大値を示す温度をガラス転移温度(Tg)とした。その読み取り例として試験101のものを図3に示した。
(熱収縮率の測定)
フィルムサンプル(0.5cm×2.0cm片)を作製し、引張荷重100mNの条件下、TMA(リガク社製、TMA8310)の引張荷重法にて100℃で5時間加熱した場合の寸法変化量を測定し、測定前のサンプル長で除した値をフィルムの寸法変化率とした(なお、いずれも収縮変化(マイナス値)を示したが、絶対値で表記した)。
実施例及び比較例のフィルム(反射板)について、下記の測定、評価を行った。
(膜厚測定)
得られたフィルムの厚さをデジタルリニアゲージDG-525H(小野測器社製)にて測定した。測定は3箇所行い、その平均値を求めた。
(密度(比重)の測定)
得られたフィルムの密度(比重)を精密比重計AUW120D(SHIMADZU社製)にて25℃で測定した。
(反射率)
反射率は分光光度計(UV-3101C:島津製作所社製)により300~800nm波長域で測定した。なお、標準白色版には硫酸バリウムの微粉末を固めた白板を用いた。
(光沢度の測定)
変角光沢計VG-1001DP(商品名、日本電色工業社製)を用いて、波長400~800nmを含む光を60度(°)入射、60度受光の条件で測定し、光沢度を得た。
(ガラス転移温度(Tg))
得られたフィルムから5mm×22mmの短冊状試験片を切り出し、これを動的粘弾性測定装置Rheogel-E4000(UBM社製)にて、引っ張りモードで温度範囲25℃~350℃の正接損失(tanδ)を測定した。正接損失(tanδ)が極大値を示す温度をガラス転移温度(Tg)とした。その読み取り例として試験101のものを図3に示した。
(熱収縮率の測定)
フィルムサンプル(0.5cm×2.0cm片)を作製し、引張荷重100mNの条件下、TMA(リガク社製、TMA8310)の引張荷重法にて100℃で5時間加熱した場合の寸法変化量を測定し、測定前のサンプル長で除した値をフィルムの寸法変化率とした(なお、いずれも収縮変化(マイナス値)を示したが、絶対値で表記した)。
(空隙率)
樹脂の密度をA、多孔フィルムの密度をBとしたとき、空隙率=B/A×100として特定した。
樹脂の密度をA、多孔フィルムの密度をBとしたとき、空隙率=B/A×100として特定した。
(平均孔径)
多孔膜の断面をSEMで観察し、ランダムに20個の空隙を選んでその径を平均した値とした。
多孔膜の断面をSEMで観察し、ランダムに20個の空隙を選んでその径を平均した値とした。
(独立孔の判別)
JIS K 3832、ASTM F316-86に基づく多孔質材料の貫通細孔径評価であるバブルポイント法にて孔径を評価した。測定値が得られない結果をもって貫通孔でない、すなわち独立孔であると判断した。
JIS K 3832、ASTM F316-86に基づく多孔質材料の貫通細孔径評価であるバブルポイント法にて孔径を評価した。測定値が得られない結果をもって貫通孔でない、すなわち独立孔であると判断した。
(熱伝導率)
α=k/ρ・Cp
α:温度拡散率
k :熱伝導率(Js-1m-1K-1)
ρ:密度(kg m-3)
Cp:比熱容量(J kg-1K-1)
温度拡散率はアルバック理工社製Model LaserPITを用いて測定、比熱容量はSII社製DSC6200Sを用いて測定し熱伝導率を算出した。
α=k/ρ・Cp
α:温度拡散率
k :熱伝導率(Js-1m-1K-1)
ρ:密度(kg m-3)
Cp:比熱容量(J kg-1K-1)
温度拡散率はアルバック理工社製Model LaserPITを用いて測定、比熱容量はSII社製DSC6200Sを用いて測定し熱伝導率を算出した。
実施例のフィルムはいずれも独立孔が形成され、高い反射率を有する。しかも熱収縮が少なく、熱伝導率が低いという、優れた耐熱性を有し、しかもガラス転移温度が比較例のものより極めて高いという優れた特性を有する。これらのフィルムはいずれも光源からの熱に耐えることができ、反射率も高いので、反射板として好適であることがわかる。
(実施例2・比較例2)
試験101に用いたPE-1を下表のとおりに変えた以外同様にして、反射率、光沢度、熱収縮率の評価試験を行った。その結果、いずれの試験体においても、「A」の結果が得られ、良好な性能が達成されることが確認された。
<性能評価>
・反射率および光沢度
PE-1の結果を100としたとき
A: 80以上
B: 60以上80未満
C: 60未満
・熱収縮率
PE-1の結果を100としたとき
A: 5倍以下
B: 5倍超 10倍以下
C: 10倍超
試験101に用いたPE-1を下表のとおりに変えた以外同様にして、反射率、光沢度、熱収縮率の評価試験を行った。その結果、いずれの試験体においても、「A」の結果が得られ、良好な性能が達成されることが確認された。
<性能評価>
・反射率および光沢度
PE-1の結果を100としたとき
A: 80以上
B: 60以上80未満
C: 60未満
・熱収縮率
PE-1の結果を100としたとき
A: 5倍以下
B: 5倍超 10倍以下
C: 10倍超
1 反射膜
2 導光板
3 拡散板
4 蛍光ランプ
5 ランプリフレクタ
6 反射板
10 バックライト
51 リフレクタ基材
61 反射基材
2 導光板
3 拡散板
4 蛍光ランプ
5 ランプリフレクタ
6 反射板
10 バックライト
51 リフレクタ基材
61 反射基材
Claims (15)
- デヒドロアビエチン酸に由来する骨格を繰り返し単位に含む特定重合体を含んでなり、内部に空孔を有する多孔膜。
- 前記式A1中、連結基L11が式中2位で示される炭素原子と結合した請求項1~3のいずれか1項に記載の多孔膜。
- 前記式A2中、連結基L23が式中2位及び2’位で示される炭素原子と結合した請求項1~4のいずれか1項に記載の多孔膜。
- 式A1中のL11が、*-L13-CO-**または*-CO-L13-**(*はヒドロフェナントレン環側の結合手を表す。**はその逆の結合手を表す。)で表され、L13が、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、酸素原子、カルボニル基、又は単結合であり、L12がカルボニル基もしくはカルボニルオキシ基である請求項3または4に記載の多孔膜。
- 式A2中のL21及びL22がカルボニル基もしくはカルボニルオキシ基であり、L23が酸素原子、硫黄原子、カルボニル基、スルホニル基、アルキレン基、アルケニレン基、アリーレン基、又は単結合である請求項1~6のいずれか1項に記載の多孔膜。
- さらに、前記特定重合体が、環構造を含むジオール化合物由来の繰り返し単位を含む請求項1~7のいずれか1項に記載の多孔膜。
- 前記共重合成分が環構造を含む請求項1~10のいずれか1項に記載の多硬膜。
- 前記空孔が、平均孔径が0.5μm以上50μm以下の独立孔である請求項1~11のいずれか1項に記載の多孔膜。
- 多孔膜の密度が0.05~0.7g/cm3である請求項1~12のいずれか1項に記載の多孔膜。
- 前記空孔が相分離を利用した溶液キャスト法で製造される請求項1~13のいずれか1項に記載の多孔膜。
- 請求項1~14のいずれか1項に記載の多孔膜を含んでなる反射板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-153350 | 2011-07-11 | ||
JP2011153350A JP2013018874A (ja) | 2011-07-11 | 2011-07-11 | 多孔膜及びこれを用いた反射板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013008801A1 true WO2013008801A1 (ja) | 2013-01-17 |
Family
ID=47506084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067536 WO2013008801A1 (ja) | 2011-07-11 | 2012-07-10 | 多孔膜及びこれを用いた反射板 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013018874A (ja) |
WO (1) | WO2013008801A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117942426A (zh) * | 2024-03-22 | 2024-04-30 | 四川大学 | 一种具有取向孔道结构的多级多孔材料及其制备方法和应用 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5797537B2 (ja) * | 2010-12-21 | 2015-10-21 | 富士フイルム株式会社 | デヒドロアビエチン酸誘導体の位置異性体混合物の製造方法 |
EP3663278A4 (en) * | 2017-05-01 | 2020-12-30 | Arakawa Chemical Industries, Ltd. | DIAMINE COMPOUND, PROCESS FOR THE PRODUCTION OF DIAMINE AND POLYIMIDE COMPOUND |
JP6407458B1 (ja) * | 2018-02-07 | 2018-10-17 | 古河電気工業株式会社 | 照明装置、照明装置の取り付け構造、照明装置からの光取り出し方法及び照明装置の光接続方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010150847A1 (ja) * | 2009-06-25 | 2010-12-29 | 富士フイルム株式会社 | 新規なデヒドロアビエチン酸重合体 |
JP2011074249A (ja) * | 2009-09-30 | 2011-04-14 | Fujifilm Corp | 新規なアビエタン重合体 |
WO2012086655A1 (ja) * | 2010-12-24 | 2012-06-28 | 富士フイルム株式会社 | ポリアミド重合体及びその製造方法、樹脂組成物、成形体、繊維、フィルム並びに多孔フィルム |
-
2011
- 2011-07-11 JP JP2011153350A patent/JP2013018874A/ja not_active Withdrawn
-
2012
- 2012-07-10 WO PCT/JP2012/067536 patent/WO2013008801A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010150847A1 (ja) * | 2009-06-25 | 2010-12-29 | 富士フイルム株式会社 | 新規なデヒドロアビエチン酸重合体 |
JP2011074249A (ja) * | 2009-09-30 | 2011-04-14 | Fujifilm Corp | 新規なアビエタン重合体 |
WO2012086655A1 (ja) * | 2010-12-24 | 2012-06-28 | 富士フイルム株式会社 | ポリアミド重合体及びその製造方法、樹脂組成物、成形体、繊維、フィルム並びに多孔フィルム |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117942426A (zh) * | 2024-03-22 | 2024-04-30 | 四川大学 | 一种具有取向孔道结构的多级多孔材料及其制备方法和应用 |
CN117942426B (zh) * | 2024-03-22 | 2024-05-31 | 四川大学 | 一种具有取向孔道结构的多级多孔材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP2013018874A (ja) | 2013-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5714442B2 (ja) | ポリアミド重合体及びその製造方法、樹脂組成物、成形体、繊維、フィルム並びに多孔フィルム | |
TWI293312B (en) | Thermoplastic norbornene resin based optical film and the production process and use thereof | |
JP4797997B2 (ja) | 位相差フィルム、液晶パネル及び画像表示機器 | |
WO2013008801A1 (ja) | 多孔膜及びこれを用いた反射板 | |
JP4945898B2 (ja) | ポリアミドフィルムおよびそれを用いた光学用部材 | |
KR102160496B1 (ko) | 열안정성 저복굴절 코폴리이미드 필름 | |
JP5055279B2 (ja) | 芳香族ポリエステルおよびその製造法 | |
KR20180073610A (ko) | 폴리이미드 전구체, 가교 구조를 갖는 폴리이미드 및 그의 제조 방법 | |
KR102261850B1 (ko) | 폴리아미드 수지, 이의 제조방법, 및 이를 포함하는 폴리아미드 필름 및 수지 적층체 | |
Chamkure et al. | New organosoluble polyarylates containing pendent fluorene units: synthesis, characterization and thermal behaviour | |
JP5028901B2 (ja) | 環状オレフィン系樹脂組成物、該組成物を用いた光学フィルムおよび位相差板ならびにそれらの製造方法 | |
JP2008274271A (ja) | ビスフェニルフルオレンジカルボン酸系化合物及びポリエステル樹脂、並びにこのポリエステル樹脂を用いた位相差フィルム、液晶パネル及び画像表示機器 | |
JP5689444B2 (ja) | 透明絶縁積層体及びこれを用いたプリント基板 | |
JP4928347B2 (ja) | ポリイミド、ポリイミドワニス、光学補償フィルム及びポリイミド、光学補償フィルムの製造方法。 | |
KR101194617B1 (ko) | 복굴절 필름 및 편광 소자 | |
JP2009215447A (ja) | ポリエーテル、及びその製造方法、並びに光学素子 | |
JPWO2013094461A1 (ja) | ポリエステル樹脂発泡体、それを用いた光反射材、およびポリエステル樹脂発泡体の製造方法 | |
CN113950500B (zh) | 热塑性树脂、由其构成的光学膜、二醇化合物、二酯化合物 | |
JP2014017464A (ja) | プリント基板用積層体 | |
JP2019214657A (ja) | 透明ポリイミドワニス及びフィルム | |
JP2014185244A (ja) | 耐紫外線性ポリエステルフィルム | |
JP2018028036A (ja) | ポリエステル樹脂とその製造方法並びにその用途 | |
JP2010031207A (ja) | 共重合ポリエステル樹脂組成物およびそれからなる二軸配向フィルム | |
Ma et al. | Biobased Thiol-ene Networks with High Optical Transparency and Abbe Number Derived from Citric Acid | |
JP5217150B2 (ja) | 樹脂組成物およびその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12811442 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12811442 Country of ref document: EP Kind code of ref document: A1 |