Nothing Special   »   [go: up one dir, main page]

WO2013005618A1 - 冷延鋼板 - Google Patents

冷延鋼板 Download PDF

Info

Publication number
WO2013005618A1
WO2013005618A1 PCT/JP2012/066380 JP2012066380W WO2013005618A1 WO 2013005618 A1 WO2013005618 A1 WO 2013005618A1 JP 2012066380 W JP2012066380 W JP 2012066380W WO 2013005618 A1 WO2013005618 A1 WO 2013005618A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
cold
rolled steel
phase
Prior art date
Application number
PCT/JP2012/066380
Other languages
English (en)
French (fr)
Inventor
純 芳賀
西尾 拓也
脇田 昌幸
泰明 田中
今井 規雄
富田 俊郎
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47436973&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013005618(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2011150239A external-priority patent/JP5708318B2/ja
Priority claimed from JP2011150240A external-priority patent/JP5708319B2/ja
Priority claimed from JP2011150245A external-priority patent/JP5708320B2/ja
Priority to KR1020147003047A priority Critical patent/KR101597058B1/ko
Priority to ES12808030.6T priority patent/ES2665318T3/es
Priority to PL12808030T priority patent/PL2730672T3/pl
Priority to EP12808030.6A priority patent/EP2730672B1/en
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112014000063A priority patent/BR112014000063A2/pt
Priority to CN201280043477.7A priority patent/CN103781932B/zh
Priority to IN268DEN2014 priority patent/IN2014DN00268A/en
Priority to US14/130,552 priority patent/US9523139B2/en
Priority to MX2014000117A priority patent/MX356410B/es
Priority to RU2014104025/02A priority patent/RU2560479C1/ru
Priority to CA2841061A priority patent/CA2841061C/en
Publication of WO2013005618A1 publication Critical patent/WO2013005618A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a cold-rolled steel sheet. More specifically, the present invention relates to a high-tensile cold-rolled steel sheet that is excellent in ductility, work hardenability, and stretch flangeability.
  • Patent Document 1 discloses a method for producing an ultrafine-grained high-strength hot-rolled steel sheet that performs rolling with a total rolling reduction of 80% or more in a temperature range near the Ar 3 point in a hot rolling process.
  • Patent Document 2 discloses a method for producing ultrafine ferritic steel in which rolling at a reduction rate of 40% or more is continuously performed in a hot rolling process.
  • Patent Document 3 discloses a method for producing a hot-rolled steel sheet having ultrafine grains, in which a reduction in a dynamic recrystallization region is performed in a reduction pass of 5 stands or more in a hot rolling process.
  • a reduction in a dynamic recrystallization region is performed in a reduction pass of 5 stands or more in a hot rolling process.
  • it is necessary to extremely reduce the temperature drop during hot rolling, and it is difficult to carry out with normal hot rolling equipment.
  • the balance of tensile strength and hole expansibility (stretch flangeability) is bad, and press formability is inadequate.
  • Patent Document 4 residual austenite having an average crystal grain size of 5 ⁇ m or less is dispersed in ferrite having an average crystal grain size of 10 ⁇ m or less.
  • An excellent high strength cold rolled steel sheet for automobiles is disclosed.
  • a steel sheet containing retained austenite in the metal structure exhibits a large elongation due to transformation-induced plasticity (TRIP) generated by austenite becoming martensite during processing, but the hole expandability is impaired due to the formation of hard martensite.
  • TRIP transformation-induced plasticity
  • ductility and hole expandability are improved by refining ferrite and retained austenite, but the hole expansion ratio is 1.5 at most, and sufficient press It is hard to say that it has moldability.
  • the main phase needs to be a soft ferrite phase, and it is difficult to obtain a high tensile strength.
  • Patent Document 5 discloses a high-strength steel sheet excellent in elongation and stretch flangeability in which a second phase composed of retained austenite and / or martensite is finely dispersed in crystal grains.
  • a second phase composed of retained austenite and / or martensite is finely dispersed in crystal grains.
  • it is necessary to contain a large amount of expensive elements such as Cu and Ni, and to perform a solution treatment for a long time at a high temperature. There is a marked increase in cost and productivity.
  • Patent Document 6 discloses a high-tensile melt excellent in ductility, stretch flangeability, and fatigue resistance, in which retained austenite and low-temperature transformation product phase are dispersed in ferrite and tempered martensite having an average crystal grain size of 10 ⁇ m or less.
  • a galvanized steel sheet is disclosed.
  • Tempered martensite is an effective phase for improving stretch flangeability and fatigue resistance, and it is said that these properties will be further improved if tempered martensite is refined.
  • primary annealing for generating martensite and secondary annealing for tempering martensite and further obtaining retained austenite are required. It is greatly damaged.
  • Patent Document 7 discloses that in a fine ferrite, which is rapidly cooled to 720 ° C. or less immediately after hot rolling, kept in a temperature range of 600 to 720 ° C. for 2 seconds or more, and subjected to cold rolling and annealing on the obtained hot rolled steel sheet. Discloses a method for producing a cold-rolled steel sheet in which retained austenite is dispersed.
  • the technique disclosed in the above-mentioned patent document 7 does not release the processing strain accumulated in the austenite after the hot rolling is finished, and a fine grain structure is formed by transforming ferrite using the processing strain as a driving force. And it is excellent in that a cold-rolled steel sheet with improved thermal stability can be obtained.
  • an object of the present invention is to provide a high-tensile cold-rolled steel sheet having excellent ductility, work-hardening properties, and stretch flangeability and having a tensile strength of 780 MPa or more.
  • a series of test steels are in mass%, C: more than 0.020% and less than 0.30%, Si: more than 0.10% and less than 3.00%, Mn: more than 1.00% and less than 3.50%, It had a chemical composition containing P: 0.10% or less, S: 0.010% or less, sol. Al: 2.00% or less, and N: 0.010% or less.
  • a slab having such a chemical composition is heated to 1200 ° C., then hot-rolled to a thickness of 2.0 mm in various reduction patterns in a temperature range of Ar 3 or higher, and after hot rolling, various cooling conditions are applied. After cooling to a temperature range of 720 ° C. or less, air-cooled for 5 to 10 seconds, and then cooled to various temperatures at a cooling rate of 90 ° C./s or less. Then, after charging in an electric heating furnace and holding for 30 minutes, the furnace was cooled at a cooling rate of 20 ° C./h to simulate slow cooling after winding. The hot-rolled steel sheet thus obtained was pickled and cold-rolled to a sheet thickness of 1.0 mm at a rolling rate of 50%. The obtained cold-rolled steel sheet was heated to various temperatures using a continuous annealing simulator, held for 95 seconds, and then cooled to obtain an annealed steel sheet.
  • Samples for structure observation were collected from hot-rolled steel sheets and annealed steel sheets, and 1 ⁇ 4 of the plate thickness from the steel sheet surface using a scanning electron microscope (SEM) equipped with an optical microscope and an electron beam backscattering pattern analyzer (EBSP). While observing the metal structure at the depth position, the volume fraction of retained austenite at the 1/4 depth position from the steel sheet surface of the annealed steel sheet was measured using an X-ray diffractometer (XRD).
  • SEM scanning electron microscope
  • EBSP electron beam backscattering pattern analyzer
  • a tensile test piece is taken from the annealed steel sheet along the direction perpendicular to the rolling direction, a tensile test is performed, the ductility is evaluated by total elongation, and the work hardening index is a work hardening index (5-10% strain range). n value).
  • a 100 mm square hole expansion test piece was sampled from the annealed steel sheet and subjected to a hole expansion test to evaluate stretch flangeability. In the hole expansion test, a punching hole having a diameter of 10 mm with a clearance of 12.5% is formed, and the punching hole is expanded with a conical punch having a tip angle of 60 °. (Expansion rate) was measured.
  • (A) A hot-rolled steel sheet manufactured through a so-called immediate quenching process in which water quenching is performed immediately after hot rolling, specifically, quenching to a temperature range of 720 ° C. or less within 0.40 seconds after completion of hot rolling.
  • the hot-rolled steel sheet manufactured by cold-rolling and annealing is performed, the ductility and stretch flangeability of the annealed steel sheet improve with the increase in the annealing temperature, but if the annealing temperature is too high, the austenite grains become coarse, The ductility and stretch flangeability of an annealed steel sheet may deteriorate rapidly.
  • the fine low-temperature transformation phase is the main phase, and the second phase contains fine residual austenite and possibly fine polygonal ferrite. A metallic structure is obtained.
  • FIG. 1 shows that the final reduction amount is 42% in terms of sheet thickness reduction rate, the rolling completion temperature is 900 ° C., the quenching stop temperature is 660 ° C., and the time from the completion of rolling to the quenching stop is 0.16 seconds.
  • FIG. 2 shows the grain size distribution of residual austenite in an annealed steel sheet obtained by hot rolling a slab having the same chemical composition by a conventional method without immediately quenching, cold rolling and annealing.
  • FIGS. 1 and 2 It is a graph which shows a result. From the comparison of FIGS. 1 and 2, in the annealed steel sheet (FIG. 1) manufactured through an appropriate immediate quenching process, the formation of coarse retained austenite grains having a grain size of 1.2 ⁇ m or more is suppressed, and the retained austenite becomes finer. It can be seen that they are dispersed.
  • FIG. 3 is a graph showing the relationship between TS 1.7 ⁇ ⁇ and the number density (N R ) of coarse retained austenite having a particle size of 1.2 ⁇ m or more.
  • TS is the tensile strength
  • is the hole expansion rate
  • TS 1.7 ⁇ ⁇ is an index for evaluating the hole expansion property from the balance between the strength and the hole expansion rate.
  • N R number density
  • FIG. 4 is a graph showing the relationship between the TS ⁇ n value and N R.
  • the TS ⁇ n value is an index for evaluating work hardening from the balance between strength and work hardening index. As shown in the figure, the TS ⁇ n value has a correlation with N R, and it can be seen that the lower the N R , the better the work hardenability. The reason for this is not clear, but (a) coarse residual austenite grains are martensitic at the initial stage of processing when the strain is less than 5%, and therefore the increase of the n value is almost not observed when the strain range is 5 to 10%. This is presumably due to the fact that no contribution is made and (b) when the formation of coarse residual austenite grains is suppressed, fine residual austenite grains that become martensite in a high strain region of 5% or more increase.
  • the main phase is a low-temperature transformation generation phase
  • the second phase contains residual austenite and preferably polygonal ferrite, and there are few coarse austenite grains having a particle size of 1.2 ⁇ m or more. It was found that a cold-rolled steel sheet having a metal structure with fine bcc grains and excellent ductility, work hardening characteristics and stretch flangeability can be produced.
  • the present invention is by mass%, C: more than 0.020% and less than 0.30%, Si: more than 0.10% and less than 3.00%, Mn: more than 1.00% and less than 3.50%, P: 0 .10% or less, S: 0.010% or less, sol.Al: 0% or more and 2.00% or less, N: 0.010% or less, Ti: 0% or more and less than 0.050%, Nb: 0% or more Less than 0.050%, V: 0% or more and 0.50% or less, Cr: 0% or more and 1.0% or less, Mo: 0% or more and 0.50% or less, B: 0% or more and 0.010% or less, Ca: 0% or more and 0.010% or less, Mg: 0% or more and 0.010% or less, REM: 0% or more and 0.050% or less, Bi: 0% or more and 0.050% or less, and the balance is Fe and impurities
  • a cold-rolled steel sheet having a chemical composition comprising: a main phase
  • the metal structure of the cold rolled steel sheet according to the present invention preferably satisfies one or both of the following:
  • the average grain size of grains having a bcc structure and grains having a bct structure surrounded by grain boundaries having an orientation difference of 15 ° or more is 7.0 ⁇ m or less;
  • the second phase contains retained austenite and polygonal ferrite, and the polygonal ferrite has a volume ratio of more than 2.0% to less than 27.0% and an average particle size of less than 5.0 ⁇ m with respect to the entire structure.
  • the chemical composition further contains at least one of the following elements (% is% by mass): One or two selected from the group consisting of Ti: 0.005% or more and less than 0.050%, Nb: 0.005% or more and less than 0.050% and V: 0.010% or more and 0.50% or less And / or selected from the group consisting of Cr: 0.20% to 1.0%, Mo: 0.05% to 0.50% and B: 0.0010% to 0.010%.
  • Bi One or more selected from the group consisting of 0.0010% or more and 0.050% or less.
  • the present invention greatly contributes to industrial development, such as being able to contribute to solving global environmental problems through weight reduction of automobile bodies.
  • the metallographic structure, chemical composition, and rolling and annealing conditions in a production method capable of producing the steel sheet efficiently, stably and economically will be described in detail below.
  • the main phase is a low-temperature transformation generation phase
  • the second phase contains retained austenite and preferably polygonal ferrite, and the retained austenite has a volume ratio of 4.0 to the entire structure.
  • the average particle size is less than 0.80 ⁇ m, and among the retained austenite, the number density of the remaining austenite grains having a particle size of 1.2 ⁇ m or more is 3.0 ⁇ 10 ⁇ 2 / ⁇ m 2 or less, preferably if the average particle diameter of the particle having a particle and bct structure having a bcc structure surrounded by misorientation 15 ° or more of the grain boundaries is not more than 7.0 .mu.m, and / or the polygonal ferrite Has a metal structure having a volume ratio of more than 2.0% to less than 27.0% and an average particle size of less than 5.0 ⁇ m.
  • the main phase means a phase or structure having the largest volume ratio
  • the second phase means a phase and structure other than the main phase
  • the low temperature transformation generation phase refers to a phase and structure generated by low temperature transformation such as martensite and bainite.
  • low-temperature transformation generation phases other than these include bainitic ferrite and tempered martensite.
  • Bainitic ferrite is distinguished from polygonal ferrite in that it has a lath or plate-like form and a high dislocation density, and is distinguished from bainite in that there is no iron carbide inside and at the interface.
  • This low temperature transformation generation phase may contain two or more phases and structures, for example, martensite and bainitic ferrite.
  • the low temperature transformation product phase includes two or more phases and structures, the sum of the volume fractions of these phases and tissues is defined as the volume fraction of the low temperature transformation product phase.
  • the bcc phase is a phase having a body-centered cubic (bcc lattice, body-centered cubic) type crystal structure, and examples thereof include polygonal ferrite, bainitic ferrite, bainite, and tempered martensite.
  • the bct phase is a phase having a crystal structure of a body-centered square lattice (bct, body-centeredcentertetragonal lattice) type, and is exemplified by martensite.
  • a grain having a bcc structure is a region surrounded by a boundary having an orientation difference of 15 ° or more in the bcc phase.
  • a grain having a bct structure is a region surrounded by a boundary having an orientation difference of 15 ° or more in the bct phase.
  • the bcc phase and the bct phase are collectively referred to as a bcc phase. This is because, as will be described later, in the metal structure evaluation by EBSP, the lattice constant is not considered, and the bcc phase and the bct phase are detected without being distinguished.
  • the reason why the main phase is a low-temperature transformation generation phase and the second phase is a structure containing residual austenite is that it is suitable for improving ductility, work hardenability and stretch flangeability while maintaining tensile strength. . If the main phase is polygonal ferrite that is not a low-temperature transformation generation phase, it is difficult to ensure tensile strength and stretch flangeability.
  • the volume ratio of the retained austenite with respect to the entire structure is more than 4.0% and less than 25.0%. If the volume ratio of the retained austenite to the entire structure is 4.0% or less, the ductility becomes insufficient. Therefore, the volume ratio of the retained austenite with respect to the whole structure
  • tissue shall be over 4.0%. It is preferably more than 6.0%, more preferably more than 9.0%, particularly preferably more than 12.0%. On the other hand, when the volume ratio of the retained austenite with respect to the entire structure is 25.0% or more, the stretch flangeability is significantly deteriorated. Accordingly, the volume ratio of the retained austenite with respect to the entire structure is set to less than 25.0%. Preferably it is less than 18.0%, more preferably less than 16.0%, particularly preferably less than 14.0%.
  • the average particle size of retained austenite is less than 0.80 ⁇ m. In a cold-rolled steel sheet having a metal structure containing a low-temperature transformation generation phase and a secondary austenite in the second phase, if the average grain size of the residual austenite is 0.80 ⁇ m or more, ductility, work hardenability and stretch flangeability Deteriorates significantly.
  • the average particle size of retained austenite is preferably less than 0.70 ⁇ m, and more preferably less than 0.60 ⁇ m.
  • the lower limit of the average particle size of the retained austenite is not particularly limited, but in order to make it finer to 0.15 ⁇ m or less, it is necessary to make the final reduction amount of hot rolling very high, and the production load is remarkably increased. Therefore, the lower limit of the average particle size of retained austenite is preferably more than 0.15 ⁇ m.
  • the particle size is 1.2 ⁇ m or more even if the average particle size of the residual austenite is less than 0.80 ⁇ m. If there are many coarse residual austenite grains, work hardening and stretch flangeability are impaired. Therefore, the number density of residual austenite grains having a grain size of 1.2 ⁇ m or more is set to 3.0 ⁇ 10 ⁇ 2 particles / ⁇ m 2 or less.
  • the number density of residual austenite grains having a particle size of 1.2 ⁇ m or more is preferably 2.0 ⁇ 10 ⁇ 2 particles / ⁇ m 2 or less, and more preferably 1.5 ⁇ 10 ⁇ 2 particles / ⁇ m 2 or less. 1.0 ⁇ 10 ⁇ 2 pieces / ⁇ m 2 or less is most preferable.
  • the second phase preferably contains polygonal ferrite in addition to retained austenite.
  • the volume ratio of the polygonal ferrite to the entire structure is preferably more than 2.0%. More preferably, it is more than 8.0%, particularly preferably more than 13.0%.
  • the volume fraction of polygonal ferrite is preferably less than 27.0%. More preferably, it is less than 24.0%, particularly preferably less than 18.0%.
  • the average particle diameter of the polygonal ferrite is preferably less than 5.0 ⁇ m. More preferably, it is less than 4.0 micrometers, Most preferably, it is less than 3.0 micrometers.
  • the volume ratio of tempered martensite contained in the low-temperature transformation generation phase is preferably less than 50.0% with respect to the entire structure. More preferably, it is less than 35.0%, particularly preferably less than 10.0%.
  • the low-temperature transformation generation phase preferably contains martensite.
  • the volume ratio of the martensite to the entire structure is preferably more than 4.0%. More preferably, it is more than 6.0%, particularly preferably more than 10.0%.
  • the volume ratio of martensite in the whole structure is less than 15.0%.
  • bcc grains In order to further improve ductility, work hardenability and stretch flangeability, bcc grains (as described above, bcc grains have bcc structures and bct structures surrounded by grain boundaries having an orientation difference of 15 ° or more.
  • the average particle size) is preferably 7.0 ⁇ m or less.
  • the average particle size of the bcc particles is more preferably 6.0 ⁇ m or less, and particularly preferably 5.0 ⁇ m or less.
  • the metal structure of the cold rolled steel sheet according to the present invention is measured as follows. That is, the volume ratio of the low-temperature transformation generation phase and polygonal ferrite is obtained by taking a test piece from a steel plate, polishing a longitudinal section parallel to the rolling direction, and subjecting it to a corrosion treatment with nital. The metal structure is observed using the SEM at the depth position, and the area ratios of the low-temperature transformation generation phase and the polygonal ferrite are measured by image processing, and the respective volume ratios are obtained assuming that the area ratio is equal to the volume ratio.
  • the average particle diameter of polygonal ferrite is determined by dividing the area occupied by the entire polygonal ferrite in the field of view by the number of crystal grains of polygonal ferrite, and obtaining the equivalent circle diameter.
  • the volume ratio of retained austenite is obtained by collecting a test piece from a steel plate, chemically polishing the rolled surface from the steel plate surface to a 1/4 depth position of the plate thickness, and measuring the X-ray diffraction intensity using XRD.
  • the particle size of retained austenite grains and the average particle size of retained austenite are measured as follows. That is, a test piece is taken from a steel plate, a longitudinal section parallel to the rolling direction is electropolished, and the metal structure is observed using an SEM equipped with EBSP at a position of a depth of the plate thickness from the steel plate surface. The region surrounded by the parent phase is observed as a phase composed of a face-centered cubic type crystal structure (fcc phase), and the number density (per unit area) of the remaining austenite grains is obtained by image processing. The number of grains) and the area ratio of the individual retained austenite grains. The circle equivalent diameter of each austenite grain is determined from the area occupied by each retained austenite grain in the field of view, and the average value thereof is taken as the average grain size of the retained austenite.
  • a phase is determined by irradiating an electron beam in increments of 0.1 ⁇ m in an area of 50 ⁇ m or more in the plate thickness direction and 100 ⁇ m or more in the rolling direction.
  • those having a reliability index (Confidence Index) of 0.1 or more are used as effective data for the particle size measurement.
  • the average grain size is calculated using only the retained austenite grains having an equivalent circle diameter of 0.15 ⁇ m or more as effective grains.
  • the average particle diameter of bcc grains is measured as follows. That is, a test piece is taken from a steel plate, a longitudinal section parallel to the rolling direction is electropolished, and the metal structure is observed using an SEM equipped with EBSP at a position of a depth of the plate thickness from the steel plate surface. A region observed as a bcc phase and surrounded by a boundary having an orientation difference of 15 ° or more is defined as one bcc grain, and a value calculated according to the definition of the following formula (1) is defined as an average particle diameter of the bcc grain.
  • N is the crystal grain numbers subsumed average particle size evaluation area
  • d i is the i th grain circle
  • Each equivalent diameter is shown.
  • grains having a bcc structure and grains having a bct structure are treated as a unit. Since the lattice constant is not considered in the metal structure evaluation by EBSP, grains having a bcc structure (for example, polygonal ferrite, bainitic ferrite, bainite, tempered martensite) and grains having a bct structure (for example, martensite). ) Is difficult to distinguish.
  • the phase is determined by irradiating the electron beam in increments of 0.1 ⁇ m in a region having a size of 50 ⁇ m in the plate thickness direction and 100 ⁇ m in the rolling direction in the same manner as described above.
  • those having a reliability index of 0.1 or more are used for the particle size measurement as effective data.
  • the evaluation of the bcc phase unlike the above-described case of retained austenite, only the bcc particles having a particle size of 0.47 ⁇ m or more are used as effective particles. Perform the calculation.
  • the influence of coarse grains may be underestimated when evaluated by a cutting method generally used for evaluating the crystal grain size of metal structures. is there.
  • the above formula (1) is used in which the area of each crystal grain is multiplied by a weight.
  • the thickness of the steel sheet is 1 ⁇ 4 depth position from the surface of the steel sheet.
  • the thickness of the steel sheet as the base material is 1 In the / 4 depth position, the above-mentioned metal structure is defined.
  • the cold-rolled steel sheet according to the present invention has a tensile strength (TS) of 780 MPa or more in a direction orthogonal to the rolling direction in order to ensure shock absorption. It is preferable that it is 950 MPa or more. On the other hand, in order to ensure ductility, the TS is preferably less than 1180 MPa.
  • El is a value obtained by converting the total elongation (El 0 ) in the direction perpendicular to the rolling direction into a total elongation equivalent to a plate thickness of 1.2 mm based on the following formula (1), Japan Industrial Standard JIS In accordance with Z2253, the strain range is 5 to 10%, and the n value is a work hardening index calculated by using two nominal strains of 5% and 10% and the corresponding test forces, and the Japan Iron and Steel Federation Standard For ⁇ , which is the hole expansion rate measured according to JFST1001, -The value of TS x El is 19000 MPa% or more, especially 20000 MPa or more, The value of TS ⁇ n value is 160 MPa or more, particularly 165 MPa or more, and the value of TS 1.7 ⁇ ⁇ is 5500000 MPa 1.7 % or more, especially 6000000 MPa 1.7 % or more, It is preferable that
  • El El 0 ⁇ (1.2 / t 0 ) 0.2 (2)
  • El 0 in the formula represents an actual value of total elongation measured using a JIS No. 5 tensile test piece
  • t 0 represents a plate thickness of the JIS No. 5 tensile test piece subjected to the measurement
  • El represents a plate. This is a converted value of total elongation corresponding to the case where the thickness is 1.2 mm.
  • the work hardening index is expressed as an n value with respect to a strain range of 5 to 10% in a tensile test because a strain generated when press molding an automobile part is about 5 to 10%. Even if the total elongation of the steel sheet is high, if the n value is low, the strain propagation property becomes insufficient in press forming of automobile parts, and forming defects such as local reduction of the plate thickness are likely to occur. Further, from the viewpoint of shape freezing property, the yield ratio is preferably less than 80%, more preferably less than 75%, and particularly preferably less than 70%.
  • Chemical composition of steel C more than 0.020% and less than 0.30%
  • the C content is more than 0.020%.
  • it is more than 0.070%, more preferably more than 0.10%, particularly preferably more than 0.14%.
  • the C content is less than 0.30%.
  • it is less than 0.25%, more preferably less than 0.20%, particularly preferably less than 0.17%.
  • Si more than 0.10% and not more than 3.00% Si has an effect of improving ductility, work hardenability and stretch flangeability through suppression of austenite grain growth during annealing. Moreover, it is an element which has the effect
  • the Si content is more than 0.10%. It is preferably more than 0.60%, more preferably more than 0.90%, particularly preferably more than 1.20%.
  • the Si content exceeds 3.00%, the surface properties of the steel sheet deteriorate. Furthermore, chemical conversion property and plating property are remarkably deteriorated. Therefore, the Si content is 3.00% or less. Preferably it is less than 2.00%, more preferably less than 1.80%, and particularly preferably less than 1.60%.
  • the Si content and the sol.Al content preferably satisfy the following formula (3), more preferably satisfy the following formula (4), and satisfy the following formula (5). Particularly preferred.
  • Si in the formula represents the Si content in steel, and sol.Al represents the acid-soluble Al content in mass%.
  • Mn more than 1.00% and not more than 3.50% Mn has an effect of improving the hardenability of steel and is an effective element for obtaining the above metal structure. If the Mn content is 1.00% or less, it is difficult to obtain the above metal structure. Therefore, the Mn content is more than 1.00%. Preferably it is more than 1.50%, more preferably more than 1.80%, particularly preferably more than 2.10%. When the Mn content is excessive, in the metal structure of the hot-rolled steel sheet, a coarse low-temperature transformation generation phase stretched in the rolling direction occurs, and coarse residual austenite grains increase in the metal structure after cold rolling and annealing, Work hardenability and stretch flangeability deteriorate. Therefore, the Mn content is 3.50% or less. Preferably it is less than 3.00%, more preferably less than 2.80%, particularly preferably less than 2.60%.
  • P 0.10% or less
  • P is an element contained in the steel as an impurity, and segregates at the grain boundaries to embrittle the steel. For this reason, the smaller the P content, the better. Therefore, the P content is 0.10% or less. Preferably it is less than 0.050%, more preferably less than 0.020%, particularly preferably less than 0.015%.
  • S 0.010% or less
  • S is an element contained in steel as an impurity, and forms sulfide inclusions to deteriorate stretch flangeability. For this reason, the smaller the S content, the better. Therefore, the S content is set to 0.010% or less. Preferably it is less than 0.005%, more preferably less than 0.003%, particularly preferably less than 0.002%.
  • sol.Al 2.00% or less
  • Al has an action of deoxidizing molten steel.
  • Si having a deoxidizing action is contained in the same manner as Al
  • Al is not necessarily contained. That is, it may be as close to 0% as possible.
  • a more preferable sol.Al content is more than 0.020%.
  • Al like Si, has the effect of increasing the stability of austenite and is an effective element for obtaining the above metal structure. Therefore, Al can be contained for this purpose.
  • the sol.Al content is preferably more than 0.040%, more preferably more than 0.050%, particularly preferably more than 0.060%.
  • the sol.Al content is 2.00% or less. Preferably it is less than 0.60%, more preferably less than 0.20%, particularly preferably less than 0.10%.
  • N 0.010% or less N is an element contained in steel as an impurity, and deteriorates ductility. For this reason, the smaller the N content, the better. Therefore, the N content is set to 0.010% or less. Preferably it is 0.006% or less, More preferably, it is 0.005% or less.
  • the steel plate according to the present invention may contain the elements listed below as optional elements.
  • One or more selected from the group consisting of Ti: less than 0.050%, Nb: less than 0.050% and V: 0.50% or less Ti, Nb and V are recrystallized in the hot rolling process.
  • Ti less than 0.050%
  • Nb less than 0.050%
  • V 0.50% or less Ti
  • Nb and V are recrystallized in the hot rolling process
  • the recrystallization temperature during annealing increases, the metal structure after annealing becomes non-uniform, and stretch flangeability is also impaired. Furthermore, the precipitation amount of carbide or nitride increases, the yield ratio increases, and the shape freezing property also deteriorates.
  • the Ti content is less than 0.050%, the Nb content is less than 0.050%, and the V content is 0.50% or less.
  • the Ti content is preferably less than 0.040%, more preferably less than 0.030%, the Nb content is preferably less than 0.040%, more preferably less than 0.030%, and the V content is Preferably it is 0.30% or less, More preferably, it is less than 0.050%.
  • the Ti content is more preferably 0.010% or more, and when Nb is contained, the Nb content is more preferably 0.010% or more, and V is When contained, the V content is more preferably set to 0.020% or more.
  • Cr 1.0% or less
  • Mo 0.50% or less
  • B 0.010% or less Cr
  • Mo and B improve the hardenability of steel. It is an element effective in obtaining the above metal structure. Therefore, you may contain 1 type, or 2 or more types of these elements. However, even if it contains excessively, the effect by the said effect
  • the Cr content is preferably 0.50% or less, the Mo content is preferably 0.20% or less, and the B content is preferably 0.0003% or less. In order to more reliably obtain the effect of the above action, it is preferable to satisfy any of Cr: 0.20% or more, Mo: 0.05% or more, and B: 0.0010% or more.
  • Ca, Mg and REM are selected from the group consisting of Ca: 0.010% or less, Mg: 0.010% or less, REM: 0.050% or less, and Bi: 0.050% or less.
  • Bi has the effect of improving stretch flangeability by refining the solidified structure. Therefore, you may contain 1 type, or 2 or more types of these elements. However, even if it contains excessively, the effect by the said effect
  • the Ca content is 0.010% or less, the Mg content is 0.010% or less, the REM content is 0.050% or less, and the Bi content is 0.050% or less.
  • the Ca content is 0.0001% or less, the Mg content is 0.000020% or less, the REM content is 0.000020% or less, and the Bi content is 0.010% or less.
  • REM means a rare earth element and is a generic name for a total of 17 elements of Sc, Y and lanthanoid, and the REM content is the total content of these elements.
  • the steel having the above-mentioned chemical composition is melted by a known means and then made into a steel ingot by a continuous casting method, or a method of rolling into pieces after making it into an ingot by any casting method, etc. It is made into a billet.
  • an external additional flow such as electromagnetic stirring in the molten steel in the mold.
  • the steel ingot or steel slab may be reheated once it has been cooled and subjected to hot rolling.
  • the steel ingot in the high temperature state after continuous casting or the steel slab in the high temperature state after partial rolling is used as it is. Alternatively, it may be kept hot or subjected to auxiliary heating for hot rolling.
  • such steel ingots and steel slabs are collectively referred to as “slabs” as materials for hot rolling.
  • the temperature of the slab to be subjected to hot rolling is preferably less than 1250 ° C. and more preferably 1200 ° C. or less in order to prevent coarsening of austenite.
  • the lower limit of the temperature of the slab to be subjected to hot rolling is not particularly limited as long as it is a temperature at which hot rolling can be completed at an Ar 3 point or higher as described later.
  • Hot rolling is completed in a temperature range of Ar 3 or higher in order to refine the metal structure of the hot-rolled steel sheet by transforming austenite after completion of rolling. If the rolling completion temperature is too low, a coarse low-temperature transformation phase that extends in the rolling direction occurs in the metal structure of the hot-rolled steel sheet, and coarse residual austenite grains increase in the metal structure after cold rolling and annealing. Further, work hardenability and stretch flangeability are liable to deteriorate. Therefore, completion temperature of hot rolling is preferably not less than the Ar 3 point and 820 ° C. greater. More preferably, it is Ar 3 point or higher and higher than 850 ° C., and particularly preferably Ar 3 point or higher and higher than 880 ° C.
  • the completion temperature of hot rolling is less than 950 degreeC, and it is further more preferable in it being less than 920 degreeC.
  • the hot rolling completion temperature is not less than Ar 3 point and more than 780 ° C., more preferably not less than Ar 3 point and more than 800 ° C.
  • the heating method of the rough rolled material may be performed using known means.
  • a solenoid induction heating device is provided between the rough rolling mill and the finish rolling mill, and the heating temperature rise is controlled based on the temperature distribution in the longitudinal direction of the rough rolled material on the upstream side of the induction heating device. May be.
  • the rolling reduction of the hot rolling is such that the rolling reduction of the final pass is more than 25% in terms of sheet thickness reduction rate. This increases the amount of processing strain introduced into the austenite, refines the metal structure of the hot-rolled steel sheet, suppresses the formation of coarse retained austenite grains in the metal structure after cold rolling and annealing, and fines the bcc grains. This is because of Further, when the second phase contains polygonal ferrite, the polygonal ferrite is made finer.
  • the amount of reduction in the final pass is preferably more than 30%, more preferably more than 40%. If the amount of reduction is too high, the rolling load increases and rolling becomes difficult. Therefore, the amount of reduction in the final one pass is preferably less than 55%, and more preferably less than 50%.
  • so-called lubricated rolling may be performed in which rolling oil is supplied between a rolling roll and a steel sheet to reduce the friction coefficient and perform rolling.
  • the polygonal ferrite is made finer.
  • it is rapidly cooled to a temperature range of 720 ° C. or less within 0.30 seconds after completion of rolling, and more preferably, it is rapidly cooled to a temperature range of 720 ° C.
  • the average cooling rate during rapid cooling is preferably set to 300 ° C./s or more. Further miniaturization can be achieved.
  • the average cooling rate during the rapid cooling is more preferably 400 ° C./s or more, and particularly preferably 600 ° C./s or more.
  • the equipment for rapid cooling is not particularly defined, but industrially, it is preferable to use a water spray device with a high water density, and a water spray header is disposed between the rolling plate conveyance rollers, and sufficient from above and below the rolling plate.
  • a method of injecting high-pressure water having a water density is exemplified.
  • the steel sheet is wound in a temperature range exceeding 500 ° C. This is because when the coiling temperature is 500 ° C. or less, iron carbide is not sufficiently precipitated in the hot-rolled steel sheet, coarse residual austenite grains are formed in the metal structure after cold rolling and annealing, and bcc grains are coarse. It is because it granulates.
  • the winding temperature is preferably higher than 550 ° C, and more preferably higher than 580 ° C.
  • the winding temperature is preferably less than 650 ° C, and more preferably less than 620 ° C.
  • the conditions from the quenching stop to the winding are not particularly specified, but after the quenching stop, it is preferable to hold for 1 second or more in a temperature range of 720 to 600 ° C. Thereby, the production
  • the hot-rolled steel sheet is descaled by pickling or the like and then cold-rolled according to a conventional method.
  • the cold pressure ratio total rolling reduction ratio in cold rolling
  • the upper limit of the cold pressure ratio is preferably less than 70%, and more preferably less than 60%.
  • the steel sheet after cold rolling is annealed after being subjected to a treatment such as degreasing according to a known method, if necessary.
  • the lower limit of the soaking temperature in annealing is set to (Ac 3 points ⁇ 40 ° C.) or higher. This is to obtain a metal structure in which the main phase is a low-temperature transformation generation phase and the second phase contains residual austenite.
  • the soaking temperature is preferably more than (Ac 3 point ⁇ 20 ° C.), more preferably more than Ac 3 point.
  • the upper limit of the soaking temperature is preferably less than (Ac 3 point + 100 ° C.), more preferably less than (Ac 3 point + 50 ° C.), and less than (Ac 3 point + 20 ° C.). Particularly preferred.
  • the holding time at the soaking temperature is not particularly limited, but is preferably more than 15 seconds, and more preferably more than 60 seconds in order to obtain stable mechanical properties.
  • the holding time is preferably less than 150 seconds, and more preferably less than 120 seconds.
  • the heating rate from 700 ° C. to the soaking temperature is set to less than 10.0 ° C./s in order to promote recrystallization, uniformize the metal structure after annealing, and further improve stretch flangeability. It is preferable to do. More preferably, it is less than 8.0 ° C./s, and particularly preferably less than 5.0 ° C./s.
  • the soaking temperature is 50 ° C. or more at a cooling rate of less than 5.0 ° C./s. It is preferable to cool.
  • the cooling rate at this time is more preferably less than 3.0 ° C./s, and particularly preferably less than 2.0 ° C./s.
  • cooling at 80 ° C. or higher is more preferable, cooling at 100 ° C. or higher is particularly preferable, and cooling at 120 ° C. or higher is most preferable.
  • the cooling rate is more preferably 30 ° C./s, and particularly preferably 50 ° C./s.
  • the cooling rate in the temperature range of 650 to 500 ° C. is preferably 200 ° C./s or less. More preferably, it is less than 150 ° C./s, and particularly preferably less than 130 ° C./s.
  • the holding temperature range is preferably 430 to 360 ° C.
  • the holding time is preferably 60 seconds or longer. It is more preferable to set it for 120 seconds or more, and it is especially preferable to set it for more than 300 seconds.
  • the cold-rolled steel sheet produced by the above-described method is subjected to a known pretreatment for surface cleaning and adjustment as necessary, and then electroplated according to a conventional method.
  • the chemical composition and adhesion amount of the plating film are not limited. Examples of the type of electroplating include electrogalvanizing and electro-Zn—Ni alloy plating.
  • the annealing process is performed by the above-described method, and after holding for 30 seconds or more in a temperature range of 450 to 340 ° C., the steel sheet is heated as necessary and then immersed in a plating bath. Apply hot dip plating.
  • the holding temperature range is preferably 430 to 360 ° C.
  • the holding time is preferably 60 seconds or longer. It is more preferable to set it for 120 seconds or more, and it is especially preferable to set it for more than 300 seconds.
  • the alloying treatment may be performed by reheating after hot dipping.
  • the chemical composition and the amount of adhesion of the plating film are not limited.
  • hot dip plating include hot dip galvanizing, alloyed hot dip galvanizing, hot dip aluminum plating, hot dip Zn-Al alloy plating, hot dip Zn-Al-Mg alloy plating, hot dip Zn-Al-Mg-Si alloy plating, etc.
  • the plated steel sheet may be subjected to an appropriate chemical conversion treatment after plating in order to further increase its corrosion resistance.
  • the chemical conversion treatment is preferably carried out using a non-chromium chemical conversion treatment solution (for example, silicate-based, phosphate-based, etc.) instead of the conventional chromate treatment.
  • the cold-rolled steel sheet and the plated steel sheet thus obtained may be subjected to temper rolling according to a conventional method.
  • the elongation rate of temper rolling is high, ductility is deteriorated, and therefore, the elongation rate of temper rolling is preferably 1.0% or less. A more preferable elongation is 0.5% or less.
  • the steel having the chemical composition shown in Table 1 was melted and cast using an experimental vacuum melting furnace. Each obtained steel ingot was made into a steel piece having a thickness of 30 mm by hot forging. The steel slab was heated to 1200 ° C. using an electric heating furnace and kept at this temperature for 60 minutes, and then hot rolled under the conditions shown in Table 2.
  • 6-pass rolling was performed in a temperature range of Ar 3 or higher, and the thickness was finished to 2 to 3 mm.
  • the rolling reduction rate in the final pass was 12 to 42% in terms of sheet thickness reduction rate.
  • After hot rolling it is cooled to 650 to 720 ° C. under various cooling conditions using water spray, allowed to cool for 5 to 10 seconds, and then cooled to various temperatures at a cooling rate of 60 ° C./s.
  • the temperature is set as the coiling temperature, charged in an electric heating furnace maintained at the same temperature, held for 30 minutes, cooled to room temperature at a cooling rate of 20 ° C./h, and gradually cooled after winding.
  • a hot-rolled steel sheet was obtained by simulating.
  • the obtained hot-rolled steel sheet was pickled to obtain a cold-rolled base material, and cold-rolled at a cold pressure ratio of 50 to 60% to obtain a cold-rolled steel sheet having a thickness of 1.0 to 1.2 mm.
  • the obtained cold-rolled steel sheet was heated to 550 ° C. at a heating rate of 10 ° C./s, and then heated to various temperatures shown in Table 2 at a heating rate of 2 ° C./s. Soaked for 95 seconds. Thereafter, the primary cooling is performed to the temperature shown in Table 2, and the secondary cooling is further performed from the primary cooling stop temperature to various cooling stop temperatures shown in Table 2 at an average cooling rate of 60 ° C./s. After being held, it was cooled to room temperature to obtain an annealed steel plate.
  • a specimen for SEM observation was collected from the annealed steel sheet, and after polishing the longitudinal section parallel to the rolling direction, it was corroded with nital, and the metal structure at the 1/4 depth position of the plate thickness was observed from the steel sheet surface.
  • the volume fraction of the low temperature transformation product phase and polygonal ferrite was measured by the treatment. Further, the area occupied by the entire polygonal ferrite was divided by the number of crystal grains of the polygonal ferrite to obtain an average particle diameter (equivalent circle diameter) of the polygonal ferrite.
  • a specimen for XRD measurement is collected from the annealed steel sheet, and the rolled surface is chemically polished from the steel sheet surface to a 1/4 depth position of the sheet thickness, and then an X-ray diffraction test is performed to measure the volume fraction of retained austenite.
  • RINT 2500 manufactured by Rigaku is used for the X-ray diffractometer, and Co-K ⁇ rays are incident to enter the ⁇ phase (110), (200), (211) diffraction peak and the ⁇ phase (111), (200). The integrated intensity of the (220) diffraction peak was measured to determine the volume fraction of retained austenite.
  • the metal structure was observed at the 1/4 depth position of the sheet thickness from the steel sheet surface, and by image analysis, The average particle diameter of the bcc grains, the grain size distribution of the retained austenite grains, and the average grain diameter of the retained austenite were measured.
  • TSL OIM5 is used for the EBSP measuring device, and the electron beam is irradiated at a pitch of 0.1 ⁇ m in a region of 50 ⁇ m in the plate thickness direction and 100 ⁇ m in the rolling direction.
  • the bcc phase and the fcc phase were determined with valid data having an index of 0.1 or more.
  • a region that is observed as a bcc phase and surrounded by a grain boundary with an orientation difference of 15 ° or more is defined as one bcc grain, the circle equivalent diameter and area of each bcc grain are obtained, and the average is calculated according to the definition of the above-described formula (1).
  • the particle size was calculated.
  • bcc grains having an equivalent circle diameter of 0.47 ⁇ m or more were determined as effective bcc grains.
  • the martensite crystal structure is a body-centered tetragonal lattice (bct). However, since the lattice constant is not taken into account in the metal structure evaluation by EBSP, martensite is also handled as a bcc phase.
  • the average grain size of the retained austenite was calculated as the average value of the equivalent circle diameters of the individual effective retained austenite grains, with the retained austenite grains having an equivalent circle diameter of 0.15 ⁇ m or more as effective retained austenite grains. Further, the number density (N R ) per unit area of the retained austenite grains having a grain size of 1.2 ⁇ m or more was determined.
  • Yield stress (YS) and tensile strength (TS) were determined by collecting JIS No. 5 tensile specimens from an annealed steel sheet along the direction perpendicular to the rolling direction and conducting a tensile test at a tensile speed of 10 mm / min.
  • the total elongation (El) is based on the above formula (2) using a measured value (El 0 ) obtained by conducting a tensile test with a JIS No. 5 tensile test specimen taken along the direction orthogonal to the rolling direction. The conversion value corresponding to the case where the plate thickness is 1.2 mm was obtained.
  • the work hardening index (n value) was obtained by conducting a tensile test using a JIS No. 5 tensile specimen taken along the direction perpendicular to the rolling direction and setting the strain range to 5 to 10%. Specifically, it was calculated by a two-point method using test forces for nominal strains of 5% and 10%.
  • Stretch flangeability was evaluated by measuring the hole expansion rate ( ⁇ ) by the following method.
  • a 100 mm square plate is taken from the annealed steel sheet, a punched hole with a diameter of 10 mm is formed with a clearance of 12.5%, and the punched hole is expanded from the sag side with a conical punch with a tip angle of 60 °.
  • the hole enlargement ratio was measured when this occurred, and this was defined as the hole expansion ratio.
  • Table 3 shows the metal structure observation results and performance evaluation results of the cold-rolled steel sheet after annealing.
  • numerical values or symbols marked with * mean outside the scope of the present invention.
  • the test results for steel sheets within the range defined by the present invention are all TS ⁇ El value of 19000 MPa%, TS ⁇ n value of 160 or more, and TS 1.7 ⁇ ⁇ value of 6000000 MPa 1.7. % Or more, showing good ductility, work hardening and stretch flangeability.
  • the average particle diameter of the bcc grains is 7.0 ⁇ m or less, and / or the second phase contains polygonal ferrite in addition to retained austenite, and the volume fraction of the polygonal ferrite is more than 2.0% over 27.0.
  • the value of TS ⁇ El is 20000 MPa% or more
  • the value of TS ⁇ n value is 165 or more
  • the value of TS 1.7 ⁇ ⁇ is 6000000 MPa 1.7 % or more.
  • Ductility, work hardening and stretch flangeability were further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 延性、加工硬化性、伸びフランジ性に優れ、引張強度が780 MPa以上の高張力冷延鋼板は、質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有する化学組成と、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織とを有する。前記残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、前記残留オーステナイトの内、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10-2個/μm2以下である。

Description

冷延鋼板
 本発明は、冷延鋼板に関する。より詳しくは、延性、加工硬化性および伸びフランジ性に優れた高張力冷延鋼板に関する。
 産業技術分野が高度に細分化した今日、各技術分野において用いられる材料には、特殊かつ高度な性能が要求されている。例えば、プレス成形して使用される冷延鋼板についても、プレス形状の多様化に伴い、より優れた成形性が必要とされている。また、高い強度が要求されるようになり、高張力冷延鋼板の適用が検討されている。特に、自動車用鋼板に関しては、地球環境への配慮から、車体を軽量化して燃費を向上させるために、薄肉高成形性の高張力冷延鋼板の需要が著しく高まってきている。プレス成形においては、使用される鋼板の厚さが薄いほど、割れやしわが発生しやすくなるため、延性や伸びフランジ性により優れた鋼板が必要とされる。しかし、このようなプレス成形性と鋼板の高強度化とは背反する特性であり、これらの特性を同時に満足させることは困難である。
 これまでに、高張力冷延鋼板のプレス成形性を改善する方法として、ミクロ組織の微細粒化に関する技術が多く提案されている。例えば特許文献1には、熱間圧延工程においてAr3点近傍の温度域で合計圧下率80%以上の圧延を行う、極微細粒高強度熱延鋼板の製造方法が開示されている。特許文献2には、熱間圧延工程において、圧下率40%以上の圧延を連続して行う、超細粒フェライト鋼の製造方法が開示されている。
 これらの技術により、熱延鋼板において強度と延性のバランスが向上するが、冷延鋼板を微細粒化しプレス成形性を改善する方法については上記特許文献に何ら記載されていない。本発明者らの検討によると、大圧下圧延によって得られた細粒熱延鋼板を母材として冷間圧延および焼鈍を行うと、結晶粒が粗大化し易く、プレス成形性に優れた冷延鋼板を得ることは困難である。特に、Ac1点以上の高温域で焼鈍することが必要な、金属組織に低温変態生成相や残留オーステナイトを含む複合組織冷延鋼板の製造においては、焼鈍時の結晶粒の粗大化が顕著であり、延性に優れるという複合組織冷延鋼板の利点を享受することができない。
 特許文献3には、熱間圧延工程において、動的再結晶域での圧下を5スタンド以上の圧下パスで行う、超微細粒を有する熱延鋼板の製造方法が開示されている。しかし、熱間圧延時の温度低下を極度に低減させる必要があり、通常の熱間圧延設備で実施することは困難である。また、熱間圧延後、冷間圧延および焼鈍を行った例が示されているが、引張強度と穴拡げ性(伸びフランジ性)のバランスが悪く、プレス成形性が不十分である。
 微細組織を有する冷延鋼板に関しては、特許文献4に平均結晶粒径が10μm以下であるフェライト中に平均結晶粒径が5μm以下である残留オーステナイトを分散させた、耐衝突安全性および成形性に優れた自動車用高強度冷延鋼板が開示されている。金属組織に残留オーステナイトを含む鋼板では、加工中にオーステナイトがマルテンサイト化することで生ずる変態誘起塑性(TRIP)によって大きな伸びを示すが、硬質なマルテンサイトの生成により穴拡げ性が損なわれる。特許文献4に開示される冷延鋼板では、フェライトおよび残留オーステナイトを微細化することにより、延性および穴拡げ性が向上するとされているが、穴拡げ比は高々1.5であり、十分なプレス成形性を備えるとは言い難い。また、加工硬化指数を高めて耐衝突安全性を改善するために、主相を軟質なフェライト相とする必要があり、高い引張強度を得ることが困難である。
 特許文献5には、結晶粒内に残留オーステナイトおよび/またはマルテンサイトからなる第二相を微細に分散させた、伸びおよび伸びフランジ性に優れた高強度鋼板が開示されている。しかし、第二相をナノサイズにまで微細化して結晶粒内に分散させるため、CuやNi等の高価な元素を多量に含有させ、高温で長時間の溶体化処理を行う必要があり、製造コストの上昇や生産性の低下が著しい。
 特許文献6には、平均結晶粒径が10μm以下であるフェライトおよび焼戻マルテンサイト中に残留オーステナイトおよび低温変態生成相を分散させた、延性、伸びフランジ性および耐疲労特性に優れた高張力溶融亜鉛めっき鋼板が開示されている。焼戻マルテンサイトは伸びフランジ性および耐疲労特性の向上に有効な相であり、焼戻マルテンサイトを細粒化するとこれらの特性が一層向上するとされている。しかし、焼戻マルテンサイトと残留オーステナイト含む金属組織を得るためには、マルテンサイトを生成させるための一次焼鈍と、マルテンサイトを焼戻しさらに残留オーステナイトを得るための二次焼鈍が必要となり、生産性が大幅に損なわれる。
 特許文献7には、熱間圧延直後に720℃以下まで急冷し、600~720℃の温度域に2秒間以上保持し、得られた熱延鋼板に冷間圧延および焼鈍を施す、微細フェライト中に残留オーステナイトが分散した冷延鋼板の製造方法が開示されている。
特開昭58-123823号公報 特開昭59-229413号公報 特開平11-152544号公報 特開平11-61326号公報 特開2005-179703号公報 特開2001-192768号公報 国際公開第2007/15541号パンフレット
 上述の特許文献7において開示される技術は、熱間圧延終了後、オーステナイトに蓄積された加工歪みを解放させず、加工歪みを駆動力としてフェライト変態させることにより微細粒組織が形成され、加工性および熱的安定性が向上した冷延鋼板が得られる点において優れている。
 しかし、近年のさらなる高性能化のニーズにより、高い強度と良好な延性と良好な加工硬化性と良好な伸びフランジ性とを同時に具備する冷延鋼板が求められている。
 本発明は、そのような要請に応えるためになされたものである。具体的には、本発明の課題は、優れた延性、加工硬化性および伸びフランジ性を有する、引張強度が780MPa以上の高張力冷延鋼板を提供することである。
 本発明者らは、高張力冷延鋼板の機械特性に及ぼす化学組成および製造条件の影響について詳細な調査を行った。なお、本明細書において、鋼の化学組成における各元素の含有量を示す「%」とはすべて質量%を意味する。
 一連の供試鋼は、質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下、N:0.010%以下を含有する化学組成を有するものであった。
 このような化学組成を有するスラブを、1200℃に加熱した後、Ar3点以上の温度範囲で種々の圧下パターンで板厚2.0mmまで熱間圧延し、熱間圧延後、種々の冷却条件で720℃以下の温度域まで冷却し、5~10秒間空冷した後、90℃/s以下の冷却速度で種々の温度まで冷却して、この冷却温度を巻取温度とし、同温度に保持された電気加熱炉中に装入して30分間保持した後、20℃/hの冷却速度で炉冷却して、巻取後の徐冷をシミュレートした。こうして得られた熱延鋼板を酸洗し、50%の圧延率で板厚1.0mmまで冷間圧延した。得られた冷延鋼板を、連続焼鈍シミュレーターを用いて種々の温度に加熱し、95秒間保持した後、冷却して、焼鈍鋼板を得た。
 熱延鋼板および焼鈍鋼板から組織観察用試験片を採取し、光学顕微鏡および電子線後方散乱パターン解析装置(EBSP)を備えた走査電子顕微鏡(SEM)用いて、鋼板表面から板厚の1/4深さ位置において金属組織を観察するとともに、X線回折装置(XRD)を用いて、焼鈍鋼板の鋼板表面から1/4深さ位置における残留オーステナイトの体積率を測定した。また、焼鈍鋼板から圧延方向と直交する方向に沿って引張試験片を採取して引張試験を行い、延性を全伸びにより評価し、加工硬化性を歪み範囲が5~10%の加工硬化指数(n値)により評価した。さらに、焼鈍鋼板から100mm角の穴拡げ試験片を採取し、穴拡げ試験を行って、伸びフランジ性を評価した。穴拡げ試験では、クリアランス12.5%で直径10mmの打ち抜き穴を開け、先端角60°の円錐ポンチで打ち抜き穴を押し拡げ、板厚を貫通する割れが発生したときの穴の拡大率(穴拡げ率)を測定した。
 これらの予備試験の結果、次の(A)ないし(H)に述べる知見を得た。
 (A)熱間圧延直後に水冷により急冷するいわゆる直後急冷プロセスを経て製造された熱延鋼板、具体的には、熱間圧延完了から0.40秒間以内に720℃以下の温度域まで急冷して製造された熱延鋼板を、冷間圧延し、焼鈍すると、焼鈍温度の上昇に伴い、焼鈍鋼板の延性および伸びフランジ性が向上するが、焼鈍温度が高すぎると、オーステナイト粒が粗大化し、焼鈍鋼板の延性および伸びフランジ性が急激に劣化する場合がある。
 (B)熱間圧延の最終圧下量を上昇させると、冷間圧延後の高温での焼鈍中に起こりうるオーステナイト粒の粗大化が抑制される。この理由は明らかではないが、(a)最終圧下量が多いほど、熱延鋼板の金属組織においてフェライト分率が増加するとともにフェライトが細粒化すること、(b)最終圧下量が多いほど、熱延鋼板の金属組織において粗大な低温変態生成相が減少すること、(c)フェライト粒界は焼鈍中にフェライトからオーステナイトへの変態における核生成サイトとして機能するため、微細なフェライトが多いほど核生成頻度が上昇し、オーステナイトが細粒化すること、(d)粗大な低温変態生成相は、焼鈍中に粗大なオーステナイト粒となること、に起因すると推定される。
 (C)直後急冷後の巻取工程において、巻取温度を上昇させると、冷間圧延後の高温での焼鈍中に起こりうるオーステナイト粒の粗大化が抑制される。この理由は明らかではないが、(a)直後急冷により熱延鋼板が細粒化するため、巻取温度の上昇に伴い、熱延鋼板中の鉄炭化物の析出量が顕著に増加すること、(b)鉄炭化物は、焼鈍中にフェライトからオーステナイトへの変態における核生成サイトとして機能するため、鉄炭化物の析出量が多いほど核生成頻度が上昇し、オーステナイトが細粒化すること、(c)未固溶の鉄炭化物がオーステナイトの粒成長を抑制するため、オーステナイトが細粒化すること、に起因すると推定される。
 (D)鋼中のSi含有量が多いほど、オーステナイト粒の粗大化防止効果が強くなる。この理由は明らかではないが、(a)Si含有量の増加に伴い、鉄炭化物が微細化し、その数密度が増加すること、(b)これにより、フェライトからオーステナイトへの変態における核生成頻度がさらに増大すること、(c)未固溶の鉄炭化物の増加により、オーステナイトの粒成長がさらに抑制され、オーステナイトがさらに細粒化すること、に起因すると推定される。
 (E)オーステナイト粒の粗大化を抑制しながら高温で均熱して冷却すると、微細な低温変態生成相を主相とし、第二相が微細な残留オーステナイトと場合により微細なポリゴナルフェライトとを含んでいる金属組織が得られる。
 図1は、最終圧下量を板厚減少率で42%、圧延完了温度を900℃、急冷停止温度を660℃、圧延完了から急冷停止までの時間を0.16秒として熱間圧延し、巻取温度を520℃とし、熱延鋼板を冷間圧延し均熱温度850℃で焼鈍して得られた焼鈍鋼板において、残留オーステナイトの粒径分布を調査した結果を示すグラフである。図2は、同一の化学組成を有するスラブを、直後急冷を行わずに常法によって熱間圧延し、冷間圧延し焼鈍して得られた焼鈍鋼板において、残留オーステナイトの粒径分布を調査した結果を示すグラフである。図1、2の比較から、適切な直後急冷プロセスを経て製造された焼鈍鋼板(図1)では、粒径が1.2μm以上の粗大な残留オーステナイト粒の生成が抑制され、残留オーステナイトが微細に分散することが分かる。
 (F)粒径が1.2μm以上の粗大な残留オーステナイト粒の生成を抑制することにより、低温変態生成相を主相とする鋼板の伸びフランジ性が向上する。
 図3は、TS1.7×λと粒径1.2μm以上の粗大な残留オーステナイトの数密度(NR)との関係を示すグラフである。TSは引張強度、λは穴拡げ率であり、TS1.7×λは強度と穴拡げ率のバランスから穴拡げ性を評価するための指標である。同図に示されているように、TS1.7×λはNRと相関関係を有し、NRが低いほど穴拡げ性が向上することが分かる。この理由は明らかではないが、(a)残留オーステナイトは、加工により硬質なマルテンサイトに変化するが、残留オーステナイト粒が粗大であるとマルテンサイト粒も粗大となり、応力集中が高まり母相との界面にボイドが容易に発生し、割れの起点となること、(b)粗大な残留オーステナイト粒は加工の初期段階でマルテンサイト化するため、微細な残留オーステナイト粒よりも割れの起点となりやすいこと、に起因すると推定される。
 (G)焼鈍温度の上昇に伴い、低温変態生成相の分率が増し、加工硬化性が劣化する傾向を示すが、粒径が1.2μm以上の粗大な残留オーステナイト粒の生成を抑制することにより、低温変態生成相を主相とする鋼板において、加工硬化性の劣化を防止することができる。
 図4は、TS×n値とNRとの関係を示すグラフである。TS×n値は強度と加工硬化指数のバランスから加工硬化性を評価するための指標である。同図に示されているように、TS×n値はNRと相関関係を有し、NRが低いほど加工硬化性が向上することが分かる。この理由は明らかではないが、(a)粗大な残留オーステナイト粒は、歪みが5%未満である加工初期段階でマルテンサイト化してしまうため、歪み範囲が5~10%におけるn値の上昇にほとんど寄与しないこと、(b)粗大な残留オーステナイト粒の生成を抑制すると、5%以上の高歪み域でマルテンサイト化する微細な残留オーステナイト粒が増加すること、に起因すると推定される。
 (H)方位差15°以上の粒界で囲まれるbcc(体心立方)構造を有する粒およびbct(体心正方)構造を有する粒(以下、これら2種類の粒を総称して「bcc粒」ともいう)の平均粒径が小さいほど、低温変態生成相を主相とし、第二相に残留オーステナイトを含む金属組織を有する鋼板の延性、加工硬化性および伸びフランジ性が向上する。この理由は明らかではないが、(a)bcc粒の微細化により、残留オーステナイトの配置が好適化すること、(b)bcc粒の細粒化により、亀裂の伸展が抑制されること、に起因すると推定される。
 以上の結果から、Siを一定量以上含有させた鋼を、最終圧下量を高めて熱間圧延した後、直後急冷し、高温でコイル状に巻取り、冷間圧延し、高温で焼鈍した後冷却することにより、主相が低温変態生成相で、第二相に残留オーステナイトと好ましくはさらにポリゴナルフェライトとを含み、粒径が1.2μm以上である粗大なオーステナイト粒が少なく、好ましくは、bcc粒が細粒である金属組織を有する、延性、加工硬化特性および伸びフランジ性に優れた冷延鋼板を製造することができることが判明した。
 本発明は、質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:0%以上2.00%以下、N:0.010%以下、Ti:0%以上0.050%未満、Nb:0%以上0.050%未満、V:0%以上0.50%以下、Cr:0%以上1.0%以下、Mo:0%以上0.50%以下、B:0%以上0.010%以下、Ca:0%以上0.010%以下、Mg:0%以上0.010%以下、REM:0%以上0.050%以下、Bi:0%以上0.050%以下、および残部がFeおよび不純物からなる化学組成を有する冷延鋼板であって、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織を備え、前記残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、前記残留オーステナイトの内、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10-2個/μm2以下であることを特徴とする冷延鋼板である。
 本発明に係る冷延鋼板の金属組織は、好ましくは下記のいずれか一方または両方を満たす:
 ・方位差15゜以上の粒界で囲まれたbcc構造を有する粒およびbct構造を有する粒の平均粒径が7.0μm以下である;
 ・前記第二相が残留オーステナイトおよびポリゴナルフェライトを含み、前記ポリゴナルフェライトは、全組織に対する体積率が2.0%超27.0%未満、平均粒径が5.0μm未満である。
 好適態様において、前記化学組成は、下記元素(%はいずれも質量%)の少なくとも1種をさらに含有する:
 Ti:0.005%以上0.050%未満、Nb:0.005%以上0.050%未満およびV:0.010%以上0.50%以下からなる群から選択される1種または2種以上;ならびに/または
 Cr:0.20%以上1.0%以下、Mo:0.05%以上0.50%以下およびB:0.0010%以上0.010%以下からなる群から選択される1種または2種以上;ならびに/または
 Ca:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.0005%以上0.050%以下およびBi:0.0010%以上0.050%以下からなる群から選択される1種または2種以上。
 本発明によれば、プレス成形などの加工に適用できる十分な延性、加工硬化性および伸びフランジ性を有する高張力冷延鋼板が得られる。したがって、本発明は、自動車の車体軽量化を通じて地球環境問題の解決に寄与できるなど、産業の発展に寄与するところ大である。
直後急冷プロセスを経て製造された焼鈍鋼板における残留オーステナイトの粒径分布を示すグラフである。 直後急冷プロセスを経ずに製造された焼鈍鋼板における残留オーステナイトの粒径分布を示すグラフである。 TS1.7×λと粒径1.2μm以上の残留オーステナイトの数密度(NR)との関係を示すグラフである。 TS×n値と粒径1.2μm以上の残留オーステナイトの数密度(NR)との関係を示すグラフである。
 本発明に係る高張力冷延鋼板における金属組織、化学組成およびその鋼板を効率的、安定的かつ経済的に製造しうる製造方法における圧延、焼鈍条件等について、以下に詳述する。
 1.金属組織
 本発明の冷延鋼板は、主相が低温変態生成相であり、第二相に残留オーステナイトと好ましくはポリゴナルフェライトとを含み、該残留オーステナイトは、全組織に対する体積率が4.0%超25.0%未満で平均粒径が0.80μm未満であり、該残留オーステナイトのうち、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10-2個/μm2以下であり、好ましくは方位差15゜以上の粒界で囲まれたbcc構造を有する粒およびbct構造を有する粒の平均粒径が7.0μm以下であるか、および/またはポリゴナルフェライトの全組織に対する体積率が2.0%超27.0%未満、その平均粒径が5.0μm未満である金属組織を有する。
 主相とは体積率が最大である相または組織を意味し、第二相とは主相以外の相および組織を意味する。
 低温変態生成相とは、マルテンサイトやベイナイトといった低温変態により生成される相および組織をいう。これら以外の低温変態生成相として、ベイニティックフェライトおよび焼戻しマルテンサイトが例示される。ベイニティックフェライトは、ラス状または板状の形態を呈する点および転位密度が高い点でポリゴナルフェライトから区別され、内部および界面に鉄炭化物が存在しない点でベイナイトから区別される。
 この低温変態生成相は、2種以上の相および組織、例えば、マルテンサイトとベイニティックフェライトを含んでいてもよい。低温変態生成相が2種以上の相および組織を含む場合は、これらの相および組織の体積率の合計を低温変態生成相の体積率とする。
 bcc相とは、体心立方格子(bcc格子、body-centered cubic lattice)型の結晶構造を持つ相であり、ポリゴナルフェライトやベイニティックフェライト、ベイナイト、焼戻しマルテンサイトが例示される。一方、bct相とは、体心正方格子(bct、body-centered tetragonal lattice)型の結晶構造を持つ相であり、マルテンサイトが例示される。bcc構造を有する粒とは、bcc相の内で、方位差15゜以上の境界で囲まれた領域である。同様に、bct構造を有する粒とは、bct相の内で、方位差15゜以上の境界で囲まれた領域である。以下では、bcc相とbct相を総称してbcc相ともいう。これは、後述するように、EBSPによる金属組織評価では格子定数を考慮しないため、bcc相とbct相とが峻別されずに検出されるためである。
 主相が低温変態生成相であり、第二相に残留オーステナイトを含む組織とするのは、引張強度を保ちながら、延性、加工硬化性および伸びフランジ性を向上させるのに好適であるからである。主相が低温変態生成相ではないポリゴナルフェライトであると、引張強度および伸びフランジ性の確保が困難となる。
 残留オーステナイトの全組織に対する体積率は4.0%超25.0%未満とする。残留オーステナイトの全組織に対する体積率が4.0%以下であると、延性が不十分となる。したがって、残留オーステナイトの全組織に対する体積率は4.0%超とする。好ましくは6.0%超、さらに好ましくは9.0%超、特に好ましくは12.0%超である。一方、残留オーステナイトの全組織に対する体積率が25.0%以上であると伸びフランジ性の劣化が顕著となる。したがって、残留オーステナイトの全組織に対する体積率は25.0%未満とする。好ましくは18.0%未満、さらに好ましくは16.0%未満、特に好ましくは14.0%未満である。
 残留オーステナイトの平均粒径は0.80μm未満とする。低温変態生成相を主相とし、第二相に残留オーステナイトを含む金属組織をもつ冷延鋼板では、残留オーステナイトの平均粒径が0.80μm以上であると、延性、加工硬化性および伸びフランジ性が著しく劣化する。残留オーステナイトの平均粒径は、0.70μm未満であることが好ましく、0.60μm未満であるとさらに好ましい。残留オーステナイトの平均粒径の下限は特に限定しないが、0.15μm以下に微細化するためには、熱間圧延の最終圧下量を非常に高くする必要があり、製造負荷が著しく高まる。したがって、残留オーステナイトの平均粒径の下限は0.15μm超とすることが好ましい。
 低温変態生成相を主相とし、第二相に残留オーステナイトを含む金属組織をもつ冷延鋼板では、残留オーステナイトの平均粒径が0.80μm未満であっても、粒径が1.2μm以上である粗大な残留オーステナイト粒が多く存在すると、加工硬化性および伸びフランジ性が損なわれる。そのため、粒径が1.2μm以上の残留オーステナイト粒の数密度は3.0×10-2個/μm2以下とする。粒径が1.2μm以上の残留オーステナイト粒の数密度は2.0×10-2個/μm2以下であることが好ましく、1.5×10-2個/μm2以下であればさらに好ましく、1.0×10-2個/μm2以下であれば最も好ましい。
 延性および加工硬化性をさらに向上させるために、第二相には、残留オーステナイト以外に、ポリゴナルフェライトを含むことが好ましい。ポリゴナルフェライトの全組織に対する体積率は2.0%超とすることが好ましい。さらに好ましくは8.0%超、特に好ましくは13.0%超である。一方、ポリゴナルフェライトの体積率が過剰になると、伸びフランジ性が劣化する。したがって、ポリゴナルフェライトの体積率は27.0%未満とすることが好ましい。さらに好ましくは24.0%未満、特に好ましくは18.0%未満である。
 また、ポリゴナルフェライトは細粒であるほど延性および加工硬化性を向上させる効果が増すので、ポリゴナルフェライトの平均粒径は5.0μm未満とすることが好ましい。さらに好ましくは4.0μm未満、特に好ましくは3.0μm未満である。
 伸びフランジ性をさらに向上させるために、低温変態生成相に含まれる焼戻しマルテンサイトの体積率は全組織に対し50.0%未満とすることが好ましい。さらに好ましくは35.0%未満、特に好ましくは10.0%未満である。
 引張強度を高めるために、低温変態生成相はマルテンサイトを含むことが好ましい。この場合、マルテンサイトの全組織に対する体積率は4.0%超とすることが好ましい。さらに好ましくは6.0%超、特に好ましくは10.0%超である。一方、マルテンサイトの体積率が過剰になると伸びフランジ性が劣化する。このため、組織全体に占めるマルテンサイトの体積率は15.0%未満とすることが好ましい。
 延性、加工硬化性および伸びフランジ性をさらに向上させるために、bcc粒(前述したように、bcc粒とは方位差15゜以上の粒界で囲まれたbcc構造を有する粒およびbct構造を有する粒の総称)の平均粒径は7.0μm以下であることが好ましい。bcc粒の平均粒径は6.0μm以下であればさらに好ましく、5.0μm以下であれば特に好ましい。
 本発明に係る冷延鋼板の金属組織は、次のようにして測定する。すなわち、低温変態生成相およびポリゴナルフェライトの体積率は、鋼板から試験片を採取し、圧延方向に平行な縦断面を研磨し、ナイタールで腐食処理した後、鋼板表面から板厚の1/4深さ位置においてSEMを用いて金属組織を観察し、画像処理により、低温変態生成相とポリゴナルフェライトの面積率を測定し、面積率は体積率と等しいとして、それぞれの体積率を求める。ポリゴナルフェライトの平均粒径は、視野中でポリゴナルフェライト全体が占める面積をポリゴナルフェライトの結晶粒数で除し、円相当直径を求めて平均粒径とする。
 残留オーステナイトの体積率は、鋼板から試験片を採取し、鋼板表面から板厚の1/4深さ位置まで圧延面を化学研磨し、XRD用いてX線回折強度を測定して求める。
 残留オーステナイト粒の粒径および残留オーステナイトの平均粒径は、次のようにして測定する。すなわち、鋼板から試験片を採取し、圧延方向に平行な縦断面を電解研磨し、鋼板表面から板厚の1/4深さ位置においてEBSPを備えたSEMを用いて金属組織を観察する。面心立方晶型の結晶構造からなる相(fcc相)として観察され、母相に囲まれた領域を、一つの残留オーステナイト粒とし、画像処理により、残留オーステナイト粒の数密度(単位面積あたりの粒数)および個々の残留オーステナイト粒の面積率を測定する。視野中で個々の残留オーステナイト粒が占める面積から個々のオーステナイト粒の円相当直径を求め、それらの平均値を残留オーステナイトの平均粒径とする。
 EBSPによる組織観察では、板厚方向に50μm以上であり圧延方向に100μm以上である領域において、0.1μm刻みで電子ビームを照射して相の判定を行う。また、得られた測定データの内、信頼性指数(Confidence Index)が0.1以上のものを有効なデータとして粒径測定に用いる。測定ノイズにより残留オーステナイトの粒径が過小に評価されることを防ぐため、円相当直径が0.15μm以上の残留オーステナイト粒のみを有効な粒として、平均粒径の算出を行う。
 bcc粒の平均粒径は、次のようにして測定する。すなわち、鋼板から試験片を採取し、圧延方向に平行な縦断面を電解研磨し、鋼板表面から板厚の1/4深さ位置においてEBSPを備えたSEMを用いて金属組織を観察する。bcc相として観察され、方位差15゜以上の境界で囲まれた領域を一つのbcc粒とし、下記式(1)の定義にしたがって算出される値をbcc粒の平均粒径とする。ここでNは平均粒径評価領域に含まれる結晶粒の数、Aはi番目(i=1,2,・・,N)の結晶粒の面積、dはi番目の結晶粒の円相当直径をそれぞれ示す。
Figure JPOXMLDOC01-appb-M000001
 本発明においては、bcc構造を有する粒とbct構造を有する粒とを一体として扱う。これは、EBSPによる金属組織評価では格子定数を考慮しないため、bcc構造を有する粒(例えば、ポリゴナルフェライト、ベイニティックフェライト、ベイナイト、焼戻しマルテンサイト)とbct構造を有する粒(例えば、マルテンサイト)とを峻別することが困難であるためである。
 この時のEBSPによる組織観察でも、上記と同様に、板厚方向に50μm、圧延方向に100μmの大きさの領域において、0.1μm刻みで電子ビームを照射して相の判定を行う。また、得られた測定データの内、信頼性指数が0.1以上のものを有効なデータとして粒径測定に用いる。さらに、測定ノイズによる粒径の過小評価を防ぐため、bcc相の評価では、先述した残留オーステナイトの場合とは異なり、粒径が0.47μm以上のbcc粒のみを有効な粒として上記の粒径算出を行う。組織が微細な粒と粗大な粒が混在した混粒組織の場合、金属組織の結晶粒径評価として一般的に用いられる切断法で評価すると、粗大な粒の影響が過小に評価される場合がある。本発明では粗大な粒の影響を考慮した結晶粒径の算出法として、結晶粒個々の面積を重みとして掛けた上記(1)式を用いる。
 本発明では、冷延鋼板の場合は鋼板表面から板厚の1/4深さ位置、めっき鋼板の場合は基材である鋼板とめっき層との境界から基材である鋼板の板厚の1/4深さ位置において、上述の金属組織を規定する。
 以上の金属組織上の特徴に基づいて実現されうる機械特性として、本発明に係る冷延鋼板は、衝撃吸収性を確保するために、圧延方向と直交する方向において780MPa以上の引張強度(TS)を有していることが好ましく、950MPa以上であればさらに好ましい。一方、延性を確保するために、TSは1180MPa未満であることが好ましい。
 プレス成形性の観点から、圧延方向と直交する方向の全伸び(El0)を下記式(1)に基づいて板厚1.2mm相当の全伸びに換算した値であるEl、日本工業規格JIS Z2253に準拠して歪み範囲を5~10%として5%と10%の2点の公称歪みおよびこれらに対応する試験力を用いて算出される加工硬化指数であるn値、および日本鉄鋼連盟規格JFST1001に準拠して測定される穴拡げ率であるλについて、
 ・TS×Elの値が19000MPa%以上、特に20000MPa以上、
 ・TS×n値の値が160MPa以上、特に165MPa以上、および
 TS1.7×λの値が5500000MPa1.7%以上、特に6000000MPa1.7%以上、
であることが好ましい。
  El=El0×(1.2/t0)0.2 ・・・ (2)
 ここで、式中のEl0は、JIS5号引張試験片を用いて測定された全伸びの実測値を、t0は、測定に供したJIS5号引張試験片の板厚を表し、Elは板厚が1.2mmである場合に相当する全伸びの換算値である。
 加工硬化指数は、自動車部品をプレス成形する際に生じる歪みが5~10%程度であることから、引張試験における歪み範囲5~10%に対するn値で表した。鋼板の全伸びが高くても、n値が低い場合には自動車部品のプレス成形において歪み伝播性が不十分となり、局所的な板厚減少等の成形不良が発生しやすい。また、形状凍結性の観点からは、降伏比が80%未満であることが好ましく、75%未満であることはさらに好ましく、70%未満であれば特に好ましい。
 2.鋼の化学組成
 C:0.020%超0.30%未満
 C含有量が0.020%以下では上記の金属組織を得ることが困難となる。したがって、C含有量は0.020%超とする。好ましくは0.070%超、さらに好ましくは0.10%超、特に好ましくは0.14%超である。一方、C含有量が0.30%以上では、鋼板の伸びフランジ性が損なわれるばかりか、溶接性が劣化する。したがって、C含有量は0.30%未満とする。好ましくは0.25%未満、さらに好ましくは0.20%未満、特に好ましくは0.17%未満である。
 Si:0.10%超3.00%以下
 Siは、焼鈍中のオーステナイト粒成長抑制を通じ、延性、加工硬化性および伸びフランジ性を改善する作用を有する。また、オーステナイトの安定性を高める作用を有し、上記の金属組織を得るのに有効な元素である。Si含有量が0.10%以下では上記作用による効果を得ることが困難となる。したがって、Si含有量は0.10%超とする。好ましくは0.60%超、さらに好ましくは0.90%超、特に好ましくは1.20%超である。一方、Si含有量が3.00%超では鋼板の表面性状が劣化する。さらに、化成処理性およびめっき性が著しく劣化する。したがって、Si含有量は3.00%以下とする。好ましくは2.00%未満、さらに好ましくは1.80%未満、特に好ましくは1.60%未満である。
 後述するAlを含有する場合は、Si含有量とsol.Al含有量が下記式(3)を満足することが好ましく、下記式(4)を満足するとさらに好ましく、下記式(5)を満足すると特に好ましい。
  Si+sol.Al>0.60 ・・・ (3)
  Si+sol.Al>0.90 ・・・ (4)
  Si+sol.Al>1.20 ・・・ (5)
ここで、式中のSiは鋼中でのSi含有量を、sol.Alは酸可溶性のAl含有量を質量%にて表したものである。
 Mn:1.00%超3.50%以下
 Mnは、鋼の焼入性を向上させる作用を有し、上記の金属組織を得るのに有効な元素である。Mn含有量が1.00%以下では上記の金属組織を得ることが困難となる。したがって、Mn含有量は1.00%超とする。好ましくは1.50%超、さらに好ましくは1.80%超、特に好ましくは2.10%超である。Mn含有量が過剰となると、熱延鋼板の金属組織において、圧延方向に展伸した粗大な低温変態生成相が生じ、冷間圧延および焼鈍後の金属組織において粗大な残留オーステナイト粒が増加し、加工硬化性および伸びフランジ性が劣化する。したがって、Mn含有量は3.50%以下とする。好ましくは3.00%未満、さらに好ましくは2.80%未満、特に好ましくは2.60%未満である。
 P:0.10%以下
 Pは、不純物として鋼中に含有される元素であり、粒界に偏析して鋼を脆化させる。このため、P含有量は少ないほど好ましい。したがって、P含有量は0.10%以下とする。好ましくは0.050%未満、さらに好ましくは0.020%未満、特に好ましくは0.015%未満である。
 S:0.010%以下
 Sは、不純物として鋼中に含有される元素であり、硫化物系介在物を形成して伸びフランジ性を劣化させる。このため、S含有量は少ないほど好ましい。したがって、S含有量は0.010%以下とする。好ましくは0.005%未満、さらに好ましくは0.003%未満、特に好ましくは0.002%未満である。
 sol.Al:2.00%以下
 Alは、溶鋼を脱酸する作用を有する。本発明においては、Alと同様に脱酸作用を有するSiを含有させるため、Alは必ずしも含有させる必要はない。すなわち、限りなく0%に近くてもよい。脱酸の促進を目的として含有させる場合には、sol.Alとして0.0050%以上含有させることが好ましい。さらに好ましいsol.Al含有量は0.020%超である。また、Alは、Siと同様にオーステナイトの安定性を高める作用を有し、上記の金属組織を得るのに有効な元素であるので、この目的でAlを含有させることもできる。この場合、sol.Al含有量は好ましくは0.040%超、さらに好ましくは0.050%超、特に好ましくは0.060%超である。
 一方、sol.Al含有量が高すぎると、アルミナに起因する表面疵が発生しやすくなるばかりか、変態点が大きく上昇し、低温変態生成相を主相とする金属組織を得ることが困難となる。したがって、sol.Al含有量は2.00%以下とする。好ましくは0.60%未満、さらに好ましくは0.20%未満、特に好ましくは0.10%未満である。
 N:0.010%以下
 Nは、不純物として鋼中に含有される元素であり、延性を劣化させる。このため、N含有量は少ないほど好ましい。したがって、N含有量は0.010%以下とする。好ましくは0.006%以下であり、さらに好ましくは0.005%以下である。
 本発明に係る鋼板は、以下に列記する元素を任意元素として含有してもよい。
 Ti:0.050%未満、Nb:0.050%未満およびV:0.50%以下からなる群から選択される1種または2種以上
 Ti、NbおよびVは、熱間圧延工程で再結晶を抑制することにより加工歪みを増大させ、熱延鋼板の金属組織を微細化する作用を有する。また、炭化物または窒化物として析出し、焼鈍中のオーステナイトの粗大化を抑制する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。しかし、過剰に含有させても上記作用による効果が飽和して不経済となる。そればかりか、焼鈍時の再結晶温度が上昇し、焼鈍後の金属組織が不均一となり、伸びフランジ性も損なわれる。さらには、炭化物または窒化物の析出量が増し、降伏比が上昇し、形状凍結性も劣化する。
 したがって、Ti含有量は0.050%未満、Nb含有量は0.050%未満、V含有量は0.50%以下とする。Ti含有量は好ましくは0.040%未満、さらに好ましくは0.030%未満であり、Nb含有量は好ましくは0.040%未満、さらに好ましくは0.030%未満であり、V含有量は好ましくは0.30%以下であり、さらに好ましくは0.050%未満である。上記作用による効果をより確実に得るには、Ti:0.005%以上、Nb:0.005%以上およびV:0.010%以上のいずれかを満足させることが好ましい。Tiを含有させる場合には、Ti含有量を0.010%以上とすることがさらに好ましく、Nbを含有させる場合には、Nb含有量を0.010%以上とすることがさらに好ましく、Vを含有させる場合には、V含有量を0.020%以上とすることがさらに好ましい。
 Cr:1.0%以下、Mo:0.50%以下およびB:0.010%以下からなる群から選択される1種または2種以上
 Cr、MoおよびBは、鋼の焼入性を向上させる作用を有し、上記の金属組織を得るのに有効な元素である。したがって、これらの元素の1種または2種以上を含有させてもよい。しかし、過剰に含有させても上記作用による効果が飽和して不経済となる。したがって、Cr含有量は1.0%以下、Mo含有量は0.50%以下、B含有量は0.010%以下とする。Cr含有量は好ましくは0.50%以下であり、Mo含有量は好ましくは0.20%以下であり、B含有量は好ましくは0.0030%以下である。上記作用による効果をより確実に得るには、Cr:0.20%以上、Mo:0.05%以上およびB:0.0010%以上のいずれかを満足させることが好ましい。
 Ca:0.010%以下、Mg:0.010%以下、REM:0.050%以下およびBi:0.050%以下からなる群から選択される1種または2種以上
 Ca、MgおよびREMは介在物の形状を調整することにより、Biは凝固組織を微細化することにより、ともに伸びフランジ性を改善する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。しかし、過剰に含有させても上記作用による効果が飽和して不経済となる。
 したがって、Ca含有量は0.010%以下、Mg含有量は0.010%以下、REM含有量は0.050%以下、Bi含有量は0.050%以下とする。好ましくは、Ca含有量は0.0020%以下、Mg含有量は0.0020%以下、REM含有量は0.0020%以下、Bi含有量は0.010%以下である。上記作用をより確実に得るには、Ca:0.0005%以上、Mg:0.0005%以上、REM:0.0005%以上およびBi:0.0010%以上のいずれかを満足させることが好ましい。なお、REMとは希土類元素を意味し、Sc、Yおよびランタノイドの合計17元素の総称であり、REM含有量はこれらの元素の合計含有量である。
 3.製造条件
 上述した化学組成を有する鋼は、公知の手段により溶製された後に、連続鋳造法により鋼塊とされるか、または、任意の鋳造法により鋼塊とした後に分塊圧延する方法等により鋼片とされる。連続鋳造工程では、介在物に起因する表面欠陥の発生を抑制するために、鋳型内にて電磁攪拌等の外部付加的な流動を溶鋼に生じさせることが好ましい。鋼塊または鋼片は、一旦冷却されたものを再加熱して熱間圧延に供してもよく、連続鋳造後の高温状態にある鋼塊または分塊圧延後の高温状態にある鋼片をそのまま、あるいは保温して、あるいは補助的な加熱を行って熱間圧延に供してもよい。本明細書では、このような鋼塊および鋼片を、熱間圧延の素材として「スラブ」と総称する。熱間圧延に供するスラブの温度は、オーステナイトの粗大化を防止するために、1250℃未満とすることが好ましく、1200℃以下とすればさらに好ましい。熱間圧延に供するスラブの温度の下限は特に限定する必要はなく、後述するように熱間圧延をAr3点以上で完了することが可能な温度であればよい。
 熱間圧延は、圧延完了後にオーステナイトを変態させることにより熱延鋼板の金属組織を微細化するために、Ar3点以上の温度域で完了させる。圧延完了の温度が低すぎると、熱延鋼板の金属組織において、圧延方向に展伸した粗大な低温変態生成相が生じ、冷間圧延および焼鈍後の金属組織において粗大な残留オーステナイト粒が増加し、加工硬化性および伸びフランジ性が劣化し易くなる。このため、熱間圧延の完了温度は、Ar3点以上かつ820℃超とすることが好ましい。さらに好ましくはAr3点以上かつ850℃超であり、特に好ましくはAr3点以上かつ880℃超である。一方、圧延完了の温度が高すぎると、加工歪みの蓄積が不十分となり、熱延鋼板の金属組織を微細化することが困難となる。このため、熱間圧延の完了温度は950℃未満であることが好ましく、920℃未満であるとさらに好ましい。また、製造負荷を軽減するためには、熱間圧延の完了温度を高めて圧延荷重を低下させることが好ましい。この観点からは、熱間圧延の完了温度をAr3点以上かつ780℃超とすることが好ましく、Ar3点以上かつ800℃超とするとさらに好ましい。
 なお、熱間圧延が粗圧延と仕上圧延とからなる場合には、仕上圧延を上記温度で完了するために、粗圧延と仕上圧延との間で粗圧延材を加熱してもよい。この際、粗圧延材の後端が先端よりも高温となるように加熱することにより仕上圧延の開始時における粗圧延材の全長にわたる温度の変動を140℃以下に抑制することが望ましい。これにより、コイル内の製品特性の均一性が向上する。
 粗圧延材の加熱方法は公知の手段を用いて行えばよい。例えば、粗圧延機と仕上圧延機との間にソレノイド式誘導加熱装置を設けておき、この誘導加熱装置の上流側における粗圧延材長手方向の温度分布等に基づいて加熱昇温量を制御してもよい。
 熱間圧延の圧下量は、最終1パスの圧下量を板厚減少率で25%超とする。これは、オーステナイトに導入される加工歪み量を増し、熱延鋼板の金属組織を微細化し、冷間圧延および焼鈍後の金属組織において粗大な残留オーステナイト粒の生成を抑制するとともにbcc粒を細粒化するためである。また、第二相がポリゴナルフェライトを含む場合は、ポリゴナルフェライトを細粒化するためである。最終1パスの圧下量は30%超とすることが好ましく、40%超とすればさらに好ましい。圧下量が高くなりすぎると、圧延荷重が上昇して圧延が困難となる。したがって、最終1パスの圧下量は55%未満とすることが好ましく、50%未満とすればさらに好ましい。圧延荷重を低下させるために、圧延ロールと鋼板の間に圧延油を供給し摩擦係数を低下させて圧延する、いわゆる潤滑圧延を行ってもよい。
 熱間圧延後は、圧延完了後0.40秒間以内に720℃以下の温度域まで急冷する。これは、圧延によりオーステナイトに導入された加工歪みの解放を抑制し、加工歪みを駆動力としてオーステナイトを変態させ、熱延鋼板の金属組織を微細化し、冷間圧延および焼鈍後の金属組織において粗大な残留オーステナイト粒の生成を抑制するとともにbcc粒を細粒化するためである。また、第二相がポリゴナルフェライトを含む場合は、ポリゴナルフェライトを細粒化するためである。好ましくは、圧延完了後0.30秒間以内に720℃以下の温度域まで急冷することであり、さらに好ましくは、圧延完了後0.20秒間以内に720℃以下の温度域まで急冷することである。また、加工歪みの解放は、急冷中の平均冷却速度が速いほど抑制されるので、急冷中の平均冷却速度を300℃/s以上とすることが好ましく、これにより、熱延鋼板の金属組織を一層微細化することができる。急冷中の平均冷却速度を400℃/s以上とすればさらに好ましく、600℃/s以上とすれば特に好ましい。なお、圧延完了から急冷を開始するまでの時間および、その間の冷却速度は、特に規定する必要がない。
 急冷を行う設備は特に規定されないが、工業的には水量密度の高い水スプレー装置を用いることが好適であり、圧延板搬送ローラーの間に水スプレーヘッダーを配置し、圧延板の上下から十分な水量密度の高圧水を噴射する方法が例示される。
 急冷停止後は、鋼板を500℃超の温度域で巻取る。これは、巻取温度が500℃以下であると、熱延鋼板において鉄炭化物が充分に析出せず、冷間圧延および焼鈍後の金属組織において粗大な残留オーステナイト粒が生成するとともにbcc粒が粗粒化するからである。巻取温度は550℃超であることが好ましく、580℃超であるとさらに好ましい。一方、巻取温度が高すぎると、熱延鋼板においてフェライトが粗大となり、冷間圧延および焼鈍後の金属組織において粗大な残留オーステナイト粒が生成する。このため巻取温度は650℃未満とすることが好ましく、620℃未満とするとさらに好ましい。
 急冷停止から巻取りまでの条件は特に規定しないが、急冷停止後、720~600℃の温度域で1秒間以上保持することが好ましい。これにより、微細なフェライトの生成が促進される。一方、保持時間が長くなりすぎると生産性が損なわれるので、720~600℃の温度域における保持時間の上限を10秒間以内とすることが好ましい。720~600℃の温度域で保持した後は、生成したフェライトの粗大化を防止するために、巻取温度までを20℃/s以上の冷却速度で冷却することが好ましい。
 熱間圧延された鋼板は、酸洗等により脱スケールされた後に、常法に従って冷間圧延される。冷間圧延は、再結晶を促進して冷延圧延および焼鈍後の金属組織を均一化し、伸びフランジ性をさらに向上させるために、冷圧率(冷間圧延における総圧下率)を40%以上とすることが好ましい。冷圧率が高すぎると、圧延荷重が増大して圧延が困難となるため、冷圧率の上限を70%未満とすることが好ましく、60%未満とすることはさらに好ましい。
 冷間圧延後の鋼板は、必要に応じて公知の方法に従って脱脂等の処理が施された後、焼鈍される。焼鈍における均熱温度の下限は、(Ac3点-40℃)以上とする。これは、主相が低温変態生成相であって第二相に残留オーステナイトを含む金属組織を得るためである。低温変態生成相の体積率を増加させ、伸びフランジ性を向上させるために、均熱温度は(Ac3点-20℃)超とすることが好ましく、Ac3点超とするとさらに好ましい。しかし、均熱温度が高くなり過ぎると、オーステナイトが過度に粗大化し、焼鈍後の金属組織が粗大化するとともにポリゴナルフェライトの生成が抑制され、延性、加工硬化性および伸びフランジ性が劣化する。したがって、均熱温度の上限は、(Ac3点+100℃)未満とすることが好ましく、(Ac3点+50℃)未満とすることがさらに好ましく、(Ac3点+20℃)未満とすることが特に好ましい。均熱温度の上限を(Ac3点+50℃)未満とすることにより、bcc粒を平均粒径7.0μm以下まで細粒化することが可能となり、特に優れた延性、加工硬化性および伸びフランジ性が得られる。
 均熱温度での保持時間(均熱時間)は特に限定する必要はないが、安定した機械特性を得るために、15秒間超とすることが好ましく、60秒間超とするとさらに好ましい。一方、保持時間が長くなりすぎると、オーステナイトが過度に粗大化して、延性、加工硬化性および伸びフランジ性が劣化し易くなる。このため、保持時間は、150秒間未満とすることが好ましく、120秒間未満とするとさらに好ましい。
 焼鈍における加熱過程では、再結晶を促進して焼鈍後の金属組織を均一化し、伸びフランジ性をさらに向上させるために、700℃から均熱温度までの加熱速度を10.0℃/s未満とすることが好ましい。8.0℃/s未満とするとさらに好ましく、5.0℃/s未満とすると特に好ましい。
 焼鈍における均熱後の冷却過程では、微細なポリゴナルフェライトの生成を促進し、延性および加工硬化性を向上させるために、5.0℃/s未満の冷却速度で均熱温度から50℃以上冷却することが好ましい。この際の冷却速度は、3.0℃/s未満とすることがさらに好ましく、2.0℃/s未満とすることが特に好ましい。また、ポリゴナルフェライトの体積率をさらに高めるには、80℃以上冷却することがさらに好ましく、100℃以上冷却することが特に好ましく、120℃以上冷却することが最も好ましい。(Ac3点+50℃)未満で均熱した後、5.0℃/s未満の冷却速度で均熱温度から50℃以上冷却することにより、平均粒径が5.0μm未満であるポリゴナルフェライトを全組織に対する体積率で2.0%超生成させることが可能となり、特に優れた延性、加工硬化性および伸びフランジ性が得られる。
 また、低温変態生成相を主相とする金属組織を得るために、650~500℃の温度範囲を15℃/s以上の冷却速度で冷却することが好ましい。650~450℃の温度範囲を15℃/s以上の冷却速度で冷却することはさらに好ましい。冷却速度が速いほど低温変態生成相の体積率が高まるので、上記いずれの温度範囲でも、冷却速度を30℃/s超とするとさらに好ましく、50℃/s超とすると特に好ましい。一方、冷却速度が速すぎると鋼板の形状が損なわれるので、650~500℃の温度範囲における冷却速度を200℃/s以下とすることが好ましい。150℃/s未満であるとさらに好ましく、130℃/s未満であれば特に好ましい。
 残留オーステナイト量を確保するために、冷却過程において450~340℃の温度域で30秒間以上保持する。残留オーステナイトの安定性を高めて延性、加工硬化性および伸びフランジ性をさらに向上させるためには、保持温度域を430~360℃とすることが好ましい。また、保持時間を長くするほど残留オーステナイトの安定性が高まるので、保持時間を60秒間以上とすることが好ましい。120秒間以上とすることはさらに好ましく、300秒間超とすることは特に好ましい。
 電気めっき鋼板を製造する場合には、上述した方法で製造された冷延鋼板に、必要に応じて表面の清浄化および調整のための周知の前処理を施した後、常法に従って電気めっきを行えばよく、めっき被膜の化学組成および付着量は限定されない。電気めっきの種類として、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。
 溶融めっき鋼板を製造する場合には、上述した方法で焼鈍工程まで行い、450~340℃の温度域で30秒間以上保持した後、必要に応じて鋼板を加熱してから、めっき浴に浸漬し溶融めっきを施す。残留オーステナイトの安定性を高めて延性、加工硬化性および伸びフランジ性をさらに向上させるためには、保持温度域を430~360℃とすることが好ましい。また、保持時間を長くするほど残留オーステナイトの安定性が高まるので、保持時間を60秒間以上とすることが好ましい。120秒間以上とすることはさらに好ましく、300秒間超とすることは特に好ましい。溶融めっき後再加熱して合金化処理を行ってもよい。めっき被膜の化学組成および付着量は限定されない。溶融めっきの種類として、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。
 めっき鋼板は、その耐食性をさらに高めるために、めっき後に適当な化成処理を施してもよい。化成処理は、従来のクロメート処理に代わって、ノンクロム型の化成処理液(例えば、シリケート系、リン酸塩系など)を用いて実施することが好ましい。
 このようにして得られた冷延鋼板およびめっき鋼板には、常法にしたがって調質圧延を行ってもよい。しかし、調質圧延の伸び率が高いと延性の劣化を招くので、調質圧延の伸び率は1.0%以下とすることが好ましい。さらに好ましい伸び率は0.5%以下である。
 以下の実施例により本発明を例示する。本発明はこれらの実施例により制限されるものではない。
 実験用真空溶解炉を用いて、表1に示される化学組成を有する鋼を溶解し、鋳造した。得られた各鋼塊を、熱間鍛造により厚さ30mmの鋼片とした。鋼片を、電気加熱炉を用いて1200℃に加熱し、この温度に60分間保持した後、表2に示される条件で熱間圧延を行った。
 具体的には、実験用熱間圧延機を用いて、Ar3点以上の温度域で6パスの圧延を行い、厚さ2~3mmに仕上げた。最終1パスの圧下率は、板厚減少率で12~42%とした。熱間圧延後、水スプレーを使用して種々の冷却条件で650~720℃まで冷却し、5~10秒間放冷した後、60℃/sの冷却速度で種々の温度まで冷却して、その温度を巻取温度とし、同じ温度に保持された電気加熱炉中に装入して30分間保持した後、20℃/hの冷却速度で室温まで炉冷却して、巻取後の徐冷をシミュレートすることにより、熱延鋼板を得た。
 得られた熱延鋼板を酸洗して冷間圧延母材とし、冷圧率50~60%で冷間圧延を施し、厚さ1.0~1.2mmの冷延鋼板を得た。連続焼鈍シミュレーターを用いて、得られた冷延鋼板を、10℃/sの加熱速度で550℃まで加熱した後、2℃/sの加熱速度で表2に示される種々の温度まで加熱し、95秒間均熱した。その後、表2に示される温度まで一次冷却し、さらに一次冷却停止温度から平均冷却速度を60℃/sとして、表2に示される種々の冷却停止温度まで二次冷却し、その温度に330秒間保持した後、室温まで冷却して焼鈍鋼板を得た。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 焼鈍鋼板からSEM観察用試験片を採取し、圧延方向に平行な縦断面を研磨した後、ナイタールで腐食処理し、鋼板表面から板厚の1/4深さ位置における金属組織を観察し、画像処理により、低温変態生成相およびポリゴナルフェライトの体積分率を測定した。また、ポリゴナルフェライト全体が占める面積をポリゴナルフェライトの結晶粒数で除し、ポリゴナルフェライトの平均粒径(円相当直径)を求めた。
 また、焼鈍鋼板からXRD測定用試験片を採取し、鋼板表面から板厚の1/4深さ位置まで圧延面を化学研磨した後、X線回折試験を行い、残留オーステナイトの体積分率を測定した。具体的には、X線回折装置にリガク製RINT2500を使用し、Co-Kα線を入射してα相(110)、(200)、(211)回折ピークおよびγ相(111)、(200)、(220)回折ピークの積分強度を測定し、残留オーステナイトの体積分率を求めた。
 さらに、焼鈍鋼板からEBSP測定用試験片を採取し、圧延方向に平行な縦断面を電解研磨した後、鋼板表面から板厚の1/4深さ位置において金属組織を観察し、画像解析により、bcc粒の平均粒径、残留オーステナイト粒の粒径分布および残留オーステナイトの平均粒径を測定した。具体的には、EBSP測定装置にTSL製OIM5を使用し、板厚方向に50μm、圧延方向に100μmの領域において0.1μmピッチで電子ビームを照射し、得られた測定データの内、信頼性指数が0.1以上のものを有効なデータとしてbcc相およびfcc相の判定を行った。
 bcc相として観察され、方位差15°以上の粒界で囲まれた領域を一つのbcc粒として、個々のbcc粒の円相当直径および面積を求め、上述した式(1)の定義にしたがって平均粒径を算出した。なお平均粒径算出に際して、円相当直径が0.47μm以上であるbcc粒を有効なbcc粒とした。また、マルテンサイトの結晶構造は厳密には体心正方格子(bct)であるが、EBSPによる金属組織評価では格子定数を考慮しないため、マルテンサイトもbcc相として取り扱った。
 また、fcc相として観察され、母相に囲まれた領域を一つの残留オーステナイト粒とし、個々の残留オーステナイト粒の円相当直径を求めた。残留オーステナイトの平均粒径は、円相当直径が0.15μm以上である残留オーステナイト粒を有効な残留オーステナイト粒とし、個々の有効な残留オーステナイト粒の円相当直径の平均値として算出した。また、粒径が1.2μm以上である残留オーステナイト粒の単位面積あたりの数密度(NR)を求めた。
 降伏応力(YS)および引張強度(TS)は、焼鈍鋼板から圧延方向と直行する方向に沿ってJIS5号引張試験片を採取し、引張速度10mm/minで引張試験を行うことにより求めた。全伸び(El)は、圧延方向と直行する方向に沿って採取したJIS5号引張試験片にて引張試験を行い、得られた実測値(El0)を用いて、上記式(2)に基づき、板厚が1.2mmである場合に相当する換算値を求めた。加工硬化指数(n値)は、圧延方向と直行する方向に沿って採取したJIS5号引張試験片にて引張試験を行い、歪み範囲を5~10%として求めた。具体的には、公称歪み5%および10%に対する試験力を用いて2点法により算出した。
 伸びフランジ性は、以下の方法で穴拡げ率(λ)を測定することにより評価した。焼鈍鋼板から100mm角の正方形素板を採取し、クリアランス12.5%で直径10mmの打ち抜き穴を開け、先端角60°の円錐ポンチでダレ側から打ち抜き穴を押し拡げ、板厚を貫通する割れが発生したときの穴の拡大率を測定し、これを穴拡げ率とした。
 表3に、焼鈍後の冷延鋼板の金属組織観察結果および性能評価結果を示す。なお、表1~表3において、*を付した数値または記号は本発明の範囲外であることを意味する。
Figure JPOXMLDOC01-appb-T000004
 本発明が規定する範囲内の鋼板についての試験結果はいずれも、TS×Elの値が19000MPa%以上であり、TS×n値の値が160以上であり、TS1.7×λの値が6000000MPa1.7%以上であり、良好な延性、加工硬化性および伸びフランジ性を示した。特にbcc粒の平均粒径が7.0μm以下であるか、および/または第二相が残留オーステナイトに加えてポリゴナルフェライトを含み、このポリゴナルフェライトの体積率が2.0%超27.0%未満、平均粒径が5.0μm未満であると、TS×Elの値が20000MPa%以上、TS×n値の値が165以上、TS1.7×λの値が6000000MPa1.7%以上となって、延性、加工硬化性および伸びフランジ性がさらに改善された。

Claims (6)

  1.  質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:0%以上2.00%以下、N:0.010%以下、Ti:0%以上0.050%未満、Nb:0%以上0.050%未満、V:0%以上0.50%以下、Cr:0%以上1.0%以下、Mo:0%以上0.50%以下、B:0%以上0.010%以下、Ca:0%以上0.010%以下、Mg:0%以上0.010%以下、REM:0%以上0.050%以下、Bi:0%以上0.050%以下、および残部がFeおよび不純物からなる化学組成を有する冷延鋼板であって、
     主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織を備え、前記残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、前記残留オーステナイトの内、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10-2個/μm2以下であることを特徴とする冷延鋼板。
  2.  前記金属組織において、方位差15゜以上の粒界で囲まれたbcc構造を有する粒およびbct構造を有する粒の平均粒径が7.0μm以下である、請求項1に記載の冷延鋼板。
  3.  前記金属組織において、第二相が残留オーステナイトおよびポリゴナルフェライトを含み、前記ポリゴナルフェライトは、全組織に対する体積率が2.0%超27.0%未満、平均粒径が5.0μm未満である、請求項1または請求項2に記載の冷延鋼板。
  4.  前記化学組成が、質量%で、Ti:0.005%以上0.050%未満、Nb:0.005%以上0.050%未満およびV:0.010%以上0.50%以下からなる群から選択される1種または2種以上を含有する、請求項1から請求項3のいずれかに記載の冷延鋼板。
  5.  前記化学組成が、質量%で、Cr:0.20%以上1.0%以下、Mo:0.05%以上0.50%以下およびB:0.0010%以上0.010%以下からなる群から選択される1種または2種以上を含有する、請求項1から請求項4のいずれかに記載の冷延鋼板。
  6.  前記化学組成が、質量%で、Ca:0.0005%以上0.010%以下、Mg:0.0005%以上0.010%以下、REM:0.0005%以上0.050%以下およびBi:0.0010%以上0.050%以下からなる群から選択される1種または2種以上を含有する、請求項1から請求項5のいずれかに記載の冷延鋼板。
PCT/JP2012/066380 2011-07-06 2012-06-27 冷延鋼板 WO2013005618A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2841061A CA2841061C (en) 2011-07-06 2012-06-27 Cold-rolled steel sheet
RU2014104025/02A RU2560479C1 (ru) 2011-07-06 2012-06-27 Холоднокатаный стальной лист
MX2014000117A MX356410B (es) 2011-07-06 2012-06-27 Chapa de acero laminada en frio.
US14/130,552 US9523139B2 (en) 2011-07-06 2012-06-27 Cold-rolled steel sheet
ES12808030.6T ES2665318T3 (es) 2011-07-06 2012-06-27 Chapa de acero laminado en frío
PL12808030T PL2730672T3 (pl) 2011-07-06 2012-06-27 Blacha stalowa cienka walcowana na zimno
EP12808030.6A EP2730672B1 (en) 2011-07-06 2012-06-27 Cold-rolled steel sheet
KR1020147003047A KR101597058B1 (ko) 2011-07-06 2012-06-27 냉연 강판
BR112014000063A BR112014000063A2 (pt) 2011-07-06 2012-06-27 chapa de aço laminada a frio
CN201280043477.7A CN103781932B (zh) 2011-07-06 2012-06-27 冷轧钢板
IN268DEN2014 IN2014DN00268A (ja) 2011-07-06 2012-06-27

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-150239 2011-07-06
JP2011150239A JP5708318B2 (ja) 2011-07-06 2011-07-06 冷延鋼板
JP2011-150245 2011-07-06
JP2011150245A JP5708320B2 (ja) 2011-07-06 2011-07-06 冷延鋼板
JP2011-150240 2011-07-06
JP2011150240A JP5708319B2 (ja) 2011-07-06 2011-07-06 冷延鋼板

Publications (1)

Publication Number Publication Date
WO2013005618A1 true WO2013005618A1 (ja) 2013-01-10

Family

ID=47436973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066380 WO2013005618A1 (ja) 2011-07-06 2012-06-27 冷延鋼板

Country Status (12)

Country Link
US (1) US9523139B2 (ja)
EP (1) EP2730672B1 (ja)
KR (1) KR101597058B1 (ja)
CN (1) CN103781932B (ja)
BR (1) BR112014000063A2 (ja)
CA (1) CA2841061C (ja)
ES (1) ES2665318T3 (ja)
IN (1) IN2014DN00268A (ja)
MX (1) MX356410B (ja)
PL (1) PL2730672T3 (ja)
RU (1) RU2560479C1 (ja)
WO (1) WO2013005618A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103775A (zh) * 2014-03-31 2016-11-09 株式会社神户制钢所 延性、延伸凸缘性和焊接性优异的高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177582A1 (fr) 2014-05-20 2015-11-26 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier doublement recuite à hautes caractéristiques mécaniques de résistance et ductilité, procédé de fabrication et utilisation de telles tôles
CN107429369B (zh) * 2015-02-24 2019-04-05 新日铁住金株式会社 冷轧钢板及其制造方法
JP6554397B2 (ja) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
JP6108046B1 (ja) * 2015-06-30 2017-04-05 新日鐵住金株式会社 高強度冷延鋼板、高強度溶融亜鉛めっき鋼板、および高強度合金化溶融亜鉛めっき鋼板
RU2602585C1 (ru) * 2015-11-20 2016-11-20 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Плакированная высокопрочная коррозионно-стойкая сталь
CN109642280B (zh) * 2016-08-10 2020-11-17 杰富意钢铁株式会社 高强度钢板及其制造方法
KR102206929B1 (ko) * 2017-10-24 2021-01-25 아르셀러미탈 코팅된 강 시트의 제조 방법
RU2738130C1 (ru) 2017-10-24 2020-12-08 Арселормиттал Способ изготовления гальванизированной и отожженной листовой стали
UA125102C2 (uk) 2017-11-17 2022-01-05 Арселорміттал Спосіб виготовлення сталевого листа з цинковим покриттям, стійкого до рідинно-металічного окрихчування
BR112020008449A2 (pt) * 2017-11-24 2020-10-20 Nippon Steel Corporation chapa de aço laminada a quente e método para produção da mesma
WO2019180492A1 (en) * 2018-03-23 2019-09-26 Arcelormittal Forged part of bainitic steel and a method of manufacturing thereof
DE102022127491A1 (de) * 2022-10-19 2024-04-25 Thyssenkrupp Steel Europe Ag Dressiertes Stahlblech mit intakter Oxidschicht auf einem metallischen Überzug
CN115652207B (zh) * 2022-11-07 2023-05-12 鞍钢股份有限公司 780MPa级短流程经济型冷轧DH钢板及其生产方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123823A (ja) 1981-12-11 1983-07-23 Nippon Steel Corp 極細粒高強度熱延鋼板の製造方法
JPS59229413A (ja) 1983-06-10 1984-12-22 Nippon Steel Corp 超細粒フェライト鋼の製造方法
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JPH11152544A (ja) 1997-09-11 1999-06-08 Kawasaki Steel Corp 超微細粒を有する加工用熱延鋼板及びその製造方法並びに冷延鋼板の製造方法
JP2001192768A (ja) 1999-11-02 2001-07-17 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2003277884A (ja) * 2002-01-21 2003-10-02 Kobe Steel Ltd 加工性及び焼付硬化性に優れた高強度鋼板
JP2004190050A (ja) * 2002-12-06 2004-07-08 Kobe Steel Ltd 温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、温間加工方法、及び温間加工された高強度部材または高強度部品
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005336526A (ja) * 2004-05-25 2005-12-08 Kobe Steel Ltd 加工性に優れた高強度鋼板及びその製造方法
JP2006336074A (ja) * 2005-06-02 2006-12-14 Kobe Steel Ltd 化成処理性に優れた高強度高延性鋼板
WO2007015541A1 (ja) 2005-08-03 2007-02-08 Sumitomo Metal Industries, Ltd. 熱延鋼板及び冷延鋼板並びにそれらの製造方法
JP2007182625A (ja) * 2005-12-06 2007-07-19 Kobe Steel Ltd 耐パウダリング性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319338B1 (en) * 1996-11-28 2001-11-20 Nippon Steel Corporation High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
WO1999013123A1 (fr) * 1997-09-11 1999-03-18 Kawasaki Steel Corporation Plaque d'acier laminee a chaud contenant des particules hyperfines, son procede de fabrication et procede de fabrication de plaques d'acier laminees a froid
JP3619357B2 (ja) 1997-12-26 2005-02-09 新日本製鐵株式会社 高い動的変形抵抗を有する高強度鋼板とその製造方法
JP3927384B2 (ja) * 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
DE602004027475D1 (de) * 2003-04-10 2010-07-15 Arcelor France Ein herstellungsverfahren für feuerverzinktes stahlblech mit hoher festigkeit
ATE526424T1 (de) * 2003-08-29 2011-10-15 Kobe Steel Ltd Hohes stahlblech der dehnfestigkeit ausgezeichnet für die verarbeitung und proze für die produktion desselben
JP4288364B2 (ja) * 2004-12-21 2009-07-01 株式会社神戸製鋼所 伸びおよび伸びフランジ性に優れる複合組織冷延鋼板
JP4716359B2 (ja) 2005-03-30 2011-07-06 株式会社神戸製鋼所 均一伸びに優れた高強度冷延鋼板およびその製造方法
US8025982B2 (en) * 2005-12-06 2011-09-27 Kobe Steel, Ltd. High-strength hot dip galvannealed steel sheet having high powdering resistance and method for producing the same
CN100510143C (zh) * 2006-05-29 2009-07-08 株式会社神户制钢所 延伸凸缘性优异的高强度钢板
JP5167487B2 (ja) * 2008-02-19 2013-03-21 Jfeスチール株式会社 延性に優れる高強度鋼板およびその製造方法
JP2010065272A (ja) * 2008-09-10 2010-03-25 Jfe Steel Corp 高強度鋼板およびその製造方法
JP5446885B2 (ja) * 2010-01-06 2014-03-19 新日鐵住金株式会社 冷延鋼板の製造方法
RU2566705C2 (ru) * 2011-07-06 2015-10-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячегальванизированный холоднокатаный стальной лист и способ его получения
ES2686567T3 (es) * 2011-07-06 2018-10-18 Nippon Steel & Sumitomo Metal Corporation Método para producir una hoja de acero laminada en frío

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123823A (ja) 1981-12-11 1983-07-23 Nippon Steel Corp 極細粒高強度熱延鋼板の製造方法
JPS59229413A (ja) 1983-06-10 1984-12-22 Nippon Steel Corp 超細粒フェライト鋼の製造方法
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JPH11152544A (ja) 1997-09-11 1999-06-08 Kawasaki Steel Corp 超微細粒を有する加工用熱延鋼板及びその製造方法並びに冷延鋼板の製造方法
JP2001192768A (ja) 1999-11-02 2001-07-17 Kawasaki Steel Corp 高張力溶融亜鉛めっき鋼板およびその製造方法
JP2003277884A (ja) * 2002-01-21 2003-10-02 Kobe Steel Ltd 加工性及び焼付硬化性に優れた高強度鋼板
JP2004190050A (ja) * 2002-12-06 2004-07-08 Kobe Steel Ltd 温間加工による伸び及び伸びフランジ性に優れた高強度鋼板、温間加工方法、及び温間加工された高強度部材または高強度部品
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005336526A (ja) * 2004-05-25 2005-12-08 Kobe Steel Ltd 加工性に優れた高強度鋼板及びその製造方法
JP2006336074A (ja) * 2005-06-02 2006-12-14 Kobe Steel Ltd 化成処理性に優れた高強度高延性鋼板
WO2007015541A1 (ja) 2005-08-03 2007-02-08 Sumitomo Metal Industries, Ltd. 熱延鋼板及び冷延鋼板並びにそれらの製造方法
JP2007182625A (ja) * 2005-12-06 2007-07-19 Kobe Steel Ltd 耐パウダリング性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730672A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103775A (zh) * 2014-03-31 2016-11-09 株式会社神户制钢所 延性、延伸凸缘性和焊接性优异的高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板

Also Published As

Publication number Publication date
EP2730672A1 (en) 2014-05-14
IN2014DN00268A (ja) 2015-06-05
CA2841061C (en) 2016-04-12
BR112014000063A2 (pt) 2017-02-14
EP2730672A4 (en) 2015-04-29
CN103781932A (zh) 2014-05-07
MX2014000117A (es) 2014-07-09
KR101597058B1 (ko) 2016-02-23
PL2730672T3 (pl) 2018-07-31
US20140241933A1 (en) 2014-08-28
RU2014104025A (ru) 2015-08-20
CN103781932B (zh) 2016-05-25
US9523139B2 (en) 2016-12-20
KR20140030335A (ko) 2014-03-11
CA2841061A1 (en) 2013-01-10
RU2560479C1 (ru) 2015-08-20
MX356410B (es) 2018-05-24
ES2665318T3 (es) 2018-04-25
EP2730672B1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
WO2013005714A1 (ja) 冷延鋼板の製造方法
WO2013005618A1 (ja) 冷延鋼板
EP3214196A1 (en) High-strength steel sheet and method for manufacturing same
JP5648597B2 (ja) 冷延鋼板の製造方法
JP5825206B2 (ja) 冷延鋼板の製造方法
JP5825205B2 (ja) 冷延鋼板の製造方法
WO2013005670A1 (ja) 溶融めっき冷延鋼板およびその製造方法
KR20190073469A (ko) 고강도 강판 및 그 제조 방법
JP6398210B2 (ja) 冷延鋼板の製造方法
JP5482513B2 (ja) 冷延鋼板およびその製造方法
JP5664482B2 (ja) 溶融めっき冷延鋼板
JP5648596B2 (ja) 冷延鋼板の製造方法
JP5609793B2 (ja) 溶融めっき冷延鋼板の製造方法
JP5708320B2 (ja) 冷延鋼板
JP5825204B2 (ja) 冷延鋼板
JP5708319B2 (ja) 冷延鋼板
JP5644703B2 (ja) 冷延鋼板の製造方法
JP5708318B2 (ja) 冷延鋼板
JP5644704B2 (ja) 冷延鋼板の製造方法
JP6314511B2 (ja) 冷延鋼板
JP6326837B2 (ja) 冷延鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2841061

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000117

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012808030

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147003047

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014104025

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130552

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014000063

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014000063

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140103