WO2013002050A1 - Laser light irradiation device - Google Patents
Laser light irradiation device Download PDFInfo
- Publication number
- WO2013002050A1 WO2013002050A1 PCT/JP2012/065461 JP2012065461W WO2013002050A1 WO 2013002050 A1 WO2013002050 A1 WO 2013002050A1 JP 2012065461 W JP2012065461 W JP 2012065461W WO 2013002050 A1 WO2013002050 A1 WO 2013002050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser light
- irradiation
- incident
- laser
- pattern
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20361—Beam shaping or redirecting; Optical components therefor with redirecting based on sensed condition, e.g. tissue analysis or tissue movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B2018/2205—Characteristics of fibres
- A61B2018/2211—Plurality of fibres
Definitions
- the present invention relates to a laser beam irradiation apparatus that can pattern-irradiate a laser beam to an irradiation target.
- a surgical operation in order to cauterize, excise, or incise a tissue, laser light is introduced into a body cavity using an optical fiber or the like, and the tissue is irradiated.
- Such a surgical operation by laser light irradiation is useful for a tissue having a small diameter, such as an endoscope, a digestive tract, a deep brain, a blood vessel, and a bronchus.
- the neck of the endoscope cannot be shaken with a tissue having a small diameter, and laser irradiation cannot be performed in the oblique direction.
- it is necessary for the doctor to reinsert or rotate the laser beam irradiation device while checking with an endoscopic monitor so that the laser beam irradiation direction is appropriate. was a problem.
- Patent Document 1 in a laser probe having a laser light guide means in an insertion portion, a laser beam reflecting mirror provided at the distal end portion of the insertion portion, and a swing motion means for swinging the reflection mirror, A laser probe comprising a control means for controlling the swing movement means in an arbitrary pattern is described (Patent Document 1).
- the beam scanning probe for scanning the predetermined beam emitted from the wave source section in the body cavity to obtain an observation image includes a scanning mirror for scanning the predetermined beam in the body cavity, and the scanning mirror is an elastic member. And at least one cantilever whose one end is supported by the base, and a rotating mirror whose peripheral part is supported by the free end of the cantilever, the voltage applied to the piezoelectric member Is applied, the free end is displaced in a predetermined direction to displace the peripheral portion while holding the central portion of the rotating mirror at a substantially constant position, thereby tilting the rotating mirror.
- Patent Document 2 A beam scanning probe is described (Patent Document 2).
- an optical scanning device capable of scanning with a large angle of view and having a wide scanning range, a scanning unit that deflects incident light and emits it toward the target region so as to scan the target region, and the scanning unit
- an optical scanning device including a selective incident portion that sequentially selects the optical path of the light and makes the light incident on the scanning portion (Patent Document 3).
- Patent Documents 1 and 2 Since the techniques described in Patent Documents 1 and 2 have a structure in which a reflection mirror that is electrically driven is attached to the output end side of an optical fiber, the light irradiation range is limited to a certain range, and a laser is applied to an arbitrary region. It was impossible to irradiate light with a pattern, and it was still impossible to ensure irradiation accuracy without mechanically controlling the position and direction of the laser beam emission end.
- Patent Document 3 is a technique that pays attention to scanning at a large angle of view, and there is no viewpoint of irradiating a laser beam with a pattern in the scanning range.
- the present invention is a technique that can be used in, for example, a surgical operation or the like, and irradiates a laser beam in a pattern in a pattern without mechanically controlling the position and direction of a laser beam emission end (pattern irradiation). It is an issue to provide technology.
- the present invention that solves the above-described problems is a laser light irradiation device that pattern-irradiates a laser beam onto an irradiation target region, an emission unit that emits laser light toward the irradiation target region, and a laser beam applied to the emission unit.
- a bundle fiber having a plurality of cores serving as an optical path, and a selection incident unit that selects each core of the bundle fiber and makes a laser beam incident so as to correspond to the pattern irradiation.
- a bundle fiber having a plurality of cores is used as the optical path of the laser light of the laser light irradiation device, and each core is selected so as to correspond to pattern irradiation, and the laser light is incident. Without mechanically controlling the direction, it becomes possible to irradiate the irradiation target region with an arbitrary pattern (pattern irradiation).
- the emitting unit includes a deflecting unit that deflects laser light in different directions with respect to the optical axis of the bundle fiber according to the position of each core of the bundle fiber.
- the emission direction of the laser light can be set according to the size and shape of the object (for example, tissue) to be irradiated, and the irradiation possible range of the irradiation apparatus can be optimized.
- the laser beam can be shaped so that the irradiation power density does not exceed a certain level, the safety of the operation can be ensured.
- the emission unit includes an emission optical system that forms an image of the laser beam emitted from the deflection unit in the irradiation target region.
- the selective incident portion changes the incident light path over time so that the laser light source and the laser light from the laser light source can sequentially enter all the cores of the bundle fiber.
- the laser light source includes a laser light output controller that turns on the output of the laser light when an incident light path corresponding to the pattern irradiation is formed. .
- this mode by periodically changing the incident optical path, it is possible to eliminate the mechanical control that forms the incident optical path each time according to the pattern to be irradiated, and to turn on / off the output of the laser light from the laser light source.
- Arbitrary pattern irradiation can be realized by electrical control.
- the incident optical path variable unit includes, for example, an angle variable mirror, and the inclination angle of the angle variable mirror is associated with the incident optical path to each core of the bundle fiber.
- the incident optical path variable unit includes an imaging optical system that forms an image of the laser light reflected by the angle variable mirror between the angle variable mirror and the deflection unit. It is characterized by that. Since the incident light path variable unit according to this embodiment includes an imaging optical system that forms an image of the laser beam reflected by the variable angle mirror on the way and then enters the core, the incident optical path to each core. Can be easily set and controlled. That is, by providing an optical system that forms an image in the middle, it is possible to easily set the lens arrangement particularly in relation to the focus distance and the like. Thereby, control processing for each laser beam incident on each core becomes possible, and control can be performed with higher accuracy.
- the said selection incident part forms an incident optical path so that the laser beam from the laser light source and the said laser light source can inject only with respect to each selected core of the said bundle fiber. And an incident optical path forming part.
- the said laser light source is a laser array provided with a several laser element, for example.
- the incident optical path forming unit includes a laser element output control unit that controls an output for each laser element.
- each laser element and the incident optical path to each core of the bundle fiber are associated with each other.
- the laser light output control unit and the laser element output control unit include a function of controlling an output value of laser light.
- the laser light output control unit and the laser element output control unit include a function of controlling the output value of the laser light, for example, adjusting the output value (strongness) of the laser light to be irradiated with the pattern temporally, The irradiation intensity can be partially changed. As a result, it is possible to bake only the necessary parts strongly or weakly.
- the said incident optical path formation part is provided with the projection control part which controls a projection for every digital mirror device and the micro mirror of the said digital mirror device, for example.
- the minute mirror and the incident optical path to each core of the bundle fiber are associated with each other.
- the selective incident portion and the bundle fiber are detachably connected via an optical coupler.
- the bundle fiber and the emitting part can be separated from the selective incident part and disposed of.
- the bundle fiber and the emitting part are preferably inserted because they are inserted into the body cavity, but the selective incident part can be used repeatedly. Economically favorable.
- the selective incident unit acquires an image data of an irradiation target region and displays an image of the irradiation target region on an image display unit, and specifies an irradiation pattern in the irradiation target region.
- a coordinate data acquisition unit that acquires coordinate data for performing, and an image synthesis unit that synthesizes the coordinate data with the image data and displays an irradiation pattern on an image of the irradiation target region.
- the emitting portion is detachably fixed to the distal end portion of the endoscope, the irradiation target region of the laser light is in the observation field of the endoscope, and is emitted from each core of the emitting portion.
- Each laser beam to be associated with each irradiation position of the irradiation target region is characterized by being associated with each other. Thereby, pattern irradiation can be accurately performed under observation with an endoscope.
- the present invention is a laser light irradiation method for pattern irradiation of a laser beam to an irradiation target region, wherein a bundle fiber having a plurality of cores serving as an optical path of the laser beam is used, and the bundle fiber is selectively used as an arbitrary core And a second step of irradiating the irradiation target area with the laser light guided to each core of the bundle fiber, and the first step corresponds to the pattern irradiation.
- the respective cores are selected as described above.
- a bundle fiber is used as the optical path of the laser beam of the laser beam irradiation device, each core is selected so as to correspond to the pattern to be irradiated, the laser beam is incident, and the laser beam guided to each core is irradiated By irradiating the laser beam, it becomes possible to irradiate the irradiation target region with any desired pattern (pattern irradiation).
- the step of acquiring image data of the irradiation target region and displaying the image on the image display unit, and coordinates for specifying the irradiation pattern of the laser light in the irradiation target region A step of acquiring data and a step of combining the coordinate data with the image data and displaying an irradiation pattern on the image of the irradiation target region are performed.
- the present invention it is possible to irradiate the irradiation target region with an arbitrary pattern (pattern irradiation) without mechanically controlling the position and direction of the emission end of the laser light.
- This laser beam irradiation apparatus 1 is used by inserting into a body cavity under an endoscope for the purpose of cauterization or incision of a tissue in a surgical operation, and irradiates a laser beam in a pattern on an irradiation target region.
- irradiation target region refers to a target region that can be irradiated with laser light
- pattern irradiation refers to laser light with a specific pattern (shape or pattern) in a specific part of the region. Refers to irradiation.
- the endoscope system includes a video scope 100 and a video system main body 110.
- the video system main body 110 includes a light source device 111 that supplies light for shooting, air, and the like, a video processor 112, a color monitor 113, and the like.
- the video scope 100 includes a connection unit 101 to the light source device 111, an operation unit 102, an insertion unit 103, a distal end unit 104, a forceps insertion port 105, and the like.
- the laser beam irradiation device 1 can insert the insertion portion 6 (see FIG. 2) from the insertion port 105 of the forceps of the video scope 100 and attach the emission portion 4 to the distal end portion 104 portion (forceps opening portion). It is configured.
- the laser beam irradiation apparatus 1 includes an emission unit 4 that emits laser light toward an irradiation target region, and a bundle fiber 3 that has a plurality of cores that serve as optical paths of the laser beam to the emission unit 4.
- a selection incident section 2 for selecting each core of the bundle fiber 3 and making a laser beam incident thereon and an optical coupler 5 are provided.
- the laser light is guided from the selective incident portion 2 to the emitting portion 4 through the optical coupler 5 and the bundle fiber 3.
- the bundle fiber 3 constitutes, together with the emitting portion 4, an insertion portion 6 that is used by being inserted into a body cavity under an endoscope.
- the selective incident part 2 selects each core 31 of the bundle fiber 3 so that the laser light is incident so as to correspond to the pattern to be irradiated with the laser light.
- the selective incident unit 2 changes the incident light path over time so that the laser light source 21 and the laser light from the laser light source 21 can be sequentially incident on all the cores 31 of the bundle fiber 3.
- an incident light path variable unit 22 The laser light source 21 includes a laser light output control unit, which will be described later, that turns on the output of the laser light when an incident optical path corresponding to pattern irradiation is formed.
- the laser light source 21 includes a camera image receiving unit (image data acquiring unit) 23 that receives a camera image signal of an endoscope, a mouse operation recognizing unit (coordinate data acquiring unit) 24, and an image composition.
- a unit 25 an irradiation region determination unit 26, a laser light output control unit 27, a laser element 210, a mirror driving unit 28, a mirror element 220, and an optical coupler 29 are provided. Next, these details will be described.
- the camera image receiving unit 23 receives the camera image signal of the endoscope that reflects the irradiation target of the laser light and converts it into a signal that can be output to the monitor 113.
- the mouse operation recognizing unit 24 recognizes the operation of the mouse M and converts it into a signal designating a laser light irradiation area in the monitor image.
- the image synthesizing unit 25 synthesizes the camera image and the mouse operation signal, and converts them on the monitor 113 into an image signal obtained by synthesizing the camera image and the laser light irradiation designated area (irradiation pattern).
- the irradiation area determination unit 26 outputs the laser light output control unit 27 and the mirror drive unit 28 in respective signals so as to irradiate the laser light irradiation designated area combined with the camera image.
- the laser light output control unit 27 determines the output value of the laser element 210 based on the control signal from the irradiation region determination unit 26 and drives the laser element 210.
- the mirror driving unit 28 determines the operation of the mirror element 220 based on the control signal from the irradiation area determination unit 26 and drives the mirror element 220.
- the laser light source 21 can output laser light having various wavelengths.
- the incident light path variable unit 22 changes the incident light path over time so that the laser light L emitted from the laser element 210 of the laser light source 21 can sequentially enter all the cores of the bundle fiber 3.
- the incident optical path variable unit 22 includes an angle variable mirror 221 and a reflection mirror 222 as shown in FIG.
- the inclination angle of the variable angle mirror 221 and the incident optical path to each core of the bundle fiber 3 are associated with each other.
- the inclination angle of the variable angle mirror 221 is ⁇
- the bundle fiber is passed through the reflection mirror 222.
- the incident optical path A is formed in the third core a and the tilt angle is ⁇
- the incident optical path B is formed in the core b through the reflection mirror 222, and the different cores are changed as the tilt angle changes thereafter.
- incident light paths are sequentially formed.
- the incident optical path C is formed through the reflection mirror 222 to the core c. This incident optical path is formed periodically.
- one core does not necessarily have to be selected for one inclination angle.
- a plurality of cores in a certain region may be selected for one inclination angle.
- variable angle mirror 221 is composed of a galvanometer mirror, and is controlled to perform a constant drive via a drive system (actuator) (not shown).
- the reflection mirror 222 reflects the laser light patterned by the variable angle mirror 221 and guides it in a specific direction in a collimated state.
- a condensing lens 61 for increasing the power of laser light and a collimating lens 62 for collimating the condensed laser light are provided between the laser element 210 and the angle variable mirror 221. ing. Between the collimating lens 62 and the variable angle mirror 221, a slot 63 for forming a cross-sectional shape of the collimated laser beam is provided.
- the selective incident unit 2 further includes a deflection lens group 7 for causing the direction of the laser light patterned by the incident optical path variable unit 22 to correspond to each core 31 of the bundle fiber 3 to be described later. It has.
- the deflection lens group 7 includes a pattern reduction lens 71 that deflects the range of the laser beam of the pattern reflected by the reflection mirror 222 in a direction to reduce the range, and the deflected laser light in a direction substantially perpendicular to the incident position of the core. It comprises a pattern light incident lens 72 that deflects the laser light so as to be incident.
- the laser light output control unit 27 turns on the output of the laser light L from the laser element 210 when the incident optical path corresponding to the pattern irradiation is formed. That is, the laser element 210 only during the time when the incident light path corresponding to the pattern is formed so that the laser light is incident only on the incident light path corresponding to the pattern to be irradiated among the incident light paths formed sequentially. Control is performed so that the output of the laser light L from is turned on.
- the laser light output control unit includes a function for controlling the output value of the laser light.
- the laser light output control includes a function to control the output value of the laser light. For example, the output value (strength) of the laser light for pattern irradiation is adjusted temporally to partially change the irradiation intensity. Can be made. As a result, it is possible to bake only the necessary parts strongly or weakly.
- the bundle fiber 3 is a bundle of a plurality of optical fibers 31.
- Each optical fiber 31 has a core (not shown) that carries light at the center thereof.
- the optical fiber 31 transmits laser light incident on the core at the tip thereof from the laser light source 21 of the selective incident portion 2 and emits it from the other end.
- the number of optical fibers 31 constituting the bundle fiber 3 is, for example, about several hundred to several thousand.
- the selective incident part 2 and the bundle fiber 3 are detachably connected by an optical coupler 5.
- the optical coupler 5 couples the laser beam patterned by the selective incident portion 2 to the core of the bundle fiber 3.
- the emitting unit 4 emits the laser light guided to the bundle fiber 3 toward the irradiation target region.
- Each core of the bundle fiber 3 is associated with an irradiation point of the irradiation target region.
- the laser light emitted from the core a of the bundle fiber 3 is emitted toward the irradiation point A2, and is emitted from the core b.
- the emitted laser light is emitted toward the irradiation point B2, and the laser light emitted from the core c is emitted toward the irradiation point C2. Accordingly, which irradiation point is irradiated with the laser light is determined according to the output of the laser light from the laser light output control unit 27 described above.
- the emitting unit 4 includes a deflection lens (deflection unit) 41.
- the deflecting unit 41 deflects the laser light in different directions with respect to the optical axis of the bundle fiber 3 according to the position of each core of the bundle fiber 3. That is, the direction in which the laser light is guided for each core is determined such that the laser light emitted from the core a is directed to the irradiation point A2 and the laser light emitted from the core b is directed to the irradiation point B2. Yes.
- the laser light from the core of the bundle fiber 3 is deflected by the deflecting unit 41 and emitted radially at a preset angle, and irradiation to an appropriate range is possible.
- the laser light emitted from each core is overlapped to prevent the power from increasing, avoiding dangers such as unintended tissue damage, and ensuring the safety of surgery. Yes.
- the emitting portion 4 is detachably fixed (positioned) to the distal end portion 104 of the insertion portion 103 of the endoscope. Furthermore, the irradiation target area of the laser beam L is set within the observation field of view of the endoscope. And each laser beam radiate
- a key groove 106 is provided in the distal end portion 104 of the video scope (endoscope) 100, and a convex shape provided in the boundary portion between the bundle fiber 3 and the emitting portion 4 in the key groove 106.
- the key 4a is detachably fixed (positioned) with the key 4a fitted.
- tip part 104 of an endoscope of this output part 104 not only the example of illustration but various methods are employable if it functions as a relative fixing means.
- the shape of the inner peripheral surface of the hole portion (near the forceps opening) of the distal end portion 104 where the emitting portion 4 is inserted is formed in a shape other than a true circle such as a polygonal cross section or an ellipse, and the portion of the emitting portion 4 is formed in the hole
- the outer peripheral surface shape of the emitting portion 4 can be formed so that the fitting portion is closely fitted and detachably fixed.
- reference numeral 107 denotes an objective lens of a micro camera
- reference numeral 108 denotes a light guide that illuminates the inside of the body with light from a light source.
- the laser beam irradiation apparatus 1 of the present embodiment can be used together with a direct-viewing endoscope as shown in FIG. 1, and the insertion portion 6 can be inserted from the insertion port 105 of the forceps. Moreover, as shown in FIG. 7, since the laser beam irradiation apparatus 1 is equipped with the deflection
- the image data of the irradiation target area and the coordinate data for specifying the irradiation pattern with the mouse are synthesized so that the irradiation pattern can be displayed on the image of the irradiation target area by operating the mouse.
- irradiation pattern irradiation
- FIGS. 8 (a), 8 (b), and 8 (c) Thereby, it becomes easy to specify the position of pattern irradiation correctly, and it becomes possible to raise the precision of pattern irradiation markedly.
- FIG. 8 shows an example in which the irradiation target region for pattern irradiation is the esophageal inner wall.
- the laser element 210 is not limited to one that emits a single laser beam, and a laser array that emits a plurality of laser beams (laser beams) may be used. In this way, the number of operations of the angle variable mirror 221 in the incident light path variable unit 22 can be reduced.
- the selective incident unit 2 allows the laser light from the laser light source 21 and the laser array 212 of the laser light source 21 to be incident only on each selected core of the bundle fiber 3.
- an incident optical path forming unit 270 that forms the incident optical path.
- P4 and P5 indicate irradiation patterns.
- the laser light source 21 includes, for example, a laser array 213 including a plurality of laser elements 211 such as a surface emitting semiconductor laser array as shown in FIG. 10 or an edge emitting semiconductor as shown in FIG. Such as a laser array 214.
- the incident optical path forming unit 270 includes a laser element output control unit that controls output for each laser element 211.
- this laser element output control unit also preferably includes a function of controlling the output value of the laser beam.
- the mechanical control for forming the incident optical path each time according to the pattern to be irradiated can be eliminated, and it can be arbitrarily controlled by the on / off electrical control of the output of each laser element 211 from the laser light source 21. The pattern irradiation can be realized.
- the incident optical path forming unit may include a digital mirror device and a projection control unit that controls projection for each micro mirror of the digital mirror device, although not particularly illustrated.
- the minute mirror and the incident optical path to each core of the bundle fiber are associated with each other. Even in such an embodiment, it is possible to eliminate the mechanical control that forms the incident optical path each time depending on the pattern to be irradiated, and to realize arbitrary pattern irradiation by electrical control of on / off driving of the micromirrors. Is possible.
- FIG. 12 is a schematic configuration diagram showing another embodiment of the incident light path variable unit 22, and FIG. 13 is a schematic configuration diagram of its emission unit.
- FIG. 12 for convenience of explanation, the optical paths of laser light incident on different fibers are shown as separate diagrams for the purpose of easy understanding so as not to partially overlap a plurality of optical paths.
- the incident light path variable unit 22 also includes a condensing lens 61, a collimating lens 62, a laser light shaping slot 63, and a variable angle mirror 221 for the laser light L emitted from the laser element 210 shown in FIG. It prepares in this order.
- the reflection is performed by the variable angle mirror 221 shown at the center of the scan mirror as shown in FIG.
- An imaging optical system 8 is provided for causing the laser beam L thus formed to form an image on the way and then entering the core of the bundle fiber 3.
- the imaging optical system 8 is disposed on an optical path that is sequentially enlarged through an imaging lens 81 that forms an image of the laser beam L having a pattern reflected by the variable angle mirror 221 and an imaging region 82 indicated by an arrow S.
- a pattern reduction lens 83 that deflects the laser light range of the pattern in a direction to reduce the pattern light incidence, and pattern light incidence that deflects the laser light so that the deflected laser light is incident in a direction substantially perpendicular to the incident position of the core.
- a lens group 84 The imaging lens 81, the pattern reduction lens 83, and the pattern light incident lens group 84 of the imaging optical system 8 are disposed in the lens barrel 85.
- the incident optical path variable unit 22 of this embodiment when the incident beam diameter ⁇ 1 of the laser light at the imaging lens 81 is, for example, 8 mm, the spot diameter ⁇ 2 at the stop position in the imaging region 82 is about 0.4 mm.
- the spot diameter ⁇ 3 at the fiber end face is set to be reduced and projected to about 0.04 mm. Therefore, the reduction projection is set to about 10 times from the aperture position to the fiber end face.
- the incident optical path variable unit 22 forms an image of the laser light L reflected by the variable angle mirror 221 on the way and then enters the core of the bundle fiber 3. Since the image optical system 8 is provided, the setting and control of the incident optical path to each core can be facilitated. That is, by providing an optical system that forms an image in the middle, it is possible to easily set the lens arrangement particularly in relation to the focus distance and the like. Thereby, individual control processing for each laser beam incident on each core is possible, and control can be performed with higher accuracy.
- FIG. 13 is a diagram showing the configuration of the emission part 4 at the tip of the bundle fiber 3, partially shown in cross section.
- a front end exposed portion (fiber mount portion) of the fiber bundle 34 covered with an outer skin 33 such as silicon rubber is inserted into the lens barrel 43 from the base end side and is positioned and fixed.
- a deflection lens 41 is provided near the tip in the lens barrel 43.
- the length of the lens barrel 43 is set to 10 mm, and the inner diameter thereof is set to about 1 mm.
- the tip of the fiber bundle 34 is located near the middle of the length of the lens barrel 43.
- the thickness of the deflection lens 41 is formed within 1 mm, and an interval that becomes an optical path in the lens barrel 43 is provided between the deflection lens 41 and the fiber end surface 34a.
- the spot diameter ⁇ 4 at the fiber end face is 0.04 mm
- the spot diameter ⁇ 5 at the imaging position in the laser light irradiation target is about 0.16 to 0.20. It is set to become.
- the projection magnification is about 4 to 4.7 times.
- the present invention can be applied to other applications such as projectors and microscopes.
- the laser light irradiation technique of the present invention can be used for irradiation objects that are subjected to pattern irradiation with laser light. In particular, this is effective when irradiating a laser beam in a pattern to an irradiation target region in an endoscopic surgical operation or the like.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Laser Surgery Devices (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
The present invention provides a laser light irradiation device for irradiating in a pattern (pattern-irradiating) a region to be irradiated with laser light, the laser light irradiation device being designed to provide a technique which is usable in a surgical operation and the like and by which to pattern-irradiate the region to be irradiated with the laser light without mechanically controlling the position and direction of the exit end of the laser light. This device is provided with: an emission unit (4) which emits laser light to a region to be irradiated; a bundle fiber (3) which has a plurality of cores serving as optical paths of the laser light to the emission unit; and a selective incidence unit (2) which selects the respective cores of the bundle fiber so as to correspond to pattern irradiation and causes the laser light to be incident thereon.
Description
本発明は、照射対象にレーザー光をパターン照射することができるレーザー光照射装置に関する。
The present invention relates to a laser beam irradiation apparatus that can pattern-irradiate a laser beam to an irradiation target.
外科手術においては、組織を焼灼或いは切除したり、切開したりするのに、光ファイバ等を用いてレーザー光を体腔内に導入し、当該組織に照射することが行われている。このようなレーザー光の照射による外科手術は、内視鏡下、消化管や脳深部、血管、気管支等の、径の小さい組織に対しても有用である。この際、正常な組織を傷つけることなく、異常な組織のみを焼灼或いは切除したりすることが極めて重要であり、そのため、レーザー光の照射方向、照射範囲の精密な制御が要求される。
このような要求に応えるためには、従来は、レーザー光照射装置のレーザー光の出射端の位置や向きを、内視鏡モニタを見ながら人の手で機械的に制御する必要があった。 In a surgical operation, in order to cauterize, excise, or incise a tissue, laser light is introduced into a body cavity using an optical fiber or the like, and the tissue is irradiated. Such a surgical operation by laser light irradiation is useful for a tissue having a small diameter, such as an endoscope, a digestive tract, a deep brain, a blood vessel, and a bronchus. At this time, it is extremely important to cauterize or excise only the abnormal tissue without damaging the normal tissue. For this reason, precise control of the irradiation direction and irradiation range of the laser beam is required.
In order to meet such demands, conventionally, it has been necessary to mechanically control the position and orientation of the laser beam emitting end of the laser beam irradiation apparatus with a human hand while looking at the endoscope monitor.
このような要求に応えるためには、従来は、レーザー光照射装置のレーザー光の出射端の位置や向きを、内視鏡モニタを見ながら人の手で機械的に制御する必要があった。 In a surgical operation, in order to cauterize, excise, or incise a tissue, laser light is introduced into a body cavity using an optical fiber or the like, and the tissue is irradiated. Such a surgical operation by laser light irradiation is useful for a tissue having a small diameter, such as an endoscope, a digestive tract, a deep brain, a blood vessel, and a bronchus. At this time, it is extremely important to cauterize or excise only the abnormal tissue without damaging the normal tissue. For this reason, precise control of the irradiation direction and irradiation range of the laser beam is required.
In order to meet such demands, conventionally, it has been necessary to mechanically control the position and orientation of the laser beam emitting end of the laser beam irradiation apparatus with a human hand while looking at the endoscope monitor.
例えば、レーザー光を照射したい部位が内視鏡モニタの斜め方向に見えている場合、径の小さい組織では内視鏡の首ふりができず、斜め方向にレーザー照射ができない。この場合は、レーザー光の照射方向が適切となるように、医師が内視鏡モニタで確認しながら、レーザー光照射装置を挿入しなおしたり、回転したりする必要があり、時間のロスや煩雑さが問題となっていた。
For example, when the part to be irradiated with laser light is seen in the oblique direction of the endoscope monitor, the neck of the endoscope cannot be shaken with a tissue having a small diameter, and laser irradiation cannot be performed in the oblique direction. In this case, it is necessary for the doctor to reinsert or rotate the laser beam irradiation device while checking with an endoscopic monitor so that the laser beam irradiation direction is appropriate. Was a problem.
また、神経や血管に囲まれた組織に対し、数百μmの精度で領域を特定してレーザー光を照射する必要がある場合に、人の手の機械的制御では、十分にその精度を実現できないという問題もあった。
In addition, when it is necessary to irradiate a tissue surrounded by nerves and blood vessels with a laser beam with an accuracy of several hundreds of micrometers, the mechanical control of a human hand is sufficient to achieve that accuracy. There was also a problem that it was not possible.
このような背景において、レーザー光照射装置の出射端の位置や向きを動かさずに、レーザー光の出射方向を変える技術が開発されている。
In such a background, a technique for changing the emitting direction of the laser beam without moving the position and orientation of the emitting end of the laser beam irradiation apparatus has been developed.
例えば、特許文献1には、挿入部内にレーザー導光手段を有したレーザープローブにおいて、前記挿入部の先端部に設けられたレーザー光反射ミラー及び該反射ミラーを揺動する揺動運動手段と、その揺動運動手段を任意のパターンで制御する制御手段とを具備したことを特徴とするレーザープローブが記載されている(特許文献1)。
For example, in Patent Document 1, in a laser probe having a laser light guide means in an insertion portion, a laser beam reflecting mirror provided at the distal end portion of the insertion portion, and a swing motion means for swinging the reflection mirror, A laser probe comprising a control means for controlling the swing movement means in an arbitrary pattern is described (Patent Document 1).
また、波源部から射出した所定のビームを体腔内で走査して観察像を得るビーム走査型プローブにおいて、前記所定のビームを体腔内で走査するための走査ミラーを備え、走査ミラーは、弾性部材と圧電部材とを貼り合わせ、基台に一端を支持されている少なくとも1本のカンチレバーと、そのカンチレバーの自由端に周辺部を支持されている回動ミラーと、を備え、前記圧電部材に電圧が印加されると、前記自由端が、所定方向に変位して前記回動ミラーの中心部を略一定位置に保持しつつ前記周辺部を変位させ、前記回動ミラーを傾斜させることを特徴とするビーム走査型プローブが記載されている(特許文献2)。
The beam scanning probe for scanning the predetermined beam emitted from the wave source section in the body cavity to obtain an observation image includes a scanning mirror for scanning the predetermined beam in the body cavity, and the scanning mirror is an elastic member. And at least one cantilever whose one end is supported by the base, and a rotating mirror whose peripheral part is supported by the free end of the cantilever, the voltage applied to the piezoelectric member Is applied, the free end is displaced in a predetermined direction to displace the peripheral portion while holding the central portion of the rotating mirror at a substantially constant position, thereby tilting the rotating mirror. A beam scanning probe is described (Patent Document 2).
他方、大きな画角で走査でき、広い走査範囲を有する光走査装置としては、対象領域を走査するよう、入射した光を偏向させて前記対象領域に向けて出射する走査部と、前記走査部への光路を順次選択して、光を前記走査部へ入射させる選択入射部と、を備えることを特徴とする光走査装置が知られている(特許文献3)。
On the other hand, as an optical scanning device capable of scanning with a large angle of view and having a wide scanning range, a scanning unit that deflects incident light and emits it toward the target region so as to scan the target region, and the scanning unit There is known an optical scanning device including a selective incident portion that sequentially selects the optical path of the light and makes the light incident on the scanning portion (Patent Document 3).
特許文献1及び2に記載された技術は、電気的に駆動する反射ミラーを光ファイバの出射端側に取り付ける構造であるため、光照射範囲が一定範囲に限定されてしまい、任意の領域にレーザー光をパターン照射することはできず、未だ、レーザー光の出射端の位置や方向を機械的に制御することなしでは照射の精度を確保できないものであった。
Since the techniques described in Patent Documents 1 and 2 have a structure in which a reflection mirror that is electrically driven is attached to the output end side of an optical fiber, the light irradiation range is limited to a certain range, and a laser is applied to an arbitrary region. It was impossible to irradiate light with a pattern, and it was still impossible to ensure irradiation accuracy without mechanically controlling the position and direction of the laser beam emission end.
なお、特許文献3に記載された技術は、大きな画角で走査を行うことに着目した技術であり、走査範囲において、レーザー光をパターンで照射するという観点は一切存在しない。
Note that the technique described in Patent Document 3 is a technique that pays attention to scanning at a large angle of view, and there is no viewpoint of irradiating a laser beam with a pattern in the scanning range.
本発明は、例えば外科手術等において用いることができる技術であって、レーザー光の出射端の位置や方向を機械的に制御することなく、照射対象領域にレーザー光をパターンで照射する(パターン照射する)技術を提供することを課題とする。
The present invention is a technique that can be used in, for example, a surgical operation or the like, and irradiates a laser beam in a pattern in a pattern without mechanically controlling the position and direction of a laser beam emission end (pattern irradiation). It is an issue to provide technology.
前記課題を解決する本発明は、照射対象領域にレーザー光をパターン照射するレーザー光照射装置であって、レーザー光を照射対象領域に向けて出射する出射部と、前記出射部へのレーザー光の光路となる複数のコアを有するバンドルファイバと、前記パターン照射に対応するように、前記バンドルファイバの各コアを選択してレーザー光を入射させる選択入射部と、を備えることを特徴とする。
レーザー光照射装置のレーザー光の光路として、複数のコアを有するバンドルファイバを用い、パターン照射に対応するように各コアを選択してレーザー光を入射することにより、レーザー光の出射端の位置や方向を機械的に制御することなく、レーザー光を、照射対象領域に、任意のパターンで照射(パターン照射)することが可能となる。 The present invention that solves the above-described problems is a laser light irradiation device that pattern-irradiates a laser beam onto an irradiation target region, an emission unit that emits laser light toward the irradiation target region, and a laser beam applied to the emission unit. A bundle fiber having a plurality of cores serving as an optical path, and a selection incident unit that selects each core of the bundle fiber and makes a laser beam incident so as to correspond to the pattern irradiation.
A bundle fiber having a plurality of cores is used as the optical path of the laser light of the laser light irradiation device, and each core is selected so as to correspond to pattern irradiation, and the laser light is incident. Without mechanically controlling the direction, it becomes possible to irradiate the irradiation target region with an arbitrary pattern (pattern irradiation).
レーザー光照射装置のレーザー光の光路として、複数のコアを有するバンドルファイバを用い、パターン照射に対応するように各コアを選択してレーザー光を入射することにより、レーザー光の出射端の位置や方向を機械的に制御することなく、レーザー光を、照射対象領域に、任意のパターンで照射(パターン照射)することが可能となる。 The present invention that solves the above-described problems is a laser light irradiation device that pattern-irradiates a laser beam onto an irradiation target region, an emission unit that emits laser light toward the irradiation target region, and a laser beam applied to the emission unit. A bundle fiber having a plurality of cores serving as an optical path, and a selection incident unit that selects each core of the bundle fiber and makes a laser beam incident so as to correspond to the pattern irradiation.
A bundle fiber having a plurality of cores is used as the optical path of the laser light of the laser light irradiation device, and each core is selected so as to correspond to pattern irradiation, and the laser light is incident. Without mechanically controlling the direction, it becomes possible to irradiate the irradiation target region with an arbitrary pattern (pattern irradiation).
本発明の好ましい形態では、前記出射部は、前記バンドルファイバの各コアの位置に応じて、該バンドルファイバの光軸に対して異なる方向にレーザー光を偏向させる、偏向部を備える。
これにより、照射する対象(例えば組織)の大きさや形状に応じて、レーザー光の出射方向を設定することができ、照射装置の照射可能範囲を適正化することができる。
また、照射パワー密度が一定以上にならないよう、レーザー光を成形することができるので、手術の安全性を確保することができる。 In a preferred embodiment of the present invention, the emitting unit includes a deflecting unit that deflects laser light in different directions with respect to the optical axis of the bundle fiber according to the position of each core of the bundle fiber.
Thereby, the emission direction of the laser light can be set according to the size and shape of the object (for example, tissue) to be irradiated, and the irradiation possible range of the irradiation apparatus can be optimized.
Further, since the laser beam can be shaped so that the irradiation power density does not exceed a certain level, the safety of the operation can be ensured.
これにより、照射する対象(例えば組織)の大きさや形状に応じて、レーザー光の出射方向を設定することができ、照射装置の照射可能範囲を適正化することができる。
また、照射パワー密度が一定以上にならないよう、レーザー光を成形することができるので、手術の安全性を確保することができる。 In a preferred embodiment of the present invention, the emitting unit includes a deflecting unit that deflects laser light in different directions with respect to the optical axis of the bundle fiber according to the position of each core of the bundle fiber.
Thereby, the emission direction of the laser light can be set according to the size and shape of the object (for example, tissue) to be irradiated, and the irradiation possible range of the irradiation apparatus can be optimized.
Further, since the laser beam can be shaped so that the irradiation power density does not exceed a certain level, the safety of the operation can be ensured.
本発明の好ましい形態では、前記出射部は、前記偏向部から出射するレーザー光を、前記照射対象領域で結像させる出射光学系を含むことを特徴とする。
入射光路可変部の出射部をこのように構成することで、必要な投影倍率に設定することが容易になり、設計の簡易化及び微小構造化の両方を併せて図ることができる。 In a preferred aspect of the present invention, the emission unit includes an emission optical system that forms an image of the laser beam emitted from the deflection unit in the irradiation target region.
By configuring the exit portion of the incident optical path variable portion in this way, it becomes easy to set the necessary projection magnification, and both simplification of design and microstructuring can be achieved.
入射光路可変部の出射部をこのように構成することで、必要な投影倍率に設定することが容易になり、設計の簡易化及び微小構造化の両方を併せて図ることができる。 In a preferred aspect of the present invention, the emission unit includes an emission optical system that forms an image of the laser beam emitted from the deflection unit in the irradiation target region.
By configuring the exit portion of the incident optical path variable portion in this way, it becomes easy to set the necessary projection magnification, and both simplification of design and microstructuring can be achieved.
本発明の一形態では、前記選択入射部は、レーザー光源と、前記レーザー光源からのレーザー光が、前記バンドルファイバの全コアに対し順次入射し得るように、経時的に入射光路を変化させる、入射光路可変部とを備え、前記レーザー光源は、前記パターン照射に対応する入射光路が形成されたときに、前記レーザー光の出力をオンにする、レーザー光出力制御部を有することを特徴とする。
この形態では、入射光路の変化を周期的にすることで、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、レーザー光源からのレーザー光の出力のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 In one aspect of the present invention, the selective incident portion changes the incident light path over time so that the laser light source and the laser light from the laser light source can sequentially enter all the cores of the bundle fiber. The laser light source includes a laser light output controller that turns on the output of the laser light when an incident light path corresponding to the pattern irradiation is formed. .
In this mode, by periodically changing the incident optical path, it is possible to eliminate the mechanical control that forms the incident optical path each time according to the pattern to be irradiated, and to turn on / off the output of the laser light from the laser light source. Arbitrary pattern irradiation can be realized by electrical control.
この形態では、入射光路の変化を周期的にすることで、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、レーザー光源からのレーザー光の出力のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 In one aspect of the present invention, the selective incident portion changes the incident light path over time so that the laser light source and the laser light from the laser light source can sequentially enter all the cores of the bundle fiber. The laser light source includes a laser light output controller that turns on the output of the laser light when an incident light path corresponding to the pattern irradiation is formed. .
In this mode, by periodically changing the incident optical path, it is possible to eliminate the mechanical control that forms the incident optical path each time according to the pattern to be irradiated, and to turn on / off the output of the laser light from the laser light source. Arbitrary pattern irradiation can be realized by electrical control.
前記形態では、前記入射光路可変部は、例えば、角度可変ミラーを備え、該角度可変ミラーの傾斜角度とバンドルファイバの各コアへの入射光路とが対応付けられている。
In the above embodiment, the incident optical path variable unit includes, for example, an angle variable mirror, and the inclination angle of the angle variable mirror is associated with the incident optical path to each core of the bundle fiber.
本発明の好ましい形態として、前記入射光路可変部は、前記角度可変ミラーで反射されたレーザー光を、前記角度可変ミラーと前記偏向部との間で結像させる結像光学系を備えていることを特徴とする。
この形態に係る入射光路可変部は、角度可変ミラーで反射されたレーザー光を、途中で結像させてから、各コアへ入射させる結像光学系を備えているので、各コアへの入射光路の設定や制御を容易にすることができる。即ち、途中で結像させる光学系を備えることで、特にフォーカス距離などとの関係においてレンズの配置を設定しやすくすることができる。これにより、各コアに入射させるレーザー光ごとの制御処理が可能となり、より高精度に制御することができる。 As a preferred embodiment of the present invention, the incident optical path variable unit includes an imaging optical system that forms an image of the laser light reflected by the angle variable mirror between the angle variable mirror and the deflection unit. It is characterized by that.
Since the incident light path variable unit according to this embodiment includes an imaging optical system that forms an image of the laser beam reflected by the variable angle mirror on the way and then enters the core, the incident optical path to each core. Can be easily set and controlled. That is, by providing an optical system that forms an image in the middle, it is possible to easily set the lens arrangement particularly in relation to the focus distance and the like. Thereby, control processing for each laser beam incident on each core becomes possible, and control can be performed with higher accuracy.
この形態に係る入射光路可変部は、角度可変ミラーで反射されたレーザー光を、途中で結像させてから、各コアへ入射させる結像光学系を備えているので、各コアへの入射光路の設定や制御を容易にすることができる。即ち、途中で結像させる光学系を備えることで、特にフォーカス距離などとの関係においてレンズの配置を設定しやすくすることができる。これにより、各コアに入射させるレーザー光ごとの制御処理が可能となり、より高精度に制御することができる。 As a preferred embodiment of the present invention, the incident optical path variable unit includes an imaging optical system that forms an image of the laser light reflected by the angle variable mirror between the angle variable mirror and the deflection unit. It is characterized by that.
Since the incident light path variable unit according to this embodiment includes an imaging optical system that forms an image of the laser beam reflected by the variable angle mirror on the way and then enters the core, the incident optical path to each core. Can be easily set and controlled. That is, by providing an optical system that forms an image in the middle, it is possible to easily set the lens arrangement particularly in relation to the focus distance and the like. Thereby, control processing for each laser beam incident on each core becomes possible, and control can be performed with higher accuracy.
本発明の一形態では、前記選択入射部は、レーザー光源と、前記レーザー光源からのレーザー光が、前記バンドルファイバの選択された各コアに対してのみ入射し得るように、入射光路を形成する、入射光路形成部と、を備えることを特徴とする。
In one form of this invention, the said selection incident part forms an incident optical path so that the laser beam from the laser light source and the said laser light source can inject only with respect to each selected core of the said bundle fiber. And an incident optical path forming part.
前記形態では、前記レーザー光源は、例えば、複数のレーザー素子を備えるレーザーアレイである。この場合、前記入射光路形成部は、前記レーザー素子毎に出力を制御するレーザー素子出力制御部を備えることを特徴とする。ここでは、各レーザー素子とバンドルファイバの各コアへの入射光路とが対応付けられている。
このような形態では、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、レーザー光源からのレーザー光素子毎の出力のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 With the said form, the said laser light source is a laser array provided with a several laser element, for example. In this case, the incident optical path forming unit includes a laser element output control unit that controls an output for each laser element. Here, each laser element and the incident optical path to each core of the bundle fiber are associated with each other.
In such a form, it is possible to eliminate the mechanical control that forms the incident optical path each time according to the pattern to be irradiated, and to irradiate any pattern by electrical control of on / off of the output of each laser light element from the laser light source. Can be realized.
このような形態では、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、レーザー光源からのレーザー光素子毎の出力のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 With the said form, the said laser light source is a laser array provided with a several laser element, for example. In this case, the incident optical path forming unit includes a laser element output control unit that controls an output for each laser element. Here, each laser element and the incident optical path to each core of the bundle fiber are associated with each other.
In such a form, it is possible to eliminate the mechanical control that forms the incident optical path each time according to the pattern to be irradiated, and to irradiate any pattern by electrical control of on / off of the output of each laser light element from the laser light source. Can be realized.
本発明の好ましい形態では、前記レーザー光出力制御部及び前記レーザー素子出力制御部は、レーザー光の出力値を制御する機能を含むことを特徴とする。
このようにレーザー光出力制御部及びレーザー素子出力制御部が、レーザー光の出力値を制御する機能を含むことで、例えばパターン照射するレーザー光の出力値(強弱)を時間的に調整して、部分的に照射強度を変化させることができる。これにより、必要な部位だけ強く焼いたり、弱く焼いたりすることも可能になる。 In a preferred aspect of the present invention, the laser light output control unit and the laser element output control unit include a function of controlling an output value of laser light.
As described above, the laser light output control unit and the laser element output control unit include a function of controlling the output value of the laser light, for example, adjusting the output value (strongness) of the laser light to be irradiated with the pattern temporally, The irradiation intensity can be partially changed. As a result, it is possible to bake only the necessary parts strongly or weakly.
このようにレーザー光出力制御部及びレーザー素子出力制御部が、レーザー光の出力値を制御する機能を含むことで、例えばパターン照射するレーザー光の出力値(強弱)を時間的に調整して、部分的に照射強度を変化させることができる。これにより、必要な部位だけ強く焼いたり、弱く焼いたりすることも可能になる。 In a preferred aspect of the present invention, the laser light output control unit and the laser element output control unit include a function of controlling an output value of laser light.
As described above, the laser light output control unit and the laser element output control unit include a function of controlling the output value of the laser light, for example, adjusting the output value (strongness) of the laser light to be irradiated with the pattern temporally, The irradiation intensity can be partially changed. As a result, it is possible to bake only the necessary parts strongly or weakly.
また、前記形態では、例えば、前記入射光路形成部は、デジタルミラーデバイスと、前記デジタルミラーデバイスの微小ミラー毎に投射を制御する、投射制御部とを備える。この場合、当該微小ミラーとバンドルファイバの各コアへの入射光路とが対応付けられている。
このような形態では、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、微小ミラーの駆動のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 Moreover, in the said form, the said incident optical path formation part is provided with the projection control part which controls a projection for every digital mirror device and the micro mirror of the said digital mirror device, for example. In this case, the minute mirror and the incident optical path to each core of the bundle fiber are associated with each other.
In such a form, it is possible to eliminate mechanical control that forms an incident optical path each time depending on the pattern to be irradiated, and it is possible to realize arbitrary pattern irradiation by electrical control of on / off driving of the micromirrors. It becomes.
このような形態では、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、微小ミラーの駆動のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 Moreover, in the said form, the said incident optical path formation part is provided with the projection control part which controls a projection for every digital mirror device and the micro mirror of the said digital mirror device, for example. In this case, the minute mirror and the incident optical path to each core of the bundle fiber are associated with each other.
In such a form, it is possible to eliminate mechanical control that forms an incident optical path each time depending on the pattern to be irradiated, and it is possible to realize arbitrary pattern irradiation by electrical control of on / off driving of the micromirrors. It becomes.
本発明の好ましい形態では、前記選択入射部と前記バンドルファイバとは、光結合器を介して着脱可能に接続されていることを特徴とする。
これにより、バンドルファイバ及び出射部を、選択入射部と分離して、処分することが可能となる。特に、本発明のレーザー光照射装置を外科手術に用いる場合には、バンドルファイバ及び出射部は体腔内へ挿入されることになるので使い捨てとすることが好ましいが、選択入射部は繰り返し使うことが経済上好ましい。 In a preferred embodiment of the present invention, the selective incident portion and the bundle fiber are detachably connected via an optical coupler.
As a result, the bundle fiber and the emitting part can be separated from the selective incident part and disposed of. In particular, when the laser beam irradiation apparatus of the present invention is used for a surgical operation, the bundle fiber and the emitting part are preferably inserted because they are inserted into the body cavity, but the selective incident part can be used repeatedly. Economically favorable.
これにより、バンドルファイバ及び出射部を、選択入射部と分離して、処分することが可能となる。特に、本発明のレーザー光照射装置を外科手術に用いる場合には、バンドルファイバ及び出射部は体腔内へ挿入されることになるので使い捨てとすることが好ましいが、選択入射部は繰り返し使うことが経済上好ましい。 In a preferred embodiment of the present invention, the selective incident portion and the bundle fiber are detachably connected via an optical coupler.
As a result, the bundle fiber and the emitting part can be separated from the selective incident part and disposed of. In particular, when the laser beam irradiation apparatus of the present invention is used for a surgical operation, the bundle fiber and the emitting part are preferably inserted because they are inserted into the body cavity, but the selective incident part can be used repeatedly. Economically favorable.
本発明の好ましい形態では、前記選択入射部は、照射対象領域の画像データを取得して画像表示部に照射対象領域の画像を表示する画像データ取得部と、前記照射対象領域における照射パターンを特定するための座標データを取得する座標データ取得部と、前記座標データを前記画像データと合成し、前記照射対象領域の画像上に照射パターンを表示する画像合成部と、を備えていることを特徴とする。
これにより、照射パターンの位置を正確に特定しやすくなり、パターン照射の精度を上げることが可能となる。 In a preferred embodiment of the present invention, the selective incident unit acquires an image data of an irradiation target region and displays an image of the irradiation target region on an image display unit, and specifies an irradiation pattern in the irradiation target region. A coordinate data acquisition unit that acquires coordinate data for performing, and an image synthesis unit that synthesizes the coordinate data with the image data and displays an irradiation pattern on an image of the irradiation target region. And
Thereby, it becomes easy to specify the position of an irradiation pattern correctly, and it becomes possible to raise the precision of pattern irradiation.
これにより、照射パターンの位置を正確に特定しやすくなり、パターン照射の精度を上げることが可能となる。 In a preferred embodiment of the present invention, the selective incident unit acquires an image data of an irradiation target region and displays an image of the irradiation target region on an image display unit, and specifies an irradiation pattern in the irradiation target region. A coordinate data acquisition unit that acquires coordinate data for performing, and an image synthesis unit that synthesizes the coordinate data with the image data and displays an irradiation pattern on an image of the irradiation target region. And
Thereby, it becomes easy to specify the position of an irradiation pattern correctly, and it becomes possible to raise the precision of pattern irradiation.
本発明の好ましい形態では、前記出射部は内視鏡の先端部に着脱可能に固定され、前記レーザー光の照射対象領域は内視鏡の観察視野内にあり、前記出射部の各コアから出射する各レーザー光と、前記照射対象領域の各照射位置とがそれぞれ対応付けられていることを特徴とする。
これにより、内視鏡での観察下、パターン照射を精度よく行うことができる。 In a preferred embodiment of the present invention, the emitting portion is detachably fixed to the distal end portion of the endoscope, the irradiation target region of the laser light is in the observation field of the endoscope, and is emitted from each core of the emitting portion. Each laser beam to be associated with each irradiation position of the irradiation target region is characterized by being associated with each other.
Thereby, pattern irradiation can be accurately performed under observation with an endoscope.
これにより、内視鏡での観察下、パターン照射を精度よく行うことができる。 In a preferred embodiment of the present invention, the emitting portion is detachably fixed to the distal end portion of the endoscope, the irradiation target region of the laser light is in the observation field of the endoscope, and is emitted from each core of the emitting portion. Each laser beam to be associated with each irradiation position of the irradiation target region is characterized by being associated with each other.
Thereby, pattern irradiation can be accurately performed under observation with an endoscope.
また、本発明は、照射対象領域にレーザー光をパターン照射するレーザー光照射方法であって、レーザー光の光路となる複数のコアを有するバンドルファイバを用い、そのバンドルファイバの任意のコアに選択的にレーザー光を入射させる第1ステップと、バンドルファイバの各コアに導かれたレーザー光を、照射対象領域に照射する第2ステップと、を有し、前記第1ステップでは、前記パターン照射に対応するように前記各コアを選択することを特徴とする。
レーザー光照射装置のレーザー光の光路として、バンドルファイバを用い、照射しようとするパターンに対応するように各コアを選択してレーザー光を入射し、各コアに導かれたレーザー光を照射対象領域に照射することにより、レーザー光を、照射対象領域に、必要とする任意のパターンで照射(パターン照射)することが可能となる。 Further, the present invention is a laser light irradiation method for pattern irradiation of a laser beam to an irradiation target region, wherein a bundle fiber having a plurality of cores serving as an optical path of the laser beam is used, and the bundle fiber is selectively used as an arbitrary core And a second step of irradiating the irradiation target area with the laser light guided to each core of the bundle fiber, and the first step corresponds to the pattern irradiation. The respective cores are selected as described above.
A bundle fiber is used as the optical path of the laser beam of the laser beam irradiation device, each core is selected so as to correspond to the pattern to be irradiated, the laser beam is incident, and the laser beam guided to each core is irradiated By irradiating the laser beam, it becomes possible to irradiate the irradiation target region with any desired pattern (pattern irradiation).
レーザー光照射装置のレーザー光の光路として、バンドルファイバを用い、照射しようとするパターンに対応するように各コアを選択してレーザー光を入射し、各コアに導かれたレーザー光を照射対象領域に照射することにより、レーザー光を、照射対象領域に、必要とする任意のパターンで照射(パターン照射)することが可能となる。 Further, the present invention is a laser light irradiation method for pattern irradiation of a laser beam to an irradiation target region, wherein a bundle fiber having a plurality of cores serving as an optical path of the laser beam is used, and the bundle fiber is selectively used as an arbitrary core And a second step of irradiating the irradiation target area with the laser light guided to each core of the bundle fiber, and the first step corresponds to the pattern irradiation. The respective cores are selected as described above.
A bundle fiber is used as the optical path of the laser beam of the laser beam irradiation device, each core is selected so as to correspond to the pattern to be irradiated, the laser beam is incident, and the laser beam guided to each core is irradiated By irradiating the laser beam, it becomes possible to irradiate the irradiation target region with any desired pattern (pattern irradiation).
本発明の好ましい形態では、前記第1ステップにおいて、照射対象領域の画像データを取得してその画像を画像表示部に表示するステップと、照射対象領域におけるレーザー光の照射パターンを特定するための座標データを取得するステップと、座標データを画像データと合成し、照射対象領域の画像上に照射パターンを表示するステップと、を行う。
これにより、マウス等の操作性の良い入力手段を用いることで、照射パターンの位置を正確に特定しやすくなり、パターン照射の精度を上げることが可能となる。 In a preferred embodiment of the present invention, in the first step, the step of acquiring image data of the irradiation target region and displaying the image on the image display unit, and coordinates for specifying the irradiation pattern of the laser light in the irradiation target region A step of acquiring data and a step of combining the coordinate data with the image data and displaying an irradiation pattern on the image of the irradiation target region are performed.
Thus, by using an input means with good operability such as a mouse, it becomes easy to accurately specify the position of the irradiation pattern, and the accuracy of pattern irradiation can be increased.
これにより、マウス等の操作性の良い入力手段を用いることで、照射パターンの位置を正確に特定しやすくなり、パターン照射の精度を上げることが可能となる。 In a preferred embodiment of the present invention, in the first step, the step of acquiring image data of the irradiation target region and displaying the image on the image display unit, and coordinates for specifying the irradiation pattern of the laser light in the irradiation target region A step of acquiring data and a step of combining the coordinate data with the image data and displaying an irradiation pattern on the image of the irradiation target region are performed.
Thus, by using an input means with good operability such as a mouse, it becomes easy to accurately specify the position of the irradiation pattern, and the accuracy of pattern irradiation can be increased.
本発明により、レーザー光の出射端の位置や方向を機械的に制御することなく、レーザー光を、照射対象領域に、任意のパターンで照射(パターン照射)することが可能となる。
According to the present invention, it is possible to irradiate the irradiation target region with an arbitrary pattern (pattern irradiation) without mechanically controlling the position and direction of the emission end of the laser light.
<実施形態1>
図1~図8を参照して、本発明のレーザー光照射装置の実施形態1について説明する。
このレーザー光照射装置1は、外科手術において、組織の焼灼や切開等の目的で、内視鏡下、体腔内に挿入して用いられ、照射対象領域にレーザー光をパターン照射するものである。本発明において、「照射対象領域」とは、レーザー光を照射し得る対象の領域をいい、「パターン照射」とは、その領域の特定の部分に特定のパターン(形状乃至は模様)でレーザー光を照射することをいう。 <Embodiment 1>
A first embodiment of the laser beam irradiation apparatus of the present invention will be described with reference to FIGS.
This laser beam irradiation apparatus 1 is used by inserting into a body cavity under an endoscope for the purpose of cauterization or incision of a tissue in a surgical operation, and irradiates a laser beam in a pattern on an irradiation target region. In the present invention, “irradiation target region” refers to a target region that can be irradiated with laser light, and “pattern irradiation” refers to laser light with a specific pattern (shape or pattern) in a specific part of the region. Refers to irradiation.
図1~図8を参照して、本発明のレーザー光照射装置の実施形態1について説明する。
このレーザー光照射装置1は、外科手術において、組織の焼灼や切開等の目的で、内視鏡下、体腔内に挿入して用いられ、照射対象領域にレーザー光をパターン照射するものである。本発明において、「照射対象領域」とは、レーザー光を照射し得る対象の領域をいい、「パターン照射」とは、その領域の特定の部分に特定のパターン(形状乃至は模様)でレーザー光を照射することをいう。 <Embodiment 1>
A first embodiment of the laser beam irradiation apparatus of the present invention will be described with reference to FIGS.
This laser beam irradiation apparatus 1 is used by inserting into a body cavity under an endoscope for the purpose of cauterization or incision of a tissue in a surgical operation, and irradiates a laser beam in a pattern on an irradiation target region. In the present invention, “irradiation target region” refers to a target region that can be irradiated with laser light, and “pattern irradiation” refers to laser light with a specific pattern (shape or pattern) in a specific part of the region. Refers to irradiation.
本実施形態では、図1に示すように、レーザー光照射装置1を、既存の直視型の内視鏡システムに適用した例を示している。内視鏡システムは、ビデオスコープ100と、ビデオシステム本体110とを備えている。ビデオシステム本体110は、撮影用の光や空気等を供給する光源装置111、ビデオプロセッサー112、カラーモニター113等を備えている。ビデオスコープ100は、光源装置111への接続部101、操作部102、挿入部103、先端部104、鉗子の挿入口105等を備えている。そして、レーザー光照射装置1は、このビデオスコープ100の鉗子の挿入口105からその挿入部6(図2参照)を挿入して、出射部4を先端部104部分(鉗子口部分)に装着可能に構成されている。
In the present embodiment, as shown in FIG. 1, an example in which the laser beam irradiation apparatus 1 is applied to an existing direct-view type endoscope system is shown. The endoscope system includes a video scope 100 and a video system main body 110. The video system main body 110 includes a light source device 111 that supplies light for shooting, air, and the like, a video processor 112, a color monitor 113, and the like. The video scope 100 includes a connection unit 101 to the light source device 111, an operation unit 102, an insertion unit 103, a distal end unit 104, a forceps insertion port 105, and the like. The laser beam irradiation device 1 can insert the insertion portion 6 (see FIG. 2) from the insertion port 105 of the forceps of the video scope 100 and attach the emission portion 4 to the distal end portion 104 portion (forceps opening portion). It is configured.
レーザー光照射装置1は、図2に示すように、レーザー光を照射対象領域に向けて出射する出射部4と、出射部4へのレーザー光の光路となる複数のコアを有するバンドルファイバ3と、パターン照射に対応するように、バンドルファイバ3の各コアを選択してレーザー光を入射させる選択入射部2と、光結合器5とを備えている。レーザー光は、選択入射部2から光結合器5、バンドルファイバ3を通して出射部4に導かれる。ここで、バンドルファイバ3は、出射部4と共に、内視鏡下、体腔内に挿入して用いられる挿入部6を構成している。
As shown in FIG. 2, the laser beam irradiation apparatus 1 includes an emission unit 4 that emits laser light toward an irradiation target region, and a bundle fiber 3 that has a plurality of cores that serve as optical paths of the laser beam to the emission unit 4. In order to correspond to pattern irradiation, a selection incident section 2 for selecting each core of the bundle fiber 3 and making a laser beam incident thereon and an optical coupler 5 are provided. The laser light is guided from the selective incident portion 2 to the emitting portion 4 through the optical coupler 5 and the bundle fiber 3. Here, the bundle fiber 3 constitutes, together with the emitting portion 4, an insertion portion 6 that is used by being inserted into a body cavity under an endoscope.
選択入射部2は、レーザー光を照射しようとするパターンに対応するように、バンドルファイバ3の各コア31を選択してレーザー光を入射させる。本実施形態では、選択入射部2は、レーザー光源21と、レーザー光源21からのレーザー光が、バンドルファイバ3の全コア31に対し順次入射し得るように、経時的に入射光路を変化させる、入射光路可変部22と、を備えている。そして、レーザー光源21は、パターン照射に対応する入射光路が形成されたときに、レーザー光の出力をオンにする、後述のレーザー光出力制御部を含む。
The selective incident part 2 selects each core 31 of the bundle fiber 3 so that the laser light is incident so as to correspond to the pattern to be irradiated with the laser light. In the present embodiment, the selective incident unit 2 changes the incident light path over time so that the laser light source 21 and the laser light from the laser light source 21 can be sequentially incident on all the cores 31 of the bundle fiber 3. And an incident light path variable unit 22. The laser light source 21 includes a laser light output control unit, which will be described later, that turns on the output of the laser light when an incident optical path corresponding to pattern irradiation is formed.
レーザー光源21は、図5に示すように、内視鏡のカメラ画像信号を受信するカメラ画像受信部(画像データ取得部)23と、マウス操作認識部(座標データ取得部)24と、画像合成部25と、照射領域判断部26と、レーザー光出力制御部27と、レーザー素子210と、ミラー駆動部28と、ミラー素子220と、光結合器29とを備えている。次いで、これらの詳細について説明する。
As shown in FIG. 5, the laser light source 21 includes a camera image receiving unit (image data acquiring unit) 23 that receives a camera image signal of an endoscope, a mouse operation recognizing unit (coordinate data acquiring unit) 24, and an image composition. A unit 25, an irradiation region determination unit 26, a laser light output control unit 27, a laser element 210, a mirror driving unit 28, a mirror element 220, and an optical coupler 29 are provided. Next, these details will be described.
カメラ画像受信部23は、レーザー光の照射対象を映した内視鏡のカメラ画像信号を受信してモニタ113に出力できる信号に変換する。
マウス操作認識部24は、マウスMの操作を認識し、モニタ画像中でのレーザー光照射領域を指定する信号に変換する。
画像合成部25は、カメラ画像とマウス操作の信号を合成し、モニタ113上で、カメラ画像とレーザー光照射指定領域(照射パターン)とを合成した画像信号に変換する。
照射領域判断部26はカメラ画像に合成されたレーザー光照射指定領域にレーザー光を照射するよう、レーザー光出力制御部27と、ミラー駆動装部28のそれぞれの信号にわけて出力する。
レーザー光出力制御部27は、照射領域判断部26からの制御信号に基づいて、レーザー素子210の出力値を決定してレーザー素子210を駆動する。
ミラー駆動部28は、照射領域判断部26からの制御信号に基づいて、ミラー素子220の動作を決定してミラー素子220を駆動する。 The cameraimage receiving unit 23 receives the camera image signal of the endoscope that reflects the irradiation target of the laser light and converts it into a signal that can be output to the monitor 113.
The mouseoperation recognizing unit 24 recognizes the operation of the mouse M and converts it into a signal designating a laser light irradiation area in the monitor image.
Theimage synthesizing unit 25 synthesizes the camera image and the mouse operation signal, and converts them on the monitor 113 into an image signal obtained by synthesizing the camera image and the laser light irradiation designated area (irradiation pattern).
The irradiationarea determination unit 26 outputs the laser light output control unit 27 and the mirror drive unit 28 in respective signals so as to irradiate the laser light irradiation designated area combined with the camera image.
The laser lightoutput control unit 27 determines the output value of the laser element 210 based on the control signal from the irradiation region determination unit 26 and drives the laser element 210.
Themirror driving unit 28 determines the operation of the mirror element 220 based on the control signal from the irradiation area determination unit 26 and drives the mirror element 220.
マウス操作認識部24は、マウスMの操作を認識し、モニタ画像中でのレーザー光照射領域を指定する信号に変換する。
画像合成部25は、カメラ画像とマウス操作の信号を合成し、モニタ113上で、カメラ画像とレーザー光照射指定領域(照射パターン)とを合成した画像信号に変換する。
照射領域判断部26はカメラ画像に合成されたレーザー光照射指定領域にレーザー光を照射するよう、レーザー光出力制御部27と、ミラー駆動装部28のそれぞれの信号にわけて出力する。
レーザー光出力制御部27は、照射領域判断部26からの制御信号に基づいて、レーザー素子210の出力値を決定してレーザー素子210を駆動する。
ミラー駆動部28は、照射領域判断部26からの制御信号に基づいて、ミラー素子220の動作を決定してミラー素子220を駆動する。 The camera
The mouse
The
The irradiation
The laser light
The
レーザー光源21は、種々の波長のレーザー光を出力することができる。
入射光路可変部22は、レーザー光源21のレーザー素子210から出射されたレーザー光Lが、バンドルファイバ3の全コアに対し順次入射し得るように、経時的に入射光路を変化させる。例えば、この入射光路可変部22は、図3に示すように、角度可変ミラー221と反射ミラー222とを備えている。角度可変ミラー221の傾斜角度とバンドルファイバ3の各コアへの入射光路とは、それぞれ対応付けられており、角度可変ミラー221の傾斜角度がαの場合には、反射ミラー222を介してバンドルファイバ3のコアaへ入射光路Aが形成され、傾斜角度がβの場合には、反射ミラー222を介してコアbへ入射光路Bが形成され、その後傾斜角度が変化するのに応じて、異なるコアに対して、入射光路が順次形成されることとなる。例えば、傾斜角度がγの場合には、反射ミラー222を介してコアcへ入射光路Cが形成される。この入射光路は、周期的に形成される。なお、1つの傾斜角度に対し、必ずしも1つのコアが選択されなくてもよく、例えば、1つの傾斜角度に対し、ある領域の複数のコアが選択されていても良い。 Thelaser light source 21 can output laser light having various wavelengths.
The incident light pathvariable unit 22 changes the incident light path over time so that the laser light L emitted from the laser element 210 of the laser light source 21 can sequentially enter all the cores of the bundle fiber 3. For example, the incident optical path variable unit 22 includes an angle variable mirror 221 and a reflection mirror 222 as shown in FIG. The inclination angle of the variable angle mirror 221 and the incident optical path to each core of the bundle fiber 3 are associated with each other. When the inclination angle of the variable angle mirror 221 is α, the bundle fiber is passed through the reflection mirror 222. When the incident optical path A is formed in the third core a and the tilt angle is β, the incident optical path B is formed in the core b through the reflection mirror 222, and the different cores are changed as the tilt angle changes thereafter. On the other hand, incident light paths are sequentially formed. For example, when the inclination angle is γ, the incident optical path C is formed through the reflection mirror 222 to the core c. This incident optical path is formed periodically. Note that one core does not necessarily have to be selected for one inclination angle. For example, a plurality of cores in a certain region may be selected for one inclination angle.
入射光路可変部22は、レーザー光源21のレーザー素子210から出射されたレーザー光Lが、バンドルファイバ3の全コアに対し順次入射し得るように、経時的に入射光路を変化させる。例えば、この入射光路可変部22は、図3に示すように、角度可変ミラー221と反射ミラー222とを備えている。角度可変ミラー221の傾斜角度とバンドルファイバ3の各コアへの入射光路とは、それぞれ対応付けられており、角度可変ミラー221の傾斜角度がαの場合には、反射ミラー222を介してバンドルファイバ3のコアaへ入射光路Aが形成され、傾斜角度がβの場合には、反射ミラー222を介してコアbへ入射光路Bが形成され、その後傾斜角度が変化するのに応じて、異なるコアに対して、入射光路が順次形成されることとなる。例えば、傾斜角度がγの場合には、反射ミラー222を介してコアcへ入射光路Cが形成される。この入射光路は、周期的に形成される。なお、1つの傾斜角度に対し、必ずしも1つのコアが選択されなくてもよく、例えば、1つの傾斜角度に対し、ある領域の複数のコアが選択されていても良い。 The
The incident light path
本実施形態において、角度可変ミラー221はガルバノミラーから構成されており、図示しない駆動系(アクチュエータ)を介して、一定の駆動を行うよう制御されている。
また、反射ミラー222は、角度可変ミラー221によりパターン化されたレーザー光を、反射し、コリメートされた状態で特定の方向に導く。 In the present embodiment, thevariable angle mirror 221 is composed of a galvanometer mirror, and is controlled to perform a constant drive via a drive system (actuator) (not shown).
Thereflection mirror 222 reflects the laser light patterned by the variable angle mirror 221 and guides it in a specific direction in a collimated state.
また、反射ミラー222は、角度可変ミラー221によりパターン化されたレーザー光を、反射し、コリメートされた状態で特定の方向に導く。 In the present embodiment, the
The
図3の例では、レーザー素子210と角度可変ミラー221との間に、レーザー光のパワーを増加させるための集光レンズ61、集光されたレーザー光をコリメートするためのコリメートレンズ62が設けられている。コリメートレンズ62と角度可変ミラー221との間には、コリメートされたレーザー光の断面形状を成形するためのスロット63が設けられている。
In the example of FIG. 3, a condensing lens 61 for increasing the power of laser light and a collimating lens 62 for collimating the condensed laser light are provided between the laser element 210 and the angle variable mirror 221. ing. Between the collimating lens 62 and the variable angle mirror 221, a slot 63 for forming a cross-sectional shape of the collimated laser beam is provided.
本実施形態においては、選択入射部2は、さらに、前記入射光路可変部22でパターン化されたレーザー光の方向を、後述するバンドルファイバ3の各コア31に対応させるための偏向レンズ群7を備えている。偏向レンズ群7は、前記反射ミラー222によって反射されたパターンのレーザー光の範囲を縮小する方向に偏向するパターン縮小レンズ71と、偏向されたレーザー光をコアの入射位置に対してほぼ垂直方向に入射するようにレーザー光を偏向させるパターン光入射レンズ72とからなる。
In the present embodiment, the selective incident unit 2 further includes a deflection lens group 7 for causing the direction of the laser light patterned by the incident optical path variable unit 22 to correspond to each core 31 of the bundle fiber 3 to be described later. It has. The deflection lens group 7 includes a pattern reduction lens 71 that deflects the range of the laser beam of the pattern reflected by the reflection mirror 222 in a direction to reduce the range, and the deflected laser light in a direction substantially perpendicular to the incident position of the core. It comprises a pattern light incident lens 72 that deflects the laser light so as to be incident.
レーザー光出力制御部27は、前記パターン照射に対応する入射光路が形成されたときに、レーザー素子210からのレーザー光Lの出力をオンにする。すなわち、前記順次形成されていく入射光路のうち、照射しようとするパターンに対応する入射光路にのみレーザー光が入射するように、パターンに対応する入射光路が形成されている時間のみ、レーザー素子210からのレーザー光Lの出力がオンになるように制御する。
The laser light output control unit 27 turns on the output of the laser light L from the laser element 210 when the incident optical path corresponding to the pattern irradiation is formed. That is, the laser element 210 only during the time when the incident light path corresponding to the pattern is formed so that the laser light is incident only on the incident light path corresponding to the pattern to be irradiated among the incident light paths formed sequentially. Control is performed so that the output of the laser light L from is turned on.
このように構成することで、照射するパターンに応じて、その都度角度可変ミラー221の駆動を制御する必要がなく、レーザー素子210からのレーザー光の出力のオンオフを電気的に制御することにより、任意のパターンを描くことが可能となる。
With this configuration, it is not necessary to control the driving of the variable angle mirror 221 each time depending on the pattern to be irradiated, and by electrically controlling on / off of the output of the laser light from the laser element 210, Arbitrary patterns can be drawn.
なお、前記レーザー光出力制御部は、レーザー光の出力値を制御する機能を含むことが大変望ましい。このようにレーザー光出力制御が、レーザー光の出力値を制御する機能を含むことで、例えばパターン照射するレーザー光の出力値(強弱)を時間的に調整して、部分的に照射強度を変化させることができる。これにより、必要な部位だけ強く焼いたり、弱く焼いたりすることも可能になる。
In addition, it is highly desirable that the laser light output control unit includes a function for controlling the output value of the laser light. In this way, the laser light output control includes a function to control the output value of the laser light. For example, the output value (strength) of the laser light for pattern irradiation is adjusted temporally to partially change the irradiation intensity. Can be made. As a result, it is possible to bake only the necessary parts strongly or weakly.
バンドルファイバ3は、複数の光ファイバ31の束である。各光ファイバ31は、その中心部に光を搬送するコア(図示しない)を有する。光ファイバ31は、選択入射部2のレーザー光源21から、その先端においてコアに対して入射されたレーザー光を伝送して、他端から出射する。バンドルファイバ3を構成する光ファイバ31の本数は、例えば、数百~数千本程度である。
The bundle fiber 3 is a bundle of a plurality of optical fibers 31. Each optical fiber 31 has a core (not shown) that carries light at the center thereof. The optical fiber 31 transmits laser light incident on the core at the tip thereof from the laser light source 21 of the selective incident portion 2 and emits it from the other end. The number of optical fibers 31 constituting the bundle fiber 3 is, for example, about several hundred to several thousand.
選択入射部2とバンドルファイバ3とは、光結合器5によって着脱可能に接続されている。光結合器5は、選択入射部2でパターン化されたレーザー光をバンドルファイバ3のコアに結合させる。
The selective incident part 2 and the bundle fiber 3 are detachably connected by an optical coupler 5. The optical coupler 5 couples the laser beam patterned by the selective incident portion 2 to the core of the bundle fiber 3.
出射部4は、図4に示すように、前記バンドルファイバ3に導かれたレーザー光を、照射対象領域に向けて出射する。バンドルファイバ3の各コアと、照射対象領域の照射ポイントとはそれぞれ対応付けられており、例えば、バンドルファイバ3のコアaから出射したレーザー光は、照射ポイントA2に向けて出射され、コアbから出射したレーザー光は、照射ポイントB2に向けて出射され、コアcから出射したレーザー光は、照射ポイントC2に向けて出射されることとなる。したがって、上述したレーザー光出力制御部27によるレーザー光の出力に応じて、どの照射ポイントにレーザー光が照射されるかが決まる。
As shown in FIG. 4, the emitting unit 4 emits the laser light guided to the bundle fiber 3 toward the irradiation target region. Each core of the bundle fiber 3 is associated with an irradiation point of the irradiation target region. For example, the laser light emitted from the core a of the bundle fiber 3 is emitted toward the irradiation point A2, and is emitted from the core b. The emitted laser light is emitted toward the irradiation point B2, and the laser light emitted from the core c is emitted toward the irradiation point C2. Accordingly, which irradiation point is irradiated with the laser light is determined according to the output of the laser light from the laser light output control unit 27 described above.
出射部4は、偏向レンズ(偏向部)41を備えている。偏向部41は、バンドルファイバ3の各コアの位置に応じて、該バンドルファイバ3の光軸に対して異なる方向にレーザー光を偏向させる。すなわち、コアaから出射したレーザー光は照射ポイントA2の方向へ、コアbから出射したレーザー光は照射ポイントB2の方向へというように、コアごとにどの方向にレーザー光を導くかが決められている。
The emitting unit 4 includes a deflection lens (deflection unit) 41. The deflecting unit 41 deflects the laser light in different directions with respect to the optical axis of the bundle fiber 3 according to the position of each core of the bundle fiber 3. That is, the direction in which the laser light is guided for each core is determined such that the laser light emitted from the core a is directed to the irradiation point A2 and the laser light emitted from the core b is directed to the irradiation point B2. Yes.
本実施形態においては、バンドルファイバ3のコアからのレーザー光が、偏向部41により偏向されて、予め設定された角度で放射状に出射され、適切な範囲に照射が可能となる。さらに、各コアから出射されたレーザー光が重なって、パワーが増大することを防ぎ、意図しない組織の損傷等の危険性を回避し、手術の安全性を確保することができるように配慮されている。
In the present embodiment, the laser light from the core of the bundle fiber 3 is deflected by the deflecting unit 41 and emitted radially at a preset angle, and irradiation to an appropriate range is possible. In addition, the laser light emitted from each core is overlapped to prevent the power from increasing, avoiding dangers such as unintended tissue damage, and ensuring the safety of surgery. Yes.
前記出射部4は、図6に示すように、内視鏡の挿入部103の先端部104に着脱可能に固定(位置決め)される。さらに、前記レーザー光Lの照射対象領域は内視鏡の観察視野内に設定される。そして、出射部4の各コアから出射する各レーザー光と、照射対象領域の各照射位置とがそれぞれ対応付けられている。これにより、内視鏡での観察下、パターン照射を精度よく行うことができるように配慮されている。
As shown in FIG. 6, the emitting portion 4 is detachably fixed (positioned) to the distal end portion 104 of the insertion portion 103 of the endoscope. Furthermore, the irradiation target area of the laser beam L is set within the observation field of view of the endoscope. And each laser beam radiate | emitted from each core of the emission part 4 and each irradiation position of the irradiation object area | region are matched, respectively. Thus, consideration is given so that pattern irradiation can be performed with high accuracy under observation with an endoscope.
図6に示す例では、ビデオスコープ(内視鏡)100の先端部104にキー溝106が設けられ、このキー溝106に、バンドルファイバ3と出射部4との境界部分に設けた凸状のキー4aが嵌り込んだ状態で着脱可能に固定(位置決め)されている。なお、この出射部104の、内視鏡の先端部104に対する固定手段としては、図示例に限らず、相対的な固定手段として機能するものであれば種々の方法を採用することができる。例えば、先端部104の、出射部4が挿入される穴の部分(鉗子口付近)の内周面形状を断面多角形や楕円等の真円形以外に形成し、その穴に出射部4の部分が緊密に嵌り込んで着脱可能に固定されるように、出射部4の外周面形状を形成することができる。図6において、107は超小型カメラの対物レンズを示し、108は光源からの光で体内を照らすライトガイドを示している。
In the example shown in FIG. 6, a key groove 106 is provided in the distal end portion 104 of the video scope (endoscope) 100, and a convex shape provided in the boundary portion between the bundle fiber 3 and the emitting portion 4 in the key groove 106. The key 4a is detachably fixed (positioned) with the key 4a fitted. In addition, as a fixing means with respect to the front-end | tip part 104 of an endoscope of this output part 104, not only the example of illustration but various methods are employable if it functions as a relative fixing means. For example, the shape of the inner peripheral surface of the hole portion (near the forceps opening) of the distal end portion 104 where the emitting portion 4 is inserted is formed in a shape other than a true circle such as a polygonal cross section or an ellipse, and the portion of the emitting portion 4 is formed in the hole The outer peripheral surface shape of the emitting portion 4 can be formed so that the fitting portion is closely fitted and detachably fixed. In FIG. 6, reference numeral 107 denotes an objective lens of a micro camera, and reference numeral 108 denotes a light guide that illuminates the inside of the body with light from a light source.
本実施形態のレーザー光照射装置1によれば、図1のように直視型の内視鏡と一緒に使用し、挿入部6を鉗子の挿入口105から挿入して使用可能になる。
また、図7に示すように、レーザー光照射装置1は出射部4に偏向レンズ41を装備してあるので、バンドルファイバ3の軸に対して放射状となる斜め方向(上下左右)に自由に照射可能になる。これにより、同図に示すように、体内の管腔9の径が先細りになっていて、内視鏡の首振りができないような狭い管腔内91で、レーザー光Lを照射したい部位92、93、94が内視鏡モニタ113の斜め方向にそれぞれ見えているケースにおいても確実に照射することができる。 According to the laser beam irradiation apparatus 1 of the present embodiment, it can be used together with a direct-viewing endoscope as shown in FIG. 1, and theinsertion portion 6 can be inserted from the insertion port 105 of the forceps.
Moreover, as shown in FIG. 7, since the laser beam irradiation apparatus 1 is equipped with the deflection |deviation lens 41 in the output part 4, it irradiates freely in the diagonal direction (up and down, right and left) which becomes radial with respect to the axis | shaft of the bundle fiber 3 It becomes possible. As a result, as shown in the figure, a portion 92 to be irradiated with the laser light L in a narrow lumen 91 in which the diameter of the lumen 9 in the body is tapered and the endoscope cannot be swung, Even in the case where 93 and 94 are seen in the oblique direction of the endoscope monitor 113, the irradiation can be reliably performed.
また、図7に示すように、レーザー光照射装置1は出射部4に偏向レンズ41を装備してあるので、バンドルファイバ3の軸に対して放射状となる斜め方向(上下左右)に自由に照射可能になる。これにより、同図に示すように、体内の管腔9の径が先細りになっていて、内視鏡の首振りができないような狭い管腔内91で、レーザー光Lを照射したい部位92、93、94が内視鏡モニタ113の斜め方向にそれぞれ見えているケースにおいても確実に照射することができる。 According to the laser beam irradiation apparatus 1 of the present embodiment, it can be used together with a direct-viewing endoscope as shown in FIG. 1, and the
Moreover, as shown in FIG. 7, since the laser beam irradiation apparatus 1 is equipped with the deflection |
また、照射対象領域の画像データと、照射パターンをマウスで特定するための座標データとを合成し、照射対象領域の画像上に照射パターンをマウス操作で表示できるようにしたので、モニタ画像を見ながら、マウス操作でレーザー光の照射方向と照射箇所を指定し、指定した領域のみに照射することができる。例えば図8(a)、(b)、(c)に示すような指定したパターンP1,P2、P3で照射(パターン照射)するのを実施することができる。これにより、パターン照射の位置を正確に特定しやすくなり、パターン照射の精度を格段に上げることが可能となる。図8ではパターン照射する照射対象領域が食道内壁の例を示している。
In addition, the image data of the irradiation target area and the coordinate data for specifying the irradiation pattern with the mouse are synthesized so that the irradiation pattern can be displayed on the image of the irradiation target area by operating the mouse. However, it is possible to specify the laser light irradiation direction and irradiation position by operating the mouse, and to irradiate only the specified area. For example, irradiation (pattern irradiation) can be performed with designated patterns P1, P2, and P3 as shown in FIGS. 8 (a), 8 (b), and 8 (c). Thereby, it becomes easy to specify the position of pattern irradiation correctly, and it becomes possible to raise the precision of pattern irradiation markedly. FIG. 8 shows an example in which the irradiation target region for pattern irradiation is the esophageal inner wall.
<実施形態2>
上記実施形態において、レーザー素子210としては、単一のレーザービームを射出するものに限らず、複数のレーザービーム(レーザー光)を射出するレーザーアレイを用いても良い。このようにすれば、上記の入射光路可変部22における角度可変ミラー221の操作回数を減らすことができる。 <Embodiment 2>
In the above-described embodiment, thelaser element 210 is not limited to one that emits a single laser beam, and a laser array that emits a plurality of laser beams (laser beams) may be used. In this way, the number of operations of the angle variable mirror 221 in the incident light path variable unit 22 can be reduced.
上記実施形態において、レーザー素子210としては、単一のレーザービームを射出するものに限らず、複数のレーザービーム(レーザー光)を射出するレーザーアレイを用いても良い。このようにすれば、上記の入射光路可変部22における角度可変ミラー221の操作回数を減らすことができる。 <
In the above-described embodiment, the
また、上記実施形態においては、選択入射部2に関し、角度可変ミラー221を用いた走査と、レーザー素子210の出力制御とを組み合わせてパターン照射する方式としたが、他の方式を採用することもできる。
例えば、図9に示すように、選択入射部2は、レーザー光源21と、レーザー光源21のレーザーアレイ212からのレーザー光が、バンドルファイバ3の選択された各コアに対してのみ入射し得るように、入射光路を形成する、入射光路形成部270と、を備える構成とすることができる。図9において、P4、P5は照射パターンを示している。 Moreover, in the said embodiment, although it was set as the system which irradiates a pattern combining the scanning using the anglevariable mirror 221 and the output control of the laser element 210 regarding the selective incident part 2, other systems may be employ | adopted. it can.
For example, as illustrated in FIG. 9, theselective incident unit 2 allows the laser light from the laser light source 21 and the laser array 212 of the laser light source 21 to be incident only on each selected core of the bundle fiber 3. And an incident optical path forming unit 270 that forms the incident optical path. In FIG. 9, P4 and P5 indicate irradiation patterns.
例えば、図9に示すように、選択入射部2は、レーザー光源21と、レーザー光源21のレーザーアレイ212からのレーザー光が、バンドルファイバ3の選択された各コアに対してのみ入射し得るように、入射光路を形成する、入射光路形成部270と、を備える構成とすることができる。図9において、P4、P5は照射パターンを示している。 Moreover, in the said embodiment, although it was set as the system which irradiates a pattern combining the scanning using the angle
For example, as illustrated in FIG. 9, the
この構成では、レーザー光源21は、例えば、図10に示すように、面発光型半導体レーザーアレイのような複数のレーザー素子211を備えるレーザーアレイ213や、図11に示すように、端面発光型半導体レーザーアレイ214などである。この場合、入射光路形成部270は、レーザー素子211毎に出力を制御するレーザー素子出力制御部を備える構成とすることが好ましい。なお、このレーザー素子出力制御部も、レーザー光の出力値を制御する機能を含むことが望ましい。
このような実施形態においても、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、レーザー光源21からのレーザー素子211毎の出力のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 In this configuration, thelaser light source 21 includes, for example, a laser array 213 including a plurality of laser elements 211 such as a surface emitting semiconductor laser array as shown in FIG. 10 or an edge emitting semiconductor as shown in FIG. Such as a laser array 214. In this case, it is preferable that the incident optical path forming unit 270 includes a laser element output control unit that controls output for each laser element 211. Note that this laser element output control unit also preferably includes a function of controlling the output value of the laser beam.
Also in such an embodiment, the mechanical control for forming the incident optical path each time according to the pattern to be irradiated can be eliminated, and it can be arbitrarily controlled by the on / off electrical control of the output of eachlaser element 211 from the laser light source 21. The pattern irradiation can be realized.
このような実施形態においても、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、レーザー光源21からのレーザー素子211毎の出力のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 In this configuration, the
Also in such an embodiment, the mechanical control for forming the incident optical path each time according to the pattern to be irradiated can be eliminated, and it can be arbitrarily controlled by the on / off electrical control of the output of each
なお、他の実施形態として、例えば、入射光路形成部は、特に図示しないが、デジタルミラーデバイスと、デジタルミラーデバイスの微小ミラー毎に投射を制御する、投射制御部とを備える構成としても良い。この場合、当該微小ミラーとバンドルファイバの各コアへの入射光路とが対応付けられている。
このような実施形態においても、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、微小ミラーの駆動のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 Note that, as another embodiment, for example, the incident optical path forming unit may include a digital mirror device and a projection control unit that controls projection for each micro mirror of the digital mirror device, although not particularly illustrated. In this case, the minute mirror and the incident optical path to each core of the bundle fiber are associated with each other.
Even in such an embodiment, it is possible to eliminate the mechanical control that forms the incident optical path each time depending on the pattern to be irradiated, and to realize arbitrary pattern irradiation by electrical control of on / off driving of the micromirrors. Is possible.
このような実施形態においても、照射するパターンに応じてその都度入射光路を形成する機械的制御を排除することができ、微小ミラーの駆動のオンオフの電気的制御によって任意のパターン照射を実現することが可能となる。 Note that, as another embodiment, for example, the incident optical path forming unit may include a digital mirror device and a projection control unit that controls projection for each micro mirror of the digital mirror device, although not particularly illustrated. In this case, the minute mirror and the incident optical path to each core of the bundle fiber are associated with each other.
Even in such an embodiment, it is possible to eliminate the mechanical control that forms the incident optical path each time depending on the pattern to be irradiated, and to realize arbitrary pattern irradiation by electrical control of on / off driving of the micromirrors. Is possible.
<実施形態3>
図12は入射光路可変部22の他の実施形態を示す概略構成図であり、図13はその出射部の概略構成図である。なお、図12では説明の便宜上、複数の光路が一部重畳しないように分かりやすく示す目的で、異なるファイバに入射させるレーザー光の光路を(a)、(b)別図として記載してある。 <Embodiment 3>
FIG. 12 is a schematic configuration diagram showing another embodiment of the incident light pathvariable unit 22, and FIG. 13 is a schematic configuration diagram of its emission unit. In FIG. 12, for convenience of explanation, the optical paths of laser light incident on different fibers are shown as separate diagrams for the purpose of easy understanding so as not to partially overlap a plurality of optical paths.
図12は入射光路可変部22の他の実施形態を示す概略構成図であり、図13はその出射部の概略構成図である。なお、図12では説明の便宜上、複数の光路が一部重畳しないように分かりやすく示す目的で、異なるファイバに入射させるレーザー光の光路を(a)、(b)別図として記載してある。 <
FIG. 12 is a schematic configuration diagram showing another embodiment of the incident light path
この実施形態に係る入射光路可変部22も、図3で示したレーザー素子210から出射されるレーザー光Lの集光レンズ61、コリメートレンズ62、レーザー光成形用のスロット63、角度可変ミラー221をこの順で備えている。但し、この実施形態では、図3の反射ミラー222、偏向レンズ群7を含む光路全体の縮小光学系に換えて、図12に示すように、スキャンミラー中心で示された角度可変ミラー221で反射されたレーザー光Lを、途中で結像させてから、バンドルファイバ3の各コアへ入射させる結像光学系8を備えている。
The incident light path variable unit 22 according to this embodiment also includes a condensing lens 61, a collimating lens 62, a laser light shaping slot 63, and a variable angle mirror 221 for the laser light L emitted from the laser element 210 shown in FIG. It prepares in this order. However, in this embodiment, instead of the reduction optical system of the entire optical path including the reflection mirror 222 and the deflection lens group 7 of FIG. 3, the reflection is performed by the variable angle mirror 221 shown at the center of the scan mirror as shown in FIG. An imaging optical system 8 is provided for causing the laser beam L thus formed to form an image on the way and then entering the core of the bundle fiber 3.
この結像光学系8は、角度可変ミラー221で反射されたパターンのレーザー光Lを結像させる結像レンズ81と、矢印Sで示す結像領域82を経て順次拡大される光路に配置されて、前記パターンのレーザー光の範囲を縮小する方向に偏向するパターン縮小レンズ83と、偏向されたレーザー光をコアの入射位置に対してほぼ垂直方向に入射するようにレーザー光を偏向させるパターン光入射レンズ群84とを備えている。結像光学系8の結像レンズ81、パターン縮小レンズ83、パターン光入射レンズ群84は鏡筒85内に配設されている。
The imaging optical system 8 is disposed on an optical path that is sequentially enlarged through an imaging lens 81 that forms an image of the laser beam L having a pattern reflected by the variable angle mirror 221 and an imaging region 82 indicated by an arrow S. A pattern reduction lens 83 that deflects the laser light range of the pattern in a direction to reduce the pattern light incidence, and pattern light incidence that deflects the laser light so that the deflected laser light is incident in a direction substantially perpendicular to the incident position of the core. And a lens group 84. The imaging lens 81, the pattern reduction lens 83, and the pattern light incident lens group 84 of the imaging optical system 8 are disposed in the lens barrel 85.
この実施形態の入射光路可変部22は、結像レンズ81でのレーザー光の入射ビーム径Φ1を、例えば8mmとした場合、結像領域82における絞り位置でのスポット径Φ2が0.4mm程度となり、ファイバ端面でのスポット径Φ3が0.04mm程度に縮小投影されるように設定されている。したがって、絞り位置からファイバ端面までは10倍程度の縮小投影となるように設定されている。
In the incident optical path variable unit 22 of this embodiment, when the incident beam diameter Φ1 of the laser light at the imaging lens 81 is, for example, 8 mm, the spot diameter Φ2 at the stop position in the imaging region 82 is about 0.4 mm. The spot diameter Φ3 at the fiber end face is set to be reduced and projected to about 0.04 mm. Therefore, the reduction projection is set to about 10 times from the aperture position to the fiber end face.
この実施形態に係る入射光路可変部22は、図12に示すように、角度可変ミラー221で反射されたレーザー光Lを、途中で結像させてから、バンドルファイバ3の各コアへ入射させる結像光学系8を備えているので、各コアへの入射光路の設定や制御を容易にすることができる。即ち、途中で結像させる光学系を備えることで、特にフォーカス距離などとの関係においてレンズの配置を設定しやすくすることができる。これにより、各コアに入射させるレーザー光ごとの個別の制御処理が可能となり、より高精度に制御することができる。
As shown in FIG. 12, the incident optical path variable unit 22 according to this embodiment forms an image of the laser light L reflected by the variable angle mirror 221 on the way and then enters the core of the bundle fiber 3. Since the image optical system 8 is provided, the setting and control of the incident optical path to each core can be facilitated. That is, by providing an optical system that forms an image in the middle, it is possible to easily set the lens arrangement particularly in relation to the focus distance and the like. Thereby, individual control processing for each laser beam incident on each core is possible, and control can be performed with higher accuracy.
図13は、バンドルファイバ3の先端部の出射部4の構成を示す図であり、一部断面で示している。シリコンラバー等の外皮33で被覆されたファイバ束34の先端露出部(ファイバマウント部)が鏡筒43内にその基端側から挿入されて位置決め固定されている。鏡筒43内の先端近くには偏向レンズ41が設けられている。
FIG. 13 is a diagram showing the configuration of the emission part 4 at the tip of the bundle fiber 3, partially shown in cross section. A front end exposed portion (fiber mount portion) of the fiber bundle 34 covered with an outer skin 33 such as silicon rubber is inserted into the lens barrel 43 from the base end side and is positioned and fixed. A deflection lens 41 is provided near the tip in the lens barrel 43.
この実施形態の出射部4は、例えば鏡筒43の長さが10mm、その内径が1mm程度に設定されている。ファイバ束34の先端は鏡筒43の長さの中間付近に位置している。偏向レンズ41の厚さは1mm以内に形成されており、偏向レンズ41とファイバ端面34aとの間には、鏡筒43内の光路となる間隔が設けられている。
In the emission section 4 of this embodiment, for example, the length of the lens barrel 43 is set to 10 mm, and the inner diameter thereof is set to about 1 mm. The tip of the fiber bundle 34 is located near the middle of the length of the lens barrel 43. The thickness of the deflection lens 41 is formed within 1 mm, and an interval that becomes an optical path in the lens barrel 43 is provided between the deflection lens 41 and the fiber end surface 34a.
したがって、この実施形態の出射部4においては、ファイバ端面でのスポット径Φ4が、例えば0.04mmの場合、レーザー光照射対象における結像位置でのスポット径Φ5が0.16~0.20程度となるように設定されている。投影倍率は4~4.7倍程度である。
Therefore, in the emission part 4 of this embodiment, when the spot diameter Φ4 at the fiber end face is 0.04 mm, for example, the spot diameter Φ5 at the imaging position in the laser light irradiation target is about 0.16 to 0.20. It is set to become. The projection magnification is about 4 to 4.7 times.
入射光路可変部22の出射部4をこのように構成することで、必要な投影倍率に設定することが容易になり、設計の簡易化及び微小構造化の両方を併せて図ることができる。
By configuring the exit section 4 of the incident optical path variable section 22 in this manner, it becomes easy to set a necessary projection magnification, and both simplification of design and microstructuring can be achieved.
なお、以上の実施形態においては、レーザー光照射装置を医療用に適用する例について述べたが、プロジェクタや顕微鏡用など、他にも適用することができる。
In the above embodiment, the example in which the laser beam irradiation apparatus is applied for medical use has been described. However, the present invention can be applied to other applications such as projectors and microscopes.
本発明のレーザー光照射技術は、レーザー光をパターン照射する照射対象に利用することができる。特に、内視鏡下の外科手術等において、照射対象領域にレーザー光をパターンで照射する場合に有効である。
The laser light irradiation technique of the present invention can be used for irradiation objects that are subjected to pattern irradiation with laser light. In particular, this is effective when irradiating a laser beam in a pattern to an irradiation target region in an endoscopic surgical operation or the like.
Claims (15)
- 照射対象領域にレーザー光をパターン照射するレーザー光照射装置であって、
レーザー光を照射対象領域に向けて出射する出射部と、
前記出射部へのレーザー光の光路となる複数のコアを有するバンドルファイバと、
前記パターン照射に対応するように、前記バンドルファイバの各コアを選択してレーザー光を入射させる選択入射部と、を備えることを特徴とするレーザー光照射装置。 A laser light irradiation device that pattern irradiates a laser beam to an irradiation target area,
An emission part that emits laser light toward the irradiation target area;
A bundle fiber having a plurality of cores serving as an optical path of laser light to the emitting portion;
A laser beam irradiation apparatus, comprising: a selection incident unit that selects each core of the bundle fiber and makes a laser beam incident so as to correspond to the pattern irradiation. - 前記出射部は、前記バンドルファイバの各コアの位置に応じて、該バンドルファイバの光軸に対して異なる方向にレーザー光を偏向させる、偏向部を備えることを特徴とする、請求項1に記載のレーザー光照射装置。 The said emission part is provided with the deflection | deviation part which deflects a laser beam to a different direction with respect to the optical axis of this bundle fiber according to the position of each core of the said bundle fiber, The said 1st aspect is characterized by the above-mentioned. Laser light irradiation device.
- 前記出射部は、前記偏向部から出射するレーザー光を、前記照射対象領域で結像させる出射光学系を含むことを特徴とする、請求項2に記載のレーザー光照射装置。 The laser beam irradiation apparatus according to claim 2, wherein the emission unit includes an emission optical system that forms an image of the laser beam emitted from the deflection unit in the irradiation target region.
- 前記選択入射部は、
レーザー光源と、
前記レーザー光源からのレーザー光が、前記バンドルファイバの全コアに対し順次入射し得るように、経時的に入射光路を変化させる、入射光路可変部と、を備え、
前記レーザー光源は、前記パターン照射に対応する入射光路が形成されたときに、前記レーザー光の出力をオンにする、レーザー光出力制御部を有することを特徴とする請求項1~3の何れかに記載のレーザー光照射装置。 The selective incident part is:
A laser light source;
An incident light path variable unit that changes the incident light path over time so that the laser light from the laser light source can sequentially enter all the cores of the bundle fiber,
4. The laser light output control unit according to claim 1, wherein the laser light source has a laser light output control unit that turns on the output of the laser light when an incident optical path corresponding to the pattern irradiation is formed. The laser beam irradiation apparatus described in 1. - 前記入射光路可変部は、角度可変ミラーを備え、
該角度可変ミラーの傾斜角度とバンドルファイバの各コアへの入射光路とが対応付けられていることを特徴とする、請求項4に記載のレーザー光照射装置。 The incident optical path variable unit includes an angle variable mirror,
5. The laser beam irradiation apparatus according to claim 4, wherein an inclination angle of the angle variable mirror is associated with an incident optical path to each core of the bundle fiber. - 前記入射光路可変部は、前記角度可変ミラーで反射されたレーザー光を、前記角度可変ミラーと前記偏向部との間で結像させる結像光学系を備えていることを特徴とする、請求項5に記載のレーザー光照射装置。 The incident light path variable unit includes an imaging optical system that forms an image of the laser light reflected by the angle variable mirror between the angle variable mirror and the deflection unit. Item 6. The laser beam irradiation apparatus according to Item 5.
- 前記選択入射部は、
レーザー光源と、
前記レーザー光源から出力されたレーザー光を、前記バンドルファイバの選択された各コアに対してのみ入射し得るように、入射光路を形成する、入射光路形成部と、を備えることを特徴とする請求項1又は2に記載のレーザー光照射装置。 The selective incident part is:
A laser light source;
An incident optical path forming unit that forms an incident optical path so that the laser light output from the laser light source can be incident only on each of the selected cores of the bundle fiber. Item 3. The laser beam irradiation apparatus according to Item 1 or 2. - 前記レーザー光源は、複数のレーザー素子を備えるレーザーアレイであり、
前記入射光路形成部は、前記レーザー素子毎に出力を制御するレーザー素子出力制御部を備えることを特徴とする、請求項7に記載のレーザー光照射装置。 The laser light source is a laser array including a plurality of laser elements,
The laser beam irradiation apparatus according to claim 7, wherein the incident optical path forming unit includes a laser element output control unit that controls an output for each laser element. - 前記レーザー光出力制御部及び前記レーザー素子出力制御部は、レーザー光の出力値を制御する機能を含むことを特徴とする、請求項4~8の何れかに記載のレーザー光照射装置。 The laser light irradiation apparatus according to any one of claims 4 to 8, wherein the laser light output control unit and the laser element output control unit include a function of controlling an output value of laser light.
- 前記入射光路形成部は、
デジタルミラーデバイスと、
前記デジタルミラーデバイスの微小ミラー毎に投射を制御する、投射制御部と、を備え、
該微小ミラーとバンドルファイバの各コアへの入射光路とが対応付けられていることを特徴とする、請求項7に記載のレーザー光照射装置。 The incident optical path forming unit is
A digital mirror device,
A projection control unit that controls projection for each micromirror of the digital mirror device,
8. The laser beam irradiation apparatus according to claim 7, wherein the minute mirror is associated with an incident optical path to each core of the bundle fiber. - 前記選択入射部と前記バンドルファイバとが、光結合器を介して着脱可能に接続されていることを特徴とする、請求項1~10の何れかに記載のレーザー光照射装置。 The laser beam irradiation apparatus according to any one of claims 1 to 10, wherein the selective incident portion and the bundle fiber are detachably connected via an optical coupler.
- 前記選択入射部は、
照射対象領域の画像データを取得して画像表示部に照射対象領域の画像を表示する画像データ取得部と、
前記照射対象領域における照射パターンを特定するための座標データを取得する座標データ取得部と、
前記座標データを前記画像データと合成し、前記照射対象領域の画像上に照射パターンを表示する画像合成部と、を備えていることを特徴とする、請求項1~11の何れかに記載のレーザー光照射装置。 The selective incident part is:
An image data acquisition unit that acquires image data of the irradiation target region and displays an image of the irradiation target region on the image display unit;
A coordinate data acquisition unit for acquiring coordinate data for specifying an irradiation pattern in the irradiation target region;
12. The image synthesizing unit according to claim 1, further comprising: an image synthesizing unit that synthesizes the coordinate data with the image data and displays an irradiation pattern on the image of the irradiation target region. Laser light irradiation device. - 前記出射部は内視鏡の先端部に着脱可能に固定され、
前記レーザー光の照射対象領域は内視鏡の観察視野内にあり、
前記出射部の各コアから出射する各レーザー光と、前記照射対象領域の各照射位置とがそれぞれ対応付けられていることを特徴とする、請求項1~12の何れかに記載のレーザー光照射装置。 The emitting portion is detachably fixed to the distal end portion of the endoscope,
The irradiation target area of the laser light is in the observation field of the endoscope,
The laser beam irradiation according to any one of claims 1 to 12, wherein each laser beam emitted from each core of the emitting unit is associated with each irradiation position of the irradiation target region. apparatus. - 照射対象領域にレーザー光をパターン照射するレーザー光照射方法であって、
レーザー光の光路となる複数のコアを有するバンドルファイバを用い、
そのバンドルファイバの任意のコアに選択的にレーザー光を入射させる第1ステップと、バンドルファイバの各コアを通って導かれたレーザー光を、照射対象領域に照射する第2ステップと、を有し、
前記第1ステップでは、前記パターン照射に対応するように前記各コアを選択することを特徴とするレーザー光の照射方法。 A laser light irradiation method for pattern irradiation of laser light to an irradiation target area,
Using a bundle fiber having a plurality of cores that become the optical path of laser light,
A first step of selectively injecting laser light into an arbitrary core of the bundle fiber; and a second step of irradiating the irradiation target area with the laser light guided through each core of the bundle fiber. ,
In the first step, each of the cores is selected so as to correspond to the pattern irradiation. - 前記第1ステップにおいて、照射対象領域の画像データを取得してその画像を画像表示部に表示するステップと、照射対象領域におけるレーザー光の照射パターンを特定するための座標データを取得するステップと、座標データを画像データと合成し、照射対象領域の画像上に照射パターンを表示するステップと、を行うことを特徴とする請求項14に記載のレーザー光の照射方法。
In the first step, acquiring image data of an irradiation target region and displaying the image on the image display unit; acquiring coordinate data for specifying an irradiation pattern of laser light in the irradiation target region; The method of irradiating laser light according to claim 14, comprising: combining coordinate data with image data and displaying an irradiation pattern on an image of an irradiation target region.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-144449 | 2011-06-29 | ||
JP2011144449 | 2011-06-29 | ||
JP2011-281389 | 2011-12-22 | ||
JP2011281389 | 2011-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013002050A1 true WO2013002050A1 (en) | 2013-01-03 |
Family
ID=47423948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/065461 WO2013002050A1 (en) | 2011-06-29 | 2012-06-18 | Laser light irradiation device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013002050A1 (en) |
WO (1) | WO2013002050A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018235166A1 (en) * | 2017-06-20 | 2018-12-27 | オリンパス株式会社 | Endoscope system |
US11020144B2 (en) | 2015-07-21 | 2021-06-01 | 3Dintegrated Aps | Minimally invasive surgery system |
US11033182B2 (en) | 2014-02-21 | 2021-06-15 | 3Dintegrated Aps | Set comprising a surgical instrument |
US11039734B2 (en) | 2015-10-09 | 2021-06-22 | 3Dintegrated Aps | Real time correlated depiction system of surgical tool |
US11331120B2 (en) | 2015-07-21 | 2022-05-17 | 3Dintegrated Aps | Cannula assembly kit |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09117407A (en) * | 1985-03-22 | 1997-05-06 | Massachusetts Inst Of Technol <Mit> | Optical fiber spectrum catheter |
JP2002253573A (en) * | 2001-02-28 | 2002-09-10 | Nidek Co Ltd | Laser treatment device |
US20030050562A1 (en) * | 1997-07-09 | 2003-03-13 | Winston Thomas R. | Systems and methods for guiding a medical instrument through a body |
JP2003319947A (en) * | 2002-04-30 | 2003-11-11 | Nidek Co Ltd | Laser therapeutic apparatus |
JP2003339757A (en) * | 2002-05-31 | 2003-12-02 | Nidek Co Ltd | Cornea laser surgical instrument |
JP2010243874A (en) * | 2009-04-08 | 2010-10-28 | Olympus Corp | Optical scanner, endoscope device equipped with the same and method of optical scanning |
WO2010143402A1 (en) * | 2009-06-09 | 2010-12-16 | 株式会社フジクラ | Optical device, laser irradiation device and laser therapy device |
-
2012
- 2012-06-18 JP JP2013522756A patent/JPWO2013002050A1/en active Pending
- 2012-06-18 WO PCT/JP2012/065461 patent/WO2013002050A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09117407A (en) * | 1985-03-22 | 1997-05-06 | Massachusetts Inst Of Technol <Mit> | Optical fiber spectrum catheter |
US20030050562A1 (en) * | 1997-07-09 | 2003-03-13 | Winston Thomas R. | Systems and methods for guiding a medical instrument through a body |
JP2002253573A (en) * | 2001-02-28 | 2002-09-10 | Nidek Co Ltd | Laser treatment device |
JP2003319947A (en) * | 2002-04-30 | 2003-11-11 | Nidek Co Ltd | Laser therapeutic apparatus |
JP2003339757A (en) * | 2002-05-31 | 2003-12-02 | Nidek Co Ltd | Cornea laser surgical instrument |
JP2010243874A (en) * | 2009-04-08 | 2010-10-28 | Olympus Corp | Optical scanner, endoscope device equipped with the same and method of optical scanning |
WO2010143402A1 (en) * | 2009-06-09 | 2010-12-16 | 株式会社フジクラ | Optical device, laser irradiation device and laser therapy device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11033182B2 (en) | 2014-02-21 | 2021-06-15 | 3Dintegrated Aps | Set comprising a surgical instrument |
US12075981B2 (en) | 2014-02-21 | 2024-09-03 | Cilag Gmbh International | Set comprising a surgical instrument |
US11020144B2 (en) | 2015-07-21 | 2021-06-01 | 3Dintegrated Aps | Minimally invasive surgery system |
US11331120B2 (en) | 2015-07-21 | 2022-05-17 | 3Dintegrated Aps | Cannula assembly kit |
US11039734B2 (en) | 2015-10-09 | 2021-06-22 | 3Dintegrated Aps | Real time correlated depiction system of surgical tool |
WO2018235166A1 (en) * | 2017-06-20 | 2018-12-27 | オリンパス株式会社 | Endoscope system |
US11583173B2 (en) | 2017-06-20 | 2023-02-21 | Olympus Corporation | Light source apparatus, endoscope system, and illumination control method for adjusting first and second illumination light emitted from first and second illumination light emission ends of a light guide |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013002050A1 (en) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8496579B2 (en) | Method and arrangement for high-resolution microscope imaging or cutting in laser endoscopy | |
US6975898B2 (en) | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system | |
US8537203B2 (en) | Scanning beam with variable sequential framing using interrupted scanning resonance | |
RU2603427C2 (en) | Combined surgical endoprobe for optical coherence tomography, illumination or photocoagulation | |
WO2013002050A1 (en) | Laser light irradiation device | |
JP6463903B2 (en) | Endoscope system | |
JP6769993B2 (en) | Tracking system for surgical optical coherence tomography | |
EP2635227B1 (en) | Optical coherence tomography and illumination using common light source | |
ES2796854T3 (en) | Forward Scanning Optical Probe | |
US7801589B2 (en) | In-vivo examination method and in-vivo examination apparatus | |
JP2001074946A (en) | Fiber bundle and endoscope device | |
JP2007029603A (en) | Optical diagnostic treatment apparatus | |
EP2059838A1 (en) | Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation | |
US20060009682A1 (en) | In-vivo examination apparatus | |
JP2004361889A (en) | Scanning mirror and beam scanning probe | |
WO2015104869A1 (en) | Endoscope system | |
JP5993531B1 (en) | Scanning endoscope | |
US20220031155A1 (en) | Medical observation system, medical light source apparatus, and medical illumination method | |
JP2009244233A (en) | Probe and light tomographic image acquiring device | |
US20190014989A1 (en) | Photoacoustic Catheter System and Control Method of Photoacoustic Catheter System | |
JP7421787B2 (en) | Vitreous surgery lighting device | |
US20230277864A1 (en) | Therapeutic light irradiation unit, therapeutic light irradiation apparatus, and endoscope | |
WO2016170820A1 (en) | Living body observation system | |
Liu et al. | Surgical dual-axis confocal microscope for brain tumor resection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12804565 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013522756 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12804565 Country of ref document: EP Kind code of ref document: A1 |