WO2013094170A1 - 光音響画像化方法および装置 - Google Patents
光音響画像化方法および装置 Download PDFInfo
- Publication number
- WO2013094170A1 WO2013094170A1 PCT/JP2012/008034 JP2012008034W WO2013094170A1 WO 2013094170 A1 WO2013094170 A1 WO 2013094170A1 JP 2012008034 W JP2012008034 W JP 2012008034W WO 2013094170 A1 WO2013094170 A1 WO 2013094170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pulse width
- photoacoustic
- photoacoustic imaging
- band
- subject
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0093—Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
- A61B5/0095—Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2418—Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/024—Mixtures
- G01N2291/02466—Biological material, e.g. blood
Definitions
- the present invention relates to a photoacoustic imaging method, that is, a method for imaging a subject based on an acoustic wave generated from the subject along with the emission of light toward the subject such as a living tissue.
- the present invention also relates to an apparatus for performing a photoacoustic imaging method.
- Patent Documents 1 and 2 and Non-Patent Document 1 photoacoustic imaging apparatuses that image the inside of a living body using a photoacoustic effect are known.
- pulsed light such as pulsed laser light is emitted toward a living body.
- the living tissue that has absorbed the energy of the pulsed light undergoes volume expansion due to heat, and generates an acoustic wave. Therefore, it is possible to detect this acoustic wave with a detection means such as an ultrasonic probe and to visualize the inside of the living body based on the electrical signal (photoacoustic signal) obtained thereby.
- the photoacoustic imaging apparatus constructs an image based only on the acoustic wave radiated from a specific absorber, it is suitable for imaging a specific tissue in a living body, such as a blood vessel. It has become.
- the photoacoustic imaging method it is possible to image a tissue that has entered from the surface of the subject, such as a blood vessel of a living body, but in clinical or medical research, There is a need for a particularly clear image of tissue present at a predetermined depth from the surface. There is also a demand for imaging a tissue existing at a certain depth from the surface of the subject with particularly high definition.
- the conventional photoacoustic imaging apparatus cannot sufficiently cope with the diagnostic characteristics required for a display image, such as the depth and definition that can be clearly imaged as described above.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a photoacoustic imaging method capable of displaying an image sufficiently corresponding to a required diagnostic characteristic.
- the photoacoustic imaging method comprises: As described above, a pulsed light having a wavelength that is absorbed inside the subject is emitted, and the acoustic wave emitted from the subject is detected by the acoustic wave detecting means to obtain photoacoustic data.
- a pulsed light having a wavelength that is absorbed inside the subject is emitted, and the acoustic wave emitted from the subject is detected by the acoustic wave detecting means to obtain photoacoustic data.
- the pulse width of the pulsed light is adjusted according to the diagnostic characteristics required for the displayed image and / or the band of the acoustic wave detecting means.
- diagnostic characteristics relate to, for example, the depth from the subject surface of the tissue desired to be imaged and the image definition.
- the pulse width is larger as the depth from the subject surface of the tissue to be imaged is larger.
- the pulse width is smaller as the image definition is higher.
- the photoacoustic imager is: As described above, a pulsed light having a wavelength that is absorbed inside the subject is emitted, and the acoustic wave emitted from the subject is detected by the acoustic wave detecting means to obtain photoacoustic data.
- Condition input means for inputting information indicating diagnostic characteristics required for the displayed image and / or a band of the acoustic wave detection means;
- pulse width adjusting means for adjusting the pulse width of the pulsed light based on information input from the condition input means.
- the condition input means preferably inputs the depth of the tissue desired to be imaged from the subject surface and the image definition as diagnostic characteristics.
- the pulse width adjustment means increases the pulse width as the depth from the subject surface of the tissue to be imaged increases. It is desirable to be configured to set a larger value.
- the pulse width adjusting means is configured to set the pulse width smaller as the image definition is higher. Is also desirable.
- the pulse width adjusting means may be configured to set the pulse width smaller as the band of the acoustic wave detecting means is higher.
- the acoustic wave detecting means in the photoacoustic imaging apparatus of the present invention may be either or both of a probe that detects acoustic waves and an electric circuit that processes an output signal from the probe. . Therefore, the information indicating the band input to the condition input unit may indicate the band of the probe or may indicate the band of the electric circuit.
- the probe as described above is often detachable from the photoacoustic imaging apparatus main body.
- the acoustic wave detection means when at least a part of the acoustic wave detection means is detachable from the photoacoustic imaging apparatus main body, when the detachable part is attached to the photoacoustic imaging apparatus main body. It is desirable that information indicating its own band is automatically input to the condition input means.
- the photoacoustic imaging apparatus of the present invention is a photodifferential waveform inverse convolution that generates, from photoacoustic data, a signal obtained by deconvolution of a photodifferential waveform that is a differential waveform of a time waveform of the light intensity of pulsed light received by a subject.
- Incorporating means may be provided.
- the pulse width of the pulsed light is adjusted according to the diagnostic characteristics required for the displayed image and / or the band of the acoustic wave detection means. In consideration of this band, it is possible to display a photoacoustic image sufficiently corresponding to the required diagnostic characteristics.
- condition input means for inputting diagnostic characteristics required for the displayed image and / or information indicating the band of the acoustic wave detection means, and input from the condition input means. Since the pulse width adjusting means for adjusting the pulse width of the pulsed light based on the information is provided, the above-described photoacoustic imaging method according to the present invention can be implemented.
- the portion of the acoustic wave detecting means that is detachable from the photoacoustic imaging apparatus main body has its own band when attached to the photoacoustic imaging apparatus main body.
- the block diagram which shows schematic structure of the photoacoustic imaging device by one Embodiment of this invention The block diagram which shows the partial structure of the photoacoustic imaging device by another embodiment of this invention.
- FIG. 1 is a block diagram showing a basic configuration of a photoacoustic imaging apparatus 10 according to an embodiment of the present invention.
- This photoacoustic imaging apparatus 10 can acquire both a photoacoustic image and an ultrasonic image as an example.
- the display unit 14, the condition input operation unit 50, the condition input control unit 51, and the pulse width adjustment unit 52 are provided.
- the laser light source unit 13 emits laser light having a center wavelength of 756 nm, for example.
- the subject is irradiated with the laser beam emitted from the laser light source unit 13.
- the laser light is preferably guided to the probe 11 using light guide means such as a plurality of optical fibers and emitted from the probe 11 toward the subject.
- the probe 11 performs output (transmission) of ultrasonic waves to the subject and detection (reception) of reflected ultrasonic waves reflected back from the subject.
- the probe 11 has, for example, a plurality of ultrasonic transducers arranged one-dimensionally.
- the probe 11 detects ultrasonic waves (acoustic waves) generated by the observation object in the subject absorbing the laser light from the laser light source unit 13 by using the plurality of ultrasonic transducers.
- the probe 11 detects the acoustic wave and outputs an acoustic wave detection signal, and also detects the reflected ultrasonic wave and outputs an ultrasonic detection signal.
- the end portion of the light guide means that is, the tip portions of the plurality of optical fibers, are arranged along the arrangement direction of the plurality of ultrasonic transducers. From there, laser light is emitted toward the subject.
- the case where the light guide means is coupled to the probe 11 as described above will be described as an example.
- the light guiding means connected to the probe 11 is detachable from a photoacoustic imaging apparatus main body (not shown) that houses the ultrasonic unit 12 and the laser light source unit 13. Thereby, the probe 11 is detachable from the photoacoustic imaging apparatus main body.
- the base end of the light guide means may be fixed to the photoacoustic imaging apparatus main body, while the probe 11 may be configured to be detachable at the distal end. In this case, the probe 11 is eventually photoacoustic imaging. It becomes detachable from the apparatus main body.
- the probe 11 When acquiring a photoacoustic image or an ultrasonic image of the subject, the probe 11 is moved in a direction substantially perpendicular to the one-dimensional direction in which the plurality of ultrasonic transducers are arranged. Two-dimensional scanning is performed by sound waves. This scanning may be performed by an inspector moving the probe 11 manually, or a more precise two-dimensional scanning may be realized using a scanning mechanism.
- the ultrasonic unit 12 includes a reception circuit 21, an AD conversion unit 22, a reception memory 23, a data separation unit 24, an image reconstruction unit 25, a detection / logarithmic conversion unit 26, and an image construction unit 27.
- the output of the image construction unit 27 is input to the image display unit 14 including, for example, a CRT or a liquid crystal display device.
- the ultrasonic unit 12 includes a transmission control circuit 30 and a control unit 31 that controls the operation of each unit in the ultrasonic unit 12.
- the receiving circuit 21 receives the acoustic wave detection signal and the ultrasonic wave detection signal output from the probe 11.
- the AD conversion means 22 is a sampling means, which samples the acoustic wave detection signal and the ultrasonic detection signal received by the receiving circuit 21 and converts them into photoacoustic data and ultrasonic data, which are digital signals, respectively. This sampling is performed at a predetermined sampling period in synchronization with, for example, an externally input AD clock signal.
- the laser light source unit 13 includes a Q switch pulse laser 32 made of a Ti: Sapphire laser, an alexandrite laser, or the like, and a flash lamp 33 that is an excitation light source.
- the laser light source unit 13 is supplied with a light trigger signal for instructing light emission from the control means 31.
- the flash lamp 33 is turned on and the Q switch pulse laser is turned on. 32 is excited.
- the control means 31 outputs a Q switch trigger signal.
- the Q switch pulse laser 32 turns on the Q switch and emits a pulse laser beam having a wavelength of 756 nm.
- the time required from when the flash lamp 33 is turned on until the Q-switch pulse laser 33 is sufficiently excited can be estimated from the characteristics of the Q-switch pulse laser 33 and the like.
- the Q switch may be turned on after the Q switch pulse laser 32 is sufficiently excited in the laser light source unit 13. In that case, a signal indicating that the Q switch is turned on may be notified to the ultrasonic unit 12 side.
- a pulse laser capable of switching wavelengths may be used.
- the pulse width is independently adjusted for the pulse laser of each wavelength.
- the pulse width also changes depending on the wavelength. For example, in the case of a titanium sapphire laser, when the wavelength is shortened to about 700 nm, the pulse width becomes longer than the pulse width when the wavelength is about 800 nm (the relationship between the pulse width and the wavelength depends on the laser crystal).
- the degree of adjustment of the pulse width may be changed according to the wavelength so that the pulse laser beam of each wavelength matches the band of the probe.
- the control unit 31 inputs an ultrasonic trigger signal for instructing ultrasonic transmission to the transmission control circuit 30.
- the transmission control circuit 30 transmits an ultrasonic wave from the probe 11.
- the control means 31 outputs the optical trigger signal first, and then outputs an ultrasonic trigger signal.
- the output of the optical trigger signal outputs laser light to the subject and the detection of the acoustic wave, and then the output of the ultrasonic trigger signal outputs ultrasonic waves to the subject, and the reflected ultrasound. Is detected.
- the control means 31 further outputs a sampling trigger signal that instructs the AD conversion means 22 to start sampling.
- the sampling trigger signal is output after the optical trigger signal is output and before the ultrasonic trigger signal is output, more preferably at the timing when the subject is actually irradiated with the laser light. Therefore, the sampling trigger signal is output in synchronization with the timing at which the control means 31 outputs the Q switch trigger signal, for example.
- the AD conversion means 22 starts sampling the acoustic wave detection signal output from the probe 11 and received by the receiving circuit 21.
- the control means 31 After outputting the optical trigger signal, the control means 31 outputs the ultrasonic trigger signal at the timing when the detection of the acoustic wave is finished. At this time, the AD conversion means 22 continues the sampling without interrupting the sampling of the acoustic wave detection signal. In other words, the control unit 31 outputs the ultrasonic trigger signal in a state where the AD conversion unit 22 continues sampling the acoustic wave detection signal.
- the detection target of the probe 11 changes from acoustic waves to reflected ultrasonic waves.
- the AD conversion unit 22 continuously samples the acoustic wave detection signal and the ultrasonic wave detection signal by continuously sampling the detected ultrasonic wave detection signal.
- the AD conversion unit 22 stores photoacoustic data and ultrasonic data obtained by sampling in a common reception memory 23.
- the sampling data stored in the reception memory 23 is photoacoustic data up to a certain point, and becomes ultrasonic data from a certain point.
- the data separation unit 24 separates the photoacoustic data and the ultrasonic data stored in the reception memory 23.
- the condition input operation unit 50 includes means such as a keyboard and a mouse.
- the condition input operation unit 50 is operated by a user of the apparatus and inputs information on diagnostic characteristics to be described later to the condition input control unit 51.
- the condition input control unit 51 constitutes the condition input means in the present invention together with the condition input operation unit 50, and information indicating the probe's own band output from the probe 11 is also automatically input thereto. ing.
- the condition input control unit 51 inputs information indicating the band of the probe and information regarding diagnostic characteristics to the pulse width adjusting unit 52.
- the pulse width adjusting means 52 changes the pulse width of the pulse laser beam output from the laser 33 by changing the change speed of the drive voltage of an EO (electro-optic) element constituting the Q switch of the Q switch pulse laser 33, for example. Change.
- an optical shutter may be added after the pulse laser 33 to control the pulse width. That is, such an optical shutter changes the pulse width of the pulse laser beam emitted from the incident pulse laser beam by shielding the incident pulse laser beam for a part of the emission time.
- the partial time is, for example, from the start of the emission of the pulsed laser light to the time when the light intensity reaches the maximum value or the time before that.
- an optical shutter for example, an EO shutter in which an EO (Electrical-optical) element, a polarizing plate, and a drive circuit for the EO element are combined can be used.
- an optical system that splits the pulse laser beam, arranges an EO element on one optical path, changes the phase, and multiplexes them again can be used as a Mach-Zehnder light intensity modulator. it can.
- the data separation unit 24 in FIG. 1 receives ultrasonic data read from the reception memory 23 and photoacoustic data obtained by irradiating the subject with pulsed laser light having a wavelength of 756 nm.
- the data separation unit 24 inputs only the photoacoustic data to the subsequent image reconstruction unit 25 when generating the photoacoustic image.
- the image reconstruction means 25 reconstructs data indicating a photoacoustic image based on the photoacoustic data.
- the detection / logarithm conversion means 26 generates an envelope of data indicating the photoacoustic image, and then logarithmically converts the envelope to widen the dynamic range.
- the detection / logarithm conversion means 26 inputs these processed data to the image construction means 27.
- the image construction unit 27 constructs a photoacoustic image related to the cross section scanned by the pulse laser beam, and inputs data indicating the photoacoustic image to the image display unit 14. Thereby, the photoacoustic image regarding the said cross section is displayed on the image display means 14.
- the probe 11 is moved to scan the subject two-dimensionally with laser light, and a desired part of the subject, such as a blood vessel, is detected based on the image data regarding a plurality of cross sections obtained by the scanning. It is also possible to generate and display a photoacoustic image for three-dimensional display.
- ultrasonic image of the subject based on the ultrasonic data separated by the data separation means 24.
- the generation and display of the ultrasonic image may be performed by a conventionally known method, and since it is not directly related to the present invention, a detailed description is omitted, but such an ultrasonic image and a photoacoustic image are superimposed. It can also be displayed.
- the above (1) to (3) define the depth of the tissue to be displayed from the subject surface and the image definition as diagnostic characteristics, and (4) shows the output from the image construction means 27 as the diagnostic characteristics. It defines that the data indicating the photoacoustic image to be adapted is suitable for waveform analysis. In the present invention, as in the case of (4) above, the diagnostic characteristics required for the data indicating the photoacoustic image are also included in the “diagnostic characteristics required for the displayed image”.
- the depth and image definition of the tissue to be displayed from the subject surface are input. More specifically, in this example, a unique mode name is set for each of the diagnostic characteristics (1) to (4), and the user of the apparatus simply inputs the mode name from the condition input operation unit 50. Input operation is finished.
- the present invention is not limited to this, and a desired diagnostic characteristic may be specifically input from a keyboard or the like each time the apparatus user uses the apparatus.
- the apparatus user since the information indicating the band of the probe 11 is automatically input from the probe 11 as described above, it is not necessary for the apparatus user to input the band information of the probe, and the work is simplified. However, the present invention is not limited to this, and the apparatus user may input the probe band information by operating the condition input operation unit 50.
- the narrowband probe is a probe in which the difference between the frequency higher and lower than the center frequency, which is half the sensitivity of the center frequency, is in the band of about 50% to 100% of the value of the center frequency.
- the pulse width slightly smaller than the above to slightly reduce the energy of the pulse laser beam. Is preferable for increasing the image definition. From this point of view, in this case, a PZT narrowband probe with a slightly higher frequency band (center frequency: 5 MHz) is applied, and the pulse width is set to a medium value in the range of 20 ns to less than 50 ns. Like to do.
- the pulse width can be minimized and the waveform details can be grasped. It is advantageous to do so. From this point of view, in this case, a PVDF (polyvinylidene difluoride) type broadband probe that can obtain even higher frequencies than the above is applied, and the pulse width is set to a small value in the range of 3 ns to less than 10 ns. I am doing so.
- PVDF polyvinylidene difluoride
- the excitation energy of the flash lamp 33 described above may be set higher to compensate for the decrease.
- the pulse width of the pulse laser beam is adjusted according to the band of the probe 11, but in addition to this, according to the band of the electric circuit that processes the output of the probe 11, Furthermore, the pulse width of the pulse laser beam may be adjusted according to the band of the probe 11 and the band of the electric circuit. Further, for example, when the band of the probe 11 is narrow, the band of the electric circuit may be changed according to the band of the probe 11 such as narrowing the band of the electric circuit.
- an ultrasonic wave is used as an acoustic wave to be applied to the subject.
- this acoustic wave is not limited to the ultrasonic wave, and is appropriate depending on the test object, measurement conditions, and the like. As long as the frequency is selected, an acoustic wave in the audible frequency range may be used.
- the photoacoustic imaging apparatus and method of the present invention are not limited to the above embodiment, and various modifications and changes made from the configuration of the above embodiment are also included in the scope of the present invention.
- FIG. 2 is a block diagram showing a part of the photoacoustic imaging apparatus configured to perform the deconvolution processing. 2 is inserted, for example, between the image reconstruction means 25 and the detection / logarithmic conversion means 26 shown in FIG. 1, and is connected to the optical differential waveform deconvolution means 40 and its subsequent stage. Correction means 46.
- the split waveform deconvolution means 40 includes Fourier transform means 41 and 42, an inverse filter calculation means 43, a filter application means 44, and a Fourier inverse transform means 45.
- the partial waveform deconvolution means 40 deconstructs an optical pulse differential waveform obtained by differentiating the time waveform of the light intensity of the pulsed laser light irradiated to the subject from the data indicating the photoacoustic image output from the image reconstruction means 25. Volute. By this deconvolution, photoacoustic image data showing an absorption distribution is obtained.
- the Fourier transform means (first Fourier transform means) 41 of the optical differential waveform deconvolution means 40 converts the reconstructed photoacoustic image data from a time domain signal to a frequency domain signal by discrete Fourier transform.
- the Fourier transform means (second Fourier transform means) 42 converts a signal obtained by sampling the optical pulse differential waveform at a predetermined sampling rate from a time domain signal to a frequency domain signal by discrete Fourier transform.
- FFT can be used as the Fourier transform algorithm.
- the sampling rate of the acoustic wave detection signal in the AD conversion means 22 is equal to the sampling rate of the optical pulse differential waveform.
- the Fourier transform unit 41 Fourier transforms the photoacoustic image data output from the image reconstruction unit 25 obtained as a result of sampling at 40 MHz, for example, by 1024 points of Fourier transform.
- the Fourier transform means 42 performs Fourier transform on the optical pulse differential waveform sampled at 40 MHz by 1024 points of Fourier transform.
- the inverse filter calculation unit 43 obtains the inverse of the Fourier transformed optical pulse differential waveform as an inverse filter.
- the inverse filter calculation means 43 obtains conj (fft_h) / abs (fft_h) 2 as an inverse filter, where fft_h is a signal obtained by Fourier transforming the optical pulse differential waveform h.
- the filter applying unit 44 applies the inverse filter obtained by the inverse filter calculating unit 43 to the photoacoustic image data Fourier-transformed by the Fourier transform unit 41.
- the filter application unit 44 multiplies the Fourier coefficient of the photoacoustic image data by the Fourier coefficient of the inverse filter for each element.
- the Fourier inverse transform unit 45 transforms the photoacoustic image data to which the inverse filter is applied from a frequency domain signal to a time domain signal by Fourier inverse transform.
- An absorption distribution signal in the time domain is obtained by inverse Fourier transform.
- the optical differential term can be removed from the acoustic wave detection signal in which the optical differential term is convoluted, and the absorption distribution can be obtained from the acoustic wave detection signal.
- the absorption distribution is imaged, a photoacoustic image showing the absorption distribution image is obtained.
- the correction means 46 corrects the data obtained by deconvolution of the optical pulse differential waveform, and removes the influence of the reception angle dependent characteristic of the ultrasonic transducer in the probe 11 from the data obtained by deconvoluting the optical pulse differential waveform. Further, the correction means 46 removes the influence of the incident light distribution of the light on the subject from the data obtained by deconvolution of the optical pulse differential waveform in addition to or instead of the reception angle dependent characteristics. Note that a photoacoustic image may be generated without performing such correction.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Acoustics & Sound (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
【課題】光音響画像化方法において、画像化する深さや精細度等、表示画像に求められる診断特性を反映した画像を表示可能とする。 【解決手段】被検体に向けてパルス光を出射し、そのときに被検体から発せられた音響波を検出して光音響データを作成する手段を有する光音響画像化装置において、表示される画像に求められる診断特性および/または音響波検出手段の帯域を示す情報を入力する条件入力手段と、この条件入力手段から入力された情報に基づいてパルス光のパルス幅を調節するパルス幅調節手段とを設ける。
Description
本発明は光音響画像化方法すなわち、生体組織等の被検体に向けて光を出射し、それに伴って被検体から発生する音響波に基づいて被検体を画像化する方法に関するものである。
また本発明は、光音響画像化方法を実施する装置に関するものである。
従来、例えば特許文献1、2や非特許文献1に示されているように、光音響効果を利用して生体の内部を画像化する光音響画像化装置が知られている。この光音響画像化装置においては、例えばパルスレーザ光等のパルス光が生体に向けて出射される。このパルス光を受けた生体内部では、パルス光のエネルギーを吸収した生体組織が熱によって体積膨張し、音響波を発生する。そこで、この音響波を超音波プローブなどの検出手段で検出し、それにより得られた電気的信号(光音響信号)に基づいて生体内部を可視像化することが可能となっている。
このよう光音響画像化装置は、特定の吸光体から放射される音響波のみに基づいて画像を構築するようにしているので、生体における特定の組織、例えば血管等を画像化するのに好適となっている。
A High-Speed Photoacoustic Tomography System based on a Commercial Ultrasound and a Custom Transducer Array, X. Wang, J. Cannata, D. DeBusschere, C. Hu, J.B.Fowlkes, and P. Carson, Proc. SPIE, Vol. 7564, 756424 (Feb.23, 2010)
光音響画像化方法によれば、上述したように生体の血管等、被検体の表面から内部に入った組織も画像化することが可能であるが、臨床や医療研究の場においては、被検体表面から所定の深さの所に存在する組織を特に明瞭に画像化したい、といった要求が存在する。また、被検体表面からある深さの所に存在する組織を特に高精細に画像化したいといった要求も存在する。
しかし従来の光音響画像化装置は、上記のように明瞭に画像化できる深さや精細度等、表示画像に求められる診断特性に十分に対応できるものとはなっていない。
本発明は上記の事情に鑑みてなされたものであり、求められる診断特性に十分に対応した画像を表示できる光音響画像化方法を提供することを目的とする。
また本発明は、そのような光音響画像化方法を実施することができる光音響画像化装置を提供することを目的とするものである。
本発明による光音響画像化方法は、
前述したように、被検体に向けてその内部で吸収される波長のパルス光を出射し、それにより被検体から発せられた音響波を音響波検出手段により検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化方法において、
表示される画像に求められる診断特性および/または前記音響波検出手段の帯域に応じて前記パルス光のパルス幅を調節することを特徴とするものである。
前述したように、被検体に向けてその内部で吸収される波長のパルス光を出射し、それにより被検体から発せられた音響波を音響波検出手段により検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化方法において、
表示される画像に求められる診断特性および/または前記音響波検出手段の帯域に応じて前記パルス光のパルス幅を調節することを特徴とするものである。
なお上記の診断特性は、例えば、画像化が望まれる組織の被検体表面からの深さと、画像精細度とに関するものとされる。
そして、診断特性が上記深さと画像精細度とに関するものとされる場合は、画像化したい組織の被検体表面からの深さが大であるほど、前記パルス幅をより大きく設定することが望ましい。
さらに、診断特性が上記深さと画像精細度とに関するものとされる場合は、画像精細度が高いほど、前記パルス幅をより小さく設定することも好ましい。
また本発明の光音響画像化方法においては、前記帯域が高いほど、前記パルス幅をより小さく設定するようにしてもよい。
他方、本発明による光音響画像化装置は、
前述したように、被検体に向けてその内部で吸収される波長のパルス光を出射し、それにより被検体から発せられた音響波を音響波検出手段により検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化装置において、
表示される画像に求められる診断特性および/または前記音響波検出手段の帯域を示す情報を入力する条件入力手段と、
この条件入力手段から入力された情報に基づいて前記パルス光のパルス幅を調節するパルス幅調節手段とを備えたことを特徴とするものである。
前述したように、被検体に向けてその内部で吸収される波長のパルス光を出射し、それにより被検体から発せられた音響波を音響波検出手段により検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化装置において、
表示される画像に求められる診断特性および/または前記音響波検出手段の帯域を示す情報を入力する条件入力手段と、
この条件入力手段から入力された情報に基づいて前記パルス光のパルス幅を調節するパルス幅調節手段とを備えたことを特徴とするものである。
なお上記の条件入力手段は、診断特性として、画像化が望まれる組織の被検体表面からの深さと、画像精細度とを入力するものであることが望ましい。
そして、条件入力手段が上記深さと画像精細度とを入力するものである場合は、前記パルス幅調節手段が、画像化したい組織の被検体表面からの深さが大であるほど、前記パルス幅をより大きく設定するように構成されることが望ましい。
さらに、条件入力手段が上記深さと画像精細度とを入力するものである場合は、前記パルス幅調節手段が、画像精細度が高いほど、前記パルス幅をより小さく設定するように構成されることも望ましい。
またパルス幅調節手段は、音響波検出手段の帯域が高いほど、前記パルス幅をより小さく設定するように構成されてもよい。
なお本発明の光音響画像化装置における上記音響波検出手段は、音響波を検出するプローブおよび、そのプローブからの出力信号を処理する電気回路の双方であっても、あるいは一方であってもよい。したがって、上記条件入力手段に入力される帯域を示す情報は、プローブの帯域を示すものであってもよいし、あるいは電気回路の帯域を示すものであってもよい。
上述のようなプローブは、光音響画像化装置本体に対して着脱自在とされることが多い。そのように、音響波検出手段の少なくとも一部が光音響画像化装置本体に対して着脱自在とされる場合は、その着脱自在とされる部分が、光音響画像化装置本体に装着されたとき自身の帯域を示す情報を前記条件入力手段に自動入力するように構成されることが望ましい。
また本発明の光音響画像化装置は、光音響データから、被検体が受けたパルス光の光強度の時間波形の微分波形である光微分波形をデコンボリューションした信号を生成する光微分波形逆畳込み手段を備えていてもよい。
本発明による光音響画像化方法によれば、表示される画像に求められる診断特性および/または音響波検出手段の帯域に応じてパルス光のパルス幅を調節するようにしたので、音響波検出手段の帯域も考慮した上で、求められる診断特性に十分に対応した光音響画像を表示可能となる。
他方、本発明による光音響画像化装置によれば、表示される画像に求められる診断特性および/または音響波検出手段の帯域を示す情報を入力する条件入力手段と、この条件入力手段から入力された情報に基づいてパルス光のパルス幅を調節するパルス幅調節手段とを備えたので、上述した本発明による光音響画像化方法を実施可能となる。
また、本発明の光音響画像化装置において特に、光音響画像化装置本体に対して着脱自在とされた音響波検出手段の部分が、光音響画像化装置本体に装着されたとき自身の帯域を示す情報を上記条件入力手段に自動入力するように構成された場合は、この帯域を示す情報を装置使用者が入力する必要がなくなるので、光音響画像化のための操作が簡素化される。
以下、図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の一実施形態による光音響画像化装置10の基本構成を示すブロック図である。この光音響画像化装置10は、一例として光音響画像と超音波画像の双方を取得可能とされたもので、超音波探触子(プローブ)11、超音波ユニット12、レーザ光源ユニット13、画像表示手段14、条件入力操作部50、条件入力制御部51、およびパルス幅調節手段52を備えている。
上記レーザ光源ユニット13は、例えば中心波長756nmのレーザ光を発するものとされている。レーザ光源ユニット13から出射したレーザ光は被検体に照射される。このレーザ光は、例えば複数の光ファイバなどの導光手段を用いてプローブ11まで導光され、プローブ11の部分から被検体に向けて出射されるのが望ましい。
プローブ11は、被検体に対する超音波の出力(送信)、および被検体から反射して戻って来る反射超音波の検出(受信)を行う。そのためにプローブ11は、例えば一次元に配列された複数の超音波振動子を有する。またプローブ11は、被検体内の観察対象物がレーザ光源ユニット13からのレーザ光を吸収することで生じた超音波(音響波)を、上記複数の超音波振動子によって検出する。プローブ11は、上記音響波を検出して音響波検出信号を出力し、また上記反射超音波を検出して超音波検出信号を出力する。
なお、このプローブ11に上述した導光手段が結合される場合は、その導光手段の端部つまり複数の光ファイバの先端部等が、上記複数の超音波振動子の並び方向に沿って配置され、そこから被検体に向けてレーザ光が出射される。以下では、このように導光手段がプローブ11に結合される場合を例に取って説明する。
またプローブ11に接続された上記導光手段は、超音波ユニット12やレーザ光源ユニット13を収容する光音響画像化装置本体(図示せず)に対して、着脱自在とされている。それによりプローブ11は、光音響画像化装置本体に対して着脱自在となっている。なお、導光手段の基端を光音響画像化装置本体に対して固定とする一方、その先端にプローブ11が着脱自在に構成されてもよく、その場合も結局、プローブ11が光音響画像化装置本体に対して着脱自在となる。
被検体の光音響画像あるいは超音波画像を取得する際、プローブ11は上記複数の超音波振動子が並ぶ一次元方向に対してほぼ直角な方向に移動され、それにより被検体がレーザ光および超音波によって二次元走査される。この走査は、検査者が手操作でプローブ11を動かして行ってもよく、あるいは、走査機構を用いてより精密な二次元走査を実現するようにしてもよい。
超音波ユニット12は、受信回路21、AD変換手段22、受信メモリ23、データ分離手段24、画像再構成手段25、検波・対数変換手段26、画像構築手段27を有している。画像構築手段27の出力は、例えばCRTや液晶表示装置等からなる画像表示手段14に入力される。さらに超音波ユニット12は、送信制御回路30、および超音波ユニット12内の各部等の動作を制御する制御手段31を有している。
上記受信回路21は、プローブ11が出力した音響波検出信号および超音波検出信号を受信する。AD変換手段22はサンプリング手段であり、受信回路21が受信した音響波検出信号および超音波検出信号をサンプリングして、それぞれデジタル信号である光音響データおよび超音波データに変換する。このサンプリングは、例えば外部から入力されるADクロック信号に同期して、所定のサンプリング周期でなされる。
レーザ光源ユニット13は、Ti:Sapphireレーザや、アレキサンドライトレーザ等からなるQスイッチパルスレーザ32と、その励起光源であるフラッシュランプ33とを含むものである。このレーザ光源ユニット13には、前記制御手段31から光出射を指示する光トリガ信号が入力されるようになっており、該光トリガ信号を受けると、フラッシュランプ33を点灯させてQスイッチパルスレーザ32を励起する。制御手段31は、例えばフラッシュランプ33がQスイッチパルスレーザ32を十分に励起させると、Qスイッチトリガ信号を出力する。Qスイッチパルスレーザ32は、Qスイッチトリガ信号を受けるとそのQスイッチをオンにし、波長756nmのパルスレーザ光を出射させる。
ここで、フラッシュランプ33の点灯からQスイッチパルスレーザ33が十分な励起状態となるまでに要する時間は、Qスイッチパルスレーザ33の特性などから見積もることができる。なお、上述のように制御手段31からQスイッチを制御するのに代えて、レーザ光源ユニット13内において、Qスイッチパルスレーザ32を十分に励起させた後にQスイッチをオンにしてもよい。その場合は、Qスイッチをオンにしたことを示す信号を超音波ユニット12側に通知してもよい。
なお、本発明の光音響画像化装置においては、波長切り替えが可能なパルスレーザが用いられてもよい。後述するようにしてパルスレーザ光のパルス幅を変化させるに当たり、パルスレーザが波長切り替えが可能なものである場合は、各波長のパルスレーザに付いて独自にパルス幅が調節される。一般には、波長に応じてパルス幅も変わる。例えばチタンサファイアレーザの場合は、波長が700nm程度に短くなると、パルス幅は波長が800nm程度のときのパルス幅よりも長くなる(パルス幅と波長との関係は、レーザ結晶に依存する)。各波長のパルスレーザ光がプローブの帯域に合うように、波長に応じてパルス幅の調節度合いを変化させてもよい。
また制御手段31は、送信制御回路30に、超音波送信を指示する超音波トリガ信号を入力する。送信制御回路30は、この超音波トリガ信号を受けると、プローブ11から超音波を送信させる。制御手段31は、先に前記光トリガ信号を出力し、その後、超音波トリガ信号を出力する。光トリガ信号が出力されることで被検体に対するレーザ光の出射、および音響波の検出が行われ、その後、超音波トリガ信号が出力されることで被検体に対する超音波の送信、および反射超音波の検出が行われる。
制御手段31はさらに、AD変換手段22に対して、サンプリング開始を指示するサンプリングトリガ信号を出力する。このサンプリングトリガ信号は、前記光トリガ信号が出力された後で、かつ超音波トリガ信号が出力される前、より好ましくは被検体に実際にレーザ光が照射されるタイミングで出力される。そのためにサンプリングトリガ信号は、例えば制御手段31がQスイッチトリガ信号を出力するタイミングに同期して出力される。AD変換手段22は上記サンプリングトリガ信号を受けると、プローブ11が出力して受信回路21が受信した音響波検出信号のサンプリングを開始する。
制御手段31は、光トリガ信号を出力した後、音響波の検出を終了するタイミングで超音波トリガ信号を出力する。このとき、AD変換手段22は音響波検出信号のサンプリングを中断せず、サンプリングを継続して実施する。言い換えれば、制御手段31は、AD変換手段22が音響波検出信号のサンプリングを継続している状態で、超音波トリガ信号を出力する。超音波トリガ信号に応答してプローブ11が超音波送信を行うことで、プローブ11の検出対象は、音響波から反射超音波に変わる。AD変換手段22は、検出された超音波検出信号のサンプリングを継続することで、音響波検出信号と超音波検出信号とを、連続的にサンプリングする。
AD変換手段22は、サンプリングして得られた光音響データおよび超音波データを、共通の受信メモリ23に格納する。受信メモリ23に格納されたサンプリングデータは、ある時点までは光音響データであり、ある時点からは超音波データとなる。データ分離手段24は、受信メモリ23に格納された光音響データと超音波データとを分離する。
条件入力操作部50はキーボードやマウス等の手段からなり、装置使用者により操作されて、後述する診断特性に関する情報を条件入力制御部51に入力する。条件入力制御部51は上記条件入力操作部50と共に本発明における条件入力手段を構成するものであり、そこには、プローブ11が出力するプローブ自身の帯域を示す情報も自動入力されるようになっている。条件入力制御部51は上記プローブの帯域を示す情報と、診断特性に関する情報をパルス幅調節手段52に入力する。パルス幅調節手段52は、例えばQスイッチパルスレーザ33のQスイッチを構成するEO(電気光学)素子の駆動電圧の変化速度を変えることにより、該レーザ33から出力されるパルスレーザ光のパルス幅を変化させる。
なお、このようにして変化させるパルス幅の変化幅よりもさらに大きくパルス幅を変化させたい場合は、パルスレーザ33の後段に光シャッタを追加してパルス幅を制御させてもよい。すなわちそのような光シャッタは、入射したパルスレーザ光を、その発光時間内の一部時間において遮蔽することにより、そこから出射するパルスレーザ光のパルス幅を変化させる。なお上記の一部時間は、例えば、パルスレーザ光の発光開始時点から、光強度が極大値をとる時点かそれよりも前の時点までの間とされる。
その種の光シャッタとしては例えば、EO(Electrical-optical)素子と偏光板およびEO素子の駆動回路を組み合わせてなるEOシャッタを用いることができる。あるいは、パルスレーザ光を分岐し、片方の光路にEO素子を配置して位相を変え、再び合波するような光学系を組み、マッハツェンダ型光強度変調器としてシャッタ作用をさせるものを用いることもできる。
以下、光音響画像の生成および表示について説明する。図1のデータ分離手段24には、受信メモリ23から読み出された超音波データおよび、波長756nmのパルスレーザ光を被検体に照射して得られた光音響データが入力される。データ分離手段24は、光音響画像の生成時には光音響データのみを後段の画像再構成手段25に入力する。画像再構成手段25はこの光音響データに基づいて、光音響画像を示すデータを再構成する。
検波・対数変換手段26は上記光音響画像を示すデータの包絡線を生成し、次いでその包絡線を対数変換してダイナミックレンジを広げる。検波・対数変換手段26はこれらの処理後のデータを画像構築手段27に入力する。画像構築手段27は入力されたデータに基づいて、パルスレーザ光により走査された断面に関する光音響画像を構築し、その光音響画像を示すデータを画像表示手段14に入力する。それにより画像表示手段14には、上記断面に関する光音響画像が表示される。
なお、前述したようにプローブ11を移動して被検体をレーザ光によって二次元走査し、その走査に伴って得られた複数の断面に関する画像データに基づいて、被検体の所望部位例えば血管等を三次元表示する光音響画像を生成、表示することも可能である。
また、データ分離手段24が分離した超音波データに基づいて、被検体の超音波画像を生成、表示することも可能である。その超音波画像の生成、表示は、従来公知の方法によって行えばよく、本発明とは直接関連が無いので詳しい説明は省略するが、そのような超音波画像と光音響画像とを重ね合わせて表示させることも可能である。
次に、被検体に向けて出射させるパルスレーザ光のパルス幅を調節する点について詳しく説明する。本実施形態において、表示される光音響画像に求められる診断特性は下の表1に示す(1)~(4)の4通りとされ、また1つの診断特性に対して1つのプローブ帯域が設定されるようになっている。
なお上記(1)~(3)は診断特性として、表示したい組織の被検体表面からの深さおよび画像精細度を規定したものであり、(4)は診断特性として、画像構築手段27が出力する光音響画像を示すデータが波形解析に適合したものである旨を規定するものである。本発明においては上記(4)の場合のように、光音響画像を示すデータに求められる診断特性も、「表示される画像に求められる診断特性」に含まれるものとする。
本実施形態では、図1の条件入力操作部50を操作することにより、表示したい組織の被検体表面からの深さと画像精細度が入力される。より詳しく説明すれば、本例では診断特性(1)~(4)にそれぞれ特有のモード名が設定されて、装置使用者はそのモード名を条件入力操作部50から入力するだけで診断特性の入力操作が済むようになっている。ただしこれに限らず、装置使用者が使用の都度、望まれる診断特性をキーボード等から具体的に入力するようにしてもよい。
また、プローブ11の帯域を示す情報は前述した通り該プローブ11から自動入力されるので、装置使用者がプローブの帯域情報を入力する必要がなく、作業が簡素化される。ただしこれに限らず、装置使用者が条件入力操作部50を操作してプローブの帯域情報を入力するようにしてもよい。
以下、上記(1)~(4)の各場合におけるパルス幅設定の理由について説明する。
(1)
被検体表面から20~40mm程度の比較的深い所に存在する組織を明瞭に観察したい場合は、パルス幅を比較的大きく設定してパルスレーザ光のエネルギーを大きくするのが有利である。また、深い位置の組織を観察する上で音響波の周波数は、光音響波が低い周波数成分を多く含む信号となる点からも、そして生体の音響吸収の点からも、より低周波であるのが有利である。以上の観点からこの場合は、比較的低周波数の帯域(中心周波数:3MHz)の例えばPZT(チタン酸ジルコン酸鉛:Pb(lead) zirconate titanate)系狭帯域プローブを適用して、パルス幅は50ns(ナノ秒)~100ns以下の範囲にある比較的大きい値に設定するようにしている。なおこの場合、パルス幅は100ns以上に設定しても構わない。ここでいう狭帯域プローブとは、中心周波数の感度の半分となる中心周波数より高い周波数と低い周波数の差が、中心周波数の値の50%から100%程度の帯域となるプローブとする。
被検体表面から20~40mm程度の比較的深い所に存在する組織を明瞭に観察したい場合は、パルス幅を比較的大きく設定してパルスレーザ光のエネルギーを大きくするのが有利である。また、深い位置の組織を観察する上で音響波の周波数は、光音響波が低い周波数成分を多く含む信号となる点からも、そして生体の音響吸収の点からも、より低周波であるのが有利である。以上の観点からこの場合は、比較的低周波数の帯域(中心周波数:3MHz)の例えばPZT(チタン酸ジルコン酸鉛:Pb(lead) zirconate titanate)系狭帯域プローブを適用して、パルス幅は50ns(ナノ秒)~100ns以下の範囲にある比較的大きい値に設定するようにしている。なおこの場合、パルス幅は100ns以上に設定しても構わない。ここでいう狭帯域プローブとは、中心周波数の感度の半分となる中心周波数より高い周波数と低い周波数の差が、中心周波数の値の50%から100%程度の帯域となるプローブとする。
(2)
被検体表面から10mm~20mm未満位の中程度の深さの所に存在する組織を明瞭に観察したい場合は、パルス幅を上記よりもやや小さく設定してパルスレーザ光のエネルギーを若干小さくするのが、画像精細度を高める上で好ましい。以上の観点からこの場合は、上記よりもやや高周波数の帯域(中心周波数:5MHz)のPZT系狭帯域プローブを適用して、パルス幅は20ns~50ns未満の範囲にある中程度の値に設定するようにしている。
被検体表面から10mm~20mm未満位の中程度の深さの所に存在する組織を明瞭に観察したい場合は、パルス幅を上記よりもやや小さく設定してパルスレーザ光のエネルギーを若干小さくするのが、画像精細度を高める上で好ましい。以上の観点からこの場合は、上記よりもやや高周波数の帯域(中心周波数:5MHz)のPZT系狭帯域プローブを適用して、パルス幅は20ns~50ns未満の範囲にある中程度の値に設定するようにしている。
(3)
被検体表面から0~10mm未満位の浅い所に存在する組織を明瞭に観察したい場合は、パルス幅を上記よりもさらに小さく設定してパルスレーザ光のエネルギーをより小さくするのが、より高精細な画像を表示する上で好ましい。以上の観点からこの場合は、上記よりもさらに高周波数の帯域(中心周波数:10MHz)のPZT系狭帯域プローブを適用して、パルス幅は10ns~20ns未満の範囲にある、やや小程度の値に設定するようにしている。
被検体表面から0~10mm未満位の浅い所に存在する組織を明瞭に観察したい場合は、パルス幅を上記よりもさらに小さく設定してパルスレーザ光のエネルギーをより小さくするのが、より高精細な画像を表示する上で好ましい。以上の観点からこの場合は、上記よりもさらに高周波数の帯域(中心周波数:10MHz)のPZT系狭帯域プローブを適用して、パルス幅は10ns~20ns未満の範囲にある、やや小程度の値に設定するようにしている。
(4)
画像を表示するのではなく、検波・対数変換手段26が出力する光音響画像を示すデータの波形を解析して診断するためには、パルス幅を最も小さくして波形の詳細を把握できるようにするのが有利である。以上の観点からこの場合は、上記よりもさらに高周波数まで取得できるPVDF(ポリフッ化ビニリデン:polyvinylidene difluoride)系広帯域プローブを適用して、パルス幅は3ns~10ns未満の範囲にある小さい値に設定するようにしている。
画像を表示するのではなく、検波・対数変換手段26が出力する光音響画像を示すデータの波形を解析して診断するためには、パルス幅を最も小さくして波形の詳細を把握できるようにするのが有利である。以上の観点からこの場合は、上記よりもさらに高周波数まで取得できるPVDF(ポリフッ化ビニリデン:polyvinylidene difluoride)系広帯域プローブを適用して、パルス幅は3ns~10ns未満の範囲にある小さい値に設定するようにしている。
以上により本実施形態においては、求められる診断特性に十分に対応した光音響画像を表示可能となる。
なおパルスレーザ光のエネルギーはパルス幅が小さいほど低下するので、その低下を補うために、前述したフラッシュランプ33の励起エネルギーを高く設定するようにしてもよい。
なお、以上説明した実施形態では、プローブ11の帯域に応じてパルスレーザ光のパルス幅を調節するようにしているが、これに加えてプローブ11の出力を処理する電気回路の帯域に応じて、さらにはプローブ11の帯域および電気回路の帯域に応じてパルスレーザ光のパルス幅を調節するようにしてもよい。また、例えばプローブ11の帯域が狭い場合には電気回路の帯域も狭める等のように、プローブ11の帯域に応じて電気回路の帯域を変えるようにしてもよい。
また以上述べた実施形態においては、被検体に照射する音響波として超音波を用いているが、この音響波は超音波に限られるものではなく、被検対象や測定条件等に応じて適切な周波数を選択してさえいれば、可聴周波数域の音響波を用いてもよい。
また本発明の光音響画像化装置および方法は、上記実施形態にのみ限定されるものではなく、上記実施形態の構成から種々の修正および変更を施したものも、本発明の範囲に含まれる。
例えば本発明は、デコンボリューション処理を施すようにした光音響画像化装置および方法にも適用可能である。図2は、そのデコンボリューション処理を施すように構成された光音響画像化装置の一部を示すブロック図である。この図2の構成は、例えば図1に示した画像再構成手段25と検波・対数変換手段26との間に挿入されるものであり、光微分波形逆畳込み手段40およびその後段に接続された補正手段46とからなる。そして分波形逆畳込み手段40は、フーリエ変換手段41、42、逆フィルタ演算手段43、フィルタ適用手段44、およびフーリエ逆変換手段45から構成されている。
上記分波形逆畳込み手段40は、画像再構成手段25が出力した光音響画像を示すデータから、被検体に照射されたパルスレーザ光の光強度の時間波形を微分した光パルス微分波形をデコンボリューションする。このデコンボリューションにより、吸収分布を示す光音響画像データが得られる。
以下、このデコンボリューションについて詳しく説明する。光微分波形逆畳込み手段40のフーリエ変換手段(第1のフーリエ変換手段)41は、離散フーリエ変換により、再構成された光音響画像データを時間領域の信号から周波数領域の信号へと変換する。フーリエ変換手段(第2のフーリエ変換手段)42は、離散フーリエ変換により、光パルス微分波形を所定のサンプリングレートでサンプリングした信号を時間領域の信号から周波数領域の信号へと変換する。フーリエ変換のアルゴリズムには、例えばFFTを用いることができる。
本実施形態においては、AD変換手段22における音響波検出信号のサンプリングレートと、光パルス微分波形のサンプリングレートとは等しいものとする。例えば音響波検出信号はFs=40MHzのサンプリングクロックに同期してサンプリングされており、光微分パルスも、Fs_h=40MHzのサンプリングレートでサンプリングされている。フーリエ変換手段41は、40MHzでサンプリングした結果得られた、画像再構成手段25が出力する光音響画像データを、例えば1024点のフーリエ変換でフーリエ変換する。また、フーリエ変換手段42は、40MHzでサンプリングされた光パルス微分波形を1024点のフーリエ変換でフーリエ変換する。
逆フィルタ演算手段43は、フーリエ変換された光パルス微分波形の逆数を逆フィルタとして求める。例えば逆フィルタ演算手段43は、光パルス微分波形hをフーリエ変換した信号をfft_hとしたとき、conj(fft_h)/abs(fft_h)2を逆フィルタとして求める。フィルタ適用手段44は、フーリエ変換手段41でフーリエ変換された光音響画像データに、逆フィルタ演算手段43で求められた逆フィルタを適用する。フィルタ適用手段44は、例えば、要素ごとに、光音響画像データのフーリエ係数と逆フィルタのフーリエ係数とを乗算する。逆フィルタが適用されることで、周波数領域の信号において、光パルス微分波形がデコンボリューションされる。フーリエ逆変換手段45は、フーリエ逆変換により、逆フィルタが適用された光音響画像データを、周波数領域の信号から時間領域の信号へと変換する。フーリエ逆変換により、時間領域の吸収分布信号が得られる。
以上述べた処理を行うことにより、光微分項がコンボリューションされた音響波検出信号から光微分項を除去することができ、音響波検出信号から吸収分布を求めることができる。そのような吸収分布を画像化した場合には、吸収分布画像を示す光音響画像が得られる。
なお補正手段46は、光パルス微分波形がデコンボリューションされたデータを補正し、光パルス微分波形がデコンボリューションされたデータから、プローブ11における超音波振動子の受信角度依存特性の影響を除去する。また、補正手段46は、受信角度依存特性に加えて、またはこれらに代えて、光パルス微分波形がデコンボリューションされたデータから被検体における光の入射光分布の影響を除去する。なお、このような補正を行わずに、光音響画像の生成を行ってもよい。
Claims (20)
- 被検体に向けてその内部で吸収される波長のパルス光を出射し、それにより被検体から発せられた音響波を音響波検出手段により検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化方法において、
表示される画像に求められる診断特性および/または前記音響波検出手段の帯域に応じて前記パルス光のパルス幅を調節することを特徴とする光音響画像化方法。 - 前記診断特性が、画像化が望まれる組織の被検体表面からの深さと、画像精細度とに関するものであることを特徴とする請求項1記載の光音響画像化方法。
- 前記画像化したい組織の被検体表面からの深さが大であるほど、前記パルス幅をより大きく設定することを特徴とする請求項2記載の光音響画像化方法。
- 前記画像精細度が高いほど、前記パルス幅をより小さく設定することを特徴とする請求項2記載の光音響画像化方法。
- 前記画像精細度が高いほど、前記パルス幅をより小さく設定することを特徴とする請求項3記載の光音響画像化方法。
- 前記帯域が広いほど、前記パルス幅をより小さく設定することを特徴とする請求項1記載の光音響画像化方法。
- 前記帯域が広いほど、前記パルス幅をより小さく設定することを特徴とする請求項2記載の光音響画像化方法。
- 前記帯域が広いほど、前記パルス幅をより小さく設定することを特徴とする請求項3記載の光音響画像化方法。
- 前記帯域が広いほど、前記パルス幅をより小さく設定することを特徴とする請求項4記載の光音響画像化方法。
- 被検体に向けてその内部で吸収される波長のパルス光を出射し、それにより被検体から発せられた音響波を音響波検出手段により検出して光音響データを得、この光音響データに基づいて前記被検体を画像化して画像表示手段に表示する光音響画像化装置において、
表示される画像に求められる診断特性および/または前記音響波検出手段の帯域を示す情報を入力する条件入力手段と、
この条件入力手段から入力された情報に基づいて前記パルス光のパルス幅を調節するパルス幅調節手段とを備えたことを特徴とする光音響画像化装置。 - 前記条件入力手段が前記診断特性として、画像化が望まれる組織の被検体表面からの深さと、画像精細度とを入力するものであることを特徴とする請求項10記載の光音響画像化装置。
- 前記パルス幅調節手段が、前記画像化したい組織の被検体表面からの深さが大であるほど、前記パルス幅をより大きく設定するものであることを特徴とする請求項11記載の光音響画像化装置。
- 前記パルス幅調節手段が、前記画像精細度が高いほど、前記パルス幅をより小さく設定するものであることを特徴とする請求項11記載の光音響画像化装置。
- 前記パルス幅調節手段が、前記画像精細度が高いほど、前記パルス幅をより小さく設定するものであることを特徴とする請求項12記載の光音響画像化装置。
- 前記パルス幅調節手段が、前記帯域が広いほど、前記パルス幅をより小さく設定するものであることを特徴とする請求項10記載の光音響画像化装置。
- 前記パルス幅調節手段が、前記帯域が広いほど、前記パルス幅をより小さく設定するものであることを特徴とする請求項11記載の光音響画像化装置。
- 前記パルス幅調節手段が、前記帯域が広いほど、前記パルス幅をより小さく設定するものであることを特徴とする請求項12記載の光音響画像化装置。
- 前記パルス幅調節手段が、前記帯域が広いほど、前記パルス幅をより小さく設定するものであることを特徴とする請求項13記載の光音響画像化装置。
- 前記音響波検出手段の少なくとも一部が光音響画像化装置本体に対して着脱自在とされた上で、その着脱自在とされる部分が、光音響画像化装置本体に装着されたとき自身の帯域を示す情報を前記条件入力手段に自動入力するように構成されていることを特徴とする請求項10記載の光音響画像化装置。
- 前記光音響データから、前記被検体が受けたパルス光の光強度の時間波形の微分波形である光微分波形をデコンボリューションした信号を生成する光微分波形逆畳込み手段を備えたことを特徴とする請求項10記載の光音響画像化装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011281946A JP2013128722A (ja) | 2011-12-22 | 2011-12-22 | 光音響画像化方法および装置 |
JP2011-281946 | 2011-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013094170A1 true WO2013094170A1 (ja) | 2013-06-27 |
Family
ID=48668088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/008034 WO2013094170A1 (ja) | 2011-12-22 | 2012-12-17 | 光音響画像化方法および装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013128722A (ja) |
WO (1) | WO2013094170A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103654732A (zh) * | 2013-12-31 | 2014-03-26 | 南京大学 | 一种基于线性延时补偿的光声图像优化方法 |
EP2989970A1 (en) * | 2014-08-27 | 2016-03-02 | PreXion Corporation | Photoacoustic imager |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6152078B2 (ja) * | 2014-08-27 | 2017-06-21 | プレキシオン株式会社 | 光音響画像化装置 |
JP6501474B2 (ja) * | 2014-09-29 | 2019-04-17 | キヤノン株式会社 | 被検体情報取得装置 |
JP2017006288A (ja) * | 2015-06-19 | 2017-01-12 | プレキシオン株式会社 | 光音響画像化装置 |
JP2017046823A (ja) * | 2015-08-31 | 2017-03-09 | プレキシオン株式会社 | 光音響画像化装置 |
WO2019044593A1 (ja) * | 2017-08-29 | 2019-03-07 | 富士フイルム株式会社 | 光音響画像生成装置および画像取得方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007271288A (ja) * | 2006-03-30 | 2007-10-18 | Graduate School For The Creation Of New Photonics Industries | レーザ励起超音波画像装置 |
JP2011083531A (ja) * | 2009-10-19 | 2011-04-28 | Canon Inc | 音響波測定装置、音響波画像化装置および音響波測定装置の制御方法 |
JP2011179928A (ja) * | 2010-02-26 | 2011-09-15 | Mitsubishi Heavy Ind Ltd | レーザ超音波探傷装置 |
JP2011229620A (ja) * | 2010-04-26 | 2011-11-17 | Canon Inc | 音響波測定装置および音響波測定方法 |
-
2011
- 2011-12-22 JP JP2011281946A patent/JP2013128722A/ja active Pending
-
2012
- 2012-12-17 WO PCT/JP2012/008034 patent/WO2013094170A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007271288A (ja) * | 2006-03-30 | 2007-10-18 | Graduate School For The Creation Of New Photonics Industries | レーザ励起超音波画像装置 |
JP2011083531A (ja) * | 2009-10-19 | 2011-04-28 | Canon Inc | 音響波測定装置、音響波画像化装置および音響波測定装置の制御方法 |
JP2011179928A (ja) * | 2010-02-26 | 2011-09-15 | Mitsubishi Heavy Ind Ltd | レーザ超音波探傷装置 |
JP2011229620A (ja) * | 2010-04-26 | 2011-11-17 | Canon Inc | 音響波測定装置および音響波測定方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103654732A (zh) * | 2013-12-31 | 2014-03-26 | 南京大学 | 一种基于线性延时补偿的光声图像优化方法 |
EP2989970A1 (en) * | 2014-08-27 | 2016-03-02 | PreXion Corporation | Photoacoustic imager |
Also Published As
Publication number | Publication date |
---|---|
JP2013128722A (ja) | 2013-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013094170A1 (ja) | 光音響画像化方法および装置 | |
JP5661451B2 (ja) | 被検体情報取得装置及び被検体情報取得方法 | |
JP5852597B2 (ja) | 光音響画像化方法および装置 | |
JP5832182B2 (ja) | 音響信号受信装置およびイメージング装置 | |
US9995717B2 (en) | Object information acquiring apparatus and object information acquiring method | |
JP5655021B2 (ja) | 光音響画像化方法および装置 | |
US9888856B2 (en) | Photoacoustic image generation apparatus, system and method | |
JP5009058B2 (ja) | 被検体情報分析装置 | |
JP5719242B2 (ja) | ドプラ画像表示方法および装置 | |
JP5810050B2 (ja) | 音響画像生成装置および音響画像生成方法 | |
JP2013233386A (ja) | 光音響画像生成装置、システム、及び方法 | |
JP6222936B2 (ja) | 装置および画像生成方法 | |
JP6177530B2 (ja) | ドプラ計測装置およびドプラ計測方法 | |
KR20160005240A (ko) | 광음향 촬영 장치 및 이를 이용한 산소포화도 측정방법 | |
JP2016101393A (ja) | 被検体情報取得装置およびその制御方法 | |
WO2013046569A1 (ja) | 光音響画像生成装置及び方法 | |
JP5936559B2 (ja) | 光音響画像生成装置および光音響画像生成方法 | |
WO2017138459A1 (ja) | 音響波画像生成装置および音響波画像生成方法 | |
US11333599B2 (en) | Photoacoustic image generation apparatus, photoacoustic image generation method, and photoacoustic image generation program | |
JP2015092914A (ja) | 被検体情報取得装置および音響波受信装置 | |
JPWO2019044593A1 (ja) | 光音響画像生成装置および画像取得方法 | |
JP2013103022A (ja) | 音響波取得装置およびその制御方法 | |
US20190064350A1 (en) | Ultrasonic apparatus | |
JP2016073509A (ja) | 光音響装置及び光音響波測定方法 | |
JP2014023680A (ja) | 被検体情報取得装置およびその制御方法ならびに提示方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12860961 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12860961 Country of ref document: EP Kind code of ref document: A1 |