Nothing Special   »   [go: up one dir, main page]

WO2013094173A1 - 対物レンズ、光ピックアップ、光ディスク装置、樹脂成形用金型及び対物レンズの製造方法 - Google Patents

対物レンズ、光ピックアップ、光ディスク装置、樹脂成形用金型及び対物レンズの製造方法 Download PDF

Info

Publication number
WO2013094173A1
WO2013094173A1 PCT/JP2012/008044 JP2012008044W WO2013094173A1 WO 2013094173 A1 WO2013094173 A1 WO 2013094173A1 JP 2012008044 W JP2012008044 W JP 2012008044W WO 2013094173 A1 WO2013094173 A1 WO 2013094173A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
optical
mold
marking
core
Prior art date
Application number
PCT/JP2012/008044
Other languages
English (en)
French (fr)
Inventor
文朝 山崎
久敬 戸田
範晃 寺原
太田 武志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013094173A1 publication Critical patent/WO2013094173A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly

Definitions

  • the present invention relates to an objective lens used for recording and / or reproducing information on an information recording medium, an optical pickup that includes the objective lens and optically records and / or reproduces information on the information recording medium, and the light
  • the present invention relates to an optical disk device on which a pickup is mounted, a resin molding die for manufacturing the objective lens, and a method for manufacturing the objective lens.
  • Blu-ray Disc (hereinafter also referred to as optical disc) is a high-density and large-capacity information recording medium (hereinafter also referred to as an optical disc) that is the same size as CD (Compact Disc) and DVD (Digital Versatile Disc) Hereinafter, BD) has been put into practical use.
  • BD uses a blue-violet laser light source that emits laser light having a wavelength of about 400 nm and an objective lens having a numerical aperture (hereinafter also referred to as NA) of about 0.85.
  • NA numerical aperture
  • an objective lens made of a synthetic resin is used for an optical pickup for recording or reproducing an optical disk such as a CD or a DVD.
  • Synthetic resin objective lenses have a lower specific gravity than glass objective lenses, reducing the burden on the objective lens actuator that drives the objective lens against optical disc surface deflection and eccentricity, and at higher speeds. It is also possible to follow.
  • the objective lens made of synthetic resin can be mass-produced with high accuracy by injection molding, the cost of the objective lens can be reduced.
  • Synthetic resin objective lenses may cause astigmatism due to the precision and molding conditions (mold temperature, resin temperature, and pressure conditions) of the resin molding mold, and in a pair of resin molding molds. It is known that coma aberration and the like occur due to a relative optical axis shift between the first surface and the second surface.
  • a high NA objective lens used for BD or the like requires stricter control of mold accuracy and molding conditions compared to conventional objective lenses for CD and DVD. It is done.
  • the mark (marking part) which shows the direction of an aberration, etc. may be attached to the outer side of the optical surface of an objective lens.
  • the marking part can be formed by marking the edge part (flat part) one by one with an ink jet printer or the like after molding the objective lens, or by irradiating a resin molding die with an electron beam for rough surface processing.
  • a method of transferring a rough surface portion, a convex shape or a concave shape mark to the edge portion of a molded lens by applying or forming a concave slow-thickness portion or a convex portion is known. By providing such a marking portion, the direction of aberration can be determined from the position of the marking portion.
  • FIG. 14 is a schematic view showing the shape of a conventional objective lens.
  • the objective lens 201 includes an optical surface 202 serving as an optical function surface of the optical element, and an outer shape portion 203 integrally formed around the optical surface 202, and a trace 203b obtained by cutting the gate portion is formed on the outer shape portion 203.
  • a marking portion 204 (“M105" in the figure) made up of a plurality of characters and symbols such as alphabets and the like is formed on the flat surface 203a of the outer shape portion 203 in the vicinity of the gate portion, remaining on the outer periphery.
  • the marking part 204 composed of characters or symbols, the marking part 204 having information such as the history of the molded part and the resin molding die can be reliably and simultaneously formed with the molded part. It can be easily formed.
  • the coma aberration can be adjusted by adjusting the relative optical axis by rotating the mold (specular core) in the barrel mold.
  • Patent Document 1 processes the edge portion (outside the optical function surface) of the mirror surface core to form a marking portion. Therefore, if the mirror surface core is rotated in the body mold, The relative positional relationship between the trunk mold and the marking portion changes, but no mention is made of the influence thereof.
  • the formation of the marking portion itself causes an aberration.
  • the shape of the marking portion suitable for such a high NA objective lens is not disclosed at all. Absent.
  • the present invention has been made in view of solving such a conventional problem, and is based on the formation of a marking portion indicating the direction of astigmatism and the light generated by rotation of a resin molding die (mirror core).
  • An object of the present invention is to provide a high NA synthetic resin objective lens that can achieve both axis adjustment (coma aberration correction).
  • An objective lens according to one aspect of the present invention is an objective lens that is molded using a resin molding die including a first barrel mold and a second barrel mold, and the objective lens has a numerical aperture NA of 0.7.
  • a resinous objective lens as described above having a first optical surface and a main body portion having a second optical surface facing the first optical surface, and an outer peripheral portion of the main body portion integrated with the main body portion.
  • the first optical surface is formed by a first mirror core inserted into the first body mold and rotatably supported, and the second optical surface is Formed by a second specular core that is inserted into a second barrel mold and rotatably supported; and the flange portion is formed on the second optical surface side by the second barrel mold; and Formed on the annular surface by an eject pin supported so as to be able to move forward and backward in the second body mold Markings that are formed by the second cylinder-shaped processing marks at positions different from the positions where the protruding part marks are formed on the annular surface, and indicate the direction of astigmatism of the objective lens Part.
  • a resin molding die is a resin molding die for manufacturing a resin objective lens having a numerical aperture NA of 0.7 or more, and the first optical element of the objective lens is a first mold.
  • a first mirror core that forms a surface, a second mirror core that forms a second optical surface opposite to the first optical surface, and the first mirror core inserted with the first mirror core.
  • a first barrel mold that is rotatably supported, a second mirror surface core inserted therein to rotatably support the second mirror core, and a second optical surface side circle of the flange portion of the objective lens
  • a second body mold that forms an annular surface; and an eject pin that is supported by the second body mold so as to be able to advance and retreat.
  • the eject pin forms a protrusion mark on the annular surface, and the second body mold. Is a position different from the position where the protruding portion trace is formed in the annular surface, By forming the Engineering traces, forming a marking unit for indicating the direction of the astigmatism of the objective lens.
  • An objective lens manufacturing method is a method of manufacturing an objective lens that uses a resin molding die to manufacture a resin objective lens having a numerical aperture NA of 0.7 or more
  • the resin molding die includes a first mirror core that forms a first optical surface of the objective lens, a second mirror core that forms a second optical surface facing the first optical surface, A first barrel type in which the first mirror core is inserted to rotatably support the first mirror core; and the second mirror core is inserted to rotatably support the second mirror core.
  • a second body mold that forms an annular surface on the second optical surface side of the flange portion of the objective lens; and an eject pin that is supported by the second body mold so as to be able to advance and retreat, and using the eject pin.
  • a marking portion indicating the direction of astigmatism of the objective lens is formed by forming a processing mark at a position different from the position where the protruding portion mark is formed on the annular surface. Steps.
  • Sectional drawing and top view which show schematic shape of the objective lens made from a synthetic resin in Embodiment 1 of this invention
  • Sectional drawing which shows schematic structure of the metal mold
  • the figure which shows the position of the gate part and the marking part typically
  • the top view which shows schematic shape of the objective lens made from another synthetic resin in Embodiment 1 of this invention
  • the top view and sectional drawing which show typically the shape of the marking part of the objective lens in Embodiment 1 of this invention
  • the figure which shows the other cross-sectional shape of a marking part typically Sectional drawing which shows schematic shape of the objective lens made from another synthetic resin in Embodiment 1 of this invention
  • Sectional drawing which shows schematic structure of the metal mold
  • FIG. 2 Schematic configuration diagram of an optical pickup according to Embodiment 2 of the present invention Schematic diagram for explaining the operation of the objective lens actuator of the optical pickup shown in FIG.
  • FIG. 1A shows a cross-sectional view of a synthetic resin objective lens according to Embodiment 1 of the present invention
  • FIG. 1B shows a plan view of the objective lens.
  • the objective lens 1 is an objective lens molded using a first barrel mold 10 and a second barrel mold 20 (see FIG. 3) described later, and is a resin objective lens having a numerical aperture NA of 0.7 or more. is there.
  • the objective lens 1 includes a first lens surface (first optical surface) 1a on the light source side (laser light incident side) and a second optical disk side (side on which laser light is emitted) facing the first lens surface.
  • a main body portion 2 having a lens surface (second optical surface) 1b and a peripheral flange portion 3 formed integrally with the main body portion 2 on the outer peripheral portion of the main body portion 2 are provided.
  • the first lens surface 1a and the second lens surface 1b have different spherical or aspherical surfaces (hereinafter collectively referred to as aspherical surfaces).
  • the first lens surface 1a and / or the second lens surface 1b has a sawtooth shape or a step shape having a plurality of ring-shaped optical surfaces centered on the optical axis OA of the objective lens 1 on the base aspherical surface.
  • the diffractive structure may be formed.
  • the peripheral flange portion 3 is secondly formed by an annular surface 3a formed on the first lens surface 1a side by a first mirror core 12 (see FIG. 3) to be described later and a second barrel mold 20 (see FIG. 3) to be described later. It has an annular surface 3b formed on the lens surface 1b side.
  • the objective lens 1 is integrally formed with the main body portion 2 having the first lens surface 1 a and the second lens surface 1 b and the peripheral flange portion 3.
  • a plurality of protruding portion marks 5 and marking portions 7 are formed on the surface on the lens surface 1b side.
  • the protruding portion mark 5 is formed on the annular surface 3b by an eject pin 27 (see FIG. 3) supported by the second body mold 20 so as to be able to advance and retreat.
  • the marking part 7 is formed by a processing mark of the second barrel mold 20 at a position different from the position where the protruding part mark 5 is formed on the annular surface 3b, and indicates the direction of astigmatism of the objective lens 1.
  • the gate portion 6 indicated by a broken line in the drawing is formed by the inflow passage of the resin material when the objective lens 1 is molded. If the gate portion 6 remains largely, the objective lens 1 is mounted on the lens holder. In addition, it is necessary to “escape” the gate portion 6 on the lens holder. Further, the mounting direction of the objective lens 1 is limited to a direction in which the gate portion 6 and the “escape” of the lens holder coincide with each other. Therefore, it is desirable that the gate portion 6 is cut and removed after the objective lens 1 is molded.
  • FIG. 2 is a perspective view showing a schematic shape of the objective lens 1 of the present embodiment.
  • the marking portion 7 is formed on the annular surface 3b of the peripheral flange portion 3 on the second lens surface 1b side, and, as will be described later, for example, in advance on a mold (second barrel die 20) for molding the objective lens 1.
  • the processing trace formed by the cutting tool is added by transferring it to the objective lens 1 at the time of molding. Therefore, it is preferable that the marking part 7 is a convex part.
  • the protrusion trace 5 is preferably a concave portion, it may be a convex portion.
  • the protruding portion trace 5 is preferably circular.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of a resin molding die for manufacturing the objective lens 1 of the present embodiment.
  • FIG. 3 (a) shows a state during molding (mold closed state)
  • FIG. 3B shows a mold open state.
  • a pair of first body mold 10 and second body mold 20 that can be opened and closed by a parting line PL are respectively provided with a first core support hole 11 and a first core support hole 11 positioned on the same axis.
  • a two-core support hole 21 is formed.
  • a first mirror core 12 and a second mirror core 22 are inserted into the first core support hole 11 and the second core support hole 21, respectively, and are rotatably supported.
  • the first mirror core 12 has an outer diameter corresponding to the first core support hole 11, and a first optical functional surface 13 facing the parting line PL is formed at the tip.
  • the second mirror core 22 has an outer diameter corresponding to the second core support hole 21, and a second optical functional surface 23 facing the parting line PL is formed at the tip.
  • the radius of curvature of the first optical functional surface 13 is smaller than the radius of curvature of the second optical functional surface 23.
  • the first mirror surface core 12 and the second mirror surface core 22 are inserted into the first core support hole 11 and the second core support hole 21, respectively, and the first optical function surface 13 and the second optical function surface.
  • a molding space for the objective lens 1 is formed, and this molding space faces the parting line PL.
  • the first core core 12 is inserted and fixed in the core support hole 11 of the first body mold 10
  • the mirror core 22 is inserted and fixed in the core support hole 21 of the second body mold 20, thereby supporting the first core.
  • the clearance between the hole diameter of the hole 11 and the outer diameter of the first mirror core 12 and the clearance between the hole diameter of the second core support hole 21 and the outer diameter of the second mirror core 22 can be minimized. Specifically, when the diameter of the first core support hole 11 (the diameter of the objective lens 1 to be molded) is about several mm, this clearance can be set to about 1 ⁇ m or less.
  • the second body mold 20 is formed with a flange forming portion 26 that communicates with a forming space formed by the first optical function surface 13 and the second optical function surface 23 so as to face the parting line PL.
  • the flange forming portion 26 corresponds to the annular surface 3 b on the second lens surface 1 b side of the peripheral flange portion 3 of the objective lens 1. .
  • the annular surface 3a on the first lens surface 1a side of the peripheral flange portion 3 of the objective lens 1 is formed by the first mirror core 12 as is apparent from FIG. It may be formed by a single body mold 10. However, since the annular surface 3a on the first lens surface 1a side of the peripheral flange portion 3 serves as a reference surface when the objective lens 1 is mounted on the optical pickup, it is formed with the same mold as the first optical function surface 13. It is preferred that That is, the annular surface 3 a on the first lens surface 1 a side of the peripheral flange portion 3 is preferably formed by the first mirror core 12. In this case, since the annular surface 3a on the first lens surface 1a side, which becomes a reference surface when the objective lens 1 is mounted on the optical pickup, can be formed with high precision, the objective lens 1 is attached to the optical pickup with high precision. Can be attached.
  • the flange molding portion 26 of the second body mold 20 forms an annular surface 3b on the second lens surface 1b side of the peripheral flange portion 3.
  • the eject pin 27 is supported by the second body mold 20 so as to be able to advance and retreat, and forms a protruding mark 5 on the annular surface 3b of the peripheral flange portion 3 on the second lens surface 1b side.
  • pin holes 28 into which eject pins 27 extending into the forming space are slidably inserted are formed at, for example, four locations on the circumference.
  • the pin hole 28 extends in parallel with the second core support hole 21, and the eject pin 27 can be advanced and retracted in the axial direction by an eject pin drive section (not shown).
  • the position where the pin hole 28 is provided is the optical function surface side with a small effective diameter, that is, the objective lens of the present embodiment, of the two optical function surfaces of the first optical function surface 13 and the second optical function surface 23. 1 is preferably provided on the second optical function surface 23 side.
  • a resin material injecting portion (not shown) communicating with is formed.
  • the resin material injection portion serves as an inflow passage for the resin material when the objective lens 1 is molded, and the gate portion 6 is formed.
  • Molding by the resin molding die having the above configuration is performed by the first optical functional surface 13 and the second optical functional surface 23 from the resin material injection portion in a state where the first barrel die 10 and the second barrel die 20 are clamped. This is performed by injecting a resin material into the molding space. This resin material is heated and pressurized by the first mirror core 12 and the second mirror core 22, whereby the objective lens 1 is molded.
  • the first lens surface 1a of the objective lens 1 is formed by the first optical function surface 13 formed on the first mirror surface core 12, and the object lens 1 is formed by the second optical function surface 23 formed on the second mirror surface core 22.
  • the second lens surface 1b is formed.
  • an annular surface 3b on the second lens surface 1b side of the peripheral flange portion 3 is formed by the flange forming portion 26 formed on the second body mold 20, and further, the eject pin 27 is used to form the second flange surface 3 of the peripheral flange portion 3.
  • the protruding portion trace 5 is formed on the annular surface 3b on the two lens surface 1b side.
  • the objective lens 1 is attached to the second optical function surface 23 side.
  • the eject pin 27 is protruded to the molding space side of the flange forming portion 26 via the eject pin driving portion, the peripheral flange portion 3 of the objective lens 1 is protruded as shown in FIG. (2)
  • the objective lens 1 is released from the optical function surface 23 and taken out.
  • the peripheral flange portion 3 is formed on the objective lens 1 and the peripheral flange portion 3 is pressed with the eject pin 27 to release the mold, thereby suppressing deformation (deterioration of surface accuracy) of the objective lens 1. .
  • the circumferential position of the gate portion 6 and the circumferential position of the protruding portion trace 5 are different. Is preferred. In this case, as shown in FIG.
  • the gate portion 6 is provided in the thick portion of the peripheral flange portion 3 in this way, so that the flow of the resin material As a result, the pressure loss is reduced and the optical function surface can be satisfactorily formed.
  • the inventors of the present application have astigmatism caused by molding conditions (pressurizing conditions / heating conditions), etc., particularly for high NA objective lenses used in optical pickups for recording or reproducing high density optical disks such as BD. Has been found to be caused by the flow of resin during molding, that is, it has a relationship with the position of the gate portion in injection molding.
  • the flange molding portion 26 formed on the second barrel die 20 is preliminarily processed to have a concave shape corresponding to the marking portion 7 by a cutting tool. 2 is transferred to the objective lens 1 to form a convex marking portion 7 as shown in FIG.
  • first mirror core 12 and the second mirror core 22 are respectively connected to the first body.
  • relative optical axis adjustment can be performed and coma aberration can be corrected.
  • the flange molding portion 26 formed in the second barrel mold 20 is subjected to concave processing corresponding to the marking portion 7. Therefore, as described above, even when the optical axis is adjusted by rotating the first mirror core 12 and the second mirror core 22, the relative positional relationship between the gate portion 6 and the marking portion 7 in the objective lens 1 does not change. . Therefore, since the relationship between the direction of astigmatism generated due to the flow of resin during molding and the direction of the marking portion 7 is maintained, the marking portion 7 is used when the objective lens 1 is incorporated into the optical pickup.
  • the astigmatism direction can be used as a mark when adjusting in a predetermined direction, for example, a direction in which the astigmatism due to another optical element of the optical pickup and the astigmatism of the objective lens 1 cancel each other.
  • the concave processing trace for forming the marking portion 7 of the objective lens 1 is circumferential with respect to the gate portion 6 as shown in FIG. It is preferable to form in a direction of approximately 180 ° in the direction.
  • the marking portion 7a when the marking portion 7a is formed in the vicinity of the gate portion 6 (approximately 0 ° in the circumferential direction), in the vicinity of the resin material injection portion of the resin molding die. A concave processing mark is formed. In this case, the flow of the resin at the time of injection molding deteriorates due to the marking portion 7a, which becomes a cause of occurrence of molding defects and the like.
  • the marking portion 7b when the marking portion 7b is formed at a position such as approximately 90 ° in the circumferential direction (counterclockwise) with respect to the gate portion 6, the objective portion shown in FIG. Since the objective lens 1 has an asymmetric shape with respect to the straight line xx connecting the optical axis with the lens 1, it causes generation of coma aberration and the like.
  • the marking portion 7 of the objective lens 1 is preferably formed within a range of 180 ⁇ 10 ° in the circumferential direction with respect to the gate portion 6, and is approximately 180 ° in the circumferential direction with respect to the gate portion 6. More preferably, it is formed at a position. In this case, the generation of astigmatism due to molding defects or the like can be suppressed, and the generation of coma aberration can be suppressed.
  • the protrusion mark 5 is arranged symmetrically with respect to a straight line xx connecting the optical axis OA of the objective lens 1 and the center of the gate part 6. In this case, the occurrence of coma aberration can be suppressed.
  • the protruding portions are located at positions of approximately 45 °, 135 °, 225 °, and 315 ° in the circumferential direction (clockwise) with respect to the gate portion 6. It is preferable to form the marks 5.
  • FIG. 5 when two protruding portion marks 5 ′ are formed, that is, a pin hole into which an eject pin is inserted is a resin molding die.
  • the arrangement of the gate portion 6 ′, the two protruding portion traces 5 ′, and the marking portion 7 ′ is as shown in FIG.
  • the protruding portion marks 5 ′ are formed at positions of approximately 90 ° and 270 ° in the circumferential direction (clockwise) with respect to the gate portion 6, and approximately 180 in the circumferential direction (clockwise) with respect to the gate portion 6. It is preferable to form the marking portion 7 ′ at a position of °.
  • the visibility of the marking portion is very important. That is, in the case of a marking portion with low visibility, equipment such as a microscope is required to incorporate the objective lens into the optical pickup, which increases the number of work steps and increases the cost of the optical pickup.
  • FIG. 6 is a diagram schematically showing the shape of the marking portion 7 formed on the objective lens 1 of the present embodiment.
  • 6A is a plan view of the marking portion 7
  • FIG. 6B is a cross-sectional view of the marking portion 7 along the center line AA
  • FIG. 6C is along the center line BB.
  • a cross-sectional view of the marking portion 7 is shown.
  • the direction of the center line AA is the radial direction of the objective lens 1 (optical disk)
  • the direction of the center line BB is the circumferential direction of the objective lens 1 (optical disk).
  • the marking portion 7 applied to the objective lens 1 of the present embodiment is more radial than the circumferential direction of the objective lens 1 when viewed from the upper surface of the objective lens 1.
  • the marking portion 7 has an oval shape having a length L in the radial direction, a width W in the circumferential direction, and a height H, and the length L is at least twice the width W. preferable.
  • the cross-sectional shape of the marking portion 7 is a convex lens shape.
  • the inventors of the present application have such a shape, and when viewed from the upper surface of the objective lens 1, the lens action (refractive action) of the marking part 7 causes the marking part 7 to We found that visibility improved dramatically.
  • FIG. 7 is a cross-sectional view of the marking portion along the center line BB schematically showing another cross-sectional shape of the marking portion. Even if the side wall of the marking portion 7 ′ is inclined as in the example shown in FIG. 7, it is possible to improve visibility by refraction. In this case, the inclination angle ⁇ of the side wall 71 is preferably 20 ° or more and 50 ° or less in view of the balance between the workability of the processing marks on the mold and the visibility of the marking portion 7 ′.
  • the length L in the radial direction is preferably in the range of 0.2 mm or more and 0.5 mm or less, more preferably in the range of 0.25 mm or more and 0.45 mm or less, and the circumferential direction of the marking portion 7 Is preferably in the range of 0.05 mm or more and 0.25 mm or less, more preferably in the range of 0.08 mm or more and 0.15 mm or less, and the height H of the marking portion 7 is 0. It was found that it was preferably in the range of 0.003 mm or more and 0.025 mm or less, and more preferably in the range of 0.005 mm or more and 0.020 mm or less.
  • the surface roughness is changed between the marking portion 7 and its peripheral portion (annular surface 3b on the second lens surface 1b side of the peripheral flange portion 3), that is, the surface roughness of the marking portion 7 is changed to the peripheral flange portion 3.
  • the surface roughness of the concave processing trace corresponding to the marking portion 7 is different from the flange forming portion 26 of the mold corresponding to the annular surface 3b on the second lens surface 1b side of the peripheral flange portion 3.
  • the surface roughness of the marking part 7 can be made smaller than the surface roughness of the peripheral flange part 3. In this case, it is possible to achieve improvement in visibility due to the lens action of the marking portion 7 and suppression of mold processing costs.
  • the measurement laser light is irradiated from the optical disk side (the second lens surface 1b side of the objective lens 1) of the objective lens, and the objective is determined from the angle of the reflected light of the measurement laser light.
  • the inclination of the lens is detected and the relative inclination between the optical pickup and the objective lens is adjusted.
  • an annular reflection plane 1c perpendicular to the optical axis OA can be used as the reflection surface of the measurement laser beam.
  • the reflection plane 1c is located on the outer peripheral side of the second lens surface 1b and is formed of the same mold as the mold that forms the second lens surface 1b. That is, the reflection plane 1c is not formed by the second body mold 20 that forms the peripheral flange portion 3, but by the second mirror core 22 that forms the second lens surface 1b that determines the optical performance of the objective lens 1. It is guaranteed to be perpendicular to the optical axis OA.
  • the effective diameter D2 of the second lens surface 1b is smaller than the effective diameter D1 of the first lens surface 1a, and the diameter D3 on the outer peripheral side of the reflection plane 1c is larger than the effective diameter D1 of the first lens surface 1a. Larger is preferred.
  • the inclination of the objective lens 1 is detected from the angle of the reflected light of the measurement laser beam, and the optical pickup and the objective lens 1 are The relative inclination can be adjusted with high accuracy.
  • the flow of the resin during molding may deteriorate, and the flatness of the reflection plane 1c may deteriorate. If the flatness of the reflection plane 1c deteriorates, the reflected light of the measurement laser beam cannot be obtained normally, and the tilt of the objective lens cannot be detected. Therefore, as described below, it is preferable to provide a step portion between the second lens surface 1b and the reflection plane 1c so that the reflection plane 1c and the first lens surface 1a do not approach each other.
  • FIG. 8 is a cross-sectional view showing a schematic shape of another objective lens made of synthetic resin according to Embodiment 1 of the present invention.
  • the objective lens 1 ′′ shown in FIG. 8 is different from the objective lens 1 shown in FIG. 1 in that a step 1d is provided between the second lens surface 1b and the reflection plane 1c. These are the same as those of the objective lens 1 shown in FIG.
  • the peripheral flange portion 3 has a step portion 1d formed inside the annular surface 3b on the second lens surface 1b side, and is an annular surface on the upper side of the step portion 1d.
  • a certain reflection plane 1c and the first lens surface 1a are configured not to be close to each other, and the effective diameter D2 of the second lens surface 1b is set to be smaller than the effective diameter D1 of the first lens surface 1a.
  • the diameter D4 on the outer peripheral side of the step portion 1d (reflection plane 1c) is set to be larger than the effective diameter D1 of the first lens surface 1a.
  • the stepped portion 1d sufficiently separates the reflection plane 1c and the first lens surface 1a, and the flow of resin during molding becomes smooth, so that the flatness of the reflection plane 1c can be improved.
  • the measurement laser beam can be accurately reflected by the reflection plane 1c, so that the inclination of the objective lens 1 "is accurately detected from the angle of the reflected light of the measurement laser beam, and the optical pickup and the objective lens 1 are detected.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of a resin molding die for manufacturing the objective lens 1 ′′ shown in FIG. 8.
  • the resin molding die shown in FIG. 9 is the resin molding die shown in FIG.
  • the difference from the mold is that instead of the second mirror core 22, a second mirror core 22 ′ having an annular recess 22 a for forming a step 1 d on the objective lens 1 ′′ is used. Since the other points are the same as those of the resin molding die shown in FIG. 3, detailed description thereof is omitted.
  • the second mirror core 22 ′ has an annular recess 22a on the outer peripheral side of the second optical functional surface 23, and the annular recess 22a is filled with resin, so that the objective lens 1 ′′ is provided.
  • the step 1d (reflection plane 1c) is the object of the objective.
  • the reflection plane 1c is formed by the same mold as the second optical functional surface 23 that forms the second lens surface 1b that determines the optical performance of the lens 1 ", that is, the second mirror core 22", so that the reflection plane 1c is optical axis. It is guaranteed to be perpendicular to OA.
  • the present embodiment for example, when viewed from the upper surface of the objective lens 1, an elliptical shape having a longer radial direction than the circumferential direction of the objective lens 1 and a cross-section having a convex lens shape or a side wall inclined shape.
  • the marking portion 7 has been described, the present invention is not limited to the marking portion having such a shape.
  • the shape of the marking portion when viewed from the upper surface of the objective lens 1 is not limited to an oval shape whose radial direction is longer than the circumferential direction, and may be an astigmatic shape such as a circle, a triangle, or an arrow.
  • the excellent effect that it is possible to achieve both the formation of the marking portion indicating the direction of aberration and the optical axis adjustment (coma aberration correction) by the rotation of the mirror core is not impaired.
  • FIG. 10 is a schematic configuration diagram of the optical pickup according to the present embodiment.
  • an optical pickup 100 includes an objective lens 1, a blue-violet laser light source 101, a polarizing beam splitter 102, a quarter wavelength plate 103, a collimating lens 104, a mirror 105, an objective lens actuator 109, a red laser light source 111, a flat beam.
  • a splitter 113, a detection lens 122, and a light receiving element 123 are provided.
  • the objective lens 1 is the objective lens shown in Embodiment 1, and BD60 or DVD70 is used as an information recording medium.
  • the blue-violet laser light having a wavelength of about 405 nm emitted from the blue-violet laser light source 101 enters the polarization beam splitter 102 as S-polarized light.
  • the laser light reflected by the polarization beam splitter 102 is converted into circularly polarized light by the quarter wavelength plate 103, then converted into substantially parallel light by the collimator lens 104, reflected by the mirror 105, and bent.
  • the blue-violet laser light reflected by the mirror 105 is converged as a light spot on the information recording surface of the BD 60 by the objective lens 1.
  • the blue-violet laser light reflected on the information recording surface of the BD 60 is transmitted through the objective lens 1 again, reflected by the mirror 105, transmitted through the collimator lens 104, and then converted into linearly polarized light different from the forward path by the quarter wavelength plate 103. Converted.
  • the blue-violet laser light converted into linearly polarized light is incident on and transmitted through the polarization beam splitter 102 and the flat beam splitter 113 as P-polarized light, and is guided to the light receiving element 123 via the detection lens 122.
  • the laser light detected by the light receiving element 123 is calculated after being photoelectrically converted, and generates a focus error signal for following the surface blur of the BD 60 and a tracking error signal for following the eccentricity of the BD 60.
  • the red laser light having a wavelength of about 660 nm emitted from the red laser light source 111 is incident on the flat plate beam splitter 113 as S-polarized light, reflected, and transmitted through the polarizing beam splitter 102.
  • the red laser light transmitted through the polarization beam splitter 102 is converted into circularly polarized light by the quarter wavelength plate 103, then converted into substantially parallel light by the collimator lens 104, reflected by the mirror 105, and bent.
  • the red laser light reflected by the mirror 105 is converged as a light spot on the information recording surface of the DVD 70 by the objective lens 1.
  • the objective lens 1 is the objective lens shown in the first embodiment, and is used to record or reproduce information on the violet laser beam and the DVD 70 for recording or reproducing information on the BD 60.
  • the objective lens 1 is the objective lens shown in the first embodiment, and is used to record or reproduce information on the violet laser beam and the DVD 70 for recording or reproducing information on the BD 60.
  • FIG. 11 is a schematic diagram for explaining the operation of the objective lens actuator 109 shown in FIG.
  • the objective lens actuator 109 supports the lens holder 109a by a plurality of suspension wires 109b, and a light spot is applied to the information track of the rotating BD 60 or DVD 70 by the focus error signal and the tracking error signal. Is driven in the biaxial directions (focus direction Fo and tracking direction Tr).
  • the structure of the objective lens actuator 109 may be a structure in which the objective lens 1 can be tilted in the radial direction of the optical disc in addition to the displacement in the focus direction Fo and the tracking direction Tr.
  • the optical pickup 100 of the present embodiment includes the objective lens 1 shown in the first embodiment. Since the objective lens 1 has the marking portion 7 formed on the annular surface 3b of the peripheral flange portion 3 on the second lens surface 1b side, the optical axis adjustment (coma aberration correction) is performed by rotating the mirror core in the resin molding die. ) And an objective lens with good aberration performance can be obtained.
  • the astigmatism direction of the objective lens 1 can be adjusted to a predetermined direction using the marking portion 7 as a mark.
  • astigmatism due to astigmatism between the blue-violet laser light source 101 and the red laser light source 111, astigmatism generated in the polarization beam splitter 102, the quarter-wave plate 103, the collimating lens 104, the mirror 105, and the like, and the objective lens It is possible to adjust the angle of the objective lens 1 (rotational adjustment in the circumferential direction) in the direction in which the astigmatism of 1 cancels out. Therefore, the performance of the optical pickup 100 can be improved, and the BD 60 and the DVD 70 can be recorded or reproduced satisfactorily.
  • the marking portion 7 can be easily aligned in a predetermined direction by using a plurality of angle target portions formed radially on the lens holder 109a.
  • FIG. 12 is a diagram showing a schematic shape of the lens holder 109a of the objective lens actuator 109 shown in FIG.
  • the angle target portion 109c is a step portion formed radially around the seating surface (the surface on which the objective lens 1 is mounted) of the lens holder 109a.
  • the angle target portion 109c is formed of a notch, a groove, a protrusion, or the like, and is a concave portion or a convex portion that forms a step with the periphery of the angle target portion 109c, and a plurality (for example, six in this example) are provided. Note that the angle target portions 109c are not necessarily arranged at equal intervals.
  • the angle target portion in that direction is omitted. Also good.
  • FIG. 12 shows a case where six angle target portions 109c with an interval of 30 ° are provided. That is, in the circumferential direction (clockwise direction), six angle target portions 109c are formed in directions of 30 °, 60 °, 120 °, 240 °, 300 °, and 360 °, and the radial direction Rd ( The angle target portions in the direction of 0 °, 180 °) and the tangential direction (90 °, 270 °) are omitted.
  • the angle target portion 109c is provided in the vicinity of the spacer (protector) 109d for preventing the objective lens 1 from colliding with the optical disc and the adhesive reservoir region 109e for preventing the adhesive from flowing out. Although not formed, it is sufficient to align the marking portion 7 of the objective lens 1 in a predetermined direction.
  • the optical pickup 100 uses the plurality of angle target portions 109c formed radially on the lens holder 109a and the marking portion 7 of the objective lens 1 having excellent visibility. Since the angle adjustment (rotational adjustment in the circumferential direction) of the objective lens 1 is facilitated, no equipment such as a microscope is required, and the number of work steps can be reduced and the cost of the optical pickup can be reduced.
  • the optical pickup includes a two-wavelength light source that emits red laser light and infrared laser light instead of the red laser light source 111, and the objective lens 1 is a blue-violet laser light for recording or reproducing information on the BD. Diffraction for condensing red laser light for recording or reproducing information on DVD and infrared laser light for recording or reproducing information on CD using a wavelength difference as a small light spot, respectively.
  • each of BD, DVD, and CD can be recorded or reproduced satisfactorily.
  • the optical pickup includes a blue-violet laser light source that emits at least blue-violet laser light, and the objective lens 1 condenses the blue-violet laser light for recording or reproducing information as a minute light spot only on the BD. Needless to say, even in this case, it is possible to record or reproduce BDs satisfactorily.
  • FIG. 13 is a schematic configuration diagram of the optical disc apparatus according to the present embodiment.
  • An optical disc apparatus 300 shown in FIG. 13 includes an optical disc driving unit 301, a control unit 302, and an optical pickup 100 therein.
  • the optical disk drive unit 301 includes a motor for rotationally driving the BD 60 (or DVD 70), and has a function of rotationally driving the BD 60 (or DVD 70).
  • the optical pickup 100 is the optical pickup described in the second embodiment.
  • the control unit 302 has a function of driving and controlling the optical disc driving unit 301 and the optical pickup 100, a function of performing signal processing of a control signal and an information signal received by the optical pickup 100, and an information signal to the optical disc apparatus 300. Has a function of interfacing with the outside of the inside.
  • the BD 60 and the DVD 70 can be recorded or reproduced satisfactorily.
  • the optical disc apparatus 300 is mounted with an optical pickup including an objective lens used as a compatible objective lens for a BD using a blue-violet laser beam, a DVD using a red laser beam, and a CD using an infrared laser beam.
  • an optical pickup including an objective lens used as a compatible objective lens for a BD using a blue-violet laser beam, a DVD using a red laser beam, and a CD using an infrared laser beam.
  • an objective lens according to an aspect of the present invention is an objective lens that is molded using a resin molding die including a first barrel mold and a second barrel mold, and the objective lens has a numerical aperture NA.
  • NA numerical aperture
  • the first optical surface is formed by a first specular core that is inserted into the first body mold and is rotatably supported, and the second optical surface.
  • the first optical surface is formed by a first specular core that is inserted into the first body mold and is rotatably supported, and the second optical surface is inserted into the second body mold. Since it is formed by the second mirror core that is rotatably supported, the optical axis adjustment (coma aberration correction) can be easily performed by the rotation of the first and second mirror cores.
  • the flange portion has an annular surface formed on the second optical surface side by the second body mold, and a protruding portion trace is formed on the annular surface by the eject pin that is supported by the second body mold so as to freely advance and retract.
  • the marking portion indicating the direction of astigmatism of the objective lens is formed by the second barrel-shaped processing mark at a position different from the position where the protruding part mark is formed on the annular surface.
  • the marking portion can be formed at a predetermined position while maintaining the relationship with the direction of astigmatism without being affected by the optical axis adjustment due to the rotation of the second specular core, and A marking part can be easily visually recognized by contrast.
  • the marking portion is preferably formed within a range of 180 ⁇ 10 ° in the circumferential direction with respect to the gate portion formed by the inflow passage of the resin material when the objective lens is molded. In this case, the generation of astigmatism due to molding defects or the like can be suppressed, and the generation of coma aberration can be suppressed.
  • the protrusion traces include a plurality of protrusion traces arranged symmetrically with respect to a straight line connecting the optical axis of the objective lens and the gate portion. In this case, the occurrence of coma aberration can be suppressed.
  • the flange portion has an annular surface formed on the first optical surface side by the first mirror surface core.
  • the annular surface on the first optical surface side serving as a reference surface when the objective lens is mounted on the optical pickup can be formed with high accuracy, the objective lens can be attached to the optical pickup with high accuracy. it can.
  • the flange portion may have an annular surface formed on the first optical surface side by the first body mold.
  • the first optical surface can be formed with higher accuracy by the first mirror core.
  • the annular portion on the second optical surface side and the first optical surface are sufficiently separated by the step portion, and the flow of the resin during molding becomes smooth.
  • the flatness of the annular surface can be improved.
  • the measurement laser beam can be accurately reflected using the annular surface on the second optical surface side as a reflection plane, so that the inclination of the objective lens can be accurately determined from the angle of the reflected light of the measurement laser beam.
  • the relative inclination between the optical pickup and the objective lens can be adjusted with high accuracy.
  • the marking part is a convex part formed by transferring a processing mark formed by cutting the second body mold.
  • the marking portion can be easily formed, and the protruding portion trace is usually a recess, so that the contrast with the protruding portion trace becomes clearer and the marking portion visibility is further improved. Can do.
  • the side wall of the marking part may be inclined. Also in this case, the visibility of the marking portion can be dramatically improved by the refractive action.
  • the inclination angle of the side wall of the marking part is preferably 20 ° or more and 50 ° or less. In this case, it is possible to achieve a balance between the processability of the processing marks on the mold and the visibility of the marking portion.
  • the surface roughness of the marking part is preferably smaller than the surface roughness of the flange part. In this case, it is possible to improve the visibility of the marking portion and suppress the mold processing cost.
  • the marking portion may be formed by transferring a rough surface process formed by irradiating the second body mold with an electron beam. Also in this case, it is possible to achieve both the formation of the marking portion indicating the direction of astigmatism and the optical axis adjustment (coma aberration correction) by the rotation of the first and second mirror cores.
  • the shape of the marking portion is preferably a substantially oval shape in which the length in the circumferential direction of the objective lens is shorter than the length in the radial direction of the objective lens. In this case, it is usually easy to distinguish from the circular protrusion mark, and the width in the circumferential direction can be reduced while ensuring the visibility of the marking part. (Rotational adjustment in the circumferential direction) can be performed.
  • the length of the marking portion in the radial direction of the objective lens is L (mm)
  • the width of the marking portion in the circumferential direction of the objective lens is W (mm)
  • the height of the marking portion from the flange portion is
  • the marking portion preferably satisfies the following formula: 0.2 ⁇ L ⁇ 0.5 0.05 ⁇ W ⁇ 0.25 0.003 ⁇ H ⁇ 0.025
  • the marking portion satisfies the following formula.
  • An optical pickup includes a light source that emits laser light, at least the objective lens that converges the laser light on an information recording surface of the information recording medium, and a laser reflected by the information recording medium.
  • a light receiving portion for receiving light.
  • This optical pickup uses the above-mentioned objective lens, so that BD or the like can be recorded or reproduced satisfactorily.
  • the optical pickup further includes an actuator for driving a lens holder on which the objective lens is mounted in at least two axial directions, and a radial step portion around the seat surface of the lens holder with the optical axis of the objective lens as a center. It is preferable that a plurality of is formed.
  • An optical disc apparatus includes the above optical pickup, a motor for rotationally driving an information recording medium, and a control unit that controls the optical pickup and the motor.
  • a resin molding die is a resin molding die for manufacturing a resin objective lens having a numerical aperture NA of 0.7 or more, wherein the first mold of the objective lens is used.
  • a first mirror core that forms an optical surface; a second mirror core that forms a second optical surface facing the first optical surface; and the first mirror core inserted with the first mirror core.
  • a first body mold that rotatably supports the second mirror surface core, and the second mirror surface core is rotatably supported by the second optical surface side of the flange portion of the objective lens.
  • a second body mold that forms an annular surface; and an eject pin that is supported by the second body mold so as to be able to move forward and backward.
  • the eject pin forms a protruding mark on the annular surface
  • the second body The mold is at a position different from the position where the protruding portion trace is formed on the annular surface,
  • the Engineering traces By forming the Engineering traces, forming a marking unit for indicating the direction of the astigmatism of the objective lens.
  • An objective lens manufacturing method is a method of manufacturing an objective lens that uses a resin molding die to manufacture a resin objective lens having a numerical aperture NA of 0.7 or more
  • the resin molding die includes a first mirror core that forms a first optical surface of the objective lens, a second mirror core that forms a second optical surface facing the first optical surface, A first barrel type in which the first mirror core is inserted to rotatably support the first mirror core; and the second mirror core is inserted to rotatably support the second mirror core.
  • a second body mold that forms an annular surface on the second optical surface side of the flange portion of the objective lens; and an eject pin that is supported by the second body mold so as to be able to advance and retreat, and using the eject pin.
  • This objective lens manufacturing method makes it possible to achieve both the formation of the marking portion indicating the direction of astigmatism and the optical axis adjustment (coma aberration correction) by rotating the first and second mirror cores.
  • An objective lens having aberration performance superior to that of the lens can be manufactured.
  • the objective lens according to the present invention can achieve both the formation of the marking portion indicating the direction of astigmatism and the correction of coma aberration by adjusting the optical axis by rotating the resin molding die (mirror core). It has excellent performance and is useful as an objective lens with a high NA used for an optical pickup for recording or reproducing a high density optical disk such as a BD. In addition, an optical pickup and an optical disc apparatus using the objective lens are useful because they can record or reproduce BD and the like satisfactorily.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optical Head (AREA)

Abstract

 対物レンズは、第1の光学面と、前記第1の光学面に対向する第2の光学面とを有する本体部と、前記本体部の外周部に前記本体部と一体に形成されるフランジ部とを備え、前記第1の光学面は、前記第1胴型に挿入されて回転可能に支持される第1鏡面コアによって形成され、前記第2の光学面は、前記第2胴型に挿入されて回転可能に支持される第2鏡面コアによって形成され、前記フランジ部は、前記第2胴型によって前記第2の光学面側に形成される円環状面と、前記第2胴型に進退自在に支持されたイジェクトピンによって前記円環状面に形成される突き出し部痕と、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に前記第2胴型の加工痕によって形成され、前記対物レンズの非点収差の方向を示すマーキング部と、を有する。

Description

対物レンズ、光ピックアップ、光ディスク装置、樹脂成形用金型及び対物レンズの製造方法
 本発明は、情報記録媒体に対する情報の記録および/または再生に用いる対物レンズと、当該対物レンズを備え、情報記録媒体に対して光学的に情報を記録および/または再生する光ピックアップと、当該光ピックアップを搭載した光ディスク装置と、該対物レンズを製造するための樹脂成形用金型と、該対物レンズの製造方法とに関するものである。
 青紫半導体レーザの実用化に伴い、CD(Compact Disc)およびDVD(Digital Versatile Disc)と同じ大きさで、高密度および大容量の情報記録媒体(以下、光ディスクとも言う)であるBlu-ray Disc(以下、BD)が実用化されている。BDは、波長400nm程度のレーザ光を出射する青紫レーザ光源と、開口数(Numerical Aperture、以下、NAとも言う)が約0.85の対物レンズとを用いて、光透過層の厚さが約0.1mmである情報記録面に対して情報を記録または再生するための光ディスクである。
 一般的に、CDやDVDなどの光ディスクの記録または再生を行う光ピックアップには、合成樹脂製の対物レンズが用いられている。合成樹脂製の対物レンズは、ガラス製の対物レンズと比較して比重が小さいため、光ディスクの面ぶれおよび偏心に対して対物レンズを駆動する、対物レンズアクチュエータの負担を軽減でき、さらに、高速に追従させることも可能となる。また、合成樹脂製の対物レンズは、射出成形により高精度に大量生産することが可能であるため、対物レンズの低コスト化を図ることができる。
 そこで、近年、BD等の高密度光ディスクの記録または再生を行う光ピックアップに用いられる高NA(開口数)の対物レンズについても、合成樹脂製のものが多く用いられてきている。
 合成樹脂製の対物レンズは、樹脂成形用金型の精度や成形条件(金型温度や樹脂温度、圧力条件)等によって非点収差等が発生すること、また、一対の樹脂成形用金型における第1面と第2面との相対的な光軸ずれ等によってコマ収差等が発生することが知られている。ここで、BD等に用いられる高NAの対物レンズは、これらの収差を抑制するために、従来のCDやDVD用の対物レンズと比較して、より厳しい金型精度や成形条件の制御が求められる。
 ところで、このような収差は、対物レンズを光ピックアップに搭載した際に、光ピックアップの光学性能に影響を与えるため、対物レンズを光ピックアップに搭載する際に、対物レンズの傾きや取付け方向を調整する必要がある。このため、対物レンズの光学面の外側に、収差の方向等を示す印(マーキング部)が付けられることがある。
 マーキング部の形成方法としては、対物レンズの成形後、コバ部(フラット部)にインクジェットプリンタ等により1つ1つマーキングする方法や、樹脂成形用金型に電子ビームを照射して粗面加工を施したり、凹状の徐肉部あるいは凸部を形成することにより、成形されたレンズのコバ部に粗面状部や凸形状あるいは凹形状のマークを転写する方法が知られている。このようなマーキング部を設けることによって、マーキング部の位置から収差の方向を判別することが可能となる。
 また、従来の他のマーキングの方法として、以下に説明する特許文献1に開示される方法がある。図14は、従来の対物レンズの形状を示す概略図である。対物レンズ201は、光学素子の光学機能面となる光学面202と、光学面202の周囲に一体に形成されている外形部203とを有し、ゲート部を切断した痕跡203bが外形部203の外周に残り、ゲート部付近の外形部203のフラット面203aに、複数の数字、アルファベット等の文字や記号からなるマーキング部204(図中の「M105」)が形成される。このように、文字あるいは記号等からなるマーキング部204を形成することにより、成形部品の成形と同時に、その成形部品や樹脂成形用金型の履歴等の情報を有するマーキング部204を確実に、かつ簡単に形成することができる。
 上述のように、一対の樹脂成形用金型における第1面と第2面との相対的な光軸ずれによって、コマ収差等が発生する場合、第1面および第2面の樹脂成形用金型(鏡面コア)を、それぞれ胴型内で回転させて相対光軸調整を行うことで、コマ収差の調整が可能であることが知られている。
 しかしながら、特許文献1等で開示されている従来の対物レンズは、鏡面コアのコバ部(光学機能面の外側)を加工してマーキング部を形成するので、胴型内で鏡面コアを回転させると、胴型とマーキング部との相対位置関係が変わってしまうが、その影響については一切言及されていない。
 また、BD等に用いられる高NAの対物レンズについては、マーキング部の形成自体が収差の発生要因となるが、このような高NAの対物レンズに好適なマーキング部の形状についても一切開示されていない。
特開2005-254660号公報
 本発明は、このような従来の課題を解決することに鑑みてなされたものであって、非点収差の向きを示すマーキング部の形成と、樹脂成形用金型(鏡面コア)の回転による光軸調整(コマ収差補正)とを両立可能な、高NAの合成樹脂製の対物レンズを提供することを目的とする。
 本発明の一局面に従う対物レンズは、第1胴型及び第2胴型を備える樹脂成形用金型を用いて成形される対物レンズであって、前記対物レンズは、開口数NAが0.7以上の樹脂製の対物レンズであり、第1の光学面と、前記第1の光学面に対向する第2の光学面とを有する本体部と、前記本体部の外周部に前記本体部と一体に形成されるフランジ部とを備え、前記第1の光学面は、前記第1胴型に挿入されて回転可能に支持される第1鏡面コアによって形成され、前記第2の光学面は、前記第2胴型に挿入されて回転可能に支持される第2鏡面コアによって形成され、前記フランジ部は、前記第2胴型によって前記第2の光学面側に形成される円環状面と、前記第2胴型に進退自在に支持されたイジェクトピンによって前記円環状面に形成される突き出し部痕と、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に前記第2胴型の加工痕によって形成され、前記対物レンズの非点収差の方向を示すマーキング部と、を有する。
 本発明の他の局面に従う樹脂成形用金型は、開口数NAが0.7以上の樹脂製の対物レンズを製造するための樹脂成形用金型であって、前記対物レンズの第1の光学面を形成する第1鏡面コアと、前記第1の光学面に対向する第2の光学面を形成する第2鏡面コアと、前記第1の鏡面コアを挿入されて前記第1の鏡面コアを回転可能に支持する第1胴型と、前記第2の鏡面コアを挿入されて前記第2の鏡面コアを回転可能に支持し、前記対物レンズのフランジ部の前記第2の光学面側の円環状面を形成する第2胴型と、前記第2胴型に進退自在に支持されるイジェクトピンとを備え、前記イジェクトピンは、前記円環状面に突き出し部痕を形成し、前記第2胴型は、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に、加工痕を形成することによって、前記対物レンズの非点収差の方向を示すマーキング部を形成する。
 本発明のさらに他の局面に従う対物レンズの製造方法は、樹脂成形用金型を用いて、開口数NAが0.7以上の樹脂製の対物レンズを製造する対物レンズの製造方法であって、前記樹脂成形用金型は、前記対物レンズの第1の光学面を形成する第1鏡面コアと、前記第1の光学面に対向する第2の光学面を形成する第2鏡面コアと、前記第1の鏡面コアを挿入されて前記第1の鏡面コアを回転可能に支持する第1胴型と、前記第2の鏡面コアを挿入されて前記第2の鏡面コアを回転可能に支持し、前記対物レンズのフランジ部の前記第2の光学面側の円環状面を形成する第2胴型と、前記第2胴型に進退自在に支持されるイジェクトピンとを備え、前記イジェクトピンを用いて、前記円環状面に突き出し部痕を形成するステップと、前記第2胴型を用いて、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に、加工痕を形成することによって、前記対物レンズの非点収差の方向を示すマーキング部を形成するステップとを含む。
 上記の対物レンズでは、非点収差の向きを示すマーキング部の形成と、第1及び第2の鏡面コアの回転による光軸調整(コマ収差補正)との両立が可能であるので、従来の対物レンズよりも優れた収差性能を得ることが可能となる。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1における合成樹脂製の対物レンズの概略形状を示す断面図および平面図 本発明の実施の形態1における合成樹脂製の対物レンズの概略形状を示す斜視図 本発明の実施の形態1における合成樹脂製の対物レンズを射出成形によって製造する場合に用いる樹脂成形用金型の概略構成を示す断面図 ゲート部とマーキング部との位置を模式的に示す図 本発明の実施の形態1における別の合成樹脂製の対物レンズの概略形状を示す平面図 本発明の実施の形態1における対物レンズのマーキング部の形状を模式的に示す平面図および断面図 マーキング部の他の断面形状を模式的に示す図 本発明の実施の形態1における別の合成樹脂製の対物レンズの概略形状を示す断面図 図8に示す対物レンズを製造するための樹脂成形用金型の概略構成を示す断面図 本発明の実施の形態2における光ピックアップの概略構成図 図10に示す光ピックアップの対物レンズアクチュエータの動作を説明するための模式図 図11に示す対物レンズアクチュエータのレンズホルダの概略形状を示す図 本発明の実施の形態3における光ディスク装置の概略構成図 従来の対物レンズの形状を示す概略図
 以下、本発明の各実施の形態について、図面を参照しながら説明する。
 (実施の形態1)
 図1(a)は、本発明の実施の形態1における合成樹脂製の対物レンズの断面図を示しており、図1(b)は、この対物レンズの平面図を示している。
 対物レンズ1は、後述する第1胴型10及び第2胴型20(図3参照)を用いて成形される対物レンズであって、開口数NAが0.7以上の樹脂製の対物レンズである。対物レンズ1は、光源側(レーザ光が入射する側)の第1レンズ面(第1の光学面)1aと、第1レンズ面に対向する光ディスク側(レーザ光が出射する側)の第2レンズ面(第2の光学面)1bとを有する本体部2と、本体部2の外周部に本体部2と一体に形成される周辺フランジ部3とを備える。
 第1レンズ面1aと、第2レンズ面1bとは、それぞれ異なる球面あるいは非球面(以下、非球面と総称する)の形状を有している。なお、第1レンズ面1aおよび/または第2レンズ面1bには、ベースとなる非球面に、対物レンズ1の光軸OAを中心とした輪帯状の複数の光学面を有する鋸歯状あるいは階段状の回折構造が形成されていてもよい。
 周辺フランジ部3は、後述する第1鏡面コア12(図3参照)によって第1レンズ面1a側に形成される円環状面3aと、後述する第2胴型20(図3参照)によって第2レンズ面1b側に形成される円環状面3bを有する。
 上記のように、対物レンズ1には、第1レンズ面1aと第2レンズ面1bとを有する本体部2と、周辺フランジ部3とが一体に成形されており、周辺フランジ部3の第2レンズ面1b側の面上に、複数の突き出し部痕5とマーキング部7とが形成されている。突き出し部痕5は、第2胴型20に進退自在に支持されたイジェクトピン27(図3参照)によって円環状面3bに形成される。マーキング部7は、円環状面3bのうち突き出し部痕5が形成された位置と異なる位置に第2胴型20の加工痕によって形成され、対物レンズ1の非点収差の方向を示す。
 図中に破線で示すゲート部6は、対物レンズ1の成形時における樹脂材料の流入通路によって形成されるが、ゲート部6が大きく残存していると、対物レンズ1をレンズホルダに搭載する際、レンズホルダ上にゲート部6の「逃げ」が必要となる。また、対物レンズ1の搭載方向は、ゲート部6とレンズホルダの「逃げ」とが一致する方向に限定される。従って、ゲート部6は、対物レンズ1が成形された後に、切断除去されることが望ましい。
 図2は、本実施の形態の対物レンズ1の概略形状を示す斜視図である。マーキング部7は、周辺フランジ部3の第2レンズ面1b側の円環状面3b上に形成され、後述するように、例えば、対物レンズ1を成形する金型(第2胴型20)に予めバイトによって形成された加工痕を、成形時に対物レンズ1に転写することよって付加される。従って、マーキング部7は、凸部となっていることが好ましい。また、突き出し部痕5は、凹部となっていることが好ましいが、凸部であってもよい。また、突き出し部痕5は、同図に示すように、円形であることが好ましい。
 図3は、本実施の形態の対物レンズ1を製造するための樹脂成形用金型の概略構成を示す断面図であり、図3(a)は成形時の状態(型閉じ状態)を示し、図3(b)は型開き状態を示している。
 図3(a)に示すように、パーティングラインPLで開閉可能な一対の第1胴型10と第2胴型20とにはそれぞれ、同一軸線上に位置する第1コア支持孔11と第2コア支持孔21とが形成されている。第1コア支持孔11と第2コア支持孔21とにはそれぞれ、第1鏡面コア12と第2鏡面コア22とが挿入されて回転可能に支持されている。
 第1鏡面コア12は、第1コア支持孔11に対応する外径を有しており、先端部にパーティングラインPLに臨む第1光学機能面13が形成されている。同様に、第2鏡面コア22は、第2コア支持孔21に対応する外径を有しており、先端部にパーティングラインPLに臨む第2光学機能面23が形成されている。
 なお、本実施の形態においては、第1光学機能面13の曲率半径は、第2光学機能面23の曲率半径より小さい。
 上述のように、第1鏡面コア12と第2鏡面コア22とはそれぞれ、第1コア支持孔11と第2コア支持孔21とに挿入され、第1光学機能面13と第2光学機能面23との間に対物レンズ1の成形空間が形成され、この成形空間がパーティングラインPLに臨んでいる。第1胴型10のコア支持孔11に対して第1鏡面コア12を挿入固定し、第2胴型20のコア支持孔21に対して鏡面コア22を挿入固定することで、第1コア支持孔11の孔径と第1鏡面コア12の外径とのクリアランス、および、第2コア支持孔21の孔径と第2鏡面コア22の外径との間のクリアランスを最小にすることができる。具体的には、第1コア支持孔11の直径(成形される対物レンズ1の直径)が数mm程度のとき、このクリアランスを1μm以下程度とすることが可能となる。
 第2胴型20には、パーティングラインPLに臨ませて、第1光学機能面13と第2光学機能面23とによって形成される成形空間に連通するフランジ成形部26が形成されている。フランジ成形部26は、図1および図2に示した対物レンズ1の形状から明らかなように、対物レンズ1の周辺フランジ部3の第2レンズ面1b側の円環状面3bに対応している。
 なお、本実施の形態の対物レンズ1の周辺フランジ部3の第1レンズ面1a側の円環状面3aは、図3から明らかなように、第1鏡面コア12によって形成されているが、第1胴型10によって形成してもよい。ただし、周辺フランジ部3の第1レンズ面1a側の円環状面3aは、対物レンズ1を光ピックアップに搭載する際の基準面となるため、第1光学機能面13と同一の金型で形成されることが好ましい。すなわち、周辺フランジ部3の第1レンズ面1a側の円環状面3aは、第1鏡面コア12によって形成されることが好ましい。この場合、対物レンズ1を光ピックアップに搭載する際の基準面となる第1レンズ面1a側の円環状面3aを高精度に形成することができるので、対物レンズ1を光ピックアップに高精度に取り付けることができる。
 第2胴型20のフランジ成形部26は、周辺フランジ部3の第2レンズ面1b側の円環状面3bを形成する。イジェクトピン27は、第2胴型20に進退自在に支持され、周辺フランジ部3の第2レンズ面1b側の円環状面3bに突き出し部痕5を形成する。具体的には、フランジ成形部26には、成形空間に伸びるイジェクトピン27を摺動自在に挿入させるピン孔28が、例えば円周上の4箇所に形成されている。ここで、良好な成形性を保ちつつ離型するという観点からは、イジェクトピン27を2~8箇所配置することが好ましい。
 ピン孔28は、第2コア支持孔21と平行に延びており、イジェクトピン27は、イジェクトピン駆動部(図示せず)によって軸方向に進退可能となっている。
 なお、ピン孔28を設ける位置は、第1光学機能面13と第2光学機能面23との2つの光学機能面のうち、有効径の小さい光学機能面側、すなわち本実施の形態の対物レンズ1においては、第2光学機能面23側に設けられることが望ましい。このような構成とすることで、周辺フランジ部3を含む対物レンズ1の外形を小さく保ったままで突き出し部痕を形成することができる。
 また、本実施の形態の樹脂成形用金型では、第2胴型20に、そのパーティングラインPLに臨ませて第1光学機能面13と第2光学機能面23とによって形成される成形空間に連通する樹脂材料注入部(図示せず)が形成されている。樹脂材料注入部は、対物レンズ1の成形時における樹脂材料の流入通路となり、ゲート部6が形成される。
 上記構成の樹脂成形用金型による成形は、第1胴型10と第2胴型20を型締めした状態において、樹脂材料注入部から第1光学機能面13と第2光学機能面23とによる成形空間に樹脂材料を注入して行う。この樹脂材料が、第1鏡面コア12と第2鏡面コア22とによって加熱および加圧されることによって対物レンズ1が成形される。
 第1鏡面コア12に形成された第1光学機能面13によって、対物レンズ1の第1レンズ面1aが形成され、第2鏡面コア22に形成された第2光学機能面23によって、対物レンズ1の第2レンズ面1bが形成される。また、第2胴型20に形成されたフランジ成形部26によって、周辺フランジ部3の第2レンズ面1b側の円環状面3bが形成され、さらに、イジェクトピン27によって、周辺フランジ部3の第2レンズ面1b側の円環状面3bには、突き出し部痕5が形成される。
 注入した樹脂材料が硬化した後、第1胴型10と第2胴型20とを開くと、第2光学機能面23側に対物レンズ1が付着した状態となる。この状態において、イジェクトピン駆動部を介してイジェクトピン27をフランジ成形部26の成形空間側に突き出すと、図3(b)に示すように、対物レンズ1の周辺フランジ部3が突き出され、第2光学機能面23から対物レンズ1が離型して取り出される。
 以上のように、対物レンズ1に周辺フランジ部3を形成し、周辺フランジ部3をイジェクトピン27で押圧して離型させることで、対物レンズ1の変形(面精度の悪化)が抑制される。なお、図1に示す対物レンズ1のように、ゲート部6の円周方向の位置と、突き出し部痕5(すなわち樹脂成形用金型の突き出し部)の円周方向の位置とは、異なることが好ましい。この場合、図2に示すように、突き出し部痕5は凹部となっているので、このようにすることで、周辺フランジ部3の厚肉部にゲート部6が設けられるため、樹脂材料の流動性が良好となって圧力損失が減少し、光学機能面を良好に形成することができる。
 次に、本実施の形態の対物レンズ1のマーキング部7について詳細に説明を行う。
 本願発明者らは、特に、BD等の高密度光ディスクの記録または再生を行う光ピックアップに用いられる高NAの対物レンズについては、成形条件(加圧条件・加熱条件)等によって発生する非点収差が、成形時の樹脂の流れに起因して発生すること、すなわち、射出成形におけるゲート部の位置と関係があることを見いだした。
 しかしながら、ゲート部6は、前述の理由により、対物レンズ1が成形された後に切断除去されるため、成形時の樹脂の流れに起因して発生する非点収差の方向を示す「目印」がなくなってしまう。
 そこで、ゲート部6を除去した対物レンズ1の非点収差の方向を示すためには、ゲート部6に対して円周方向の位置が常に一定である「マーキング」が必要であると着想した。
 図3に示す樹脂成形用金型において、第2胴型20に形成されたフランジ成形部26には、予めバイトによってマーキング部7に対応する凹状の加工が施されており、成形時にこの加工痕が対物レンズ1に転写されることによって、対物レンズ1には、図2に示すような凸状のマーキング部7が形成される。
 ところで、第1光学機能面13と第2光学機能面23との相対的な光軸ずれによって、コマ収差等が発生するが、第1鏡面コア12および第2鏡面コア22を、それぞれ第1胴型10のコア支持孔11および第2胴型20のコア支持孔21に沿って回転させることによって相対的な光軸調整を行い、コマ収差を補正することが可能である。
 ここで、本実施の形態の対物レンズ1を製造する樹脂成形用金型では、第2胴型20に形成されたフランジ成形部26に、マーキング部7に対応する凹状の加工が施されているので、上述のように、第1鏡面コア12および第2鏡面コア22を回転させて光軸調整を行った場合でも、対物レンズ1におけるゲート部6とマーキング部7との相対位置関係は変わらない。従って、成形時の樹脂の流れに起因して発生する非点収差の方向と、マーキング部7の方向との関係は維持されるので、マーキング部7を、光ピックアップに対物レンズ1を組み込む際に、非点収差の方向を所定の方向、例えば光ピックアップの他の光学素子による非点収差と、対物レンズ1の非点収差とが相殺する方向に調整する際の目印とすることができる。
 すなわち、本実施の形態の構成に基づく対物レンズ1は、非点収差の向きを示すマーキング(非点収差の方向との関係を維持した状態でマーキング部7を周辺フランジ部3の円環状面3b上の所定位置に形成すること)と、鏡面コア(第1鏡面コア12および第2鏡面コア22)の回転による光軸調整(コマ収差補正)との両立が可能であるので、従来の対物レンズよりも優れた収差性能を得ることができる。
 ここで、樹脂成形用金型(第2胴型20)における、対物レンズ1のマーキング部7を形成するための凹状の加工痕は、図1に示すように、ゲート部6に対して円周方向に略180°の方向に形成することが好ましい。
 例えば、図4(a)に示す対物レンズのように、マーキング部7aをゲート部6の近傍(円周方向に略0°)に形成した場合、樹脂成形用金型の樹脂材料注入部近傍に凹状の加工痕が形成される。この場合、マーキング部7aにより射出成形時の樹脂の流れが悪化し、成形不良等の発生要因となる。また、図4(b)に示す対物レンズのように、マーキング部7bをゲート部6に対して円周方向(反時計回り)に略90°等の位置に形成した場合、ゲート部6と対物レンズ1との光軸とを結ぶ直線x-xに対して、対物レンズ1が非対称な形状となるので、コマ収差等の発生要因となる。
 従って、対物レンズ1のマーキング部7は、ゲート部6に対して円周方向に180±10°の範囲内に形成されることが好ましく、ゲート部6に対して円周方向に略180°の位置に形成されることがより好ましい。この場合、成形不良等による非点収差の発生を抑制することができるとともに、コマ収差の発生を抑制することができる。
 また、突き出し部痕5の配置も、対物レンズ1の光軸OAとゲート部6の中心とを結ぶ直線x-xに対して対称な形状とすることがより好ましい。この場合、コマ収差の発生を抑制することができる。例えば、図1に示す4個の突き出し部痕5を形成する場合、ゲート部6に対して円周方向(時計回り)に略45°、135°、225°、315°の各位置に突き出し部痕5を形成することが好ましい。
 また、図5に示す本実施の形態の別の対物レンズ1’において、2個の突き出し部痕5’が形成されている場合、すなわち、イジェクトピンを挿入させるピン孔が、樹脂成形用金型の円周上の2箇所に形成されている場合は、ゲート部6’と、2個の突き出し部痕5’と、マーキング部7’との配置を、図5に示すような位置関係、すなわち、ゲート部6に対して円周方向(時計回り)に略90°、270°の各位置に突き出し部痕5’を形成し、ゲート部6に対して円周方向(時計回り)に略180°の位置にマーキング部7’を形成することが好ましい。
 ところで、樹脂成形用金型に加工痕を形成し、この加工痕を対物レンズに転写してマーキング部を付加する場合、そのマーキング部の視認性が非常に重要となる。すなわち、視認性の低いマーキング部の場合、対物レンズを光ピックアップに組み込む際に、顕微鏡等の設備が必要となり、作業工数が増加して、光ピックアップのコストアップ要因となる。
 図6は、本実施の形態の対物レンズ1に形成されたマーキング部7の形状を模式的に示す図である。図6(a)はマーキング部7の平面図、図6(b)は、中心線A-Aに沿ったマーキング部7の断面図、図6(c)は、中心線B-Bに沿ったマーキング部7の断面図を示している。なお、図6において、中心線A-Aの方向が対物レンズ1(光ディスク)の半径方向であり、中心線B-Bの方向が対物レンズ1(光ディスク)の円周方向である。
 本実施の形態の対物レンズ1に施されるマーキング部7は、図1および図6(a)に示すように、対物レンズ1の上面から見ると、対物レンズ1の円周方向よりも半径方向が長い、略長円形状を有している。具体的には、マーキング部7は、半径方向の長さL、円周方向の幅W、高さHの長円形状を有し、長さLは、幅Wの2倍以上であることが好ましい。このような長円形状とすることで、円形の突き出し部痕5との区別が容易となり、マーキング部7の視認性を確保しつつ、円周方向の幅を小さくすることができる。この結果、より精度良く対物レンズ1の角度調整(円周方向の回転調整)を行うことが可能となる。
 また、図6(b)および(c)に示すように、マーキング部7の断面形状は、凸レンズ形状となっている。本願発明者らは、種々の断面形状を検討した結果、このような形状とすることで、対物レンズ1の上面から目視した場合、マーキング部7のレンズ作用(屈折作用)によって、マーキング部7の視認性が飛躍的に向上することを見いだした。
 なお、マーキング部7の断面形状は、上記の例に特に限定されず、他の形状であってもよい。図7は、マーキング部の他の断面形状を模式的に示す、中心線B-Bに沿ったマーキング部の断面図である。図7に示す例のように、マーキング部7’の側壁が傾斜した形状であっても、屈折作用による視認性の向上を図ることが可能である。このときの側壁71の傾斜角αは、金型に対する加工痕の加工性とマーキング部7’の視認性とのバランスを鑑みて、20°以上50°以下であることが好ましい。
 また、マーキング部7のサイズが大きくなると、対物レンズ1の収差に対する影響が無視できなくなり、光学性能に影響を与える可能性がある。そこで、本願発明者らは、マーキング部7のサイズについて鋭意検討を行った結果、視認性を確保しつつ、光学性能に影響を与えないマーキング部7の寸法として、図6に示すマーキング部7の半径方向の長さLは、0.2mm以上0.5mm以下の範囲内であることが好ましく、0.25mm以上0.45mm以下の範囲内であることがより好ましく、マーキング部7の円周方向の幅Wは、0.05mm以上0.25mm以下の範囲内であることが好ましく、0.08mm以上0.15mm以下の範囲内であることがより好ましく、マーキング部7の高さHは、0.003mm以上0.025mm以下の範囲内であることが好ましく、0.005mm以上0.020mm以下の範囲内であることがより好ましいことが分かった。
 また、マーキング部7とその周辺部(周辺フランジ部3の第2レンズ面1b側の円環状面3b)とで表面粗さを変えること、すなわち、マーキング部7の表面粗さを周辺フランジ部3の表面粗さと異ならせることにより、マーキング部7の視認性をさらに向上させることが可能である。具体的には、周辺フランジ部3の第2レンズ面1b側の円環状面3bに対応する金型のフランジ成形部26に対し、マーキング部7に対応する凹状の加工痕の表面粗さを他の部分より小さくすることにより、マーキング部7の表面粗さを周辺フランジ部3の表面粗さより小さくすることができる。この場合、マーキング部7のレンズ作用による視認性の向上と、金型加工費の抑制とを達成することができる。
 ところで、光ピックアップに対物レンズを搭載する際、対物レンズの光ディスク側(対物レンズ1の第2レンズ面1b側)から測定用レーザ光を照射し、その測定用レーザ光の反射光の角度から対物レンズの傾きを検出して、光ピックアップと対物レンズとの相対的な傾きを調整することが一般的になされている。
 例えば、図1に示す対物レンズ1において、光軸OAに対して垂直な円環状の反射平面1cを測定用レーザ光の反射面として用いることが可能である。ここで、反射平面1cは、第2レンズ面1bの外周側に位置し、第2レンズ面1bを形成する金型と同一の金型で形成されることが重要である。すなわち、反射平面1cが、周辺フランジ部3を形成する第2胴型20ではなく、対物レンズ1の光学性能を決定する第2レンズ面1bを形成する第2鏡面コア22で形成されることにより、光軸OAに対して垂直であることが保証される。
 また、第2レンズ面1bの有効径D2は、第1レンズ面1aの有効径D1よりも小さく、且つ、反射平面1cの外周側の直径D3は、第1レンズ面1aの有効径D1よりも大きいことが好ましい。この場合、反射平面1cによって測定用レーザ光を十分に反射することができるので、その測定用レーザ光の反射光の角度から対物レンズ1の傾きを検出して、光ピックアップと対物レンズ1との相対的な傾きを高精度に調整することができる。
 一方、反射平面1cと第1レンズ面1aとが近接すると、成形時の樹脂の流れが悪くなり、反射平面1cの平面度が悪化する場合がある。反射平面1cの平面度が悪化すると、測定用レーザ光の反射光が正常に得られず、対物レンズの傾きを検出することができなくなる。そこで、以下のように、反射平面1cと第1レンズ面1aが近接しないように、第2レンズ面1bと反射平面1cとの間に段差部を設けることが好ましい。
 図8は、本発明の実施の形態1における別の合成樹脂製の対物レンズの概略形状を示す断面図である。図8に示す対物レンズ1”が、図1に示す対物レンズ1と異なる点は、第2レンズ面1bと反射平面1cとの間に段差部1dが設けられている点である。その他の点は、図1に示す対物レンズ1と同様であるので、詳細な図示及び説明を省略する。
 図8に示す対物レンズ1”では、周辺フランジ部3は、第2レンズ面1b側の円環状面3bの内側に形成される段差部1dを有し、段差部1dの上側の円環状面である反射平面1cと第1レンズ面1aが近接しないように構成されている。また、第2レンズ面1bの有効径D2は、第1レンズ面1aの有効径D1よりも小さくなるように設定され、且つ、段差部1d(反射平面1c)の外周側の直径D4は、第1レンズ面1aの有効径D1よりも大きくなるように設定されている。
 この場合、段差部1dによって反射平面1cと第1レンズ面1aとの間が十分に離間され、成形時の樹脂の流れがスムーズになるので、反射平面1cの平面度を向上することができる。この結果、反射平面1cによって測定用レーザ光を正確に反射することができるので、測定用レーザ光の反射光の角度から対物レンズ1”の傾きを正確に検出して、光ピックアップと対物レンズ1”との相対的な傾きを高精度に調整することができる。
 図9は、図8に示す対物レンズ1”を製造するための樹脂成形用金型の概略構成を示す断面図である。図9に示す樹脂成形用金型が、図3に示す樹脂成形用金型と異なる点は、第2鏡面コア22に代えて、対物レンズ1”に段差部1dを形成するための円環状凹部22aを有する第2鏡面コア22’を用いている点である。その他の点は、図3に示す樹脂成形用金型と同様であるので、詳細な説明は省略する。
 図9に示すように、第2鏡面コア22’は、第2光学機能面23の外周側に円環状凹部22aを有し、円環状凹部22aに樹脂が充填されることにより、対物レンズ1”に段差部1dが形成される。このように、段差部1dによって形成される反射平面1cを図8に示すような形状とする場合であっても、段差部1d(反射平面1c)が、対物レンズ1”の光学性能を決定する第2レンズ面1bを形成する第2光学機能面23と同一の金型、すなわち、第2鏡面コア22”によって形成されることにより、反射平面1cが光軸OAに対して垂直であることが保証される。
 以上、本実施の形態においては、例えば、対物レンズ1の上面から見ると、対物レンズ1の円周方向よりも半径方向が長い長円形状、かつ、断面が凸レンズ形状あるいは側壁が傾斜した形状のマーキング部7について説明を行ったが、本発明は、このような形状のマーキング部に限定されるものではない。
 例えば、対物レンズ1の上面から見たときのマーキング部の形状は、円周方向よりも半径方向が長い長円形状に限らず、円形、三角形、矢印等の形状等であっても、非点収差の向きを示すマーキング部の形成と、鏡面コアの回転による光軸調整(コマ収差補正)との両立が可能であるという優れた効果が損なわれるものではない。
 また、樹脂成形用金型の胴型に形成されたフランジ成形部に、電子ビームを照射して粗面加工を施し、成形時にこの加工痕が転写されることによって形成されるマーキング部であっても、非点収差の向きを示すマーキング部の形成と、鏡面コアの回転による光軸調整(コマ収差補正)との両立が可能であるという、従来の対物レンズでは得られない優れた効果が得られることは言うまでもない。
 (実施の形態2)
 図10は、本実施の形態の光ピックアップの概略構成図である。
 図10において、光ピックアップ100は、対物レンズ1、青紫レーザ光源101、偏光ビームスプリッタ102、1/4波長板103、コリメートレンズ104、ミラー105、対物レンズアクチュエータ109、赤色レーザ光源111、平板型ビームスプリッタ113、検出レンズ122、及び受光素子123を備える。対物レンズ1は、実施の形態1で示した対物レンズであり、情報記録媒体として、BD60またはDVD70が用いられる。
 まず、BD60の記録または再生を行う場合の光ピックアップ100の動作について述べる。青紫レーザ光源101から出射された波長約405nmの青紫レーザ光は、偏光ビームスプリッタ102にS偏光で入射する。偏光ビームスプリッタ102で反射されたレーザ光は、1/4波長板103で円偏光に変換された後、コリメートレンズ104で略平行光に変換され、ミラー105で反射されて折り曲げられる。ミラー105で反射した青紫レーザ光は、対物レンズ1によって、BD60の情報記録面に光スポットとして収束される。
 BD60の情報記録面で反射した青紫レーザ光は、再び対物レンズ1を透過し、ミラー105で反射されて、コリメートレンズ104を透過した後、1/4波長板103で往路とは異なる直線偏光に変換される。直線偏光に変換された青紫レーザ光は、偏光ビームスプリッタ102および平板型ビームスプリッタ113にP偏光で入射して透過し、検出レンズ122を介して、受光素子123に導かれる。受光素子123で検出されたレーザ光は、光電変換された後に演算され、BD60の面ぶれに追従するためのフォーカス誤差信号と、BD60の偏心に追従するためのトラッキング誤差信号とを生成する。
 次に、DVD70の記録または再生を行う場合の光ピックアップ100の動作について述べる。赤色レーザ光源111から出射された波長約660nmの赤色レーザ光は、平板型ビームスプリッタ113にS偏光で入射して反射され、偏光ビームスプリッタ102を透過する。偏光ビームスプリッタ102を透過した赤色レーザ光は、1/4波長板103で円偏光に変換された後、コリメートレンズ104で略平行光に変換され、ミラー105で反射されて折り曲げられる。ミラー105で反射した赤色レーザ光は、対物レンズ1によって、DVD70の情報記録面に光スポットとして収束される。
 DVD70の情報記録面で反射した赤色レーザ光は、再び対物レンズ1を透過し、ミラー105で反射されて、コリメートレンズ104を透過した後、1/4波長板103で往路とは異なる直線偏光に変換される。直線偏光に変換された赤色レーザ光は、偏光ビームスプリッタ102および平板型ビームスプリッタ113にP偏光で入射して透過し、検出レンズ122を介して、受光素子123に導かれる。受光素子123で検出されたレーザ光は、光電変換された後に演算され、DVD70の面ぶれに追従するためのフォーカス誤差信号と、DVD70の偏心に追従するためのトラッキング誤差信号とを生成する。
 上記のように、本実施の形態の対物レンズ1は、実施の形態1に示した対物レンズであり、BD60に情報を記録または再生するための青紫レーザ光およびDVD70に情報を記録または再生するための赤色レーザ光を、波長の差を利用してそれぞれ微小な光スポットとして集光するための回折構造を備えている。
 図11は、図10に示す対物レンズアクチュエータ109の動作を説明するための模式図である。図11に示すように、対物レンズアクチュエータ109は、複数のサスペンションワイヤ109bによってレンズホルダ109aを支持しており、フォーカス誤差信号とトラッキング誤差信号とによって、回転するBD60、またはDVD70の情報トラックに光スポットが追従するよう、対物レンズ1、すなわち、対物レンズ1を搭載するレンズホルダ109aを2軸方向(フォーカス方向Foおよびトラッキング方向Tr)に駆動する。なお、対物レンズアクチュエータ109の構造は、フォーカス方向Fo、およびトラッキング方向Trの変位に加えて、光ディスクの半径方向に対物レンズ1を傾けることが可能な構造であってもよい。
 本実施の形態の光ピックアップ100は、実施の形態1に示した対物レンズ1を備えている。対物レンズ1は、周辺フランジ部3の第2レンズ面1b側の円環状面3bにマーキング部7が形成されているので、樹脂成形用金型において鏡面コアの回転による光軸調整(コマ収差補正)が可能となり、収差性能の良好な対物レンズを得ることができる。
 また、光ピックアップ100に対物レンズ1を組み込む際に、マーキング部7を目印として、対物レンズ1の非点収差の方向を所定の方向に調整することができる。例えば、青紫レーザ光源101や赤色レーザ光源111の非点隔差による非点収差、および偏光ビームスプリッタ102、1/4波長板103、コリメートレンズ104、ミラー105等で発生する非点収差と、対物レンズ1の非点収差とが相殺する方向に、対物レンズ1の角度調整(円周方向の回転調整)を行うことが可能である。したがって、光ピックアップ100の性能を向上させることができ、BD60およびDVD70を良好に記録または再生を行うことができる。
 ここで、光ピックアップ100に対物レンズ1を組み込む際、レンズホルダ109a上に放射状に形成された複数の角度ターゲット部を用いることで、マーキング部7を所定の方向に合わせることが容易となる。
 図12は、図11に示す対物レンズアクチュエータ109のレンズホルダ109aの概略形状を示す図である。角度ターゲット部109cは、レンズホルダ109aの座面(対物レンズ1が搭載される面)の周囲に放射状に形成されている段差部である。角度ターゲット部109cは、切欠き、溝、または突起などから構成され、その周囲と段差を形成した凹部または凸部であり、複数個(例えば、本例の場合は、6個)設けられる。なお、角度ターゲット部109cは、必ずしも等間隔に配置される必要はない。例えば、光ピックアップのラジアル方向Rd(光ディスク(BD60またはDVD70)の半径方向)およびタンジェンシャル方向Tn(光ディスクの接線方向)等、その方向が明確な場合は、当該方向の角度ターゲット部を省略してもよい。
 また、レンズホルダの形状や、対物レンズが光ディスクと衝突するのを防ぐためのスペーサ(プロテクタ)、接着材が流出することを防止するための接着剤溜まり領域等の配置によっては、角度ターゲット部の形成が困難な場合がある。例えば、図12は、30°間隔の角度ターゲット部109cを6個設けた場合を示している。すなわち、円周方向(時計回り方向)に、30°、60°、120°、240°、300°、360°の方向に6個の角度ターゲット部109cを形成し、光ピックアップのラジアル方向Rd(0°、180°)およびタンジェンシャル方向(90°、270°)の方向の角度ターゲット部を省略している。
 上記の場合、対物レンズ1が光ディスクと衝突するのを防ぐためのスペーサ(プロテクタ)109dや、接着材が流出することを防止するための接着剤溜まり領域109eの近傍には、角度ターゲット部109cが形成されていないが、対物レンズ1のマーキング部7を所定の方向に合わせるには十分である。
 以上のように、本実施の形態の光ピックアップ100は、レンズホルダ109a上に放射状に形成された複数の角度ターゲット部109cと、視認性に優れた対物レンズ1のマーキング部7とを用いることによって、対物レンズ1の角度調整(円周方向の回転調整)が容易となるので、顕微鏡等の設備が不要となり、作業工数を削減して光ピックアップのコストダウンを図ることができる。
 なお、光ピックアップが、赤色レーザ光源111の代わりに、赤色レーザ光と赤外レーザ光とを出射する2波長光源を備え、対物レンズ1が、BDに情報を記録または再生するための青紫レーザ光、DVDに情報を記録または再生するための赤色レーザ光、CDに情報を記録または再生するための赤外レーザ光を、波長の差を利用してそれぞれ微小な光スポットとして集光するための回折構造を備えている場合には、BD、DVD、CDのそれぞれを良好に記録または再生を行うことが可能となる。
 さらに、光ピックアップが、少なくとも青紫レーザ光を出射する青紫レーザ光源を備え、対物レンズ1が、BDに対してのみ、情報を記録または再生するための青紫レーザ光を微小な光スポットとして集光する場合であっても、BDを良好に記録または再生を行うことが可能となることは言うまでもない。
 (実施の形態3)
 図13は、本実施の形態の光ディスク装置の概略構成図である。図13に示す光ディスク装置300は、その内部に、光ディスク駆動部301、制御部302、および光ピックアップ100を備える。
 光ディスク駆動部301は、BD60(あるいはDVD70)を回転駆動するためのモータを含み、BD60(あるいはDVD70)を回転駆動する機能を有している。光ピックアップ100は、実施の形態2で述べた光ピックアップである。制御部302は、光ディスク駆動部301および光ピックアップ100の駆動および制御を行う機能を有すると共に、光ピックアップ100で受光された制御信号、情報信号の信号処理を行う機能と、情報信号を光ディスク装置300の外部と内部でインタフェースさせる機能とを有する。
 光ディスク装置300は、実施の形態2で述べた光ピックアップを搭載しているので、BD60およびDVD70を良好に記録または再生を行うことができる。
 また、光ディスク装置300が、青紫レーザ光を用いたBDと、赤色レーザ光を用いたDVDと、赤外レーザ光を用いたCDの互換対物レンズとして用いられる対物レンズを備えた光ピックアップを搭載することで、BD、DVD、CDのそれぞれを良好に記録または再生を行うことができる。
 上記の各実施の形態から本発明の各態様について説明すると、以下のようになる。すなわち、本発明の一態様に係る対物レンズは、第1胴型及び第2胴型を備える樹脂成形用金型を用いて成形される対物レンズであって、前記対物レンズは、開口数NAが0.7以上の樹脂製の対物レンズであり、第1の光学面と、前記第1の光学面に対向する第2の光学面とを有する本体部と、前記本体部の外周部に前記本体部と一体に形成されるフランジ部とを備え、前記第1の光学面は、前記第1胴型に挿入されて回転可能に支持される第1鏡面コアによって形成され、前記第2の光学面は、前記第2胴型に挿入されて回転可能に支持される第2鏡面コアによって形成され、前記フランジ部は、前記第2胴型によって前記第2の光学面側に形成される円環状面と、前記第2胴型に進退自在に支持されたイジェクトピンによって前記円環状面に形成される突き出し部痕と、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に前記第2胴型の加工痕によって形成され、前記対物レンズの非点収差の方向を示すマーキング部と、を有する。
 この対物レンズにおいては、第1の光学面が、第1胴型に挿入されて回転可能に支持される第1鏡面コアによって形成され、第2の光学面が、第2胴型に挿入されて回転可能に支持される第2鏡面コアによって形成されるので、第1及び第2の鏡面コアの回転による光軸調整(コマ収差補正)を容易に行うことができる。また、フランジ部が第2胴型によって第2の光学面側に形成される円環状面を有し、第2胴型に進退自在に支持されたイジェクトピンによって円環状面に突き出し部痕が形成されるとともに、円環状面のうち突き出し部痕が形成された位置と異なる位置に第2胴型の加工痕によって、対物レンズの非点収差の方向を示すマーキング部が形成されるので、第1及び第2の鏡面コアの回転による光軸調整の影響を受けることなく、非点収差の方向との関係を維持した状態でマーキング部を所定位置に形成することができるとともに、突き出し部痕との対比によってマーキング部を容易に視認することができる。
 この結果、非点収差の向きを示すマーキング部の形成と、第1及び第2の鏡面コアの回転による光軸調整(コマ収差補正)との両立が可能であるので、従来の対物レンズよりも優れた収差性能を得ることが可能となる。さらに、高NAの合成樹脂製の対物レンズにおいて、マーキング部の形成による収差への影響が小さく、かつ、マーキング部の視認性を向上させた優れた対物レンズを提供することができる。
 前記マーキング部は、前記対物レンズの成形時における樹脂材料の流入通路によって形成されるゲート部に対して円周方向に180±10°の範囲内に形成されていることが好ましい。この場合、成形不良等による非点収差の発生を抑制することができるとともに、コマ収差の発生を抑制することができる。
 前記突き出し部痕は、前記対物レンズの光軸と前記ゲート部とを結ぶ直線に対して、対称に配置される複数の突き出し部痕を含むことが好ましい。この場合、コマ収差の発生を抑制することができる。
 前記フランジ部は、前記第1鏡面コアによって前記第1の光学面側に形成される円環状面を有することが好ましい。この場合、対物レンズを光ピックアップに搭載する際の基準面となる第1の光学面側の円環状面を高精度に形成することができるので、対物レンズを光ピックアップに高精度に取り付けることができる。
 前記フランジ部は、前記第1の胴型によって前記第1の光学面側に形成される円環状面を有するようにしてもよい。この場合、第1鏡面コアによって第1の光学面をより高精度に形成することができる。
 前記第2の光学面の有効径は、前記第1の光学面の有効径よりも小さく、前記フランジ部は、前記第2の光学面側の前記円環状面の内側に形成される段差部を有し、前記段差部の外周側の直径は、前記第1の光学面の有効径よりも大きいことが好ましい。
 この場合、段差部によって第2の光学面側の円環状面と第1の光学面との間が十分に離間され、成形時の樹脂の流れがスムーズになるので、第2の光学面側の円環状面の平面度を向上することができる。この結果、第2の光学面側の円環状面を反射平面として利用して測定用レーザ光を正確に反射することができるので、測定用レーザ光の反射光の角度から対物レンズの傾きを正確に検出して、光ピックアップと対物レンズとの相対的な傾きを高精度に調整することができる。
 前記マーキング部は、前記第2胴型をバイト加工して形成される加工痕を転写して形成される凸部であることが好ましい。この場合、マーキング部を容易に形成することができるとともに、通常、突き出し部痕が凹部となっているので、突き出し部痕との対比がより明確になり、マーキング部の視認性をより向上することができる。
 前記凸部の断面形状は、凸レンズ形状であることが好ましい。この場合、対物レンズの上面から目視したときに、マーキング部のレンズ作用(屈折作用)によって、マーキング部の視認性を飛躍的に向上することができる。
 前記マーキング部の側壁は、傾斜していてもよい。この場合も、屈折作用によって、マーキング部の視認性を飛躍的に向上することができる。
 前記マーキング部の側壁の傾斜角度は、20°以上50°以下であることが好ましい。この場合、金型に対する加工痕の加工性とマーキング部の視認性とのバランスを図ることができる。
 前記マーキング部の表面粗さは、前記フランジ部の表面粗さと異なることが好ましい。この場合、マーキング部の視認性をさらに向上させることができる。
 前記マーキング部の表面粗さは、前記フランジ部の表面粗さよりも小さいことが好ましい。この場合、マーキング部の視認性の向上と、金型加工費の抑制とを達成することができる。
 前記マーキング部は、前記第2胴型に電子ビームを照射して形成される粗面加工を転写して形成されてもよい。この場合も、非点収差の向きを示すマーキング部の形成と、第1及び第2の鏡面コアの回転による光軸調整(コマ収差補正)との両立が可能である。
 前記マーキング部の形状は、前記対物レンズの半径方向の長さより、前記対物レンズの円周方向の長さが短い、略長円形状であることが好ましい。この場合、通常、円形の突き出し部痕との区別が容易となり、マーキング部の視認性を確保しつつ、円周方向の幅を小さくすることができるので、より精度良く対物レンズの角度調整(円周方向の回転調整)を行うことが可能となる。
 前記対物レンズの半径方向における前記マーキング部の長さをL(mm)、前記対物レンズの円周方向における前記マーキング部の幅をW(mm)、前記フランジ部からの前記マーキング部の高さをH(mm)としたとき、前記マーキング部は、下記の式を満たすことが好ましく、
 0.2≦L≦0.5
 0.05≦W≦0.25
 0.003≦H≦0.025
 また、前記マーキング部は、下記の式を満たすことがより好ましい。
 0.25≦L≦0.45
 0.08≦W≦0.15
 0.005≦H≦0.020
 これらの場合、視認性を確保しつつ、光学性能に影響を与えないマーキング部を容易に形成することができる。
 本発明の他の態様に係る光ピックアップは、レーザ光を出射する光源と、少なくとも前記レーザ光を情報記録媒体の情報記録面に収束させる上記の対物レンズと、前記情報記録媒体で反射されたレーザ光を受光する受光部と、を備える。
 この光ピックアップにおいては、上記の対物レンズを用いているので、BD等を良好に記録または再生を行うことができる。
 前記光ピックアップは、前記対物レンズを搭載するレンズホルダを少なくとも2軸方向に駆動するアクチュエータをさらに備え、前記レンズホルダの座面の周囲に、前記対物レンズの光軸を中心とした放射状の段差部が複数形成されていることが好ましい。
 この場合、レンズホルダ上に放射状に形成された複数の段差部と、視認性に優れた対物レンズのマーキング部とを用いることによって、対物レンズの角度調整(円周方向の回転調整)が容易となるので、顕微鏡等の設備が不要となり、作業工数を削減して光ピックアップのコストダウンを図ることができる。
 本発明の他の態様に係る光ディスク装置は、上記の光ピックアップと、情報記録媒体を回転駆動するためのモータと、前記光ピックアップおよび前記モータを制御する制御部とを備える。
 この光ディスク装置においては、上記の対物レンズを用いているので、BD等を良好に記録または再生を行うことができる。
 本発明の他の態様に係る樹脂成形用金型は、開口数NAが0.7以上の樹脂製の対物レンズを製造するための樹脂成形用金型であって、前記対物レンズの第1の光学面を形成する第1鏡面コアと、前記第1の光学面に対向する第2の光学面を形成する第2鏡面コアと、前記第1の鏡面コアを挿入されて前記第1の鏡面コアを回転可能に支持する第1胴型と、前記第2の鏡面コアを挿入されて前記第2の鏡面コアを回転可能に支持し、前記対物レンズのフランジ部の前記第2の光学面側の円環状面を形成する第2胴型と、前記第2胴型に進退自在に支持されるイジェクトピンとを備え、前記イジェクトピンは、前記円環状面に突き出し部痕を形成し、前記第2胴型は、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に、加工痕を形成することによって、前記対物レンズの非点収差の方向を示すマーキング部を形成する。
 この樹脂成形用金型を用いることにより、非点収差の向きを示すマーキング部の形成と、第1及び第2の鏡面コアの回転による光軸調整(コマ収差補正)との両立が可能となり、従来の対物レンズよりも優れた収差性能を有する対物レンズを製造することができる。
 本発明の他の態様に係る対物レンズの製造方法は、樹脂成形用金型を用いて、開口数NAが0.7以上の樹脂製の対物レンズを製造する対物レンズの製造方法であって、前記樹脂成形用金型は、前記対物レンズの第1の光学面を形成する第1鏡面コアと、前記第1の光学面に対向する第2の光学面を形成する第2鏡面コアと、前記第1の鏡面コアを挿入されて前記第1の鏡面コアを回転可能に支持する第1胴型と、前記第2の鏡面コアを挿入されて前記第2の鏡面コアを回転可能に支持し、前記対物レンズのフランジ部の前記第2の光学面側の円環状面を形成する第2胴型と、前記第2胴型に進退自在に支持されるイジェクトピンとを備え、前記イジェクトピンを用いて、前記円環状面に突き出し部痕を形成するステップと、前記第2胴型を用いて、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に、加工痕を形成することによって、前記対物レンズの非点収差の方向を示すマーキング部を形成するステップとを含む。
 この対物レンズの製造方法により、非点収差の向きを示すマーキング部の形成と、第1及び第2の鏡面コアの回転による光軸調整(コマ収差補正)との両立が可能となり、従来の対物レンズよりも優れた収差性能を有する対物レンズを製造することができる。
 本発明にかかる対物レンズは、非点収差の向きを示すマーキング部の形成と、樹脂成形用金型(鏡面コア)の回転による光軸調整によるコマ収差の補正とが両立可能であるので、収差性能に優れており、BD等の高密度光ディスクの記録または再生を行う光ピックアップに用いられる高NAの対物レンズとして有用である。また、当該対物レンズを用いた光ピックアップおよび光ディスク装置は、BD等を良好に記録または再生を行うことができるので有用である。

Claims (21)

  1.  第1胴型及び第2胴型を備える樹脂成形用金型を用いて成形される対物レンズであって、
     前記対物レンズは、開口数NAが0.7以上の樹脂製の対物レンズであり、
     第1の光学面と、前記第1の光学面に対向する第2の光学面とを有する本体部と、
     前記本体部の外周部に前記本体部と一体に形成されるフランジ部とを備え、
     前記第1の光学面は、前記第1胴型に挿入されて回転可能に支持される第1鏡面コアによって形成され、
     前記第2の光学面は、前記第2胴型に挿入されて回転可能に支持される第2鏡面コアによって形成され、
     前記フランジ部は、
     前記第2胴型によって前記第2の光学面側に形成される円環状面と、
     前記第2胴型に進退自在に支持されたイジェクトピンによって前記円環状面に形成される突き出し部痕と、
     前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に前記第2胴型の加工痕によって形成され、前記対物レンズの非点収差の方向を示すマーキング部と、を有することを特徴とする対物レンズ。
  2.  前記マーキング部は、前記対物レンズの成形時における樹脂材料の流入通路によって形成されるゲート部に対して円周方向に180±10°の範囲内に形成されていることを特徴とする、請求項1記載の対物レンズ。
  3.  前記突き出し部痕は、前記対物レンズの光軸と前記ゲート部とを結ぶ直線に対して、対称に配置される複数の突き出し部痕を含むことを特徴とする、請求項2記載の対物レンズ。
  4.  前記フランジ部は、前記第1鏡面コアによって前記第1の光学面側に形成される円環状面を有することを特徴とする、請求項1~3のいずれかに記載の対物レンズ。
  5.  前記フランジ部は、前記第1の胴型によって前記第1の光学面側に形成される円環状面を有することを特徴とする、請求項1~3のいずれかに記載の対物レンズ。
  6.  前記第2の光学面の有効径は、前記第1の光学面の有効径よりも小さく、
     前記フランジ部は、前記第2の光学面側の前記円環状面の内側に形成される段差部を有し、
     前記段差部の外周側の直径は、前記第1の光学面の有効径よりも大きいことを特徴とする、請求項1~5のいずれかに記載の対物レンズ。
  7.  前記マーキング部は、前記第2胴型をバイト加工して形成される加工痕を転写して形成される凸部であることを特徴とする、請求項1~6のいずれかに記載の対物レンズ。
  8.  前記凸部の断面形状は、凸レンズ形状であることを特徴とする、請求項7記載の対物レンズ。
  9.  前記マーキング部の側壁は、傾斜していることを特徴とする、請求項7記載の対物レンズ。
  10.  前記マーキング部の側壁の傾斜角度は、20°以上50°以下であることを特徴とする、請求項9記載の対物レンズ。
  11.  前記マーキング部の表面粗さは、前記フランジ部の表面粗さと異なることを特徴とする、請求項7記載の対物レンズ。
  12.  前記マーキング部の表面粗さは、前記フランジ部の表面粗さよりも小さいことを特徴とする、請求項11記載の対物レンズ。
  13.  前記マーキング部は、前記第2胴型に電子ビームを照射して形成される粗面加工を転写して形成されることを特徴とする、請求項1記載の対物レンズ。
  14.  前記マーキング部の形状は、前記対物レンズの半径方向の長さより、前記対物レンズの円周方向の長さが短い、略長円形状であることを特徴とする、請求項1~13のいずれかに記載の対物レンズ。
  15.  前記対物レンズの半径方向における前記マーキング部の長さをL(mm)、前記対物レンズの円周方向における前記マーキング部の幅をW(mm)、前記フランジ部からの前記マーキング部の高さをH(mm)としたとき、前記マーキング部は、下記の式を満たすことを特徴とする、請求項14記載の対物レンズ。
     0.2≦L≦0.5
     0.05≦W≦0.25
     0.003≦H≦0.025
  16.  前記マーキング部は、下記の式を満たすことを特徴とする、請求項15記載の対物レンズ。
     0.25≦L≦0.45
     0.08≦W≦0.15
     0.005≦H≦0.020
  17.  レーザ光を出射する光源と、
     請求項1~請求項16のいずれかに記載され、少なくとも前記レーザ光を情報記録媒体の情報記録面に収束させる対物レンズと、
     前記情報記録媒体で反射されたレーザ光を受光する受光部と、を備えることを特徴とする光ピックアップ。
  18.  前記対物レンズを搭載するレンズホルダを少なくとも2軸方向に駆動するアクチュエータをさらに備え、
     前記レンズホルダの座面の周囲に、前記対物レンズの光軸を中心とした放射状の段差部が複数形成されていることを特徴とする、請求項17記載の光ピックアップ。
  19.  請求項17または18に記載される光ピックアップと、
     情報記録媒体を回転駆動するためのモータと、
     前記光ピックアップおよび前記モータを制御する制御部とを備えることを特徴とする光ディスク装置。
  20.  開口数NAが0.7以上の樹脂製の対物レンズを製造するための樹脂成形用金型であって、
     前記対物レンズの第1の光学面を形成する第1鏡面コアと、
     前記第1の光学面に対向する第2の光学面を形成する第2鏡面コアと、
     前記第1の鏡面コアを挿入されて前記第1の鏡面コアを回転可能に支持する第1胴型と、
     前記第2の鏡面コアを挿入されて前記第2の鏡面コアを回転可能に支持し、前記対物レンズのフランジ部の前記第2の光学面側の円環状面を形成する第2胴型と、
     前記第2胴型に進退自在に支持されるイジェクトピンとを備え、
     前記イジェクトピンは、前記円環状面に突き出し部痕を形成し、
     前記第2胴型は、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に、加工痕を形成することによって、前記対物レンズの非点収差の方向を示すマーキング部を形成することを特徴とする樹脂成形用金型。
  21.  樹脂成形用金型を用いて、開口数NAが0.7以上の樹脂製の対物レンズを製造する対物レンズの製造方法であって、
     前記樹脂成形用金型は、
     前記対物レンズの第1の光学面を形成する第1鏡面コアと、
     前記第1の光学面に対向する第2の光学面を形成する第2鏡面コアと、
     前記第1の鏡面コアを挿入されて前記第1の鏡面コアを回転可能に支持する第1胴型と、
     前記第2の鏡面コアを挿入されて前記第2の鏡面コアを回転可能に支持し、前記対物レンズのフランジ部の前記第2の光学面側の円環状面を形成する第2胴型と、
     前記第2胴型に進退自在に支持されるイジェクトピンとを備え、
     前記イジェクトピンを用いて、前記円環状面に突き出し部痕を形成するステップと、
     前記第2胴型を用いて、前記円環状面のうち前記突き出し部痕が形成された位置と異なる位置に、加工痕を形成することによって、前記対物レンズの非点収差の方向を示すマーキング部を形成するステップとを含むことを特徴とする対物レンズの製造方法。
PCT/JP2012/008044 2011-12-22 2012-12-17 対物レンズ、光ピックアップ、光ディスク装置、樹脂成形用金型及び対物レンズの製造方法 WO2013094173A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-282148 2011-12-22
JP2011282148 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094173A1 true WO2013094173A1 (ja) 2013-06-27

Family

ID=48668091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008044 WO2013094173A1 (ja) 2011-12-22 2012-12-17 対物レンズ、光ピックアップ、光ディスク装置、樹脂成形用金型及び対物レンズの製造方法

Country Status (1)

Country Link
WO (1) WO2013094173A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141264A1 (ja) * 2014-03-18 2015-09-24 富士フイルム株式会社 光学レンズ、レンズユニット、撮像モジュール、電子機器、射出成形型及び射出成形方法
CN108312430A (zh) * 2018-01-12 2018-07-24 福建富兰光学有限公司 一种带柱面光学球罩及其模具
CN112005149A (zh) * 2018-04-24 2020-11-27 Agc株式会社 光学元件、光学系统以及拍摄装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281819A (ja) * 1995-04-14 1996-10-29 Matsushita Electric Ind Co Ltd 対物レンズ用成形型及び対物レンズ
JP2004253080A (ja) * 2003-02-21 2004-09-09 Sharp Corp 光ピックアップレンズ及びそれを有する光学ピックアップ装置
JP2004295998A (ja) * 2003-03-26 2004-10-21 Konica Minolta Holdings Inc 対物レンズ、光ピックアップ装置、及び光情報記録再生装置
JP2007147888A (ja) * 2005-11-25 2007-06-14 Hitachi Maxell Ltd プラスチックレンズ及び光ピックアップ装置
JP2007334930A (ja) * 2006-06-12 2007-12-27 Konica Minolta Opto Inc 光ディスク用レンズ
JP2008216588A (ja) * 2007-03-02 2008-09-18 Hitachi Maxell Ltd 成形レンズ
WO2010035619A1 (ja) * 2008-09-29 2010-04-01 コニカミノルタオプト株式会社 光ピックアップ用対物レンズの製造方法及び光ピックアップ用対物レンズの成形金型、並びに、光ピックアップ用対物レンズ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281819A (ja) * 1995-04-14 1996-10-29 Matsushita Electric Ind Co Ltd 対物レンズ用成形型及び対物レンズ
JP2004253080A (ja) * 2003-02-21 2004-09-09 Sharp Corp 光ピックアップレンズ及びそれを有する光学ピックアップ装置
JP2004295998A (ja) * 2003-03-26 2004-10-21 Konica Minolta Holdings Inc 対物レンズ、光ピックアップ装置、及び光情報記録再生装置
JP2007147888A (ja) * 2005-11-25 2007-06-14 Hitachi Maxell Ltd プラスチックレンズ及び光ピックアップ装置
JP2007334930A (ja) * 2006-06-12 2007-12-27 Konica Minolta Opto Inc 光ディスク用レンズ
JP2008216588A (ja) * 2007-03-02 2008-09-18 Hitachi Maxell Ltd 成形レンズ
WO2010035619A1 (ja) * 2008-09-29 2010-04-01 コニカミノルタオプト株式会社 光ピックアップ用対物レンズの製造方法及び光ピックアップ用対物レンズの成形金型、並びに、光ピックアップ用対物レンズ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141264A1 (ja) * 2014-03-18 2015-09-24 富士フイルム株式会社 光学レンズ、レンズユニット、撮像モジュール、電子機器、射出成形型及び射出成形方法
CN106104314A (zh) * 2014-03-18 2016-11-09 富士胶片株式会社 光学透镜、透镜单元、摄像模块、电子设备、注射成型模具及注射成型方法
JP6092463B2 (ja) * 2014-03-18 2017-03-08 富士フイルム株式会社 光学レンズ、レンズユニット、撮像モジュール及び電子機器
US10185114B2 (en) 2014-03-18 2019-01-22 Fujifilm Corporation Optical lens, lens unit, imaging module, electronic apparatus, injection molding mold and injection molding method
CN108312430A (zh) * 2018-01-12 2018-07-24 福建富兰光学有限公司 一种带柱面光学球罩及其模具
CN112005149A (zh) * 2018-04-24 2020-11-27 Agc株式会社 光学元件、光学系统以及拍摄装置

Similar Documents

Publication Publication Date Title
JP4992105B2 (ja) 樹脂成形用金型及び光学素子製造方法
JP2004253080A (ja) 光ピックアップレンズ及びそれを有する光学ピックアップ装置
WO2008053692A1 (fr) Elément optique, matrice métallique de moulage de résine et procédé de fabrication d'un élément optique
WO2003007044A1 (fr) Lentille de focalisation et dispositif de phonocapteur optique faisant appel a ladite lentille
WO2013094173A1 (ja) 対物レンズ、光ピックアップ、光ディスク装置、樹脂成形用金型及び対物レンズの製造方法
JP2012056321A (ja) 樹脂成形用金型及び光ピックアップ装置用対物レンズ並びに光学素子製造方法
WO2011040148A1 (ja) 光学素子
US8681593B2 (en) Objective lens, optical head and optical disk device
CN102136281A (zh) 光拾取装置及其制造方法
JP2004295998A (ja) 対物レンズ、光ピックアップ装置、及び光情報記録再生装置
JP2002154139A (ja) 光学素子、光学素子の製造方法及び光学素子用金型
JP5119080B2 (ja) 光学記録読み取り用ピックアップ用光学素子
KR100675863B1 (ko) 광픽업장치
JP4050030B2 (ja) 光ヘッド用対物レンズ、これを用いた光ヘッドおよび光ディスク装置
JP2013134797A (ja) 光ピックアップ装置用の対物レンズ
JP2008234738A (ja) 複合対物レンズ及び光ピックアップ装置
JP4771894B2 (ja) 対物レンズの収差補正方法
US20060067204A1 (en) Objective lens and scanning device using such an objective lens
US7656773B2 (en) Objective lens unit and optical pickup device
JP2011113587A (ja) 光学素子及びそれを用いた光ピックアップ装置
JP2011108303A (ja) 光学素子及びそれを用いた光ピックアップ装置
JP2008059624A5 (ja)
WO2013039241A1 (ja) 光学素子及びその製造方法
US20110214137A1 (en) Lens holder and optical pickup apparatus using the same
JP2011113588A (ja) 光学素子及びそれを用いた光ピックアップ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859345

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP