WO2013088816A1 - Load measurement device for hydraulic shovel - Google Patents
Load measurement device for hydraulic shovel Download PDFInfo
- Publication number
- WO2013088816A1 WO2013088816A1 PCT/JP2012/075519 JP2012075519W WO2013088816A1 WO 2013088816 A1 WO2013088816 A1 WO 2013088816A1 JP 2012075519 W JP2012075519 W JP 2012075519W WO 2013088816 A1 WO2013088816 A1 WO 2013088816A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- load
- boom
- weight
- detected
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/264—Sensors and their calibration for indicating the position of the work tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C1/00—Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
- B66C1/04—Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by magnetic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C13/00—Other constructional features or details
- B66C13/16—Applications of indicating, registering, or weighing devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/08—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
- G01G19/10—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having fluid weight-sensitive devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G19/00—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
- G01G19/14—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing suspended loads
- G01G19/16—Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing suspended loads having fluid weight-sensitive devices
Definitions
- the present invention relates to a load measuring device for a hydraulic excavator that measures the weight of a load carried by a front work machine.
- a hydraulic excavator includes a front working machine, and the front working machine includes a hydraulic cylinder that operates by hydraulic pressure, a working tool that is driven by the hydraulic cylinder, and an attachment that is attached to the working tool. And the operator who operates a front work machine is moving the attachment of a front work machine, and is performing the operation
- the trucks move to the built-up platform before the trucks exit the public road from the work area, and the loading capacity of the truck bed is reduced.
- the loading capacity of the loading platform is reduced.
- the operator operating the front work machine makes a judgment based on the operator's own experience from the appearance of the load on the truck bed in order to grasp the load loaded on the truck during the loading operation. Therefore, there is often a margin until the loading capacity of the loading platform reaches the maximum loading capacity, and there is a possibility that the transportation efficiency of the truck is lowered. Also, if the operator can operate the front work machine to perform loading work and accurately grasp the load loaded on the truck bed, the amount loaded on the bed without moving the truck from the work place to the platform Can be adjusted, so that the labor of weighing can be saved and the working efficiency can be improved.
- a measurement command means for outputting a measurement command signal instructing to measure the weight of the load according to a manual operation, In conjunction with the measurement command signal from the measurement command means, before the calculation for calculating the holding force acting on the boom, i.e., the support force for the boom, is performed on the bottom side oil chamber and the rod side oil chamber of the boom cylinder.
- a load measuring device for a construction machine includes a boom cylinder micro-vibration means that alternately supplies a hydraulic pressure that does not cause the boom cylinder to expand and contract to slightly vibrate the boom cylinder (see, for example, Patent Document 1). .
- This load measuring device for a construction machine reduces the bias of the static friction force generated between the cylinder tube of the boom cylinder and the piston rod by minutely vibrating the boom cylinder by the boom cylinder minute vibration means.
- the measurement value of the weight of the load acting on the tip of the work machine is prevented from becoming unstable. Therefore, when the operator loads the load on the truck bed with the attachment of the front work machine, the operator uses the load measuring device of the prior art to measure the weight of the load and sums the weights. You can know the loading capacity.
- the load measuring device for a construction machine disclosed in Patent Document 1 uses a boom cylinder micro-vibration means to measure the weight of a load acting on the front end of a front work machine.
- this static friction force generated between the tube and the piston rod is reduced, this static friction force itself cannot be completely eliminated, and the magnitude of the static friction force cannot be measured.
- the problem is that errors occur in the measurement of the weight of the load due to the static frictional force.
- the load measuring device for the construction machine has low accuracy in measuring the weight of the load carried by the attachment of the front work machine, and causes inconvenience in the loading work of the truck bed. An apparatus capable of grasping is desired.
- the present invention has been made based on the actual situation of the prior art as described above, and an object thereof is to provide a load measuring device for a hydraulic excavator that can accurately grasp the weight of the load carried by the attachment of the front work machine. It is in.
- a load measuring device for a hydraulic excavator is provided in a hydraulic excavator provided with a front working machine, and the front working machine includes a hydraulic cylinder operated by hydraulic pressure, and the hydraulic cylinder.
- Cylinder speed for detecting a driving speed of the hydraulic cylinder in a load measuring device of a hydraulic excavator which includes a working tool to be driven and an attachment attached to the working tool, and measures the weight of a load carried by operating the attachment.
- Detection means measurement command means for instructing start of measurement of the weight of the load, and the hydraulic cylinder is fixed based on the drive speed detected by the cylinder speed detection means when receiving a command from the measurement command means
- Cylinder driving means for extending and contracting at the speed of the hydraulic cylinder, bottom side and rod side of the hydraulic cylinder
- Pressure detecting means for detecting the acting pressure
- cylinder supporting force calculating means for calculating a supporting force of the hydraulic cylinder with respect to the work implement based on each pressure detected by the pressure detecting means
- the front working machine A posture detecting means for detecting a posture including the work tool, and a load calculation for calculating the weight of the load based on the posture detected by the posture detecting means and the support force calculated by the cylinder support force calculating means.
- the cylinder support force calculation means have a support force averaging means for averaging the support force when the posture detected by the posture detection means is the same in both cases where the hydraulic cylinder is driven to extend and shorten. It is characterized
- the measurement of the weight of the load is started by the command of the measurement command means, the cylinder drive means drives the hydraulic cylinder to extend and contract at a constant speed, and the pressure detection means causes the bottom side of the hydraulic cylinder and the rod to The pressure acting on the side is detected.
- the cylinder support force calculating means calculates the support force of the hydraulic cylinder with respect to the working tool based on these detected pressures, and this support force is generated between the cylinder tube and the piston rod of the hydraulic cylinder. Frictional force will be included.
- the direction of the frictional force included in the supporting force of the hydraulic cylinder with respect to the working tool when the hydraulic cylinder is driven to extend is the frictional force included in the supporting force of the hydraulic cylinder with respect to the working tool when the hydraulic cylinder is driven to shorten.
- the support force averaging means of the cylinder support force calculating means averages these support forces when the posture detected by the posture detection means is the same in both cases where the hydraulic cylinder is extended and shortened. Since the frictional forces included in the respective support forces can be canceled with each other, the influence of the friction force generated between the cylinder tube and the piston rod of the hydraulic cylinder can be reduced in the calculated support force.
- the load calculation means calculates the weight of the load carried by the attachment of the front work machine based on the attitude detected by the attitude detection means and the support force calculated by the cylinder support force calculation means. Measurement error due to friction force acting inside the hydraulic cylinder in weight measurement can be suppressed, and the weight of the load carried by the attachment of the front work machine can be accurately grasped.
- the load calculation means loads the load every time the load is loaded on the bed.
- the weight is measured and the weights are summed, but the accuracy of each measurement is improved, so that the operator can easily adjust the loading amount of the loading platform accurately.
- the cylinder driving unit is configured such that the front work implement is moved by the measurement command unit based on the posture detected by the posture detecting unit.
- the hydraulic cylinder is driven to extend and contract by a predetermined length so as to return to the posture at the moment when the start of weight measurement is commanded.
- the expansion and contraction operation of the hydraulic cylinder by the cylinder driving means is performed. Since the front work machine returns to the posture before the load weight measurement is started, it is easy for the operator to start the work that was performed before the load weight measurement, and the influence on the operator's work is reduced. Can do.
- the load measuring device for a hydraulic excavator is the above-described invention, wherein the cylinder driving means is based on a driving speed detected by the cylinder speed detecting means and is based on a driving speed capable of extending the hydraulic cylinder. It is characterized by moving at the minimum speed.
- the hydraulic cylinder since the hydraulic cylinder does not suddenly expand and contract when measurement of the weight of the load is started, the hydraulic cylinder such as inertia force, viscous friction, pressure loss between the pressure detection means and the hydraulic cylinder, etc. It is possible to suppress the influence of factors other than the dynamic friction force acting on the inside of the load on the measurement of the load weight.
- the load calculating means is detected by the posture detecting means when the cylinder driving means drives the hydraulic cylinder to extend and contract at a constant speed. Based on a plurality of postures, the weight of the load is calculated a plurality of times, and the calculated weights are averaged.
- the load calculation means calculates the weight of the load a plurality of times based on the plurality of postures detected by the posture detection means when the hydraulic cylinder is driven to extend and contract at a constant speed, and averages the calculated weights.
- variations in the calculation results can be suppressed, so that the weight of the load can be accurately measured.
- the weight of the load can be stably measured against errors in detection values of the detection means and subtle changes in the cylinder speed.
- the support force averaging means of the cylinder support force calculating means is when the posture detected by the posture detecting means is the same in both cases where the hydraulic cylinder is driven to extend and shorten.
- the load calculating means calculates the weight of the load carried by the attachment of the front work machine based on the attitude detected by the attitude detecting means and the supporting force calculated by the cylinder supporting force calculating means. Measurement errors due to frictional forces acting inside the hydraulic cylinder in weight measurement can be suppressed. Thereby, the weight of the load which the attachment of a front work machine conveys can be grasped
- 1 is a side view showing a hydraulic excavator provided with a first embodiment of a load measuring device according to the present invention. It is a block diagram explaining the structure of 1st Embodiment of this invention. It is a figure explaining the calculation by the load calculating means with which 1st Embodiment of this invention was equipped. It is a flowchart explaining operation
- a first embodiment of a load measuring device for a hydraulic excavator includes a traveling body 20, a revolving body 30 disposed on the upper side of the traveling body 20 and having a revolving frame 30 a, and the revolving structure. And a front work machine 1 that is attached to the front of the body 30 and rotates in the vertical direction.
- the swivel body 30 is disposed in the front, the cab 14 on which an operator who operates the front work machine 1 gets on, the counter weight 19 which is disposed in the rear and maintains the balance of the vehicle body so that the vehicle body does not tilt, and these cabs. 14 and the counterweight 19 are provided with an engine room 21 in which an engine (not shown) is stored, and a vehicle body cover 18 provided on the upper part of the engine room 21.
- the revolving body 30 is not shown in the figure, but is disposed in the vicinity of the engine in the engine room 21, and is driven by the engine, and a hydraulic oil tank connected to the hydraulic pump via a pipe. And a fuel tank that is disposed in the vicinity of the hydraulic oil tank and stores fuel.
- the cab 14 includes operation levers 15 and 16 for operating the front work machine 1, a controller (not shown) for controlling the operation of the engine and the front work machine 1, and various types of information regarding the operation of the hydraulic excavator 1.
- a display device for display, for example, a monitor 17 is provided.
- the front working machine 1 described above includes a hydraulic cylinder that operates by hydraulic pressure, a working tool that is driven by the hydraulic cylinder, and an attachment that is attached to the working tool.
- the work implement of the front work machine 1 includes, for example, a boom 2 that has a base end rotatably attached to the revolving body 30 via a connecting pin 2a, and rotates in the vertical direction, and a tip of the boom 2 And an arm 3 rotatably attached via a connecting pin 3a.
- the attachment is composed of, for example, a magnet 4 that is rotatably attached to the tip of the arm 3 via a connecting pin 4a and grips and carries scrap as a load.
- the hydraulic cylinder is, for example, connected to the revolving body 30 and the boom 2 and connected to the boom cylinder 5 that rotates the boom 2 by extending and contracting, and the boom 2 and the arm 3.
- the arm cylinder 6 rotates the arm 3 by expanding and contracting
- the bucket cylinder 7 connects the arm 3 and the magnet 4 and rotates the magnet 4 by expanding and contracting.
- Each of the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 includes cylinder tubes 5a, 6a and 7a and pistons which are included in the cylinder tubes 5a, 6a and 7a and slidably contact the cylinder tubes 5a, 6a and 7a.
- the rods 5b, 6b, and 7b are included.
- boom cylinder 5, arm cylinder 6, and bucket cylinder 7 are connected to a hydraulic pump, and the hydraulic pump pumps up pressure oil from the hydraulic oil tank and discharges it to the boom cylinder 5, arm cylinder 6, and bucket cylinder 7.
- the piston rods 5b, 6b and 7b are pushed out of the cylinder tubes 5a, 6a and 7a, and the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 are extended.
- the hydraulic pump returns the pressure oil discharged to the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 to the hydraulic oil tank, the piston rods 5b, 6b and 7b are moved to the inside of the cylinder tubes 5a, 6a and 7a.
- the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 are shortened by being pushed in.
- the first embodiment of the present invention includes a cylinder speed detecting means for detecting the driving speed of the hydraulic cylinder, and a measurement command means for instructing the start of scrap weight measurement to be described later. And a cylinder driving means 22 for extending and retracting the hydraulic cylinder at a constant speed based on the driving speed detected by the cylinder speed detecting means when receiving a command from the measurement command means.
- the cylinder speed detecting means described above is provided at, for example, the coupling pin 2a at one end of the revolving body 30 side of the both ends of the boom 2, that is, the rotation center of the boom 2, and detects the angular speed at which the boom 2 rotates in the vertical direction.
- a boom angular velocity sensor 13 is included.
- the cab 14 is provided on the operation levers 15 and 16 and has a release switch 23 for releasing the scrap held by the magnet 4 when pressed, and the measurement command means described above is pressed by the release switch 23, for example. When this is done, a scrap weight measurement command is output.
- the cylinder drive means 22 is comprised from the solenoid valve 24 which opens and closes by an electrical signal, for example, and the solenoid valve control part 25 which is stored in a controller and controls the solenoid valve 24 according to operation of the operation levers 15 and 16.
- the swing body 30 receives a signal control valve 26 connected to the electromagnetic valve 24 and a signal from the signal control valve 26, and switches the pressure oil supplied to the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7. And a control valve 27.
- the solenoid valve 24 is disposed between the hydraulic pump and the hydraulic line extending from the operation levers 15 and 16 to the signal control valve 26, and receives an instruction from the solenoid valve control unit 25 to repeat the opening / closing operation. Yes.
- the solenoid valve control unit 25 monitors the drive speed of the boom cylinder 5 detected by, for example, the boom angular speed sensor 13, and the drive speed of the boom cylinder 5 is constant at the minimum speed necessary for driving the boom cylinder 5.
- the opening / closing operation of the electromagnetic valve 24 is controlled.
- pressure detecting means for detecting pressures acting on the bottom side and the rod side of the hydraulic cylinder, respectively, and a hydraulic cylinder working tool based on each pressure detected by the pressure detecting means.
- Cylinder support force calculation means 31 for calculating the support force
- attitude detection means for detecting the attitude of the front work machine 1 including the boom 2 and the arm 3
- the attitude and cylinder support force calculation means 31 detected by the attitude detection means.
- Load calculating means 32 for calculating the weight of the scrap based on the support force calculated by.
- the cylinder support force calculating means 31 and the load calculating means 32 are stored in, for example, a controller.
- the posture detection means is, for example, a connecting pin 2a at one end on the revolving body 30 side of both ends of the boom 2, that is, a boom angle sensor that detects the angle at which the boom 2 is rotated in the vertical direction. 8 and a coupling pin 3a at one end on the boom 2 side of both ends of the arm 3, that is, an arm angle sensor 9 provided at the rotation center of the arm 3 and detecting the angle at which the arm 3 is rotated, and the magnet 4 It includes an attachment angle sensor 10 that is provided at the center of rotation of the pin 4a, that is, the magnet 4 and detects an angle at which the magnet 4 is rotated. Therefore, the posture detection means uses the angles detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10, and the predetermined dimension data of the boom 2, arm 3, and magnet 4. Based on this, the posture of the front work machine 1 is determined.
- the pressure detection means described above includes, for example, a bottom pressure sensor 11 that detects a bottom cylinder pressure in the boom cylinder 5 and a rod pressure sensor 12 that detects a rod side cylinder chamber pressure in the boom cylinder 5. . Accordingly, the cylinder support force calculating means 31 calculates the support force of the boom linder 5 with respect to the boom 2 based on the bottom side and rod side cylinder chamber pressures detected by the bottom pressure sensor 11 and the rod pressure sensor 12. I am doing so.
- the cylinder support force calculating means 31 includes a support force averaging means (not shown) that averages the support force when the posture detected by the posture detection means is the same in both cases where the boom cylinder 5 is driven to extend and shorten. ing. Further, in the first embodiment of the present invention, the cylinder driving means 22 is instructed to start the measurement of the weight of the scrap by the front work machine 1 by the release switch 23 based on the angle detected by the boom angle sensor 8, for example. The boom cylinder 5 is driven to extend and contract by a predetermined length so as to return to the posture at the moment.
- the cylinder driving means 22 is the minimum speed among the speeds at which the boom cylinder 5 can be driven to extend based on the driving speed of the boom cylinder 5 detected by the boom angular speed sensor 13, for example. I'm trying to make it start moving.
- the indoor pressure on the bottom side of the boom cylinder 5 detected by the bottom pressure sensor 11 is P 1b
- the indoor pressure on the rod side detected by the rod pressure sensor 12 is P 1r
- the bottom side the pressure receiving area a b of the pressure receiving area a r of the rod side, whereupon kinetic friction force R 1 acts between the cylinder tube 5a and the piston rod 5b of the boom cylinder 5, the supporting force F 1 with respect to the boom 2 of the boom cylinder 5
- the drive speed of the boom cylinder 5 is sufficiently low, it is expressed by the equation (1).
- the direction when the boom cylinder 5 is driven to extend is set to a positive direction.
- the indoor pressure on the bottom side of the boom cylinder 5 detected by the bottom pressure sensor 11 is P 2b
- the indoor pressure on the rod side detected by the rod pressure sensor 12 is P 2r.
- the boom cylinder 5 is both extended and shortened.
- the supporting forces F 1 and F 2 of the boom cylinder 5 with respect to the boom 2 when the front working machine 1 takes the determined posture in FIG. 3 are equal to each other if the driving speed of the boom cylinder 5 is sufficiently low. ).
- the support force averaging means of the front support force calculating means 31 adds the both sides of the equations (1) and (2) and substitutes the equation (4), so that the boom cylinder in any posture of the front work machine 1 can be obtained.
- the support force F with respect to the boom 2 of 5 is represented by Formula (5).
- the force acting on the magnet 4, that is, the weight of scrap gripped by the magnet 4 is W
- the weight of the front work machine 1 excluding the boom cylinder 5 is W 1
- the boom 2 is rotated.
- the length of the horizontal component of the length between the center and the center of gravity of the scrap is l
- the length of the perpendicular drawn from the pivot center of the boom 2 to the boom cylinder 5 is h
- the pivot center of the boom 2 If, when the length of the horizontal component of the length between the center of gravity of the portion excluding the boom cylinder 5 of the front work device 1 and l 1, the moment of force at the center of rotation of the boom 2 is balanced Therefore, Formula (6) is materialized.
- the own weight W 1 of the portion excluding the boom cylinder 5 of the front operating mechanism 1 is known, the horizontal component of the length between the center of gravity of the rotational center and scrap boom 2 length l , The length h of the perpendicular drawn from the pivot center of the boom 2 to the boom cylinder 5, and the length between the pivot center of the boom 2 and the center of gravity of the portion of the front work machine 1 excluding the boom cylinder 5.
- the length l 1 of the horizontal component of the detection result detected by the posture detection means, i.e. the boom angle sensor 8, the arm angle sensor 9, and the angle detected by the attachment angle sensor 10, and predetermined It is calculated based on the dimension data of the boom 2, arm 3, and magnet 4.
- the load calculating means 32 the supporting force F, self-weight W 1 of the portion excluding the boom cylinder 5 of the front work machine 1, the rotation center and scrap centroid of the boom 2 with respect to the boom 2 of the computed boom cylinder 5 Of the horizontal component, the length h of the perpendicular drawn from the pivot center of the boom 2 to the boom cylinder 5, the pivot center of the boom 2 and the front work machine 1
- the weight W of the scrap held by the magnet 4 is calculated. ing.
- the weight of the scrap calculated by the load calculating means 32 is displayed on the monitor 17 in the cab 14. Further, in the first embodiment of the present invention, when the operator who operates the front work machine 1 uses the magnet 4 to transport and load the scrap onto the truck bed, and then measures the load on the bed, the scrap is removed. The weight of the scrap is measured by the load calculating means 32 every time it is loaded on the loading platform, and the weight is automatically summed up. The total value, that is, the loading amount of the loading platform is displayed on the monitor 17.
- FIG. 4 is a flowchart for explaining the operation of the first embodiment of the present invention.
- the cylinder driving means 22 sets the boom cylinder 5 at a predetermined length based on the driving speed of the boom cylinder 5 detected by the boom angular speed sensor 13.
- the extension is driven (S2).
- the cylinder supporting force calculating means 31 the supporting force F 1 with respect to the boom 2 of the boom cylinder 5 when the boom cylinder 5 is driven extended computing by the formula (1) (S3).
- the cylinder drive unit 22 sets the boom cylinder 5 based on the boom cylinder 5 drive speed detected by the boom angular speed sensor 13. (S4).
- the cylinder supporting force calculating means 31 the supporting force F 2 with respect to the boom 2 of the boom cylinder 5 when the boom cylinder 5 is shortened driving computed by Equation (2) (S5).
- the cylinder driving means 22 drives the boom cylinder 5 to be shortened by the same length as when the boom cylinder 5 is driven to extend based on the angle detected by the boom angle sensor 8. (S6).
- the support forces F 1 and F 2 of the boom cylinder 5 with respect to the boom 2 are calculated by the cylinder support force calculation means 31 in both steps S3 and S5 when the boom cylinder 5 is driven to extend and shorten.
- the support force averaging means of the support force calculating means 31 uses the bottom side and rod side cylinder chamber pressures P 1b , P 1r , P 2b , P 2r detected by the bottom pressure sensor 11 and the rod pressure sensor 12, and is arbitrary.
- the support force F of the boom cylinder 5 with respect to the boom 2 in the posture of the front work machine 1 is calculated by the equation (5) (S7).
- the load calculation means 32 refers to each angle detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10, and predetermined dimension data of the boom 2, the arm 3, and the magnet 4.
- the weight of the scrap is calculated by equation (7) using the support force F calculated by the cylinder support force calculating means 31 in step S7 (S8).
- the scrap weight calculated by the load calculating means 32 is displayed on the monitor 17 (S9), and the operation of the first embodiment of the present invention is terminated.
- the support force averaging means of the cylinder support force calculating means 31 in step S7 is determined by the attitude detection means in both cases where the boom cylinder 5 is driven to extend and shorten.
- the supporting force when the detected posture is the same that is, when the front working machine 1 takes one arbitrarily defined posture in both cases where the boom cylinder 5 is driven to extend and shorten.
- the dynamic friction forces R 1 and R 2 included in each of the support forces F 1 and F 2 can be canceled in the equation (5). Therefore, the influence of the friction force generated between the cylinder tube 5a and the piston rod 5b of the boom cylinder 5 in the calculated support force F can be reduced. It is possible.
- step S8 the load calculating means 32 determines the angles detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10, the predetermined dimension data of the boom 2, the arm 3, and the magnet 4. , And using the support force F calculated by the cylinder support force calculating means 31 to calculate the scrap weight according to the equation (7), the scrap weight is measured inside the boom cylinder 5. Measurement error due to frictional force can be suppressed. Thereby, the weight of the scrap conveyed by the magnet 4 of the front work machine 1 can be accurately grasped, and high reliability can be secured for the measurement of the weight of the scrap.
- the load calculating means 32 loads the scrap weight each time the scrap is loaded onto the bed.
- the operator sees the total weight of the scrap displayed on the monitor 17 and determines the loading capacity of the truck bed. It can be adjusted accurately.
- the scrap can be sufficiently loaded on the loading platform until the loading capacity of the loading platform reaches the maximum loading capacity, the transportation efficiency of the truck can be improved.
- the cylinder driving means 22 is configured based on the angle detected by the boom angle sensor 8. Is driven to be shortened by the same length as when it is extended, the front working machine 1 returns to the posture at the moment when the start of scrap weight measurement is commanded in step S1, so that the operator can measure the scrap weight. It becomes easy to start the work that has been performed before, and the influence on the work of the operator can be reduced.
- the cylinder drive means 22 is configured to use the boom cylinder 5 based on the drive speed of the boom cylinder 5 detected by the boom angular speed sensor 13. Since the boom cylinder 5 does not suddenly expand and contract by moving at a minimum speed among the speeds that can be driven to extend, inertia force, viscous friction, pressure between the pressure sensors 11 and 12 and the boom cylinder 5 can be reduced. The influence of factors other than the dynamic friction force acting inside the boom cylinder 5 such as loss on the measurement of scrap weight can be suppressed.
- the second embodiment of the present invention differs from the first embodiment described above in that the load calculation means 32 is different from the first embodiment in that the front work machine 1 is used in both cases where the boom cylinder 5 is driven to extend and shorten.
- the load calculation means 32 is a cylinder in the second embodiment. Based on the plurality of postures detected by the posture detecting means when the drive means 22 drives the boom cylinder 5 to extend and contract at a constant speed, the weight of the scrap is calculated a plurality of times, and the calculated weights are averaged to generate the scrap. Is to calculate the weight.
- the cylinder support force calculating means 31 can The support force of the boom cylinder 5 with respect to the boom 2 when the machine 1 takes each predetermined posture is calculated from the equation (5).
- the load calculating means 32 is configured to detect the angles detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10 in each of these predetermined postures, the predetermined boom 2, arm 3, and magnet 4.
- the weight of scrap is calculated from the equation (7) using each supporting force F calculated by the cylinder supporting force calculating means 31. Then, the load calculating means 32 averages the calculated weights, and uses the result as the final scrap weight.
- the same effect as that of the first embodiment described above can be obtained, and when the boom cylinder 5 is extended and retracted in steps S2 and S4, the front work machine 1 is operated. Since the pressure detected by the bottom pressure sensor 11 and the rod pressure sensor 12 changes as the attitude of the front working machine 1 changes, the cylinder support force calculation means for a plurality of arbitrarily determined attitudes taken by the front work machine 1 The supporting force for the boom 2 of the boom cylinder 5 calculated at 31 is determined. Therefore, the load calculating means 32 calculates the weight of the scrap a plurality of times according to the support force of the boom cylinder 5 with respect to the boom 2 in each posture arbitrarily determined as described above, and averages the calculated weights.
- the attitude detection means detects the angle at which the boom 2 is rotated and the boom angle sensor 8 that detects the angle at which the boom 2 is rotated, and the angle at which the arm 3 is rotated.
- the posture detection means is not limited to this, and the posture detection means includes the angle sensors 8, 9 and 10.
- each cylinder includes a stroke sensor that detects the length of expansion and contraction of each cylinder, the length of each cylinder detected by this stroke sensor, and a predetermined boom 2, arm 3, and Based on the dimension data of the magnet 4, the posture taken by the front work machine 1 may be determined.
- the pressure detecting means detects a bottom pressure cylinder chamber pressure in the boom cylinder 5 and a rod side cylinder pressure in the boom cylinder 5.
- the pressure detecting means may include a bottom pressure sensor that detects a cylinder pressure on the bottom side of the arm cylinder 6 and an arm cylinder 6.
- a rod pressure sensor that detects the cylinder chamber pressure on the rod side may be used, and instead of driving the boom 2 to extend and retract, the arm 3 may be driven to extend and retract to measure the weight of scrap.
- the pressure detection means includes, for example, a bottom pressure sensor that detects a bottom cylinder pressure in the bucket cylinder 7 and a rod pressure sensor that detects a rod cylinder pressure in the bucket cylinder 7.
- the magnet 4 may be expanded and contracted to measure the weight of the scrap.
- the cylinder speed detecting means has been described as including the boom angular speed sensor 13 that detects the angular speed at which the boom 2 rotates in the vertical direction.
- the cylinder speed detecting means may calculate the driving speed of the boom cylinder 5 from the time change of the angle detected by the boom angle sensor 8, for example, instead of the boom angular speed sensor 13.
- the calculated drive speed of the boom cylinder 5 is less accurate than when calculated by the boom angular velocity sensor 13, but the number of necessary sensors can be reduced, so that the system can be simplified. .
- the cylinder speed detection means includes a stroke sensor that is provided in, for example, the boom cylinder 5 instead of the boom angular speed sensor 13 and detects the length by which the boom cylinder 5 expands and contracts, and the length of time detected by the stroke sensor.
- the drive speed of the boom cylinder 5 may be calculated from the change. In this case, the calculated drive speed of the boom cylinder 5 is less accurate than when calculated by the boom angular velocity sensor 13, but the stroke sensor can be used instead of the boom angle sensor 8 as posture detecting means. Since the number of necessary sensors can be reduced, the system can be simplified.
- the cylinder speed detecting means includes, for example, the boom 2 instead of the boom angular speed sensor 13 and includes an acceleration sensor that detects the acceleration of the boom 2. The driving speed of the boom cylinder 5 is determined from the acceleration detected by the acceleration sensor. You may make it calculate.
- the measurement command means has been described to output a scrap weight measurement command when the release switch 23 is pressed.
- the measurement command means is not limited to this, and may be provided separately from the release switch 23 and may include a switch that outputs a command for measuring the weight of scrap when pressed. Thereby, measurement of the weight of scrap and release of scrap can be performed separately.
- the cylinder drive means 22 drives the boom cylinder 5 to shorten in step S4 after driving the boom cylinder 5 to extend in step S2.
- the present invention is not limited to this case, and the cylinder driving means 22 may drive the boom cylinder 5 to extend after the boom cylinder 5 has been shortened. Therefore, depending on the environment in which the front work machine 1 is placed when measuring the weight of scrap, the cylinder driving means 22 changes the order in which the boom cylinder 5 is extended and retracted so that the front work machine 1 does not contact the surrounding obstacles. Can be replaced.
- the attachment is composed of the magnet 4 that grips and carries the scrap.
- the attachment is not limited to this case, and the attachment is, for example, a bucket or fork that carries earth and sand. It may consist of grapples and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Component Parts Of Construction Machinery (AREA)
- Operation Control Of Excavators (AREA)
Abstract
Provided is a load measurement device for a hydraulic shovel. The load measurement device enables the accurate ascertaining of the weight of a load carried by the attachment of a front work machine.
A load measurement device is provided with: a cylinder drive means (22) for extending and retracting a boom cylinder (5) at a given speed on the basis of a drive speed detected by a cylinder speed detection means; pressure sensors (11, 12) for detecting pressures on the bottom side and rod side of the boom cylinder (5); a supporting force calculation means (31) for calculating, on the basis of the detected pressures, a supporting force with which the boom cylinder (5) supports a boom; an attitude detection means for detecting the attitude of a front work machine (1); and a load calculation means (32) for calculating the weight of scrap materials on the basis of the detected attitude and of the calculated supporting force. The supporting force calculation means (31) has a supporting force averaging means for averaging supporting forces when attitudes detected by the attitude detection means are the same in both cases when the boom cylinder (5) is extended and when the boom cylinder (5) is retracted.
Description
本発明は、フロント作業機が運搬する荷の重量を計測する油圧ショベルの荷重計測装置に関する。
The present invention relates to a load measuring device for a hydraulic excavator that measures the weight of a load carried by a front work machine.
一般的に、油圧ショベルはフロント作業機を備え、このフロント作業機は、油圧によって動作する油圧シリンダと、この油圧シリンダによって駆動する作業具と、この作業具に取付けられるアタッチメントとを含んでいる。そして、フロント作業機を操作する操作者が、フロント作業機のアタッチメントを動かして荷をある箇所から別の箇所へ移送する作業を行っている。
Generally, a hydraulic excavator includes a front working machine, and the front working machine includes a hydraulic cylinder that operates by hydraulic pressure, a working tool that is driven by the hydraulic cylinder, and an attachment that is attached to the working tool. And the operator who operates a front work machine is moving the attachment of a front work machine, and is performing the operation | work which transfers a load from one location to another location.
例えば、アタッチメントとしてバケットを使用した場合には、建設現場において掘削して堆積された土砂をバケットに入れて運搬したり、あるいはアタッチメントとしてマグネットを使用した場合には、スクラップ処理場において発生した金属スクラップをマグネットで吸着して運搬するようにしている。そして、これらの土砂や金属スクラップ等の荷はトラックの荷台に積み込まれ、目的地へ輸送される。
For example, when a bucket is used as an attachment, earth and sand that has been excavated and accumulated at the construction site is carried in the bucket, or when a magnet is used as an attachment, metal scrap generated at the scrap disposal site Is attracted by a magnet and transported. These loads such as earth and sand and metal scrap are loaded on a truck bed and transported to a destination.
ここで、公共の道路を走行するトラックには最大積載量が設定されているので、トラックが作業場所から公共の道路に出る前に備え付けの台貫場に移動してトラックの荷台の積載量を正確に計量することにより、荷台の積載量をトラックの最大積載量以下に抑える必要がある。
Here, since the maximum loading capacity is set for trucks traveling on public roads, the trucks move to the built-up platform before the trucks exit the public road from the work area, and the loading capacity of the truck bed is reduced. By accurately weighing, it is necessary to keep the loading capacity of the loading platform below the maximum loading capacity of the truck.
しかし、フロント作業機を操作する操作者は、積み込み作業時においてトラックに積み込まれた積載量を把握するために、トラックの荷台の積載物の外観から操作者自身の経験を基に判断しているので、荷台の積載量が最大積載量になるまで余裕があることも多く、トラックの輸送効率が低くなる虞があった。また、操作者がフロント作業機を操作して積み込み作業を行いながら、トラックの荷台に積み込んだ積載量を正確に把握できれば、作業場所からトラックを台貫場へ移動させなくても荷台に積み込む量を調整できるので、計量の手間を省くことができ、作業効率を向上させることができる。
However, the operator operating the front work machine makes a judgment based on the operator's own experience from the appearance of the load on the truck bed in order to grasp the load loaded on the truck during the loading operation. Therefore, there is often a margin until the loading capacity of the loading platform reaches the maximum loading capacity, and there is a possibility that the transportation efficiency of the truck is lowered. Also, if the operator can operate the front work machine to perform loading work and accurately grasp the load loaded on the truck bed, the amount loaded on the bed without moving the truck from the work place to the platform Can be adjusted, so that the labor of weighing can be saved and the working efficiency can be improved.
そこで、フロント作業機を操作しながら荷の重量を把握できる従来技術の1つとして、手動操作に応じて、荷の重量の計測を行うことを指令する計測指令信号を出力する計測指令手段と、この計測指令手段からの計測指令信号に連動し、ブームに作用する保持力、すなわちブームに対する支持力を算出するための演算が行われる前にブームシリンダのボトム側油室及びロッド側油室に対して交互に、ブームシリンダを伸縮させない程度の油圧を供給し、ブームシリンダを微小振動させるブームシリンダ微小振動手段とを備えた建設機械の荷重計測装置が提案されている(例えば、特許文献1参照)。
Therefore, as one of the prior arts that can grasp the weight of the load while operating the front work machine, a measurement command means for outputting a measurement command signal instructing to measure the weight of the load according to a manual operation, In conjunction with the measurement command signal from the measurement command means, before the calculation for calculating the holding force acting on the boom, i.e., the support force for the boom, is performed on the bottom side oil chamber and the rod side oil chamber of the boom cylinder. Alternatively, a load measuring device for a construction machine has been proposed that includes a boom cylinder micro-vibration means that alternately supplies a hydraulic pressure that does not cause the boom cylinder to expand and contract to slightly vibrate the boom cylinder (see, for example, Patent Document 1). .
この従来技術の建設機械の荷重計測装置は、ブームシリンダ微小振動手段によってブームシリンダを微小振動させることにより、ブームシリンダのシリンダチューブとピストンロッドとの間に生じる静止摩擦力の偏りを低減し、フロント作業機の先端部に作用する荷の重量の計測値が不安定になることを防いでいる。従って、操作者は荷をフロント作業機のアタッチメントでトラックの荷台に積み込む際に、従来技術の荷重計測装置を使用して荷の重量を計測し、その重量を合計することによって荷台に積み込まれた積載量を知ることができる。
This load measuring device for a construction machine according to the prior art reduces the bias of the static friction force generated between the cylinder tube of the boom cylinder and the piston rod by minutely vibrating the boom cylinder by the boom cylinder minute vibration means. The measurement value of the weight of the load acting on the tip of the work machine is prevented from becoming unstable. Therefore, when the operator loads the load on the truck bed with the attachment of the front work machine, the operator uses the load measuring device of the prior art to measure the weight of the load and sums the weights. You can know the loading capacity.
しかし、特許文献1に開示された従来技術の建設機械の荷重計測装置は、上述したようにフロント作業機の先端部に作用する荷の重量の計測において、ブームシリンダ微小振動手段でブームシリンダのシリンダチューブとピストンロッドとの間に生じる静止摩擦力を低減するようにしているが、この静止摩擦力自体を完全に排除することができず、また静止摩擦力の大きさを計測することもできないので、静止摩擦力によって荷の重量の計測に誤差が生じることが問題になっている。
However, as described above, the load measuring device for a construction machine disclosed in Patent Document 1 uses a boom cylinder micro-vibration means to measure the weight of a load acting on the front end of a front work machine. Although the static friction force generated between the tube and the piston rod is reduced, this static friction force itself cannot be completely eliminated, and the magnitude of the static friction force cannot be measured. The problem is that errors occur in the measurement of the weight of the load due to the static frictional force.
特に、トラックの荷台に積み込まれた積載量を計量する場合には、フロント作業機のアタッチメントで荷をトラックの荷台に積み込む度に従来技術の荷重計測装置で荷の重量を計測し、その重量を合計しているので、各計測において生じた誤差が積算されることになる。従って、荷の重量の計測を重ねる毎にトラックの荷台の積載量の計量に対して静止摩擦力による誤差も大きくなるので、操作者がアタッチメントで荷台に積み込んだ荷の重量と実際に荷台に積み込まれた積載量が合致しないことが懸念されている。このように、従来技術の建設機械の荷重計測装置は、フロント作業機のアタッチメントが運搬する荷の重量の計測精度が低く、トラックの荷台の積み込み作業において不都合が生じるので、荷の重量を正確に把握することができる装置が要望されている。
In particular, when weighing the load loaded on the truck bed, each time the load is loaded onto the truck bed with the attachment of the front work machine, the weight of the load is measured with a conventional load measuring device, and the weight is calculated. Since they are totaled, the errors generated in each measurement are integrated. Therefore, every time the weight of the load is measured, the error due to the static friction force increases with respect to the measurement of the load capacity of the truck bed, so the weight of the load loaded on the bed by the operator and the actual load on the bed There is a concern that the loaded capacity does not match. As described above, the load measuring device for the construction machine according to the prior art has low accuracy in measuring the weight of the load carried by the attachment of the front work machine, and causes inconvenience in the loading work of the truck bed. An apparatus capable of grasping is desired.
本発明は、このような従来技術の実情からなされたもので、その目的は、フロント作業機のアタッチメントが運搬する荷の重量を正確に把握することができる油圧ショベルの荷重計測装置を提供することにある。
The present invention has been made based on the actual situation of the prior art as described above, and an object thereof is to provide a load measuring device for a hydraulic excavator that can accurately grasp the weight of the load carried by the attachment of the front work machine. It is in.
上記の目的を達成するために、本発明の油圧ショベルの荷重計測装置は、フロント作業機を備えた油圧ショベルに設けられ、前記フロント作業機は、油圧によって動作する油圧シリンダと、この油圧シリンダによって駆動する作業具と、この作業具に取付けられるアタッチメントとを含み、前記アタッチメントを動作させて運搬する荷の重量を計測する油圧ショベルの荷重計測装置において、前記油圧シリンダの駆動速度を検出するシリンダ速度検出手段と、前記荷の重量の計測の開始を指令する計測指令手段と、この計測指令手段による指令を受けたとき、前記シリンダ速度検出手段によって検出される駆動速度に基づいて前記油圧シリンダを一定の速度で伸縮駆動させるシリンダ駆動手段と、前記油圧シリンダのボトム側及びロッド側に作用する圧力をそれぞれ検出する圧力検出手段と、この圧力検出手段によって検出された各圧力に基づいて、前記油圧シリンダの前記作業具に対する支持力を演算するシリンダ支持力演算手段と、前記フロント作業機の前記作業具を含む姿勢を検出する姿勢検出手段と、この姿勢検出手段によって検出された姿勢及び前記シリンダ支持力演算手段によって演算された支持力に基づいて、前記荷の重量を演算する荷重演算手段と、前記シリンダ支持力演算手段は、前記油圧シリンダが伸長駆動及び短縮駆動する双方の場合において前記姿勢検出手段によって検出される姿勢が同一のときの支持力を平均する支持力平均手段を有することを特徴としている。
In order to achieve the above object, a load measuring device for a hydraulic excavator according to the present invention is provided in a hydraulic excavator provided with a front working machine, and the front working machine includes a hydraulic cylinder operated by hydraulic pressure, and the hydraulic cylinder. Cylinder speed for detecting a driving speed of the hydraulic cylinder in a load measuring device of a hydraulic excavator, which includes a working tool to be driven and an attachment attached to the working tool, and measures the weight of a load carried by operating the attachment. Detection means, measurement command means for instructing start of measurement of the weight of the load, and the hydraulic cylinder is fixed based on the drive speed detected by the cylinder speed detection means when receiving a command from the measurement command means Cylinder driving means for extending and contracting at the speed of the hydraulic cylinder, bottom side and rod side of the hydraulic cylinder Pressure detecting means for detecting the acting pressure, cylinder supporting force calculating means for calculating a supporting force of the hydraulic cylinder with respect to the work implement based on each pressure detected by the pressure detecting means, and the front working machine A posture detecting means for detecting a posture including the work tool, and a load calculation for calculating the weight of the load based on the posture detected by the posture detecting means and the support force calculated by the cylinder support force calculating means. And the cylinder support force calculation means have a support force averaging means for averaging the support force when the posture detected by the posture detection means is the same in both cases where the hydraulic cylinder is driven to extend and shorten. It is characterized by that.
このように構成した本発明は、計測指令手段の指令によって荷の重量の計測が開始され、シリンダ駆動手段が油圧シリンダを一定の速度で伸縮駆動させ、圧力検出手段によって油圧シリンダのボトム側及びロッド側に作用する圧力が検出される。そして、シリンダ支持力演算手段は、検出されたこれらの圧力に基づいて、油圧シリンダの作業具に対する支持力を演算するので、この支持力には油圧シリンダのシリンダチューブとピストンロッドとの間に生じる摩擦力が含まれることになる。
In the present invention configured as described above, the measurement of the weight of the load is started by the command of the measurement command means, the cylinder drive means drives the hydraulic cylinder to extend and contract at a constant speed, and the pressure detection means causes the bottom side of the hydraulic cylinder and the rod to The pressure acting on the side is detected. The cylinder support force calculating means calculates the support force of the hydraulic cylinder with respect to the working tool based on these detected pressures, and this support force is generated between the cylinder tube and the piston rod of the hydraulic cylinder. Frictional force will be included.
ここで、油圧シリンダが伸長駆動するときの油圧シリンダの作業具に対する支持力に含まれる摩擦力の向きは、油圧シリンダが短縮駆動するときの油圧シリンダの作業具に対する支持力に含まれる摩擦力に対して逆方向になる。そのため、シリンダ支持力演算手段の支持力平均手段は、油圧シリンダが伸長駆動及び短縮駆動する双方の場合において姿勢検出手段によって検出される姿勢が同一のときの支持力を平均することにより、これらの各支持力に含まれる摩擦力を互いに打ち消すことができるので、演算された支持力において油圧シリンダのシリンダチューブとピストンロッドとの間に生じる摩擦力の影響を軽減することができる。
Here, the direction of the frictional force included in the supporting force of the hydraulic cylinder with respect to the working tool when the hydraulic cylinder is driven to extend is the frictional force included in the supporting force of the hydraulic cylinder with respect to the working tool when the hydraulic cylinder is driven to shorten. In the opposite direction. Therefore, the support force averaging means of the cylinder support force calculating means averages these support forces when the posture detected by the posture detection means is the same in both cases where the hydraulic cylinder is extended and shortened. Since the frictional forces included in the respective support forces can be canceled with each other, the influence of the friction force generated between the cylinder tube and the piston rod of the hydraulic cylinder can be reduced in the calculated support force.
従って、荷重演算手段は、姿勢検出手段によって検出された姿勢及びシリンダ支持力演算手段によって演算された支持力に基づいて、フロント作業機のアタッチメントが運搬する荷の重量を演算することにより、荷の重量の計測において油圧シリンダの内部で作用する摩擦力による計測誤差を抑えることができ、フロント作業機のアタッチメントが運搬する荷の重量を正確に把握することができる。
Therefore, the load calculation means calculates the weight of the load carried by the attachment of the front work machine based on the attitude detected by the attitude detection means and the support force calculated by the cylinder support force calculation means. Measurement error due to friction force acting inside the hydraulic cylinder in weight measurement can be suppressed, and the weight of the load carried by the attachment of the front work machine can be accurately grasped.
特に、フロント作業機を操作する操作者がアタッチメントで荷をトラックの荷台に運搬して積み込んだ後、荷台の積載量を計測する場合には、荷を荷台に積み込む度に荷重演算手段で荷の重量を計測し、その重量を合計することになるが、各計測の精度が向上しているので、操作者は荷台の積載量を的確に調整し易くなる。これにより、荷台の積載量が最大積載量になるまで荷を荷台に十分に積み込むことができるので、トラックの輸送効率を向上させることができる。
In particular, when an operator who operates the front work machine transports and loads a load on a truck bed with an attachment and measures the load on the bed, the load calculation means loads the load every time the load is loaded on the bed. The weight is measured and the weights are summed, but the accuracy of each measurement is improved, so that the operator can easily adjust the loading amount of the loading platform accurately. Thereby, since the load can be sufficiently loaded on the loading platform until the loading capacity of the loading platform reaches the maximum loading capacity, the transportation efficiency of the truck can be improved.
また、本発明に係る油圧ショベルの荷重計測装置は、前記発明において、前記シリンダ駆動手段は、前記姿勢検出手段によって検出される姿勢に基づいて、前記フロント作業機が前記計測指令手段によって前記荷の重量の計測の開始が指令された瞬間の姿勢に戻るように、前記油圧シリンダを所定の長さ伸縮駆動させることを特徴としている。
Further, in the load measuring device for a hydraulic excavator according to the present invention, in the above invention, the cylinder driving unit is configured such that the front work implement is moved by the measurement command unit based on the posture detected by the posture detecting unit. The hydraulic cylinder is driven to extend and contract by a predetermined length so as to return to the posture at the moment when the start of weight measurement is commanded.
このように構成した本発明は、計測指令手段によって荷の重量の計測が開始され、油圧シリンダが伸縮駆動してフロント作業機の姿勢が変化しても、シリンダ駆動手段による油圧シリンダの伸縮動作によってフロント作業機が荷の重量の計測が開始される前の姿勢に戻るので、操作者が荷の重量の計測前に行っていた作業に取り掛かり易くなり、操作者の作業への影響を軽減することができる。
In the present invention configured as described above, even when the measurement of the weight of the load is started by the measurement command means and the posture of the front work machine is changed by the expansion and contraction driving of the hydraulic cylinder, the expansion and contraction operation of the hydraulic cylinder by the cylinder driving means is performed. Since the front work machine returns to the posture before the load weight measurement is started, it is easy for the operator to start the work that was performed before the load weight measurement, and the influence on the operator's work is reduced. Can do.
また、本発明に係る油圧ショベルの荷重計測装置は、前記発明において、前記シリンダ駆動手段は、前記シリンダ速度検出手段によって検出される駆動速度に基づいて、前記油圧シリンダを伸長駆動可能な速度のうち最小の速度で動き出させることを特徴としている。このように構成すると、荷の重量の計測が開始される際に、油圧シリンダが急に伸縮することがないので、慣性力や粘性摩擦、圧力検出手段と油圧シリンダ間の圧力損失等の油圧シリンダの内部で作用する動摩擦力以外の要因が荷の重量の計測に与える影響を抑制することができる。
Also, the load measuring device for a hydraulic excavator according to the present invention is the above-described invention, wherein the cylinder driving means is based on a driving speed detected by the cylinder speed detecting means and is based on a driving speed capable of extending the hydraulic cylinder. It is characterized by moving at the minimum speed. With this configuration, since the hydraulic cylinder does not suddenly expand and contract when measurement of the weight of the load is started, the hydraulic cylinder such as inertia force, viscous friction, pressure loss between the pressure detection means and the hydraulic cylinder, etc. It is possible to suppress the influence of factors other than the dynamic friction force acting on the inside of the load on the measurement of the load weight.
また、本発明に係る油圧ショベルの荷重計測装置は、前記発明において、前記荷重演算手段は、前記シリンダ駆動手段が前記油圧シリンダを一定の速度で伸縮駆動させるときに前記姿勢検出手段によって検出される複数の姿勢に基づいて、前記荷の重量を複数回演算し、演算された各重量を平均することを特徴としている。
In the hydraulic shovel load measuring device according to the present invention, the load calculating means is detected by the posture detecting means when the cylinder driving means drives the hydraulic cylinder to extend and contract at a constant speed. Based on a plurality of postures, the weight of the load is calculated a plurality of times, and the calculated weights are averaged.
このように構成した本発明は、荷の重量の計測が開始され、油圧シリンダが伸縮駆動するときには、フロント作業機の姿勢が変化することに伴って圧力検出手段で検出される圧力も変化するので、フロント作業機がとる各姿勢に対してシリンダ支持力演算手段で演算される油圧シリンダの作業具に対する支持力が決定される。従って、荷重演算手段は、油圧シリンダが一定の速度で伸縮駆動するときの姿勢検出手段によって検出される複数の姿勢に基づいて、荷の重量を複数回演算し、演算された各重量を平均することにより、各演算結果のばらつきを抑えることができるので、荷の重量を精度良く計測することができる。これにより、各検出手段の検出値の誤差やシリンダ速度の微妙な変化に対し、荷の重量を安定的に計測することができる。
In the present invention configured as described above, when the measurement of the weight of the load is started and the hydraulic cylinder is driven to extend and contract, the pressure detected by the pressure detection means also changes as the attitude of the front work machine changes. The support force for the working tool of the hydraulic cylinder calculated by the cylinder support force calculating means is determined for each posture of the front work machine. Therefore, the load calculation means calculates the weight of the load a plurality of times based on the plurality of postures detected by the posture detection means when the hydraulic cylinder is driven to extend and contract at a constant speed, and averages the calculated weights. As a result, variations in the calculation results can be suppressed, so that the weight of the load can be accurately measured. As a result, the weight of the load can be stably measured against errors in detection values of the detection means and subtle changes in the cylinder speed.
本発明の油圧ショベルの荷重計測装置によれば、シリンダ支持力演算手段の支持力平均手段は、油圧シリンダが伸長駆動及び短縮駆動する双方の場合において姿勢検出手段で検出される姿勢が同一のときの支持力を平均することにより、これらの各支持力に含まれる摩擦力を互いに打ち消すことができる。従って、荷重演算手段は、姿勢検出手段で検出された姿勢及びシリンダ支持力演算手段で演算された支持力に基づいて、フロント作業機のアタッチメントが運搬する荷の重量を演算することにより、荷の重量の計測において油圧シリンダの内部で作用する摩擦力による計測誤差を抑えることができる。これにより、フロント作業機のアタッチメントが運搬する荷の重量を正確に把握することができ、従来よりも荷の重量の計測に対して高い信頼性を確保することができる。
According to the load measuring device of the hydraulic excavator of the present invention, the support force averaging means of the cylinder support force calculating means is when the posture detected by the posture detecting means is the same in both cases where the hydraulic cylinder is driven to extend and shorten. By averaging the supporting forces, the frictional forces included in these supporting forces can be canceled out from each other. Therefore, the load calculating means calculates the weight of the load carried by the attachment of the front work machine based on the attitude detected by the attitude detecting means and the supporting force calculated by the cylinder supporting force calculating means. Measurement errors due to frictional forces acting inside the hydraulic cylinder in weight measurement can be suppressed. Thereby, the weight of the load which the attachment of a front work machine conveys can be grasped | ascertained correctly, and high reliability can be ensured with respect to the measurement of the weight of a load conventionally.
以下、本発明に係る油圧ショベルの荷重計測装置を実施するための形態を図に基づいて説明する。
Hereinafter, an embodiment for implementing a load measuring device of a hydraulic excavator according to the present invention will be described with reference to the drawings.
[第1実施形態]
本発明に係る油圧ショベルの荷重計測装置の第1実施形態は、図1に示すように走行体20と、この走行体20の上側に配置され、旋回フレーム30aを有する旋回体30と、この旋回体30の前方に取り付けられて上下方向に回動するフロント作業機1とを備えている。 [First Embodiment]
As shown in FIG. 1, a first embodiment of a load measuring device for a hydraulic excavator according to the present invention includes a travelingbody 20, a revolving body 30 disposed on the upper side of the traveling body 20 and having a revolving frame 30 a, and the revolving structure. And a front work machine 1 that is attached to the front of the body 30 and rotates in the vertical direction.
本発明に係る油圧ショベルの荷重計測装置の第1実施形態は、図1に示すように走行体20と、この走行体20の上側に配置され、旋回フレーム30aを有する旋回体30と、この旋回体30の前方に取り付けられて上下方向に回動するフロント作業機1とを備えている。 [First Embodiment]
As shown in FIG. 1, a first embodiment of a load measuring device for a hydraulic excavator according to the present invention includes a traveling
旋回体30は、前方に配置され、フロント作業機1を操作する操作者が乗車するキャブ14と、後方に配置され、車体が傾倒しないように車体のバランスを保つカウンタウェイト19と、これらのキャブ14及びカウンタウェイト19との間には、図示しないエンジンを格納したエンジンルーム21と、このエンジンルーム21の上部に設けられた車体カバー18とを備えている。
The swivel body 30 is disposed in the front, the cab 14 on which an operator who operates the front work machine 1 gets on, the counter weight 19 which is disposed in the rear and maintains the balance of the vehicle body so that the vehicle body does not tilt, and these cabs. 14 and the counterweight 19 are provided with an engine room 21 in which an engine (not shown) is stored, and a vehicle body cover 18 provided on the upper part of the engine room 21.
さらに、旋回体30は、上述したように図示されないが、エンジンルーム21内のエンジンの近傍に配置され、エンジンにより駆動される油圧ポンプと、この油圧ポンプと配管を介して接続される作動油タンクと、この作動油タンクの近傍に配置され、燃料を貯蔵する燃料タンクとを有している。また、キャブ14は、フロント作業機1を操作する操作レバー15,16と、図示されないが、エンジンの動作やフロント作業機1の動作を制御するコントローラと、油圧ショベル1の動作に関する各種の情報を表示する表示装置、例えばモニタ17とを有している。
Further, as described above, the revolving body 30 is not shown in the figure, but is disposed in the vicinity of the engine in the engine room 21, and is driven by the engine, and a hydraulic oil tank connected to the hydraulic pump via a pipe. And a fuel tank that is disposed in the vicinity of the hydraulic oil tank and stores fuel. Further, the cab 14 includes operation levers 15 and 16 for operating the front work machine 1, a controller (not shown) for controlling the operation of the engine and the front work machine 1, and various types of information regarding the operation of the hydraulic excavator 1. A display device for display, for example, a monitor 17 is provided.
上述したフロント作業機1は、油圧によって動作する油圧シリンダと、この油圧シリンダによって駆動する作業具と、この作業具に取付けられるアタッチメントとを含んでいる。具体的には、フロント作業機1の作業具は、例えば基端が旋回体30に連結ピン2aを介して回動可能に取り付けられ、上下方向に回動するブーム2と、このブーム2の先端に連結ピン3aを介して回動可能に取り付けられたアーム3とから構成されている。また、アタッチメントは、例えばアーム3の先端に連結ピン4aを介して回動可能に取り付けられ、荷としてスクラップを把持して運搬するマグネット4から成っている。
The front working machine 1 described above includes a hydraulic cylinder that operates by hydraulic pressure, a working tool that is driven by the hydraulic cylinder, and an attachment that is attached to the working tool. Specifically, the work implement of the front work machine 1 includes, for example, a boom 2 that has a base end rotatably attached to the revolving body 30 via a connecting pin 2a, and rotates in the vertical direction, and a tip of the boom 2 And an arm 3 rotatably attached via a connecting pin 3a. The attachment is composed of, for example, a magnet 4 that is rotatably attached to the tip of the arm 3 via a connecting pin 4a and grips and carries scrap as a load.
そして、油圧シリンダは、例えば旋回体30とブーム2とを接続し、伸縮することによってブーム2を回動させるブームシリンダ5と、ブーム2の上側に配置されると共にブーム2とアーム3とを接続し、伸縮することによってアーム3を回動させるアームシリンダ6と、アーム3とマグネット4とを接続し、伸縮することによってマグネット4を回動させるバケットシリンダ7とから成っている。これらの各ブームシリンダ5、アームシリンダ6、及びバケットシリンダ7は、シリンダチューブ5a,6a,7aと、一端がシリンダチューブ5a,6a,7aに内包され、シリンダチューブ5a,6a,7aに摺接するピストンロッド5b,6b,7bとをそれぞれ含んでいる。
The hydraulic cylinder is, for example, connected to the revolving body 30 and the boom 2 and connected to the boom cylinder 5 that rotates the boom 2 by extending and contracting, and the boom 2 and the arm 3. The arm cylinder 6 rotates the arm 3 by expanding and contracting, and the bucket cylinder 7 connects the arm 3 and the magnet 4 and rotates the magnet 4 by expanding and contracting. Each of the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 includes cylinder tubes 5a, 6a and 7a and pistons which are included in the cylinder tubes 5a, 6a and 7a and slidably contact the cylinder tubes 5a, 6a and 7a. The rods 5b, 6b, and 7b are included.
これらのブームシリンダ5、アームシリンダ6、及びバケットシリンダ7は油圧ポンプに接続されており、油圧ポンプが作動油タンクから圧油を汲み上げてブームシリンダ5、アームシリンダ6、及びバケットシリンダ7へ吐出することにより、ピストンロッド5b,6b,7bがシリンダチューブ5a,6a,7aの外側へ押し出され、ブームシリンダ5、アームシリンダ6、及びバケットシリンダ7が伸長するようになっている。一方、油圧ポンプがブームシリンダ5、アームシリンダ6、及びバケットシリンダ7へ吐出された圧油を作動油タンクへ戻すことにより、ピストンロッド5b,6b,7bがシリンダチューブ5a,6a,7aの内側へ押し入れられ、ブームシリンダ5、アームシリンダ6、及びバケットシリンダ7が短縮するようになっている。
These boom cylinder 5, arm cylinder 6, and bucket cylinder 7 are connected to a hydraulic pump, and the hydraulic pump pumps up pressure oil from the hydraulic oil tank and discharges it to the boom cylinder 5, arm cylinder 6, and bucket cylinder 7. As a result, the piston rods 5b, 6b and 7b are pushed out of the cylinder tubes 5a, 6a and 7a, and the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 are extended. On the other hand, when the hydraulic pump returns the pressure oil discharged to the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 to the hydraulic oil tank, the piston rods 5b, 6b and 7b are moved to the inside of the cylinder tubes 5a, 6a and 7a. The boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7 are shortened by being pushed in.
本発明の第1実施形態は、アタッチメントとしてマグネット4が把持して運搬するスクラップの重量を計測する装置である。具体的には、本発明の第1実施形態は、図2に示すように油圧シリンダの駆動速度を検出するシリンダ速度検出手段と、後述するスクラップの重量の計測の開始を指令する計測指令手段と、この計測指令手段による指令を受けたとき、シリンダ速度検出手段によって検出される駆動速度に基づいて油圧シリンダを一定の速度で伸縮駆動させるシリンダ駆動手段22とを備えている。
1st Embodiment of this invention is an apparatus which measures the weight of the scrap which the magnet 4 hold | grips and conveys as an attachment. Specifically, as shown in FIG. 2, the first embodiment of the present invention includes a cylinder speed detecting means for detecting the driving speed of the hydraulic cylinder, and a measurement command means for instructing the start of scrap weight measurement to be described later. And a cylinder driving means 22 for extending and retracting the hydraulic cylinder at a constant speed based on the driving speed detected by the cylinder speed detecting means when receiving a command from the measurement command means.
上述したシリンダ速度検出手段は、例えばブーム2の両端のうち旋回体30側の一端の結合ピン2a、すなわちブーム2の回動中心に設けられ、ブーム2が上下方向に回動する角速度を検出するブーム角速度センサ13を含んでいる。また、キャブ14は、操作レバー15,16に設けられ、押下することによってマグネット4が把持したスクラップを釈放する釈放スイッチ23を有しており、上述した計測指令手段は、例えば釈放スイッチ23が押下されたときにスクラップの重量の計測の指令が出力されるようになっている。
The cylinder speed detecting means described above is provided at, for example, the coupling pin 2a at one end of the revolving body 30 side of the both ends of the boom 2, that is, the rotation center of the boom 2, and detects the angular speed at which the boom 2 rotates in the vertical direction. A boom angular velocity sensor 13 is included. The cab 14 is provided on the operation levers 15 and 16 and has a release switch 23 for releasing the scrap held by the magnet 4 when pressed, and the measurement command means described above is pressed by the release switch 23, for example. When this is done, a scrap weight measurement command is output.
さらに、シリンダ駆動手段22は、例えば電気的な信号によって開閉する電磁弁24と、コントローラに格納され、操作レバー15,16の操作に応じて電磁弁24を制御する電磁弁制御部25とから構成されている。また、旋回体30は、電磁弁24に接続された信号制御弁26と、この信号制御弁26から信号を受信し、ブームシリンダ5、アームシリンダ6、及びバケットシリンダ7へ供給する圧油を切替えるコントロールバルブ27とを有している。
Furthermore, the cylinder drive means 22 is comprised from the solenoid valve 24 which opens and closes by an electrical signal, for example, and the solenoid valve control part 25 which is stored in a controller and controls the solenoid valve 24 according to operation of the operation levers 15 and 16. Has been. Further, the swing body 30 receives a signal control valve 26 connected to the electromagnetic valve 24 and a signal from the signal control valve 26, and switches the pressure oil supplied to the boom cylinder 5, the arm cylinder 6 and the bucket cylinder 7. And a control valve 27.
すなわち、電磁弁24は、油圧ポンプと操作レバー15,16から信号制御弁26へ伸びる油圧ラインとの間に配置され、電磁弁制御部25からの指令を受けて開閉動作を繰り返すようになっている。この電磁弁制御部25は、例えばブーム角速度センサ13によって検出されるブームシリンダ5の駆動速度を監視し、ブームシリンダ5の駆動速度がブームシリンダ5を駆動するのに必要な最低限の速度で一定になるように電磁弁24の開閉動作を制御するようにしている。
That is, the solenoid valve 24 is disposed between the hydraulic pump and the hydraulic line extending from the operation levers 15 and 16 to the signal control valve 26, and receives an instruction from the solenoid valve control unit 25 to repeat the opening / closing operation. Yes. The solenoid valve control unit 25 monitors the drive speed of the boom cylinder 5 detected by, for example, the boom angular speed sensor 13, and the drive speed of the boom cylinder 5 is constant at the minimum speed necessary for driving the boom cylinder 5. Thus, the opening / closing operation of the electromagnetic valve 24 is controlled.
本発明の第1実施形態は、油圧シリンダのボトム側及びロッド側に作用する圧力をそれぞれ検出する圧力検出手段と、この圧力検出手段によって検出された各圧力に基づいて、油圧シリンダの作業具に対する支持力を演算するシリンダ支持力演算手段31と、フロント作業機1のブーム2及びアーム3を含む姿勢を検出する姿勢検出手段と、この姿勢検出手段によって検出された姿勢及びシリンダ支持力演算手段31によって演算された支持力に基づいて、スクラップの重量を演算する荷重演算手段32とを備えている。本発明の第1実施形態では、これらのシリンダ支持力演算手段31及び荷重演算手段32は例えばコントローラに格納されている。
In the first embodiment of the present invention, pressure detecting means for detecting pressures acting on the bottom side and the rod side of the hydraulic cylinder, respectively, and a hydraulic cylinder working tool based on each pressure detected by the pressure detecting means. Cylinder support force calculation means 31 for calculating the support force, attitude detection means for detecting the attitude of the front work machine 1 including the boom 2 and the arm 3, and the attitude and cylinder support force calculation means 31 detected by the attitude detection means. Load calculating means 32 for calculating the weight of the scrap based on the support force calculated by. In the first embodiment of the present invention, the cylinder support force calculating means 31 and the load calculating means 32 are stored in, for example, a controller.
姿勢検出手段は、例えばブーム2の両端のうち旋回体30側の一端の結合ピン2a、すなわちブーム2の回動中心に設けられ、ブーム2が上下方向に回動した角度を検出するブーム角度センサ8と、アーム3の両端のうちブーム2側の一端の結合ピン3a、すなわちアーム3の回動中心に設けられ、アーム3が回動した角度を検出するアーム角度センサ9と、マグネット4の結合ピン4a、すなわちマグネット4の回動中心に設けられ、マグネット4が回動した角度を検出するアタッチメント角度センサ10とを含んでいる。従って、姿勢検出手段は、これらのブーム角度センサ8、アーム角度センサ9、及びアタッチメント角度センサ10によって検出された各角度、及び予め定められているブーム2、アーム3、及びマグネット4の寸法データに基づいて、フロント作業機1がとっている姿勢を決定するようにしている。
The posture detection means is, for example, a connecting pin 2a at one end on the revolving body 30 side of both ends of the boom 2, that is, a boom angle sensor that detects the angle at which the boom 2 is rotated in the vertical direction. 8 and a coupling pin 3a at one end on the boom 2 side of both ends of the arm 3, that is, an arm angle sensor 9 provided at the rotation center of the arm 3 and detecting the angle at which the arm 3 is rotated, and the magnet 4 It includes an attachment angle sensor 10 that is provided at the center of rotation of the pin 4a, that is, the magnet 4 and detects an angle at which the magnet 4 is rotated. Therefore, the posture detection means uses the angles detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10, and the predetermined dimension data of the boom 2, arm 3, and magnet 4. Based on this, the posture of the front work machine 1 is determined.
上述した圧力検出手段は、例えばブームシリンダ5におけるボトム側のシリンダ室内圧力を検出するボトム圧力センサ11と、ブームシリンダ5におけるロッド側のシリンダ室内圧力を検出するロッド圧力センサ12とから構成されている。従って、シリンダ支持力演算手段31は、これらのボトム圧力センサ11及びロッド圧力センサ12によって検出されたボトム側及びロッド側のシリンダ室内圧力に基づいて、ブームリンダ5のブーム2に対する支持力を演算するようにしている。
The pressure detection means described above includes, for example, a bottom pressure sensor 11 that detects a bottom cylinder pressure in the boom cylinder 5 and a rod pressure sensor 12 that detects a rod side cylinder chamber pressure in the boom cylinder 5. . Accordingly, the cylinder support force calculating means 31 calculates the support force of the boom linder 5 with respect to the boom 2 based on the bottom side and rod side cylinder chamber pressures detected by the bottom pressure sensor 11 and the rod pressure sensor 12. I am doing so.
シリンダ支持力演算手段31は、例えばブームシリンダ5が伸長駆動及び短縮駆動する双方の場合において姿勢検出手段によって検出される姿勢が同一のときの支持力を平均する図示しない支持力平均手段を有している。また、本発明の第1実施形態では、シリンダ駆動手段22は、例えばブーム角度センサ8によって検出された角度に基づいて、フロント作業機1が釈放スイッチ23によってスクラップの重量の計測の開始が指令された瞬間の姿勢に戻るように、ブームシリンダ5を所定の長さ伸縮駆動させるようにしている。さらに、本発明の第1実施形態では、シリンダ駆動手段22は、例えばブーム角速度センサ13によって検出されるブームシリンダ5の駆動速度に基づいて、ブームシリンダ5を伸長駆動可能な速度のうち最小の速度で動き出させるようにしている。
The cylinder support force calculating means 31 includes a support force averaging means (not shown) that averages the support force when the posture detected by the posture detection means is the same in both cases where the boom cylinder 5 is driven to extend and shorten. ing. Further, in the first embodiment of the present invention, the cylinder driving means 22 is instructed to start the measurement of the weight of the scrap by the front work machine 1 by the release switch 23 based on the angle detected by the boom angle sensor 8, for example. The boom cylinder 5 is driven to extend and contract by a predetermined length so as to return to the posture at the moment. Furthermore, in the first embodiment of the present invention, the cylinder driving means 22 is the minimum speed among the speeds at which the boom cylinder 5 can be driven to extend based on the driving speed of the boom cylinder 5 detected by the boom angular speed sensor 13, for example. I'm trying to make it start moving.
ここで、シリンダ支持力演算手段31によるブームリンダ5のブーム2に対する支持力の演算について詳細に説明する。
Here, the calculation of the support force of the boom Linder 5 with respect to the boom 2 by the cylinder support force calculating means 31 will be described in detail.
ブームシリンダ5が伸長駆動する場合において、ボトム圧力センサ11によって検出されるブームシリンダ5のボトム側の室内圧力をP1b、ロッド圧力センサ12によって検出されるロッド側の室内圧力をP1r、ボトム側の受圧面積をAb、ロッド側の受圧面積をAr、ブームシリンダ5のシリンダチューブ5aとピストンロッド5bとの間に働く動摩擦力R1すると、ブームシリンダ5のブーム2に対する支持力F1は、ブームシリンダ5の駆動速度が十分に低ければ式(1)で表される。なお、以下の式においてブームシリンダ5が伸長駆動するときの方向を正の向きに設定する。
When the boom cylinder 5 is driven to extend, the indoor pressure on the bottom side of the boom cylinder 5 detected by the bottom pressure sensor 11 is P 1b , the indoor pressure on the rod side detected by the rod pressure sensor 12 is P 1r , and the bottom side the pressure receiving area a b of the pressure receiving area a r of the rod side, whereupon kinetic friction force R 1 acts between the cylinder tube 5a and the piston rod 5b of the boom cylinder 5, the supporting force F 1 with respect to the boom 2 of the boom cylinder 5 If the drive speed of the boom cylinder 5 is sufficiently low, it is expressed by the equation (1). In the following expression, the direction when the boom cylinder 5 is driven to extend is set to a positive direction.
同様に、ブームシリンダ5が短縮駆動する場合において、ボトム圧力センサ11によって検出されるブームシリンダ5のボトム側の室内圧力をP2b、ロッド圧力センサ12によって検出されるロッド側の室内圧力をP2r、ブームシリンダ5のシリンダチューブ5aとピストンロッド5bとの間に働く動摩擦力R2すると、ブームシリンダ5のブーム2に対する支持力F2は、ブームシリンダ5の駆動速度が十分に低ければ式(2)で表される。
Similarly, when the boom cylinder 5 is driven to shorten, the indoor pressure on the bottom side of the boom cylinder 5 detected by the bottom pressure sensor 11 is P 2b , and the indoor pressure on the rod side detected by the rod pressure sensor 12 is P 2r. When the dynamic frictional force R 2 acting between the cylinder tube 5a of the boom cylinder 5 and the piston rod 5b is given, the supporting force F 2 of the boom cylinder 5 with respect to the boom 2 is given by the formula (2 ).
また、マグネット4がスクラップを吸着保持した状態でブームシリンダ5を伸縮駆動させるときのフロント作業機1の姿勢のうち1つを任意に定めると、ブームシリンダ5が伸長駆動及び短縮駆動する双方の場合においてフロント作業機1が定められた当該姿勢をとったときのブームシリンダ5のブーム2に対する支持力F1,F2は、ブームシリンダ5の駆動速度が十分に低ければ互いに等しくなり、式(3)で表される。
In addition, when one of the postures of the front work machine 1 when the boom cylinder 5 is driven to extend and retract while the magnet 4 attracts and holds scrap is arbitrarily determined, the boom cylinder 5 is both extended and shortened. The supporting forces F 1 and F 2 of the boom cylinder 5 with respect to the boom 2 when the front working machine 1 takes the determined posture in FIG. 3 are equal to each other if the driving speed of the boom cylinder 5 is sufficiently low. ).
このとき、ブームシリンダ5が伸長駆動及び短縮駆動する双方の場合においてブームシリンダ5のシリンダチューブ5aとピストンロッド5bとの間に働く動摩擦力R1,R2は互いに等しくなり、式(4)で表される。
At this time, the dynamic frictional forces R 1 and R 2 acting between the cylinder tube 5a and the piston rod 5b of the boom cylinder 5 in both cases where the boom cylinder 5 is extended and shortened are equal to each other. expressed.
従って、フロント支持力演算手段31の支持力平均手段は、式(1)、(2)の両辺を足し合わせ、式(4)を代入することにより、任意のフロント作業機1の姿勢におけるブームシリンダ5のブーム2に対する支持力Fは式(5)で表される。
Therefore, the support force averaging means of the front support force calculating means 31 adds the both sides of the equations (1) and (2) and substitutes the equation (4), so that the boom cylinder in any posture of the front work machine 1 can be obtained. The support force F with respect to the boom 2 of 5 is represented by Formula (5).
次に、荷重演算手段32によるスクラップの重量の演算を詳細に説明する。
Next, the calculation of the weight of the scrap by the load calculation means 32 will be described in detail.
図3に示すように、マグネット4に作用する力、すなわちマグネット4が把持したスクラップの重量をW、フロント作業機1のうちブームシリンダ5を除いた部分の自重をW1、ブーム2の回動中心とスクラップの重心との間の長さのうち水平方向成分の長さをl、ブーム2の回動中心からブームシリンダ5に対して引いた垂線の長さをh、ブーム2の回動中心と、フロント作業機1のうちブームシリンダ5を除いた部分の重心との間の長さのうち水平方向成分の長さをl1とすると、ブーム2の回動中心における力のモーメントは釣り合っているので、式(6)が成立する。
As shown in FIG. 3, the force acting on the magnet 4, that is, the weight of scrap gripped by the magnet 4 is W, the weight of the front work machine 1 excluding the boom cylinder 5 is W 1 , and the boom 2 is rotated. The length of the horizontal component of the length between the center and the center of gravity of the scrap is l, the length of the perpendicular drawn from the pivot center of the boom 2 to the boom cylinder 5 is h, and the pivot center of the boom 2 If, when the length of the horizontal component of the length between the center of gravity of the portion excluding the boom cylinder 5 of the front work device 1 and l 1, the moment of force at the center of rotation of the boom 2 is balanced Therefore, Formula (6) is materialized.
ここで、フロント作業機1のうちブームシリンダ5を除いた部分の自重W1は既知であり、ブーム2の回動中心とスクラップの重心との間の長さのうち水平方向成分の長さl、ブーム2の回動中心からブームシリンダ5に対して引いた垂線の長さh、ブーム2の回動中心とフロント作業機1のうちブームシリンダ5を除いた部分の重心との間の長さのうち水平方向成分の長さl1は、姿勢検出手段によって検出される検出結果、すなわちブーム角度センサ8、アーム角度センサ9、及びアタッチメント角度センサ10によって検出された各角度、及び予め定められているブーム2、アーム3、及びマグネット4の寸法データに基づいて演算される。
Here, the own weight W 1 of the portion excluding the boom cylinder 5 of the front operating mechanism 1 is known, the horizontal component of the length between the center of gravity of the rotational center and scrap boom 2 length l , The length h of the perpendicular drawn from the pivot center of the boom 2 to the boom cylinder 5, and the length between the pivot center of the boom 2 and the center of gravity of the portion of the front work machine 1 excluding the boom cylinder 5. the length l 1 of the horizontal component of the detection result detected by the posture detection means, i.e. the boom angle sensor 8, the arm angle sensor 9, and the angle detected by the attachment angle sensor 10, and predetermined It is calculated based on the dimension data of the boom 2, arm 3, and magnet 4.
従って、荷重演算手段32は、演算されたブームシリンダ5のブーム2に対する支持力F、フロント作業機1のうちブームシリンダ5を除いた部分の自重W1、ブーム2の回動中心とスクラップの重心との間の長さのうち水平方向成分の長さl、ブーム2の回動中心からブームシリンダ5に対して引いた垂線の長さh、ブーム2の回動中心とフロント作業機1のうちブームシリンダ5を除いた部分の重心との間の長さのうち水平方向成分の長さl1を式(7)に代入することにより、マグネット4が把持したスクラップの重量Wを演算するようにしている。
Therefore, the load calculating means 32, the supporting force F, self-weight W 1 of the portion excluding the boom cylinder 5 of the front work machine 1, the rotation center and scrap centroid of the boom 2 with respect to the boom 2 of the computed boom cylinder 5 Of the horizontal component, the length h of the perpendicular drawn from the pivot center of the boom 2 to the boom cylinder 5, the pivot center of the boom 2 and the front work machine 1 By substituting the length l 1 of the horizontal component of the length between the center of gravity of the portion excluding the boom cylinder 5 into the equation (7), the weight W of the scrap held by the magnet 4 is calculated. ing.
なお、荷重演算手段32によって演算されたスクラップの重量は、キャブ14内のモニタ17に表示されるようになっている。また、本発明の第1実施形態では、フロント作業機1を操作する操作者がマグネット4でスクラップをトラックの荷台に運搬して積み込んだ後、荷台の積載量を計測する場合には、スクラップを荷台に積み込む度に荷重演算手段32でスクラップの重量を計測し、その重量が自動的に合計されるようになっている。そして、この合計値、すなわち荷台の積載量がモニタ17に表示されるようになっている。
Note that the weight of the scrap calculated by the load calculating means 32 is displayed on the monitor 17 in the cab 14. Further, in the first embodiment of the present invention, when the operator who operates the front work machine 1 uses the magnet 4 to transport and load the scrap onto the truck bed, and then measures the load on the bed, the scrap is removed. The weight of the scrap is measured by the load calculating means 32 every time it is loaded on the loading platform, and the weight is automatically summed up. The total value, that is, the loading amount of the loading platform is displayed on the monitor 17.
次に、本発明の第1実施形態の動作を図4のフローチャートに基づいて説明する。
Next, the operation of the first embodiment of the present invention will be described based on the flowchart of FIG.
図4は本発明の第1実施形態の動作を説明するフローチャートである。
FIG. 4 is a flowchart for explaining the operation of the first embodiment of the present invention.
本発明の第1実施形態では、キャブ14内の操作者が操作レバー15,16を操作してマグネット4でスクラップを把持した後、操作レバー15,16の釈放スイッチ23を押下すると、スクラップの重量の計測の指令がコントローラへ出力され、スクラップの重量の計測が開始される(ステップ(以下、Sと記す)1)。
In the first embodiment of the present invention, when an operator in the cab 14 operates the operation levers 15 and 16 to grip the scrap with the magnet 4 and then presses the release switch 23 of the operation levers 15 and 16, the weight of the scrap The measurement command is output to the controller, and scrap weight measurement is started (step (hereinafter referred to as S) 1).
次に、シリンダ駆動手段22は、スクラップの重量の計測の指令を受けると、ブーム角速度センサ13によって検出されるブームシリンダ5の駆動速度に基づいてブームシリンダ5を設定された速度で所定の長さ伸長駆動させる(S2)。このとき、シリンダ支持力演算手段31は、ブームシリンダ5が伸長駆動する場合のブームシリンダ5のブーム2に対する支持力F1を式(1)によって演算する(S3)。
Next, when receiving a scrap weight measurement command, the cylinder driving means 22 sets the boom cylinder 5 at a predetermined length based on the driving speed of the boom cylinder 5 detected by the boom angular speed sensor 13. The extension is driven (S2). At this time, the cylinder supporting force calculating means 31, the supporting force F 1 with respect to the boom 2 of the boom cylinder 5 when the boom cylinder 5 is driven extended computing by the formula (1) (S3).
次に、手順S2においてブームシリンダ5が所定の長さ伸長駆動した後、シリンダ駆動手段22は、ブーム角速度センサ13によって検出されるブームシリンダ5の駆動速度に基づいてブームシリンダ5を設定された速度で短縮駆動させる(S4)。このとき、シリンダ支持力演算手段31は、ブームシリンダ5が短縮駆動する場合のブームシリンダ5のブーム2に対する支持力F2を式(2)によって演算する(S5)。また、手順S4においてブームシリンダ5が短縮駆動する際に、シリンダ駆動手段22は、ブーム角度センサ8によって検出された角度に基づいて、ブームシリンダ5を伸長駆動したときと同じ長さだけ短縮駆動させる(S6)。
Next, after the boom cylinder 5 is driven to extend a predetermined length in step S <b> 2, the cylinder drive unit 22 sets the boom cylinder 5 based on the boom cylinder 5 drive speed detected by the boom angular speed sensor 13. (S4). At this time, the cylinder supporting force calculating means 31, the supporting force F 2 with respect to the boom 2 of the boom cylinder 5 when the boom cylinder 5 is shortened driving computed by Equation (2) (S5). Further, when the boom cylinder 5 is driven to shorten in step S4, the cylinder driving means 22 drives the boom cylinder 5 to be shortened by the same length as when the boom cylinder 5 is driven to extend based on the angle detected by the boom angle sensor 8. (S6).
一方、手順S3及び手順S5においてシリンダ支持力演算手段31によってブームシリンダ5が伸長駆動及び短縮駆動する双方の場合のブームシリンダ5のブーム2に対する支持力F1,F2が演算されると、シリンダ支持力演算手段31の支持力平均手段は、ボトム圧力センサ11及びロッド圧力センサ12によって検出されたボトム側及びロッド側のシリンダ室内圧力P1b,P1r,P2b,P2rを用い、任意のフロント作業機1の姿勢におけるブームシリンダ5のブーム2に対する支持力Fを式(5)によって演算する(S7)。
On the other hand, when the support forces F 1 and F 2 of the boom cylinder 5 with respect to the boom 2 are calculated by the cylinder support force calculation means 31 in both steps S3 and S5 when the boom cylinder 5 is driven to extend and shorten. The support force averaging means of the support force calculating means 31 uses the bottom side and rod side cylinder chamber pressures P 1b , P 1r , P 2b , P 2r detected by the bottom pressure sensor 11 and the rod pressure sensor 12, and is arbitrary. The support force F of the boom cylinder 5 with respect to the boom 2 in the posture of the front work machine 1 is calculated by the equation (5) (S7).
次に、荷重演算手段32は、ブーム角度センサ8、アーム角度センサ9、及びアタッチメント角度センサ10によって検出された各角度、予め定められているブーム2、アーム3、及びマグネット4の寸法データを参照した上で、手順S7においてシリンダ支持力演算手段31によって演算された支持力Fを用いて、スクラップの重量を式(7)によって演算する(S8)。そして、荷重演算手段32によって演算されたスクラップの重量はモニタ17に表示され(S9)、本発明の第1実施形態の動作を終了する。
Next, the load calculation means 32 refers to each angle detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10, and predetermined dimension data of the boom 2, the arm 3, and the magnet 4. After that, the weight of the scrap is calculated by equation (7) using the support force F calculated by the cylinder support force calculating means 31 in step S7 (S8). The scrap weight calculated by the load calculating means 32 is displayed on the monitor 17 (S9), and the operation of the first embodiment of the present invention is terminated.
このように構成した本発明の第1実施形態によれば、手順S7においてシリンダ支持力演算手段31の支持力平均手段は、ブームシリンダ5が伸長駆動及び短縮駆動する双方の場合において姿勢検出手段によって検出される姿勢が同一のときの支持力を平均することにより、すなわちブームシリンダ5が伸長駆動及び短縮駆動する双方の場合においてフロント作業機1が任意に定められた1つの姿勢をとったときのブームシリンダ5のブーム2に対する支持力F1,F2を平均することにより、これらの各支持力F1,F2に含まれる動摩擦力R1,R2を式(5)において相殺することができるので、演算された支持力Fにおいてブームシリンダ5のシリンダチューブ5aとピストンロッド5bとの間に生じる摩擦力の影響を軽減することができる。
According to the first embodiment of the present invention thus configured, the support force averaging means of the cylinder support force calculating means 31 in step S7 is determined by the attitude detection means in both cases where the boom cylinder 5 is driven to extend and shorten. By averaging the supporting force when the detected posture is the same, that is, when the front working machine 1 takes one arbitrarily defined posture in both cases where the boom cylinder 5 is driven to extend and shorten. By averaging the support forces F 1 and F 2 of the boom cylinder 5 with respect to the boom 2, the dynamic friction forces R 1 and R 2 included in each of the support forces F 1 and F 2 can be canceled in the equation (5). Therefore, the influence of the friction force generated between the cylinder tube 5a and the piston rod 5b of the boom cylinder 5 in the calculated support force F can be reduced. It is possible.
従って、手順S8において荷重演算手段32は、ブーム角度センサ8、アーム角度センサ9、及びアタッチメント角度センサ10によって検出された各角度、予め定められているブーム2、アーム3、及びマグネット4の寸法データを参照した上で、シリンダ支持力演算手段31によって演算された支持力Fを用いて、スクラップの重量を式(7)によって演算することにより、スクラップの重量の計測においてブームシリンダ5の内部で作用する摩擦力による計測誤差を抑えることができる。これにより、フロント作業機1のマグネット4が運搬するスクラップの重量を正確に把握することができ、スクラップの重量の計測に対して高い信頼性を確保することができる。
Therefore, in step S8, the load calculating means 32 determines the angles detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10, the predetermined dimension data of the boom 2, the arm 3, and the magnet 4. , And using the support force F calculated by the cylinder support force calculating means 31 to calculate the scrap weight according to the equation (7), the scrap weight is measured inside the boom cylinder 5. Measurement error due to frictional force can be suppressed. Thereby, the weight of the scrap conveyed by the magnet 4 of the front work machine 1 can be accurately grasped, and high reliability can be secured for the measurement of the weight of the scrap.
特に、フロント作業機1を操作する操作者がマグネット4でスクラップをトラックの荷台に積み込んだ後、荷台の積載量を計測する場合に、スクラップを荷台に積み込む度に荷重演算手段32でスクラップの重量を計測し、その重量を合計することになるが、各計測の精度が向上しているので、操作者はモニタ17に表示されたスクラップの重量の合計値を見てトラックの荷台の積載量を的確に調整することができる。これにより、荷台の積載量が最大積載量になるまでスクラップを荷台に十分に積み込むことができるので、トラックの輸送効率を向上させることができる。
In particular, when the operator who operates the front work machine 1 loads the scrap onto the truck bed with the magnet 4 and measures the load on the truck bed, the load calculating means 32 loads the scrap weight each time the scrap is loaded onto the bed. However, since the accuracy of each measurement is improved, the operator sees the total weight of the scrap displayed on the monitor 17 and determines the loading capacity of the truck bed. It can be adjusted accurately. As a result, since the scrap can be sufficiently loaded on the loading platform until the loading capacity of the loading platform reaches the maximum loading capacity, the transportation efficiency of the truck can be improved.
また、本発明の第1実施形態は、手順S4においてブームシリンダ5が所定の長さ短縮駆動する際に、シリンダ駆動手段22は、ブーム角度センサ8によって検出された角度に基づいて、ブームシリンダ5を伸長駆動したときと同じ長さだけ短縮駆動させることにより、手順S1においてフロント作業機1がスクラップの重量の計測の開始が指令された瞬間の姿勢に戻るので、操作者がスクラップの重量の計測前に行っていた作業に取り掛かり易くなり、操作者の作業への影響を軽減することができる。
Further, according to the first embodiment of the present invention, when the boom cylinder 5 is driven to be shortened by a predetermined length in step S4, the cylinder driving means 22 is configured based on the angle detected by the boom angle sensor 8. Is driven to be shortened by the same length as when it is extended, the front working machine 1 returns to the posture at the moment when the start of scrap weight measurement is commanded in step S1, so that the operator can measure the scrap weight. It becomes easy to start the work that has been performed before, and the influence on the work of the operator can be reduced.
また、本発明の第1実施形態は、手順S2においてブームシリンダ5を伸長駆動させるとき、シリンダ駆動手段22は、ブーム角速度センサ13によって検出されるブームシリンダ5の駆動速度に基づいて、ブームシリンダ5を伸長駆動可能な速度のうち最小の速度で動き出させることにより、ブームシリンダ5が急に伸縮することがないので、慣性力や粘性摩擦、各圧力センサ11,12とブームシリンダ5間の圧力損失等のブームシリンダ5の内部で作用する動摩擦力以外の要因がスクラップの重量の計測に与える影響を抑制することができる。
In the first embodiment of the present invention, when the boom cylinder 5 is driven to extend in step S2, the cylinder drive means 22 is configured to use the boom cylinder 5 based on the drive speed of the boom cylinder 5 detected by the boom angular speed sensor 13. Since the boom cylinder 5 does not suddenly expand and contract by moving at a minimum speed among the speeds that can be driven to extend, inertia force, viscous friction, pressure between the pressure sensors 11 and 12 and the boom cylinder 5 can be reduced. The influence of factors other than the dynamic friction force acting inside the boom cylinder 5 such as loss on the measurement of scrap weight can be suppressed.
[第2実施形態]
本発明の第2実施形態が前述した第1実施形態と異なるのは、第1実施形態は、荷重演算手段32は、ブームシリンダ5が伸長駆動及び短縮駆動する双方の場合においてフロント作業機1が任意に定められた1つの姿勢をとったときのブームシリンダ5のブーム2に対する支持力を平均してスクラップの重量を演算したのに対して、第2実施形態は、荷重演算手段32は、シリンダ駆動手段22がブームシリンダ5を一定の速度で伸縮駆動させるときに姿勢検出手段によって検出される複数の姿勢に基づいて、スクラップの重量を複数回演算し、演算された各重量を平均してスクラップの重量を演算することである。 [Second Embodiment]
The second embodiment of the present invention differs from the first embodiment described above in that the load calculation means 32 is different from the first embodiment in that thefront work machine 1 is used in both cases where the boom cylinder 5 is driven to extend and shorten. Whereas the weight of the scrap is calculated by averaging the support force of the boom cylinder 5 with respect to the boom 2 when one arbitrarily defined posture is taken, the load calculation means 32 is a cylinder in the second embodiment. Based on the plurality of postures detected by the posture detecting means when the drive means 22 drives the boom cylinder 5 to extend and contract at a constant speed, the weight of the scrap is calculated a plurality of times, and the calculated weights are averaged to generate the scrap. Is to calculate the weight.
本発明の第2実施形態が前述した第1実施形態と異なるのは、第1実施形態は、荷重演算手段32は、ブームシリンダ5が伸長駆動及び短縮駆動する双方の場合においてフロント作業機1が任意に定められた1つの姿勢をとったときのブームシリンダ5のブーム2に対する支持力を平均してスクラップの重量を演算したのに対して、第2実施形態は、荷重演算手段32は、シリンダ駆動手段22がブームシリンダ5を一定の速度で伸縮駆動させるときに姿勢検出手段によって検出される複数の姿勢に基づいて、スクラップの重量を複数回演算し、演算された各重量を平均してスクラップの重量を演算することである。 [Second Embodiment]
The second embodiment of the present invention differs from the first embodiment described above in that the load calculation means 32 is different from the first embodiment in that the
この場合、例えばマグネット4がスクラップを吸着保持した状態でブームシリンダ5を伸縮駆動させるときのフロント作業機1の姿勢のうち複数の姿勢を任意に定めると、シリンダ支持力演算手段31は、フロント作業機1が定められた各姿勢をとったときのブームシリンダ5のブーム2に対する支持力を式(5)からそれぞれ演算する。荷重演算手段32は、定められたこれらの各姿勢におけるブーム角度センサ8、アーム角度センサ9、及びアタッチメント角度センサ10によって検出された各角度、予め定められているブーム2、アーム3、及びマグネット4の各寸法データを参照した上で、シリンダ支持力演算手段31によって演算された各支持力Fを用いて、スクラップの重量を式(7)からそれぞれ演算する。そして、荷重演算手段32は、演算された各重量を平均し、この結果を最終的なスクラップの重量としている。
In this case, for example, if a plurality of postures among the postures of the front working machine 1 when the boom 4 is driven to extend and contract while the magnet 4 attracts and holds scrap are arbitrarily determined, the cylinder support force calculating means 31 can The support force of the boom cylinder 5 with respect to the boom 2 when the machine 1 takes each predetermined posture is calculated from the equation (5). The load calculating means 32 is configured to detect the angles detected by the boom angle sensor 8, the arm angle sensor 9, and the attachment angle sensor 10 in each of these predetermined postures, the predetermined boom 2, arm 3, and magnet 4. The weight of scrap is calculated from the equation (7) using each supporting force F calculated by the cylinder supporting force calculating means 31. Then, the load calculating means 32 averages the calculated weights, and uses the result as the final scrap weight.
このように構成した本発明の第2実施形態によれば、上述した第1実施形態と同様の効果が得られる他、手順S2及び手順S4においてブームシリンダ5が伸縮駆動するときには、フロント作業機1の姿勢が変化することに伴ってボトム圧力センサ11及びロッド圧力センサ12で検出される圧力も変化するので、フロント作業機1がとる任意に定められた複数の姿勢に対してシリンダ支持力演算手段31で演算されるブームシリンダ5のブーム2に対する支持力がそれぞれ決定される。そのため、荷重演算手段32は、上述したように任意に定められた各姿勢におけるブームシリンダ5のブーム2に対する支持力に応じて、スクラップの重量を複数回演算し、演算された各重量を平均することにより、各演算結果のばらつきを抑えることができるので、スクラップの重量を精度良く計測することができる。これにより、圧力センサ11,12等の各検出手段の検出値の誤差やブームシリンダ5の速度の微妙な変化に対し、スクラップの重量を安定的に計測することができる。
According to the second embodiment of the present invention configured as described above, the same effect as that of the first embodiment described above can be obtained, and when the boom cylinder 5 is extended and retracted in steps S2 and S4, the front work machine 1 is operated. Since the pressure detected by the bottom pressure sensor 11 and the rod pressure sensor 12 changes as the attitude of the front working machine 1 changes, the cylinder support force calculation means for a plurality of arbitrarily determined attitudes taken by the front work machine 1 The supporting force for the boom 2 of the boom cylinder 5 calculated at 31 is determined. Therefore, the load calculating means 32 calculates the weight of the scrap a plurality of times according to the support force of the boom cylinder 5 with respect to the boom 2 in each posture arbitrarily determined as described above, and averages the calculated weights. As a result, variations in the calculation results can be suppressed, so that the weight of the scrap can be accurately measured. Thereby, it is possible to stably measure the weight of the scrap with respect to an error in detection values of the detection means such as the pressure sensors 11 and 12 and a subtle change in the speed of the boom cylinder 5.
なお、上述した本発明の第1、第2実施形態では、姿勢検出手段は、ブーム2が上下方向に回動した角度を検出するブーム角度センサ8と、アーム3が回動した角度を検出するアーム角度センサ9と、マグネット4が回動した角度を検出するアタッチメント角度センサ10とを含んでいる場合について説明したが、この場合に限らず、姿勢検出手段は、角度センサ8,9,10の代わりに例えば各シリンダに設けられ、各シリンダが伸縮する長さを検出するストロークセンサを含み、このストロークセンサによって検出された各シリンダの長さ、及び予め定められているブーム2、アーム3、及びマグネット4の寸法データに基づいて、フロント作業機1がとっている姿勢を決定するようにしても良い。
In the first and second embodiments of the present invention described above, the attitude detection means detects the angle at which the boom 2 is rotated and the boom angle sensor 8 that detects the angle at which the boom 2 is rotated, and the angle at which the arm 3 is rotated. Although the case where the arm angle sensor 9 and the attachment angle sensor 10 that detects the angle by which the magnet 4 is rotated has been described has been described, the posture detection means is not limited to this, and the posture detection means includes the angle sensors 8, 9 and 10. Instead, for example, each cylinder includes a stroke sensor that detects the length of expansion and contraction of each cylinder, the length of each cylinder detected by this stroke sensor, and a predetermined boom 2, arm 3, and Based on the dimension data of the magnet 4, the posture taken by the front work machine 1 may be determined.
また、本発明の第1、第2実施形態では、圧力検出手段は、ブームシリンダ5におけるボトム側のシリンダ室内圧力を検出するボトム圧力センサ11と、ブームシリンダ5におけるロッド側のシリンダ室内圧力を検出するロッド圧力センサ12とから構成された場合について説明したが、この場合に限らず、圧力検出手段は、例えばアームシリンダ6におけるボトム側のシリンダ室内圧力を検出するボトム圧力センサと、アームシリンダ6におけるロッド側のシリンダ室内圧力を検出するロッド圧力センサとから構成され、ブーム2を伸縮駆動させる代わりにアーム3を伸縮駆動させてスクラップの重量を計測しても良い。あるいは、圧力検出手段は、例えばバケットシリンダ7におけるボトム側のシリンダ室内圧力を検出するボトム圧力センサと、バケットシリンダ7におけるロッド側のシリンダ室内圧力を検出するロッド圧力センサとから構成され、ブーム2を伸縮駆動させる代わりにマグネット4を伸縮駆動させてスクラップの重量を計測しても良い。
In the first and second embodiments of the present invention, the pressure detecting means detects a bottom pressure cylinder chamber pressure in the boom cylinder 5 and a rod side cylinder pressure in the boom cylinder 5. However, the present invention is not limited to this case. For example, the pressure detecting means may include a bottom pressure sensor that detects a cylinder pressure on the bottom side of the arm cylinder 6 and an arm cylinder 6. A rod pressure sensor that detects the cylinder chamber pressure on the rod side may be used, and instead of driving the boom 2 to extend and retract, the arm 3 may be driven to extend and retract to measure the weight of scrap. Alternatively, the pressure detection means includes, for example, a bottom pressure sensor that detects a bottom cylinder pressure in the bucket cylinder 7 and a rod pressure sensor that detects a rod cylinder pressure in the bucket cylinder 7. Instead of the expansion and contraction drive, the magnet 4 may be expanded and contracted to measure the weight of the scrap.
また、本発明の第1、第2実施形態では、シリンダ速度検出手段は、ブーム2が上下方向に回動する角速度を検出するブーム角速度センサ13を含む場合について説明したが、この場合に限らず、シリンダ速度検出手段は、このブーム角速度センサ13の代わりに例えばブーム角度センサ8によって検出された角度の時間変化からブームシリンダ5の駆動速度を演算するようにしても良い。この場合、演算されるブームシリンダ5の駆動速度は、ブーム角速度センサ13によって演算されるときよりも精度が低下するが、必要なセンサ数を減らすことができるので、システムを簡易化することができる。
In the first and second embodiments of the present invention, the cylinder speed detecting means has been described as including the boom angular speed sensor 13 that detects the angular speed at which the boom 2 rotates in the vertical direction. However, the present invention is not limited to this case. The cylinder speed detecting means may calculate the driving speed of the boom cylinder 5 from the time change of the angle detected by the boom angle sensor 8, for example, instead of the boom angular speed sensor 13. In this case, the calculated drive speed of the boom cylinder 5 is less accurate than when calculated by the boom angular velocity sensor 13, but the number of necessary sensors can be reduced, so that the system can be simplified. .
また、シリンダ速度検出手段は、ブーム角速度センサ13の代わりに例えばブームシリンダ5に設けられ、ブームシリンダ5が伸縮する長さを検出するストロークセンサを含み、このストロークセンサによって検出された長さの時間変化からブームシリンダ5の駆動速度を演算するようにしても良い。この場合、演算されるブームシリンダ5の駆動速度は、ブーム角速度センサ13によって演算されるときよりも精度が低下するが、ストロークセンサは姿勢検出手段としてブーム角度センサ8の代わりに用いることができ、必要なセンサ数を減らすことができるので、システムを簡易化することができる。さらに、シリンダ速度検出手段は、ブーム角速度センサ13の代わりに例えばブーム2に設けられ、ブーム2の加速度を検出する加速度センサを含み、この加速度センサによって検出された加速度からブームシリンダ5の駆動速度を演算するようにしても良い。
The cylinder speed detection means includes a stroke sensor that is provided in, for example, the boom cylinder 5 instead of the boom angular speed sensor 13 and detects the length by which the boom cylinder 5 expands and contracts, and the length of time detected by the stroke sensor. The drive speed of the boom cylinder 5 may be calculated from the change. In this case, the calculated drive speed of the boom cylinder 5 is less accurate than when calculated by the boom angular velocity sensor 13, but the stroke sensor can be used instead of the boom angle sensor 8 as posture detecting means. Since the number of necessary sensors can be reduced, the system can be simplified. Further, the cylinder speed detecting means includes, for example, the boom 2 instead of the boom angular speed sensor 13 and includes an acceleration sensor that detects the acceleration of the boom 2. The driving speed of the boom cylinder 5 is determined from the acceleration detected by the acceleration sensor. You may make it calculate.
また、本発明の第1、第2実施形態では、計測指令手段は、釈放スイッチ23が押下されたときにスクラップの重量の計測の指令が出力されるようにした場合について説明したが、この場合に限らず、計測指令手段は、釈放スイッチ23と別個に設けられ、押下することによってスクラップの重量の計測の指令が出力されるスイッチから成っても良い。これにより、スクラップの重量の計測とスクラップの釈放を分けて行うことができる。
In the first and second embodiments of the present invention, the measurement command means has been described to output a scrap weight measurement command when the release switch 23 is pressed. In this case, The measurement command means is not limited to this, and may be provided separately from the release switch 23 and may include a switch that outputs a command for measuring the weight of scrap when pressed. Thereby, measurement of the weight of scrap and release of scrap can be performed separately.
また、本発明の第1、第2実施形態では、図4に示すようにシリンダ駆動手段22は、手順S2においてブームシリンダ5を伸長駆動させた後、手順S4においてブームシリンダ5を短縮駆動させた場合について説明したが、この場合に限らず、シリンダ駆動手段22は、ブームシリンダ5を短縮駆動させた後、ブームシリンダ5を伸長駆動させても良い。従って、スクラップの重量を計測する際にフロント作業機1が置かれる環境に応じて、シリンダ駆動手段22は、フロント作業機1が周辺の障害物に接触しないようにブームシリンダ5を伸縮させる順序を入れ替えることができる。
In the first and second embodiments of the present invention, as shown in FIG. 4, the cylinder drive means 22 drives the boom cylinder 5 to shorten in step S4 after driving the boom cylinder 5 to extend in step S2. Although the case has been described, the present invention is not limited to this case, and the cylinder driving means 22 may drive the boom cylinder 5 to extend after the boom cylinder 5 has been shortened. Therefore, depending on the environment in which the front work machine 1 is placed when measuring the weight of scrap, the cylinder driving means 22 changes the order in which the boom cylinder 5 is extended and retracted so that the front work machine 1 does not contact the surrounding obstacles. Can be replaced.
また、本発明の第1、第2実施形態では、アタッチメントはスクラップを把持して運搬するマグネット4から成る場合について説明したが、この場合に限らず、アタッチメントは例えば土砂等を運搬するバケットやフォークグラップル等から成っても良い。
Further, in the first and second embodiments of the present invention, the case has been described in which the attachment is composed of the magnet 4 that grips and carries the scrap. However, the attachment is not limited to this case, and the attachment is, for example, a bucket or fork that carries earth and sand. It may consist of grapples and the like.
1 フロント作業機
2 ブーム(作業具)
2a,3a,4a 連結ピン
3 アーム(作業具)
4 マグネット(アタッチメント)
5 ブームシリンダ
5a,6a,7a シリンダチューブ
5b,6b,7b ピストンロッド
6 アームシリンダ
7 バケットシリンダ
8 ブーム角度センサ
9 アーム角度センサ
10 アタッチメント角度センサ
11 ボトム圧力センサ
12 ロッド圧力センサ
13 ブーム角速度センサ(シリンダ速度検出手段)
15,16 操作レバー
17 モニタ(表示装置)
22 シリンダ駆動手段
23 釈放スイッチ(計測指令手段)
24 電磁弁
25 電磁弁制御部
26 信号制御弁
27 コントロールバルブ
30 旋回体
31 シリンダ支持力演算手段
32 荷重演算手段 1Front work machine 2 Boom (work implement)
2a, 3a,4a Connecting pin 3 Arm (working tool)
4 Magnet (attachment)
DESCRIPTION OFSYMBOLS 5 Boom cylinder 5a, 6a, 7a Cylinder tube 5b, 6b, 7b Piston rod 6 Arm cylinder 7 Bucket cylinder 8 Boom angle sensor 9 Arm angle sensor 10 Attachment angle sensor 11 Bottom pressure sensor 12 Rod pressure sensor 13 Boom angular velocity sensor (cylinder velocity) Detection means)
15, 16Operation lever 17 Monitor (display device)
22 Cylinder drive means 23 Release switch (measurement command means)
24Solenoid Valve 25 Solenoid Valve Control Unit 26 Signal Control Valve 27 Control Valve 30 Revolving Body 31 Cylinder Support Force Calculation Unit 32 Load Calculation Unit
2 ブーム(作業具)
2a,3a,4a 連結ピン
3 アーム(作業具)
4 マグネット(アタッチメント)
5 ブームシリンダ
5a,6a,7a シリンダチューブ
5b,6b,7b ピストンロッド
6 アームシリンダ
7 バケットシリンダ
8 ブーム角度センサ
9 アーム角度センサ
10 アタッチメント角度センサ
11 ボトム圧力センサ
12 ロッド圧力センサ
13 ブーム角速度センサ(シリンダ速度検出手段)
15,16 操作レバー
17 モニタ(表示装置)
22 シリンダ駆動手段
23 釈放スイッチ(計測指令手段)
24 電磁弁
25 電磁弁制御部
26 信号制御弁
27 コントロールバルブ
30 旋回体
31 シリンダ支持力演算手段
32 荷重演算手段 1
2a, 3a,
4 Magnet (attachment)
DESCRIPTION OF
15, 16
22 Cylinder drive means 23 Release switch (measurement command means)
24
Claims (4)
- フロント作業機を備えた油圧ショベルに設けられ、前記フロント作業機は、油圧によって動作する油圧シリンダと、この油圧シリンダによって駆動する作業具と、この作業具に取付けられるアタッチメントとを含み、前記アタッチメントを動作させて運搬する荷の重量を計測する油圧ショベルの荷重計測装置において、
前記油圧シリンダの駆動速度を検出するシリンダ速度検出手段と、
前記荷の重量の計測の開始を指令する計測指令手段と、
この計測指令手段による指令を受けたとき、前記シリンダ速度検出手段によって検出される駆動速度に基づいて前記油圧シリンダを一定の速度で伸縮駆動させるシリンダ駆動手段と、
前記油圧シリンダのボトム側及びロッド側に作用する圧力をそれぞれ検出する圧力検出手段と、
この圧力検出手段によって検出された各圧力に基づいて、前記油圧シリンダの前記作業具に対する支持力を演算するシリンダ支持力演算手段と、
前記フロント作業機の前記作業具を含む姿勢を検出する姿勢検出手段と、
この姿勢検出手段によって検出された姿勢及び前記シリンダ支持力演算手段によって演算された支持力に基づいて、前記荷の重量を演算する荷重演算手段と、
前記シリンダ支持力演算手段は、前記油圧シリンダが伸長駆動及び短縮駆動する双方の場合において前記姿勢検出手段によって検出される姿勢が同一のときの支持力を平均する支持力平均手段を有することを特徴とする油圧ショベルの荷重計測装置。 Provided in a hydraulic excavator provided with a front work machine, the front work machine includes a hydraulic cylinder that operates by hydraulic pressure, a work tool that is driven by the hydraulic cylinder, and an attachment that is attached to the work tool. In the load measuring device of a hydraulic excavator that measures the weight of the load that is operated and transported,
Cylinder speed detecting means for detecting a driving speed of the hydraulic cylinder;
Measurement command means for commanding the start of measurement of the weight of the load;
A cylinder driving means for driving the hydraulic cylinder to extend and contract at a constant speed based on the driving speed detected by the cylinder speed detecting means when receiving a command from the measurement command means;
Pressure detecting means for detecting pressure acting on the bottom side and the rod side of the hydraulic cylinder, and
Cylinder support force calculating means for calculating a support force of the hydraulic cylinder with respect to the work implement based on each pressure detected by the pressure detecting means;
Posture detecting means for detecting a posture of the front work machine including the work implement;
Load calculating means for calculating the weight of the load based on the attitude detected by the attitude detecting means and the supporting force calculated by the cylinder supporting force calculating means;
The cylinder support force calculating means includes support force averaging means for averaging the support force when the posture detected by the posture detecting means is the same in both cases where the hydraulic cylinder is driven to extend and shorten. Hydraulic excavator load measuring device. - 請求項1に記載の油圧ショベルの荷重計測装置において、
前記シリンダ駆動手段は、前記姿勢検出手段によって検出される姿勢に基づいて、前記フロント作業機が前記計測指令手段によって前記荷の重量の計測の開始が指令された瞬間の姿勢に戻るように、前記油圧シリンダを所定の長さ伸縮駆動させることを特徴とする油圧ショベルの荷重計測装置。 The load measuring device for a hydraulic excavator according to claim 1,
The cylinder driving unit is configured so that the front working machine returns to the instantaneous posture instructed to start the measurement of the weight of the load by the measurement command unit based on the posture detected by the posture detection unit. A hydraulic excavator load measuring device, wherein a hydraulic cylinder is extended and contracted by a predetermined length. - 請求項1又は2に記載の油圧ショベルの荷重計測装置において、
前記シリンダ駆動手段は、前記シリンダ速度検出手段によって検出される駆動速度に基づいて、前記油圧シリンダを伸長駆動可能な速度のうち最小の速度で動き出させることを特徴とする油圧ショベルの荷重計測装置。 In the load measuring device of the hydraulic excavator according to claim 1 or 2,
The cylinder drive means causes the hydraulic cylinder to start moving at a minimum speed among the speeds at which the hydraulic cylinder can be extended based on the drive speed detected by the cylinder speed detection means. . - 請求項1ないし3のいずれか1項に記載の油圧ショベルの荷重計測装置において、
前記荷重演算手段は、前記シリンダ駆動手段が前記油圧シリンダを一定の速度で伸縮駆動させるときに前記姿勢検出手段によって検出される複数の姿勢に基づいて、前記荷の重量を複数回演算し、演算された各重量を平均することを特徴とする油圧ショベルの荷重計測装置。 In the hydraulic excavator load measuring device according to any one of claims 1 to 3,
The load calculating means calculates the weight of the load a plurality of times based on a plurality of attitudes detected by the attitude detecting means when the cylinder driving means drives the hydraulic cylinder to extend and contract at a constant speed. A load measuring device for a hydraulic excavator, characterized by averaging each of the weights.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011272573A JP2013124461A (en) | 2011-12-13 | 2011-12-13 | Load measuring device of hydraulic shovel |
JP2011-272573 | 2011-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013088816A1 true WO2013088816A1 (en) | 2013-06-20 |
Family
ID=48612273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/075519 WO2013088816A1 (en) | 2011-12-13 | 2012-10-02 | Load measurement device for hydraulic shovel |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013124461A (en) |
WO (1) | WO2013088816A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069130A (en) * | 2014-09-29 | 2016-05-09 | コマツ道東株式会社 | Steel plate transfer apparatus |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103233493B (en) * | 2013-05-05 | 2015-08-26 | 吉林大学 | The monitoring of mine excavator digging force and automatic weighing system and method |
JP6887351B2 (en) | 2017-09-07 | 2021-06-16 | 日立建機株式会社 | Work machine load measurement system |
JP2021021263A (en) * | 2019-07-29 | 2021-02-18 | 住友重機械工業株式会社 | Work machine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098218A1 (en) * | 2005-03-15 | 2006-09-21 | Komatsu Ltd. | Device and method for measuring load weight on working machine |
JP2007197133A (en) * | 2006-01-25 | 2007-08-09 | Hitachi Constr Mach Co Ltd | Load measuring device for construction machine |
JP2008545599A (en) * | 2005-06-03 | 2008-12-18 | ヴィンタ ハンセン トーベン | Method for measuring weight of baggage carried by lifter of lifting device, and weighing device |
-
2011
- 2011-12-13 JP JP2011272573A patent/JP2013124461A/en active Pending
-
2012
- 2012-10-02 WO PCT/JP2012/075519 patent/WO2013088816A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006098218A1 (en) * | 2005-03-15 | 2006-09-21 | Komatsu Ltd. | Device and method for measuring load weight on working machine |
JP2008545599A (en) * | 2005-06-03 | 2008-12-18 | ヴィンタ ハンセン トーベン | Method for measuring weight of baggage carried by lifter of lifting device, and weighing device |
JP2007197133A (en) * | 2006-01-25 | 2007-08-09 | Hitachi Constr Mach Co Ltd | Load measuring device for construction machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016069130A (en) * | 2014-09-29 | 2016-05-09 | コマツ道東株式会社 | Steel plate transfer apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2013124461A (en) | 2013-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9091586B2 (en) | Payload determination system and method | |
JP2011505509A (en) | Load mass system with center of gravity compensation | |
US11236488B2 (en) | Work machine | |
CN104769188A (en) | Machine control system for a wheel loader comprising a grading blade | |
CN110392756A (en) | Work machine | |
WO2021111963A1 (en) | Work machine and control method for work machine | |
WO2013088816A1 (en) | Load measurement device for hydraulic shovel | |
WO2021124880A1 (en) | Work machine, measuring method, and system | |
CN114729518B (en) | Work machine, measurement method, and system | |
JP6645996B2 (en) | Work machine | |
JP7306201B2 (en) | working machine | |
WO2021065315A1 (en) | Work machine | |
JP7234891B2 (en) | working machine | |
WO2024219032A1 (en) | Work machine and cargo mass calculation method | |
WO2024219031A1 (en) | Work machine and load mass calculation method | |
JP7268577B2 (en) | working machine | |
EP4092201B1 (en) | Work machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12857320 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12857320 Country of ref document: EP Kind code of ref document: A1 |