Nothing Special   »   [go: up one dir, main page]

WO2013088462A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2013088462A1
WO2013088462A1 PCT/JP2011/006910 JP2011006910W WO2013088462A1 WO 2013088462 A1 WO2013088462 A1 WO 2013088462A1 JP 2011006910 W JP2011006910 W JP 2011006910W WO 2013088462 A1 WO2013088462 A1 WO 2013088462A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
cooler
air
compartment
freezer
Prior art date
Application number
PCT/JP2011/006910
Other languages
French (fr)
Japanese (ja)
Inventor
雄亮 田代
浩史 宮崎
拓也 児玉
足達 威則
活佳 藤沢
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013548947A priority Critical patent/JP5847198B2/en
Priority to CN201180074718.XA priority patent/CN103917837B/en
Priority to PCT/JP2011/006910 priority patent/WO2013088462A1/en
Priority to SG11201401031PA priority patent/SG11201401031PA/en
Publication of WO2013088462A1 publication Critical patent/WO2013088462A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the present invention relates to a refrigerator.
  • the present invention relates to a refrigerator that performs a cooling operation using a vapor compression refrigeration cycle.
  • the refrigerant circuit includes a cooler that cools the air in the refrigerator by using evaporation of the refrigerant.
  • the cooler is a heat exchanger having, for example, a plurality of heat transfer tubes through which the refrigerant passes and a plurality of plate-like fins for expanding the heat transfer area.
  • a refrigerator for reducing the number of defrosting has been proposed.
  • a cooling room is provided on the back of the freezer room and the vegetable room, and the cooler is arranged across the freezer room and the vegetable room, so that the air returning from the freezer room and the air returning from the freezer room flow to the cooler.
  • a refrigerator in which the entrance is divided has been proposed. By dividing the inlet, the cooler is uniformly frosted to prevent clogging of the cooler (see, for example, Patent Document 1).
  • a refrigeration and refrigeration cooler for cooling the refrigeration space and the refrigeration space exclusively, and a refrigeration and refrigeration fan for circulating air between each cooling space and each cooler were provided.
  • a refrigerator has been proposed. In this refrigerator, the thickness of the heat insulating layer outside the main body is reduced by arranging the coolers provided on the back of each space so that at least a part thereof overlaps in the front-rear direction (for example, patents) Reference 2).
  • an object is to obtain a highly efficient refrigerator by reducing costs and preventing clogging due to frost formation.
  • the present invention has been made to solve the above-described problem, and in a refrigerator having a refrigerator compartment and a freezer compartment, the refrigerant has a heat transfer tube through which refrigerant passes and a plurality of fins arranged so that air from the refrigerator compartment passes through.
  • the part to be operated is configured so that the fin pitch is wider and / or the number of fins is smaller than the part through which air from the freezer passes, and is located outside the refrigerator, and heat exchange with the refrigerant is performed to store the freezer and the refrigerator.
  • a cooler that cools air from the room, a circulation fan that circulates air between the room and the cooler, and a dedicated fan that sends the air cooled by the cooler to the refrigerator compartment.
  • the fin pitch in the part through which air from the refrigerator compartment passes is wide and / or the number of fins is small, the ventilation resistance due to frost formation on the refrigerator cooler can be reduced, Moreover, since the frequency
  • the air from the refrigerator compartment has a higher temperature than the air from the refrigerator compartment, the temperature difference from the outside air can be achieved by placing the part through which the air from the refrigerator compartment passes outside. The heat intrusion due to outside air can be reduced. For this reason, it becomes possible to improve cooling performance and to reduce power consumption. And by realizing with one cooler, it is possible to reduce the volume related to the cooler and increase the internal volume.
  • FIG. 1 shows the structure of the refrigerant circuit in a refrigerator. It is a figure which shows schematic structure of the evaporator 31 vicinity in the conventional refrigerator. It is a figure which shows the change of the temperature of the freezer compartment return air 37 when passing the evaporator 31.
  • FIG. It is a figure which shows the cooler 15 in Embodiment 1 of this invention. It is a figure which shows arrangement
  • FIG. 1 is a view for explaining the appearance and structure of a refrigerator according to Embodiment 1 of the present invention.
  • Fig.1 (a) is an external view seen from the door part 12 side (front side) of the refrigerator
  • FIG.1 (b) is sectional drawing for demonstrating the inside of a refrigerator.
  • the inside 11 can be sealed with the door 12 and the heat insulating wall 13 to insulate the outside (outside air) from the outside.
  • the refrigerator compartment 11 has a plurality of rooms.
  • a refrigerator compartment and a freezer compartment are provided.
  • the refrigerating room is a room for cooling (refrigerating) food or the like (an object to be cooled) with the room air at about 4 ° C., for example.
  • the freezing room is a room for cooling (freezing) foods and the like with room air at about ⁇ 18 ° C.
  • the refrigerator having the refrigerator compartment and the freezer compartment is described in FIG. 1, it is possible to achieve the effects described below also for the refrigerator having the vegetable compartment, the ice making compartment, and the like. .
  • the circulation fan 16 passes the air in the refrigerator 11 (freezer compartment, refrigerator compartment) through the cooler 15 and sends it to the refrigerator 11 again.
  • the dedicated fan 17 is a dedicated fan for the refrigerator compartment for sending the air cooled by the cooler 15 together with the circulation fan 16 to the refrigerator compartment.
  • the dedicated fan 17 shown in FIG. 1 is a dedicated fan for cooling the refrigerator compartment.
  • the dedicated fan 17 shown in FIG. 1 is a dedicated fan for cooling the refrigerator compartment.
  • rooms not only the refrigerator compartment but also, for example, above the freezer compartment. It can be used as a fan used to cool a room.
  • the refrigerator of the present embodiment uses a vapor compression refrigeration cycle, for example, performs a cooling operation so as to compensate for heat intrusion from outside air through opening and closing of the door 12 of the refrigerator and the heat insulating wall 13, The inside temperature in the 11 freezer compartments and the refrigerator compartment is maintained.
  • FIG. 2 is a diagram showing the configuration of the refrigerant circuit in the refrigerator of the present embodiment.
  • a compressor circuit, a piping group 21, an expansion means 22 and a cooler 15 are connected to form a refrigerant circuit.
  • isobutane is used as the refrigerant circulating in the refrigerant circuit.
  • the compressor 14 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state.
  • the piping group 21 is embedded in the heat insulating wall 13.
  • the piping group 21 functions as a condenser, and dissipates heat to the refrigerant so as to be condensed and liquefied.
  • the expansion means 22 expands the refrigerant that passes therethrough by reducing the pressure.
  • a capillary tube (capillary tube) or the like is used.
  • the cooler 15 evaporates the refrigerant by exchanging heat with the air 23.
  • the cooler 15 of the present embodiment is, for example, a fin tube type that includes a plurality of fins arranged in parallel so that plate-like surfaces are parallel to each other and heat transfer tubes that pass through the fins in the parallel arrangement direction. It is a heat exchanger. The refrigerant circulating in the refrigerant circuit passes through the heat transfer tube. The configuration of the cooler 15 will be further described later.
  • the air 23 flowing from the inside 11 is cooled by a single cooler 15, and the respective inside temperatures of the freezer compartment and the refrigerator compartment are maintained.
  • the air 23 is air that flows into the cooler 15 from the interior 11 (refrigeration room, freezing room) by driving the circulation fan 16 and the dedicated fan 17. After passing through the cooler 15, it is sent again to the interior 11 (refrigerated room, freezer room).
  • the air that flows from the refrigerator compartment hereinafter referred to as the refrigerator return air
  • the air that flows from the refrigerator compartment hereinafter referred to as the refrigerator return air
  • the refrigerator return air are different from each other in the cooler 15. It is assumed that the air path into which air flows from at least the interior 11 is divided so as to pass through the portion.
  • the compressor 14 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state.
  • the compressed refrigerant flows into the pipe group 21 and dissipates heat in the pipe group 21 to become a liquid refrigerant.
  • the liquid refrigerant flows into the expansion means 22 and is decompressed and expanded by the expansion means 22 to become a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant exchanges heat with the air 23 that has flowed from the interior 11 by the rotation of the circulation fan 16 and the dedicated fan 17. By the heat exchange in the cooler 15, the gas-liquid two-phase refrigerant absorbs heat from the air 23 and evaporates.
  • the compressor 14 sucks and discharges the refrigerant that has become gas.
  • the air inflow state (air temperature and humidity) is greatly different between the refrigerator return air and the freezer return air.
  • the refrigerator compartment has a set temperature of about 4 ° C.
  • the freezer compartment has a temperature of about ⁇ 18 ° C.
  • the refrigerator compartment has a larger volume than the freezer compartment, and the surface area increases accordingly, which increases the amount of heat intrusion from the outside air.
  • the refrigerator compartment has a larger number of times of opening and closing the door portion 12, and the amount of outside air intruding into the storage 11 is larger than that of the freezer compartment.
  • the contribution ratio of the refrigerator return air and the freezer return air in the moisture content of the air 23 flowing into the cooler 15 was calculated.
  • the refrigerator return air in the air 23 has a water content of 7 times or more that of the freezer return air. From this, it can be said that the main factor that the cooler 15 forms frost is the return air in the refrigerator compartment.
  • FIG. 3 is a diagram showing a schematic configuration near the evaporator 31 in a conventional refrigerator.
  • the evaporator 31 functions as a cooler.
  • the return air passage 32 becomes a wind passage for the return air 36 in the refrigerator compartment.
  • the defrosting heater 33 serves as a heating means for heating the cooler 15 when the evaporator 31 is defrosted.
  • the dew receiving tray 34 receives, for example, dew dropped from the cooler 15 when defrosting is performed.
  • the guide plate 35 guides the refrigerating room return air 36 and sends it out to the cooler 15 through the opening 35a.
  • the refrigerating room return air 36 is air flowing from the refrigerating room as described above.
  • the freezer return air 37 is air flowing from the freezer compartment.
  • FIG. 4 is a diagram showing a change in the temperature of the freezer return air 37 when passing through the cooler 15.
  • the temperature of the freezer return air 37 approaches the temperature of the evaporator 31 as it proceeds in the X direction shown in FIG. 4A (the direction toward the outlet from the cooler 15).
  • the freezer return air 37 has a temperature substantially equal to that of the evaporator 31 in the vicinity of the outlet from the evaporator 31.
  • the evaporator 31 outlet of the freezer return air 37 depends on the size of the evaporator 31 (distance passing through the evaporator 31). The temperature at is determined. If the sizes of the evaporators 31 are the same, when the freezer return air 37 is introduced from the middle of the cooler 15, the passage distance is reduced, so that the freezer return air 37 also has an outlet of the cooler 31. The temperature does not fall down and there is a possibility of insufficient cooling capacity.
  • FIG. 5 is a diagram showing the cooler 15 according to the first embodiment of the present invention.
  • Fig.5 (a) shows the perspective view of the cooler 15 in this Embodiment 1.
  • FIG. FIG. 5B shows a top view of the cooler 15, and
  • FIG. 5C shows a front view of the cooler 15 as viewed from the inside.
  • the cooler 15 of the present embodiment has a structure in which the fin pitch on the back side (outside of the box) viewed from the inside of the box is widened and a region in which the number of fins is reduced is provided. To do. Then, through this region, the return air having a high water content passes through to reduce clogging due to frost.
  • FIG.5 (a) shows the perspective view of the cooler 15 in this Embodiment 1.
  • FIG. 5B shows a top view of the cooler 15
  • FIG. 5C shows a front view of the cooler 15 as viewed from the inside.
  • the cooler 15 of the present embodiment has a structure in which the fin pitch on the back
  • both the fin pitch and the number of fins are changed, but it is possible to reduce clogging with only one of them (widening the fin pitch or reducing the number of fins). It is. Further, although not particularly limited, the ratio in the air path (volume) between the part with the wide fin pitch and the part with the fin pitch not widened is, for example, 1: 2 (the flow rate due to the return air in the refrigerator compartment is reduced). ).
  • the freezer return air and the refrigerating room return air pass through the cooler 15 so that the temperature related to the freezer return air can be lowered as much as possible. The same distance. This prevents a shortage of cooling capacity of the freezer return air.
  • the path (wind passage) through which the return air to the refrigerator compartment passes in the cooler 15 is formed in a region close to the outside of the warehouse, which is the back side when the refrigerator is viewed from the inside of the cabinet (front side). Like to do. The reason is to reduce the amount of heat penetration from the outside air. For example, as shown in FIG. 1, the cooler 15 and the outside air are insulated from each other through a heat insulation wall 13.
  • urethane foam and vacuum heat insulating material are used for the heat insulating wall 13.
  • Q the amount of heat penetration from the outside air.
  • A is an area
  • K is a heat transmission rate determined by the structure of the heat insulating wall 13
  • ⁇ T represents a temperature difference between the cooler 15 and the outside air.
  • Q A ⁇ K ⁇ ⁇ T (1)
  • the temperature difference ⁇ T it is desirable to reduce the temperature difference ⁇ T in order to reduce the amount of heat intruding into the interior 11 by the outside air. If the outside air is constant, the heat intrusion increases as the temperature of the cooler 15 increases. The amount can be reduced. As described above, in the refrigerated room return air and the freezer room return air, the freezer room return air is about 20 ° C. lower, and when the freezer room return air passes outside the warehouse, the temperature difference ⁇ T with the outside air becomes large. Therefore, in the present embodiment, in the cooler 15, the return air in the refrigerator compartment passes through the outside of the refrigerator.
  • the amount of heat penetration can be reduced by 45% by allowing the return air from the refrigerator compartment to pass through the outside of the cooler 15.
  • the freezer return air can be introduced into the region of the cooler 15 having a wide fin pitch so that the return air can flow into the refrigerator 15.
  • a damper may be provided on the side so that switching can be performed.
  • FIG. 6 is a diagram showing the arrangement of the cooler 15 in the first embodiment of the present invention.
  • Fig.6 (a) is a figure which shows arrangement
  • FIG.6 (b) is a figure which shows arrangement
  • the refrigerating room return port 18 is provided on the front surface of the cooler 15 perpendicular to the cooler 15, and flows into the back surface of the cooler 15 from the lower portion of the cooler 15.
  • the freezer return port (not shown) is provided upward from the lower portion of the cooler 15 and flows into the front surface of the cooler 15.
  • the fin pitch in the portion through which the return air for the refrigerator compartment passes is widened or the number of fins is reduced. Clogging due to frost can be reduced, and increase in ventilation resistance due to frost can be suppressed. Moreover, the temperature difference with external air can be made small and the amount of heat
  • FIG. FIG. 7 is a diagram showing a cooler 15 according to Embodiment 2 of the present invention.
  • the arrangement of the cooler 15 in the refrigerator is the same as that of the refrigerator of the first embodiment.
  • the cooler 15 in FIG. 7 has a defrost heater 61 that directly heats in contact with the cooler body. Further, a large number of defrosting heaters 61 are arranged in the cooler 15 in a portion close to the position where the refrigerating room return air, which is the main cause of frost formation, passes.
  • 7A is a perspective view of the cooler 15 according to the second embodiment
  • FIG. 7B is a top view of the cooler 15 according to the second embodiment
  • FIG. 7C is a cooler 15 according to the second embodiment. It is the figure seen from the surface side through which freezer compartment return air flows.
  • this cooler 15 as shown in FIG. 7B, a structure is provided in which a fin pitch is widened on the surface opposite to the surface on which the freezer return air flows, and a region in which the number of fins is reduced is provided. To do. Even in the cooler 15 of the present embodiment, it is possible to achieve the effect of reducing clogging due to frost only by increasing the fin pitch or reducing the number of fins.
  • the refrigerant circuit, and the like in the second embodiment are the same as those in the first embodiment, only the differences from the first embodiment will be described in the present embodiment.
  • FIG. 8 is a diagram showing the arrangement and the like of the defrost heater 61.
  • the defrost heater 61 which supplies heat to the cooler 15 from the outside is provided for a defrost. And it arrange
  • the amount of water contained in the return air from the refrigerator compartment is larger than the amount of water contained in the return air from the freezer compartment, so that the amount of frost on the fin is the portion through which the return air from the refrigerator compartment passes. Will increase. Therefore, a defrost heater 61 is provided so that the region through which the return air for the refrigerator compartment passes can be preferentially heated. For this reason, defrosting time can be shortened compared with the case where it arranges equally. Moreover, the rise in the internal temperature during defrosting can be suppressed by reducing the defrosting time. Therefore, a highly efficient refrigerator can be obtained.
  • the cooling performance of the refrigerator can be improved, and a highly efficient refrigerator can be obtained. Moreover, power consumption can be reduced by shortening the defrosting time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Defrosting Systems (AREA)

Abstract

A refrigerator having a refrigeration compartment and a freezer compartment, wherein the refrigerator is provided with: a cooler (15) for exchanging heat with a refrigerant to cool air from the refrigeration compartment and the freezer compartment, the cooler having a plurality of aligned fins and a heat transfer tube for conducting the refrigerant, and being configured so that a portion for conducting the air from the refrigeration compartment is positioned on the refrigerator exterior and has a wider fan pitch and/or smaller number of fins than a portion for conducting the air from the freezer compartment; a circulating fan (16) for circulating air between inside the compartments and the cooler; and a dedicated fan (17) for delivering the air that has been cooled by the cooler (15) to the refrigeration compartment.

Description

冷蔵庫refrigerator
 本発明は、冷蔵庫に関するものである。特に蒸気圧縮式冷凍サイクルを利用した冷却運転を行う冷蔵庫に関するものである。 The present invention relates to a refrigerator. In particular, the present invention relates to a refrigerator that performs a cooling operation using a vapor compression refrigeration cycle.
 従来、冷蔵庫において、例えば、蒸気圧縮式冷凍サイクルを利用して冷媒回路を構成し、冷蔵庫内の空気を循環させて食品等の被冷却物を冷却する冷蔵庫がある。冷媒回路においては、例えば、冷媒の蒸発を利用して、冷蔵庫内の空気を冷却する冷却器を有している。ここで、冷却器は、例えば冷媒が通過する複数の伝熱管と伝熱面積を拡大するための複数の板状のフィンとを有する熱交換器である。 Conventionally, in a refrigerator, for example, there is a refrigerator that configures a refrigerant circuit using a vapor compression refrigeration cycle and circulates air in the refrigerator to cool an object to be cooled such as food. For example, the refrigerant circuit includes a cooler that cools the air in the refrigerator by using evaporation of the refrigerant. Here, the cooler is a heat exchanger having, for example, a plurality of heat transfer tubes through which the refrigerant passes and a plurality of plate-like fins for expanding the heat transfer area.
 ここで、冷蔵庫の冷却器は、冷蔵庫内の空気を冷却する際、表面温度が-30℃近くまで低下する。このため、冷蔵庫内の空気に含まれる水蒸気が冷却器表面で霜となって付いてしまう(着霜してしまう)。霜が付くことで冷却器のフィンの間の空間が狭くなって目詰まり等が生じ、通風抵抗が増加する。このため、冷蔵庫の冷却性能が低下し、消費電力が増加するといった問題があった。そこで、冷蔵庫では冷却器の霜を除去するために、定期的に霜取り運転(除霜)を行う。霜取り運転中は除霜ヒータ等の余分な入力を必要とするため、回数が多くなるほど消費電力が増加するといった問題があった。 Here, when the refrigerator cooler cools the air in the refrigerator, the surface temperature decreases to near -30 ° C. For this reason, the water vapor | steam contained in the air in a refrigerator will become frost on the surface of a cooler (it will form frost). When the frost is formed, the space between the fins of the cooler is narrowed to cause clogging and the like, and the ventilation resistance is increased. For this reason, there existed a problem that the cooling performance of a refrigerator fell and power consumption increased. Therefore, in the refrigerator, in order to remove the frost from the cooler, a defrosting operation (defrosting) is periodically performed. During the defrosting operation, an extra input such as a defrosting heater is required, so that the power consumption increases as the number of times increases.
 これらの問題を解決するために除霜回数を減らすための冷蔵庫が提案等されている。例えば冷凍室と野菜室の背面に冷却室を設け、冷却器を冷凍室と野菜室にまたがって配設し、冷蔵室から戻ってくる空気と冷凍室から戻ってくる空気の冷却器への流入口を分割させるようにした冷蔵庫が提案されている。流入口を分割させることにより、冷却器に一様に霜が付くようにして、冷却器の目詰まりを防止する(例えば、特許文献1参照)。 In order to solve these problems, a refrigerator for reducing the number of defrosting has been proposed. For example, a cooling room is provided on the back of the freezer room and the vegetable room, and the cooler is arranged across the freezer room and the vegetable room, so that the air returning from the freezer room and the air returning from the freezer room flow to the cooler. A refrigerator in which the entrance is divided has been proposed. By dividing the inlet, the cooler is uniformly frosted to prevent clogging of the cooler (see, for example, Patent Document 1).
 また、冷蔵空間および冷凍空間をそれぞれ専用に冷却する冷凍用および冷蔵用の冷却器と各冷却空間と各冷却器との間で空気を循環させるための冷凍用および冷蔵用のファンとを設けた冷蔵庫が提案されている。この冷蔵庫では、各空間の背部に設けた冷却器を少なくともその一部が前後方向に重なり合うように近接して配置することで本体外の断熱層の厚みを減少させるようにしている(例えば、特許文献2参照)。 In addition, a refrigeration and refrigeration cooler for cooling the refrigeration space and the refrigeration space exclusively, and a refrigeration and refrigeration fan for circulating air between each cooling space and each cooler were provided. A refrigerator has been proposed. In this refrigerator, the thickness of the heat insulating layer outside the main body is reduced by arranging the coolers provided on the back of each space so that at least a part thereof overlaps in the front-rear direction (for example, patents) Reference 2).
特許第4375220号(第2図)Japanese Patent No. 4375220 (Fig. 2) 特許第4488966号(第2図)Japanese Patent No. 4488966 (Fig. 2)
 例えば、上記の特許文献1に記載している冷蔵庫では、冷却器への着霜を一様にすることは可能となる。ただ、冷凍室と野菜室との間に冷却器を設置し、冷凍室戻り風路を冷却器中央に設置することになる。このため、冷凍室から冷却器に戻った空気が冷却器内を通過する伝熱面積が減少してしまい、十分に冷却されないといった問題があった。 For example, in the refrigerator described in Patent Document 1 described above, it is possible to make the frost on the cooler uniform. However, a cooler is installed between the freezer compartment and the vegetable compartment, and the freezer return air path is installed in the center of the cooler. For this reason, there has been a problem that the heat transfer area through which the air returning from the freezer compartment to the cooler passes through the cooler is reduced, and is not sufficiently cooled.
 また、例えば特許文献2に記載している冷蔵庫では断熱層の厚みを減少させることは可能となる。ただ、冷蔵用と冷凍用の冷却器を有することになるので、冷蔵庫における風路の容積が増えることとなり、その分、庫内容積が減少する。また、コストが高くなるといった問題があった。 For example, in the refrigerator described in Patent Document 2, it is possible to reduce the thickness of the heat insulating layer. However, since the refrigerators for refrigeration and freezing are provided, the volume of the air passage in the refrigerator is increased, and the internal volume is reduced accordingly. In addition, there is a problem that the cost becomes high.
 そこで、コスト低減をはかりつつ、着霜による目詰まり防止をはかり高効率な冷蔵庫を得ることを目的とする。 Therefore, an object is to obtain a highly efficient refrigerator by reducing costs and preventing clogging due to frost formation.
 本発明は、上記の問題を解決するためになされたもので、冷蔵室及び冷凍室を有する冷蔵庫において、冷媒が通過する伝熱管及び複数並べられたフィンを有し、冷蔵室からの空気が通過する部分を、冷凍室からの空気が通過する部分よりも、フィンピッチを広く及び/又はフィン枚数を少なく、かつ、庫外側に位置するように構成し、冷媒と熱交換させて冷凍室及び冷蔵室からの空気を冷却する冷却器と、室内と冷却器との間で空気を循環させる循環ファンと、冷却器が冷却した空気を冷蔵室に送る専用ファンとを備える。 The present invention has been made to solve the above-described problem, and in a refrigerator having a refrigerator compartment and a freezer compartment, the refrigerant has a heat transfer tube through which refrigerant passes and a plurality of fins arranged so that air from the refrigerator compartment passes through. The part to be operated is configured so that the fin pitch is wider and / or the number of fins is smaller than the part through which air from the freezer passes, and is located outside the refrigerator, and heat exchange with the refrigerant is performed to store the freezer and the refrigerator. A cooler that cools air from the room, a circulation fan that circulates air between the room and the cooler, and a dedicated fan that sends the air cooled by the cooler to the refrigerator compartment.
 本発明によれば、冷蔵室からの空気が通過する部分におけるフィンピッチを広く、及び/又はフィン枚数を少なく構成したので、冷蔵庫の冷却器への着霜による通風抵抗を軽減させることができ、また、除霜回数の減少、除霜時間の短縮等をはかることができるので、高効率な冷蔵庫を得ることができる。また、冷蔵室からの空気は冷凍室からの空気からの空気に比べて温度が高いので、冷蔵室からの空気が通過する部分を庫外側に位置するようにすることで、外気との温度差を小さくし、外気による熱侵入を少なくすることができる。このため、冷却性能を向上させ、消費電力を低減させることが可能となる。そして、1つの冷却器で実現することで、冷却器に係る容積を少なくし、庫内容積の拡大をはかることが可能となる。 According to the present invention, since the fin pitch in the part through which air from the refrigerator compartment passes is wide and / or the number of fins is small, the ventilation resistance due to frost formation on the refrigerator cooler can be reduced, Moreover, since the frequency | count of defrosting can be shortened, defrosting time can be shortened, etc., a highly efficient refrigerator can be obtained. In addition, since the air from the refrigerator compartment has a higher temperature than the air from the refrigerator compartment, the temperature difference from the outside air can be achieved by placing the part through which the air from the refrigerator compartment passes outside. The heat intrusion due to outside air can be reduced. For this reason, it becomes possible to improve cooling performance and to reduce power consumption. And by realizing with one cooler, it is possible to reduce the volume related to the cooler and increase the internal volume.
本発明の実施の形態1を示す冷蔵庫の外観及び構造を説明するための図である。It is a figure for demonstrating the external appearance and structure of a refrigerator which show Embodiment 1 of this invention. 冷蔵庫における冷媒回路の構成を示す図である。It is a figure which shows the structure of the refrigerant circuit in a refrigerator. 従来の冷蔵庫における蒸発器31付近の概略構成を示す図である。It is a figure which shows schematic structure of the evaporator 31 vicinity in the conventional refrigerator. 蒸発器31を通過するときの冷凍室戻り空気37の温度の変化を示す図である。It is a figure which shows the change of the temperature of the freezer compartment return air 37 when passing the evaporator 31. FIG. 本発明の実施の形態1における冷却器15を示す図である。It is a figure which shows the cooler 15 in Embodiment 1 of this invention. 本発明の実施の形態1における冷却器15の配置を示す図である。It is a figure which shows arrangement | positioning of the cooler 15 in Embodiment 1 of this invention. 本発明の実施の形態2における冷却器15を示す図である。It is a figure which shows the cooler 15 in Embodiment 2 of this invention. 除霜ヒータ61の配設等を示す図である。It is a figure which shows arrangement | positioning etc. of the defrost heater.
実施の形態1.
 以下、本発明の実施の形態について、図を用いながら説明する。
 図1は本発明の実施の形態1における冷蔵庫の外観及び構造を説明するための図である。図1(a)は冷蔵庫の扉部12側(前面側)から見た外観図であり、図1(b)は冷蔵庫の内部を説明するための断面図である。冷蔵庫においては、扉部12、断熱壁13により庫内11を密閉等することで庫外(外気)との断熱をすることができる。
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a view for explaining the appearance and structure of a refrigerator according to Embodiment 1 of the present invention. Fig.1 (a) is an external view seen from the door part 12 side (front side) of the refrigerator, and FIG.1 (b) is sectional drawing for demonstrating the inside of a refrigerator. In the refrigerator, the inside 11 can be sealed with the door 12 and the heat insulating wall 13 to insulate the outside (outside air) from the outside.
 ここで、冷蔵庫の庫内11は複数の部屋(室)を有している。本実施の形態では、冷蔵室と冷凍室とを有しているものとする。冷蔵室は、例えば室内空気を約4℃として食品等(被冷却物)を冷却(冷蔵)するための部屋である。また、冷凍室は、室内空気を約-18℃として食品等を冷却(冷凍)するための部屋である。ここで、図1では冷蔵室と冷凍室とを有する冷蔵庫を記載したが、他に野菜室、製氷室等を有する冷蔵庫に対しても、以下に述べる効果を奏するようにすることは可能である。 Here, the refrigerator compartment 11 has a plurality of rooms. In this embodiment, it is assumed that a refrigerator compartment and a freezer compartment are provided. The refrigerating room is a room for cooling (refrigerating) food or the like (an object to be cooled) with the room air at about 4 ° C., for example. The freezing room is a room for cooling (freezing) foods and the like with room air at about −18 ° C. Here, although the refrigerator having the refrigerator compartment and the freezer compartment is described in FIG. 1, it is possible to achieve the effects described below also for the refrigerator having the vegetable compartment, the ice making compartment, and the like. .
 本実施の形態の冷蔵庫において、循環ファン16は、庫内11(冷凍室、冷蔵室)の空気を冷却器15に通過させて再度庫内11に送る。また、専用ファン17は、冷却器15が冷却した空気を循環ファン16と共に冷蔵室に送るための冷蔵室専用のファンである。専用ファン17を有することで、冷蔵庫との間を循環する空気における風量を独立して調整することができる。ここでは、図1に示す専用ファン17は冷蔵室を冷却するための専用ファンとしているが、例えば他に部屋(室)がある場合には、冷蔵室だけに限らず、例えば冷凍室より上側にある部屋を冷却するために用いるファンとして使用することができる。 In the refrigerator of the present embodiment, the circulation fan 16 passes the air in the refrigerator 11 (freezer compartment, refrigerator compartment) through the cooler 15 and sends it to the refrigerator 11 again. The dedicated fan 17 is a dedicated fan for the refrigerator compartment for sending the air cooled by the cooler 15 together with the circulation fan 16 to the refrigerator compartment. By having the dedicated fan 17, the air volume in the air circulating between the refrigerators can be adjusted independently. Here, the dedicated fan 17 shown in FIG. 1 is a dedicated fan for cooling the refrigerator compartment. However, for example, when there are other rooms (rooms), not only the refrigerator compartment but also, for example, above the freezer compartment. It can be used as a fan used to cool a room.
 そして、本実施の形態の冷蔵庫は、蒸気圧縮式冷凍サイクルを利用して、例えば、冷蔵庫の扉部12の開閉や断熱壁13を介して外気からの熱侵入を補うよう冷却運転を行い、庫内11の冷凍室、冷蔵室における庫内温度を維持する。 The refrigerator of the present embodiment uses a vapor compression refrigeration cycle, for example, performs a cooling operation so as to compensate for heat intrusion from outside air through opening and closing of the door 12 of the refrigerator and the heat insulating wall 13, The inside temperature in the 11 freezer compartments and the refrigerator compartment is maintained.
 図2は本実施の形態の冷蔵庫における冷媒回路の構成を示す図である。図2において、圧縮機14、配管群21、膨張手段22及び冷却器15を接続して冷媒回路を構成している。ここで、冷媒回路を循環する冷媒として、例えばイソブタンなどを用いる。 FIG. 2 is a diagram showing the configuration of the refrigerant circuit in the refrigerator of the present embodiment. In FIG. 2, a compressor circuit, a piping group 21, an expansion means 22 and a cooler 15 are connected to form a refrigerant circuit. Here, for example, isobutane is used as the refrigerant circulating in the refrigerant circuit.
 圧縮機14は、冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。また、配管群21は断熱壁13に埋設されている。配管群21は凝縮器として機能し、冷媒に放熱させて凝縮液化させる。膨張手段22は、通過する冷媒を減圧して膨張させる。例えば毛細管(キャピラリチューブ)等で構成する。 The compressor 14 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The piping group 21 is embedded in the heat insulating wall 13. The piping group 21 functions as a condenser, and dissipates heat to the refrigerant so as to be condensed and liquefied. The expansion means 22 expands the refrigerant that passes therethrough by reducing the pressure. For example, a capillary tube (capillary tube) or the like is used.
 また、冷却器15は、空気23との熱交換により冷媒を蒸発ガス化させるものである。本実施の形態の冷却器15は、例えば、板状の面が平行になるように並設された複数のフィンと、その並設方向に各フィンを貫通する伝熱管で構成されるフィンチューブ型の熱交換器である。伝熱管内には、冷媒回路を循環する冷媒が通過する。冷却器15の構成等については後でさらに説明する。 The cooler 15 evaporates the refrigerant by exchanging heat with the air 23. The cooler 15 of the present embodiment is, for example, a fin tube type that includes a plurality of fins arranged in parallel so that plate-like surfaces are parallel to each other and heat transfer tubes that pass through the fins in the parallel arrangement direction. It is a heat exchanger. The refrigerant circulating in the refrigerant circuit passes through the heat transfer tube. The configuration of the cooler 15 will be further described later.
 本実施の形態の冷蔵庫では、一つの冷却器15により庫内11(冷凍室、冷蔵室内)から流れこんだ空気23を冷却し、冷凍室、冷蔵室のそれぞれの庫内温度を維持等する。空気23は、循環ファン16、専用ファン17の駆動により庫内11(冷蔵室、冷凍室)から冷却器15に流れ込む空気である。冷却器15を通過した後、再度庫内11(冷蔵室、冷凍室)に送られる。ここで、本実施の形態の冷蔵庫においては、冷蔵室から流れ込んだ空気(以下、冷蔵室戻り空気という)と冷凍室から流れ込んだ空気(以下、冷凍室戻り空気という)とが冷却器15の異なる部分を通過するように、少なくとも庫内11から空気が流れ込む風路が分かれているものとする。 In the refrigerator according to the present embodiment, the air 23 flowing from the inside 11 (freezer compartment, refrigerated compartment) is cooled by a single cooler 15, and the respective inside temperatures of the freezer compartment and the refrigerator compartment are maintained. The air 23 is air that flows into the cooler 15 from the interior 11 (refrigeration room, freezing room) by driving the circulation fan 16 and the dedicated fan 17. After passing through the cooler 15, it is sent again to the interior 11 (refrigerated room, freezer room). Here, in the refrigerator of the present embodiment, the air that flows from the refrigerator compartment (hereinafter referred to as the refrigerator return air) and the air that flows from the refrigerator compartment (hereinafter referred to as the refrigerator return air) are different from each other in the cooler 15. It is assumed that the air path into which air flows from at least the interior 11 is divided so as to pass through the portion.
 次に、冷蔵庫の冷却運転時における冷媒回路における機器の動作等を、循環する冷媒の流れに基づいて説明する。圧縮機14は、冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。圧縮された冷媒は配管群21に流れ、配管群21内で放熱して液冷媒となる。液冷媒は膨張手段22に流れ、膨張手段22で減圧、膨張し、気液二相の冷媒となる。気液二相の冷媒は、冷却器15において循環ファン16、専用ファン17の回転により庫内11から流れ込んだ空気23と熱交換する。冷却器15内での熱交換により気液二相の冷媒は空気23から吸熱して蒸発気化する。気体となった冷媒を、圧縮機14が再度吸入して吐出する。 Next, the operation of the equipment in the refrigerant circuit during the cooling operation of the refrigerator will be described based on the circulating refrigerant flow. The compressor 14 sucks the refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The compressed refrigerant flows into the pipe group 21 and dissipates heat in the pipe group 21 to become a liquid refrigerant. The liquid refrigerant flows into the expansion means 22 and is decompressed and expanded by the expansion means 22 to become a gas-liquid two-phase refrigerant. In the cooler 15, the gas-liquid two-phase refrigerant exchanges heat with the air 23 that has flowed from the interior 11 by the rotation of the circulation fan 16 and the dedicated fan 17. By the heat exchange in the cooler 15, the gas-liquid two-phase refrigerant absorbs heat from the air 23 and evaporates. The compressor 14 sucks and discharges the refrigerant that has become gas.
 一方、冷媒に吸熱されて温度の低下した空気23は、循環ファン16、専用ファン17により庫内11へと再度送られ、庫内11を冷却する。 On the other hand, the air 23, whose temperature has been reduced due to heat absorbed by the refrigerant, is sent again to the interior 11 by the circulation fan 16 and the dedicated fan 17, and cools the interior 11.
 ここで、上記のように構成された冷蔵庫において、冷却器15に流入する空気23において、冷蔵室戻り空気と冷凍室戻り空気とでは空気流入状態(空気温湿度)が大きく異なる。これは、冷蔵室は設定温度が約4℃であるのに対して、冷凍室は約-18℃であることによる。また、冷凍室に比べて冷蔵室は容積が大きく、それに伴い表面積も大きくなるため外気からの熱侵入量が多くなることによる。さらに、冷蔵室の方が、扉部12の開閉回数等が多く、庫内11の外気が侵入する量も冷凍室に比べて多くなることによる。 Here, in the refrigerator configured as described above, in the air 23 flowing into the cooler 15, the air inflow state (air temperature and humidity) is greatly different between the refrigerator return air and the freezer return air. This is because the refrigerator compartment has a set temperature of about 4 ° C., whereas the freezer compartment has a temperature of about −18 ° C. In addition, the refrigerator compartment has a larger volume than the freezer compartment, and the surface area increases accordingly, which increases the amount of heat intrusion from the outside air. Further, the refrigerator compartment has a larger number of times of opening and closing the door portion 12, and the amount of outside air intruding into the storage 11 is larger than that of the freezer compartment.
 発明者らは冷凍室戻り空気及び冷蔵室戻り空気の温度Tin及び湿度φinを計測し、以下の結果を得た。
(冷蔵室戻り空気)Tin=5℃ φin=80%
(冷凍室戻り空気)Tin=-15℃ φin=60%
The inventors measured the temperature Tin and humidity φin of the freezer return air and the refrigerator return air, and obtained the following results.
(Refrigerating room return air) Tin = 5 ℃ φin = 80%
(Freezer return air) Tin = -15 ° C φin = 60%
 以上の結果と各室からの戻り空気の風量とに基づいて冷却器15に流入する空気23の水分量において、冷蔵室戻り空気、冷凍室戻り空気の寄与する割合を算出した。その結果、空気23における冷蔵室戻り空気は冷凍室戻り空気の7倍以上の量の水分を有していることが判明した。このことから、冷却器15が着霜する主要因は冷蔵室戻り空気にあるといえる。 Based on the above results and the air volume of return air from each room, the contribution ratio of the refrigerator return air and the freezer return air in the moisture content of the air 23 flowing into the cooler 15 was calculated. As a result, it was found that the refrigerator return air in the air 23 has a water content of 7 times or more that of the freezer return air. From this, it can be said that the main factor that the cooler 15 forms frost is the return air in the refrigerator compartment.
 図3は従来の冷蔵庫における蒸発器31付近の概略構成を示す図である。図3において、蒸発器31は冷却器として機能する。また、戻り風路32は冷蔵室戻り空気36の風路となる。また、除霜用ヒータ33は、蒸発器31の除霜を行う際に冷却器15を加熱する加熱手段となる。露受け皿34は、例えば除霜をしたときに冷却器15から滴下する露等を受ける。案内板35は、冷蔵室戻り空気36を案内し、開口部35aを介して冷却器15に送り出す。冷蔵室戻り空気36は、前述したように、冷蔵室から流れ込む空気である。また、冷凍室戻り空気37は冷凍室から流れ込む空気である。 FIG. 3 is a diagram showing a schematic configuration near the evaporator 31 in a conventional refrigerator. In FIG. 3, the evaporator 31 functions as a cooler. Further, the return air passage 32 becomes a wind passage for the return air 36 in the refrigerator compartment. The defrosting heater 33 serves as a heating means for heating the cooler 15 when the evaporator 31 is defrosted. The dew receiving tray 34 receives, for example, dew dropped from the cooler 15 when defrosting is performed. The guide plate 35 guides the refrigerating room return air 36 and sends it out to the cooler 15 through the opening 35a. The refrigerating room return air 36 is air flowing from the refrigerating room as described above. The freezer return air 37 is air flowing from the freezer compartment.
 図4は冷却器15を通過するときの冷凍室戻り空気37の温度の変化を示す図である。図4(a)に示すX方向(冷却器15からの流出口に向かう方向)に進むにつれて、図4(b)に示すように、冷凍室戻り空気37の温度は蒸発器31の温度に近づいていく。そして、冷凍室戻り空気37は、蒸発器31からの流出口付近で、ほぼ蒸発器31と同等の温度となる。 FIG. 4 is a diagram showing a change in the temperature of the freezer return air 37 when passing through the cooler 15. As shown in FIG. 4B, the temperature of the freezer return air 37 approaches the temperature of the evaporator 31 as it proceeds in the X direction shown in FIG. 4A (the direction toward the outlet from the cooler 15). To go. The freezer return air 37 has a temperature substantially equal to that of the evaporator 31 in the vicinity of the outlet from the evaporator 31.
 このことから、冷凍室戻り空気37の風量、蒸発器31の温度が一定であれば、蒸発器31の大きさ(蒸発器31を通過する距離)により、冷凍室戻り空気37の蒸発器31出口での温度は決まる。そして、蒸発器31の大きさが同等であれば、冷凍室戻り空気37を冷却器15の途中から流入させた場合、通過距離が減少するため冷凍室戻り空気37の冷却器31の流出口でも温度は下がり切らず、冷却能力不足となる可能性がある。 From this, if the air volume of the freezer return air 37 and the temperature of the evaporator 31 are constant, the evaporator 31 outlet of the freezer return air 37 depends on the size of the evaporator 31 (distance passing through the evaporator 31). The temperature at is determined. If the sizes of the evaporators 31 are the same, when the freezer return air 37 is introduced from the middle of the cooler 15, the passage distance is reduced, so that the freezer return air 37 also has an outlet of the cooler 31. The temperature does not fall down and there is a possibility of insufficient cooling capacity.
 図5は本発明の実施の形態1における冷却器15を示す図である。図5(a)は本実施の形態1における冷却器15の斜視図を示す。また、図5(b)は冷却器15の上面図を示し、図5(c)は冷却器15の庫内側から見た正面図を示す。例えば図5(b)に示すように、本実施の形態の冷却器15は、庫内側から見た背面側(庫外側)のフィンピッチを広くし、フィン枚数を少なくした領域を設けた構造とする。そして、この領域を、水分量の多い冷蔵室戻り空気が通過するようにし、霜による目詰まりの軽減をはかるようにする。ここで、図5ではフィンピッチとフィン枚数との両方を変化させているが、どちらか一方(フィンピッチを広くする又はフィン枚数を少なくする)だけでも、目詰まり軽減の効果を奏することは可能である。また、特に限定するものではないが、フィンピッチを広く等した部分とそうでない部分とにおける風路(容積)における比率が例えば1:2となるようにする(冷蔵室戻り空気による流量が少なくなるようにする)。 FIG. 5 is a diagram showing the cooler 15 according to the first embodiment of the present invention. Fig.5 (a) shows the perspective view of the cooler 15 in this Embodiment 1. FIG. FIG. 5B shows a top view of the cooler 15, and FIG. 5C shows a front view of the cooler 15 as viewed from the inside. For example, as shown in FIG. 5 (b), the cooler 15 of the present embodiment has a structure in which the fin pitch on the back side (outside of the box) viewed from the inside of the box is widened and a region in which the number of fins is reduced is provided. To do. Then, through this region, the return air having a high water content passes through to reduce clogging due to frost. Here, in FIG. 5, both the fin pitch and the number of fins are changed, but it is possible to reduce clogging with only one of them (widening the fin pitch or reducing the number of fins). It is. Further, although not particularly limited, the ratio in the air path (volume) between the part with the wide fin pitch and the part with the fin pitch not widened is, for example, 1: 2 (the flow rate due to the return air in the refrigerator compartment is reduced). ).
 ここで、本実施の形態の冷蔵庫においては、前述したように、冷凍室戻り空気に係る温度をできる限り下げることができるように、冷凍室戻り空気と冷蔵室戻り空気とが冷却器15を通過する距離を同じものとする。これにより、冷凍室戻り空気の冷却能力不足を防ぐ。また、前述したように、冷却器15において冷蔵室戻り空気が通過する経路(風路)は、庫内側(前面側)から冷蔵庫を見たときに背面側となる、庫外側に近い領域に形成するようにしている。その理由は、外気からの熱侵入量を低減するためである。例えば、図1に示すように、冷却器15と外気とは断熱壁13を介して断熱されている。一般的に断熱壁13には発泡ウレタン、真空断熱材を用いている。そして、外気からの熱侵入量Qは次式(1)のように表すことができる。ここで、Aは面積、Kは断熱壁13の構造によって決まる熱通過率、ΔTは冷却器15と外気との温度差を表している。
 Q=A・K・ΔT                          …(1)
Here, in the refrigerator of the present embodiment, as described above, the freezer return air and the refrigerating room return air pass through the cooler 15 so that the temperature related to the freezer return air can be lowered as much as possible. The same distance. This prevents a shortage of cooling capacity of the freezer return air. Further, as described above, the path (wind passage) through which the return air to the refrigerator compartment passes in the cooler 15 is formed in a region close to the outside of the warehouse, which is the back side when the refrigerator is viewed from the inside of the cabinet (front side). Like to do. The reason is to reduce the amount of heat penetration from the outside air. For example, as shown in FIG. 1, the cooler 15 and the outside air are insulated from each other through a heat insulation wall 13. Generally, urethane foam and vacuum heat insulating material are used for the heat insulating wall 13. And the amount Q of heat penetration from the outside air can be expressed as the following equation (1). Here, A is an area, K is a heat transmission rate determined by the structure of the heat insulating wall 13, and ΔT represents a temperature difference between the cooler 15 and the outside air.
Q = A · K · ΔT (1)
 式(1)より、外気による庫内11への熱侵入量を少なくするためには、温度差ΔTを小さくすることが望ましく、外気が一定であれば、冷却器15の温度が高いほど熱侵入量は低減できる。前述したように、冷蔵室戻り空気と冷凍室戻り空気とでは、冷凍室戻り空気の方が約20℃低く、冷凍室戻り空気が庫外側を通過すると、外気との温度差ΔTが大きくなる。そこで、本実施の形態では、冷却器15において、庫外側を冷蔵室戻り空気が通過するようにする。例えば、外気を30℃とすると、冷蔵室戻り空気が冷却器15の庫外側を通過するようにすることで熱侵入量を45%低減することができる。冷蔵室との間で空気を循環させる必要がない場合には、例えば冷却器15のフィンピッチを広く等した領域部分に冷凍室戻り空気を流入させることができるように、冷却器15の空気流入側にダンパーを設けて切換ができるようにしてもよい。 From equation (1), it is desirable to reduce the temperature difference ΔT in order to reduce the amount of heat intruding into the interior 11 by the outside air. If the outside air is constant, the heat intrusion increases as the temperature of the cooler 15 increases. The amount can be reduced. As described above, in the refrigerated room return air and the freezer room return air, the freezer room return air is about 20 ° C. lower, and when the freezer room return air passes outside the warehouse, the temperature difference ΔT with the outside air becomes large. Therefore, in the present embodiment, in the cooler 15, the return air in the refrigerator compartment passes through the outside of the refrigerator. For example, when the outside air is set to 30 ° C., the amount of heat penetration can be reduced by 45% by allowing the return air from the refrigerator compartment to pass through the outside of the cooler 15. When it is not necessary to circulate air between the refrigerator compartment, for example, the freezer return air can be introduced into the region of the cooler 15 having a wide fin pitch so that the return air can flow into the refrigerator 15. A damper may be provided on the side so that switching can be performed.
 図6は本発明の実施の形態1における冷却器15の配置を示す図である。図6(a)は冷蔵庫の正面側から見たときの配置を示す図である。図6(b)は冷蔵庫の上面側から見たときの配置を示す図である。図6に示すように、冷蔵室戻り口18が冷却器15の前面に冷却器15に対して垂直に設けられ、冷却器15下部から冷却器15の背面に流入することになる。一方、冷凍室戻り口(図示せず)は、冷却器15の下部から上向きに設けられ、冷却器15前面に流入することになる。 FIG. 6 is a diagram showing the arrangement of the cooler 15 in the first embodiment of the present invention. Fig.6 (a) is a figure which shows arrangement | positioning when it sees from the front side of a refrigerator. FIG.6 (b) is a figure which shows arrangement | positioning when it sees from the upper surface side of a refrigerator. As shown in FIG. 6, the refrigerating room return port 18 is provided on the front surface of the cooler 15 perpendicular to the cooler 15, and flows into the back surface of the cooler 15 from the lower portion of the cooler 15. On the other hand, the freezer return port (not shown) is provided upward from the lower portion of the cooler 15 and flows into the front surface of the cooler 15.
 以上のことから、実施の形態1の冷蔵庫によれば、冷却器15において、冷蔵室戻り空気が通過する部分のフィンピッチを広く、またはフィン枚数を少なくするようにしたので、フィンに付いた霜による目詰まりを軽減するができ、霜による通風抵抗の増加を抑制可能となる。また、冷蔵室戻り空気の流れる路が冷却器15の庫外側となるようにすることで、外気との温度差を小さくすることができ、外気からの熱侵入量を減少させることができる。以上のことから高効率な冷蔵庫を得ることができる。 From the above, according to the refrigerator of the first embodiment, in the cooler 15, the fin pitch in the portion through which the return air for the refrigerator compartment passes is widened or the number of fins is reduced. Clogging due to frost can be reduced, and increase in ventilation resistance due to frost can be suppressed. Moreover, the temperature difference with external air can be made small and the amount of heat | fever penetration | invasion from external air can be decreased by making the path | route into which the refrigerator compartment return air flows becomes the warehouse outside of the cooler 15. From the above, a highly efficient refrigerator can be obtained.
実施の形態2.
 図7は本発明の実施の形態2における冷却器15を示す図である。冷却器15の冷蔵庫における配置等は、実施の形態1の冷蔵庫と同様である。図7の冷却器15は、冷却器本体に接して直接加熱する除霜ヒータ61を有している。また、冷却器15において着霜の主要因となる冷蔵室戻り空気が通過する位置に近い部分に、除霜ヒータ61を多く配設するようにしている。図7(a)は実施の形態2における冷却器15の斜視図、図7(b)は実施の形態2における冷却器15の上面図、図7(c)は実施の形態2における冷却器15の冷凍室戻り空気の流れる面側から見た図である。
Embodiment 2. FIG.
FIG. 7 is a diagram showing a cooler 15 according to Embodiment 2 of the present invention. The arrangement of the cooler 15 in the refrigerator is the same as that of the refrigerator of the first embodiment. The cooler 15 in FIG. 7 has a defrost heater 61 that directly heats in contact with the cooler body. Further, a large number of defrosting heaters 61 are arranged in the cooler 15 in a portion close to the position where the refrigerating room return air, which is the main cause of frost formation, passes. 7A is a perspective view of the cooler 15 according to the second embodiment, FIG. 7B is a top view of the cooler 15 according to the second embodiment, and FIG. 7C is a cooler 15 according to the second embodiment. It is the figure seen from the surface side through which freezer compartment return air flows.
 この冷却器15においては、図7(b)に示すように、冷凍室戻り空気が流れる面側とは逆の面側におけるフィンピッチを広くし、且つフィン枚数を少なくした領域を設けた構造とする。本実施の形態の冷却器15においても、フィンピッチを広くする又はフィン枚数を少なくするようにするだけでも、霜による目詰まり軽減の効果を奏することは可能である。ここで、実施の形態2における、冷却器15を有する冷蔵庫の構造、冷媒回路等については実施の形態1と同等のため、本実施の形態では実施の形態1と異なる点のみを記載する。 In this cooler 15, as shown in FIG. 7B, a structure is provided in which a fin pitch is widened on the surface opposite to the surface on which the freezer return air flows, and a region in which the number of fins is reduced is provided. To do. Even in the cooler 15 of the present embodiment, it is possible to achieve the effect of reducing clogging due to frost only by increasing the fin pitch or reducing the number of fins. Here, since the structure of the refrigerator having the cooler 15, the refrigerant circuit, and the like in the second embodiment are the same as those in the first embodiment, only the differences from the first embodiment will be described in the present embodiment.
 図8は除霜ヒータ61の配設等を示す図である。図8に示すように、本実施の形態では、除霜のために外部から冷却器15に熱を供給する除霜ヒータ61を設ける。そして、冷却器15の、フィンピッチを広く、フィン枚数が少ない、冷蔵室戻り空気が通過する領域において除霜ヒータ61の本数が多くなるように配設する。 FIG. 8 is a diagram showing the arrangement and the like of the defrost heater 61. As shown in FIG. 8, in this Embodiment, the defrost heater 61 which supplies heat to the cooler 15 from the outside is provided for a defrost. And it arrange | positions so that the number of the defrost heaters 61 may increase in the area | region where the fin pitch of the cooler 15 is wide, the number of fins is small, and the refrigerator compartment return air passes.
 実施の形態1において説明したように、冷蔵室戻り空気に含まれる水分量は冷凍室戻り空気に含まれる水分量より多いので、フィンへの着霜量は冷蔵室戻り空気が通過する部分の方が多くなる。そこで、冷蔵室戻り空気が通過する領域を重点的に加熱できるように除霜ヒータ61を配設する。このため、均等配設した場合に比べて除霜時間を短縮することができる。また、除霜時間が少なくなることで、除霜中における庫内温度の上昇を抑制することができる。したがって、高効率な冷蔵庫を得ることができる。 As described in the first embodiment, the amount of water contained in the return air from the refrigerator compartment is larger than the amount of water contained in the return air from the freezer compartment, so that the amount of frost on the fin is the portion through which the return air from the refrigerator compartment passes. Will increase. Therefore, a defrost heater 61 is provided so that the region through which the return air for the refrigerator compartment passes can be preferentially heated. For this reason, defrosting time can be shortened compared with the case where it arranges equally. Moreover, the rise in the internal temperature during defrosting can be suppressed by reducing the defrosting time. Therefore, a highly efficient refrigerator can be obtained.
 本発明を利用することで、冷蔵庫の冷却性能を向上することができ、高効率な冷蔵庫を得ることができる。また除霜時間の短縮により消費電力を低減させることができる。 By using the present invention, the cooling performance of the refrigerator can be improved, and a highly efficient refrigerator can be obtained. Moreover, power consumption can be reduced by shortening the defrosting time.
 11 庫内、12 扉部、13 断熱壁、14 圧縮機、15 冷却器、16 循環ファン、17 専用ファン、18 冷蔵室戻り口、21 配管群、22 膨張手段、23 空気、31 蒸発器、32 戻り風路、33 除霜用ヒータ、34 露受け皿、35 案内板、35a 開口部、36 冷蔵室戻り空気、37 冷凍室戻り空気、61 除霜ヒータ。 11 interior, 12 door part, 13 heat insulation wall, 14 compressor, 15 cooler, 16 circulation fan, 17 dedicated fan, 18 refrigerator compartment return, 21 piping group, 22 expansion means, 23 air, 31 evaporator, 32 Return air passage, 33 heater for defrost, 34 dew tray, 35 guide plate, 35a opening, 36 return air for refrigerator compartment, 37 return air for freezer compartment, 61 defrost heater.

Claims (6)

  1.  冷蔵室及び冷凍室を有する冷蔵庫において、
     冷媒が通過する伝熱管及び複数並べられたフィンを有し、前記冷蔵室からの空気が通過する部分を、前記冷凍室からの空気が通過する部分よりも、フィンピッチを広く及び/又はフィン枚数を少なく、かつ、庫外側に位置するように構成し、前記冷媒と熱交換させて前記冷凍室及び前記冷蔵室からの空気を冷却する冷却器と、
     庫内と前記冷却器との間で空気を循環させる循環ファンと、
     前記冷却器が冷却した空気を前記冷蔵室に送る専用ファンと
    を備える冷蔵庫。
    In a refrigerator having a refrigerator compartment and a freezer compartment,
    It has a heat transfer tube through which the refrigerant passes and a plurality of fins arranged, and the part through which the air from the refrigerator compartment passes is wider than the part through which the air from the freezer compartment passes and / or the number of fins And a cooler that cools the air from the freezer compartment and the refrigerator compartment by exchanging heat with the refrigerant,
    A circulation fan for circulating air between the refrigerator and the cooler;
    A refrigerator comprising a dedicated fan for sending air cooled by the cooler to the refrigerator compartment.
  2.  前記冷却器の除霜を行うための加熱手段をさらに備え、
     前記加熱手段は、前記冷却器において、前記冷凍室からの空気が通過する部分よりも、前記冷蔵室からの空気が通過する部分の方に熱を多く供給するように構成する請求項1記載の冷蔵庫。
    Further comprising heating means for defrosting the cooler;
    The said heating means is comprised so that it may supply more heat to the part through which the air from the said refrigerator compartment passes in the said cooler rather than the part through which the air from the said freezer compartment passes. refrigerator.
  3.  前記加熱手段を、前記冷却器に接するように配置する請求項2記載の冷蔵庫。 The refrigerator according to claim 2, wherein the heating means is disposed in contact with the cooler.
  4.  前記冷蔵室は前記冷凍室の上側に位置し、
     前記専用ファンは、前記冷凍室がある位置よりも上側に位置するように配置される請求項1~3のいずれか一項に記載の冷蔵庫。
    The refrigerator compartment is located above the freezer compartment,
    The refrigerator according to any one of claims 1 to 3, wherein the dedicated fan is disposed so as to be positioned above a position where the freezer compartment is located.
  5.  前記加熱手段は、前記冷却器の外部から熱を供給する請求項2~4のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 2 to 4, wherein the heating means supplies heat from outside the cooler.
  6.  前記冷却器は、前記冷凍室からの空気が通過する部分に対して前記冷蔵室からの空気が通過する部分が狭くなるように構成する請求項1~5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the cooler is configured such that a portion through which air from the refrigerator compartment passes is narrower than a portion through which air from the freezer compartment passes.
PCT/JP2011/006910 2011-12-12 2011-12-12 Refrigerator WO2013088462A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013548947A JP5847198B2 (en) 2011-12-12 2011-12-12 refrigerator
CN201180074718.XA CN103917837B (en) 2011-12-12 2011-12-12 Refrigerator
PCT/JP2011/006910 WO2013088462A1 (en) 2011-12-12 2011-12-12 Refrigerator
SG11201401031PA SG11201401031PA (en) 2011-12-12 2011-12-12 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006910 WO2013088462A1 (en) 2011-12-12 2011-12-12 Refrigerator

Publications (1)

Publication Number Publication Date
WO2013088462A1 true WO2013088462A1 (en) 2013-06-20

Family

ID=48611959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006910 WO2013088462A1 (en) 2011-12-12 2011-12-12 Refrigerator

Country Status (4)

Country Link
JP (1) JP5847198B2 (en)
CN (1) CN103917837B (en)
SG (1) SG11201401031PA (en)
WO (1) WO2013088462A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025567A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Refrigerator
CN109737676A (en) * 2018-12-20 2019-05-10 西安交通大学 Wind cooling refrigerator finned-tube evaporator and wind cooling refrigerator
EP3995765A1 (en) * 2020-11-06 2022-05-11 Whirlpool Corporation Refrigeration unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105698465B (en) * 2016-03-31 2018-05-29 合肥海尔电冰箱有限公司 Refrigerating device
CN105865121B (en) * 2016-03-31 2018-07-13 青岛海尔特种电冰箱有限公司 Refrigerating device
CN110094924B (en) * 2018-01-31 2021-09-17 日立环球生活方案株式会社 Refrigerator with a door

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552678U (en) * 1991-12-12 1993-07-13 松下冷機株式会社 refrigerator
JPH09159311A (en) * 1995-12-08 1997-06-20 Toshiba Corp Heat exchanger for refrigerator
JPH11304336A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Refrigerator
JP2002130918A (en) * 2000-10-19 2002-05-09 Matsushita Refrig Co Ltd Freezer/refrigerator
JP2006153358A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Refrigerator
JP2007010174A (en) * 2005-06-28 2007-01-18 Toshiba Corp Refrigerator
JP2009287890A (en) * 2008-05-30 2009-12-10 Hitachi Appliances Inc Refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6789614B2 (en) * 2002-02-28 2004-09-14 Lg Electronics Inc. Heat exchanger for refrigerator
US6857288B2 (en) * 2002-02-28 2005-02-22 Lg Electronics Inc. Heat exchanger for refrigerator
JP2003279222A (en) * 2002-03-20 2003-10-02 Mitsubishi Electric Corp Refrigerator
JP2005180719A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Refrigerator
CN101532753A (en) * 2008-03-10 2009-09-16 乐金电子(天津)电器有限公司 Heat exchanger structure of air conditioner
JP5617220B2 (en) * 2009-11-10 2014-11-05 パナソニック株式会社 Heat exchanger and cooling system and refrigerator using the same
CN101957105A (en) * 2010-10-19 2011-01-26 广东美的制冷设备有限公司 Heat exchanger for improving drainage performance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552678U (en) * 1991-12-12 1993-07-13 松下冷機株式会社 refrigerator
JPH09159311A (en) * 1995-12-08 1997-06-20 Toshiba Corp Heat exchanger for refrigerator
JPH11304336A (en) * 1998-04-17 1999-11-05 Hitachi Ltd Refrigerator
JP2002130918A (en) * 2000-10-19 2002-05-09 Matsushita Refrig Co Ltd Freezer/refrigerator
JP2006153358A (en) * 2004-11-30 2006-06-15 Matsushita Electric Ind Co Ltd Refrigerator
JP2007010174A (en) * 2005-06-28 2007-01-18 Toshiba Corp Refrigerator
JP2009287890A (en) * 2008-05-30 2009-12-10 Hitachi Appliances Inc Refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025567A (en) * 2013-07-24 2015-02-05 パナソニック株式会社 Refrigerator
CN109737676A (en) * 2018-12-20 2019-05-10 西安交通大学 Wind cooling refrigerator finned-tube evaporator and wind cooling refrigerator
CN109737676B (en) * 2018-12-20 2023-09-19 西安交通大学 Fin tube evaporator for air-cooled refrigerator and air-cooled refrigerator
EP3995765A1 (en) * 2020-11-06 2022-05-11 Whirlpool Corporation Refrigeration unit
US11686523B2 (en) 2020-11-06 2023-06-27 Whirlpool Corporation Refrigeration unit

Also Published As

Publication number Publication date
JP5847198B2 (en) 2016-01-20
CN103917837B (en) 2016-01-06
SG11201401031PA (en) 2014-08-28
JPWO2013088462A1 (en) 2015-04-27
CN103917837A (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US9267725B2 (en) Refrigerator
US20140007612A1 (en) Refrigerator and heat exchanger for the same
JP4867758B2 (en) refrigerator
JP6687384B2 (en) refrigerator
JP5847198B2 (en) refrigerator
CN104101154A (en) Refrigerator
JP4895958B2 (en) refrigerator
JP5450462B2 (en) refrigerator
TWI716636B (en) refrigerator
JP2013019598A (en) Refrigerator
KR20160117937A (en) Refrigerator and heat exchanger applying the same
JP2010121842A (en) Refrigerator
TWI722397B (en) refrigerator
JP2014020736A (en) Refrigerator
JP2017026210A (en) refrigerator
JP2016003831A (en) refrigerator
JP2005345061A (en) Refrigerator
JP6940424B2 (en) refrigerator
WO2017013743A1 (en) Refrigerator
JP2835267B2 (en) refrigerator
CN107328153A (en) Refrigerator
JP5401866B2 (en) refrigerator
JP2005221144A (en) Refrigerator
KR102630192B1 (en) Refrigerator
CN112113381A (en) Refrigerator with special-shaped evaporator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877278

Country of ref document: EP

Kind code of ref document: A1