WO2013080251A1 - Radiation detector - Google Patents
Radiation detector Download PDFInfo
- Publication number
- WO2013080251A1 WO2013080251A1 PCT/JP2011/006656 JP2011006656W WO2013080251A1 WO 2013080251 A1 WO2013080251 A1 WO 2013080251A1 JP 2011006656 W JP2011006656 W JP 2011006656W WO 2013080251 A1 WO2013080251 A1 WO 2013080251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insulating
- radiation
- radiation detector
- insulating resin
- resin cover
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
- G01T1/244—Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like
Definitions
- the present invention relates to a radiation detector that detects radiation by generating and reading out charges by incidence of radiation, and relates to a radiation detector used in the medical field, the industrial field, and the nuclear field.
- this type of radiation for example, X-ray
- this type of radiation indirectly generates radiation from the light (for example, X-rays) and generates charges from the light, thereby indirectly converting radiation to charges.
- a radiation-sensitive semiconductor generates a charge.
- the direct conversion type radiation detector includes an active matrix substrate 51, a radiation sensitive semiconductor 52 that generates an electric charge upon incidence of radiation, and a common electrode 53 for applying a bias voltage.
- the active matrix substrate 51 is configured by forming a plurality of collection electrodes (not shown) on the radiation incident surface side and disposing an electric circuit (not shown) for accumulating / reading charges collected by each collection electrode. ing. Each collection electrode is set in a two-dimensional matrix arrangement within the radiation detection effective area SA.
- the semiconductor 52 is stacked on the incident surface side of the collecting electrode of the active matrix substrate 51, and the common electrode 53 is formed in a planar shape on the incident side of the semiconductor 52 and stacked.
- a lead wire 54 for supplying bias voltage is connected to the incident surface of the common electrode 53.
- a bias voltage is applied from a bias supply power source (not shown) to a bias voltage applying common electrode 53 via a lead wire 54 for supplying a bias voltage.
- a bias voltage is applied from a bias supply power source (not shown) to a bias voltage applying common electrode 53 via a lead wire 54 for supplying a bias voltage.
- electric charges are generated by the radiation-sensitive semiconductor 52 with the incidence of radiation. This generated charge is once collected by the collecting electrode.
- the collected charge is taken out as a radiation detection signal for each collecting electrode by an electric circuit for accumulation / reading composed of a capacitor, a switching element, electric wiring, and the like.
- Each collection electrode of the two-dimensional matrix array corresponds to an electrode (pixel electrode) corresponding to each pixel of the radiation image.
- the amorphous semiconductor can be easily formed into a thick and wide film by a method such as vacuum evaporation. Can be formed. Therefore, the amorphous semiconductor is suitable for constituting a two-dimensional array type radiation detector that requires a large-area thick film.
- the present inventor has a structure in which the entire surface on the exposed surface of the semiconductor 52 and the common electrode 53 is covered with a high-voltage insulating resin layer 55 made of, for example, silicone resin in order to suppress creeping discharge. (See, for example, Patent Document 1).
- the radiation detector is warped due to a temperature change, and the insulating resin layer 55, the semiconductor 52, and the common electrode 53 are cracked.
- the intermediate layer made of the carrier-selective high-resistance thin film is formed on the incident surface of the semiconductor 52 or the surface opposite to the incident surface, the intermediate layer is also cracked. By cracking these layers, the creeping discharge withstand voltage becomes insufficient.
- the same as the active matrix substrate 51 is formed on the upper side (incident side) of the insulating resin layer 55 made of a high pressure-resistant curable synthetic resin represented by an epoxy resin, for example.
- the present inventors have proposed a structure in which the insulating resin layer 55 is sandwiched between the active matrix substrate 51 and the insulating auxiliary plate 56 so as to cover the insulating auxiliary plate 56 having a thermal expansion coefficient (see, for example, Patent Document 2). ).
- the insulating resin layer 55 is formed thick including the radiation detection effective area SA, there is a problem that radiation is attenuated by the insulating resin layer 55.
- the insulating resin layer 55 in the radiation detection effective area SA is thinner than the insulating resin layer 55 in the peripheral region outside the radiation detection effective area SA.
- the present inventors have proposed (for example, see Patent Document 3). In the case of this structure, since the insulating resin layer 55 is thinly formed in the radiation detection effective area SA, radiation attenuation by the insulating resin layer 55 can be suppressed as much as possible.
- the temperature environment of the radiation detector manufacturing site is usually 20 ° C. to 25 ° C., but there is a problem that the usage environment is not always the same as this temperature range. Furthermore, the neglected and transported environment may be at a farther temperature. When exposed to a temperature environment different from the temperature at the time of manufacturing for a long time, even when using FIG. 10 (Patent Document 2) or FIG. It has recently been found that the performance of the detector deteriorates due to the occurrence of film breakage.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a long-life radiation detector even if the environment changes.
- the defective pixel means a pixel whose value is extremely large or small compared to the normal pixel value of the output radiation image.
- a possible cause of the defective pixel is an internal stress in the insulating resin layer.
- the structure of the radiation detector can be realized by the newly provided insulating resin cover if the insulating auxiliary plate and the insulating resin cover are bonded to each other with a bonding material. I got the knowledge.
- the high temperature thermo test of FIG. 13 was used for confirmation.
- the entire area is divided into four areas, area PCA, area Ga, area PCB, and area Gb. 12B, in the region PCA, an insulating synthetic resin cover 57 made of polycarbonate (PC) is interposed between the insulating resin layer 55 and the insulating auxiliary plate 56 (made of glass).
- PC polycarbonate
- the insulating auxiliary layer 56 directly covers the insulating resin layer 55 on the upper side as in the conventional structure.
- the insulating synthetic resin cover 57 is interposed between the insulating resin layer 55 and the auxiliary insulating plate 56, and in the area Gb, the insulating auxiliary plate 56 is disposed on the upper side of the insulating resin layer 55 as in the conventional structure. Cover directly.
- an adhesive tape is used as a bonding material 58 for bonding the auxiliary insulation plate 56 and the insulating synthetic resin cover 57.
- the pixels in each area PCA, Ga, PCB, and Gb are 1400 vertical ⁇ 1400 horizontal.
- a high-temperature thermo test is performed as shown in FIG. 13 in which a voltage of 10 kV is applied (energized) to the common electrode at a temperature of 35 ° C. and the occurrence of defective pixels is compared in each region. is there.
- a clear difference appears depending on the presence or absence of an insulating synthetic resin cover made of polycarbonate (PC).
- PC polycarbonate
- the radiation detector according to the present invention is a radiation detector that detects radiation by generating and reading out charges by incidence of radiation, and (a) a plurality of collecting electrodes that collect the charges are two-dimensional matrix A matrix substrate that reads out a radiation detection signal based on the charge from each of the collecting electrodes, (b) a radiation-sensitive semiconductor layer that generates the charge upon incidence of the radiation, and (c) the radiation.
- a common electrode for applying a bias voltage to the sensitive semiconductor layer (d) an insulating resin layer covering the entire surface on the exposed surface of the radiation sensitive semiconductor layer and the common electrode, and (e) an insulating resin cover; (F) an auxiliary insulation plate, (a) a matrix substrate, (b) a radiation-sensitive semiconductor layer, (c) a common electrode, (d) an insulating resin layer, (e) an insulating resin cover And (f) Insulating auxiliary plates are laminated in this order, the insulating auxiliary plate is formed of a material having the same degree of elasticity and thermal expansion as the matrix substrate, and the insulating resin cover is formed of the insulating resin layer and The insulating auxiliary plate and the insulating resin cover are formed of a material having the same degree of elasticity and coefficient of thermal expansion, and are bonded to each other by a bonding material.
- an insulating resin cover is provided, and a matrix substrate, a radiation-sensitive semiconductor layer, a common electrode, an insulating resin layer, an insulating resin cover, and an auxiliary insulation plate are laminated in this order.
- the auxiliary insulation plate is made of a material having the same elasticity and thermal expansion coefficient as the matrix substrate, and these layers (radiation sensitive semiconductor layer, common electrode, insulation resin layer and Since the insulating resin cover) is sandwiched, it is possible to prevent the radiation detector from warping due to temperature changes and cracking of these layers.
- the insulating resin cover is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer, stress due to temperature change is less likely to occur, and internal stress is less likely to accumulate in the insulating resin layer. If the insulating auxiliary plate and the insulating resin cover are bonded together by a bonding material, the structure of the radiation detector can be realized by the newly provided insulating resin cover. As a result, a long-life radiation detector can be realized even if the environment changes.
- “same degree” indicates the degree to which the digits of each numerical value in elasticity (tensile elastic modulus described later) and thermal expansion coefficient (linear expansion coefficient described later) do not change. It is a range up to double or a fraction.
- a carrier-selective intermediate layer is formed between the radiation-sensitive semiconductor layer and the common electrode, and the carrier-selectivity is formed between the radiation-sensitive semiconductor layer and the collection electrode.
- the intermediate layer may be formed only between the radiation-sensitive semiconductor layer and the common electrode, or the carrier-selective intermediate layer may be formed between the radiation-sensitive semiconductor layer and the collecting electrode.
- a carrier-selective intermediate layer may be formed only between them. Dark current can be reduced by forming an intermediate layer on the incident surface (surface on the common electrode side) of the radiation-sensitive semiconductor layer or on the surface opposite to the incident surface (surface on the collection electrode side). .
- the insulating resin layer is an epoxy resin
- the tensile elastic modulus of the insulating resin cover is in the range of 1 GPa to 10 GPa
- the linear expansion coefficient is 30 ⁇ 10 ⁇ 6 /
- the range is from K to 300 ⁇ 10 ⁇ 6 / K
- the matrix substrate is glass
- the tensile modulus of the insulation auxiliary plate is 50 GPa or more
- the linear expansion coefficient is 0.1 ⁇ 10 ⁇ 6 / K or more. To 10 ⁇ 10 ⁇ 6 / K or less.
- the tensile modulus is in the range of 1 GPa to 10 GPa, and the linear expansion coefficient is in the range of 30 ⁇ 10 ⁇ 6 / K to 300 ⁇ 10 ⁇ 6 / K.
- the insulating resin cover and the insulating resin layer made of epoxy resin have approximately the same degree of elasticity and thermal expansion coefficient.
- an auxiliary insulation plate having a tensile elastic modulus of 50 GPa or more and a linear expansion coefficient of 0.1 ⁇ 10 ⁇ 6 / K or more to 10 ⁇ 10 ⁇ 6 / K or less.
- the matrix substrate made of glass has the same degree of elasticity and coefficient of thermal expansion.
- the insulating resin cover is preferably a polymer resin.
- An insulating resin cover can be easily formed with a polymer resin.
- the polymer resin include polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), and the insulating resin cover is one of polycarbonate, polyethylene terephthalate, and polypropylene.
- the auxiliary insulation plate is preferably glass.
- the auxiliary insulating plate made of glass and the matrix substrate made of glass have the same degree of elasticity and thermal expansion coefficient.
- the bonding material for bonding the insulating auxiliary plate and the insulating resin cover is preferably a silicone resin adhesive, adhesive tape, synthetic rubber, or the like, which may be combined. Since these materials are highly flexible bonding materials, they have an allowance for expansion and contraction of the insulating resin layer due to temperature changes, and can further suppress the generation of internal stress in the insulating resin layer.
- the bonding material is not limited to these highly flexible bonding materials, and may be a bonding material with low flexibility typified by an epoxy resin adhesive or the like.
- the region where the auxiliary insulating plate and the insulating resin cover are joined is not particularly limited.
- the entire surface including the radiation detection effective area may be used, but the insulating auxiliary plate and the insulating resin cover are only in the peripheral region. It is preferable that they are joined together.
- the insulating resin layer since there is no bonding material in the radiation detection effective area that is the central region, the insulating resin layer has an allowance for the expansion and contraction of the insulating resin layer due to temperature change, similar to the effect of the highly flexible bonding material. The generation of internal stress can be further suppressed. Therefore, the auxiliary insulation plate and the insulating resin cover can be bonded only in the peripheral region with a bonding material having low flexibility.
- the auxiliary insulation plate and the insulating resin cover may be joined only in the peripheral region with a highly flexible joining material.
- the structure which combined the radiation detector of these invention mentioned above and FIG. 11 may be sufficient. That is, in the radiation detectors of these inventions described above, the thickness of the insulating resin layer in the radiation detection effective area may be thinner than the thickness of the insulating resin layer in the peripheral region outside the radiation detection effective area. Good. In the case of this structure, in addition to the effect of realizing a long-life radiation detector, attenuation of radiation by the insulating resin layer can be suppressed as much as possible.
- the insulating resin cover is recessed in the radiation detection effective area and integrally formed, and an insulating auxiliary plate is placed on and joined to the recessed portion where the insulating resin cover is recessed.
- the thickness of the insulating resin layer in the radiation detection effective area can be made thinner than the thickness of the insulating resin layer in the peripheral region by the amount of depression of the insulating resin cover.
- a fixed frame having an effective radiation detection area is provided, and an insulating resin cover and an insulation auxiliary are fixed to the opening of the fixed frame by fixing an insulating auxiliary plate and an insulating resin cover that are joined together from the inside.
- the thickness of the insulating resin layer in the radiation detection effective area can be made thinner than the thickness of the insulating resin layer in the peripheral region, as much as the auxiliary insulating plate and the insulating resin cover are recessed inward from the fixed frame.
- a buffer material made of an elastic material is interposed between the auxiliary insulation plate and the insulating resin cover.
- the internal stress in the insulating resin layer can be uniformly dispersed by the buffer material.
- a bonding material is provided on both sides of the buffer material, and the insulating auxiliary plate and the buffer material are bonded by the bonding material, and the insulating resin cover and the buffer material are bonded by the bonding material.
- the auxiliary insulation plate and the insulating resin cover are joined (the former structure).
- a cushioning material is interposed between the insulation auxiliary plate and the insulating resin cover, and in the peripheral area outside the radiation detection effective area, the insulation auxiliary plate and the insulating resin cover are joined. Join directly by material (the latter structure).
- both the former structure and the latter structure may be combined.
- the buffer material may be conductive.
- the buffer material is conductive, static electricity accumulated between the auxiliary insulation plate and the insulating resin cover can be discharged, and an electrostatic noise prevention effect can be obtained.
- the cushioning material need not be conductive.
- the auxiliary insulation plate is formed of a material having the same degree of elasticity and thermal expansion as the matrix substrate, and each layer (radiation sensitive semiconductor) is interposed between the matrix substrate and the insulation auxiliary plate.
- Layer, common electrode, insulating resin layer, and insulating resin cover) are sandwiched, so that it is possible to prevent the radiation detector from warping due to temperature change and cracking of these layers.
- the insulating resin cover is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer, stress due to temperature change is less likely to occur, and internal stress is less likely to accumulate in the insulating resin layer.
- the structure of the radiation detector can be realized by the newly provided insulating resin cover. As a result, a long-life radiation detector can be realized even if the environment changes.
- FIG. 1 is a schematic cross-sectional view of a flat panel X-ray detector (FPD) according to Example 1.
- FIG. It is a block diagram which shows the equivalent circuit of the active matrix board
- A) to (c) are schematic cross-sectional views respectively showing combinations of intermediate layers which are carrier-selective high-resistance semiconductor layers.
- 6 is a schematic cross-sectional view of a flat panel X-ray detector (FPD) according to Embodiment 2.
- FIG. (A), (b) is a schematic sectional drawing of the flat panel type
- FIG. (A)-(c) is a schematic sectional drawing of the flat panel type X-ray detector (FPD) based on Example 4.
- FIG. It is a schematic sectional drawing of the conventional radiation detector. It is a schematic sectional drawing of the conventional radiation detector different from FIG. It is a schematic sectional drawing of the conventional radiation detector different from FIG. 8, FIG. FIG. 11 is a schematic sectional view of a conventional radiation detector different from those shown in FIGS.
- (A) is a schematic plan view of the radiation detector for experiment
- (b) is a schematic sectional drawing of the radiation detector for experiment. It is a graph of the high temperature thermo test obtained using the radiation detector for experiment. It is the optical microscope enlarged photograph of the surface after 5800 hours progress of the high temperature thermo test of the radiation detector for experiment.
- FIG. 1 is a schematic cross-sectional view of a direct conversion type flat panel X-ray detector (hereinafter abbreviated as “FPD” where appropriate) according to the first embodiment
- FIG. FIG. 3 is a block diagram showing an equivalent circuit of an active matrix substrate of an FPD
- FIG. 3 is a schematic sectional view of the active matrix substrate of a flat panel X-ray detector (FPD).
- FPD direct conversion type flat panel X-ray detector
- the FPD according to the first embodiment includes an active matrix substrate 1, a radiation-sensitive semiconductor 2 that generates a charge upon incidence of radiation (X-rays in the first to fourth embodiments), a bias voltage, and the like. And a common electrode 3 for application.
- the active matrix substrate 1 has a plurality of collecting electrodes 11 formed on the radiation incident surface side, and an electric circuit 12 for storing and reading out charges collected by the collecting electrodes 11. It is configured.
- Each collection electrode 11 is set in a two-dimensional matrix arrangement within the radiation detection effective area SA.
- the active matrix substrate 1 corresponds to the matrix substrate in the present invention
- the radiation-sensitive semiconductor 2 corresponds to the radiation-sensitive semiconductor layer in the present invention
- the common electrode 3 for applying the bias voltage is common in the present invention.
- the collection electrode 11 corresponds to the collection electrode in the present invention
- the radiation detection effective area SA corresponds to the radiation detection effective area in the present invention.
- the semiconductor 2 is laminated on the incident surface side of the collecting electrode of the active matrix substrate 1, and the common electrode 3 is formed in a planar shape on the incident side of the semiconductor 2 and laminated.
- a lead wire 4 for supplying bias voltage is connected to the incident surface of the common electrode 3.
- a lead wire 4 such as a copper wire is connected to the common electrode 3 via a conductive paste (for example, a silver paste).
- the active matrix substrate 1 is formed with the collecting electrode 11 as described above, and the storage / reading electric circuit 12 is provided.
- the electric circuit 12 for accumulation / reading includes a capacitor 12A, a TFT (thin film field effect transistor) 12B as a switching element, a gate line 12a, a data line 12b, and the like, and one capacitor 12A and one for each collecting electrode 11 TFT12B are connected in association with each other.
- a gate driver 13, a charge / voltage conversion amplifier 14, a multiplexer 15, and an A / D converter 16 are arranged and connected around the storage / reading electric circuit 12 of the active matrix substrate 1.
- the gate driver 13, the charge / voltage conversion amplifier 14, the multiplexer 15, and the A / D converter 16 are connected to a substrate different from the active matrix substrate 1. Note that some or all of the gate driver 13, the charge-voltage conversion amplifier 14, the multiplexer 15, and the A / D converter 16 may be built in the active matrix substrate 1.
- a bias voltage is applied from a bias supply power source (not shown) to the common electrode 3 for bias voltage application via a lead wire 4 for supplying bias voltage.
- a bias voltage is applied from a bias supply power source (not shown) to the common electrode 3 for bias voltage application via a lead wire 4 for supplying bias voltage.
- the bias voltage applied charges are generated in the radiation-sensitive semiconductor 2 with the incidence of radiation (X-rays in Examples 1 to 4).
- the generated charges are once collected by the collecting electrode 11.
- the electric charge collected by the storage / readout electric circuit 12 is taken out as a radiation detection signal (X-ray detection signal in the first to fourth embodiments) for each collection electrode 11.
- the charges collected by the collecting electrode 11 are temporarily accumulated in the capacitor 12A.
- a read signal is sequentially applied from the gate driver 13 to the gate of each TFT 12B through the gate line 12a.
- the TFT 12B to which the read signal is given shifts from OFF to ON.
- the data line 12b connected to the source of the shifted TFT 12B is sequentially switched and connected by the multiplexer 15, the charge accumulated in the capacitor 12A is read from the TFT 12B via the data line 12b.
- the read charge is amplified by the charge-voltage conversion amplifier 14 and sent to the A / D converter 16 as a radiation detection signal (X-ray detection signal in the first to fourth embodiments) for each collection electrode 11 by the multiplexer 15. To convert from analog value to digital value.
- an X-ray detection signal is sent to an image processing circuit at a subsequent stage, image processing is performed, and a two-dimensional X-ray fluoroscopic image is output.
- Each collection electrode 11 in the two-dimensional matrix array corresponds to an electrode (pixel electrode) corresponding to each pixel of the radiation image (here, a two-dimensional X-ray fluoroscopic image).
- the FPD according to the first embodiment detects the two-dimensional intensity distribution of the radiation (X-rays in the first to fourth embodiments) projected onto the radiation detection effective area SA. It is a two-dimensional array type radiation detector that can be used.
- the FPD includes an insulating resin layer 5 that covers the entire surface of the exposed surface of the semiconductor 2 and the common electrode 3.
- the FPD includes an auxiliary insulating plate 6 made of a material having the same degree of elasticity and thermal expansion as the active matrix substrate 1.
- an insulating synthetic resin cover 7 is interposed between the insulating resin layer 5 and the auxiliary auxiliary plate 6 as the structure of the characteristic part of the present invention.
- the insulating synthetic resin cover 7 is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer 5. Furthermore, as shown in FIG.
- the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 are bonded to each other by the bonding material 8 on the entire surface including the radiation detection effective area SA.
- the insulating resin layer 5 corresponds to the insulating resin layer in the present invention
- the insulating auxiliary plate 6 corresponds to the insulating auxiliary plate in the present invention
- the insulating synthetic resin cover 7 corresponds to the insulating resin cover in the present invention.
- the material 8 corresponds to the bonding material in the present invention.
- a spacer 9 is erected on the matrix substrate 1, and the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 are supported on the spacer 9.
- a low-temperature room-temperature curing epoxy resin agent is injected and cured at room temperature.
- An insulating resin layer 5 made of a curable epoxy resin agent is formed in the gap.
- a glass substrate is used as the active matrix substrate 1.
- the glass substrate of the active matrix substrate 1 is about 0.5 mm to 1.5 mm, for example.
- the thickness of the semiconductor 2 is normally a thick film of about 0.5 mm to 1.5 mm, and the area is, for example, about 20 cm to 50 cm long ⁇ 20 cm to 50 cm wide.
- a glass substrate represented by a borosilicate glass substrate or a quartz glass substrate is used for example.
- the glass substrate of the auxiliary insulation plate 6 is also about 0.5 mm to 1.5 mm, for example.
- the radiation-sensitive semiconductor 2 includes high-purity amorphous selenium (a-Se), alkali metals such as Na, halogens such as Cl, selenium doped with As or Te, and amorphous semiconductors of selenium compounds, CdTe, CdZnTe, PbI 2 , It is preferably one of non-selenium-based polycrystalline semiconductors such as HgI 2 and TlBr.
- Amorphous selenium, amorphous semiconductors of selenium and selenium compounds doped with alkali metal, halogen or As or Te, and non-selenium-based polycrystalline semiconductors are excellent in suitability for large area and thick film.
- a-Se having a specific resistance of 10 9 ⁇ or more, preferably 10 11 ⁇ or more is used for the semiconductor 2, the suitability for increasing the area and the suitability for increasing the film thickness are remarkably excellent.
- the semiconductor 2 in addition to the sensitive semiconductor 2 described above, carrier selectivity formed on the incident surface (upper surface in FIG. 1), the surface opposite to the incident side (lower surface in FIG. 1) or both surfaces.
- the combination with the intermediate layer which is a high resistance semiconductor layer is also included.
- an intermediate layer 2a is formed between the semiconductor 2 and the common electrode 3, and an intermediate layer 2b is formed between the semiconductor 2 and the collecting electrode 11 (see FIG. 3).
- the intermediate layer 2a may be formed only between the semiconductor 2 and the common electrode 3, or as shown in FIG.
- the intermediate layer 2b may be formed only between the collecting electrode 11 (see FIG. 3).
- the intermediate layers 2a and 2b correspond to the carrier selective intermediate layer in the present invention.
- the dark current can be reduced by providing the carrier selective intermediate layers 2a and 2b.
- the carrier selectivity mentioned here refers to the property that the contribution rate to the charge transfer action is remarkably different between electrons and holes which are charge transfer media (carriers) in the semiconductor.
- the following modes are exemplified.
- a positive bias voltage is applied to the common electrode 3
- a material having a large contribution ratio of electrons is used for the intermediate layer 2a.
- the injection of holes from the common electrode 3 is blocked, and the dark current can be reduced.
- a material having a large contribution ratio of holes is used for the intermediate layer 2b.
- the injection of electrons from the collecting electrode 11 is blocked, and the dark current can be reduced.
- the thickness of the carrier selective intermediate layers 2a and 2b is usually preferably in the range of 0.1 ⁇ m to 10 ⁇ m. If the thickness of the intermediate layers 2a and 2b is less than 0.1 ⁇ m, there is a tendency that the dark current cannot be sufficiently suppressed, and conversely, if the thickness exceeds 10 ⁇ m, radiation detection tends to be hindered (for example, the sensitivity tends to decrease). Appears.
- semiconductors used for the carrier selective intermediate layers 2a and 2b include polycrystalline semiconductors such as Sb 2 S 3 , ZnTe, CeO 2 , CdS, ZnSe, and ZnS, alkali metals such as Na, halogens such as Cl, or Selenium doped with As or Te and an amorphous semiconductor of a selenium compound can be cited as being excellent in suitability for large area.
- those having a large contribution of electrons include polycrystalline semiconductors such as CeO 2 , CdS, CdSe, ZnSe, and ZnS that are n-type semiconductors, alkali metals, As, and Te.
- An amorphous body such as amorphous Se that has been doped to reduce the contribution ratio of holes can be used.
- examples of the material having a large contribution of holes include a polycrystalline semiconductor such as ZnTe which is a p-type semiconductor, and an amorphous material such as amorphous Se doped with halogen to reduce the contribution of electrons.
- an organic film layer such as polycarbonate in which a hole transfer agent or an electron transfer agent is mixed may be formed between the semiconductor 2 and the intermediate layer 2a.
- an organic film layer such as polycarbonate in which a hole transfer agent or an electron transfer agent is mixed may be formed between the semiconductor 2 and the intermediate layer 2b.
- the common electrode 3 is preferably formed of, for example, gold (Au) or aluminum (Al). In the present embodiment 1, including later-described embodiments 2 to 4, vapor deposition is performed with gold in order to form the common electrode 3 with gold.
- the insulating resin layer 5 is made of a room temperature curing type epoxy resin agent as described above, and an epoxy resin is used.
- the insulating resin layer 5 may be formed of a resin other than an epoxy resin (for example, a silicone resin).
- the epoxy resin of the insulating resin layer 5 has a gap between the common electrode 3 and the insulating synthetic resin cover 7 of, for example, about 1 mm to 2 mm.
- the insulating synthetic resin cover 7 is made of a polymer resin such as polycarbonate (PC), polyethylene terephthalate (PET), or polypropylene (PP).
- the polymer resin of the insulating synthetic resin cover 7 is, for example, about 0.5 mm to 1.5 mm. It is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as natural resin.
- the bonding material 8 for example, a highly flexible bonding material such as a silicone resin adhesive, an adhesive tape, or synthetic rubber (so-called rubber paste) is used.
- a highly flexible bonding material such as a silicone resin adhesive, an adhesive tape, or synthetic rubber (so-called rubber paste) is used.
- the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 are bonded to the entire surface including the radiation detection effective area SA by the bonding material 8.
- the spacer 9 is made of, for example, PC resin or ABS resin.
- an insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is provided, and a matrix substrate (in each embodiment).
- Active matrix substrate 1), semiconductor (radiation sensitive) 2, common electrode (for bias voltage application) 3, insulating resin layer 5, insulating resin cover (insulating synthetic resin cover 7) and auxiliary insulating plate 6 are laminated in this order.
- the insulating auxiliary plate 6 is formed of a material having the same elasticity and thermal expansion coefficient as that of the matrix substrate (active matrix substrate 1), and these layers (active matrix substrate 1) and the insulating auxiliary plate 6 are provided with these layers ( Since the semiconductor layer 2, the common electrode 3, the insulating resin layer 5, and the insulating synthetic resin cover 7) are sandwiched, it is possible to prevent the FPD from warping due to temperature changes and the cracking of these layers.
- the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer 5, stress due to temperature change is less likely to occur, and the insulating resin cover 5 is insulated. Internal stress is unlikely to accumulate in the resin layer 5. If the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) are bonded together by the bonding material 8, the FPD structure can be realized by the newly provided insulating resin cover (insulating synthetic resin cover 7). . As a result, a flat panel X-ray detector (FPD) having a long life even when the environment changes can be realized.
- FPD flat panel X-ray detector
- “same degree” in this specification means elasticity (tensile elastic modulus described later) and thermal expansion coefficient (linear expansion coefficient described later). ) Indicates the degree to which the numerical value of each numerical value does not change, and is several times the numerical value or a range up to a fraction.
- an intermediate layer 2a (carrier-selective) is formed between the (radiation sensitive) semiconductor 2 and the common electrode 3, and the semiconductor 2 and the collecting electrode 11 (see FIG. 3).
- the intermediate layer 2b may be formed between the semiconductor 2 and the common electrode 3 (see FIG. 4B). )), The intermediate layer 2b may be formed only between the semiconductor 2 and the collecting electrode 11 (see FIG. 3) (see FIG. 4C).
- the insulating resin layer 5 is an epoxy resin
- the tensile modulus (Tensile Modulus) of the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is The range is from 1 GPa to 10 GPa, and the linear expansion coefficient is from 30 ⁇ 10 ⁇ 6 / K to 300 ⁇ 10 ⁇ 6 / K.
- the matrix substrate (active matrix substrate 1 in each embodiment) is glass
- the tensile elastic modulus of the auxiliary insulating plate 6 is 50 GPa or more
- the linear expansion coefficient is 0.1 ⁇ 10 ⁇ 6 / K or more to 10 ⁇ .
- the range is 10 ⁇ 6 / K or less.
- the tensile modulus is in the range of 1 GPa to 10 GPa and the linear expansion coefficient is in the range of 30 ⁇ 10 ⁇ 6 / K to 300 ⁇ 10 ⁇ 6 / K.
- the insulating resin cover (insulating synthetic resin cover 7) and the insulating resin layer 5 made of epoxy resin have the same degree of elasticity and thermal expansion.
- the tensile elastic modulus is 50 GPa or more, and the linear expansion coefficient is 0.1 ⁇ 10 ⁇ 6 / K or more to 10 ⁇ 10 ⁇ 6 / K or less.
- the insulating auxiliary plate 6 in the range and the matrix substrate made of glass (active matrix substrate 1) have the same degree of elasticity and thermal expansion coefficient as each other.
- the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is preferably a polymer resin.
- An insulating resin cover (insulating synthetic resin cover 7) can be easily formed of a polymer resin.
- the polymer resin include polycarbonate (PC), polyethylene terephthalate (PET), and polypropylene (PP).
- the insulating resin cover (insulating synthetic resin cover 7) is any one of polycarbonate, polyethylene terephthalate, and polypropylene. .
- the insulating auxiliary plate 6 is preferably glass. As described above, when glass is employed as the matrix substrate (the active matrix substrate 1 in each embodiment), the auxiliary insulating plate 6 made of glass and the matrix substrate made of glass (active matrix substrate 1) are also: Has the same degree of elasticity and coefficient of thermal expansion as each other.
- the bonding material 8 for bonding the auxiliary insulation plate 6 and the insulating resin cover is preferably a silicone resin adhesive, adhesive tape, synthetic rubber, or the like. Also good. Since these materials are highly flexible bonding materials, there is an allowance for expansion and contraction of the insulating resin layer 5 due to temperature changes, and the generation of internal stress in the insulating resin layer 5 can be further suppressed.
- the bonding material 8 is not limited to these highly flexible bonding materials, and may be a bonding material with low flexibility represented by an epoxy resin adhesive or the like.
- FIG. 5 is a schematic cross-sectional view of a flat panel X-ray detector (FPD) according to the second embodiment.
- FPD flat panel X-ray detector
- the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 are bonded to the entire surface including the radiation detection effective area SA by the bonding material 8.
- the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 are joined only in the peripheral region excluding the radiation detection effective area SA.
- the region where the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) are joined is not particularly limited, and the entire surface including the radiation detection effective area SA as in the first embodiment.
- the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) are preferably joined only in the peripheral region.
- the expansion and contraction of the insulating resin layer 5 due to a temperature change is allowable as well as the effect of a highly flexible bonding material. Generation of internal stress in the resin layer 5 can be further suppressed.
- the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) can be joined only in the peripheral region with a bonding material having low flexibility.
- the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) may be bonded only in the peripheral region with a highly flexible bonding material.
- it is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as a natural resin.
- FIG. 6 is a schematic cross-sectional view of a flat panel X-ray detector (FPD) according to the third embodiment.
- FPD flat panel X-ray detector
- the thickness of the insulating resin layer 5 was uniform at the location where the common electrode 3 was formed.
- the FPD has a structure in which the FPDs according to the first and second embodiments and FIG. 11 (Patent Document 3) are combined.
- the thickness of the insulating resin layer 5 in the radiation detection effective area SA is that of the insulating resin layer 5 in the peripheral region outside the radiation detection effective area SA. It is formed thinner than the thickness.
- the thickness of the insulating resin layer 5 in the radiation detection effective area SA is the thin film TA
- the thickness of the insulating resin layer 5 in the peripheral region is the thick film ta.
- the attenuation of radiation (X-rays in Examples 1 to 4) by the insulating resin layer 5 is suppressed as much as possible. Can do.
- the thickness (thin film) TA of the insulating resin layer 5 in the radiation detection effective area SA is usually in the range of 0.1 mm to 1.0 mm, and the thickness (thick film) ta of the insulating resin layer 5 in the peripheral area is Usually, it is in the range of 1 mm to 2 mm.
- the insulating synthetic resin cover 7 is integrally formed by being recessed in the radiation detection effective area SA, and the insulating auxiliary is provided in the recessed portion 7A where the insulating synthetic resin cover 7 is recessed.
- the plate 6 is placed and joined.
- the thickness (thin film) TA of the insulating resin layer 5 in the radiation detection effective area SA is formed to be thinner than the thickness (thick film) ta of the insulating resin layer 5 in the peripheral region by an amount corresponding to the depression of the insulating synthetic resin cover 7. be able to.
- the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 joined to the opening 21A of the fixed frame 21 where the radiation detection effective area SA is opened are joined from the inside.
- the insulating synthetic resin cover 7, the insulating auxiliary plate 6, and the fixing frame 21 are laminated in this order.
- the thickness (thin film) TA of the insulating resin layer 5 in the radiation detection effective area SA is determined by the amount of the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 recessed inward from the fixed frame 21. Can be formed thinner than the thickness (thick film) ta.
- the fixed frame 21 corresponds to the fixed frame in the present invention.
- the fixing frame 21 may be the same polymer resin as the insulating synthetic resin cover 7, or may be the same PC resin or ABS resin as the spacer 9, or separate from the insulating synthetic resin cover 7 and the spacer 9. It may be a member. Further, the spacer 9 and the fixed frame 21 may be integrally formed.
- a combination of the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 joined only at the peripheral region is combined.
- a combination of the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 bonded together by the bonding material 8 may be combined on the entire surface including the effective detection area SA. Further, as described in the first embodiment, it is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as a natural resin.
- FIG. 7 is a schematic sectional view of a flat panel X-ray detector (FPD) according to the fourth embodiment. Portions common to the above-described first to third embodiments are denoted by the same reference numerals, description thereof is omitted, and illustration is omitted.
- FPD flat panel X-ray detector
- a buffer material 22 made of an elastic material is interposed between the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 as shown in FIG.
- rubber or sponge is used for the buffer material 22.
- the internal stress in the insulating resin layer 5 can be uniformly dispersed by the buffer material 22.
- the cushioning material 22 corresponds to the cushioning material in this invention.
- the bonding materials 8a and 8b are provided on both surfaces of the buffer material 22, and the auxiliary insulation plate 6 and the buffer material 22 are connected by the bonding material 8a.
- the insulating synthetic resin cover 7 and the buffer material 22 are bonded together by the bonding material 8b, whereby the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 are bonded.
- a buffer material 22 is interposed between the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 so as to be outside the radiation detection effective area SA.
- the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 are directly bonded by the bonding material 8c.
- the bonding materials 8 a and 8 b are provided on both surfaces of the buffer material 22, and the auxiliary insulation plate 6 and the buffer material 22 are connected to the bonding material.
- the insulating auxiliary resin plate 6 and the insulating synthetic resin cover 7 are bonded together by bonding the insulating synthetic resin cover 7 and the buffer material 22 with the bonding material 8b.
- the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 are directly bonded by the bonding material 8c.
- the cushioning material 22 may be conductive.
- the conductive buffer material 22 may be formed by mixing a conductive filler into the rubber or sponge described above, or the conductive buffer material 22 may be formed by processing the conductive material such as carbon so as to have elasticity. It may be formed. If the buffer material 22 is conductive, static electricity accumulated between the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 can be discharged, and an electrostatic noise prevention effect can be obtained. Of course, the buffer material 22 does not need to be conductive.
- the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 are joined to the bonding material 8 over the entire surface including the radiation detection effective area SA.
- (8a, 8b) was combined, you may combine what joined the insulation auxiliary
- FIG. Further, as described in the first embodiment, it is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as a natural resin.
- the present invention is not limited to the above embodiment, and can be modified as follows.
- the X-ray detector is taken as an example of the radiation detector.
- the radiation detector for example, a gamma ray detector
- the radiation detector that detects radiation other than the X-ray (for example, gamma ray) is also described. Applicable.
- the insulating auxiliary plate 6 and the insulating resin cover are bonded by the bonding material 8 at least in the peripheral region.
- the insulating auxiliary plate 6 and the insulating resin cover may be bonded to the area SA only by the bonding material 8. Including the case where the insulating auxiliary plate 6 and the insulating resin cover (insulating synthetic resin cover 7) are bonded by the bonding material 8 over the entire surface including the radiation detection effective area SA as in the first embodiment, at least in the detection effective area SA.
- the insulating resin layer 5 is recessed due to curing or weighting, and accordingly, the insulating resin cover (insulating synthetic resin cover 7) in the detection effective area SA may also be recessed, so that at least the detection effective area SA is insulated.
- the bonding material 8 By joining the plate 6 and the insulating resin cover (insulating synthetic resin cover 7) with the bonding material 8, the dent of the insulating resin cover (insulating synthetic resin cover 7) can be prevented.
- the matrix substrate and the auxiliary insulation plate are made of glass, but are not particularly limited as long as they can be an insulating base material as exemplified by a plastic film.
- the lead wire 4 passes through the spacer 9 and is taken out from the side surface. May be.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
In this radiation detector (FPD), since an insulating auxiliary plate (6) is formed of a material having elasticity and thermal expansion coefficient similar to those of an active matrix substrate (1), and layers (a semiconductor layer (2), a common electrode (3), an insulating resin layer (5), and an insulating synthetic resin cover (7)) are sandwiched between the active matrix substrate (1) and the insulating auxiliary plate (6), warping of the radiation detector (FPD) and cracking of the layers due to a temperature change can be prevented. Furthermore, since the insulating synthetic resin cover (7) is formed of a material having elasticity and thermal expansion coefficient similar to those of the insulating resin layer (5), stress due to a temperature change is not easily generated, and internal stress is not easily accumulated in the insulating resin layer (5). When the insulating auxiliary plate (6) and the insulating synthetic resin cover (7) are bonded to each other using a bonding material (8), a structure of the radiation detector (FPD) can be attained with the newly provided insulating synthetic resin cover (7). As a result, the radiation detector (FPD) having a long service life even with an environmental change can be attained.
Description
この発明は、放射線の入射により電荷を生成して読み出すことにより放射線を検出する放射線検出器に係り、医療分野,工業分野,さらには、原子力分野などに用いられる放射線検出器に関する。
The present invention relates to a radiation detector that detects radiation by generating and reading out charges by incidence of radiation, and relates to a radiation detector used in the medical field, the industrial field, and the nuclear field.
従来、この種の放射線(例えばX線)検出器には、放射線(例えばX線)の入射により光を一旦生成して、その光から電荷を生成することで、放射線から電荷に間接的に変換して放射線を検出する「間接変換型」の検出器と、放射線の入射により電荷を生成することで、放射線から電荷に直接的に変換して放射線を検出する「直接変換型」の検出器とがある。なお、放射線感応型の半導体が電荷を生成する。
Conventionally, this type of radiation (for example, X-ray) detector indirectly generates radiation from the light (for example, X-rays) and generates charges from the light, thereby indirectly converting radiation to charges. A "direct conversion type" detector that detects radiation and a "direct conversion type" detector that detects radiation by directly converting radiation into electric charge by generating charges by the incidence of radiation. There is. Note that a radiation-sensitive semiconductor generates a charge.
直接変換型の放射線検出器は、図8に示すように、アクティブマトリックス基板51と、放射線の入射により電荷を生成する放射線感応型の半導体52と、バイアス電圧印加用の共通電極53とを備えている。アクティブマトリックス基板51は、放射線の入射面側に複数の収集電極(図示省略)を形成し、各収集電極で収集される電荷の蓄積・読み出し用電気回路(図示省略)を配設して構成されている。各収集電極については放射線検出有効エリアSA内で2次元状マトリックス配列で設定している。
As shown in FIG. 8, the direct conversion type radiation detector includes an active matrix substrate 51, a radiation sensitive semiconductor 52 that generates an electric charge upon incidence of radiation, and a common electrode 53 for applying a bias voltage. Yes. The active matrix substrate 51 is configured by forming a plurality of collection electrodes (not shown) on the radiation incident surface side and disposing an electric circuit (not shown) for accumulating / reading charges collected by each collection electrode. ing. Each collection electrode is set in a two-dimensional matrix arrangement within the radiation detection effective area SA.
このアクティブマトリックス基板51の収集電極の入射面側に半導体52を積層し、その半導体52の入射側に共通電極53を面状に形成して積層している。そして、共通電極53の入射面にバイアス電圧給電用のリード線54を接続している。
The semiconductor 52 is stacked on the incident surface side of the collecting electrode of the active matrix substrate 51, and the common electrode 53 is formed in a planar shape on the incident side of the semiconductor 52 and stacked. A lead wire 54 for supplying bias voltage is connected to the incident surface of the common electrode 53.
放射線検出器によって放射線を検出する際には、バイアス供給電源(図示省略)からバイアス電圧を、バイアス電圧給電用のリード線54を介してバイアス電圧印加用の共通電極53に印加する。バイアス電圧を印加した状態で、放射線の入射に伴って放射線感応型の半導体52で電荷を生成する。この生成された電荷を収集電極で一旦収集する。コンデンサやスイッチング素子および電気配線等からなる蓄積・読み出し用電気回路によって、収集された電荷を各収集電極毎の放射線検出信号として取り出す。
When detecting radiation with a radiation detector, a bias voltage is applied from a bias supply power source (not shown) to a bias voltage applying common electrode 53 via a lead wire 54 for supplying a bias voltage. In a state where a bias voltage is applied, electric charges are generated by the radiation-sensitive semiconductor 52 with the incidence of radiation. This generated charge is once collected by the collecting electrode. The collected charge is taken out as a radiation detection signal for each collecting electrode by an electric circuit for accumulation / reading composed of a capacitor, a switching element, electric wiring, and the like.
2次元状マトリックス配列の各収集電極は、放射線画像の各画素に対応する電極(画素電極)にそれぞれ対応している。放射線検出信号を取り出すことで、放射線検出有効エリアSAに投影される放射線の2次元強度分布に応じた放射線画像を作成することができる。
Each collection electrode of the two-dimensional matrix array corresponds to an electrode (pixel electrode) corresponding to each pixel of the radiation image. By extracting the radiation detection signal, a radiation image corresponding to the two-dimensional intensity distribution of the radiation projected on the radiation detection effective area SA can be created.
図8に示す放射線検出器では、特にアモルファスセレンのようなアモルファス(非晶質)半導体厚膜を放射線感応型の半導体層として用いる場合、アモルファス半導体は真空蒸着等の方法によって厚くて広い膜を容易に形成することができる。したがって、アモルファス半導体は、大面積厚膜が必要な2次元アレイ型放射線検出器を構成するのに適している。
In the radiation detector shown in FIG. 8, especially when an amorphous (amorphous) semiconductor thick film such as amorphous selenium is used as a radiation-sensitive semiconductor layer, the amorphous semiconductor can be easily formed into a thick and wide film by a method such as vacuum evaporation. Can be formed. Therefore, the amorphous semiconductor is suitable for constituting a two-dimensional array type radiation detector that requires a large-area thick film.
しかし、図8に示す従来の放射線検出器の場合には、高電圧のバイアス電圧を印加して使用するので、沿面放電の問題が発生する。そこで、図9に示すように、沿面放電を抑えるために半導体52および共通電極53の露出面上の表面全体を、例えばシリコーン樹脂からなる高耐圧の絶縁樹脂層55で覆った構造が本発明者等から提案されている(例えば、特許文献1参照)。
However, in the case of the conventional radiation detector shown in FIG. 8, since a high bias voltage is applied, a problem of creeping discharge occurs. Therefore, as shown in FIG. 9, the present inventor has a structure in which the entire surface on the exposed surface of the semiconductor 52 and the common electrode 53 is covered with a high-voltage insulating resin layer 55 made of, for example, silicone resin in order to suppress creeping discharge. (See, for example, Patent Document 1).
しかし、この構造では、温度変化により放射線検出器に反りが生じ、絶縁樹脂層55,半導体52,共通電極53に亀裂が入る。また、キャリア選択性の高抵抗薄膜からなる中間層が半導体52の入射面あるいは当該入射面とは逆側の面に形成されている場合には、当該中間層にも亀裂が入る。これらの層に亀裂が入ることにより、沿面放電耐圧が不十分となる。
However, in this structure, the radiation detector is warped due to a temperature change, and the insulating resin layer 55, the semiconductor 52, and the common electrode 53 are cracked. In addition, when the intermediate layer made of the carrier-selective high-resistance thin film is formed on the incident surface of the semiconductor 52 or the surface opposite to the incident surface, the intermediate layer is also cracked. By cracking these layers, the creeping discharge withstand voltage becomes insufficient.
そこで、反り対策のために、図10に示すように、例えばエポキシ樹脂などに代表される高耐圧の硬化性合成樹脂からなる絶縁樹脂層55の上側(入射側)に、アクティブマトリックス基板51と同程度の熱膨張係数を持つ絶縁補助板56で覆って、アクティブマトリックス基板51と絶縁補助板56とで絶縁樹脂層55を挟み込む構造が本発明者等から提案されている(例えば、特許文献2参照)。ただ、この構造の場合には、放射線検出有効エリアSAを含めて絶縁樹脂層55が厚く形成されているので、絶縁樹脂層55により放射線が減衰するという問題が生じる。
Therefore, as a countermeasure against warpage, as shown in FIG. 10, the same as the active matrix substrate 51 is formed on the upper side (incident side) of the insulating resin layer 55 made of a high pressure-resistant curable synthetic resin represented by an epoxy resin, for example. The present inventors have proposed a structure in which the insulating resin layer 55 is sandwiched between the active matrix substrate 51 and the insulating auxiliary plate 56 so as to cover the insulating auxiliary plate 56 having a thermal expansion coefficient (see, for example, Patent Document 2). ). However, in the case of this structure, since the insulating resin layer 55 is formed thick including the radiation detection effective area SA, there is a problem that radiation is attenuated by the insulating resin layer 55.
そこで、図11に示すように、放射線検出有効エリアSAでの絶縁樹脂層55の厚みが、放射線検出有効エリアSA外にある周辺領域での絶縁樹脂層55の厚みよりも薄く形成された構造も本発明者等から提案されている(例えば、特許文献3参照)。この構造の場合には、放射線検出有効エリアSAでは絶縁樹脂層55が薄く形成されているので、絶縁樹脂層55による放射線の減衰を極力抑えることができる。
Therefore, as shown in FIG. 11, the insulating resin layer 55 in the radiation detection effective area SA is thinner than the insulating resin layer 55 in the peripheral region outside the radiation detection effective area SA. The present inventors have proposed (for example, see Patent Document 3). In the case of this structure, since the insulating resin layer 55 is thinly formed in the radiation detection effective area SA, radiation attenuation by the insulating resin layer 55 can be suppressed as much as possible.
しかしながら、放射線検出器の製造場の温度環境は通常20℃~25℃であるが、使用環境がこの温度範囲と同じであるとは限らないという問題点がある。ましてや、放置・運搬環境は、さらにかけ離れた温度になる可能性がある。製造時の温度と異なる温度環境に長時間晒されると、反り対策を講じた図10(特許文献2)や図11(特許文献3)を使用したときでも、各膜に亀裂やピンホール等の膜破壊が発生して検出器の性能が劣化していくことが近年判明した。
However, the temperature environment of the radiation detector manufacturing site is usually 20 ° C. to 25 ° C., but there is a problem that the usage environment is not always the same as this temperature range. Furthermore, the neglected and transported environment may be at a farther temperature. When exposed to a temperature environment different from the temperature at the time of manufacturing for a long time, even when using FIG. 10 (Patent Document 2) or FIG. It has recently been found that the performance of the detector deteriorates due to the occurrence of film breakage.
この発明は、このような事情に鑑みてなされたものであって、環境が変わっても長寿命な放射線検出器を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide a long-life radiation detector even if the environment changes.
発明者らは、上記の問題を解決するために鋭意研究した結果、次のような知見を得た。
As a result of earnest research to solve the above problems, the inventors have obtained the following knowledge.
すなわち、放射線検出器を長時間使用していると欠損画素が増える傾向があることが判明した。ここで欠損画素とは、出力される放射線画像の通常の画素値と比べて極端に値が大きいあるいは小さい画素のことを示す。欠損画素が生じる原因としては、絶縁樹脂層内の内部応力が考えられる。図10(特許文献2)や図11(特許文献3)の放射線検出器を使用した場合に反りが発生しないことは認識されていたが、これらの放射線検出器を長時間使用した場合に絶縁樹脂層内に内部応力が蓄積することについては認識されていなかった。
That is, it was found that the number of defective pixels tends to increase when the radiation detector is used for a long time. Here, the defective pixel means a pixel whose value is extremely large or small compared to the normal pixel value of the output radiation image. A possible cause of the defective pixel is an internal stress in the insulating resin layer. Although it has been recognized that no warpage occurs when the radiation detectors of FIG. 10 (Patent Document 2) and FIG. 11 (Patent Document 3) are used, an insulating resin is obtained when these radiation detectors are used for a long time. The accumulation of internal stress in the layer was not recognized.
近年、図10(特許文献2)や図11(特許文献3)の放射線検出器を長時間使用した場合に、反りが発生しない半面、絶縁樹脂層に内部応力が蓄積し、長時間かけて共通電極やキャリア選択性の中間層に応力腐食を発生させることがわかってきた。このように長時間使用することにより、弾性および熱膨張率が異なる絶縁補助板が絶縁樹脂層に直接的に徐々に応力をかけ続けたことが原因ではないかという知見を得た。この絶縁樹脂層内の内部応力の課題は、図11(特許文献3)のように中央領域である放射線検出有効エリアでの絶縁補助板を窪ませて絶縁樹脂層の厚みを薄くしても解消できないことがわかっている。
In recent years, when the radiation detectors of FIG. 10 (Patent Document 2) and FIG. 11 (Patent Document 3) are used for a long time, the internal stress accumulates in the insulating resin layer while warpage does not occur, and it is common over a long time. It has been found that stress corrosion occurs in electrodes and carrier selective intermediate layers. Thus, the knowledge that the insulation auxiliary | assistant board from which an elasticity and a thermal expansion coefficient differ continued to apply the stress gradually and directly to the insulating resin layer by using for a long time was acquired. The problem of internal stress in the insulating resin layer can be solved even if the insulating auxiliary plate is recessed in the radiation detection effective area, which is the central region, and the thickness of the insulating resin layer is reduced as shown in FIG. 11 (Patent Document 3). I know I can't.
そこで、絶縁樹脂層内の内部応力を抑制するには、絶縁樹脂層と同程度の弾性および熱膨張率を有する部材を、絶縁樹脂層と絶縁補助板との間に介在させれば、内部応力を抑制する可能性があるという知見を得た。そして、絶縁樹脂層と同程度の弾性および熱膨張率を有する部材として絶縁樹脂カバーを採用すれば、絶縁樹脂カバーが応力を緩衝させ、内部応力を確実に抑制することができる筈という知見を得た。ただ、絶縁樹脂カバー自体は接合力がないので、絶縁補助板と絶縁樹脂カバーとを接合材によって接合させれば、新たに設けた絶縁樹脂カバーによって放射線検出器の構造を実現することができる筈という知見を得た。
Therefore, in order to suppress the internal stress in the insulating resin layer, if a member having the same degree of elasticity and thermal expansion as the insulating resin layer is interposed between the insulating resin layer and the auxiliary insulating plate, the internal stress is reduced. We obtained the knowledge that there is a possibility of suppressing. And if the insulating resin cover is adopted as a member having the same degree of elasticity and thermal expansion as the insulating resin layer, the knowledge that the insulating resin cover can buffer the stress and reliably suppress the internal stress is obtained. It was. However, since the insulating resin cover itself has no bonding force, the structure of the radiation detector can be realized by the newly provided insulating resin cover if the insulating auxiliary plate and the insulating resin cover are bonded to each other with a bonding material. I got the knowledge.
かかる知見の下で、図12のような実験用の放射線検出器を用いて、図13の高温サーモ試験で確認してみた。図12(a)の平面図に示すように、全領域を、領域PCA,領域Ga,領域PCBおよび領域Gbに4分割する。図12(b)の断面図に示すように、領域PCAではポリカーボネート(PC: polycarbonate)からなる絶縁合成樹脂カバー57を、絶縁樹脂層55と(ガラスからなる)絶縁補助板56との間に介在させる。一方、図12(b)の断面図に示すように、領域Gaでは従来の構造と同様に絶縁樹脂層55の上側に絶縁補助板56で直接に覆う。同様に、領域PCBでは絶縁合成樹脂カバー57を、絶縁樹脂層55と絶縁補助板56との間に介在させ、領域Gbでは従来の構造と同様に絶縁樹脂層55の上側に絶縁補助板56で直接に覆う。なお、図12に示すように、絶縁補助板56と絶縁合成樹脂カバー57とを接合する接合材58として粘着テープを使用する。各領域PCA,Ga,PCBおよびGbでの画素は縦1400×横1400である。
Under such knowledge, using a radiation detector for experiment as shown in FIG. 12, the high temperature thermo test of FIG. 13 was used for confirmation. As shown in the plan view of FIG. 12A, the entire area is divided into four areas, area PCA, area Ga, area PCB, and area Gb. 12B, in the region PCA, an insulating synthetic resin cover 57 made of polycarbonate (PC) is interposed between the insulating resin layer 55 and the insulating auxiliary plate 56 (made of glass). Let On the other hand, as shown in the cross-sectional view of FIG. 12B, in the region Ga, the insulating auxiliary layer 56 directly covers the insulating resin layer 55 on the upper side as in the conventional structure. Similarly, in the area PCB, the insulating synthetic resin cover 57 is interposed between the insulating resin layer 55 and the auxiliary insulating plate 56, and in the area Gb, the insulating auxiliary plate 56 is disposed on the upper side of the insulating resin layer 55 as in the conventional structure. Cover directly. As shown in FIG. 12, an adhesive tape is used as a bonding material 58 for bonding the auxiliary insulation plate 56 and the insulating synthetic resin cover 57. The pixels in each area PCA, Ga, PCB, and Gb are 1400 vertical × 1400 horizontal.
図12に示す実験用の放射線検出器を用いて、温度35℃で共通電極に10kVの電圧を印加(通電)して欠損画素の発生を各領域で比較した高温サーモ試験は図13の通りである。図13に示すように、ポリカーボネート(PC)からなる絶縁合成樹脂カバーの有無で明瞭な違いが表れている。絶縁合成樹脂カバーがある領域PCA,PCBでは5000時間経過後も欠損画素数が10個以下であるのに対し、絶縁合成樹脂カバーがないガラスのみの領域Ga,Gbでは2000時間経過程度から欠損画素数が増え始め、4000時間後には領域Gaでは5000個を超過した。この様子は、5000時間経過後の欠損画像(図示省略)でも確認することができた。画像中の白点が欠損画素である。特に、領域Ga,Gbの端部(周辺領域)において欠損画素は集中して分布し、全体的にも欠損画素は分布して領域Ga,Gbでの画像は白っぽく見える。対して、領域PCA,PCBでの画像は全体的に黒っぽい。その結果、各領域PCA,Ga,PCBおよびGbでの境界が明瞭になった。このように、図13の結果によってこの発明の効果を確認することができた。
Using the experimental radiation detector shown in FIG. 12, a high-temperature thermo test is performed as shown in FIG. 13 in which a voltage of 10 kV is applied (energized) to the common electrode at a temperature of 35 ° C. and the occurrence of defective pixels is compared in each region. is there. As shown in FIG. 13, a clear difference appears depending on the presence or absence of an insulating synthetic resin cover made of polycarbonate (PC). In the areas PCA and PCB where the insulating synthetic resin cover is provided, the number of defective pixels is 10 or less even after 5000 hours, whereas in the areas Ga and Gb where only the insulating synthetic resin cover is not provided, the defective pixels from about 2000 hours have elapsed. The number started to increase, and after 4000 hours, the area Ga exceeded 5000. This state could be confirmed even in a defect image (not shown) after 5000 hours. White dots in the image are missing pixels. In particular, the defective pixels are concentrated and distributed at the ends (peripheral regions) of the regions Ga and Gb, and the defective pixels are distributed as a whole, and the images in the regions Ga and Gb appear whitish. On the other hand, the images in the areas PCA and PCB are generally blackish. As a result, the boundary in each area | region PCA, Ga, PCB, and Gb became clear. Thus, the effect of this invention was able to be confirmed with the result of FIG.
さらに、高温サーモ試験5800時間経過後の共通電極表面を、光学顕微鏡で拡大して観察すると、図14(a)に示すように領域PCAには異常が見られないが、領域Gaには、図14(b)に示すような多数のピンホールが観測された。このように、図14の結果からもこの発明の効果を確認することができた。なお、図14の大きな黒点はマトリックス基板上のコンタクトホールである。
Further, when the surface of the common electrode after 5800 hours of high-temperature thermotest is observed with an optical microscope, no abnormality is observed in the area PCA as shown in FIG. Many pinholes as shown in FIG. 14 (b) were observed. Thus, the effect of the present invention could be confirmed also from the result of FIG. Note that the large black dots in FIG. 14 are contact holes on the matrix substrate.
このような知見に基づくこの発明は、次のような構成をとる。
すなわち、この発明に係る放射線検出器は、放射線の入射により電荷を生成して読み出すことにより放射線を検出する放射線検出器であって、(a)前記電荷を収集する複数の収集電極が2次元マトリックス状に配列され、前記収集電極の各々から前記電荷に基づく放射線検出信号を読み出すマトリックス基板と、(b)前記放射線の入射により前記電荷を生成する放射線感応型の半導体層と、(c)前記放射線感応型の半導体層にバイアス電圧を印加する共通電極と、(d)前記放射線感応型の半導体層および前記共通電極の露出面上の表面全体を覆う絶縁樹脂層と、(e)絶縁樹脂カバーと、(f)絶縁補助板とを備え、(a)マトリックス基板,(b)放射線感応型の半導体層,(c)共通電極,(d)絶縁樹脂層,(e)絶縁樹脂カバーおよび(f)絶縁補助板がこの順に積層されており、前記絶縁補助板は前記マトリックス基板と同程度の弾性および熱膨張率を持つ材料で形成され、前記絶縁樹脂カバーは前記絶縁樹脂層と同程度の弾性および熱膨張率を持つ材料で形成され、前記絶縁補助板と前記絶縁樹脂カバーとは接合材によって接合されることを特徴とするものである。 The present invention based on such knowledge has the following configuration.
That is, the radiation detector according to the present invention is a radiation detector that detects radiation by generating and reading out charges by incidence of radiation, and (a) a plurality of collecting electrodes that collect the charges are two-dimensional matrix A matrix substrate that reads out a radiation detection signal based on the charge from each of the collecting electrodes, (b) a radiation-sensitive semiconductor layer that generates the charge upon incidence of the radiation, and (c) the radiation. A common electrode for applying a bias voltage to the sensitive semiconductor layer, (d) an insulating resin layer covering the entire surface on the exposed surface of the radiation sensitive semiconductor layer and the common electrode, and (e) an insulating resin cover; (F) an auxiliary insulation plate, (a) a matrix substrate, (b) a radiation-sensitive semiconductor layer, (c) a common electrode, (d) an insulating resin layer, (e) an insulating resin cover And (f) Insulating auxiliary plates are laminated in this order, the insulating auxiliary plate is formed of a material having the same degree of elasticity and thermal expansion as the matrix substrate, and the insulating resin cover is formed of the insulating resin layer and The insulating auxiliary plate and the insulating resin cover are formed of a material having the same degree of elasticity and coefficient of thermal expansion, and are bonded to each other by a bonding material.
すなわち、この発明に係る放射線検出器は、放射線の入射により電荷を生成して読み出すことにより放射線を検出する放射線検出器であって、(a)前記電荷を収集する複数の収集電極が2次元マトリックス状に配列され、前記収集電極の各々から前記電荷に基づく放射線検出信号を読み出すマトリックス基板と、(b)前記放射線の入射により前記電荷を生成する放射線感応型の半導体層と、(c)前記放射線感応型の半導体層にバイアス電圧を印加する共通電極と、(d)前記放射線感応型の半導体層および前記共通電極の露出面上の表面全体を覆う絶縁樹脂層と、(e)絶縁樹脂カバーと、(f)絶縁補助板とを備え、(a)マトリックス基板,(b)放射線感応型の半導体層,(c)共通電極,(d)絶縁樹脂層,(e)絶縁樹脂カバーおよび(f)絶縁補助板がこの順に積層されており、前記絶縁補助板は前記マトリックス基板と同程度の弾性および熱膨張率を持つ材料で形成され、前記絶縁樹脂カバーは前記絶縁樹脂層と同程度の弾性および熱膨張率を持つ材料で形成され、前記絶縁補助板と前記絶縁樹脂カバーとは接合材によって接合されることを特徴とするものである。 The present invention based on such knowledge has the following configuration.
That is, the radiation detector according to the present invention is a radiation detector that detects radiation by generating and reading out charges by incidence of radiation, and (a) a plurality of collecting electrodes that collect the charges are two-dimensional matrix A matrix substrate that reads out a radiation detection signal based on the charge from each of the collecting electrodes, (b) a radiation-sensitive semiconductor layer that generates the charge upon incidence of the radiation, and (c) the radiation. A common electrode for applying a bias voltage to the sensitive semiconductor layer, (d) an insulating resin layer covering the entire surface on the exposed surface of the radiation sensitive semiconductor layer and the common electrode, and (e) an insulating resin cover; (F) an auxiliary insulation plate, (a) a matrix substrate, (b) a radiation-sensitive semiconductor layer, (c) a common electrode, (d) an insulating resin layer, (e) an insulating resin cover And (f) Insulating auxiliary plates are laminated in this order, the insulating auxiliary plate is formed of a material having the same degree of elasticity and thermal expansion as the matrix substrate, and the insulating resin cover is formed of the insulating resin layer and The insulating auxiliary plate and the insulating resin cover are formed of a material having the same degree of elasticity and coefficient of thermal expansion, and are bonded to each other by a bonding material.
この発明の放射線検出器によれば、絶縁樹脂カバーを備え、マトリックス基板,放射線感応型の半導体層,共通電極,絶縁樹脂層,絶縁樹脂カバーおよび絶縁補助板がこの順に積層されている。絶縁補助板はマトリックス基板と同程度の弾性および熱膨張率を持つ材料で形成され、マトリックス基板と絶縁補助板との間にこれらの層(放射線感応型の半導体層,共通電極,絶縁樹脂層および絶縁樹脂カバー)が挟み込まれるので、温度変化による放射線検出器の反り、これらの層の亀裂を防止することができる。また、絶縁樹脂カバーは絶縁樹脂層と同程度の弾性および熱膨張率を持つ材料で形成されているので、温度変化による応力が発生しにくく、絶縁樹脂層に内部応力が蓄積しにくい。絶縁補助板と絶縁樹脂カバーとを接合材によって接合させれば、新たに設けた絶縁樹脂カバーによって放射線検出器の構造を実現することができる。その結果、環境が変わっても長寿命な放射線検出器を実現することができる。なお、本明細書中での「同程度」とは、弾性(後述する引張弾性率)および熱膨張率(後述する線膨張係数)における各々の数値の桁が変わらない程度を示し、数値の数倍もしくは数分の一までの範囲である。
According to the radiation detector of the present invention, an insulating resin cover is provided, and a matrix substrate, a radiation-sensitive semiconductor layer, a common electrode, an insulating resin layer, an insulating resin cover, and an auxiliary insulation plate are laminated in this order. The auxiliary insulation plate is made of a material having the same elasticity and thermal expansion coefficient as the matrix substrate, and these layers (radiation sensitive semiconductor layer, common electrode, insulation resin layer and Since the insulating resin cover) is sandwiched, it is possible to prevent the radiation detector from warping due to temperature changes and cracking of these layers. In addition, since the insulating resin cover is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer, stress due to temperature change is less likely to occur, and internal stress is less likely to accumulate in the insulating resin layer. If the insulating auxiliary plate and the insulating resin cover are bonded together by a bonding material, the structure of the radiation detector can be realized by the newly provided insulating resin cover. As a result, a long-life radiation detector can be realized even if the environment changes. In the present specification, “same degree” indicates the degree to which the digits of each numerical value in elasticity (tensile elastic modulus described later) and thermal expansion coefficient (linear expansion coefficient described later) do not change. It is a range up to double or a fraction.
上述したこの発明の放射線検出器において、放射線感応型の半導体層と共通電極との間にキャリア選択性の中間層を形成するとともに、放射線感応型の半導体層と収集電極との間にキャリア選択性の中間層を形成してもよいし、放射線感応型の半導体層と共通電極との間のみにキャリア選択性の中間層を形成してもよいし、放射線感応型の半導体層と収集電極との間のみにキャリア選択性の中間層を形成してもよい。放射線感応型の半導体層の入射面(共通電極側の面)あるいは当該入射面とは逆側の面(収集電極側の面)に中間層を形成することで、暗電流を低減させることができる。
In the above-described radiation detector of the present invention, a carrier-selective intermediate layer is formed between the radiation-sensitive semiconductor layer and the common electrode, and the carrier-selectivity is formed between the radiation-sensitive semiconductor layer and the collection electrode. The intermediate layer may be formed only between the radiation-sensitive semiconductor layer and the common electrode, or the carrier-selective intermediate layer may be formed between the radiation-sensitive semiconductor layer and the collecting electrode. A carrier-selective intermediate layer may be formed only between them. Dark current can be reduced by forming an intermediate layer on the incident surface (surface on the common electrode side) of the radiation-sensitive semiconductor layer or on the surface opposite to the incident surface (surface on the collection electrode side). .
上述したこれらの発明の放射線検出器の一例は、絶縁樹脂層はエポキシ樹脂であり、絶縁樹脂カバーの引張弾性率が1GPa以上から10GPa以下の範囲であり、線膨張係数が30×10-6/K以上から300×10-6/K以下の範囲であり、マトリックス基板はガラスであり、絶縁補助板の引張弾性率が50GPa以上であり、線膨張係数が0.1×10-6/K以上から10×10-6/K以下の範囲である。絶縁樹脂層としてエポキシ樹脂を採用することにより、引張弾性率が1GPa以上から10GPa以下の範囲であり、線膨張係数が30×10-6/K以上から300×10-6/K以下の範囲の絶縁樹脂カバーと、エポキシ樹脂からなる絶縁樹脂層とは、互いに同程度の弾性および熱膨張率を持つ。また、マトリックス基板としてガラスを採用することにより、引張弾性率が50GPa以上であり、線膨張係数が0.1×10-6/K以上から10×10-6/K以下の範囲の絶縁補助板と、ガラスからなるマトリックス基板とは、互いに同程度の弾性および熱膨張率を持つ。
In one example of the radiation detectors of these inventions described above, the insulating resin layer is an epoxy resin, the tensile elastic modulus of the insulating resin cover is in the range of 1 GPa to 10 GPa, and the linear expansion coefficient is 30 × 10 −6 / The range is from K to 300 × 10 −6 / K, the matrix substrate is glass, the tensile modulus of the insulation auxiliary plate is 50 GPa or more, and the linear expansion coefficient is 0.1 × 10 −6 / K or more. To 10 × 10 −6 / K or less. By adopting an epoxy resin as the insulating resin layer, the tensile modulus is in the range of 1 GPa to 10 GPa, and the linear expansion coefficient is in the range of 30 × 10 −6 / K to 300 × 10 −6 / K. The insulating resin cover and the insulating resin layer made of epoxy resin have approximately the same degree of elasticity and thermal expansion coefficient. Further, by adopting glass as the matrix substrate, an auxiliary insulation plate having a tensile elastic modulus of 50 GPa or more and a linear expansion coefficient of 0.1 × 10 −6 / K or more to 10 × 10 −6 / K or less. And the matrix substrate made of glass has the same degree of elasticity and coefficient of thermal expansion.
上述したこれらの発明の放射線検出器において、絶縁樹脂カバーは高分子樹脂であるのが好ましい。高分子樹脂で絶縁樹脂カバーを簡易に形成することができる。特に、高分子樹脂として、ポリカーボネート(PC),ポリエチレンテレフタレート(PET: poly ethylene terephthalate),ポリプロピレン(PP: polypropylene)などが挙げられ、絶縁樹脂カバーは、ポリカーボネート,ポリエチレンテレフタレート,ポリプロピレンのいずれかである。
In the radiation detectors of these inventions described above, the insulating resin cover is preferably a polymer resin. An insulating resin cover can be easily formed with a polymer resin. In particular, examples of the polymer resin include polycarbonate (PC), polyethylene terephthalate (PET), polypropylene (PP), and the insulating resin cover is one of polycarbonate, polyethylene terephthalate, and polypropylene.
また、上述したこれらの発明の放射線検出器において、絶縁補助板はガラスであるのが好ましい。上述したように、マトリックス基板としてガラスを採用した場合には、ガラスからなる絶縁補助板と、同じくガラスからなるマトリックス基板とは、互いに同程度の弾性および熱膨張率を持つ。
Also, in the radiation detectors of these inventions described above, the auxiliary insulation plate is preferably glass. As described above, when glass is employed as the matrix substrate, the auxiliary insulating plate made of glass and the matrix substrate made of glass have the same degree of elasticity and thermal expansion coefficient.
また、絶縁補助板と絶縁樹脂カバーとを接合する接合材は、シリコーン樹脂系の接着剤や粘着テープや合成ゴムなどが好ましく、これらを組み合わせてもよい。これらの材料は柔軟性の高い接合材であるので、温度変化による絶縁樹脂層の膨張収縮に許容性があり、絶縁樹脂層内の内部応力の発生をより一層抑制することができる。もちろん、接合材は、これらの柔軟性の高い接合材に限定されず、エポキシ樹脂系の接着剤などに代表される柔軟性の低い接合材であってもよい。
Also, the bonding material for bonding the insulating auxiliary plate and the insulating resin cover is preferably a silicone resin adhesive, adhesive tape, synthetic rubber, or the like, which may be combined. Since these materials are highly flexible bonding materials, they have an allowance for expansion and contraction of the insulating resin layer due to temperature changes, and can further suppress the generation of internal stress in the insulating resin layer. Of course, the bonding material is not limited to these highly flexible bonding materials, and may be a bonding material with low flexibility typified by an epoxy resin adhesive or the like.
また、絶縁補助板と絶縁樹脂カバーとを接合する領域については特に限定されず、例えば放射線検出有効エリアを含んだ全面であってもよいが、絶縁補助板と絶縁樹脂カバーとは、周辺領域のみで接合されているのが好ましい。この場合には、中央領域である放射線検出有効エリアには接合材がないので、柔軟性の高い接合材の効果と同じく、温度変化による絶縁樹脂層の膨張収縮に許容性があり、絶縁樹脂層内の内部応力の発生をより一層抑制することができる。したがって、絶縁補助板と絶縁樹脂カバーとを柔軟性の低い接合材で周辺領域のみで接合することができる。もちろん、絶縁補助板と絶縁樹脂カバーとを柔軟性の高い接合材で周辺領域のみで接合してもよい。
Further, the region where the auxiliary insulating plate and the insulating resin cover are joined is not particularly limited. For example, the entire surface including the radiation detection effective area may be used, but the insulating auxiliary plate and the insulating resin cover are only in the peripheral region. It is preferable that they are joined together. In this case, since there is no bonding material in the radiation detection effective area that is the central region, the insulating resin layer has an allowance for the expansion and contraction of the insulating resin layer due to temperature change, similar to the effect of the highly flexible bonding material. The generation of internal stress can be further suppressed. Therefore, the auxiliary insulation plate and the insulating resin cover can be bonded only in the peripheral region with a bonding material having low flexibility. Of course, the auxiliary insulation plate and the insulating resin cover may be joined only in the peripheral region with a highly flexible joining material.
上述したこれらの発明の放射線検出器と図11(特許文献3)とを組み合わせた構造であってもよい。
すなわち、上述したこれらの発明の放射線検出器において、放射線検出有効エリアでの絶縁樹脂層の厚みが、放射線検出有効エリア外にある周辺領域での絶縁樹脂層の厚みよりも薄く形成されていてもよい。この構造の場合には、長寿命な放射線検出器を実現する効果に加えて、絶縁樹脂層による放射線の減衰を極力抑えることができる。 The structure which combined the radiation detector of these invention mentioned above and FIG. 11 (patent document 3) may be sufficient.
That is, in the radiation detectors of these inventions described above, the thickness of the insulating resin layer in the radiation detection effective area may be thinner than the thickness of the insulating resin layer in the peripheral region outside the radiation detection effective area. Good. In the case of this structure, in addition to the effect of realizing a long-life radiation detector, attenuation of radiation by the insulating resin layer can be suppressed as much as possible.
すなわち、上述したこれらの発明の放射線検出器において、放射線検出有効エリアでの絶縁樹脂層の厚みが、放射線検出有効エリア外にある周辺領域での絶縁樹脂層の厚みよりも薄く形成されていてもよい。この構造の場合には、長寿命な放射線検出器を実現する効果に加えて、絶縁樹脂層による放射線の減衰を極力抑えることができる。 The structure which combined the radiation detector of these invention mentioned above and FIG. 11 (patent document 3) may be sufficient.
That is, in the radiation detectors of these inventions described above, the thickness of the insulating resin layer in the radiation detection effective area may be thinner than the thickness of the insulating resin layer in the peripheral region outside the radiation detection effective area. Good. In the case of this structure, in addition to the effect of realizing a long-life radiation detector, attenuation of radiation by the insulating resin layer can be suppressed as much as possible.
この構造の場合において、絶縁樹脂カバーを放射線検出有効エリアにて窪ませて一体形成し、絶縁樹脂カバーが窪んだ窪み部分に絶縁補助板を載せて接合する。絶縁樹脂カバーが窪んだ分だけ、放射線検出有効エリアでの絶縁樹脂層の厚みを、周辺領域での絶縁樹脂層の厚みよりも薄く形成することができる。
In this structure, the insulating resin cover is recessed in the radiation detection effective area and integrally formed, and an insulating auxiliary plate is placed on and joined to the recessed portion where the insulating resin cover is recessed. The thickness of the insulating resin layer in the radiation detection effective area can be made thinner than the thickness of the insulating resin layer in the peripheral region by the amount of depression of the insulating resin cover.
この他にも、放射線検出有効エリアが開口した固定枠を備え、固定枠の開口部分に、絶縁補助板および絶縁樹脂カバーを互いに接合したものを内側から固定することで、絶縁樹脂カバー,絶縁補助板および固定枠の順に積層する。絶縁補助板および絶縁樹脂カバーが固定枠よりも内側に窪んだ分だけ、放射線検出有効エリアでの絶縁樹脂層の厚みを、周辺領域での絶縁樹脂層の厚みよりも薄く形成することができる。
In addition to this, a fixed frame having an effective radiation detection area is provided, and an insulating resin cover and an insulation auxiliary are fixed to the opening of the fixed frame by fixing an insulating auxiliary plate and an insulating resin cover that are joined together from the inside. Laminate in order of plate and fixed frame. The thickness of the insulating resin layer in the radiation detection effective area can be made thinner than the thickness of the insulating resin layer in the peripheral region, as much as the auxiliary insulating plate and the insulating resin cover are recessed inward from the fixed frame.
また、上述したこれらの発明の放射線検出器において、絶縁補助板と絶縁樹脂カバーとの間に弾性材料からなる緩衝材を介在させるのが好ましい。絶縁樹脂層内の内部応力を緩衝材によって均一に分散させることができる。
In the radiation detectors of these inventions described above, it is preferable that a buffer material made of an elastic material is interposed between the auxiliary insulation plate and the insulating resin cover. The internal stress in the insulating resin layer can be uniformly dispersed by the buffer material.
緩衝材を介在させた場合において、緩衝材の両面に接合材を設けて、絶縁補助板と緩衝材とを当該接合材によって接合するとともに、絶縁樹脂カバーと緩衝材とを当該接合材によって接合することにより、絶縁補助板と前記絶縁樹脂カバーとを接合する(前者の構造)。この他にも、放射線検出有効エリアでは、絶縁補助板と絶縁樹脂カバーとの間に緩衝材を介在させて、放射線検出有効エリア外にある周辺領域では、絶縁補助板と絶縁樹脂カバーとを接合材によって直接的に接合する(後者の構造)。もちろん、前者の構造と後者の構造とを両方組み合わせてもよい。
When a buffer material is interposed, a bonding material is provided on both sides of the buffer material, and the insulating auxiliary plate and the buffer material are bonded by the bonding material, and the insulating resin cover and the buffer material are bonded by the bonding material. As a result, the auxiliary insulation plate and the insulating resin cover are joined (the former structure). In addition, in the radiation detection effective area, a cushioning material is interposed between the insulation auxiliary plate and the insulating resin cover, and in the peripheral area outside the radiation detection effective area, the insulation auxiliary plate and the insulating resin cover are joined. Join directly by material (the latter structure). Of course, both the former structure and the latter structure may be combined.
緩衝材は導電性であってもよい。緩衝材が導電性である場合には、絶縁補助板と絶縁樹脂カバーとの間に溜まる静電気を放電することができ、静電ノイズ防止効果が得られる。もちろん、緩衝材は導電性である必要はない。
The buffer material may be conductive. When the buffer material is conductive, static electricity accumulated between the auxiliary insulation plate and the insulating resin cover can be discharged, and an electrostatic noise prevention effect can be obtained. Of course, the cushioning material need not be conductive.
この発明に係る放射線検出器によれば、絶縁補助板はマトリックス基板と同程度の弾性および熱膨張率を持つ材料で形成され、マトリックス基板と絶縁補助板との間に各層(放射線感応型の半導体層,共通電極,絶縁樹脂層および絶縁樹脂カバー)が挟み込まれるので、温度変化による放射線検出器の反り、これらの層の亀裂を防止することができる。また、絶縁樹脂カバーは絶縁樹脂層と同程度の弾性および熱膨張率を持つ材料で形成されているので、温度変化による応力が発生しにくく、絶縁樹脂層に内部応力が蓄積しにくい。絶縁補助板と絶縁樹脂カバーとを接合材によって接合させれば、新たに設けた絶縁樹脂カバーによって放射線検出器の構造を実現することができる。その結果、環境が変わっても長寿命な放射線検出器を実現することができる。
According to the radiation detector of the present invention, the auxiliary insulation plate is formed of a material having the same degree of elasticity and thermal expansion as the matrix substrate, and each layer (radiation sensitive semiconductor) is interposed between the matrix substrate and the insulation auxiliary plate. Layer, common electrode, insulating resin layer, and insulating resin cover) are sandwiched, so that it is possible to prevent the radiation detector from warping due to temperature change and cracking of these layers. In addition, since the insulating resin cover is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer, stress due to temperature change is less likely to occur, and internal stress is less likely to accumulate in the insulating resin layer. If the insulating auxiliary plate and the insulating resin cover are bonded together by a bonding material, the structure of the radiation detector can be realized by the newly provided insulating resin cover. As a result, a long-life radiation detector can be realized even if the environment changes.
以下、図面を参照してこの発明の実施例1を説明する。図1は、実施例1に係る直接変換型のフラットパネル型X線検出器(以下、適宜「FPD」と略記する)の概略断面図であり、図2は、フラットパネル型X線検出器(FPD)のアクティブマトリックス基板の等価回路を示すブロック図であり、図3は、フラットパネル型X線検出器(FPD)のアクティブマトリックス基板の概略断面図である。後述する実施例2~4も含めて、本実施例1では、放射線検出器としてフラットパネル型X線検出器(FPD)を例に採って説明する。
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a direct conversion type flat panel X-ray detector (hereinafter abbreviated as “FPD” where appropriate) according to the first embodiment, and FIG. FIG. 3 is a block diagram showing an equivalent circuit of an active matrix substrate of an FPD), and FIG. 3 is a schematic sectional view of the active matrix substrate of a flat panel X-ray detector (FPD). In this embodiment 1, including later-described embodiments 2 to 4, a flat panel X-ray detector (FPD) will be described as an example of a radiation detector.
本実施例1に係るFPDは、図1に示すように、アクティブマトリックス基板1と、放射線(実施例1~4ではX線)の入射により電荷を生成する放射線感応型の半導体2と、バイアス電圧印加用の共通電極3とを備えている。アクティブマトリックス基板1は、図2、図3に示すように、放射線の入射面側に複数の収集電極11を形成し、各収集電極11で収集される電荷の蓄積・読み出し用電気回路12を配設して構成されている。各収集電極11については放射線検出有効エリアSA内で2次元状マトリックス配列で設定している。アクティブマトリックス基板1は、この発明におけるマトリックス基板に相当し、放射線感応型の半導体2は、この発明における放射線感応型の半導体層に相当し、バイアス電圧印加用の共通電極3は、この発明における共通電極に相当し、収集電極11は、この発明における収集電極に相当し、放射線検出有効エリアSAは、この発明における放射線検出有効エリアに相当する。
As shown in FIG. 1, the FPD according to the first embodiment includes an active matrix substrate 1, a radiation-sensitive semiconductor 2 that generates a charge upon incidence of radiation (X-rays in the first to fourth embodiments), a bias voltage, and the like. And a common electrode 3 for application. As shown in FIGS. 2 and 3, the active matrix substrate 1 has a plurality of collecting electrodes 11 formed on the radiation incident surface side, and an electric circuit 12 for storing and reading out charges collected by the collecting electrodes 11. It is configured. Each collection electrode 11 is set in a two-dimensional matrix arrangement within the radiation detection effective area SA. The active matrix substrate 1 corresponds to the matrix substrate in the present invention, the radiation-sensitive semiconductor 2 corresponds to the radiation-sensitive semiconductor layer in the present invention, and the common electrode 3 for applying the bias voltage is common in the present invention. The collection electrode 11 corresponds to the collection electrode in the present invention, and the radiation detection effective area SA corresponds to the radiation detection effective area in the present invention.
図1に示すように、このアクティブマトリックス基板1の収集電極の入射面側に半導体2を積層し、その半導体2の入射側に共通電極3を面状に形成して積層している。そして、共通電極3の入射面にバイアス電圧給電用のリード線4を接続している。銅線等のリード線4を導電ペースト(例えば銀ペースト)を介して共通電極3に接続する。
As shown in FIG. 1, the semiconductor 2 is laminated on the incident surface side of the collecting electrode of the active matrix substrate 1, and the common electrode 3 is formed in a planar shape on the incident side of the semiconductor 2 and laminated. A lead wire 4 for supplying bias voltage is connected to the incident surface of the common electrode 3. A lead wire 4 such as a copper wire is connected to the common electrode 3 via a conductive paste (for example, a silver paste).
図2、図3に示すようにアクティブマトリクス基板1は、上述したように収集電極11を形成し、蓄積・読み出し用電気回路12を配設している。蓄積・読み出し用電気回路12は、コンデンサ12Aやスイッチング素子としてのTFT(薄膜電界効果トランジスタ)12Bおよびゲート線12a,データ線12bなどからなり、各収集電極11毎に1個のコンデンサ12Aおよび1個のTFT12Bが対応付けて接続されている。
As shown in FIGS. 2 and 3, the active matrix substrate 1 is formed with the collecting electrode 11 as described above, and the storage / reading electric circuit 12 is provided. The electric circuit 12 for accumulation / reading includes a capacitor 12A, a TFT (thin film field effect transistor) 12B as a switching element, a gate line 12a, a data line 12b, and the like, and one capacitor 12A and one for each collecting electrode 11 TFT12B are connected in association with each other.
また、アクティブマトリックス基板1の蓄積・読み出し用電気回路12の周囲にはゲートドライバ13と電荷電圧変換型増幅器14とマルチプレクサ15とA/D変換器16とを配設して接続している。これらのゲートドライバ13、電荷電圧変換型増幅器14、マルチプレクサ15、A/D変換器16は、アクティブマトリックス基板1とは別基板で接続されている。なお、ゲートドライバ13、電荷電圧変換型増幅器14、マルチプレクサ15、A/D変換器16の一部または全部を、アクティブマトリックス基板1に内蔵してもよい。
A gate driver 13, a charge / voltage conversion amplifier 14, a multiplexer 15, and an A / D converter 16 are arranged and connected around the storage / reading electric circuit 12 of the active matrix substrate 1. The gate driver 13, the charge / voltage conversion amplifier 14, the multiplexer 15, and the A / D converter 16 are connected to a substrate different from the active matrix substrate 1. Note that some or all of the gate driver 13, the charge-voltage conversion amplifier 14, the multiplexer 15, and the A / D converter 16 may be built in the active matrix substrate 1.
FPDによってX線を検出する際には、バイアス供給電源(図示省略)からバイアス電圧を、バイアス電圧給電用のリード線4を介してバイアス電圧印加用の共通電極3に印加する。バイアス電圧を印加した状態で、放射線(実施例1~4ではX線)の入射に伴って放射線感応型の半導体2で電荷を生成する。この生成された電荷を収集電極11で一旦収集する。蓄積・読み出し用電気回路12によって、収集された電荷を各収集電極11毎の放射線検出信号(実施例1~4ではX線検出信号)として取り出す。
When X-rays are detected by the FPD, a bias voltage is applied from a bias supply power source (not shown) to the common electrode 3 for bias voltage application via a lead wire 4 for supplying bias voltage. With the bias voltage applied, charges are generated in the radiation-sensitive semiconductor 2 with the incidence of radiation (X-rays in Examples 1 to 4). The generated charges are once collected by the collecting electrode 11. The electric charge collected by the storage / readout electric circuit 12 is taken out as a radiation detection signal (X-ray detection signal in the first to fourth embodiments) for each collection electrode 11.
具体的には、収集電極11で収集された電荷がコンデンサ12Aに一旦蓄積される。そして、ゲートドライバ13からゲート線12aを介して読み出し信号を各TFT12Bのゲートに順に与える。読み出し信号を与えることで、読み出し信号が与えられたTFT12BがOFFからONに移行する。その移行したTFT12Bのソースに接続されたデータ線12bがマルチプレクサ15によって順に切り換え接続されるのにしたがって、コンデンサ12Aに蓄積された電荷を、TFT12Bからデータ線12bを介して読み出す。読み出された電荷を電荷電圧変換型増幅器14で増幅して、マルチプレクサ15によって各収集電極11毎の放射線検出信号(実施例1~4ではX線検出信号)としてA/D変換器16に送り出してアナログ値からディジタル値に変換する。
Specifically, the charges collected by the collecting electrode 11 are temporarily accumulated in the capacitor 12A. Then, a read signal is sequentially applied from the gate driver 13 to the gate of each TFT 12B through the gate line 12a. By giving the read signal, the TFT 12B to which the read signal is given shifts from OFF to ON. As the data line 12b connected to the source of the shifted TFT 12B is sequentially switched and connected by the multiplexer 15, the charge accumulated in the capacitor 12A is read from the TFT 12B via the data line 12b. The read charge is amplified by the charge-voltage conversion amplifier 14 and sent to the A / D converter 16 as a radiation detection signal (X-ray detection signal in the first to fourth embodiments) for each collection electrode 11 by the multiplexer 15. To convert from analog value to digital value.
例えば、FPDをX線透視撮影装置に備えた場合には、X線検出信号を後段の画像処理回路に送り込んで、画像処理を行って2次元X線透視画像等を出力する。2次元状マトリックス配列の各収集電極11は、放射線画像(ここでは2次元X線透視画像)の各画素に対応する電極(画素電極)にそれぞれ対応している。放射線検出信号(実施例1~4ではX線検出信号)を取り出すことで、放射線検出有効エリアSAに投影される放射線の2次元強度分布に応じた放射線画像(ここでは2次元X線透視画像)を作成することができる。つまり、後述する実施例2~4も含めて、本実施例1に係るFPDは、放射線検出有効エリアSAに投影される放射線(実施例1~4ではX線)の2次元強度分布を検出することができる2次元アレイタイプの放射線検出器である。
For example, when an FPD is provided in an X-ray fluoroscopic apparatus, an X-ray detection signal is sent to an image processing circuit at a subsequent stage, image processing is performed, and a two-dimensional X-ray fluoroscopic image is output. Each collection electrode 11 in the two-dimensional matrix array corresponds to an electrode (pixel electrode) corresponding to each pixel of the radiation image (here, a two-dimensional X-ray fluoroscopic image). By extracting a radiation detection signal (X-ray detection signal in Examples 1 to 4), a radiation image (here, a two-dimensional X-ray fluoroscopic image) corresponding to the two-dimensional intensity distribution of the radiation projected onto the radiation detection effective area SA Can be created. That is, the FPD according to the first embodiment, including the second to fourth embodiments described later, detects the two-dimensional intensity distribution of the radiation (X-rays in the first to fourth embodiments) projected onto the radiation detection effective area SA. It is a two-dimensional array type radiation detector that can be used.
次に、FPDの各部構成についてより具体的に説明する。図1に示すように、半導体2および共通電極3の露出面上の表面全体を覆う絶縁樹脂層5をFPDは備えている。絶縁樹脂層5の上側(入射側)に、アクティブマトリックス基板1と同程度の弾性および熱膨張率を持つ材料で形成された絶縁補助板6をFPDは備えている。その他に、この発明の特徴部分の構造として、絶縁樹脂層5と絶縁補助板6との間に絶縁合成樹脂カバー7を介在させる。絶縁合成樹脂カバー7は絶縁樹脂層5と同程度の弾性および熱膨張率を持つ材料で形成されている。さらに、図1に示すように、放射線検出有効エリアSAを含んだ全面で、絶縁補助板6と絶縁合成樹脂カバー7とを接合材8によって接合する。絶縁樹脂層5は、この発明における絶縁樹脂層に相当し、絶縁補助板6は、この発明における絶縁補助板に相当し、絶縁合成樹脂カバー7は、この発明における絶縁樹脂カバーに相当し、接合材8は、この発明における接合材に相当する。
Next, the configuration of each part of the FPD will be described more specifically. As shown in FIG. 1, the FPD includes an insulating resin layer 5 that covers the entire surface of the exposed surface of the semiconductor 2 and the common electrode 3. On the upper side (incident side) of the insulating resin layer 5, the FPD includes an auxiliary insulating plate 6 made of a material having the same degree of elasticity and thermal expansion as the active matrix substrate 1. In addition, an insulating synthetic resin cover 7 is interposed between the insulating resin layer 5 and the auxiliary auxiliary plate 6 as the structure of the characteristic part of the present invention. The insulating synthetic resin cover 7 is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer 5. Furthermore, as shown in FIG. 1, the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 are bonded to each other by the bonding material 8 on the entire surface including the radiation detection effective area SA. The insulating resin layer 5 corresponds to the insulating resin layer in the present invention, the insulating auxiliary plate 6 corresponds to the insulating auxiliary plate in the present invention, and the insulating synthetic resin cover 7 corresponds to the insulating resin cover in the present invention. The material 8 corresponds to the bonding material in the present invention.
端部(周辺領域)において、マトリックス基板1にスペーサ9を立設して、このスペーサ9に絶縁補助板6と絶縁合成樹脂カバー7とを支持する。このスペーサ9によってマトリックス基板1と絶縁補助板6・絶縁合成樹脂カバー7との間に所定の隙間を保ちながら、低粘度の常温硬化型エポキシ樹脂剤を注入して常温にて硬化することにより常温硬化型エポキシ樹脂剤からなる絶縁樹脂層5を当該隙間に形成する。このようにして、アクティブマトリックス基板1,(放射線感応型の)半導体2,(バイアス電圧印加用の)共通電極3,絶縁樹脂層5,絶縁合成樹脂カバー7および絶縁補助板6がこの順に積層される。
At the end (peripheral region), a spacer 9 is erected on the matrix substrate 1, and the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 are supported on the spacer 9. While maintaining a predetermined gap between the matrix substrate 1 and the insulating auxiliary plate 6 / insulating synthetic resin cover 7 by the spacer 9, a low-temperature room-temperature curing epoxy resin agent is injected and cured at room temperature. An insulating resin layer 5 made of a curable epoxy resin agent is formed in the gap. In this manner, the active matrix substrate 1, the (radiation sensitive) semiconductor 2, the common electrode (for bias voltage application) 3, the insulating resin layer 5, the insulating synthetic resin cover 7 and the auxiliary insulating plate 6 are laminated in this order. The
アクティブマトリックス基板1には、例えばガラス基板が用いられる。アクティブマトリックス基板1のガラス基板は、例えば0.5mm~1.5mm程度である。半導体2の厚さは、通常、0.5mm~1.5mm前後の厚膜であり、面積は、例えば縦20cm~50cm×横20cm~50cm程度のものである。絶縁補助板6には、例えばホウケイ酸ガラス基板や石英ガラス基板などに代表されるガラス基板が用いられる。絶縁補助板6のガラス基板も、アクティブマトリックス基板1と同様に、例えば0.5mm~1.5mm程度である。
For example, a glass substrate is used as the active matrix substrate 1. The glass substrate of the active matrix substrate 1 is about 0.5 mm to 1.5 mm, for example. The thickness of the semiconductor 2 is normally a thick film of about 0.5 mm to 1.5 mm, and the area is, for example, about 20 cm to 50 cm long × 20 cm to 50 cm wide. For the insulating auxiliary plate 6, for example, a glass substrate represented by a borosilicate glass substrate or a quartz glass substrate is used. Similarly to the active matrix substrate 1, the glass substrate of the auxiliary insulation plate 6 is also about 0.5 mm to 1.5 mm, for example.
放射線感応型の半導体2は、高純度アモルファスセレン(a-Se),Na等のアルカリ金属やCl等のハロゲンもしくはAsやTeをドープしたセレンおよびセレン化合物のアモルファス半導体,CdTe,CdZnTe,PbI2 ,HgI2 ,TlBr等の非セレン系多結晶半導体のうちのいずれかであるのが好ましい。アモルファスセレン,アルカリ金属やハロゲンもしくはAsやTeをドープしたセレンおよびセレン化合物のアモルファス半導体,非セレン系多結晶半導体は、大面積化適性および厚膜化適性に優れる。特に、109 Ω以上、好ましくは1011Ω以上の比抵抗を有するa-Seを半導体2に用いると大面積化適性および厚膜化適性が顕著に優れている。
The radiation-sensitive semiconductor 2 includes high-purity amorphous selenium (a-Se), alkali metals such as Na, halogens such as Cl, selenium doped with As or Te, and amorphous semiconductors of selenium compounds, CdTe, CdZnTe, PbI 2 , It is preferably one of non-selenium-based polycrystalline semiconductors such as HgI 2 and TlBr. Amorphous selenium, amorphous semiconductors of selenium and selenium compounds doped with alkali metal, halogen or As or Te, and non-selenium-based polycrystalline semiconductors are excellent in suitability for large area and thick film. In particular, when a-Se having a specific resistance of 10 9 Ω or more, preferably 10 11 Ω or more is used for the semiconductor 2, the suitability for increasing the area and the suitability for increasing the film thickness are remarkably excellent.
また、半導体2としては、上述した感応型の半導体2の他に、その入射面(図1では上面)または入射側と逆側の面(図1では下面)もしくは両面に形成されたキャリア選択性の高抵抗半導体層である中間層との組み合わせも含む。図4(a)に示すように、半導体2と共通電極3との間に中間層2aを形成するとともに、半導体2と収集電極11(図3を参照)との間に中間層2bを形成してもよいし、図4(b)に示すように、半導体2と共通電極3との間のみに中間層2aを形成してもよいし、図4(c)に示すように、半導体2と収集電極11(図3を参照)との間のみに中間層2bを形成してもよい。中間層2a,2bは、この発明におけるキャリア選択性の中間層に相当する。
Further, as the semiconductor 2, in addition to the sensitive semiconductor 2 described above, carrier selectivity formed on the incident surface (upper surface in FIG. 1), the surface opposite to the incident side (lower surface in FIG. 1) or both surfaces. The combination with the intermediate layer which is a high resistance semiconductor layer is also included. As shown in FIG. 4A, an intermediate layer 2a is formed between the semiconductor 2 and the common electrode 3, and an intermediate layer 2b is formed between the semiconductor 2 and the collecting electrode 11 (see FIG. 3). Alternatively, as shown in FIG. 4B, the intermediate layer 2a may be formed only between the semiconductor 2 and the common electrode 3, or as shown in FIG. The intermediate layer 2b may be formed only between the collecting electrode 11 (see FIG. 3). The intermediate layers 2a and 2b correspond to the carrier selective intermediate layer in the present invention.
このように、キャリア選択性の中間層2a,2bを設けることにより暗電流を低減させることができる。ここで言うキャリア選択性とは半導体中の電荷移動媒体(キャリア)である電子と正孔とで、電荷移動作用への寄与率が著しく異なる性質を指す。
Thus, the dark current can be reduced by providing the carrier selective intermediate layers 2a and 2b. The carrier selectivity mentioned here refers to the property that the contribution rate to the charge transfer action is remarkably different between electrons and holes which are charge transfer media (carriers) in the semiconductor.
半導体2とキャリア選択性の中間層2a,2bとの組み合わせ方としては、次のような態様が挙げられる。共通電極3に正のバイアス電圧を印加する場合には、中間層2aに電子の寄与率が大きい材料を使用する。これにより共通電極3からの正孔の注入が阻止され、暗電流を低減させることができる。中間層2bには正孔の寄与率が大きい材料を使用する。これにより収集電極11からの電子の注入が阻止され、暗電流を低減させることができる。
As a method of combining the semiconductor 2 and the carrier-selective intermediate layers 2a and 2b, the following modes are exemplified. When a positive bias voltage is applied to the common electrode 3, a material having a large contribution ratio of electrons is used for the intermediate layer 2a. Thereby, the injection of holes from the common electrode 3 is blocked, and the dark current can be reduced. A material having a large contribution ratio of holes is used for the intermediate layer 2b. Thereby, the injection of electrons from the collecting electrode 11 is blocked, and the dark current can be reduced.
逆に、共通電極3に負のバイアス電圧を印加する場合には、中間層2aに正孔の寄与率が大きい材料を使用する。これにより共通電極3からの電子の注入が阻止され、暗電流を低減させることができる。中間層2bには電子の寄与率が大きい材料を使用する。これにより収集電極11からの正孔の注入が阻止され、暗電流を低減させることができる。
Conversely, when a negative bias voltage is applied to the common electrode 3, a material having a large contribution ratio of holes is used for the intermediate layer 2a. Thereby, the injection of electrons from the common electrode 3 is blocked, and the dark current can be reduced. A material having a large contribution ratio of electrons is used for the intermediate layer 2b. Thereby, the injection of holes from the collecting electrode 11 is blocked, and the dark current can be reduced.
キャリア選択性の中間層2a,2bの厚さは、通常、0.1μm~10μmの範囲が好ましい。中間層2a,2bの厚さが0.1μm未満では暗電流を十分に抑制できない傾向が現れ、逆に、厚さが10μmを越えると放射線検出の妨げとなる傾向(例えば感度が低下する傾向)が現れる。
The thickness of the carrier selective intermediate layers 2a and 2b is usually preferably in the range of 0.1 μm to 10 μm. If the thickness of the intermediate layers 2a and 2b is less than 0.1 μm, there is a tendency that the dark current cannot be sufficiently suppressed, and conversely, if the thickness exceeds 10 μm, radiation detection tends to be hindered (for example, the sensitivity tends to decrease). Appears.
また、キャリア選択性の中間層2a,2bに用いられる半導体としては、Sb2 S3 ,ZnTe,CeO2 ,CdS,ZnSe,ZnS等の多結晶半導体、Na等のアルカリ金属やCl等のハロゲンもしくはAsやTeをドープしたセレンおよびセレン化合物のアモルファス半導体が大面積化適性に優れるものとして挙げられる。
Further, semiconductors used for the carrier selective intermediate layers 2a and 2b include polycrystalline semiconductors such as Sb 2 S 3 , ZnTe, CeO 2 , CdS, ZnSe, and ZnS, alkali metals such as Na, halogens such as Cl, or Selenium doped with As or Te and an amorphous semiconductor of a selenium compound can be cited as being excellent in suitability for large area.
中間層2a,2bに用いられる半導体のうち、電子の寄与が大きいものとして、n型半導体であるCeO2 ,CdS,CdSe,ZnSe,ZnSのような多結晶半導体や、アルカリ金属やAsやTeをドープして正孔の寄与率を低下させたアモルファスSe等のアモルファス体が挙げられる。
Among the semiconductors used for the intermediate layers 2a and 2b, those having a large contribution of electrons include polycrystalline semiconductors such as CeO 2 , CdS, CdSe, ZnSe, and ZnS that are n-type semiconductors, alkali metals, As, and Te. An amorphous body such as amorphous Se that has been doped to reduce the contribution ratio of holes can be used.
また、正孔の寄与が大きいものとして、p型半導体であるZnTeのような多結晶半導体や、ハロゲンをドープして電子の寄与率を低下させたアモルファスSe等のアモルファス体が挙げられる。
Moreover, examples of the material having a large contribution of holes include a polycrystalline semiconductor such as ZnTe which is a p-type semiconductor, and an amorphous material such as amorphous Se doped with halogen to reduce the contribution of electrons.
さらに、Sb2 S3 ,CdTe,CdZnTe,PbI2 ,HgI2 ,TlBrや、ノンドープのアモルファスSeまたはSe化合物の場合、電子の寄与が大きいものと正孔の寄与が大きいもとの両方がある。これらの場合、製膜条件の調節で電子の寄与が大きいものでも、正孔の寄与が大きいものでも、選択形成することができる。
Furthermore, Sb 2 S 3, CdTe, CdZnTe, or PbI 2, HgI 2, TlBr, when the non-doped amorphous Se or Se compound, there is both a large contribution original electronic ones large contribution and the hole. In these cases, even if the contribution of electrons is large or the contribution of holes is large by adjusting the film forming conditions, it can be selectively formed.
また、半導体2と中間層2aとの間に正孔移動剤あるいは電子移動剤を混入させたポリカーボネート等の有機膜層を形成してもよい。同様に、半導体2と中間層2bとの間に正孔移動剤あるいは電子移動剤を混入させたポリカーボネート等の有機膜層を形成してもよい。
Further, an organic film layer such as polycarbonate in which a hole transfer agent or an electron transfer agent is mixed may be formed between the semiconductor 2 and the intermediate layer 2a. Similarly, an organic film layer such as polycarbonate in which a hole transfer agent or an electron transfer agent is mixed may be formed between the semiconductor 2 and the intermediate layer 2b.
共通電極3については、例えば金(Au)やアルミニウム(Al)などで形成するのが好ましい。後述する実施例2~4も含めて、本実施例1では、共通電極3を金で形成するために、金で蒸着を行う。
The common electrode 3 is preferably formed of, for example, gold (Au) or aluminum (Al). In the present embodiment 1, including later-described embodiments 2 to 4, vapor deposition is performed with gold in order to form the common electrode 3 with gold.
絶縁樹脂層5は、上述したように常温硬化型エポキシ樹脂剤からなり、エポキシ樹脂が用いられる。なお、エポキシ樹脂以外の樹脂(例えばシリコーン樹脂)で絶縁樹脂層5を形成してもよい。絶縁樹脂層5のエポキシ樹脂は、共通電極3と絶縁合成樹脂カバー7との間の隙間が、例えば1mm~2mm程度である。
The insulating resin layer 5 is made of a room temperature curing type epoxy resin agent as described above, and an epoxy resin is used. The insulating resin layer 5 may be formed of a resin other than an epoxy resin (for example, a silicone resin). The epoxy resin of the insulating resin layer 5 has a gap between the common electrode 3 and the insulating synthetic resin cover 7 of, for example, about 1 mm to 2 mm.
絶縁合成樹脂カバー7は、例えばポリカーボネート(PC),ポリエチレンテレフタレート(PET),ポリプロピレン(PP)などの高分子樹脂が用いられる。絶縁合成樹脂カバー7の高分子樹脂は、例えば0.5mm~1.5mm程度である。絶縁合成樹脂カバー7に限定されず、例えば天然樹脂などのように絶縁樹脂カバーでさえあれば、特に限定されない。
The insulating synthetic resin cover 7 is made of a polymer resin such as polycarbonate (PC), polyethylene terephthalate (PET), or polypropylene (PP). The polymer resin of the insulating synthetic resin cover 7 is, for example, about 0.5 mm to 1.5 mm. It is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as natural resin.
接合材8は、例えばシリコーン樹脂系の接着剤や粘着テープや合成ゴム(いわゆるゴム糊)などの柔軟性の高い接合材が用いられる。本実施例1では、上述したように、図1に示すように、放射線検出有効エリアSAを含んだ全面で、絶縁補助板6と絶縁合成樹脂カバー7とを接合材8によって接合している。スペーサ9は、例えばPC樹脂やABS樹脂等が用いられる。
As the bonding material 8, for example, a highly flexible bonding material such as a silicone resin adhesive, an adhesive tape, or synthetic rubber (so-called rubber paste) is used. In the first embodiment, as described above, as illustrated in FIG. 1, the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 are bonded to the entire surface including the radiation detection effective area SA by the bonding material 8. The spacer 9 is made of, for example, PC resin or ABS resin.
以上に述べた構成を有する本実施例1のフラットパネル型X線検出器(FPD)によれば、絶縁樹脂カバー(各実施例では絶縁合成樹脂カバー7)を備え、マトリックス基板(各実施例ではアクティブマトリックス基板1),(放射線感応型の)半導体2,(バイアス電圧印加用の)共通電極3,絶縁樹脂層5,絶縁樹脂カバー(絶縁合成樹脂カバー7)および絶縁補助板6がこの順に積層されている。絶縁補助板6はマトリックス基板(アクティブマトリックス基板1)と同程度の弾性および熱膨張率を持つ材料で形成され、マトリックス基板(アクティブマトリックス基板1)と絶縁補助板6との間にこれらの層(半導体層2,共通電極3,絶縁樹脂層5および絶縁合成樹脂カバー7)が挟み込まれるので、温度変化によるFPDの反り、これらの層の亀裂を防止することができる。
According to the flat panel X-ray detector (FPD) of the first embodiment having the configuration described above, an insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is provided, and a matrix substrate (in each embodiment). Active matrix substrate 1), semiconductor (radiation sensitive) 2, common electrode (for bias voltage application) 3, insulating resin layer 5, insulating resin cover (insulating synthetic resin cover 7) and auxiliary insulating plate 6 are laminated in this order. Has been. The insulating auxiliary plate 6 is formed of a material having the same elasticity and thermal expansion coefficient as that of the matrix substrate (active matrix substrate 1), and these layers (active matrix substrate 1) and the insulating auxiliary plate 6 are provided with these layers ( Since the semiconductor layer 2, the common electrode 3, the insulating resin layer 5, and the insulating synthetic resin cover 7) are sandwiched, it is possible to prevent the FPD from warping due to temperature changes and the cracking of these layers.
また、絶縁樹脂カバー(各実施例では絶縁合成樹脂カバー7)は絶縁樹脂層5と同程度の弾性および熱膨張率を持つ材料で形成されているので、温度変化による応力が発生しにくく、絶縁樹脂層5に内部応力が蓄積しにくい。絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とを接合材8によって接合させれば、新たに設けた絶縁樹脂カバー(絶縁合成樹脂カバー7)によってFPDの構造を実現することができる。その結果、環境が変わっても長寿命なフラットパネル型X線検出器(FPD)を実現することができる。なお、「課題を解決するための手段」の段落でも述べたように、本明細書中での「同程度」とは、弾性(後述する引張弾性率)および熱膨張率(後述する線膨張係数)における各々の数値の桁が変わらない程度を示し、数値の数倍もしくは数分の一までの範囲である。
In addition, since the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer 5, stress due to temperature change is less likely to occur, and the insulating resin cover 5 is insulated. Internal stress is unlikely to accumulate in the resin layer 5. If the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) are bonded together by the bonding material 8, the FPD structure can be realized by the newly provided insulating resin cover (insulating synthetic resin cover 7). . As a result, a flat panel X-ray detector (FPD) having a long life even when the environment changes can be realized. As described in the paragraph of “Means for Solving the Problems”, “same degree” in this specification means elasticity (tensile elastic modulus described later) and thermal expansion coefficient (linear expansion coefficient described later). ) Indicates the degree to which the numerical value of each numerical value does not change, and is several times the numerical value or a range up to a fraction.
図4でも述べたように、(放射線感応型の)半導体2と共通電極3との間に(キャリア選択性の)中間層2aを形成するとともに、半導体2と収集電極11(図3を参照)との間に中間層2bを形成してもよいし(図4(a)を参照)、半導体2と共通電極3との間のみに中間層2aを形成してもよいし(図4(b)を参照)、半導体2と収集電極11(図3を参照)との間のみに中間層2bを形成してもよい(図4(c)を参照)。半導体2の入射面(共通電極3側の面)あるいは当該入射面とは逆側の面(収集電極11側の面)に中間層2a,2bを形成することで、暗電流を低減させることができる。
As described in FIG. 4, an intermediate layer 2a (carrier-selective) is formed between the (radiation sensitive) semiconductor 2 and the common electrode 3, and the semiconductor 2 and the collecting electrode 11 (see FIG. 3). The intermediate layer 2b may be formed between the semiconductor 2 and the common electrode 3 (see FIG. 4B). )), The intermediate layer 2b may be formed only between the semiconductor 2 and the collecting electrode 11 (see FIG. 3) (see FIG. 4C). By forming the intermediate layers 2a and 2b on the incident surface (the surface on the common electrode 3 side) of the semiconductor 2 or the surface opposite to the incident surface (the surface on the collecting electrode 11 side), the dark current can be reduced. it can.
後述する実施例2~4も含めて、本実施例1では、絶縁樹脂層5はエポキシ樹脂であり、絶縁樹脂カバー(各実施例では絶縁合成樹脂カバー7)の引張弾性率(Tensile Modulus)が1GPa以上から10GPa以下の範囲であり、線膨張係数が30×10-6/K以上から300×10-6/K以下の範囲である。また、マトリックス基板(各実施例ではアクティブマトリックス基板1)はガラスであり、絶縁補助板6の引張弾性率が50GPa以上であり、線膨張係数が0.1×10-6/K以上から10×10-6/K以下の範囲である。絶縁樹脂層5としてエポキシ樹脂を採用することにより、引張弾性率が1GPa以上から10GPa以下の範囲であり、線膨張係数が30×10-6/K以上から300×10-6/K以下の範囲の絶縁樹脂カバー(絶縁合成樹脂カバー7)と、エポキシ樹脂からなる絶縁樹脂層5とは、互いに同程度の弾性および熱膨張率を持つ。また、マトリックス基板(アクティブマトリックス基板1)としてガラスを採用することにより、引張弾性率が50GPa以上であり、線膨張係数が0.1×10-6/K以上から10×10-6/K以下の範囲の絶縁補助板6と、ガラスからなるマトリックス基板(アクティブマトリックス基板1)とは、互いに同程度の弾性および熱膨張率を持つ。
In this embodiment 1, including later-described embodiments 2 to 4, the insulating resin layer 5 is an epoxy resin, and the tensile modulus (Tensile Modulus) of the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is The range is from 1 GPa to 10 GPa, and the linear expansion coefficient is from 30 × 10 −6 / K to 300 × 10 −6 / K. Further, the matrix substrate (active matrix substrate 1 in each embodiment) is glass, the tensile elastic modulus of the auxiliary insulating plate 6 is 50 GPa or more, and the linear expansion coefficient is 0.1 × 10 −6 / K or more to 10 ×. The range is 10 −6 / K or less. By adopting an epoxy resin as the insulating resin layer 5, the tensile modulus is in the range of 1 GPa to 10 GPa and the linear expansion coefficient is in the range of 30 × 10 −6 / K to 300 × 10 −6 / K. The insulating resin cover (insulating synthetic resin cover 7) and the insulating resin layer 5 made of epoxy resin have the same degree of elasticity and thermal expansion. Further, by adopting glass as the matrix substrate (active matrix substrate 1), the tensile elastic modulus is 50 GPa or more, and the linear expansion coefficient is 0.1 × 10 −6 / K or more to 10 × 10 −6 / K or less. The insulating auxiliary plate 6 in the range and the matrix substrate made of glass (active matrix substrate 1) have the same degree of elasticity and thermal expansion coefficient as each other.
後述する実施例2~4も含めて、本実施例1では、絶縁樹脂カバー(各実施例では絶縁合成樹脂カバー7)は高分子樹脂であるのが好ましい。高分子樹脂で絶縁樹脂カバー(絶縁合成樹脂カバー7)を簡易に形成することができる。特に、高分子樹脂として、ポリカーボネート(PC),ポリエチレンテレフタレート(PET),ポリプロピレン(PP)などが挙げられ、絶縁樹脂カバー(絶縁合成樹脂カバー7)は、ポリカーボネート,ポリエチレンテレフタレート,ポリプロピレンのいずれかである。
In this embodiment 1, including later-described embodiments 2 to 4, the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is preferably a polymer resin. An insulating resin cover (insulating synthetic resin cover 7) can be easily formed of a polymer resin. In particular, examples of the polymer resin include polycarbonate (PC), polyethylene terephthalate (PET), and polypropylene (PP). The insulating resin cover (insulating synthetic resin cover 7) is any one of polycarbonate, polyethylene terephthalate, and polypropylene. .
絶縁補助板6はガラスであるのが好ましい。上述したように、マトリックス基板(各実施例ではアクティブマトリックス基板1)としてガラスを採用した場合には、ガラスからなる絶縁補助板6と、同じくガラスからなるマトリックス基板(アクティブマトリックス基板1)とは、互いに同程度の弾性および熱膨張率を持つ。
The insulating auxiliary plate 6 is preferably glass. As described above, when glass is employed as the matrix substrate (the active matrix substrate 1 in each embodiment), the auxiliary insulating plate 6 made of glass and the matrix substrate made of glass (active matrix substrate 1) are also: Has the same degree of elasticity and coefficient of thermal expansion as each other.
また、絶縁補助板6と絶縁樹脂カバー(各実施例では絶縁合成樹脂カバー7)とを接合する接合材8は、シリコーン樹脂系の接着剤や粘着テープや合成ゴムなどが好ましく、これらを組み合わせてもよい。これらの材料は柔軟性の高い接合材であるので、温度変化による絶縁樹脂層5の膨張収縮に許容性があり、絶縁樹脂層5内の内部応力の発生をより一層抑制することができる。もちろん、接合材8は、これらの柔軟性の高い接合材に限定されず、エポキシ樹脂系の接着剤などに代表される柔軟性の低い接合材であってもよい。
Further, the bonding material 8 for bonding the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) is preferably a silicone resin adhesive, adhesive tape, synthetic rubber, or the like. Also good. Since these materials are highly flexible bonding materials, there is an allowance for expansion and contraction of the insulating resin layer 5 due to temperature changes, and the generation of internal stress in the insulating resin layer 5 can be further suppressed. Of course, the bonding material 8 is not limited to these highly flexible bonding materials, and may be a bonding material with low flexibility represented by an epoxy resin adhesive or the like.
次に、図面を参照してこの発明の実施例2を説明する。図5は、実施例2に係るフラットパネル型X線検出器(FPD)の概略断面図である。上述した実施例1と共通する箇所については、同じ符号を付してその説明を省略するとともに図示を省略する。
Next, Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 5 is a schematic cross-sectional view of a flat panel X-ray detector (FPD) according to the second embodiment. The portions common to the above-described first embodiment are denoted by the same reference numerals, the description thereof is omitted, and the illustration is omitted.
上述した実施例1に係るFPDでは、図1に示すように、放射線検出有効エリアSAを含んだ全面で、絶縁補助板6と絶縁合成樹脂カバー7とを接合材8によって接合したが、本実施例2に係るFPDは、図5に示すように、絶縁補助板6と絶縁合成樹脂カバー7とは、放射線検出有効エリアSAを除く周辺領域のみで接合されている。
In the FPD according to the first embodiment described above, as shown in FIG. 1, the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 are bonded to the entire surface including the radiation detection effective area SA by the bonding material 8. In the FPD according to Example 2, as shown in FIG. 5, the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 are joined only in the peripheral region excluding the radiation detection effective area SA.
このように、絶縁補助板6と絶縁樹脂カバー(各実施例では絶縁合成樹脂カバー7)とを接合する領域については特に限定されず、実施例1のように放射線検出有効エリアSAを含んだ全面であってもよいが、本実施例2のように絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とは、周辺領域のみで接合されているのが好ましい。この場合には、中央領域である放射線検出有効エリアSAには接合材がないので、柔軟性の高い接合材の効果と同じく、温度変化による絶縁樹脂層5の膨張収縮に許容性があり、絶縁樹脂層5内の内部応力の発生をより一層抑制することができる。したがって、絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とを柔軟性の低い接合材で周辺領域のみで接合することができる。もちろん、絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とを柔軟性の高い接合材で周辺領域のみで接合してもよい。また、実施例1でも述べたように、絶縁合成樹脂カバー7に限定されず、例えば天然樹脂などのように絶縁樹脂カバーでさえあれば、特に限定されない。
Thus, the region where the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7 in each embodiment) are joined is not particularly limited, and the entire surface including the radiation detection effective area SA as in the first embodiment. However, as in the second embodiment, the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) are preferably joined only in the peripheral region. In this case, since there is no bonding material in the radiation detection effective area SA that is a central region, the expansion and contraction of the insulating resin layer 5 due to a temperature change is allowable as well as the effect of a highly flexible bonding material. Generation of internal stress in the resin layer 5 can be further suppressed. Therefore, the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) can be joined only in the peripheral region with a bonding material having low flexibility. Of course, the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) may be bonded only in the peripheral region with a highly flexible bonding material. Further, as described in the first embodiment, it is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as a natural resin.
次に、図面を参照してこの発明の実施例3を説明する。図6は、実施例3に係るフラットパネル型X線検出器(FPD)の概略断面図である。上述した実施例1、2と共通する箇所については、同じ符号を付してその説明を省略するとともに図示を省略する。
Next, Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 6 is a schematic cross-sectional view of a flat panel X-ray detector (FPD) according to the third embodiment. The parts common to the above-described first and second embodiments are denoted by the same reference numerals, description thereof is omitted, and illustration is omitted.
上述した実施例1、2に係るFPDでは、図1、図5に示すように、絶縁樹脂層5の厚みが、共通電極3が形成された箇所では均一であったが、本実施例3に係るFPDは、図6に示すように、実施例1、2に係るFPDと図11(特許文献3)とを組み合わせた構造である。
In the FPDs according to Examples 1 and 2 described above, as shown in FIGS. 1 and 5, the thickness of the insulating resin layer 5 was uniform at the location where the common electrode 3 was formed. As shown in FIG. 6, the FPD has a structure in which the FPDs according to the first and second embodiments and FIG. 11 (Patent Document 3) are combined.
すなわち、実施例1、2に係るFPDにおいて、本実施例3では、放射線検出有効エリアSAでの絶縁樹脂層5の厚みが、放射線検出有効エリアSA外にある周辺領域での絶縁樹脂層5の厚みよりも薄く形成されている。図6に示すように、放射線検出有効エリアSAでの絶縁樹脂層5の厚みを薄膜TAとし、周辺領域での絶縁樹脂層5の厚みを厚膜taとする。この構造の場合には、長寿命なフラットパネル型X線検出器(FPD)を実現する効果に加えて、絶縁樹脂層5による放射線(実施例1~4ではX線)の減衰を極力抑えることができる。
That is, in the FPDs according to the first and second embodiments, in the third embodiment, the thickness of the insulating resin layer 5 in the radiation detection effective area SA is that of the insulating resin layer 5 in the peripheral region outside the radiation detection effective area SA. It is formed thinner than the thickness. As shown in FIG. 6, the thickness of the insulating resin layer 5 in the radiation detection effective area SA is the thin film TA, and the thickness of the insulating resin layer 5 in the peripheral region is the thick film ta. In the case of this structure, in addition to the effect of realizing a long-life flat panel X-ray detector (FPD), the attenuation of radiation (X-rays in Examples 1 to 4) by the insulating resin layer 5 is suppressed as much as possible. Can do.
具体的には、0.5ta≧TA≧0.1taの関係を満たすのが好ましい。放射線検出有効エリアSAでの絶縁樹脂層5の厚み(薄膜)TAは、通常、0.1mm~1.0mmの範囲にあり、周辺領域での絶縁樹脂層5の厚み(厚膜)taは、通常、1mm~2mmの範囲にある。
Specifically, it is preferable to satisfy the relationship of 0.5 ta ≧ TA ≧ 0.1 ta. The thickness (thin film) TA of the insulating resin layer 5 in the radiation detection effective area SA is usually in the range of 0.1 mm to 1.0 mm, and the thickness (thick film) ta of the insulating resin layer 5 in the peripheral area is Usually, it is in the range of 1 mm to 2 mm.
この構造の場合において、図6(a)に示すように、絶縁合成樹脂カバー7を放射線検出有効エリアSAにて窪ませて一体形成し、絶縁合成樹脂カバー7が窪んだ窪み部分7Aに絶縁補助板6を載せて接合する。絶縁合成樹脂カバー7が窪んだ分だけ、放射線検出有効エリアSAでの絶縁樹脂層5の厚み(薄膜)TAを、周辺領域での絶縁樹脂層5の厚み(厚膜)taよりも薄く形成することができる。
In the case of this structure, as shown in FIG. 6 (a), the insulating synthetic resin cover 7 is integrally formed by being recessed in the radiation detection effective area SA, and the insulating auxiliary is provided in the recessed portion 7A where the insulating synthetic resin cover 7 is recessed. The plate 6 is placed and joined. The thickness (thin film) TA of the insulating resin layer 5 in the radiation detection effective area SA is formed to be thinner than the thickness (thick film) ta of the insulating resin layer 5 in the peripheral region by an amount corresponding to the depression of the insulating synthetic resin cover 7. be able to.
この他にも、図6(b)に示すように、放射線検出有効エリアSAが開口した固定枠21の開口部分21Aに、絶縁補助板6および絶縁合成樹脂カバー7を互いに接合したものを内側から固定することで、絶縁合成樹脂カバー7,絶縁補助板6および固定枠21の順に積層する。絶縁補助板6および絶縁合成樹脂カバー7が固定枠21よりも内側に窪んだ分だけ、放射線検出有効エリアSAでの絶縁樹脂層5の厚み(薄膜)TAを、周辺領域での絶縁樹脂層5の厚み(厚膜)taよりも薄く形成することができる。固定枠21は、この発明における固定枠に相当する。
In addition to this, as shown in FIG. 6 (b), the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 joined to the opening 21A of the fixed frame 21 where the radiation detection effective area SA is opened are joined from the inside. By fixing, the insulating synthetic resin cover 7, the insulating auxiliary plate 6, and the fixing frame 21 are laminated in this order. The thickness (thin film) TA of the insulating resin layer 5 in the radiation detection effective area SA is determined by the amount of the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 recessed inward from the fixed frame 21. Can be formed thinner than the thickness (thick film) ta. The fixed frame 21 corresponds to the fixed frame in the present invention.
固定枠21については、絶縁合成樹脂カバー7と同じ高分子樹脂であってもよいし、スペーサ9と同じPC樹脂やABS樹脂であってもよいし、絶縁合成樹脂カバー7やスペーサ9とは別の部材であってもよい。また、スペーサ9と固定枠21とを一体形成してもよい。
The fixing frame 21 may be the same polymer resin as the insulating synthetic resin cover 7, or may be the same PC resin or ABS resin as the spacer 9, or separate from the insulating synthetic resin cover 7 and the spacer 9. It may be a member. Further, the spacer 9 and the fixed frame 21 may be integrally formed.
また、図6では、上述した実施例2と同様に、絶縁補助板6と絶縁合成樹脂カバー7とを、周辺領域のみで接合したものを組み合わせたが、上述した実施例1と同様に、放射線検出有効エリアSAを含んだ全面で、絶縁補助板6と絶縁合成樹脂カバー7とを接合材8によって接合したものを組み合わせてもよい。また、実施例1でも述べたように、絶縁合成樹脂カバー7に限定されず、例えば天然樹脂などのように絶縁樹脂カバーでさえあれば、特に限定されない。
Further, in FIG. 6, as in the above-described second embodiment, a combination of the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 joined only at the peripheral region is combined. A combination of the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 bonded together by the bonding material 8 may be combined on the entire surface including the effective detection area SA. Further, as described in the first embodiment, it is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as a natural resin.
次に、図面を参照してこの発明の実施例4を説明する。図7は、実施例4に係るフラットパネル型X線検出器(FPD)の概略断面図である。上述した実施例1~3と共通する箇所については、同じ符号を付してその説明を省略するとともに図示を省略する。
Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a schematic sectional view of a flat panel X-ray detector (FPD) according to the fourth embodiment. Portions common to the above-described first to third embodiments are denoted by the same reference numerals, description thereof is omitted, and illustration is omitted.
本実施例4に係るFPDは、図7に示すように、絶縁補助板6と絶縁合成樹脂カバー7との間に弾性材料からなる緩衝材22を介在させるのが好ましい。緩衝材22には、例えばゴムやスポンジが用いられる。絶縁樹脂層5内の内部応力を緩衝材22によって均一に分散させることができる。緩衝材22は、この発明における緩衝材に相当する。
In the FPD according to the fourth embodiment, it is preferable that a buffer material 22 made of an elastic material is interposed between the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 as shown in FIG. For example, rubber or sponge is used for the buffer material 22. The internal stress in the insulating resin layer 5 can be uniformly dispersed by the buffer material 22. The cushioning material 22 corresponds to the cushioning material in this invention.
緩衝材22を介在させた場合において、図7(a)に示すように、緩衝材22の両面に接合材8a,8bを設けて、絶縁補助板6と緩衝材22とを当該接合材8aによって接合するとともに、絶縁合成樹脂カバー7と緩衝材22とを当該接合材8bによって接合することにより、絶縁補助板6と絶縁合成樹脂カバー7とを接合する。この他にも、図7(b)に示すように、放射線検出有効エリアSAでは、絶縁補助板6と絶縁合成樹脂カバー7との間に緩衝材22を介在させて、放射線検出有効エリアSA外にある周辺領域では、絶縁補助板6と絶縁合成樹脂カバー7とを接合材8cによって直接的に接合する。
In the case where the buffer material 22 is interposed, as shown in FIG. 7A, the bonding materials 8a and 8b are provided on both surfaces of the buffer material 22, and the auxiliary insulation plate 6 and the buffer material 22 are connected by the bonding material 8a. At the same time, the insulating synthetic resin cover 7 and the buffer material 22 are bonded together by the bonding material 8b, whereby the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 are bonded. In addition, as shown in FIG. 7B, in the radiation detection effective area SA, a buffer material 22 is interposed between the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 so as to be outside the radiation detection effective area SA. In the peripheral region, the insulating auxiliary plate 6 and the insulating synthetic resin cover 7 are directly bonded by the bonding material 8c.
もちろん、図7(a)の構造と図7(b)の構造とを両方組み合わせてもよい。具体的には、図7(c)に示すように、放射線検出有効エリアSAでは、緩衝材22の両面に接合材8a,8bを設けて、絶縁補助板6と緩衝材22とを当該接合材8aによって接合するとともに、絶縁合成樹脂カバー7と緩衝材22とを当該接合材8bによって接合することにより、絶縁補助板6と絶縁合成樹脂カバー7とを接合する。さらに、周辺領域では、絶縁補助板6と絶縁合成樹脂カバー7とを接合材8cによって直接的に接合する。
Of course, you may combine both the structure of Fig.7 (a), and the structure of FIG.7 (b). Specifically, as illustrated in FIG. 7C, in the radiation detection effective area SA, the bonding materials 8 a and 8 b are provided on both surfaces of the buffer material 22, and the auxiliary insulation plate 6 and the buffer material 22 are connected to the bonding material. The insulating auxiliary resin plate 6 and the insulating synthetic resin cover 7 are bonded together by bonding the insulating synthetic resin cover 7 and the buffer material 22 with the bonding material 8b. Further, in the peripheral region, the auxiliary insulating plate 6 and the insulating synthetic resin cover 7 are directly bonded by the bonding material 8c.
図7(a)~図7(c)の緩衝材22は導電性であってもよい。上述したゴムやスポンジに導電性フィラーを混入することにより導電性の緩衝材22を形成してもよいし、カーボンなどの導電材料が弾性を有するように加工することにより導電性の緩衝材22を形成してもよい。緩衝材22が導電性である場合には、絶縁補助板6と絶縁合成樹脂カバー7との間に溜まる静電気を放電することができ、静電ノイズ防止効果が得られる。もちろん、緩衝材22は導電性である必要はない。
7A to 7C, the cushioning material 22 may be conductive. The conductive buffer material 22 may be formed by mixing a conductive filler into the rubber or sponge described above, or the conductive buffer material 22 may be formed by processing the conductive material such as carbon so as to have elasticity. It may be formed. If the buffer material 22 is conductive, static electricity accumulated between the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 can be discharged, and an electrostatic noise prevention effect can be obtained. Of course, the buffer material 22 does not need to be conductive.
また、図7(a)、図7(c)では、上述した実施例1と同様に、放射線検出有効エリアSAを含んだ全面で、絶縁補助板6と絶縁合成樹脂カバー7とを接合材8(8a,8b)によって接合したものを組み合わせたが、上述した実施例2と同様に、絶縁補助板6と絶縁合成樹脂カバー7とを、周辺領域のみで接合したものを組み合わせてもよい。また、実施例3の構造を組み合わせてもよい。また、実施例1でも述べたように、絶縁合成樹脂カバー7に限定されず、例えば天然樹脂などのように絶縁樹脂カバーでさえあれば、特に限定されない。
7A and 7C, as in the first embodiment described above, the auxiliary insulation plate 6 and the insulating synthetic resin cover 7 are joined to the bonding material 8 over the entire surface including the radiation detection effective area SA. Although what was joined by (8a, 8b) was combined, you may combine what joined the insulation auxiliary | assistant board 6 and the insulation synthetic resin cover 7 only in the peripheral area similarly to Example 2 mentioned above. Moreover, you may combine the structure of Example 3. FIG. Further, as described in the first embodiment, it is not limited to the insulating synthetic resin cover 7 and is not particularly limited as long as it is an insulating resin cover such as a natural resin.
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
The present invention is not limited to the above embodiment, and can be modified as follows.
(1)上述した各実施例では、放射線検出器としてX線検出器を例に採って説明したが、X線以外の放射線(例えばガンマ線)を検出する放射線検出器(例えばガンマ線検出器)にも適用できる。
(1) In each of the above-described embodiments, the X-ray detector is taken as an example of the radiation detector. However, the radiation detector (for example, a gamma ray detector) that detects radiation other than the X-ray (for example, gamma ray) is also described. Applicable.
(2)上述した各実施例では、少なくとも周辺領域には、絶縁補助板6と絶縁樹脂カバー(各実施例では絶縁合成樹脂カバー7)とが接合材8により接合されていたが、放射線検出有効エリアSAのみに、絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とを接合材8により接合してもよい。実施例1のように放射線検出有効エリアSAを含んだ全面で、絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とを接合材8により接合する場合も含め、少なくとも検出有効エリアSAに、絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とを接合材8により接合するときには以下の作用・効果を奏する。すなわち、絶縁樹脂層5が硬化や重みにより凹んで、それに伴って検出有効エリアSAでの絶縁樹脂カバー(絶縁合成樹脂カバー7)も凹む可能性があるので、少なくとも検出有効エリアSAに、絶縁補助板6と絶縁樹脂カバー(絶縁合成樹脂カバー7)とを接合材8により接合することにより、絶縁樹脂カバー(絶縁合成樹脂カバー7)の凹みを防止することができる。
(2) In each of the above-described embodiments, the insulating auxiliary plate 6 and the insulating resin cover (the insulating synthetic resin cover 7 in each embodiment) are bonded by the bonding material 8 at least in the peripheral region. The insulating auxiliary plate 6 and the insulating resin cover (insulating synthetic resin cover 7) may be bonded to the area SA only by the bonding material 8. Including the case where the insulating auxiliary plate 6 and the insulating resin cover (insulating synthetic resin cover 7) are bonded by the bonding material 8 over the entire surface including the radiation detection effective area SA as in the first embodiment, at least in the detection effective area SA. When the auxiliary insulation plate 6 and the insulating resin cover (insulating synthetic resin cover 7) are bonded together by the bonding material 8, the following actions and effects are exhibited. That is, the insulating resin layer 5 is recessed due to curing or weighting, and accordingly, the insulating resin cover (insulating synthetic resin cover 7) in the detection effective area SA may also be recessed, so that at least the detection effective area SA is insulated. By joining the plate 6 and the insulating resin cover (insulating synthetic resin cover 7) with the bonding material 8, the dent of the insulating resin cover (insulating synthetic resin cover 7) can be prevented.
(3)柔軟性の高い接合材と柔軟性の低い接合材とを両方組み合わせてもよい。例えば、周辺領域では柔軟性の低い接合材で接合し、放射線検出有効エリアSAでは柔軟性の高い接合材で接合する。
(3) You may combine both a highly flexible joining material and a low flexible joining material. For example, bonding is performed with a bonding material with low flexibility in the peripheral region, and bonding with a bonding material with high flexibility is performed in the radiation detection effective area SA.
(4)上述した各実施例では、マトリックス基板や絶縁補助板はガラスであったが、プラスチックフィルムなどに例示されるように絶縁性の基材となり得るものであれば、特に限定されない。
(4) In each of the above-described embodiments, the matrix substrate and the auxiliary insulation plate are made of glass, but are not particularly limited as long as they can be an insulating base material as exemplified by a plastic film.
(5)上述した各実施例では、リード線4はスペーサ9を貫通して側面から取り出しているが、他の部分(例えば絶縁合成樹脂カバー7と絶縁補助板6)を貫通して上面から取り出してもよい。
(5) In each of the above-described embodiments, thelead wire 4 passes through the spacer 9 and is taken out from the side surface. May be.
(5) In each of the above-described embodiments, the
1 … アクティブマトリックス基板
2 … (放射線感応型の)半導体
2a、2b … 中間層
3 … (バイアス電圧印加用の)共通電極
5 … 絶縁樹脂層
6 … 絶縁補助板
7 … 絶縁合成樹脂カバー
8 … 接合材
11 … 収集電極
21 … 固定枠
22 … 緩衝材
SA … 放射線検出有効エリア DESCRIPTION OFSYMBOLS 1 ... Active matrix substrate 2 ... (Radiosensitive type) semiconductor 2a, 2b ... Intermediate layer 3 ... Common electrode (for bias voltage application) 5 ... Insulating resin layer 6 ... Insulating auxiliary plate 7 ... Insulating synthetic resin cover 8 ... Joining Material 11 ... Collecting electrode 21 ... Fixed frame 22 ... Buffer material SA ... Radiation detection effective area
2 … (放射線感応型の)半導体
2a、2b … 中間層
3 … (バイアス電圧印加用の)共通電極
5 … 絶縁樹脂層
6 … 絶縁補助板
7 … 絶縁合成樹脂カバー
8 … 接合材
11 … 収集電極
21 … 固定枠
22 … 緩衝材
SA … 放射線検出有効エリア DESCRIPTION OF
Claims (19)
- 放射線の入射により電荷を生成して読み出すことにより放射線を検出する放射線検出器であって、
(a)前記電荷を収集する複数の収集電極が2次元マトリックス状に配列され、前記収集電極の各々から前記電荷に基づく放射線検出信号を読み出すマトリックス基板と、
(b)前記放射線の入射により前記電荷を生成する放射線感応型の半導体層と、
(c)前記放射線感応型の半導体層にバイアス電圧を印加する共通電極と、
(d)前記放射線感応型の半導体層および前記共通電極の露出面上の表面全体を覆う絶縁樹脂層と、
(e)絶縁樹脂カバーと、
(f)絶縁補助板と
を備え、
(a)マトリックス基板,(b)放射線感応型の半導体層,(c)共通電極,(d)絶縁樹脂層,(e)絶縁樹脂カバーおよび(f)絶縁補助板がこの順に積層されており、
前記絶縁補助板は前記マトリックス基板と同程度の弾性および熱膨張率を持つ材料で形成され、
前記絶縁樹脂カバーは前記絶縁樹脂層と同程度の弾性および熱膨張率を持つ材料で形成され、
前記絶縁補助板と前記絶縁樹脂カバーとは接合材によって接合されることを特徴とする放射線検出器。 A radiation detector that detects radiation by generating and reading out charges upon incidence of radiation,
(A) a matrix substrate in which a plurality of collecting electrodes for collecting the charges are arranged in a two-dimensional matrix, and reading out a radiation detection signal based on the charges from each of the collecting electrodes;
(B) a radiation-sensitive semiconductor layer that generates the charge upon incidence of the radiation;
(C) a common electrode for applying a bias voltage to the radiation-sensitive semiconductor layer;
(D) an insulating resin layer covering the entire surface on the exposed surface of the radiation-sensitive semiconductor layer and the common electrode;
(E) an insulating resin cover;
(F) an auxiliary insulation plate;
(A) a matrix substrate, (b) a radiation-sensitive semiconductor layer, (c) a common electrode, (d) an insulating resin layer, (e) an insulating resin cover, and (f) an insulating auxiliary plate are laminated in this order,
The auxiliary insulation plate is made of a material having the same degree of elasticity and thermal expansion as the matrix substrate,
The insulating resin cover is formed of a material having the same degree of elasticity and thermal expansion as the insulating resin layer,
The radiation detector, wherein the insulating auxiliary plate and the insulating resin cover are bonded by a bonding material. - 請求項1に記載の放射線検出器において、
前記放射線感応型の半導体層と前記共通電極との間にキャリア選択性の中間層を形成するとともに、
前記放射線感応型の半導体層と前記収集電極との間にキャリア選択性の中間層を形成することを特徴とする放射線検出器。 The radiation detector according to claim 1.
Forming a carrier-selective intermediate layer between the radiation-sensitive semiconductor layer and the common electrode;
A radiation detector, wherein a carrier-selective intermediate layer is formed between the radiation-sensitive semiconductor layer and the collecting electrode. - 請求項1に記載の放射線検出器において、
前記放射線感応型の半導体層と前記共通電極との間のみにキャリア選択性の中間層を形成することを特徴とする放射線検出器。 The radiation detector according to claim 1.
A radiation detector, wherein a carrier-selective intermediate layer is formed only between the radiation-sensitive semiconductor layer and the common electrode. - 請求項1に記載の放射線検出器において、
前記放射線感応型の半導体層と前記収集電極との間のみにキャリア選択性の中間層を形成することを特徴とする放射線検出器。 The radiation detector according to claim 1.
A radiation detector, wherein a carrier-selective intermediate layer is formed only between the radiation-sensitive semiconductor layer and the collecting electrode. - 請求項1から請求項4のいずれかに記載の放射線検出器において、
前記絶縁樹脂層はエポキシ樹脂であり、
前記絶縁樹脂カバーの引張弾性率が1GPa以上から10GPa以下の範囲であり、線膨張係数が30×10-6/K以上から300×10-6/K以下の範囲であり、
前記マトリックス基板はガラスであり、
前記絶縁補助板の引張弾性率が50GPa以上であり、線膨張係数が0.1×10-6/K以上から10×10-6/K以下の範囲であることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 4,
The insulating resin layer is an epoxy resin,
The insulating resin cover has a tensile modulus of 1 GPa or more and 10 GPa or less, and a linear expansion coefficient of 30 × 10 −6 / K or more and 300 × 10 −6 / K or less,
The matrix substrate is glass;
A radiation detector, wherein the insulation auxiliary plate has a tensile modulus of 50 GPa or more and a linear expansion coefficient of 0.1 × 10 −6 / K to 10 × 10 −6 / K. - 請求項1から請求項5のいずれかに記載の放射線検出器において、
前記絶縁樹脂カバーは高分子樹脂であることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 5,
The radiation detector, wherein the insulating resin cover is a polymer resin. - 請求項6に記載の放射線検出器において、
前記絶縁樹脂カバーは、ポリカーボネート,ポリエチレンテレフタレート,ポリプロピレンのいずれかであることを特徴とする放射線検出器。 The radiation detector according to claim 6.
The radiation detector is characterized in that the insulating resin cover is one of polycarbonate, polyethylene terephthalate, and polypropylene. - 請求項1から請求項7のいずれかに記載の放射線検出器において、
前記絶縁補助板はガラスであることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 7,
The radiation auxiliary plate is made of glass. - 請求項1から請求項8のいずれかに記載の放射線検出器において、
前記絶縁補助板と前記絶縁樹脂カバーとを接合する前記接合材は、シリコーン樹脂系の接着剤であることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 8,
The radiation detector, wherein the bonding material for bonding the insulating auxiliary plate and the insulating resin cover is a silicone resin adhesive. - 請求項1から請求項9のいずれかに記載の放射線検出器において、
前記絶縁補助板と前記絶縁樹脂カバーとを接合する前記接合材は、粘着テープであることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 9,
The radiation detector, wherein the bonding material for bonding the insulating auxiliary plate and the insulating resin cover is an adhesive tape. - 請求項1から請求項10のいずれかに記載の放射線検出器において、
前記絶縁補助板と前記絶縁樹脂カバーとを接合する前記接合材は、合成ゴムであることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 10,
The radiation detector, wherein the bonding material for bonding the insulating auxiliary plate and the insulating resin cover is synthetic rubber. - 請求項1から請求項11のいずれかに記載の放射線検出器において、
前記絶縁補助板と前記絶縁樹脂カバーとは、周辺領域のみで接合されることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 11,
The radiation detector, wherein the auxiliary insulation plate and the insulating resin cover are joined only in a peripheral region. - 請求項1から請求項12のいずれかに記載の放射線検出器において、
放射線検出有効エリアでの前記絶縁樹脂層の厚みが、放射線検出有効エリア外にある周辺領域での前記絶縁樹脂層の厚みよりも薄く形成されていることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 12,
The radiation detector, wherein a thickness of the insulating resin layer in the radiation detection effective area is formed thinner than a thickness of the insulating resin layer in a peripheral region outside the radiation detection effective area. - 請求項13に記載の放射線検出器において、
前記絶縁樹脂カバーを前記放射線検出有効エリアにて窪ませて一体形成し、
前記絶縁樹脂カバーが窪んだ窪み部分に前記絶縁補助板を載せて接合することを特徴とする放射線検出器。 The radiation detector according to claim 13.
The insulating resin cover is recessed and integrally formed in the radiation detection effective area,
A radiation detector, wherein the insulating auxiliary plate is placed on and joined to a recessed portion where the insulating resin cover is recessed. - 請求項13に記載の放射線検出器において、
前記放射線検出有効エリアが開口した固定枠を備え、
前記固定枠の開口部分に、前記絶縁補助板および前記絶縁樹脂カバーを互いに接合したものを内側から固定することで、前記絶縁樹脂カバー,前記絶縁補助板および前記固定枠の順に積層することを特徴とする放射線検出器。 The radiation detector according to claim 13.
The radiation detection effective area comprises a fixed frame with an opening,
The insulating resin plate, the insulating auxiliary plate, and the fixing frame are laminated in this order by fixing the insulating auxiliary plate and the insulating resin cover joined to each other at the opening portion of the fixing frame from the inside. A radiation detector. - 請求項1から請求項15のいずれかに記載の放射線検出器において、
前記絶縁補助板と前記絶縁樹脂カバーとの間に弾性材料からなる緩衝材を介在させることを特徴とする放射線検出器。 The radiation detector according to any one of claims 1 to 15,
A radiation detector, wherein a buffer material made of an elastic material is interposed between the auxiliary insulation plate and the insulating resin cover. - 請求項16に記載の放射線検出器において、
前記緩衝材の両面に前記接合材を設けて、
前記絶縁補助板と前記緩衝材とを当該接合材によって接合するとともに、前記絶縁樹脂カバーと前記緩衝材とを当該接合材によって接合することにより、前記絶縁補助板と前記絶縁樹脂カバーとを接合することを特徴とする放射線検出器。 The radiation detector according to claim 16.
Provide the bonding material on both sides of the cushioning material,
The insulating auxiliary plate and the buffer material are bonded by the bonding material, and the insulating auxiliary plate and the insulating resin cover are bonded by bonding the insulating resin cover and the buffer material by the bonding material. A radiation detector characterized by that. - 請求項16または請求項17に記載の放射線検出器において、
放射線検出有効エリアでは、前記絶縁補助板と前記絶縁樹脂カバーとの間に前記緩衝材を介在させて、
放射線検出有効エリア外にある周辺領域では、前記絶縁補助板と前記絶縁樹脂カバーとを前記接合材によって直接的に接合することを特徴とする放射線検出器。 The radiation detector according to claim 16 or 17,
In the radiation detection effective area, the buffer material is interposed between the insulating auxiliary plate and the insulating resin cover,
In the peripheral region outside the radiation detection effective area, the radiation auxiliary detector and the insulating resin cover are directly bonded by the bonding material. - 請求項16から請求項18のいずれかに記載の放射線検出器において、
前記緩衝材は導電性であることを特徴とする放射線検出器。 The radiation detector according to any one of claims 16 to 18,
The radiation detector is characterized in that the buffer material is conductive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/006656 WO2013080251A1 (en) | 2011-11-29 | 2011-11-29 | Radiation detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/006656 WO2013080251A1 (en) | 2011-11-29 | 2011-11-29 | Radiation detector |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080251A1 true WO2013080251A1 (en) | 2013-06-06 |
Family
ID=48534784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/006656 WO2013080251A1 (en) | 2011-11-29 | 2011-11-29 | Radiation detector |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013080251A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018017685A (en) * | 2016-07-29 | 2018-02-01 | 株式会社島津製作所 | Radiation detector |
WO2024185152A1 (en) * | 2023-03-07 | 2024-09-12 | キヤノン株式会社 | Radiation detection device, method for manufacturing same, and radiation ct device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351650A (en) * | 2004-06-08 | 2005-12-22 | Shimadzu Corp | Method for manufacturing flat panel type radiation detector and flat panel type radiation detector |
WO2006046434A1 (en) * | 2004-10-28 | 2006-05-04 | Sharp Kabushiki Kaisha | 2-dimensional image detection device and manufacturing method thereof |
JP2009105201A (en) * | 2007-10-23 | 2009-05-14 | Fujifilm Corp | Image detector |
WO2010029617A1 (en) * | 2008-09-10 | 2010-03-18 | 株式会社島津製作所 | Radiation detector |
-
2011
- 2011-11-29 WO PCT/JP2011/006656 patent/WO2013080251A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005351650A (en) * | 2004-06-08 | 2005-12-22 | Shimadzu Corp | Method for manufacturing flat panel type radiation detector and flat panel type radiation detector |
WO2006046434A1 (en) * | 2004-10-28 | 2006-05-04 | Sharp Kabushiki Kaisha | 2-dimensional image detection device and manufacturing method thereof |
JP2009105201A (en) * | 2007-10-23 | 2009-05-14 | Fujifilm Corp | Image detector |
WO2010029617A1 (en) * | 2008-09-10 | 2010-03-18 | 株式会社島津製作所 | Radiation detector |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018017685A (en) * | 2016-07-29 | 2018-02-01 | 株式会社島津製作所 | Radiation detector |
WO2024185152A1 (en) * | 2023-03-07 | 2024-09-12 | キヤノン株式会社 | Radiation detection device, method for manufacturing same, and radiation ct device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101064856B1 (en) | Radiation detector | |
JP3678162B2 (en) | Radiation detector | |
US7709804B2 (en) | Radiation detector | |
KR100624026B1 (en) | Radiation detector | |
US7786446B2 (en) | Radiation detector | |
JP2013142578A (en) | Radiation detector | |
US8415662B2 (en) | Radiation detector having a plurality of amorphous selenium layers | |
JP4066972B2 (en) | Flat panel radiation detector | |
US20080237770A1 (en) | Radiation detector | |
CA2482279A1 (en) | Radiation detector | |
CN101206263B (en) | Radiation detector | |
WO2018003328A1 (en) | Radiation detector and method for manufacturing same | |
JP5104857B2 (en) | Radiation detector | |
WO2013080251A1 (en) | Radiation detector | |
KR20070066937A (en) | Manufacturing method of x ray detector and x ray detector | |
JP4940098B2 (en) | Image detector | |
JPWO2013080251A1 (en) | Radiation detector | |
WO2010125607A1 (en) | Radiation detector and method of manufacturing same | |
JP2006049773A (en) | X-ray detector | |
WO2006115099A1 (en) | Two-dimensional image detector and method for manufacturing same | |
US7928401B2 (en) | Radiation detecting system | |
JP6060752B2 (en) | Flat panel radiation detector and manufacturing method thereof | |
JP2008021985A (en) | Radiation detecting device | |
JPH11274452A (en) | Two-dimensional image detector and its manufacture | |
JPH11295144A (en) | Two dimensional image detector, and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11876594 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013546835 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11876594 Country of ref document: EP Kind code of ref document: A1 |