Nothing Special   »   [go: up one dir, main page]

WO2013073342A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2013073342A1
WO2013073342A1 PCT/JP2012/077278 JP2012077278W WO2013073342A1 WO 2013073342 A1 WO2013073342 A1 WO 2013073342A1 JP 2012077278 W JP2012077278 W JP 2012077278W WO 2013073342 A1 WO2013073342 A1 WO 2013073342A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
shift stage
stage
gear
time
Prior art date
Application number
PCT/JP2012/077278
Other languages
English (en)
French (fr)
Inventor
遠藤 剛
邦宏 高橋
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to EP12850323.2A priority Critical patent/EP2781805A4/en
Priority to KR1020147016008A priority patent/KR101629591B1/ko
Priority to JP2013544194A priority patent/JP5735656B2/ja
Priority to US14/358,475 priority patent/US9031751B2/en
Priority to CN201280056113.2A priority patent/CN103946601B/zh
Publication of WO2013073342A1 publication Critical patent/WO2013073342A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H2059/006Overriding automatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/24Interruption of shift, e.g. if new shift is initiated during ongoing previous shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive

Definitions

  • the present invention relates to a control device for an automatic transmission provided with a manual transmission means for executing a shift to a gear set by manual operation.
  • the change of the target shift stage that is, the so-called change mind shift is permitted before the start of the inertia phase. . That is, it is difficult to accurately detect the return amount of the piston stroke and the clutch capacity during the release control in the friction engagement element. Therefore, when the actual piston return amount or clutch capacity is smaller than the detected piston return amount or clutch capacity in the friction engagement element whose control changes from the release control to the engagement control by executing the change mind shift (the piston stroke is assumed). If it has not returned, it will be suddenly engaged and a shock will occur. In addition, when the actual piston return amount or clutch capacity is larger than the detected piston return amount or clutch capacity (when the piston stroke is returning more than expected), the engagement is delayed and engine blow-up occurs. End up.
  • the present invention has been made paying attention to the above problem, and provides a control device for an automatic transmission capable of executing a shift control according to a driver's intention while preventing occurrence of shocks and racing. For the purpose.
  • the present invention is an automatic transmission control device including a first frictional engagement element that is engaged at a first speed and released at a second speed.
  • Automatic transmission means for executing a shift to a shift stage that is automatically set based on a running state;
  • Manual transmission means for executing a shift to a gear set by manual operation;
  • An inertia phase determination means for determining the start of an inertia phase during a shift from the first gear to the second gear;
  • the second shift stage by the automatic transmission means to the first shift stage.
  • the shift from the first shift stage to the second shift stage is continued.
  • the shift from the first shift stage to the second shift stage is interrupted and from the second shift stage to the first shift stage.
  • the gear shift is executed. That is, in the shift from the first gear to the second gear, the first friction engagement element that is engaged at the first gear and released at the second gear is controlled from the engaged state to the released state.
  • FIG. 1 is an overall system diagram showing a configuration of a power train of a vehicle to which an automatic transmission control device according to a first embodiment is applied.
  • FIG. 6 is a plan view illustrating an operation unit of the shift selection mechanism according to the first embodiment. 6 is a flowchart showing a flow of a change mind shift determination process executed by the AT controller according to the first embodiment. It is explanatory drawing which showed the propriety of the gear ratio and the change mind transmission request
  • FIG. 4 is an explanatory diagram showing a gear ratio and whether or not a change mind shift request by automatic shift is possible in the control device for the automatic transmission of the first embodiment, where (a) shows an upshift and (b) shows a downshift. .
  • FIG. 4 is an explanatory diagram showing whether or not a change-mind shift request by manual shift is possible in the automatic transmission control device of the first embodiment, where (a) shows an upshift, and (b) shows a downshift. .
  • the configuration of the control apparatus for the automatic transmission according to the first embodiment will be described by dividing it into “the overall system configuration” and “the configuration of the change mind shift determination process”.
  • FIG. 1 is an overall system diagram illustrating a configuration of a power train of a vehicle to which a control device for an automatic transmission according to a first embodiment is applied.
  • FIG. 2 is a plan view illustrating an operation unit of the shift selection mechanism according to the first embodiment.
  • the vehicle power train in the first embodiment includes an engine 1, a torque converter 2, and an automatic transmission 3, as shown in FIG.
  • the engine 1 is a gasoline engine or a diesel engine, and its output is adjusted by a throttle valve whose opening increases from fully closed to fully open as the accelerator pedal operated by the driver is depressed.
  • the engine output shaft 1 a of the engine 1 is connected to the input shaft 4 of the automatic transmission 3 via the torque converter 2.
  • the automatic transmission 3 is a stepped automatic transmission.
  • the automatic transmission 3 includes a front planetary gear set (not shown) and a rear planetary gear set (not shown) arranged on the input shaft 4 and the output shaft 5 arranged coaxially, a plurality of frictional engagement elements 6, and the like. And a valve body 7.
  • the plurality of frictional engagement elements 6 are operated by hydraulic pressure, and a power transmission path is switched by a combination of engagement and release to realize a desired shift stage.
  • Each friction engagement element 6 is controlled to be engaged, slip-engaged, and released by a control hydraulic pressure generated by the valve body 7 based on a control command from the AT controller 9.
  • the plurality of frictional engagement elements 6 are fastened at least at the first speed and are released at the second speed, and are released at the first speed and fastened at the second speed. 2 friction fastening elements.
  • the “first gear” and the “second gear” are arbitrary gears, for example, the first gear and the second gear, the second gear and the fourth gear, or the second gear. And 1st gear.
  • a normally open wet multi-plate clutch or wet multi-plate brake capable of continuously controlling the oil flow rate and hydraulic pressure with a proportional solenoid is used.
  • An oil passage (not shown) for supplying hydraulic pressure to each friction engagement element 6 is formed in the valve body 7, and a solenoid 8 driven based on a control command input from the AT controller 9 includes: A pressure regulating valve (not shown) provided in each oil passage is operated to control the oil pressure of the command pressure set by the AT controller 9 to be supplied to a predetermined friction engagement element 6. Further, when the vehicle is traveling, the hydraulic pressure is controlled so as to be supplied only to the frictional engagement element 6 necessary for obtaining a desired gear position.
  • the AT controller 9 includes an automatic transmission unit (automatic transmission unit) 9A and a manual transmission unit (manual transmission unit) 9B.
  • the automatic transmission unit 9A is not shown in the shift state of the shift selection mechanism 15 connected to the inhibitor switch 14 when the manual mode switch 18 is turned off, and the driving state obtained from the vehicle speed, accelerator opening, throttle opening, etc. A shift to a shift stage that is automatically set based on the shift map is executed.
  • the AT controller 9 determines whether or not there is a request for “change mind shift” for performing shift control for returning the target shift stage to the original shift stage before achieving the target shift stage in a certain shift control. To do. In other words, the AT controller 9 requests a change (change) from the second shift stage to the first shift stage by the automatic transmission unit 9A before the start of the inertia phase during the shift from the first shift stage to the second shift stage. When there is a mind shift request), this change mind shift is prohibited. Thereby, the shift from the second shift stage to the first shift stage is not executed, and the shift from the first shift stage to the second shift stage is continued.
  • the AT controller 9 includes a shift control command instructed by each of the transmission units 9A and 9B, an engine rotation sensor 10, a throttle opening sensor 11, a turbine rotation sensor 12, an output shaft rotation sensor 13, an inhibitor switch 14, and the like. Based on the output, a command pressure for the hydraulic pressure supplied to the frictional engagement element 6 to be fastened is determined. Then, a command for driving the solenoid 8 is output so that the hydraulic pressure of the determined command pressure is supplied to the frictional engagement element 6 to be engaged, and a discharge command for discharging the hydraulic oil from the released frictional engagement element 6 is issued. Output.
  • the engine rotation sensor 10 detects the rotation of the output shaft of the engine 1 and outputs a signal indicating the detected rotation speed of the output shaft (engine rotation speed Ne) to the AT controller 9.
  • the throttle opening sensor 11 detects the opening of the throttle valve of the engine 1 and outputs a signal indicating the detected opening of the throttle valve (throttle opening Tvo) to the AT controller 9.
  • the turbine rotation sensor 12 outputs the rotation of the input shaft 4 of the automatic transmission 3 and outputs a signal indicating the rotation speed of the input shaft 4 (turbine rotation speed Nt) to the AT controller 9.
  • the output shaft rotation sensor 13 outputs the rotation of the output shaft 5 of the automatic transmission 3 and outputs a signal indicating the rotation speed of the output shaft 5 (output shaft rotation speed No) to the AT controller 9.
  • the inhibitor switch 14 is provided on a manual shaft (not shown) that rotates in conjunction with the operation of the shift selection mechanism 15, and a signal indicating the selection range of the shift selection mechanism 15 and ON / OFF of the manual mode switch 18. An OFF signal or the like is output to the AT controller 9.
  • the operation unit of the shift selection mechanism 15 moves an select lever 17 along a substantially H-shaped guide path 16 to select an arbitrary range.
  • the guide path 16 includes an automatic transmission guide groove 16a in which the range of the automatic transmission mode is arranged in a line in the longitudinal direction of the vehicle, and a communication groove 16c extending in the lateral direction from the drive range D position in the automatic transmission guide groove 16a.
  • a manual transmission guide groove 16b that communicates with the communication groove 16c and extends in the vehicle front-rear direction in parallel with the automatic transmission guide groove 16a. Then, by moving the select lever 17 to each range position in the automatic transmission guide groove 16a, a range signal corresponding to each range in the automatic transmission mode is detected by the inhibitor switch.
  • a manual mode switch 18 is disposed in the communication groove 16c.
  • the manual mode switch 18 is ON-controlled when the select lever 17 is moved from the automatic transmission guide groove 16a to the manual transmission guide groove 16b, and the select lever 17 is moved from the manual transmission guide groove 16b to the automatic transmission guide groove 16b.
  • OFF control is performed when moving to the 16a side.
  • This ON / OFF signal is detected by the inhibitor switch 14.
  • an upshift switch 19a and a downshift switch 19b are provided at the front and rear positions of the extending direction end of the manual transmission guide groove 16b, respectively, and the select lever 17 moved to the manual transmission guide groove 16b is provided. By moving toward one of the shift switches 19a and 19b and making contact, one of the contacted shift switches 19a and 19b is turned on, and the gear position is changed. This ON signal is detected by the inhibitor switch 14.
  • FIG. 3 is a flowchart illustrating a flow of a change mind shift determination process executed by the AT controller according to the first embodiment.
  • This change mind shift determining process (change mind shift determining means) is executed when a shift command from the first shift stage to the second shift stage is output.
  • the first shift command may be a shift command from the automatic transmission unit 9A or a shift command from the manual transmission unit 9B.
  • each step shown in FIG. 3 will be described.
  • step S1 it is determined whether the output shift command from the first gear to the second gear is an upshift or a downshift.
  • the process proceeds to step S2, and in the case of downshift, the process proceeds to step S10.
  • the upshift and downshift are judged to be an upshift if the target gear ratio after the shift is smaller than the actual gear ratio before the shift, and the target gear ratio after the shift is the actual gear ratio before the shift. If it is a large value with respect to the gear ratio, it is determined as a downshift.
  • step S2 following the determination of the upshift in step S1, it is determined whether or not the “change mind prohibition time” has elapsed since the upshift gear shift command was output. If YES (prohibited time has elapsed), the process proceeds to step S3. If NO (prohibited time has not elapsed), the process proceeds to step S6.
  • the “change mind prohibition time” means that the piston stroke of the frictional engagement element 6 (second frictional engagement element) that is switched from the release control to the engagement control by the shift command from the first gear to the second gear is completed. This is the time when the backpacking is completed by the precharge hydraulic pressure supplied to the second frictional engagement element on the engagement side, and is set to an arbitrary time in advance.
  • step S3 following the determination that the “change mind prohibition time” has elapsed in step S2 or the determination that there is a shift request by the manual transmission unit 9B in step S6, the gear ratio in the automatic transmission 3 is the first threshold value. Judge whether it is larger. If YES (gear ratio> first threshold), the process proceeds to step S8, and if NO (gear ratio ⁇ first threshold), the process proceeds to step S4.
  • the “gear ratio” is a ratio between the turbine rotation speed Nt detected by the turbine rotation sensor 12 and the output shaft rotation speed No detected by the output shaft rotation sensor 13.
  • the “first threshold value” is a value that can determine the start of the inertia phase, and is set to an arbitrary value in advance.
  • This step S3 corresponds to an inertia phase determination means for determining the start of the inertia phase during the shift from the first shift speed to the second shift speed.
  • step S4 following the determination that gear ratio ⁇ first threshold value in step S3, it is determined whether or not the gear ratio in the automatic transmission 3 is greater than the second threshold value. If YES (first threshold ⁇ gear ratio> second threshold), the process proceeds to step S9. If NO (gear ratio ⁇ second threshold), the process proceeds to step S5.
  • the “second threshold value” is a value with which it is possible to determine that the shift from the first gear to the second gear is almost completed, and is set to an arbitrary value in advance.
  • step S5 following the determination that gear ratio ⁇ second threshold value in step S4, the change-mind shift is prohibited, assuming that the shift from the first gear to the second gear is almost completed. Thereby, even if the shift from the second shift stage to the first shift stage is instructed from either the automatic transmission unit 9A or the manual transmission unit 9B, the shift from the first shift stage to the second shift stage is continued, This shift control is terminated.
  • step S6 following the determination that the “change mind prohibition time” has not elapsed in step S2, it is determined whether a shift request from the second gear to the first gear is output by the manual transmission unit 9B. If YES (there is a shift request), the process proceeds to step S3, and if NO (no shift request), the process proceeds to step S7.
  • the presence or absence of a shift request by the manual transmission unit 9B is determined by the output of the inhibitor switch 14. That is, if the manual mode switch 18 is ON-controlled in the shift selection mechanism 15 and a shift stage setting change command from the second shift stage to the first shift stage is output by the shift selection mechanism 15, the shift by the manual transmission unit 9B is performed. Judge that there was a request.
  • step S7 following the determination that the manual transmission unit 9B does not request a shift in step S6 or the determination that the manual transmission unit 9B does not request a shift in step S8, the change mind shift is prohibited. As a result, even if the shift from the second shift stage to the first shift stage is requested from the automatic transmission unit 9A, the shift from the first shift stage to the second shift stage is continued. That is, in order to shift to step S7, the piston stroke of the engagement side frictional engagement element 6 (second frictional engagement element) is not completed at the time of a shift command from the first shift stage to the second shift stage.
  • step S8 following the determination that gear ratio> first threshold value in step S3, it is determined whether or not a shift request from the second gear to the first gear is output by the manual transmission unit 9B. If YES (there is a shift request), the process proceeds to step S9. If NO (no shift request), the process proceeds to step S7. Here, whether or not there is a shift request by the manual transmission unit 9B is determined in the same manner as in step S6.
  • step S9 following the determination that there is a shift request by the manual transmission unit 9B in step S8, or the determination that the first threshold ⁇ the gear ratio> the second threshold in step S4, the change mind shift is permitted.
  • the shift from the first shift stage to the second shift stage is interrupted, Shifting from the second gear to the first gear is executed.
  • step S10 following the determination of downshift in step S1, it is determined whether or not the “change mind prohibition time” has elapsed since the downshift gear shift command was output. If YES (prohibited time has elapsed), the process proceeds to step S11. If NO (prohibited time has not elapsed), the process proceeds to step S114.
  • the “change mind prohibition time” means that the piston stroke of the frictional engagement element 6 (second frictional engagement element) that is switched from the release control to the engagement control by the shift command from the first gear to the second gear is completed. This is the time when the backpacking is completed by the precharge hydraulic pressure supplied to the second frictional engagement element on the engagement side, and is set to an arbitrary time in advance.
  • step S11 following the determination that the “change mind prohibition time” has elapsed in step S10 or the determination that there is a shift request by the manual transmission unit 9B in step S14, the gear ratio in the automatic transmission 3 is the first threshold value. It is judged whether it is less than. If YES (gear ratio ⁇ first threshold), the process proceeds to step S16. If NO (gear ratio ⁇ first threshold), the process proceeds to step S12.
  • the “gear ratio” is a ratio between the turbine rotation speed Nt detected by the turbine rotation sensor 12 and the output shaft rotation speed No detected by the output shaft rotation sensor 13.
  • the “first threshold value” is a value that can determine the start of the inertia phase, and is set to an arbitrary value in advance. Note that step S11 corresponds to an inertia phase determination means for determining the start of the inertia phase during the shift from the first gear to the second gear.
  • step S12 following the determination that gear ratio ⁇ first threshold value in step S11, it is determined whether or not the gear ratio in the automatic transmission 3 is less than the second threshold value. If YES (first threshold ⁇ gear ratio ⁇ second threshold), the process proceeds to step S17. If NO (gear ratio ⁇ second threshold), the process proceeds to step S13.
  • the “second threshold value” is a value with which it is possible to determine that the shift from the first gear to the second gear is almost completed, and is set to an arbitrary value in advance.
  • step S13 following the determination that gear ratio ⁇ second threshold value in step S12, the change-mind shift is prohibited, assuming that the shift from the first gear to the second gear is almost completed. Thereby, even if the shift from the second shift stage to the first shift stage is instructed from either the automatic transmission unit 9A or the manual transmission unit 9B, the shift from the first shift stage to the second shift stage is continued, This shift control is terminated.
  • step S14 following the determination that the “change mind prohibition time” has not elapsed in step S10, it is determined whether or not a shift instruction from the second gear to the first gear is output by the manual transmission unit 9B. If YES (with a shift command), the process proceeds to step S11. If NO (without a shift command), the process proceeds to step S15.
  • the presence / absence of a shift instruction from the manual transmission unit 9B is determined by the output of the inhibitor switch 14. That is, when the manual mode switch 18 is ON-controlled in the shift selection mechanism 15 and the shift selection mechanism 15 instructs to change the gear setting from the second gear to the first gear, the gear shift instruction by the manual transmission unit 9B is given. Judge that there was.
  • step S15 the change mind shift is prohibited following the determination in step S14 that there is no shift instruction by the manual transmission unit 9B or the determination in step S16 that there is no shift instruction by the manual transmission unit 9B.
  • the shift from the first shift stage to the second shift stage is continued.
  • the piston stroke of the engagement side frictional engagement element 6 (second frictional engagement element) is not completed at the time of a shift command from the first shift stage to the second shift stage.
  • step S16 following the determination of gear ratio ⁇ first threshold value in step S11, it is determined whether or not a shift request from the second gear to the first gear is output by the manual transmission unit 9B. If YES (there is a shift request), the process proceeds to step S17. If NO (no shift request), the process proceeds to step S15. Here, whether or not there is a shift request by the manual transmission unit 9B is determined in the same manner as in step S14.
  • step S17 following the determination that there is a shift request by the manual transmission unit 9B in step S16 or the determination that first threshold value ⁇ gear ratio ⁇ second threshold value in step S12, change-mind shift is permitted.
  • change-mind shift is permitted.
  • FIG. 4 is an explanatory diagram showing the gear ratio and whether or not a change mind shift request is possible in the control device for the automatic transmission of the comparative example, where (a) shows the upshift time and (b) shows the downshift time. .
  • the target gear ratio is set to a smaller value than the actual gear ratio before the gear shift, as shown in FIG.
  • the target gear ratio is set to a larger value than the actual gear ratio before the shift.
  • the “first threshold” is set as the gear ratio that can determine the start of the inertia phase.
  • the change mind shift request is permitted until the actual gear ratio reaches the “first threshold value”, that is, until the inertia phase during the shift control starts, and after the inertia phase starts, the change mind shift request is made. Is prohibited.
  • the target shift speed is changed to the original shift speed due to a change in traveling conditions or the like from time t2 to time t3 or from time t2 ′ to time t3 ′, The change is prohibited, and the execution of the current shift control is continued.
  • this frictional engagement element is a so-called semi-engaged state.
  • the engagement control is again performed by the change-mind shift, when the actual piston return amount is smaller than the detected piston return amount (when the piston stroke is not returned), a sudden engagement occurs and a shock occurs.
  • the actual piston return amount is larger than the detected piston return amount (when the piston stroke has returned), a fastening delay occurs and engine blow-up occurs.
  • FIGS. 5A and 5B are explanatory diagrams showing the gear ratio in the automatic transmission control device according to the first embodiment and whether or not a change mind shift request can be made by automatic shift.
  • FIG. 5A shows an upshift
  • FIG. Indicates the shift time.
  • step S3 Prior to time t12, the actual gear ratio exceeds the first threshold value, and it is determined that the inertia phase during the upshift is not started. Therefore, the process proceeds from step S3 to step S8. At this time, there is a request for a change mind shift from the automatic transmission unit 9A, and there is no request for a shift by the manual transmission unit 9B. Therefore, the process proceeds from step S8 to step S7, and the change mind shift is prohibited. Thereby, the change mind shift request by the automatic transmission unit 9A is prohibited, and the upshift shift that is the first shift command is continued.
  • step S3 After time t12, the actual gear ratio is less than the first threshold value, and it is determined that the inertia phase during the upshift is started. Therefore, the process proceeds from step S3 to step S4.
  • step S4 the change mind shift request by the automatic transmission unit 9A is permitted, the upshift shift which is the first shift command is interrupted, and the change mind shift is executed with the target gear ratio as the gear ratio before the shift.
  • step S3 Since it is after time t13, the actual gear ratio is less than the first threshold, and the process proceeds from step S3 to step S4.
  • step S4 the change mind shift request by the automatic transmission unit 9A is prohibited, and the upshift shift that is the first shift command is continued.
  • the frictional engagement element (second frictional engagement element) that changes from the released state to the engaged state by the upshift is almost engaged. Therefore, if the change mind shift is permitted in such a state, the control command becomes complicated, the engagement hydraulic pressure state becomes unstable, and a shock may occur. On the other hand, when the upshift is continued, the frictional engagement element (second frictional engagement element) is not subjected to release control again, and the engagement hydraulic pressure state does not become unstable. As a result, the control command is not complicated and the occurrence of a shock can be prevented.
  • a downshift gear shift command is output at time t10 ′ in FIG.
  • the target gear ratio is set to a larger value than the actual gear ratio before the shift.
  • the plurality of friction engagement elements 6 of the automatic transmission 3 are appropriately subjected to engagement / release control, and the actual gear ratio gradually starts to increase toward the target gear ratio at time t11 ′.
  • step S11 Prior to time t12 ′, the actual gear ratio is below the first threshold, and it is determined that the inertia phase during the downshift is not started. Therefore, the process proceeds from step S11 to step S16. At this time, there is a change mind shift request from the automatic transmission unit 9A and no shift request from the manual transmission unit 9B. Therefore, the process proceeds from step S16 to step S15, and the change mind shift is prohibited. As a result, the change mind request by the automatic transmission unit 9A is prohibited, and the downshift, which is the first shift command, is continued.
  • step S11 (2) Generation of a change mind request from time t12 'to time t13'
  • step S11 (2) Generation of a change mind request from time t12 'to time t13'
  • step S11 After time t12 ′, the actual gear ratio is equal to or greater than the first threshold value, and it is determined that the inertia phase during the downshift is started. Therefore, the process proceeds from step S11 to step S12.
  • step S12 Before the time t13 ′, the actual gear ratio is below the second threshold value, and it is determined that the downshift is in progress. Therefore, the process proceeds from step S12 to step S17, and the change mind shift is permitted. Thereby, the change mind request by the automatic transmission unit 9A is permitted, the downshift shift which is the first shift command is interrupted, and the change mind shift with the target gear ratio as the gear ratio before the shift is executed.
  • step S11 generation of a change mind request from time t13 'to time t14'
  • step S11 Since it is after time t13 ', the actual gear ratio is equal to or greater than the first threshold value, and the process proceeds from step S11 to step S12.
  • step S12 the change mind shift is prohibited.
  • the change mind request by the automatic transmission unit 9A is prohibited, and the downshift, which is the first shift command, is continued.
  • the frictional engagement element (second frictional engagement element) that changes from the released state to the engaged state by the downshift is almost engaged. Therefore, if the change mind shift is permitted in such a state, the control command becomes complicated, the engagement hydraulic pressure state becomes unstable, and a shock may occur. On the other hand, when the downshift is continued, the friction engagement element (second friction engagement element) is not released again and the engagement hydraulic pressure state does not become unstable. As a result, the control command is not complicated and the occurrence of a shock can be prevented.
  • FIGS. 6A and 6B are explanatory diagrams showing the gear ratio in the automatic transmission control device according to the first embodiment and whether or not a change-mind shift request can be made by manual shift.
  • FIG. 6A shows an upshift time
  • FIG. Indicates the shift time.
  • step S3 Prior to time t22, the actual gear ratio exceeds the first threshold value, and it is determined that the inertia phase during the upshift is not started. Therefore, the process proceeds from step S3 to step S8. At this time, since it is a request for a change mind shift from the manual transmission unit 9B, a shift request is generated by the manual transmission unit 9B. Therefore, the process proceeds from step S8 to step S9, and the change mind shift is permitted. Thereby, the change mind request by the manual transmission unit 9B is permitted, the upshift shift which is the first shift command is interrupted, and the change mind shift is executed with the target gear ratio as the gear ratio before the shift.
  • the frictional engagement element (first frictional engagement element) that changes from the engaged state to the released state due to the upshift is not completely released. For this reason, if the change mind shift is permitted, the engagement is controlled again, which may cause sudden engagement or engagement delay due to the detection error of the piston return amount.
  • the request for the change mind shift by the manual transmission unit 9B that is, the shift instruction by the manual transmission unit 9B is due to the driver's intention. Therefore, even before the start of the inertia phase during the upshift, the change control according to the driver's intention can be achieved by permitting the change mind shift.
  • step S2 Generation of a change mind request from time t22 to time t23 If there is a change mind shift request from the manual transmission unit 9B between time t22 and time t23 in FIG. 6 (a), the flowchart shown in FIG. The process proceeds from step S1 to step S2. Here, since the change mind prohibition time has elapsed, the process proceeds to step S3.
  • step S3 After time t22, the actual gear ratio is less than the first threshold value, and it is determined that the inertia phase during the upshift is started. Therefore, the process proceeds from step S3 to step S4.
  • step S4 the change mind shift is permitted.
  • the change mind request by the manual transmission unit 9B is permitted, the upshift shift which is the first shift command is interrupted, and the change mind shift is executed with the target gear ratio as the gear ratio before the shift.
  • step S3 Since it is after time t23, the actual gear ratio is less than the first threshold value, and the process proceeds from step S3 to step S4.
  • step S4 the change mind shift is prohibited.
  • the change mind request by the manual transmission unit 9B is prohibited, and the upshift shift that is the first shift command is continued.
  • the frictional engagement element (second frictional engagement element) that changes from the released state to the engaged state by the upshift is almost engaged. Therefore, if the change mind shift is permitted in such a state, the control command becomes complicated, the engagement hydraulic pressure state becomes unstable, and a shock may occur. On the other hand, when the upshift is continued, the frictional engagement element (second frictional engagement element) is not subjected to release control again, and the engagement hydraulic pressure state does not become unstable. As a result, the control command is not complicated and the occurrence of a shock can be prevented.
  • step S1 generation of a change mind request from time t20 'to time t22'
  • step S10 If the change mind prohibition time has elapsed, the process proceeds to step S11.
  • step S11 Prior to time t22 ′, the actual gear ratio is less than the first threshold value, and it is determined that the inertia phase during the downshift is not started. Therefore, the process proceeds from step S11 to step S16.
  • the manual transmission unit 9B is a request for a change mind shift
  • a shift request is generated by the manual transmission unit 9B. Therefore, the process proceeds from step S16 to step S17, and the change mind shift is permitted.
  • the change mind request by the manual transmission unit 9B is permitted, the upshift shift which is the first shift command is interrupted, and the change mind shift is executed with the target gear ratio as the gear ratio before the shift.
  • the frictional engagement element (first frictional engagement element) that changes from the engaged state to the released state due to the downshift is not completely released. For this reason, if the change mind shift is permitted, the engagement is controlled again, which may cause sudden engagement or engagement delay due to the detection error of the piston return amount.
  • the request for the change mind shift by the manual transmission unit 9B that is, the shift instruction by the manual transmission unit 9B is due to the driver's intention. Therefore, even before the start of the inertia phase during the downshift, the change control according to the driver's intention can be achieved by permitting the change mind shift.
  • step S11 (2) Generation of a change mind request from time t22 'to time t23'
  • step S11 (2) Generation of a change mind request from time t22 'to time t23'
  • step S11 After time t22 ′, the actual gear ratio is equal to or greater than the first threshold value, and it is determined that the inertia phase during the downshift is started. Therefore, the process proceeds from step S11 to step S12.
  • step S12 Prior to time t23 ′, the actual gear ratio is below the second threshold value, and it is determined that the downshift is in progress. Therefore, the process proceeds from step S12 to step S17, and the change mind shift is permitted. Thereby, the change mind request by the manual transmission unit 9B is permitted, the downshift shift which is the first shift command is interrupted, and the change mind shift with the target gear ratio as the gear ratio before the shift is executed.
  • step S11 Since it is after time t23 ', the actual gear ratio is equal to or greater than the first threshold value, and the process proceeds from step S11 to step S12.
  • step S12 the change mind shift is prohibited.
  • the change mind request by the manual transmission unit 9B is prohibited, and the downshift transmission as the first shift command is continued.
  • the frictional engagement element (second frictional engagement element) that changes from the released state to the engaged state by the downshift is almost engaged. Therefore, if the change mind shift is permitted in such a state, the control command becomes complicated, the engagement hydraulic pressure state becomes unstable, and a shock may occur. On the other hand, when the downshift is continued, the friction engagement element (second friction engagement element) is not released again and the engagement hydraulic pressure state does not become unstable. As a result, the control command is not complicated and the occurrence of a shock can be prevented.
  • FIG. 7 shows the target gear stage, throttle opening, vehicle acceleration, actual gear ratio, command hydraulic pressure and actual pressure in the first friction engagement element, and command hydraulic pressure and actual pressure in the second friction engagement element when the change mind shift is executed. It is a figure which shows each characteristic of a pressure.
  • the target gear is set to a value higher than the current gear so as to change from the first gear to the second gear, for example.
  • a shift command is output.
  • the first frictional engagement element that has been engaged at the first gear is subjected to release control.
  • the second friction engagement element released at the first gear is controlled to be engaged. That is, at the time t32, the command hydraulic pressure of the first friction engagement element is reduced by the release control. On the other hand, at time t32, the command hydraulic pressure of the second friction engagement element increases due to the engagement control. Note that the hydraulic pressure supplied to the second frictional engagement element on the engagement side is initially a precharge hydraulic pressure for padding. Therefore, the hydraulic pressure command output to the second frictional engagement element at time t32 is a precharge hydraulic pressure command.
  • the actual pressure of the first engagement friction element starts to decrease according to the command oil pressure.
  • the actual pressure of the second frictional engagement element starts to rise in accordance with the command hydraulic pressure.
  • the precharge hydraulic pressure command is switched to the normal engagement hydraulic pressure command.
  • the actual pressure of the second frictional engagement element starts to gradually increase.
  • the actual gear ratio starts gradually decreasing at time t37.
  • the first friction engagement element is completely released, and the inertia phase during the upshift is started.
  • the target gear stage is upshifted so that the target gear stage is changed from, for example, the second gear stage to the first gear stage.
  • the gear position before control is set, and a change mind shift request is output.
  • the first frictional engagement element that has been release controlled during the upshift is controlled to be engaged.
  • the second friction engagement element that has been controlled to be engaged during the upshift is subjected to release control.
  • the command hydraulic pressure of the first friction engagement element is increased by the engagement control.
  • the hydraulic pressure supplied to the first frictional engagement element on the engagement side is initially a precharge hydraulic pressure for padding. Therefore, the hydraulic pressure command output to the first friction engagement element at time t39 is a precharge hydraulic pressure command.
  • the second frictional engagement element that has been subjected to the engagement control is in the release control. At this time, if the precharge is not completed in the engagement control of the second friction engagement element, the backpacking in the second friction engagement element is not completed and the actual pressure cannot be reliably increased. The so-called piston stroke is not in time. For this reason, the second frictional engagement element cannot be released, and as shown by a broken line in FIG. 7, air blow occurs due to the piston stroke not being in time, and the vehicle acceleration is disturbed and a shock may occur.
  • the fastening control in the second frictional engagement element is continued, and after the first frictional engagement element is secured, the second frictional engagement element is controlled to be released. Thereby, generation
  • the second friction engagement element that is released at the first shift stage and is engaged at the second shift stage uses the precharge hydraulic pressure.
  • the backpacking is not completed and it is before the piston stroke is completed. Therefore, if the change mind shift is permitted before the piston stroke is completed, the so-called piston stroke is not in time. As a result, air blow occurs due to the piston stroke not being in time, and the vehicle acceleration may be disturbed to cause a shock.
  • step S2 or step S10 of the flowchart shown in FIG. 3 it is determined whether or not the change mind prohibition time has elapsed. If there is a change mind shift request from the automatic transmission portion 9A before the change mind prohibition time elapses, that is, before the piston stroke of the second frictional engagement element on the engagement side is completed, step S2 to step S6 are performed. Then, the process proceeds to step S7, or from step S10 to step S14 to step S25, and the change mind shift is prohibited. Thereby, the change mind request by the automatic transmission unit 9A is prohibited, and the first shift control is continued.
  • the automatic transmission unit 9A prohibits the request for the change mind shift so that the air blow (engine blow-up) due to the piston stroke not being completed is prohibited. ) Can be suppressed.
  • step S2 To step S3 via step S6.
  • step S3 Even if the actual gear ratio is equal to or greater than the first threshold value, a change mind shift request is issued from the manual transmission unit 9B, so the process proceeds from step S3 to step S8 to step S9, where the change mind shift is permitted.
  • step S10 At the time of downshifting, the process proceeds from step S10 to step S11 via step S14.
  • the manual transmission unit 9B requests a change mind shift, so that the process proceeds from step S11 to step S16 to step S17, where the change mind shift is permitted.
  • the change mind request by the manual transmission unit 9B is permitted, the first shift control is interrupted, and the change mind shift is executed with the target gear ratio as the gear ratio before the shift.
  • the frictional engagement element (second frictional engagement element) that changes from the released state to the engaged state by the first shift control does not complete the piston stroke, and the backlash is reduced. It is in a state that is not completed. For this reason, if the change mind shift is permitted, a shock or a blow-up may occur because the piston stroke is not in time.
  • the request for the change mind shift by the manual transmission unit 9B that is, the shift instruction by the manual transmission unit 9B is due to the driver's intention. Therefore, even before the change mind prohibition time has elapsed, by allowing the change mind shift, it is possible to perform the shift control according to the driver's intention.
  • a control device for an automatic transmission that includes a first friction engagement element that is engaged at a first speed and released at a second speed, Automatic transmission means (automatic transmission unit) 9A for executing a shift to a gear stage that is automatically set based on the running state; Manual transmission means (manual transmission unit) 9B for performing a shift to a gear set by manual operation; Inertia phase determining means (step S3, step S11) for determining the start of an inertia phase during a shift from the first gear to the second gear; During a shift from the first shift stage to the second shift stage, before the start of the inertia phase, when there is a shift request from the second shift stage to the first shift stage by the automatic transmission means 9A, Prohibiting a shift from the second shift stage to the first shift stage and continuing the shift from the first shift stage to the second shift stage; During a shift from the first shift stage to the second shift stage, before the start of the inertia phase, when there is a shift request from the second
  • the change mind shift judging means (FIG. 3) There was a shift request from the second shift stage to the first shift stage by the automatic transmission means within a predetermined time (change mind prohibition time) from the start of the shift from the first shift stage to the second shift stage. The shift from the second shift stage to the first shift stage is prohibited, and the shift from the first shift stage to the second shift stage is continued, There was a shift request from the second shift stage to the first shift stage by the manual shift means within a predetermined time (change mind prohibition time) from the start of the shift from the first shift stage to the second shift stage.
  • the present invention if the gear ratio changes by a predetermined amount (when the gear ratio reaches the first threshold value), it is determined that the inertia phase has started, but the present invention is not limited to this.
  • the time after the first shift command is output may be detected, and the start of the inertia phase may be determined when a predetermined time has elapsed.
  • the automatic transmission 3 is mounted on an engine vehicle that uses the engine 1 as a travel drive source.
  • the present invention is not limited thereto, and only a hybrid vehicle or motor that uses an engine and a motor as a travel drive source.
  • the present invention can also be applied to an electric vehicle using a traveling drive source.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置において、チェンジマインド変速判断手段により、第1変速段から前記第2変速段への変速中、イナーシャフェーズの開始前に、走行状態に基づいて自動的に設定される変速段への変速を実行する自動変速手段(9A)により第2変速段から第1変速段への変速要求があったとき、この変速要求を禁止する。一方、第1変速段から前記第2変速段への変速中、イナーシャフェーズの開始前に、手動操作で設定された変速段への変速を実行する手動変速手段(9B)により第2変速段から第1変速段への変速要求があったとき、この変速要求を許可する。これにより、ショックや吹け上がりの発生を防止しつつ、運転者の意図に応じた変速制御を実行することができる。

Description

自動変速機の制御装置
 本発明は、手動操作で設定された変速段への変速を実行する手動変速手段を備えた自動変速機の制御装置に関するものである。
 近年、自動変速機の多段化が進み、変速段数の増加に応じてクラッチやブレーキといった摩擦締結要素の数も増加している。また、変速段数の増加に伴い、シフトマップの変速線の間隔が非常に密となるため、若干の走行条件(例えばスロットル開度等)の変化によって変速が起こりやすくなっている。すなわち、変速頻度が増えることとなり、変速中であっても目標変速段の変更要求が発生するシーンが増加している。
 そこで、このような変速中に目標変速段の変更要求があった場合の従来技術として、変速判断から実変速の開始、つまりイナーシャフェーズ開始までに走行条件(例えば、スロットル開度等)の変化によって目標変速段の変更要求があった場合には目標変速段の変更を許可し、イナーシャフェーズ開始後は目標変速段の変更を禁止して、変速中の変速を完了する自動変速機の制御装置が例えば特許文献1にて知られている。
 しかしながら、従来の自動変速機の制御装置では、イナーシャフェーズ開始前であれば、目標変速段の変更、いわゆるチェンジマインド変速を許可しているため、ショックやエンジンの吹け上がりが発生することがあった。
 すなわち、摩擦締結要素において、解放制御中のピストンストロークの戻り量やクラッチ容量を正確に検出することは困難である。そのため、チェンジマインド変速の実行により解放制御から締結制御へと制御が変化する摩擦締結要素において、検出したピストン戻り量又はクラッチ容量よりも実際のピストン戻り量又はクラッチ容量が小さいとき(ピストンストロークが想定よりも戻っていないとき)には、急締結となってショックが生じてしまう。また、検出したピストン戻り量又はクラッチ容量よりも実際のピストン戻り量又はクラッチ容量が大きいとき(ピストンストロークが想定以上に戻りすぎているとき)には、締結遅れになりエンジンの吹け上がりが発生してしまう。
特開平6-34659号公報
 本発明は、上記問題に着目してなされたもので、ショックや吹け上がりの発生を防止しつつ、運転者の意図に応じた変速制御を実行することができる自動変速機の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明は、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置であって、
 走行状態に基づいて自動的に設定される変速段への変速を実行する自動変速手段と、
 手動操作で設定された変速段への変速を実行する手動変速手段と、
 前記第1変速段から前記第2変速段への変速中、イナーシャフェーズの開始を判定するイナーシャフェーズ判定手段と、
 前記第1変速段から前記第2変速段への変速中、前記イナーシャフェーズの開始前に、前記自動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第2変速段から前記第1変速段への変速を禁止して、前記第1変速段から前記第2変速段への変速を継続し、
 前記第1変速段から前記第2変速段への変速中、前記イナーシャフェーズの開始前に、前記手動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第1変速段から前記第2変速段への変速を中断し、前記第2変速段から前記第1変速段への変速を許可するチェンジマインド変速判断手段と、
 を備えたものとした。
 よって、本発明の自動変速機の制御装置にあっては、第1変速段から第2変速段への変速中、イナーシャフェーズの開始前に、自動変速手段による第2変速段から第1変速段への変速要求があったとき、第1変速段から第2変速段への変速が継続される。一方、手動変速手段による第2変速段から第1変速段への変速要求があったとき、第1変速段から第2変速段への変速を中断し、第2変速段から第1変速段への変速を実行する。
 すなわち、第1変速段から第2変速段への変速において、第1変速段で締結され、第2変速段で解放される第1摩擦締結要素は、締結状態から解放状態へと制御される。しかしながら、この変速中のイナーシャフェーズ開始前では、第1摩擦締結要素における解放状態の検出が困難である。そのため、自動変速手段による第2変速段から第1変速段への変速要求があっても、この変速要求を実行せず、すでに行っている第1変速段から第2変速段への変速を継続することで、ショックやエンジンの吹け上がりの発生を防止できる。
 一方、手動変速手段による変速要求は運転者の意図によるものである。そのため、手動変速手段による第2変速段から第1変速段への変速要求があったときには、この変速要求に応じて、第2変速段から第1変速段への変速を実行することで、運転者の意図に応じた変速制御とすることができる。
 この結果、ショックや吹け上がりの発生を防止しつつ、運転者の意図に応じた変速制御を実行することができる。
実施例1の自動変速機の制御装置が適用された車両のパワートレインの構成を示す全体システム図である。 実施例1のシフト選択機構の操作部を示す平面図である。 実施例1のATコントローラにて実行されるチェンジマインド変速判断処理の流れを示すフローチャートである。 比較例の自動変速機の制御装置におけるギヤ比とチェンジマインド変速要求の可否を示した説明図であり、(a)はアップシフト時を示し、(b)はダウンシフト時を示す。 実施例1の自動変速機の制御装置におけるギヤ比と自動変速によるチェンジマインド変速要求の可否を示した説明図であり、(a)はアップシフト時を示し、(b)はダウンシフト時を示す。 実施例1の自動変速機の制御装置におけるギヤ比と手動変速によるチェンジマインド変速要求の可否を示した説明図であり、(a)はアップシフト時を示し、(b)はダウンシフト時を示す。 チェンジマインド変速を実行したときの、目標ギヤ段、スロットル開度、車両加速度、実ギヤ比、第1摩擦締結要素における指令油圧と実圧、第2摩擦締結要素における指令油圧と実圧の各特性を示す図である。
 以下、本発明の自動変速機の制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
 実施例1の自動変速機の制御装置の構成を「全体システム構成」と「チェンジマインド変速判断処理の構成」とに分けて説明する。
 [全体システム構成]
 図1は、実施例1の自動変速機の制御装置が適用された車両のパワートレインの構成を示す全体システム図である。図2は、実施例1のシフト選択機構の操作部を示す平面図である。
 実施例1における車両のパワートレインは、図1に示すように、エンジン1と、トルクコンバータ2と、自動変速機3と、を有する。
 前記エンジン1は、ガソリンエンジンやディーゼルエンジンであり、運転者が操作するアクセルペダルに連動してその踏み込みにつれ全閉から全開に向けて開度が増大するスロットルバルブにより出力を加減される。このエンジン1のエンジン出力軸1aは、トルクコンバータ2を介して自動変速機3の入力軸4に接続している。
 前記自動変速機3は、有段式の自動変速機である。この自動変速機3は、同軸に配置された入力軸4と出力軸5上に配置されたフロントプラネタリギヤ組(図示せず)及びリヤプラネタリギヤ組(図示せず)と、複数の摩擦締結要素6と、バルブボディ7と、を有する。
 前記複数の摩擦締結要素6は、油圧により作動し、締結、解放の組み合わせにより動力伝達経路を切り換えて、所望の変速段を実現する。各摩擦締結要素6は、ATコントローラ9からの制御指令に基づきバルブボディ7により作り出された制御油圧により、締結、スリップ締結、解放が制御される。
 前記複数の摩擦締結要素6は、少なくとも第1変速段で締結され、第2変速段で解放される第1摩擦締結要素と、第1変速段で解放され、第2変速段で締結される第2摩擦締結要素と、を備える。なお、「第1変速段」及び「第2変速段」とは任意の変速段であり、例えば1速段と2速段であったり、2速段と4速段であったり、2速段と1速段であったりする。
 そして、各摩擦締結要素6としては、例えば、比例ソレノイドで油流量および油圧を連続的に制御できるノーマルオープンの湿式多板クラッチや湿式多板ブレーキが用いられる。
 前記バルブボディ7内には、各摩擦締結要素6に油圧を供給する油路(図示せず)が形成されており、ATコントローラ9から入力される制御指令に基づいて駆動されるソレノイド8が、各油路に設けられた調圧弁(図示せず)を操作し、ATコントローラ9が設定した指令圧の油圧が所定の摩擦締結要素6に供給されるように制御される。また、車両の走行時には、所望の変速段を得るために必要な摩擦締結要素6のみに油圧を供給するように制御される。
 前記ATコントローラ9は、自動変速部(自動変速手段)9Aと、手動変速部(手動変速手段)9Bと、を有する。
 前記自動変速部9Aは、インヒビタスイッチ14に接続されたシフト選択機構15において、マニュアルモードスイッチ18がOFF制御されたとき、車速やアクセル開度、スロットル開度等から求められる走行状態と、図示しない変速マップに基づいて自動的に設定される変速段への変速を実行する。
 前記手動変速部9Bは、インヒビタスイッチ14に接続されたシフト選択機構15において、マニュアルモードスイッチ18がON制御されたとき、シフト選択機構15で設定された変速段への変速を実行する。
 さらに、このATコントローラ9では、ある変速制御において目標変速段を達成する前に、元の変速段へ目標変速段を戻す変速制御を行う「チェンジマインド変速」の要求があったときの可否を判断する。
 つまり、このATコントローラ9は、第1変速段から第2変速段への変速中、イナーシャフェーズの開始前に、自動変速部9Aによる第2変速段から第1変速段への変速の要求(チェンジマインド変速要求)があったときには、このチェンジマインド変速を禁止する。これにより、第2変速段から第1変速段への変速は実行されず、第1変速段から第2変速段への変速が継続される。
 また、第1変速段から第2変速段への変速中、イナーシャフェーズの開始前に、手動変速部9Bによる第2変速段から第1変速段への変速の要求(チェンジマインド変速要求)があったときには、このチェンジマインド変速を許可する。これにより、第1変速段から第2変速段への変速は中断され、第2変速段から第1変速段への変速が実行される。
 すなわち、このATコントローラ9では、イナーシャフェーズの開始前、自動変速モードによるチェンジマインド変速は禁止するが、手動変速モードによるチェンジマインド変速は許可する。
 さらに、このATコントローラ9は、各変速部9A,9Bによって指示された変速制御指令と、エンジン回転センサ10、スロットル開度センサ11、タービン回転センサ12、出力軸回転センサ13、インヒビタスイッチ14等の出力に基づいて、締結される摩擦締結要素6に供給する作動油圧の指令圧を決定する。そして、決定した指令圧の作動油圧が締結される摩擦締結要素6に供給されるようにソレノイド8を駆動する指令を出力すると共に、解放される摩擦締結要素6から作動油を排出する排出指令を出力する。
 前記エンジン回転センサ10は、エンジン1の出力軸の回転を検出し、検出した出力軸の回転数(エンジン回転数Ne)を示す信号を、ATコントローラ9に出力する。
 前記スロットル開度センサ11は、エンジン1のスロットルバルブの開度を検出し、検出したスロットルバルブの開度(スロットル開度Tvo)を示す信号を、ATコントローラ9に出力する。
 前記タービン回転センサ12は、自動変速機3の入力軸4の回転を出力し、入力軸4の回転数(タービン回転数Nt)を示す信号を、ATコントローラ9に出力する。
 前記出力軸回転センサ13は、自動変速機3の出力軸5の回転を出力し、出力軸5の回転数(出力軸回転数No)を示す信号を、ATコントローラ9に出力する。
 前記インヒビタスイッチ14は、シフト選択機構15の操作に連動して回動するマニュアルシャフト(図示せず)に設けられており、シフト選択機構15の選択レンジを示す信号やマニュアルモードスイッチ18のON/OFF信号等を、ATコントローラ9に出力する。
 前記シフト選択機構15の操作部は、例えば図2に示すように、ほぼH状の案内路16に沿ってセレクトレバー17を移動することで、任意のレンジを選択するようになっている。
 すなわち、案内路16は、自動変速モードのレンジが車両前後方向に一列に配置された自動変速用案内溝16aと、その自動変速用案内溝16aにおけるドライブレンジD位置から横方向に延びる連通溝16cと、その連通溝16cに連通し上記自動変速用案内溝16aと平行に車両前後方向に延びる手動変速用案内溝16bと、を備える。
 そして、自動変速用案内溝16aにおける各レンジ位置にセレクトレバー17を移動させることで、自動変速モードの各レンジに対応したレンジ信号がインヒビタスイッチ14により検出される。また、連通溝16cには、マニュアルモードスイッチ18が配置されている。このマニュアルモードスイッチ18は、セレクトレバー17が自動変速用案内溝16aから手動変速用案内溝16b側に移動した際にON制御され、セレクトレバー17が手動変速用案内溝16bから自動変速用案内溝16a側に移動した際にOFF制御される。このON/OFF信号はインヒビタスイッチ14により検出される。さらに、手動変速用案内溝16bの延在方向端部の前後位置には、それぞれアップシフトスイッチ19aと、ダウンシフトスイッチ19bが設けられていて、手動変速用案内溝16bに移動したセレクトレバー17が各シフトスイッチ19a,19bの一方に向けて移動して当接することで、当接したいずれかのシフトスイッチ19a,19bがON状態となり、変速段を設定変更する。このON信号はインヒビタスイッチ14により検出される。
 [チェンジマインド変速判断処理の構成]
 図3は、実施例1のATコントローラにて実行されるチェンジマインド変速判断処理の流れを示すフローチャートである。このチェンジマインド変速判断処理(チェンジマインド変速判断手段)は、第1変速段から第2変速段への変速指令が出力されたら実行される。ここで、この最初の変速指令は自動変速部9Aによる変速指令であっても、手動変速部9Bによる変速指令であってもよい。以下、図3に示す各ステップについて説明する。
 ステップS1では、出力された第1変速段から第2変速段への変速指令がアップシフトであるかダウンシフトであるかを判断する。アップシフトの場合にはステップS2へ移行し、ダウンシフトの場合にはステップS10へ移行する。
 ここで、アップシフトとダウンシフトの判断は、変速後の目標ギヤ比が変速前の実ギヤ比に対して小さい値であればアップシフトと判断し、変速後の目標ギヤ比が変速前の実ギヤ比に対して大きい値であればダウンシフトと判断する。
 ステップS2では、ステップS1でのアップシフトとの判断に続き、アップシフト変速指令が出力されたときから「チェンジマインド禁止時間」が経過したか否かを判断する。YES(禁止時間経過)の場合はステップS3へ移行し、NO(禁止時間未経過)の場合はステップS6へ移行する。
 ここで、「チェンジマインド禁止時間」とは、第1変速段から第2変速段への変速指令により解放制御から締結制御へと切り替わる摩擦締結要素6(第2摩擦締結要素)のピストンストロークが完了する時間、つまり締結側の第2摩擦締結要素に供給したプリチャージ油圧により、がた詰めが完了する時間であり、予め任意の時間に設定する。
 ステップS3では、ステップS2での「チェンジマインド禁止時間」経過との判断、又は、ステップS6での手動変速部9Bによる変速要求ありとの判断に続き、自動変速機3におけるギヤ比が第1閾値より大きいか否かを判断する。YES(ギヤ比>第1閾値)の場合はステップS8へ移行し、NO(ギヤ比≦第1閾値)の場合はステップS4へ移行する。ここで、「ギヤ比」は、タービン回転センサ12により検出されたタービン回転数Ntと、出力軸回転センサ13により検出された出力軸回転数Noとの比である。
 また、「第1閾値」とは、イナーシャフェーズの開始を判断できる値であり、予め任意の値に設定する。なお、このステップS3が、第1変速段から第2変速段への変速中、イナーシャフェーズの開始を判定するイナーシャフェーズ判定手段に相当する。
 ステップS4では、ステップS3でのギヤ比≦第1閾値との判断に続き、自動変速機3におけるギヤ比が第2閾値より大きいか否かを判断する。YES(第1閾値≧ギヤ比>第2閾値)の場合はステップS9へ移行し、NO(ギヤ比≦第2閾値)の場合はステップS5へ移行する。
 ここで、「第2閾値」は、第1変速段から第2変速段への変速のほぼ完了を判断できる値であり、予め任意の値に設定する。
 ステップS5では、ステップS4でのギヤ比≦第2閾値との判断に続き、第1変速段から第2変速段への変速がほぼ完了したとして、チェンジマインド変速を禁止する。これにより、自動変速部9A又は手動変速部9Bのいずれかから第2変速段から第1変速段への変速が指示されても、第1変速段から第2変速段への変速を継続し、この変速制御を終了させる。
 ステップS6では、ステップS2での「チェンジマインド禁止時間」未経過との判断に続き、手動変速部9Bによる第2変速段から第1変速段への変速要求が出力されたか否かを判断する。YES(変速要求あり)の場合はステップS3へ移行し、NO(変速要求なし)の場合はステップS7へ移行する。
 ここで、手動変速部9Bによる変速要求の有無は、インヒビタスイッチ14の出力により判断する。すなわち、シフト選択機構15においてマニュアルモードスイッチ18がON制御され、シフト選択機構15で第2変速段から第1変速段への変速段の設定変更指令が出力されれば、手動変速部9Bによる変速要求があったと判断する。
 ステップS7では、ステップS6での手動変速部9Bによる変速要求なしとの判断、又は、ステップS8での手動変速部9Bによる変速要求なしとの判断に続き、チェンジマインド変速を禁止する。これにより、自動変速部9Aから第2変速段から第1変速段への変速が要求されても、第1変速段から第2変速段への変速を継続する。
 つまり、このステップS7に移行するには、第1変速段から第2変速段への変速指令時、締結側の摩擦締結要素6(第2摩擦締結要素)のピストンストロークが完了せず、手動変速部9Bからの変速要求も出力されていない場合か、第1変速段から第2変速段への変速指令時、締結側の摩擦締結要素6(第2摩擦締結要素)のピストンストロークが完了しているが、イナーシャフェーズが開始する前であって、手動変速部9Bからの変速要求も出力されていない場合である。
 ステップS8では、ステップS3でのギヤ比>第1閾値との判断に続き、手動変速部9Bによる第2変速段から第1変速段への変速要求が出力されたか否かを判断する。YES(変速要求あり)の場合はステップS9へ移行し、NO(変速要求なし)の場合はステップS7へ移行する。
 ここで、手動変速部9Bによる変速要求の有無の判断は、ステップS6と同様に行う。
 ステップS9では、ステップS8での手動変速部9Bによる変速要求ありとの判断、又は、ステップS4での第1閾値≧ギヤ比>第2閾値との判断に続き、チェンジマインド変速を許可する。
 これにより、自動変速部9A又は手動変速部9Bのいずれかから第2変速段から第1変速段への変速が要求されれば、第1変速段から第2変速段への変速を中断し、第2変速段から第1変速段への変速を実行する。
 ステップS10では、ステップS1でのダウンシフトとの判断に続き、ダウンシフト変速指令が出力されたときから「チェンジマインド禁止時間」が経過したか否かを判断する。YES(禁止時間経過)の場合はステップS11へ移行し、NO(禁止時間未経過)の場合はステップS114へ移行する。
 ここで、「チェンジマインド禁止時間」とは、第1変速段から第2変速段への変速指令により解放制御から締結制御へと切り替わる摩擦締結要素6(第2摩擦締結要素)のピストンストロークが完了する時間、つまり締結側の第2摩擦締結要素に供給したプリチャージ油圧により、がた詰めが完了する時間であり、予め任意の時間に設定する。
 ステップS11では、ステップS10での「チェンジマインド禁止時間」経過との判断、又は、ステップS14での手動変速部9Bによる変速要求ありとの判断に続き、自動変速機3におけるギヤ比が第1閾値未満であるか否かを判断する。YES(ギヤ比<第1閾値)の場合はステップS16へ移行し、NO(ギヤ比≧第1閾値)の場合はステップS12へ移行する。ここで、「ギヤ比」は、タービン回転センサ12により検出されたタービン回転数Ntと、出力軸回転センサ13により検出された出力軸回転数Noとの比である。
 また、「第1閾値」とは、イナーシャフェーズの開始を判断できる値であり、予め任意の値に設定する。なお、このステップS11が、第1変速段から第2変速段への変速中、イナーシャフェーズの開始を判定するイナーシャフェーズ判定手段に相当する。
 ステップS12では、ステップS11でのギヤ比≧第1閾値との判断に続き、自動変速機3におけるギヤ比が第2閾値未満であるか否かを判断する。YES(第1閾値≦ギヤ比<第2閾値)の場合はステップS17へ移行し、NO(ギヤ比≧第2閾値)の場合はステップS13へ移行する。
 ここで、「第2閾値」は、第1変速段から第2変速段への変速のほぼ完了を判断できる値であり、予め任意の値に設定する。
 ステップS13では、ステップS12でのギヤ比≧第2閾値との判断に続き、第1変速段から第2変速段への変速がほぼ完了したとして、チェンジマインド変速を禁止する。これにより、自動変速部9A又は手動変速部9Bのいずれかから第2変速段から第1変速段への変速が指示されても、第1変速段から第2変速段への変速を継続し、この変速制御を終了させる。
 ステップS14では、ステップS10での「チェンジマインド禁止時間」未経過との判断に続き、手動変速部9Bによる第2変速段から第1変速段への変速指示が出力されたか否かを判断する。YES(変速指令あり)の場合はステップS11へ移行し、NO(変速指令なし)の場合はステップS15へ移行する。
 ここで、手動変速部9Bによる変速指示の有無は、インヒビタスイッチ14の出力により判断する。すなわち、シフト選択機構15においてマニュアルモードスイッチ18がON制御され、シフト選択機構15で第2変速段から第1変速段への変速段の設定変更が指示されれば、手動変速部9Bによる変速指示があったと判断する。
 ステップS15では、ステップS14での手動変速部9Bによる変速指示なしとの判断、又は、ステップS16での手動変速部9Bによる変速指示なしとの判断に続き、チェンジマインド変速を禁止する。これにより、自動変速部9Aから第2変速段から第1変速段への変速が指示されても、第1変速段から第2変速段への変速を継続する。
 つまり、このステップS15に移行するには、第1変速段から第2変速段への変速指令時、締結側の摩擦締結要素6(第2摩擦締結要素)のピストンストロークが完了せず、手動変速部9Bからの変速要求も出力されていない場合か、第1変速段から第2変速段への変速指令時、締結側の摩擦締結要素6(第2摩擦締結要素)のピストンストロークが完了しているが、イナーシャフェーズが開始する前であって、手動変速部9Bからの変速要求も出力されていない場合である。
 ステップS16では、ステップS11でのギヤ比<第1閾値との判断に続き、手動変速部9Bによる第2変速段から第1変速段への変速要求が出力されたか否かを判断する。YES(変速要求あり)の場合はステップS17へ移行し、NO(変速要求なし)の場合はステップS15へ移行する。
 ここで、手動変速部9Bによる変速要求の有無の判断は、ステップS14と同様に行う。
 ステップS17では、ステップS16での手動変速部9Bによる変速要求ありとの判断、又は、ステップS12での第1閾値≦ギヤ比<第2閾値との判断に続き、チェンジマインド変速を許可する。
 これにより、自動変速部9A又は手動変速部9Bのいずれかから第2変速段から第1変速段への変速が要求されれば、第1変速段から第2変速段への変速を中断し、第2変速段から第1変速段への変速を実行する。
 次に、作用を説明する。
 まず、「比較例の自動変速機の制御装置の構成と課題」を説明し、続いて、実施例1の自動変速機の制御装置における作用を、「自動変速部によるチェンジマインド変速制限作用」、「手動変速部によるチェンジマインド変速制限作用」、「チェンジマインド変速の時間制限作用」に分けて説明する。
 [比較例の自動変速機の制御装置の構成と課題]
 図4は、比較例の自動変速機の制御装置におけるギヤ比とチェンジマインド変速要求の可否を示した説明図であり、(a)はアップシフト時を示し、(b)はダウンシフト時を示す。
 自動変速機において、アップシフトの変速指令が出力されると、図4(a)に示すように、変速前の実ギヤ比に対して目標ギヤ比は小さい値に設定される。また、ダウンシフト変速指令が出力されると、図4(b)に示すように、変速前の実ギヤ比に対して目標ギヤ比は大きい値に設定される。
 そして、アップシフト変速時、ダウンシフト変速時のいずれであっても、変速指令出力時(時刻t1,時刻t1´)から所定時間が経過すると、ギヤ比は次第に変化し始め、時刻t3,時刻t3´では、実ギヤ比が目標ギヤ比に達し、変速制御が終了する。
 このとき、比較例の自動変速機の制御装置では、ギヤ比の変化開始後、イナーシャフェーズの開始を判断できるギヤ比として「第1閾値」を設定する。そして、実ギヤ比がこの「第1閾値」に達するまでは、つまり、変速制御中のイナーシャフェーズが開始するまではチェンジマインド変速要求を許可し、イナーシャフェーズが開始された後はチェンジマインド変速要求を禁止する。
 これにより、時刻t1から時刻t2までの間、或いは、時刻t1´から時刻t2´までの間に、走行条件の変化等によって目標変速段が元の変速段に変更した場合には、目標変速段の変更を許可する。一方、時刻t2から時刻t3までの間、或いは、時刻t2´から時刻t3´までの間に、走行条件の変化等によって目標変速段が元の変速段に変更した場合には、目標変速段の変更を禁止し、現在進行中の変速制御の実行を継続する。
 すなわち、このような比較例の自動変速機の制御装置では、イナーシャフェーズの開始タイミング(時刻t2,時刻t2´)を基準にして、チェンジマインド変速要求の可否を判断する。そのため、最初の変速指令で締結状態から解放状態へと変化する途中、チェンジマインド変速によって再び締結制御される摩擦締結要素では、解放制御中のピストン戻り量が把握できていないことで、ショックやエンジン吹け上がりが生じることがあった。
 つまり、イナーシャフェーズの開始前では、最初の変速指令で締結状態から解放状態へと変化する摩擦締結要素は、完全に解放しきっていない。そのため、この摩擦締結要素は、いわゆる半締結状態である。このような状態でチェンジマインド変速によって再び締結制御されると、検出したピストン戻り量よりも実際のピストン戻り量が少ない場合(ピストンストロークが戻っていない場合)には、急締結となりショックが発生する。また、検出したピストン戻り量よりも実際のピストン戻り量が大きい場合(ピストンストロークが戻っていた場合)には、締結遅れが生じてエンジン吹け上がりが発生する。
 これに対し、手動操作による変速制御の実行は、運転者の意図である。そのため、イナーシャフェーズが開始した後にチェンジマインド変速を禁止してしまうと、運転者の意図に応じた変速制御とすることができず、運転者に違和感を与えてしまうという問題が生じていた。
 [自動変速部によるチェンジマインド変速制限作用]
 図5は、実施例1の自動変速機の制御装置におけるギヤ比と自動変速によるチェンジマインド変速要求の可否を示した説明図であり、(a)はアップシフト時を示し、(b)はダウンシフト時を示す。
 (アップシフト変速時)
 アクセル足離し操作等が実行され、図5(a)の時刻t10において、アップシフトの変速指令が出力されると、図5(a)に示すように、変速前の実ギヤ比に対して目標ギヤ比は小さい値に設定される。これにより、自動変速機3の複数の摩擦締結要素6は、適宜締結・解放制御が行われ、時刻t11において、実ギヤ比が目標ギヤ比に向かって次第に低減し始める。
 そして、時刻t12において、実ギヤ比が第1閾値を下回ると、自動変速機3の複数の摩擦締結要素6のうち解放制御されるもの(第1摩擦締結要素)は完全解放され、アップシフト変速におけるイナーシャフェーズが開始したと判断できる。さらに、時刻tt13において、実ギヤ比が第2閾値を下回ると、アップシフト変速がほぼ完了したと判断できる。そして、時刻t14において、実ギヤ比が目標ギヤ比に達すると、自動変速機3の複数の摩擦締結要素6のうち締結制御されるもの(第2摩擦締結要素)は完全締結され、アップシフト変速は終了する。
 このようなアップシフト変速中に、自動変速部9Aからのチェンジマインド変速の要求があった場合を考える。
 (1)時刻t10~時刻t12にチェンジマインド要求発生
 図5(a)における時刻t10~時刻t12の間に自動変速部9Aからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS2へと進む。ここで、チェンジマインド禁止時間を経過していれば、ステップS3へと進む。
 時刻t12以前では、実ギヤ比は第1閾値を上回っており、アップシフト変速中のイナーシャフェーズは開始していないと判断される。そのため、ステップS3からステップS8へと進む。このとき、自動変速部9Aからチェンジマインド変速の要求であり、手動変速部9Bによる変速要求はないので、ステップS8からステップS7へと進み、チェンジマインド変速は禁止される。
 これにより、自動変速部9Aによるチェンジマインド変速要求は禁止され、最初の変速指令であるアップシフト変速が継続される。
 ここで、アップシフト変速中のイナーシャフェーズ開始前であると、アップシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放しきっていないが、アップシフト変速が継続されることで、この摩擦締結要素(第1摩擦締結要素)が再び締結制御されることはない。
 そのため、ピストン戻り量を精度よく検出することができなくても、締結制御されないので、急締結や締結遅れが発生することがなくなり、ショックやエンジン吹け上がりの発生を防止することができる。
 (2)時刻t12~時刻t13にチェンジマインド要求発生
 図5(a)における時刻t12~時刻t13の間に自動変速部9Aからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS2へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS3へと進む。
 時刻t12以降では、実ギヤ比は第1閾値未満であり、アップシフト変速中のイナーシャフェーズは開始していると判断される。そのため、ステップS3からステップS4へと進む。
 そして、時刻t13以前では、実ギヤ比は第2閾値を上回っており、アップシフト変速は進行中であると判断される。そのため、ステップS4からステップS9へと進み、チェンジマインド変速は許可される。
 これにより、自動変速部9Aによるチェンジマインド変速要求は許可され、最初の変速指令であるアップシフト変速を中断し、目標ギヤ比を変速前のギヤ比とするチェンジマインド変速が実行される。
 ここで、アップシフト変速中のイナーシャフェーズが開始されていると、アップシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放していることとなる。そのため、この摩擦締結要素(第1摩擦締結要素)が再び締結制御されても、ピストンストロークが完全に戻った位置から締結制御されるため、ピストンのストローク管理を精度よく行うことができる。
 この結果、急締結や締結遅れの発生を抑えて、ショックやエンジン吹け上がりが生じることを防止しながら、チェンジマインド変速を実行し、走行状態に合わせた変速制御とすることができる。
 (3)時刻t13~時刻t14にチェンジマインド要求発生
 図5(a)における時刻t13~時刻t14の間に自動変速部9Aからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS2へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS3へと進む。
 時刻t13以降であるので、実ギヤ比は第1閾値未満となり、ステップS3からステップS4へと進む。
 しかしながら、時刻t13以降では、実ギヤ比は第2閾値未満となり、アップシフト変速はほぼ完了していると判断される。そのため、ステップS4からステップS5へと進み、チェンジマインド変速は禁止される。
 これにより、自動変速部9Aによるチェンジマインド変速要求は禁止され、最初の変速指令であるアップシフト変速が継続される。
 ここで、アップシフト変速がほぼ完了状態であれば、アップシフト変速により解放状態から締結状態へと変化する摩擦締結要素(第2摩擦締結要素)は、ほとんど締結状態となっている。そのため、このような状態でチェンジマインド変速を許可すれば、制御指令が複雑になって締結油圧状態が不安定になり、ショックが発生することがある。
 これに対し、アップシフト変速が継続されることで、この摩擦締結要素(第2摩擦締結要素)を再び解放制御することはなく、締結油圧状態が不安定になることもない。この結果、制御指令が複雑になることがなく、ショックの発生を防止することができる。
 (ダウンシフト変速時)
 アクセル踏み込み操作等が実行されて要求駆動力が上昇すると、図5(b)の時刻t10´において、ダウンシフトの変速指令が出力される。これにより、図5(b)に示すように、変速前の実ギヤ比に対して目標ギヤ比は大きい値に設定される。そして、自動変速機3の複数の摩擦締結要素6は、適宜締結・解放制御が行われ、時刻t11´において、実ギヤ比が目標ギヤ比に向かって次第に上昇し始める。
 そして、時刻t12´において、実ギヤ比が第1閾値を上回ると、自動変速機3の複数の摩擦締結要素6のうち解放制御されるもの(第1摩擦締結要素)は完全解放され、ダウンシフト変速におけるイナーシャフェーズが開始したと判断できる。さらに、時刻t13´において、実ギヤ比が第2閾値を上回ると、ダウンシフト変速がほぼ完了したと判断できる。そして、時刻t14´において、実ギヤ比が目標ギヤ比に達すると、自動変速機3の複数の摩擦締結要素6のうち締結制御されるもの(第2摩擦締結要素)は完全締結され、ダウンシフト変速は終了する。
 このようなダウンシフト変速中に、自動変速部9Aからのチェンジマインド変速の要求があった場合を考える。
 (1)時刻t10´~時刻t12´にチェンジマインド要求発生
 図5(b)における時刻t10´~時刻t12´の間に自動変速部9Aからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS10へと進む。ここで、チェンジマインド禁止時間を経過していれば、ステップS11へと進む。
 時刻t12´以前では、実ギヤ比は第1閾値を下回っており、ダウンシフト変速中のイナーシャフェーズは開始していないと判断される。そのため、ステップS11からステップS16へと進む。このとき、自動変速部9Aからチェンジマインド変速の要求であり、手動変速部9Bによる変速要求はないので、ステップS16からステップS15へと進み、チェンジマインド変速は禁止される。
 これにより、自動変速部9Aによるチェンジマインド要求は禁止され、最初の変速指令であるダウンシフト変速が継続される。
 ここで、ダウンシフト変速中のイナーシャフェーズ開始前であると、ダウンシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放しきっていないが、ダウンシフト変速が継続されることで、この摩擦締結要素(第1摩擦締結要素)が再び締結制御されることはない。
 そのため、ピストン戻り量を精度よく検出することができなくても、締結制御されないので、急締結や締結遅れが発生することがなくなり、ショックやエンジン吹け上がりの発生を防止することができる。
 (2)時刻t12´~時刻t13´にチェンジマインド要求発生
 図5(b)における時刻t12´~時刻t13´の間に自動変速部9Aからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS10へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS11へと進む。
 時刻t12´以降では、実ギヤ比は第1閾値以上であり、ダウンシフト変速中のイナーシャフェーズは開始していると判断される。そのため、ステップS11からステップS12へと進む。
 そして、時刻t13´以前では、実ギヤ比は第2閾値を下回っており、ダウンシフト変速は進行中であると判断される。そのため、ステップS12からステップS17へと進み、チェンジマインド変速は許可される。
 これにより、自動変速部9Aによるチェンジマインド要求は許可され、最初の変速指令であるダウンシフト変速を中断し、目標ギヤ比を変速前のギヤ比とするチェンジマインド変速が実行される。
 ここで、ダウンシフト変速中のイナーシャフェーズが開始されていると、ダウンシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放していることとなる。そのため、この摩擦締結要素(第1摩擦締結要素)が再び締結制御されても、ピストンストロークが完全に戻った位置から締結制御されるため、ピストンのストローク管理を精度よく行うことができる。
 この結果、急締結や締結遅れの発生を抑えて、ショックやエンジン吹け上がりが生じることを防止しながら、チェンジマインド変速を実行し、走行状態に合わせた変速制御とすることができる。
 (3)時刻t13´~時刻t14´にチェンジマインド要求発生
 図5(b)における時刻t13´~時刻t14´の間に自動変速部9Aからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS10へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS11へと進む。
 時刻t13´以降であるので、実ギヤ比は第1閾値以上となり、ステップS11からステップS12へと進む。
 しかしながら、時刻t13´以降では、実ギヤ比は第2閾値以上となり、ダウンシフト変速はほぼ完了していると判断される。そのため、ステップS12からステップS13へと進み、チェンジマインド変速は禁止される。
 これにより、自動変速部9Aによるチェンジマインド要求は禁止され、最初の変速指令であるダウンシフト変速が継続される。
 ここで、ダウンシフト変速がほぼ完了状態であれば、ダウンシフト変速により解放状態から締結状態へと変化する摩擦締結要素(第2摩擦締結要素)は、ほとんど締結状態となっている。そのため、このような状態でチェンジマインド変速を許可すれば、制御指令が複雑になって締結油圧状態が不安定になり、ショックが発生することがある。
 これに対し、ダウンシフト変速が継続されることで、この摩擦締結要素(第2摩擦締結要素)を再び解放制御することはなく、締結油圧状態が不安定になることもない。この結果、制御指令が複雑になることがなく、ショックの発生を防止することができる。
 [手動変速部によるチェンジマインド変速制限作用]
 図6は、実施例1の自動変速機の制御装置におけるギヤ比と手動変速によるチェンジマインド変速要求の可否を示した説明図であり、(a)はアップシフト時を示し、(b)はダウンシフト時を示す。
 (アップシフト変速時)
 図6(a)に示すようなギヤ比変化が生じるアップシフト変速中に、手動変速部9Bからのチェンジマインド変速の要求があった場合を考える。
 (1)時刻t20~時刻t22にチェンジマインド要求発生
 図6(a)における時刻t20~時刻t22の間に手動変速部9Bからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS2へと進む。ここで、チェンジマインド禁止時間を経過していれば、ステップS3へと進む。
 時刻t22以前では、実ギヤ比は第1閾値を上回っており、アップシフト変速中のイナーシャフェーズは開始していないと判断される。そのため、ステップS3からステップS8へと進む。このとき、手動変速部9Bからチェンジマインド変速の要求であるため、手動変速部9Bによる変速要求が生じているので、ステップS8からステップS9へと進み、チェンジマインド変速は許可される。
 これにより、手動変速部9Bによるチェンジマインド要求は許可され、最初の変速指令であるアップシフト変速を中断し、目標ギヤ比を変速前のギヤ比とするチェンジマインド変速が実行される。
 ここで、アップシフト変速中のイナーシャフェーズ開始前であると、アップシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放しきっていない。そのため、チェンジマインド変速を許可すれば、再び締結制御され、これにより、ピストン戻り量の検出誤差から、急締結や締結遅れが発生することがある。
 しかしながら、手動変速部9Bによるチェンジマインド変速の要求、つまり手動変速部9Bによる変速指示は、運転者の意図によるものである。そのため、アップシフト変速中のイナーシャフェーズ開始前であっても、チェンジマインド変速を許可することで、運転者の意図に応じた変速制御とすることができる。
 (2)時刻t22~時刻t23にチェンジマインド要求発生
 図6(a)における時刻t22~時刻t23の間に手動変速部9Bからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS2へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS3へと進む。
 時刻t22以降では、実ギヤ比は第1閾値未満であり、アップシフト変速中のイナーシャフェーズは開始していると判断される。そのため、ステップS3からステップS4へと進む。
 そして、時刻t23以前では、実ギヤ比は第2閾値を上回っており、アップシフト変速は進行中であると判断される。そのため、ステップS4からステップS9へと進み、チェンジマインド変速は許可される。
 これにより、手動変速部9Bによるチェンジマインド要求は許可され、最初の変速指令であるアップシフト変速を中断し、目標ギヤ比を変速前のギヤ比とするチェンジマインド変速が実行される。
 ここで、アップシフト変速中のイナーシャフェーズが開始されていると、アップシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放していることとなる。そのため、この摩擦締結要素(第1摩擦締結要素)が再び締結制御されても、ピストンストロークが完全に戻った位置から締結制御されるため、ピストンのストローク管理を精度よく行うことができる。
 この結果、急締結や締結遅れの発生を抑えて、ショックやエンジン吹け上がりが生じることを防止しながら、チェンジマインド変速を実行し、運転者の意図に合わせた変速制御とすることができる。
 (3)時刻tt23~時刻t24にチェンジマインド要求発生
 図6(a)における時刻t23~時刻t24の間に手動変速部9Bからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS2へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS3へと進む。
 時刻t23以降であるので、実ギヤ比は第1閾値未満となり、ステップS3からステップS4へと進む。
 しかしながら、時刻t23以降では、実ギヤ比は第2閾値未満となり、アップシフト変速はほぼ完了していると判断される。そのため、ステップS4からステップS5へと進み、チェンジマインド変速は禁止される。
 これにより、手動変速部9Bによるチェンジマインド要求は禁止され、最初の変速指令であるアップシフト変速が継続される。
 ここで、アップシフト変速がほぼ完了状態であれば、アップシフト変速により解放状態から締結状態へと変化する摩擦締結要素(第2摩擦締結要素)は、ほとんど締結状態となっている。そのため、このような状態でチェンジマインド変速を許可すれば、制御指令が複雑になって締結油圧状態が不安定になり、ショックが発生することがある。
 これに対し、アップシフト変速が継続されることで、この摩擦締結要素(第2摩擦締結要素)を再び解放制御することはなく、締結油圧状態が不安定になることもない。この結果、制御指令が複雑になることがなく、ショックの発生を防止することができる。
 (ダウンシフト変速時)
 図6(b)に示すようなギヤ比変化が生じるダウンシフト変速中に、手動変速部9Bからのチェンジマインド変速の要求があった場合を考える。
 (1)時刻t20´~時刻t22´にチェンジマインド要求発生
 図6(b)における時刻t20´~時刻t22´の間に手動変速部9Bからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS10へと進む。ここで、チェンジマインド禁止時間を経過していれば、ステップS11へと進む。
 時刻t22´以前では、実ギヤ比は第1閾値を下回っており、ダウンシフト変速中のイナーシャフェーズは開始していないと判断される。そのため、ステップS11からステップS16へと進む。このとき、手動変速部9Bからチェンジマインド変速の要求であるため、手動変速部9Bによる変速要求が生じているので、ステップS16からステップS17へと進み、チェンジマインド変速は許可される。
 これにより、手動変速部9Bによるチェンジマインド要求は許可され、最初の変速指令であるアップシフト変速を中断し、目標ギヤ比を変速前のギヤ比とするチェンジマインド変速が実行される。
 ここで、ダウンシフト変速中のイナーシャフェーズ開始前であると、ダウンシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放しきっていない。そのため、チェンジマインド変速を許可すれば、再び締結制御され、これにより、ピストン戻り量の検出誤差から、急締結や締結遅れが発生することがある。
 しかしながら、手動変速部9Bによるチェンジマインド変速の要求、つまり手動変速部9Bによる変速指示は、運転者の意図によるものである。そのため、ダウンシフト変速中のイナーシャフェーズ開始前であっても、チェンジマインド変速を許可することで、運転者の意図に応じた変速制御とすることができる。
 (2)時刻t22´~時刻t23´にチェンジマインド要求発生
 図6(b)における時刻t22´~時刻t23´の間に手動変速部9Bからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS10へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS11へと進む。
 時刻t22´以降では、実ギヤ比は第1閾値以上であり、ダウンシフト変速中のイナーシャフェーズは開始していると判断される。そのため、ステップS11からステップS12へと進む。
 そして、時刻t23´以前では、実ギヤ比は第2閾値を下回っており、ダウンシフト変速は進行中であると判断される。そのため、ステップS12からステップS17へと進み、チェンジマインド変速は許可される。
 これにより、手動変速部9Bによるチェンジマインド要求は許可され、最初の変速指令であるダウンシフト変速を中断し、目標ギヤ比を変速前のギヤ比とするチェンジマインド変速が実行される。
 ここで、ダウンシフト変速中のイナーシャフェーズが開始されていると、ダウンシフト変速により締結状態から解放状態へと変化する摩擦締結要素(第1摩擦締結要素)は、完全に解放していることとなる。そのため、この摩擦締結要素(第1摩擦締結要素)が再び締結制御されても、ピストンストロークが完全に戻った位置から締結制御されるため、ピストンのストローク管理を精度よく行うことができる。
 この結果、急締結や締結遅れの発生を抑えて、ショックやエンジン吹け上がりが生じることを防止しながら、チェンジマインド変速を実行し、運転者の意図に合わせた変速制御とすることができる。
 (3)時刻tt23´~時刻t24´にチェンジマインド要求発生
 図6(b)における時刻t23´~時刻t24´の間に手動変速部9Bからチェンジマインド変速の要求があった場合では、図3に示すフローチャートで、ステップS1からステップS10へと進む。ここで、チェンジマインド禁止時間を経過しているため、ステップS11へと進む。
 時刻t23´以降であるので、実ギヤ比は第1閾値以上となり、ステップS11からステップS12へと進む。
 しかしながら、時刻t23´以降では、実ギヤ比は第2閾値以上となり、ダウンシフト変速はほぼ完了していると判断される。そのため、ステップS12からステップS13へと進み、チェンジマインド変速は禁止される。
 これにより、手動変速部9Bによるチェンジマインド要求は禁止され、最初の変速指令であるダウンシフト変速が継続される。
 ここで、ダウンシフト変速がほぼ完了状態であれば、ダウンシフト変速により解放状態から締結状態へと変化する摩擦締結要素(第2摩擦締結要素)は、ほとんど締結状態となっている。そのため、このような状態でチェンジマインド変速を許可すれば、制御指令が複雑になって締結油圧状態が不安定になり、ショックが発生することがある。
 これに対し、ダウンシフト変速が継続されることで、この摩擦締結要素(第2摩擦締結要素)を再び解放制御することはなく、締結油圧状態が不安定になることもない。この結果、制御指令が複雑になることがなく、ショックの発生を防止することができる。
 [チェンジマインド変速の時間制限作用]
 図7は、チェンジマインド変速を実行したときの、目標ギヤ段、スロットル開度、車両加速度、実ギヤ比、第1摩擦締結要素における指令油圧と実圧、第2摩擦締結要素における指令油圧と実圧の各特性を示す図である。
 図7の時刻t30において、アクセル足離し操作が行われていわゆるコースト状態となると、スロットル開度Tvoが減少する。
 時刻t31において、スロットル開度Tvoが所定値を下回ると、目標ギヤ段が例えば第1変速段から第2変速段へと変更するように、現在のギヤ段よりも高い値に設定され、アップシフト変速指令が出力される。
 これにより、第1変速段で締結されていた第1摩擦締結要素は、解放制御される。一方、第1変速段で解放されていた第2摩擦締結要素は、締結制御される。
 すなわち、時刻t32において、解放制御により第1摩擦締結要素の指令油圧が低下する。一方、時刻t32において、締結制御により第2摩擦締結要素の指令油圧が上昇する。なお、締結側の第2摩擦締結要素に供給される油圧は、最初はがた詰めを行うためのプリチャージ油圧である。そのため、時刻t32で第2摩擦締結要素に出力される油圧指令は、プリチャージ油圧指令である。
 時刻t33において、第1締結摩擦要素の実圧が、指令油圧に応じて低下を開始する。時刻t34において、第2摩擦締結要素の実圧が、指令油圧に応じて上昇を開始する。時刻t35において、プリチャージ油圧指令は通常の締結油圧指令に切り替わる。時刻t36において、第2摩擦締結要素の実圧が緩やかに上昇を開始する。
 このように、第1摩擦締結要素における解放制御と、第2摩擦締結要素における締結制御が進行することで、時刻t37において、実ギヤ比が次第に低下を開始する。そして、時刻t38において、第1摩擦締結要素が完全に解放状態となり、アップシフト変速中のイナーシャフェーズが開始する。
 そして、時刻t39において、アクセル踏み込み操作等が実行され、スロットル開度Tvoが増大すると、目標ギヤ段が例えば第2変速段から第1変速段へと変更するように、目標ギヤ段がアップシフト変速制御前のギヤ段に設定され、チェンジマインド変速要求が出力される。
 これにより、アップシフト変速中に解放制御されていた第1摩擦締結要素は、締結制御される。一方、アップシフト変速中に締結制御されていた第2摩擦締結要素は、解放制御される。
 すなわち、時刻t39において、締結制御により第1摩擦締結要素の指令油圧が上昇する。なお、締結側の第1摩擦締結要素に供給される油圧は、最初はがた詰めを行うためのプリチャージ油圧である。そのため、時刻t39で第1摩擦締結要素に出力される油圧指令は、プリチャージ油圧指令である。
 一方、時刻t39において、締結制御されていた第2摩擦締結要素は解放制御となる。このとき、第2摩擦締結要素の締結制御において、プリチャージが完了していないと、第2摩擦締結要素におけるがた詰めが完了せず実圧の確実な上昇を図ることができない。いわゆるピストンストロークが間に合わない状態となる。そのため、第2摩擦締結要素を解放することができず、図7において破線で示すように、ピストンストロークが間に合わないことによる空吹きが発生し、車両加速度が乱れてショックが発生することがある。
 そこで、A部で示すように、第2摩擦締結要素における締結制御を継続し、第1摩擦締結要素の締結を確保してから第2摩擦締結要素を解放制御する。これにより、空吹きやショックの発生を抑制することができる。
 このように、最初の変速指令から所定時間(チェンジマインド禁止時間)が経過するまでは、第1変速段で解放され、第2変速段で締結される第2摩擦締結要素において、プリチャージ油圧によりがた詰めが完了しておらず、ピストンストロークの完了前となる。
 そのため、ピストンストロークが完了する前にチェンジマインド変速を許可してしまうと、いわゆるピストンストロークが間に合わない状態となる。これにより、ピストンストロークが間に合わないことによる空吹きが発生し、車両加速度が乱れてショックが発生することがある。
 このため、図3に示すフローチャートのステップS2又はステップS10において、チェンジマインド禁止時間が経過したか否かを判断する。そして、このチェンジマインド禁止時間経過前、つまり、締結側の第2摩擦締結要素のピストンストローク完了前に、自動変速部9Aからチェンジマインド変速の要求があった場合には、ステップS2からステップS6を経てステップS7へ、或いは、ステップS10からステップS14を経てステップS25へと進み、チェンジマインド変速は禁止される。
 これにより、自動変速部9Aによるチェンジマインド要求は禁止され、最初の変速制御が継続される。
 このように、締結側の第2摩擦締結要素のピストンストローク完了前において、自動変速部9Aからチェンジマインド変速の要求を禁止することで、ピストンストロークが完了していないことによる空吹き(エンジン吹け上がり)を抑制することができる。
 特に、コースト状態によるアップシフト変速の場合では、第1摩擦締結要素の解放でイナーシャフェーズが開始するが、このイナーシャフェーズが開始していても第2摩擦締結要素におけるピストンストロークが完了していない場合がある。
 このため、締結側の第2摩擦締結要素のピストンストロークが完了する時間を待ってから、チェンジマインド変速を許可することで、ピストンストロークが完了していないことによる空吹き(エンジン吹け上がり)を確実に抑制することができる。
 一方、チェンジマインド禁止時間経過前、つまり、締結側の第2摩擦締結要素のピストンストローク完了前に、手動変速部9Bからチェンジマインド変速の要求があった場合には、アップシフト変速時には、ステップS2からステップS6を経てステップS3へと進む。そして、実ギヤ比が第1閾値以上であっても手動変速部9Bからチェンジマインド変速の要求であるため、ステップS3からステップS8を経てステップS9へと進んで、チェンジマインド変速は許可される。
 また、ダウン変速時には、ステップS10からステップS14を経てステップS11へと進む。そして、実ギヤ比が第1閾値未満であっても手動変速部9Bからチェンジマインド変速の要求であるため、ステップS11からステップS16を経てステップS17へと進んで、チェンジマインド変速は許可される。
 これにより、手動変速部9Bによるチェンジマインド要求は許可され、最初の変速制御を中断し、目標ギヤ比を変速前のギヤ比とするチェンジマインド変速が実行される。
 ここで、チェンジマインド禁止時間経過前であると、最初の変速制御により解放状態から締結状態へと変化する摩擦締結要素(第2摩擦締結要素)は、ピストンストロークが完了せず、がた詰めができていない状態である。そのため、チェンジマインド変速を許可すれば、ピストンストロークが間に合わないことによりショックや吹け上がりが発生することがある。
 しかしながら、手動変速部9Bによるチェンジマインド変速の要求、つまり手動変速部9Bによる変速指示は、運転者の意図によるものである。そのため、チェンジマインド禁止時間経過前であっても、チェンジマインド変速を許可することで、運転者の意図に応じた変速制御とすることができる。
 次に、効果を説明する。
 実施例1の自動変速機の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1)第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置であって、
 走行状態に基づいて自動的に設定される変速段への変速を実行する自動変速手段(自動変速部)9Aと、
 手動操作で設定された変速段への変速を実行する手動変速手段(手動変速部)9Bと、
 前記第1変速段から前記第2変速段への変速中、イナーシャフェーズの開始を判定するイナーシャフェーズ判定手段(ステップS3,ステップS11)と、
 前記第1変速段から前記第2変速段への変速中、前記イナーシャフェーズの開始前に、前記自動変速手段9Aによる前記第2変速段から前記第1変速段への変速要求があったとき、前記第2変速段から前記第1変速段への変速を禁止して、前記第1変速段から前記第2変速段への変速を継続し、
 前記第1変速段から前記第2変速段への変速中、前記イナーシャフェーズの開始前に、前記手動変速手段9Bによる前記第2変速段から前記第1変速段への変速要求があったとき、前記第1変速段から前記第2変速段への変速を中断し、前記第2変速段から前記第1変速段への変速を許可するチェンジマインド変速判断手段(図3)と、
 を備える構成とした。
 このため、ショックや吹け上がりの発生を防止しつつ、運転者の意図に応じた変速制御を実行することができる。
 (2)前記第1変速段で解放され、前記第2変速段で締結される第2摩擦締結要素を備え、
 前記チェンジマインド変速判断手段(図3)は、
 前記第1変速段から前記第2変速段への変速開始から所定時間(チェンジマインド禁止時間)以内に、前記自動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第2変速段から前記第1変速段への変速を禁止して、前記第1変速段から前記第2変速段への変速を継続し、
 前記第1変速段から前記第2変速段への変速開始から所定時間(チェンジマインド禁止時間)以内に、前記手動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第1変速段から前記第2変速段への変速を中断し、前記第2変速段から前記第1変速段への変速を許可する構成とした。
 このため、第2摩擦締結要素のピストンストロークが完了していないことによる吹け上がりを抑制しつつ、運転者の意図に応じた変速制御を実行することができる。
 以上、本発明の自動変速機の制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、ギヤ比が所定量変化すれば(ギヤ比が第1閾値に達したら)イナーシャフェーズが開始したと判断しているが、これに限らない。例えば、最初の変速指令が出力されてからの時間を検出し、所定時間が経過したことでイナーシャフェーズの開始を判断してもよい。
 また、実施例1では、エンジン1を走行駆動源とするエンジン車に自動変速機3を搭載した例を示したが、これに限らず、エンジンとモータを走行駆動源とするハイブリッド車やモータのみを走行駆動源とする電気自動車であっても適用することができる。

Claims (2)

  1.  第1変速段で締結され、第2変速段で解放される第1摩擦締結要素を備えた自動変速機の制御装置であって、
     走行状態に基づいて自動的に設定される変速段への変速を実行する自動変速手段と、
     手動操作で設定された変速段への変速を実行する手動変速手段と、
     前記第1変速段から前記第2変速段への変速中、イナーシャフェーズの開始を判定するイナーシャフェーズ判定手段と、
     前記第1変速段から前記第2変速段への変速中、前記イナーシャフェーズの開始前に、前記自動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第2変速段から前記第1変速段への変速を禁止して、前記第1変速段から前記第2変速段への変速を継続し、
     前記第1変速段から前記第2変速段への変速中、前記イナーシャフェーズの開始前に、前記手動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第1変速段から前記第2変速段への変速を中断し、前記第2変速段から前記第1変速段への変速を許可するチェンジマインド変速判断手段と、
     を備えた自動変速機の制御装置。
  2.  請求項1に記載された自動変速機の制御装置において、
     前記第1変速段で解放され、前記第2変速段で締結される第2摩擦締結要素を備え、
     前記チェンジマインド変速判断手段は、
     前記第1変速段から前記第2変速段への変速開始から所定時間以内に、前記自動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第2変速段から前記第1変速段への変速を禁止して、前記第1変速段から前記第2変速段への変速を継続し、
     前記第1変速段から前記第2変速段への変速開始から所定時間以内に、前記手動変速手段による前記第2変速段から前記第1変速段への変速要求があったとき、前記第1変速段から前記第2変速段への変速を中断し、前記第2変速段から前記第1変速段への変速を許可するものである自動変速機の制御装置。
PCT/JP2012/077278 2011-11-18 2012-10-23 自動変速機の制御装置 WO2013073342A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12850323.2A EP2781805A4 (en) 2011-11-18 2012-10-23 Device for controlling automatic transmission
KR1020147016008A KR101629591B1 (ko) 2011-11-18 2012-10-23 자동 변속기의 제어 장치
JP2013544194A JP5735656B2 (ja) 2011-11-18 2012-10-23 自動変速機の制御装置
US14/358,475 US9031751B2 (en) 2011-11-18 2012-10-23 Device for controlling automatic transmission
CN201280056113.2A CN103946601B (zh) 2011-11-18 2012-10-23 自动变速器的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011253029 2011-11-18
JP2011-253029 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013073342A1 true WO2013073342A1 (ja) 2013-05-23

Family

ID=48429410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077278 WO2013073342A1 (ja) 2011-11-18 2012-10-23 自動変速機の制御装置

Country Status (6)

Country Link
US (1) US9031751B2 (ja)
EP (1) EP2781805A4 (ja)
JP (1) JP5735656B2 (ja)
KR (1) KR101629591B1 (ja)
CN (1) CN103946601B (ja)
WO (1) WO2013073342A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12017638B2 (en) 2021-02-02 2024-06-25 Toyota Jidosha Kabushiki Kaisha Control device for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9939050B2 (en) * 2016-02-18 2018-04-10 GM Global Technology Operations LLC Pressure sensor for power take off
US10281030B2 (en) * 2016-07-27 2019-05-07 Allison Transmission, Inc. Manual shifting control system and method for multi-speed automatic transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346959A (ja) 1993-06-03 1994-12-20 Toyota Motor Corp 車両用自動変速機の変速制御装置
JPH10220574A (ja) * 1997-01-31 1998-08-21 Mazda Motor Corp 自動変速機の制御装置
JP2003097689A (ja) * 2001-09-25 2003-04-03 Jatco Ltd 自動変速機の変速制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0805061B1 (en) * 1996-04-30 2002-06-19 Eaton Corporation Intent-to-shift semi-automatic shift implementation
DE19714852C1 (de) * 1997-04-10 1998-08-13 Zahnradfabrik Friedrichshafen Verfahren zur Erhöhung der Spontanität eines elektrohydraulisch gesteuerten Automatikgetriebes
KR100335925B1 (ko) * 1999-12-10 2002-05-10 이계안 차량용 자동 변속기의 변속 제어 방법
JP4097889B2 (ja) * 2000-09-18 2008-06-11 ジヤトコ株式会社 自動変速機の変速制御装置
KR100440848B1 (ko) * 2000-09-18 2004-07-21 쟈트코 가부시키가이샤 자동 변속기용 재변속 제어 시스템
JP4125067B2 (ja) * 2002-06-12 2008-07-23 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
DE10245359A1 (de) * 2002-09-27 2004-04-08 Zf Friedrichshafen Ag Erhöhung der Spontanität eines Automatgetriebes
EP1781967A2 (en) * 2004-07-07 2007-05-09 Eaton Corporation Shift point strategy for hybrid electric vehicle transmission
JP4281832B2 (ja) * 2007-10-25 2009-06-17 トヨタ自動車株式会社 自動変速機の制御装置
JP2009156433A (ja) * 2007-12-27 2009-07-16 Aisin Aw Co Ltd 自動変速機の制御装置
JP4553045B2 (ja) * 2008-10-15 2010-09-29 トヨタ自動車株式会社 自動変速機の変速制御装置
DE102009045507A1 (de) * 2009-10-09 2011-04-14 Zf Friedrichshafen Ag Verfahren zum Betätigen einer Getriebevorrichtung eines Fahrzeugantriebsstranges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346959A (ja) 1993-06-03 1994-12-20 Toyota Motor Corp 車両用自動変速機の変速制御装置
JPH10220574A (ja) * 1997-01-31 1998-08-21 Mazda Motor Corp 自動変速機の制御装置
JP2003097689A (ja) * 2001-09-25 2003-04-03 Jatco Ltd 自動変速機の変速制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781805A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12017638B2 (en) 2021-02-02 2024-06-25 Toyota Jidosha Kabushiki Kaisha Control device for vehicle

Also Published As

Publication number Publication date
KR20140101365A (ko) 2014-08-19
JP5735656B2 (ja) 2015-06-17
US20140330494A1 (en) 2014-11-06
EP2781805A4 (en) 2017-01-04
KR101629591B1 (ko) 2016-06-13
US9031751B2 (en) 2015-05-12
JPWO2013073342A1 (ja) 2015-04-02
CN103946601A (zh) 2014-07-23
CN103946601B (zh) 2016-03-16
EP2781805A1 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP4793331B2 (ja) 車両変速時の制御装置
JP4787831B2 (ja) 作業車両の変速制御装置
JP5234171B2 (ja) 駆動力制御装置
JPWO2013190653A1 (ja) 車両の制御装置
JP5743876B2 (ja) 無段変速機の変速制御装置
US9434390B2 (en) Vehicle control device and vehicle control method
JP5768188B2 (ja) 自動変速機の制御装置及び制御方法
EP3366953B1 (en) Vehicular lock-up control method and control device
JP6714701B2 (ja) 車両の制御装置及び車両の制御方法
JP5735656B2 (ja) 自動変速機の制御装置
KR20190066417A (ko) Dct 차량의 변속제어방법
JP5383921B2 (ja) 自動変速機の制御装置
JPWO2019176549A1 (ja) 無段変速機の制御装置および制御方法
WO2013073344A1 (ja) 自動変速機の制御装置
WO2016031050A1 (ja) 車両のロックアップクラッチ制御装置
KR102719103B1 (ko) Dct차량용 변속 제어방법
JP6725254B2 (ja) 車両の制御装置
WO2014021118A1 (ja) 車両用の自動変速機
JP2008001131A (ja) 車両の駆動力制御装置
JP6653961B2 (ja) 自動変速機の制御装置
JP7315015B2 (ja) 車両の定速走行制御方法及び車両の定速走行制御装置
WO2017043457A1 (ja) 車両用バリエータの制御装置
KR102596513B1 (ko) 트랜스미션의 제어 장치 및 방법
EP2781799B1 (en) Device for controlling automatic transmission
JP2010249290A (ja) 自動変速機のロックアップ制御装置及びロックアップ制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280056113.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850323

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013544194

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14358475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147016008

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012850323

Country of ref document: EP