Nothing Special   »   [go: up one dir, main page]

WO2013072965A1 - Video processing device and video processing method - Google Patents

Video processing device and video processing method Download PDF

Info

Publication number
WO2013072965A1
WO2013072965A1 PCT/JP2011/006403 JP2011006403W WO2013072965A1 WO 2013072965 A1 WO2013072965 A1 WO 2013072965A1 JP 2011006403 W JP2011006403 W JP 2011006403W WO 2013072965 A1 WO2013072965 A1 WO 2013072965A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
reliability
depth
frame
generated
Prior art date
Application number
PCT/JP2011/006403
Other languages
French (fr)
Japanese (ja)
Inventor
仁尾 寛
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/006403 priority Critical patent/WO2013072965A1/en
Publication of WO2013072965A1 publication Critical patent/WO2013072965A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/285Analysis of motion using a sequence of stereo image pairs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/139Format conversion, e.g. of frame-rate or size
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0085Motion estimation from stereoscopic image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2213/00Details of stereoscopic systems
    • H04N2213/003Aspects relating to the "2D+depth" image format

Definitions

  • the present invention relates to a video processing apparatus and a video processing method.
  • a frame rate conversion process is performed on a video signal for displaying a video (for example, Patent Document 1).
  • a motion vector is detected from image data of two frames that are continuous on the time axis, and image data of an interpolation frame is generated using the detected motion vector.
  • a display device that can present stereoscopic video (three-dimensional video) to the user.
  • a video to be viewed with the left eye hereinafter referred to as a left-eye video
  • a video to be viewed with the right eye hereinafter referred to as a right-eye video
  • Video a stereoscopic video (three-dimensional) is displayed to the user.
  • the frame rate conversion process is performed on each of the video signal for displaying the left-eye video and the video signal for displaying the right-eye video.
  • the above frame rate conversion process may not be able to generate image data of an interpolation frame with high accuracy.
  • a moving image and a telop such as a character are displayed in an overlapping manner
  • one of the moving images based on the image data is displayed. It is difficult to distinguish between parts and telops. Therefore, the motion vector is not accurately detected, and appropriate image data of the interpolation frame cannot be generated. As a result, the quality of the presented 3D video is degraded.
  • An object of the present invention is to provide a video processing apparatus and a video processing method capable of performing frame rate conversion of a 3D video without degrading the quality of the 3D video.
  • a video processing apparatus is a video processing apparatus that performs processing for frame rate conversion of a three-dimensional video composed of a plurality of frames, and one of the two-dimensional video for the left eye and the right eye.
  • a first motion vector detector configured to detect a first motion vector from a first video signal including a plurality of frames of first image data for displaying a video; and a first motion vector detection
  • a first reliability generation unit configured to generate first reliability information representing the reliability of the first motion vector detected by the unit, and a plurality of presentation positions of the 3D video in the depth direction
  • a second motion vector detection unit configured to detect a second motion vector from a depth signal including the depth data of the frame, and a second motion vector detected by the second motion vector detection unit
  • a second reliability generation unit configured to generate second reliability information representing the reliability of the vector, first reliability information generated by the first reliability generation unit, and second The first motion vector detected by the first motion vector detector and the second motion vector detected by the second motion vector detector based on the second reliability information generated by the reliability generator Using
  • FIG. 1 is a block diagram showing a configuration of a video processing apparatus according to the present embodiment.
  • FIG. 2 is a diagram showing one frame of a left-eye image and a right-eye image
  • FIG. 3 shows a stereoscopic image.
  • FIG. 4 is a diagram for explaining the depth data.
  • FIG. 5 is a diagram showing the movement of a stereoscopic image.
  • FIG. 6 is a diagram for explaining a method of calculating the reliability of the left eye motion vector
  • FIG. 7 is a diagram for explaining a method of calculating the reliability of the depth motion vector.
  • FIG. 8 is a flowchart showing the operation of the video processing apparatus.
  • FIG. 9 is a block diagram showing a configuration of a video processing apparatus according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the video processing device according to the present embodiment.
  • the video processing apparatus 100 includes a signal conversion unit 1, a left eye motion analysis unit 2, a depth motion analysis unit 3, a comparison unit 4, a selection unit 5, a frame interpolation unit 6, and a signal conversion unit 7.
  • the video processing apparatus 100 is provided with a left-eye video signal LSa and a right-eye video signal RSa for presenting a stereoscopic video (3D video).
  • the left-eye video signal LSa includes image data (hereinafter referred to as left-eye image data) for displaying each frame of a two-dimensional video (hereinafter referred to as a left-eye video) to be viewed with the left eye.
  • the right-eye video signal RSa includes image data (hereinafter referred to as right-eye image data) for displaying each frame of a two-dimensional video (hereinafter referred to as right-eye video) to be viewed with the right eye.
  • the left eye image and the right eye image are images of a common subject observed from the left eye viewpoint and the right eye viewpoint.
  • One frame of stereoscopic video is composed of one frame of right-eye video and one frame of left-eye video.
  • the left-eye video signal LSa and the right-eye video signal RSa are input to the signal conversion unit 1.
  • the signal converter 1 gives the input left-eye video signal LSa to the left-eye motion analyzer 2 and the frame interpolator 6. Further, the signal conversion unit 1 generates a depth signal DSa based on the input left-eye video signal LSa and right-eye video signal RSa, and provides the generated depth signal DSa to the depth motion analysis unit 3 and the frame interpolation unit 6.
  • the depth signal DSa includes depth data corresponding to each frame of the stereoscopic video. Details of the depth data will be described later.
  • the left-eye motion analysis unit 2 detects a motion vector (hereinafter referred to as a left-eye motion vector) from the left-eye video data of the left-eye video signal LSa given from the signal conversion unit 1, and uses the detected left-eye motion vector as a vector signal LVS. This is given to the selector 5. Further, the left eye motion analysis unit 2 calculates a left eye motion vector reliability value representing the reliability of the detected left eye motion vector, and gives the calculated left eye motion vector reliability value to the comparison unit 4 as a reliability signal LRS.
  • a motion vector hereinafter referred to as a left-eye motion vector
  • the depth motion analysis unit 3 detects a motion vector (hereinafter referred to as a depth motion vector) from the depth data of the depth signal DSa given from the signal conversion unit 1, and sends the detected depth motion vector to the selection unit 5 as a vector signal DVS. give. Further, the depth motion analysis unit 3 calculates a depth motion vector reliability value representing the reliability of the detected depth motion vector, and gives the calculated depth motion vector reliability value to the comparison unit 4 as the reliability signal DRS.
  • a depth motion vector hereinafter referred to as a depth motion vector
  • the comparison unit 4 compares the reliability of the left eye motion vector and the depth motion vector based on the reliability signal LRS given from the left eye motion analysis unit 2 and the reliability signal DRS given from the depth motion analysis unit 3.
  • the selection unit 5 selects one of the vector signal LVS given from the left eye motion analysis unit 2 and the vector signal DVS given from the depth motion analysis unit 3 based on the comparison result by the comparison unit 4.
  • the frame interpolation unit 6 performs frame interpolation processing of the left-eye video signal LSa and the depth signal DSa given from the signal conversion unit 1 based on the vector signal LVS or the vector signal DVS selected by the selection unit 5.
  • the signal converter 7 outputs the left-eye video signal LSb after the frame interpolation process, generates the right-eye video signal RSb based on the left-eye video signal LSb and the depth signal DSb after the frame interpolation process, and generates the generated right-eye video signal RSb is output.
  • the left-eye video signal LSb and the right-eye video signal RSb output from the signal conversion unit 7 are given to an external device such as a display device, for example.
  • the signal conversion unit 1, the left eye motion analysis unit 2, the depth motion analysis unit 3, the comparison unit 4, the selection unit 5, the frame interpolation unit 6 and the signal conversion unit 7 are, for example, a hardware such as a CPU (Central Processing Unit) and a memory. Hardware and software such as a computer program.
  • the signal conversion unit 1, the left eye motion analysis unit 2, the depth motion analysis unit 3, the comparison unit 4, the selection unit 5, the frame interpolation unit 6, and the signal conversion unit 7 correspond to computer program modules.
  • the CPU executes the computer program stored in the memory
  • a part or all of the determination control unit 224 may be realized by hardware such as an ASIC (Application Specific Integrated Circuit).
  • FIG. 2A is a diagram showing one frame of a left-eye image displayed based on left-eye image data
  • FIG. 2B is a right-eye image displayed based on right-eye image data. It is a figure which shows 1 frame of.
  • the frame in FIG. 2A and the frame in FIG. 2B correspond to the same position on the time axis.
  • FIG. 3A and FIG. 3B are a schematic plan view and a schematic side view showing a stereoscopic image presented by the left-eye image in FIG. 2A and the right-eye image in FIG. 2B.
  • the subject is two spheres B1 and B2.
  • the display screen DP is arranged in front of the user U.
  • the left-eye image in FIG. 2A and the right-eye image in FIG. 2B are displayed on the display screen DP.
  • the user U sees the left eye image with the left eye and the right eye image with the right eye.
  • stereoscopic images of the spheres B ⁇ b> 1 and B ⁇ b> 2 are presented to the user U.
  • the stereoscopic video of the sphere B1 is presented at a position closer to the user U than the display screen DP in the direction perpendicular to the display screen DP (hereinafter referred to as the depth direction), and the stereoscopic video of the sphere B2 is displayed. It is presented at a position farther from the user U than the screen DP.
  • 4 (a) and 4 (b) are a schematic plan view and a schematic side view for explaining the depth data.
  • a black dot indicates a stereoscopic image element (hereinafter referred to as a pixel element) PE represented by one pixel of the left-eye image and one pixel of the right-eye image.
  • a set of pixel elements PE forms a stereoscopic image of the spheres B1 and B2.
  • the depth data includes a distance DD (hereinafter referred to as a depth distance) DD between each pixel element PE and a predetermined reference position in the depth direction.
  • the predetermined reference position is a position on a plane where the display screen DP is arranged.
  • the depth distance is a positive value
  • the depth distance of the pixel element PE constituting the stereoscopic image of the sphere B1 is a positive value
  • the depth distance of the pixel element PE constituting the stereoscopic image of the sphere B2 is a negative value.
  • the signal converter 1 (FIG. 1) generates depth data corresponding to each frame of the stereoscopic video based on the left-eye video signal LSa and the right-eye video signal RSa, and performs depth motion analysis using the generated depth data as the depth signal DSa. This is given to the unit 3 (FIG. 1) and the frame interpolation unit 6 (FIG. 1).
  • FIGS. 5 (a) and 5 (b) are diagrams illustrating the motion of the stereoscopic video of the sphere B1.
  • the stereoscopic image of the sphere B1 moves substantially parallel to the display screen DP.
  • the depth motion analysis unit 3 (FIG. 1) detects the moving direction and moving distance of such a stereoscopic image as a depth motion vector based on the depth signal DSa from the signal conversion unit 1 (FIG. 1).
  • the depth distance DD of each pixel element PE constituting the sphere B1 before movement is substantially equal to the depth distance DD of the pixel element PE constituting the sphere B1 after movement. Therefore, the moving direction of the sphere B1 is detected by detecting the positions of the pixel elements PE having substantially the same depth distance from the depth data of the frame representing the sphere B1 before the movement and the depth data of the frame representing the sphere B1 after the movement. And the moving distance can be detected as a depth motion vector.
  • FIG. 6 is a diagram for explaining a method for calculating the reliability of the left eye motion vector
  • FIG. 7 explains a method for calculating the reliability of the depth motion vector. It is a figure for doing.
  • the previous frame and the subsequent frame refer to two frames that are continuous on the time axis in the stereoscopic video before frame interpolation.
  • An interpolation frame is a frame to be interpolated between the previous frame and the subsequent frame.
  • the left-eye motion analysis unit 2 detects a left-eye motion vector from left-eye image data corresponding to the previous frame and the subsequent frame, for example, by a block matching method or a gradient method. As shown in FIG. 6, the left eye motion analysis unit 2 uses the detected left eye motion vector to convert left eye image data corresponding to the previous frame to left eye image data corresponding to the interpolation frame (hereinafter referred to as front left eye image data). ) To generate left eye image data corresponding to the interpolated frame (hereinafter referred to as rear left eye image data) from the left eye image data corresponding to the subsequent frame.
  • the left eye motion analysis unit 2 calculates a difference between the front left eye image data and the rear left eye image data for each pixel, converts each calculated difference into an absolute value, and sums up the absolute values.
  • the total value is a left eye motion vector reliability value representing the reliability of the left eye motion vector. The smaller the left eye motion vector confidence value, the higher the reliability of the left eye motion vector.
  • the left eye motion analysis unit 2 gives the calculated left eye motion vector reliability value to the comparison unit 4 (FIG. 1) as the reliability signal LRS.
  • the depth motion analysis unit 3 detects the depth motion vector from the depth data corresponding to the previous frame and the rear frame as described above. As shown in FIG. 7, the depth motion analysis unit 3 generates depth data corresponding to the interpolation frame (hereinafter referred to as forward depth data) from the depth data corresponding to the previous frame, using the detected depth motion vector. Then, depth data corresponding to the interpolation frame (hereinafter referred to as rear depth data) is generated from the depth data corresponding to the subsequent frame.
  • forward depth data depth data corresponding to the interpolation frame
  • rear depth data depth data corresponding to the interpolation frame
  • the depth motion analysis unit 3 calculates a difference between the front depth data and the rear depth data for each pixel element PE, converts each calculated difference into an absolute value, and sums up the absolute values.
  • the total value is a depth motion vector reliability value representing the reliability of the depth motion vector. The smaller the depth motion vector confidence value, the higher the reliability of the depth motion vector.
  • the depth motion analysis unit 3 gives the calculated depth motion vector reliability value to the comparison unit 4 (FIG. 1) as the reliability signal DRS.
  • the left eye motion vector confidence value is calculated by a calculation including the difference between the front left eye image data and the rear left eye image data
  • the depth motion vector confidence value is calculated by a calculation including the difference between the front depth data and the rear depth data.
  • the left-eye motion vector confidence value may be calculated by a calculation including a ratio between the front left-eye image data and the rear left-eye image data.
  • the left-eye motion vector confidence value may be calculated by a calculation including a ratio between the front depth data and the rear depth data.
  • Comparison Processing compares the reliability of the left eye motion vector and the depth motion vector based on the reliability signal LRS from the left eye motion analysis unit 2 and the reliability signal DRS from the depth motion analysis unit 3. Comparison processing is performed. Specifically, the comparison unit 4 multiplies at least one of the left-eye motion vector reliability value indicated by the reliability signal LRS and the left-eye motion vector reliability value indicated by the reliability signal LRS by a predetermined coefficient (gain), and uses these values. Compare.
  • the comparison unit 4 gives a depth selection signal to the selection unit 5 (FIG. 1).
  • the selection unit 5 selects the vector signal DVS from the vector signal LVS from the left eye motion analysis unit 2 and the vector signal DVS from the depth motion analysis unit 3. To the frame interpolation unit 6.
  • the comparison unit 4 gives the left eye selection signal to the selection unit 5.
  • the selection unit 5 selects the vector signal LVS from the vector signal LVS from the left eye motion analysis unit 2 and the vector signal DVS from the depth motion analysis unit 3, and performs frame interpolation. Part 6 is given.
  • the comparison process may be performed, for example, for each predetermined number of frames, may be performed every predetermined time, or may be performed according to an instruction from the user.
  • the depth selection signal or the left eye selection signal is continuously output from the comparison unit 4 to the selection unit 5 according to the result of the previous comparison process.
  • the calculation of the left eye motion vector reliability value by the left eye motion analysis unit 2 and the calculation of the depth motion vector reliability value by the depth motion analysis unit 3 may not be performed.
  • the frame interpolation unit 6 uses the left-eye motion vector indicated by the given vector signal LVS to generate a left-eye video signal.
  • Frame interpolation processing of LSa and depth signal DSa is performed.
  • the frame interpolation unit 6 uses the left eye motion vector to generate left eye image data and depth data corresponding to the interpolation frame from at least one of the previous frame and the subsequent frame (see FIGS. 6 and 7).
  • the frame interpolation unit 6 uses the depth motion vector indicated by the given vector signal DRS to frame the left-eye video signal LSa and the depth signal DSa. Perform interpolation processing. Specifically, the frame interpolation unit 6 uses the depth motion vector to generate left-eye image data and depth data corresponding to the interpolation frame from at least one of the previous frame and the subsequent frame (see FIGS. 6 and 7).
  • the signal converter 7 (FIG. 1) outputs the left-eye video signal LSb after the frame interpolation process, and generates and generates the right-eye video signal RSb based on the left-eye video signal LSb and the depth signal DSb after the frame interpolation process.
  • the right eye video signal RSb is output.
  • a display device (not shown) displays a left-eye video based on the left-eye video signal LSb output from the signal conversion unit 7 and a right-eye video based on the right-eye video signal RSb. Thereby, the 3D image after the frame rate conversion is presented to the user.
  • FIG. 8 is a flowchart showing the operation of the video processing device 100. As shown in FIG. 8, first, the signal converter 1 generates a depth signal DSa from the input left-eye video signal LaS and right-eye video signal RSa (step S1).
  • the left eye motion analysis unit 2 detects a left eye motion vector from the left eye video signal LSa (step S2), and calculates a left eye motion vector reliability value representing the reliability of the left eye motion vector (step S3).
  • the depth motion analysis unit 3 detects a depth motion vector from the depth signal DSa (step S4), and calculates a depth motion vector reliability value representing the reliability of the depth motion vector (step S4). S5).
  • the comparison unit 4 compares the reliability of the left-eye motion vector and the depth motion vector based on the left-eye motion vector reliability value calculated in step S3 and the depth motion vector reliability value calculated in step S5 (step S3). S6).
  • the selection unit 5 determines whether or not the reliability of the depth motion vector is higher than the reliability of the left eye motion vector (step S7).
  • the frame interpolation unit 6 uses the depth motion vector detected by the depth motion analysis unit 3 in step S4 to use the left eye video signal LSa and the depth signal. DSa frame interpolation processing is performed (step S8).
  • the frame interpolation unit 6 uses the left eye motion vector detected by the left eye motion analysis unit 2 in step S2 and the left eye video signal LSa and Frame interpolation processing of the depth signal DSa is performed (step S9).
  • the signal conversion unit 7 generates the right-eye video signal RSb from the left-eye video signal LSb and the depth signal DSb after the frame interpolation processing in Step S8 or Step S9 (Step S10), and the left-eye video signal LSb after the frame interpolation processing And the generated right-eye video signal RSb is output. Thereafter, the processes of steps S1 to S10 are repeated.
  • the depth signal DSa is generated from the input left-eye video signal LSa and right-eye video signal RSa and detected from the left-eye video signal LSa.
  • Frame interpolation processing of the left-eye video signal LSa and the depth signal DSa is performed using one of the depth motion vectors detected from the left-eye motion vector and the depth signal DSa with higher reliability.
  • the frame interpolation process is performed using only the image data.
  • the depth data it is possible to easily distinguish these objects based on the difference in depth distance of the stereoscopic video. Therefore, it is possible to accurately detect the movements of the plurality of objects. Therefore, the left-eye image data and depth data corresponding to the interpolation frame can be generated with high accuracy.
  • the right eye video signal RSb is generated from the left eye video signal LSb and the depth signal DSb after the frame interpolation process.
  • the right eye image data corresponding to the interpolation frame can be generated with high accuracy.
  • the frame rate conversion of the stereoscopic video can be performed without reducing the quality of the stereoscopic video.
  • front left eye image data is generated from left eye image data corresponding to the previous frame, and rear left eye image data is converted from left eye image data corresponding to the rear frame.
  • a left-eye motion vector confidence value is calculated based on these differences.
  • forward depth data is generated from depth data corresponding to the previous frame and backward depth data is generated from depth data corresponding to the rear frame, and the depth motion is based on these differences.
  • a vector confidence value is calculated.
  • the reliability of the depth motion vector can be accurately evaluated. Therefore, it is possible to accurately select one of the left eye motion vector and the depth motion vector with higher reliability according to the stereoscopic video.
  • the left-eye image data and depth data corresponding to the interpolation frame can be generated with high accuracy.
  • FIG. 9 is a block diagram showing a configuration of a video processing apparatus 100a according to another embodiment of the present invention.
  • the video processing apparatus 100a in FIG. 9 will be described while referring to differences from the video processing apparatus 100 according to the above embodiment.
  • the video processing apparatus 100a in FIG. 9 includes a synthesis unit 4a instead of the comparison unit 4 and the selection unit 5 in FIG.
  • the left eye motion analysis unit 2 gives the vector signal LVS and the reliability signal LRS to the synthesis unit 4a.
  • the depth motion analysis unit 3 gives the vector signal DVS and the reliability signal DRS to the synthesis unit 4a.
  • the synthesizer 4a generates a vector signal NVS based on the given reliability signal LRS and reliability signal DRS.
  • the vector signal NVS represents a combined vector generated by combining the left eye motion vector and the depth motion vector.
  • the synthesis unit 4a sets weighting coefficients corresponding to the left eye motion vector and the depth motion vector in accordance with the reliability of the left eye motion vector and the depth motion vector, and sets the left eye motion vector and the set weight.
  • the product of the coefficient and the product of the depth motion vector and the set weight coefficient are added.
  • the weight coefficient of the left eye motion vector is set larger than the weight coefficient of the depth motion vector, and the reliability of the depth motion vector is set to the left eye motion vector. Is higher than the weight coefficient of the left-eye motion vector.
  • the difference between the reliability of the left eye motion vector and the reliability of the depth motion vector is larger, the difference between the weight coefficient of the left eye motion vector and the weight coefficient of the depth motion vector is set larger.
  • the frame interpolation unit 6 performs frame interpolation processing of the left-eye video signal LSa and the depth signal DSa using the vector signal NVS generated by the synthesis unit 4a.
  • the frame interpolation process using the combined vector of the left eye motion vector and the depth motion vector, it is possible to generate the left eye image data and depth data corresponding to the interpolation frame with higher accuracy. As a result, the frame rate conversion of the stereoscopic video can be performed without reducing the quality of the stereoscopic video.
  • frame interpolation processing is performed on the left-eye video signal LSa and depth signal DSa.
  • the present invention is not limited to this, and frame interpolation processing may be performed on the right-eye video signal RSa and depth signal DSa.
  • a right eye motion analysis unit is provided instead of the left eye motion analysis unit 2.
  • the signal conversion unit 1 gives the right-eye video signal RSa to the right-eye motion analysis unit and the frame interpolation unit 6.
  • the right-eye motion analysis unit detects a motion vector (hereinafter referred to as a right-eye motion vector) from the right-eye video signal RSa, and calculates a right-eye motion vector reliability value representing the reliability of the detected right-eye motion vector.
  • the comparison unit 4 compares the reliability of the right eye motion vector and the depth motion vector.
  • the selection unit 5 selects one of the right eye motion vector and the depth motion vector with higher reliability based on the comparison result by the comparison unit 4.
  • the frame interpolation unit 6 performs frame interpolation processing on the right-eye video signal RSa and the depth signal DSa given from the signal conversion unit 1 based on the right-eye motion vector or the depth motion vector selected by the selection unit 5.
  • the signal converter 7 outputs the right-eye video signal RSb after the frame interpolation process, generates the left-eye video signal LSb based on the right-eye video signal RSb and the depth signal DSb after the frame interpolation process, and generates the generated left-eye video signal LSb is output.
  • the right-eye image data and depth data corresponding to the interpolation frame can be generated with high accuracy. Furthermore, the left-eye video signal LSb can be accurately generated from the right-eye video signal RSb and the depth signal DSb after the frame interpolation process. As a result, the frame rate conversion of the stereoscopic video can be performed without reducing the quality of the stereoscopic video.
  • the video processing devices 100 and 100a are examples of video processing devices
  • the left eye motion analysis unit 2 is an example of a first motion vector detection unit and a first reliability generation unit
  • depth motion analysis is performed.
  • the unit 3 is an example of a second motion vector detection unit and a second reliability generation unit
  • the comparison unit 4 and the selection unit 5 or the synthesis unit 4a are examples of a motion vector generation unit
  • the frame interpolation unit 6 is a frame It is an example of an interpolation unit
  • the signal conversion unit 7 is an example of a first signal conversion unit
  • the signal conversion unit 1 is an example of a second signal conversion unit.
  • the left-eye video is an example of a left-eye two-dimensional video
  • the right-eye video is an example of a right-eye two-dimensional video
  • the left-eye image data is an example of first image data
  • the right-eye image data is second.
  • the left-eye video signal LSa is an example of the first video signal
  • the left-eye video signal LSb is an example of the second video signal
  • the right-eye video signal RSb is an example of the third video signal.
  • the right-eye video signal RSa is an example of the fourth video signal
  • the depth signal DSa is an example of the depth signal
  • the left-eye motion vector is an example of the first motion vector
  • the depth motion vector is the second It is an example of a motion vector
  • a left eye motion vector, a depth motion vector, or a composite vector is an example of a third motion vector
  • a left eye motion vector confidence value is an example of first reliability information
  • a video processing apparatus is a video processing apparatus that performs processing for frame rate conversion of a three-dimensional video composed of a plurality of frames, and includes a left-eye and a right-eye two-dimensional video.
  • a first motion vector detection unit configured to detect a first motion vector from a first video signal including a plurality of frames of first image data for displaying one two-dimensional video;
  • a first reliability generation unit configured to generate first reliability information representing the reliability of the first motion vector detected by the motion vector detection unit, and presentation of a three-dimensional image in the depth direction
  • a second motion vector detection unit configured to detect a second motion vector from a depth signal including depth data of a plurality of frames representing a position, and detected by the second motion vector detection unit.
  • a second reliability generator configured to generate second reliability information representing the reliability of the second motion vector, and a first reliability generated by the first reliability generator Based on the information and the second reliability information generated by the second reliability generation unit, the first motion vector detected by the first motion vector detection unit and the second motion vector detection unit are detected.
  • a motion vector generation unit configured to generate a third motion vector from the second motion vector, and a third motion vector generated by the motion vector generation unit.
  • a frame interpolator configured to generate first image data and depth data of a frame to be interpolated from the first image data and depth data of the frame.
  • first motion vector detection is performed from a first video signal including a plurality of frames of first image data for displaying one of the left-eye and right-eye 2D videos.
  • the first motion vector is detected by the unit.
  • First reliability information representing the reliability of the detected first motion vector is generated by the first reliability generation unit.
  • the second motion vector detection unit detects the second motion vector from the depth signal including depth data of a plurality of frames representing the presentation position of the 3D video in the depth direction.
  • Second reliability information representing the reliability of the detected second motion vector is generated by the second reliability generation unit.
  • the reliability of the first motion vector and the reliability of the second motion vector refer to the degree of accuracy of the first motion vector and the second motion vector representing the motion of the object in the video.
  • a motion vector generation unit Based on the generated first and second reliability information, a motion vector generation unit generates a third motion vector from the first and second motion vectors. Using the generated third motion vector, the first image data and the depth data of the frame to be interpolated from the first image data and the depth data of at least one frame of the 3D video are generated by the frame interpolation unit Is done.
  • a second motion vector is used to generate a third motion vector.
  • the third motion vector accurately represents the motion of the object in the 3D video. Therefore, the first image data and depth data of the frame to be interpolated can be generated with high accuracy. As a result, the frame rate conversion of the 3D video can be performed without degrading the quality of the 3D video.
  • the first reliability generation unit uses the first motion vector detected by the first motion vector detection unit to interpolate a plurality of first frames of the common frame to be interpolated from the first image data of different frames.
  • Image data is generated, and the first reliability information is generated based on the plurality of first image data of the generated common frame
  • the second reliability generation unit is configured to generate the second motion A plurality of depth data of a common frame to be interpolated from depth data of different frames using the second motion vector detected by the vector detection unit, and based on the generated plurality of depth data of the common frame
  • the second reliability information may be generated.
  • the first reliability information that accurately represents the reliability of the first motion vector and the second reliability information that accurately represents the reliability of the second motion vector can be generated.
  • the first reliability generation unit is configured to generate the first reliability information by an operation including a difference or a ratio of the plurality of first image data of the generated common frame, and the second reliability is generated.
  • the generation unit may be configured to generate the second reliability information by an operation including a difference or ratio between a plurality of depth data of the generated common frame.
  • the first reliability information that accurately represents the reliability of the first motion vector and the second reliability information that accurately represents the reliability of the second motion vector can be generated.
  • the motion vector generation unit is configured to output the first and second based on the first reliability information generated by the first reliability generation unit and the second reliability information generated by the second reliability generation unit.
  • One of the motion vectors having higher reliability may be generated as the third motion vector.
  • the third motion vector that accurately represents the motion of the object in the three-dimensional image can be easily generated from the first and second motion vectors.
  • the motion vector generation unit is configured to output the first and second based on the first reliability information generated by the first reliability generation unit and the second reliability information generated by the second reliability generation unit.
  • the third motion vector may be generated by combining the motion vectors.
  • a third motion vector that more accurately represents the motion of the object in the three-dimensional image can be generated from the first and second motion vectors.
  • the video processing device includes: first image data of a plurality of frames of a first video signal; first image data of a frame to be interpolated generated by a frame interpolation unit; depth data of a plurality of frames of a depth signal; From the depth data of the frame to be interpolated generated by the interpolating unit, a plurality of frames for displaying the other two-dimensional video among the two-dimensional video for the left eye and the right eye, and the second image of the frame to be complemented Generating data and generating a second video signal including the first image data of a plurality of frames of the first video signal and the first image data of the frame to be interpolated generated by the frame interpolation unit; Configured to generate a third video signal including the generated plurality of frames and the second image data of the frame to be interpolated Signal conversion unit 1 may further comprise a.
  • the left-eye two-dimensional video is displayed using the third video signal
  • the right-eye two-dimensional video is displayed using the fourth video signal.
  • the video processing apparatus obtains a depth signal from a first video signal and a fourth video signal including second image data of a plurality of frames for displaying the other two-dimensional video among the left-eye and right-eye two-dimensional videos.
  • a second signal conversion unit that generates the signal may be further included.
  • the first image data of the frame to be interpolated and the depth data of the frame to be interpolated can be accurately generated from the first and second video signals.
  • a video processing method is a method for performing a process for frame rate conversion of a three-dimensional video composed of a plurality of frames, and one of two-dimensional video for a left eye and a right eye.
  • a step of detecting a first motion vector from a first video signal including a plurality of frames of first image data for displaying a two-dimensional video, and a first representing the reliability of the detected first motion vector Generating reliability information detecting a second motion vector from a depth signal including depth data of a plurality of frames representing a 3D video presentation position in the depth direction, and a detected second motion vector Generating second reliability information representing the reliability of the first and second motion vectors detected based on the generated first and second reliability information Generating a third motion vector from the first motion data, and using the generated third motion vector, the first of the frames to be interpolated from the first image data and depth data of at least one frame of the 3D video Generating image data and depth data.
  • a first motion vector is derived from a first video signal including a plurality of frames of first image data for displaying one of the left-eye and right-eye 2D videos.
  • First reliability information representing the reliability of the detected first motion vector is generated.
  • a second motion vector is detected from a depth signal including depth data of a plurality of frames representing a presentation position of a 3D image in the depth direction, and second reliability representing the reliability of the detected second motion vector. Information is generated.
  • a third motion vector is generated from the first and second motion vectors based on the generated first and second reliability information. Using the generated third motion vector, first image data and depth data of a frame to be interpolated from the first image data and depth data of at least one frame of the three-dimensional video are generated.
  • a second motion vector is used to generate a third motion vector.
  • the third motion vector accurately represents the motion of the object in the 3D video. Therefore, the first image data and depth data of the frame to be interpolated can be generated with high accuracy. As a result, the frame rate conversion of the 3D video can be performed without degrading the quality of the 3D video.
  • the present invention can be effectively used in a video processing apparatus that performs processing for frame rate conversion of 3D video.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Television Systems (AREA)

Abstract

A first motion vector is detected from a first video signal by a first motion vector detection unit. First reliability information, which indicates the reliability of the detected first motion vector, is generated by a first reliability generation unit. In addition, a second motion vector is detected from a depth signal by a second motion vector detection unit. Second reliability information, which indicates the reliability of the detected second motion vector, is generated by a second reliability generation unit. A third motion vector is generated from the first and second motion vectors by a motion vector generation unit on the basis of the generated first and second reliability information. First image data and depth data for a frame to be interpolated are generated by a frame interpolation unit using the generated third motion vector.

Description

映像処理装置および映像処理方法Video processing apparatus and video processing method
 本発明は、映像処理装置および映像処理方法に関する。 The present invention relates to a video processing apparatus and a video processing method.
 映像処理装置においては、映像を表示するための映像信号に対してフレームレート変換処理が施される(例えば、特許文献1)。フレームレート変換処理においては、例えば、時間軸上で連続する2つのフレームの画像データから動きベクトルが検出され、検出された動きベクトルを用いて補間フレームの画像データが生成される。
特開昭62-175080号公報 特開2009-3507号公報
In a video processing device, a frame rate conversion process is performed on a video signal for displaying a video (for example, Patent Document 1). In the frame rate conversion process, for example, a motion vector is detected from image data of two frames that are continuous on the time axis, and image data of an interpolation frame is generated using the detected motion vector.
Japanese Patent Laid-Open No. 62-175080 JP 2009-3507 A
 近年、ユーザに立体映像(3次元映像)を提示可能な表示装置がある。具体的には、左目で見るべき映像(以下、左目映像と呼ぶ)と右目で見るべき映像(以下、右目映像と呼ぶ)とがそれぞれ別個に表示されることにより、ユーザに立体映像(3次元映像)が提示される。この場合、例えば、左目映像を表示するための映像信号および右目映像を表示するための映像信号の各々に上記のフレームレート変換処理が行われる。 In recent years, there are display devices that can present stereoscopic video (three-dimensional video) to the user. Specifically, a video to be viewed with the left eye (hereinafter referred to as a left-eye video) and a video to be viewed with the right eye (hereinafter referred to as a right-eye video) are separately displayed, so that a stereoscopic video (three-dimensional) is displayed to the user. Video). In this case, for example, the frame rate conversion process is performed on each of the video signal for displaying the left-eye video and the video signal for displaying the right-eye video.
 しかしながら、上記のフレーレート変換処理では、補間フレームの画像データを精度よく生成することができない場合がある。例えば、動画像と文字等のテロップとが重ねて表示される場合において、動画像の一部とテロップとがほぼ同じ輝度および色等を有する場合には、画像データに基づいてその動画像の一部とテロップとを区別することは困難である。そのため、動きベクトルが正確に検出されず、補間フレームの適切な画像データを生成することができない。その結果、提示される3次元映像の質が低下する。 However, the above frame rate conversion process may not be able to generate image data of an interpolation frame with high accuracy. For example, when a moving image and a telop such as a character are displayed in an overlapping manner, if a portion of the moving image and the telop have substantially the same brightness and color, one of the moving images based on the image data is displayed. It is difficult to distinguish between parts and telops. Therefore, the motion vector is not accurately detected, and appropriate image data of the interpolation frame cannot be generated. As a result, the quality of the presented 3D video is degraded.
 本発明の目的は、3次元映像の質を低下させることなく、3次元映像のフレームレート変換を行うことが可能な映像処理装置および映像処理方法を提供することである。 An object of the present invention is to provide a video processing apparatus and a video processing method capable of performing frame rate conversion of a 3D video without degrading the quality of the 3D video.
 本発明に係る映像処理装置は、複数フレームにより構成される3次元映像のフレームレート変換のための処理を行う映像処理装置であって、左目用および右目用の2次元映像のうち一方の2次元映像を表示するための複数フレームの第1の画像データを含む第1の映像信号から第1の動きベクトルを検出するように構成される第1の動きベクトル検出部と、第1の動きベクトル検出部により検出される第1の動きベクトルの信頼性を表す第1の信頼性情報を生成するように構成される第1の信頼性生成部と、奥行き方向における3次元映像の提示位置を表す複数フレームの奥行きデータを含む奥行き信号から第2の動きベクトルを検出するように構成される第2の動きベクトル検出部と、第2の動きベクトル検出部により検出される第2の動きベクトルの信頼性を表す第2の信頼性情報を生成するように構成される第2の信頼性生成部と、第1の信頼性生成部により生成される第1の信頼性情報および第2の信頼性生成部により生成される第2の信頼性情報に基づいて、第1の動きベクトル検出部により検出される第1の動きベクトルおよび第2の動きベクトル検出部により検出される第2の動きベクトルから第3の動きベクトルを生成するように構成される動きベクトル生成部と、動きベクトル生成部により生成される第3の動きベクトルを用いて、3次元映像の少なくとも1つのフレームの第1の画像データおよび奥行きデータから補間されるべきフレームの第1の画像データおよび奥行きデータを生成するように構成されるフレーム補間部とを備えるものである。 A video processing apparatus according to the present invention is a video processing apparatus that performs processing for frame rate conversion of a three-dimensional video composed of a plurality of frames, and one of the two-dimensional video for the left eye and the right eye. A first motion vector detector configured to detect a first motion vector from a first video signal including a plurality of frames of first image data for displaying a video; and a first motion vector detection A first reliability generation unit configured to generate first reliability information representing the reliability of the first motion vector detected by the unit, and a plurality of presentation positions of the 3D video in the depth direction A second motion vector detection unit configured to detect a second motion vector from a depth signal including the depth data of the frame, and a second motion vector detected by the second motion vector detection unit A second reliability generation unit configured to generate second reliability information representing the reliability of the vector, first reliability information generated by the first reliability generation unit, and second The first motion vector detected by the first motion vector detector and the second motion vector detected by the second motion vector detector based on the second reliability information generated by the reliability generator Using a motion vector generation unit configured to generate a third motion vector from the motion vector and a third motion vector generated by the motion vector generation unit, the first of at least one frame of the three-dimensional video A frame interpolation unit configured to generate first image data and depth data of a frame to be interpolated from the image data and the depth data.
 本発明によれば、3次元映像の質を低下させることなく、3次元映像のフレームレート変換を行うことが可能となる。 According to the present invention, it is possible to perform frame rate conversion of 3D video without degrading the quality of 3D video.
図1は本実施の形態に係る映像処理装置の構成を示すブロック図FIG. 1 is a block diagram showing a configuration of a video processing apparatus according to the present embodiment. 図2は左目映像および右目映像の1フレームを示す図FIG. 2 is a diagram showing one frame of a left-eye image and a right-eye image 図3は立体映像を示す図FIG. 3 shows a stereoscopic image. 図4は奥行きデータについて説明するための図FIG. 4 is a diagram for explaining the depth data. 図5は立体映像の動きを示す図FIG. 5 is a diagram showing the movement of a stereoscopic image. 図6は左目動きベクトルの信頼性の算出方法について説明するための図FIG. 6 is a diagram for explaining a method of calculating the reliability of the left eye motion vector 図7は奥行き動きベクトルの信頼性の算出方法について説明するための図FIG. 7 is a diagram for explaining a method of calculating the reliability of the depth motion vector. 図8は映像処理装置の動作を示すフローチャートFIG. 8 is a flowchart showing the operation of the video processing apparatus. 図9は本発明の他の実施の形態に係る映像処理装置の構成を示すブロック図FIG. 9 is a block diagram showing a configuration of a video processing apparatus according to another embodiment of the present invention.
 以下、本発明の一実施の形態に係る映像処理装置および映像処理方法について図面を参照しながら説明する。 Hereinafter, a video processing apparatus and a video processing method according to an embodiment of the present invention will be described with reference to the drawings.
 (1)映像処理装置の構成
 図1は、本実施の形態に係る映像処理装置の構成を示すブロック図である。図1に示すように、映像処理装置100は、信号変換部1、左目動き解析部2、奥行き動き解析部3、比較部4、選択部5、フレーム補間部6および信号変換部7を備える。
(1) Configuration of Video Processing Device FIG. 1 is a block diagram showing the configuration of the video processing device according to the present embodiment. As shown in FIG. 1, the video processing apparatus 100 includes a signal conversion unit 1, a left eye motion analysis unit 2, a depth motion analysis unit 3, a comparison unit 4, a selection unit 5, a frame interpolation unit 6, and a signal conversion unit 7.
 本実施の形態に係る映像処理装置100には、立体映像(3次元映像)を提示するための左目映像信号LSaおよび右目映像信号RSaが与えられる。左目映像信号LSaは、左目で見るべき2次元映像(以下、左目映像と呼ぶ)の各フレームを表示するための画像データ(以下、左目画像データと呼ぶ)を含む。右目映像信号RSaは、右目で見るべき2次元映像(以下、右目映像と呼ぶ)の各フレームを表示するための画像データ(以下、右目画像データと呼ぶ)を含む。左目映像および右目映像は、左目の視点および右目の視点から観察される共通の被写体の映像である。右目映像の1フレームおよび左目映像の1フレームにより立体映像の1フレームが構成される。 The video processing apparatus 100 according to the present embodiment is provided with a left-eye video signal LSa and a right-eye video signal RSa for presenting a stereoscopic video (3D video). The left-eye video signal LSa includes image data (hereinafter referred to as left-eye image data) for displaying each frame of a two-dimensional video (hereinafter referred to as a left-eye video) to be viewed with the left eye. The right-eye video signal RSa includes image data (hereinafter referred to as right-eye image data) for displaying each frame of a two-dimensional video (hereinafter referred to as right-eye video) to be viewed with the right eye. The left eye image and the right eye image are images of a common subject observed from the left eye viewpoint and the right eye viewpoint. One frame of stereoscopic video is composed of one frame of right-eye video and one frame of left-eye video.
 信号変換部1に左目映像信号LSaおよび右目映像信号RSaが入力される。信号変換部1は、入力された左目映像信号LSaを左目動き解析部2およびフレーム補間部6に与える。また、信号変換部1は、入力された左目映像信号LSaおよび右目映像信号RSaに基づいて奥行き信号DSaを生成し、生成された奥行き信号DSaを奥行き動き解析部3およびフレーム補間部6に与える。奥行き信号DSaは、立体映像の各フレームに対応する奥行きデータを含む。奥行きデータの詳細については後述する。 The left-eye video signal LSa and the right-eye video signal RSa are input to the signal conversion unit 1. The signal converter 1 gives the input left-eye video signal LSa to the left-eye motion analyzer 2 and the frame interpolator 6. Further, the signal conversion unit 1 generates a depth signal DSa based on the input left-eye video signal LSa and right-eye video signal RSa, and provides the generated depth signal DSa to the depth motion analysis unit 3 and the frame interpolation unit 6. The depth signal DSa includes depth data corresponding to each frame of the stereoscopic video. Details of the depth data will be described later.
 左目動き解析部2は、信号変換部1から与えられた左目映像信号LSaの左目映像データから動きベクトル(以下、左目動きベクトルと呼ぶ)を検出し、検出された左目動きベクトルをベクトル信号LVSとして選択部5に与える。また、左目動き解析部2は、検出された左目動きベクトルの信頼性を表す左目動きベクトル信頼値を算出し、算出された左目動きベクトル信頼値を信頼性信号LRSとして比較部4に与える。 The left-eye motion analysis unit 2 detects a motion vector (hereinafter referred to as a left-eye motion vector) from the left-eye video data of the left-eye video signal LSa given from the signal conversion unit 1, and uses the detected left-eye motion vector as a vector signal LVS. This is given to the selector 5. Further, the left eye motion analysis unit 2 calculates a left eye motion vector reliability value representing the reliability of the detected left eye motion vector, and gives the calculated left eye motion vector reliability value to the comparison unit 4 as a reliability signal LRS.
 奥行き動き解析部3は、信号変換部1から与えられた奥行き信号DSaの奥行きデータから動きベクトル(以下、奥行き動きベクトル)を検出し、検出された奥行き動きベクトルをベクトル信号DVSとして選択部5に与える。また、奥行き動き解析部3は、検出された奥行き動きベクトルの信頼性を表す奥行き動きベクトル信頼値を算出し、算出された奥行き動きベクトル信頼値を信頼性信号DRSとして比較部4に与える。 The depth motion analysis unit 3 detects a motion vector (hereinafter referred to as a depth motion vector) from the depth data of the depth signal DSa given from the signal conversion unit 1, and sends the detected depth motion vector to the selection unit 5 as a vector signal DVS. give. Further, the depth motion analysis unit 3 calculates a depth motion vector reliability value representing the reliability of the detected depth motion vector, and gives the calculated depth motion vector reliability value to the comparison unit 4 as the reliability signal DRS.
 比較部4は、左目動き解析部2から与えられた信頼性信号LRSおよび奥行き動き解析部3から与えられた信頼性信号DRSに基づいて、左目動きベクトルおよび奥行き動きベクトルの信頼性を比較する。選択部5は、比較部4による比較結果に基づいて、左目動き解析部2から与えられたベクトル信号LVSおよび奥行き動き解析部3から与えられたベクトル信号DVSうち一方を選択する。 The comparison unit 4 compares the reliability of the left eye motion vector and the depth motion vector based on the reliability signal LRS given from the left eye motion analysis unit 2 and the reliability signal DRS given from the depth motion analysis unit 3. The selection unit 5 selects one of the vector signal LVS given from the left eye motion analysis unit 2 and the vector signal DVS given from the depth motion analysis unit 3 based on the comparison result by the comparison unit 4.
 フレーム補間部6は、選択部5により選択されたベクトル信号LVSまたはベクトル信号DVSに基づいて、信号変換部1から与えられた左目映像信号LSaおよび奥行き信号DSaのフレーム補間処理を行う。信号変換部7は、フレーム補間処理後の左目映像信号LSbを出力するとともに、フレーム補間処理後の左目映像信号LSbおよび奥行き信号DSbに基づいて右目映像信号RSbを生成し、生成された右目映像信号RSbを出力する。信号変換部7から出力される左目映像信号LSbおよび右目映像信号RSbは、例えば表示装置等の外部装置に与えられる。 The frame interpolation unit 6 performs frame interpolation processing of the left-eye video signal LSa and the depth signal DSa given from the signal conversion unit 1 based on the vector signal LVS or the vector signal DVS selected by the selection unit 5. The signal converter 7 outputs the left-eye video signal LSb after the frame interpolation process, generates the right-eye video signal RSb based on the left-eye video signal LSb and the depth signal DSb after the frame interpolation process, and generates the generated right-eye video signal RSb is output. The left-eye video signal LSb and the right-eye video signal RSb output from the signal conversion unit 7 are given to an external device such as a display device, for example.
 信号変換部1、左目動き解析部2、奥行き動き解析部3、比較部4、選択部5、フレーム補間部6および信号変換部7は、例えば、CPU(中央演算処理装置)およびメモリ等のハードウェア、およびコンピュータプログラム等のソフトウェアにより実現される。この場合、信号変換部1、左目動き解析部2、奥行き動き解析部3、比較部4、選択部5、フレーム補間部6および信号変換部7は、コンピュータプログラムのモジュールに相当する。CPUがメモリに記憶されたコンピュータプログラムを実行することにより、信号変換部1、左目動き解析部2、奥行き動き解析部3、比較部4、選択部5、フレーム補間部6および信号変換部7の機能が実現される。なお、判定制御部224の一部または全てがASIC(特定用途向け集積回路)等のハードウェアにより実現されてもよい。 The signal conversion unit 1, the left eye motion analysis unit 2, the depth motion analysis unit 3, the comparison unit 4, the selection unit 5, the frame interpolation unit 6 and the signal conversion unit 7 are, for example, a hardware such as a CPU (Central Processing Unit) and a memory. Hardware and software such as a computer program. In this case, the signal conversion unit 1, the left eye motion analysis unit 2, the depth motion analysis unit 3, the comparison unit 4, the selection unit 5, the frame interpolation unit 6, and the signal conversion unit 7 correspond to computer program modules. When the CPU executes the computer program stored in the memory, the signal conversion unit 1, the left eye motion analysis unit 2, the depth motion analysis unit 3, the comparison unit 4, the selection unit 5, the frame interpolation unit 6, and the signal conversion unit 7. Function is realized. A part or all of the determination control unit 224 may be realized by hardware such as an ASIC (Application Specific Integrated Circuit).
 (2)奥行きデータ
 図2(a)は、左目画像データに基づいて表示される左目映像の1フレームを示す図であり、図2(b)は、右目画像データに基づいて表示される右目映像の1フレームを示す図である。図2(a)のフレームと図2(b)のフレームとは、時間軸上の同じ位置に対応する。図3(a)および図3(b)は、図2(a)の左目映像および図2(b)の右目映像により提示される立体映像を示す模式的平面図および模式的側面図である。
(2) Depth data FIG. 2A is a diagram showing one frame of a left-eye image displayed based on left-eye image data, and FIG. 2B is a right-eye image displayed based on right-eye image data. It is a figure which shows 1 frame of. The frame in FIG. 2A and the frame in FIG. 2B correspond to the same position on the time axis. FIG. 3A and FIG. 3B are a schematic plan view and a schematic side view showing a stereoscopic image presented by the left-eye image in FIG. 2A and the right-eye image in FIG. 2B.
 図2および図3の例において、被写体は2つの球体B1,B2である。図3に示すように、ユーザUの前方に表示画面DPが配置される。表示画面DPに、図2(a)の左目映像および図2(b)の右目映像が表示される。ユーザUは、左目により左目映像を見るとともに右目により右目映像を見る。これにより、図3に示すように、球体B1,B2の立体映像がユーザUに提示される。本例では、表示画面DPに対して垂直な方向(以下、奥行き方向と呼ぶ)において、球体B1の立体映像が表示画面DPよりもユーザUに近い位置に提示され、球体B2の立体映像が表示画面DPよりもユーザUから遠い位置に提示される。 2 and 3, the subject is two spheres B1 and B2. As shown in FIG. 3, the display screen DP is arranged in front of the user U. The left-eye image in FIG. 2A and the right-eye image in FIG. 2B are displayed on the display screen DP. The user U sees the left eye image with the left eye and the right eye image with the right eye. Thereby, as shown in FIG. 3, stereoscopic images of the spheres B <b> 1 and B <b> 2 are presented to the user U. In this example, the stereoscopic video of the sphere B1 is presented at a position closer to the user U than the display screen DP in the direction perpendicular to the display screen DP (hereinafter referred to as the depth direction), and the stereoscopic video of the sphere B2 is displayed. It is presented at a position farther from the user U than the screen DP.
 図4(a)および図4(b)は、奥行きデータについて説明するための模式的平面図および模式的側面図である。図4(a)および図4(b)において、黒点は、左目映像の一画素および右目映像の一画素により表される立体映像の要素(以下、画素要素と呼ぶ)PEを示す。画素要素PEの集合が球体B1,B2の立体映像を構成する。 4 (a) and 4 (b) are a schematic plan view and a schematic side view for explaining the depth data. 4 (a) and 4 (b), a black dot indicates a stereoscopic image element (hereinafter referred to as a pixel element) PE represented by one pixel of the left-eye image and one pixel of the right-eye image. A set of pixel elements PE forms a stereoscopic image of the spheres B1 and B2.
 奥行きデータは、各画素要素PEと予め定められた基準位置との間の奥行き方向における距離(以下、奥行き距離と呼ぶ)DDを含む。本例において、予め定められた基準位置は、表示画面DPが配置される平面上の位置である。例えば、立体映像が表示画面DPよりもユーザUに近い場合には、奥行き距離が正の値となり、立体映像が表示画面DPよりもユーザUから遠い場合には、奥行き距離が負の値となる。図4の例では、球体B1の立体映像を構成する画素要素PEの奥行き距離が正の値となり、球体B2の立体映像を構成する画素要素PEの奥行き距離が負の値となる。 The depth data includes a distance DD (hereinafter referred to as a depth distance) DD between each pixel element PE and a predetermined reference position in the depth direction. In this example, the predetermined reference position is a position on a plane where the display screen DP is arranged. For example, when the stereoscopic video is closer to the user U than the display screen DP, the depth distance is a positive value, and when the stereoscopic video is farther from the user U than the display screen DP, the depth distance is a negative value. . In the example of FIG. 4, the depth distance of the pixel element PE constituting the stereoscopic image of the sphere B1 is a positive value, and the depth distance of the pixel element PE constituting the stereoscopic image of the sphere B2 is a negative value.
 信号変換部1(図1)は、左目映像信号LSaおよび右目映像信号RSaに基づいて、立体映像の各フレームに対応する奥行きデータを生成し、生成された奥行きデータを奥行き信号DSaとして奥行き動き解析部3(図1)およびフレーム補間部6(図1)に与える。 The signal converter 1 (FIG. 1) generates depth data corresponding to each frame of the stereoscopic video based on the left-eye video signal LSa and the right-eye video signal RSa, and performs depth motion analysis using the generated depth data as the depth signal DSa. This is given to the unit 3 (FIG. 1) and the frame interpolation unit 6 (FIG. 1).
 (3)奥行き動きベクトル
 図5(a)および図5(b)は、球体B1の立体映像の動きを示す図である。図5(a)および図5(b)の例では、球体B1の立体映像が表示画面DPに略平行に移動する。奥行き動き解析部3(図1)は、信号変換部1(図1)からの奥行き信号DSaに基づいて、このような立体映像の移動方向および移動距離を奥行き動きベクトルとして検出する。
(3) Depth Motion Vector FIGS. 5 (a) and 5 (b) are diagrams illustrating the motion of the stereoscopic video of the sphere B1. In the example of FIGS. 5A and 5B, the stereoscopic image of the sphere B1 moves substantially parallel to the display screen DP. The depth motion analysis unit 3 (FIG. 1) detects the moving direction and moving distance of such a stereoscopic image as a depth motion vector based on the depth signal DSa from the signal conversion unit 1 (FIG. 1).
 例えば、図5の例では、移動前の球体B1を構成する各画素要素PEの奥行き距離DDと、移動後の球体B1を構成する画素要素PEの奥行き距離DDとが互いに略等しい。そのため、移動前の球体B1を表すフレームの奥行きデータおよび移動後の球体B1を表すフレームの奥行きデータから、互いに略等しい奥行き距離を有する画素要素PEの位置を検出することにより、球体B1の移動方向および移動距離を奥行き動きベクトルとして検出することができる。 For example, in the example of FIG. 5, the depth distance DD of each pixel element PE constituting the sphere B1 before movement is substantially equal to the depth distance DD of the pixel element PE constituting the sphere B1 after movement. Therefore, the moving direction of the sphere B1 is detected by detecting the positions of the pixel elements PE having substantially the same depth distance from the depth data of the frame representing the sphere B1 before the movement and the depth data of the frame representing the sphere B1 after the movement. And the moving distance can be detected as a depth motion vector.
 なお、上記のようにして検出される奥行き動きベクトルを用いて、立体映像として提示される各物体を個別に検出することも可能である。 It should be noted that it is also possible to individually detect each object presented as a stereoscopic video using the depth motion vector detected as described above.
 (4)左目動きベクトルおよび奥行き動きベクトルの信頼性
 図6は、左目動きベクトルの信頼性の算出方法について説明するための図であり、図7は、奥行き動きベクトルの信頼性の算出方法について説明するための図である。図6および図7において、前フレームおよび後フレームとは、フレーム補間前の立体映像において時間軸上で連続する2つのフレームをいう。また、補間フレームとは、前フレームと後フレームとの間に補間されるべきフレームをいう。
(4) Reliability of Left Eye Motion Vector and Depth Motion Vector FIG. 6 is a diagram for explaining a method for calculating the reliability of the left eye motion vector, and FIG. 7 explains a method for calculating the reliability of the depth motion vector. It is a figure for doing. In FIG. 6 and FIG. 7, the previous frame and the subsequent frame refer to two frames that are continuous on the time axis in the stereoscopic video before frame interpolation. An interpolation frame is a frame to be interpolated between the previous frame and the subsequent frame.
 左目動き解析部2(図1)は、例えばブロックマッチング法または勾配法により前フレームおよび後フレームに対応する左目画像データから左目動きベクトルを検出する。図6に示すように、左目動き解析部2は、検出された左目動きベクトルを用いて、前フレームに対応する左目画像データから補間フレームに対応する左目画像データ(以下、前方左目画像データと呼ぶ)を生成し、後フレームに対応する左目画像データから補間フレームに対応する左目画像データ(以下、後方左目画像データと呼ぶ)を生成する。 The left-eye motion analysis unit 2 (FIG. 1) detects a left-eye motion vector from left-eye image data corresponding to the previous frame and the subsequent frame, for example, by a block matching method or a gradient method. As shown in FIG. 6, the left eye motion analysis unit 2 uses the detected left eye motion vector to convert left eye image data corresponding to the previous frame to left eye image data corresponding to the interpolation frame (hereinafter referred to as front left eye image data). ) To generate left eye image data corresponding to the interpolated frame (hereinafter referred to as rear left eye image data) from the left eye image data corresponding to the subsequent frame.
 さらに、左目動き解析部2は、前方左目画像データと後方左目画像データとの間の差分を画素毎に算出し、算出された各差分を絶対値に変換し、それらの絶対値を合計する。その合計値が、左目動きベクトルの信頼性を表す左目動きベクトル信頼値となる。左目動きベクトル信頼値が小さいほど、左目動きベクトルの信頼性が高い。左目動き解析部2は、算出された左目動きベクトル信頼値を信頼性信号LRSとして比較部4(図1)に与える。 Further, the left eye motion analysis unit 2 calculates a difference between the front left eye image data and the rear left eye image data for each pixel, converts each calculated difference into an absolute value, and sums up the absolute values. The total value is a left eye motion vector reliability value representing the reliability of the left eye motion vector. The smaller the left eye motion vector confidence value, the higher the reliability of the left eye motion vector. The left eye motion analysis unit 2 gives the calculated left eye motion vector reliability value to the comparison unit 4 (FIG. 1) as the reliability signal LRS.
 奥行き動き解析部3(図1)は、上記のようにして前フレームおよび後フレームに対応する奥行きデータから奥行き動きベクトルを検出する。図7に示すように、奥行き動き解析部3は、検出された奥行き動きベクトルを用いて、前フレームに対応する奥行きデータから補間フレームに対応する奥行きデータ(以下、前方奥行きデータと呼ぶ)を生成し、後フレームに対応する奥行きデータから補間フレームに対応する奥行きデータ(以下、後方奥行きデータと呼ぶ)を生成する。 The depth motion analysis unit 3 (FIG. 1) detects the depth motion vector from the depth data corresponding to the previous frame and the rear frame as described above. As shown in FIG. 7, the depth motion analysis unit 3 generates depth data corresponding to the interpolation frame (hereinafter referred to as forward depth data) from the depth data corresponding to the previous frame, using the detected depth motion vector. Then, depth data corresponding to the interpolation frame (hereinafter referred to as rear depth data) is generated from the depth data corresponding to the subsequent frame.
 さらに、奥行き動き解析部3は、前方奥行きデータと後方奥行きデータとの間の差分を画素要素PE毎に算出し、算出された各差分を絶対値に変換し、それらの絶対値を合計する。その合計値が、奥行き動きベクトルの信頼性を表す奥行き動きベクトル信頼値となる。奥行き動きベクトル信頼値が小さいほど、奥行き動きベクトルの信頼性が高い。奥行き動き解析部3は、算出された奥行き動きベクトル信頼値を信頼性信号DRSとして比較部4(図1)に与える。 Further, the depth motion analysis unit 3 calculates a difference between the front depth data and the rear depth data for each pixel element PE, converts each calculated difference into an absolute value, and sums up the absolute values. The total value is a depth motion vector reliability value representing the reliability of the depth motion vector. The smaller the depth motion vector confidence value, the higher the reliability of the depth motion vector. The depth motion analysis unit 3 gives the calculated depth motion vector reliability value to the comparison unit 4 (FIG. 1) as the reliability signal DRS.
 本例では、前方左目画像データと後方左目画像データとの差を含む演算により左目動きベクトル信頼値を算出し、前方奥行きデータと後方奥行きデータとの差を含む演算により奥行き動きベクトル信頼値を算出するが、これに限らない。例えば、前方左目画像データと後方左目画像データとの比を含む演算により左目動きベクトル信頼値を算出してもよい。同様に、前方奥行きデータと後方奥行きデータとの比を含む演算により左目動きベクトル信頼値を算出してもよい。 In this example, the left eye motion vector confidence value is calculated by a calculation including the difference between the front left eye image data and the rear left eye image data, and the depth motion vector confidence value is calculated by a calculation including the difference between the front depth data and the rear depth data. However, it is not limited to this. For example, the left-eye motion vector confidence value may be calculated by a calculation including a ratio between the front left-eye image data and the rear left-eye image data. Similarly, the left-eye motion vector confidence value may be calculated by a calculation including a ratio between the front depth data and the rear depth data.
 (5)比較処理
 比較部4は、左目動き解析部2からの信頼性信号LRSおよび奥行き動き解析部3からの信頼性信号DRSに基づいて、左目動きベクトルおよび奥行き動きベクトルの信頼性を比較するための比較処理を行う。具体的には、比較部4は、信頼性信号LRSが示す左目動きベクトル信頼値および信頼性信号LRSが示す左目動きベクトル信頼値の少なくとも一方に所定の係数(ゲイン)を乗じ、これらの値を比較する。
(5) Comparison Processing The comparison unit 4 compares the reliability of the left eye motion vector and the depth motion vector based on the reliability signal LRS from the left eye motion analysis unit 2 and the reliability signal DRS from the depth motion analysis unit 3. Comparison processing is performed. Specifically, the comparison unit 4 multiplies at least one of the left-eye motion vector reliability value indicated by the reliability signal LRS and the left-eye motion vector reliability value indicated by the reliability signal LRS by a predetermined coefficient (gain), and uses these values. Compare.
 奥行き動きベクトルの信頼性が左目動きベクトルの信頼性よりも高い場合、比較部4は、奥行き選択信号を選択部5(図1)に与える。選択部5(図1)は、比較部4からの奥行き選択信号に応答して、左目動き解析部2からのベクトル信号LVSおよび奥行き動き解析部3からのベクトル信号DVSのうちベクトル信号DVSを選択してフレーム補間部6に与える。 When the reliability of the depth motion vector is higher than the reliability of the left eye motion vector, the comparison unit 4 gives a depth selection signal to the selection unit 5 (FIG. 1). In response to the depth selection signal from the comparison unit 4, the selection unit 5 (FIG. 1) selects the vector signal DVS from the vector signal LVS from the left eye motion analysis unit 2 and the vector signal DVS from the depth motion analysis unit 3. To the frame interpolation unit 6.
 一方、奥行き動きベクトルの信頼性が左目動きベクトルの信頼性以下である場合、比較部4は、左目選択信号を選択部5に与える。選択部5は、比較部4からの左目選択信号に応答して、左目動き解析部2からのベクトル信号LVSおよび奥行き動き解析部3からのベクトル信号DVSのうちベクトル信号LVSを選択してフレーム補間部6に与える。 On the other hand, when the reliability of the depth motion vector is equal to or lower than the reliability of the left eye motion vector, the comparison unit 4 gives the left eye selection signal to the selection unit 5. In response to the left eye selection signal from the comparison unit 4, the selection unit 5 selects the vector signal LVS from the vector signal LVS from the left eye motion analysis unit 2 and the vector signal DVS from the depth motion analysis unit 3, and performs frame interpolation. Part 6 is given.
 比較処理は、例えば、予め定められた数のフレーム毎に行われてもよく、予め定められた時間毎に行われてもよく、またはユーザによる指示に応じて行われてもよい。比較処理が行われていない期間には、前回の比較処理の結果に応じて奥行き選択信号または左目選択信号が比較部4から選択部5に継続的に出力される。また、比較処理が行われない期間には、左目動き解析部2による左目動きベクトル信頼値の算出および奥行き動き解析部3による奥行き動きベクトル信頼値の算出が行われなくてもよい。 The comparison process may be performed, for example, for each predetermined number of frames, may be performed every predetermined time, or may be performed according to an instruction from the user. During the period when the comparison process is not performed, the depth selection signal or the left eye selection signal is continuously output from the comparison unit 4 to the selection unit 5 according to the result of the previous comparison process. Further, during the period when the comparison process is not performed, the calculation of the left eye motion vector reliability value by the left eye motion analysis unit 2 and the calculation of the depth motion vector reliability value by the depth motion analysis unit 3 may not be performed.
 (6)フレーム補間
 選択部5からフレーム補間部6にベクトル信号LVSが与えられる場合、フレーム補間部6(図1)は、与えられたベクトル信号LVSが示す左目動きベクトルを用いて、左目映像信号LSaおよび奥行き信号DSaのフレーム補間処理を行う。具体的には、フレーム補間部6は、左目動きベクトルを用いて、前フレームおよび後フレーム(図6および図7参照)の少なくとも一方から補間フレームに対応する左目画像データおよび奥行きデータを生成する。
(6) Frame interpolation When the vector signal LVS is given from the selection unit 5 to the frame interpolation unit 6, the frame interpolation unit 6 (FIG. 1) uses the left-eye motion vector indicated by the given vector signal LVS to generate a left-eye video signal. Frame interpolation processing of LSa and depth signal DSa is performed. Specifically, the frame interpolation unit 6 uses the left eye motion vector to generate left eye image data and depth data corresponding to the interpolation frame from at least one of the previous frame and the subsequent frame (see FIGS. 6 and 7).
 一方、選択部5からフレーム補間部6にベクトル信号DRSが与えられる場合、フレーム補間部6は、与えられたベクトル信号DRSが示す奥行き動きベクトルを用いて、左目映像信号LSaおよび奥行き信号DSaのフレーム補間処理を行う。具体的には、フレーム補間部6は、奥行き動きベクトルを用いて、前フレームおよび後フレーム(図6および図7参照)の少なくとも一方から補間フレームに対応する左目画像データおよび奥行きデータを生成する。 On the other hand, when the vector signal DRS is given from the selection unit 5 to the frame interpolation unit 6, the frame interpolation unit 6 uses the depth motion vector indicated by the given vector signal DRS to frame the left-eye video signal LSa and the depth signal DSa. Perform interpolation processing. Specifically, the frame interpolation unit 6 uses the depth motion vector to generate left-eye image data and depth data corresponding to the interpolation frame from at least one of the previous frame and the subsequent frame (see FIGS. 6 and 7).
 信号変換部7(図1)は、フレーム補間処理後の左目映像信号LSbを出力するとともに、フレーム補間処理後の左目映像信号LSbおよび奥行き信号DSbに基づいて右目映像信号RSbを生成し、生成された右目映像信号RSbを出力する。図示しない表示装置により、信号変換部7から出力される左目映像信号LSbに基づいて左目映像が表示されるとともに、右目映像信号RSbに基づいて右目映像が表示される。それにより、フレームレート変換後の3次元映像がユーザに提示される。 The signal converter 7 (FIG. 1) outputs the left-eye video signal LSb after the frame interpolation process, and generates and generates the right-eye video signal RSb based on the left-eye video signal LSb and the depth signal DSb after the frame interpolation process. The right eye video signal RSb is output. A display device (not shown) displays a left-eye video based on the left-eye video signal LSb output from the signal conversion unit 7 and a right-eye video based on the right-eye video signal RSb. Thereby, the 3D image after the frame rate conversion is presented to the user.
 (7)映像処理装置の動作
 図8は、映像処理装置100の動作を示すフローチャートである。図8に示すように、まず、信号変換部1が、入力された左目映像信号LaSおよび右目映像信号RSaから奥行き信号DSaを生成する(ステップS1)。
(7) Operation of Video Processing Device FIG. 8 is a flowchart showing the operation of the video processing device 100. As shown in FIG. 8, first, the signal converter 1 generates a depth signal DSa from the input left-eye video signal LaS and right-eye video signal RSa (step S1).
 次に、左目動き解析部2が、左目映像信号LSaから左目動きベクトルを検出し(ステップS2)、左目動きベクトルの信頼性を表す左目動きベクトル信頼値を算出する(ステップS3)。ステップS2,S3の処理と並列に、奥行き動き解析部3が、奥行き信号DSaから奥行き動きベクトルを検出し(ステップS4)、奥行き動きベクトルの信頼性を表す奥行き動きベクトル信頼値を算出する(ステップS5)。 Next, the left eye motion analysis unit 2 detects a left eye motion vector from the left eye video signal LSa (step S2), and calculates a left eye motion vector reliability value representing the reliability of the left eye motion vector (step S3). In parallel with the processes in steps S2 and S3, the depth motion analysis unit 3 detects a depth motion vector from the depth signal DSa (step S4), and calculates a depth motion vector reliability value representing the reliability of the depth motion vector (step S4). S5).
 次に、比較部4が、ステップS3で算出された左目動きベクトル信頼値およびステップS5で算出された奥行き動きベクトル信頼値に基づいて、左目動きベクトルおよび奥行き動きベクトルの信頼性を比較する(ステップS6)。次に、選択部5が、奥行き動きベクトルの信頼性が左目動きベクトルの信頼性よりも高いか否かを判定する(ステップS7)。 Next, the comparison unit 4 compares the reliability of the left-eye motion vector and the depth motion vector based on the left-eye motion vector reliability value calculated in step S3 and the depth motion vector reliability value calculated in step S5 (step S3). S6). Next, the selection unit 5 determines whether or not the reliability of the depth motion vector is higher than the reliability of the left eye motion vector (step S7).
 奥行き動きベクトルの信頼性が左目動きベクトルの信頼性よりも高い場合、フレーム補間部6が、ステップS4で奥行き動き解析部3により検出された奥行き動きベクトルを用いて、左目映像信号LSaおよび奥行き信号DSaのフレーム補間処理を行う(ステップS8)。一方、奥行き動きベクトルの信頼性が左目動きベクトルの信頼性以下である場合、フレーム補間部6が、ステップS2で左目動き解析部2により検出された左目動きベクトルを用いて、左目映像信号LSaおよび奥行き信号DSaのフレーム補間処理を行う(ステップS9)。 When the reliability of the depth motion vector is higher than the reliability of the left eye motion vector, the frame interpolation unit 6 uses the depth motion vector detected by the depth motion analysis unit 3 in step S4 to use the left eye video signal LSa and the depth signal. DSa frame interpolation processing is performed (step S8). On the other hand, when the reliability of the depth motion vector is equal to or lower than the reliability of the left eye motion vector, the frame interpolation unit 6 uses the left eye motion vector detected by the left eye motion analysis unit 2 in step S2 and the left eye video signal LSa and Frame interpolation processing of the depth signal DSa is performed (step S9).
 次に、信号変換部7が、ステップS8またはステップS9におけるフレーム補間処理後の左目映像信号LSbおよび奥行き信号DSbから右目映像信号RSbを生成し(ステップS10)、フレーム補間処理後の左目映像信号LSbおよび生成された右目映像信号RSbを出力する。その後、ステップS1~S10の処理が繰り返される。 Next, the signal conversion unit 7 generates the right-eye video signal RSb from the left-eye video signal LSb and the depth signal DSb after the frame interpolation processing in Step S8 or Step S9 (Step S10), and the left-eye video signal LSb after the frame interpolation processing And the generated right-eye video signal RSb is output. Thereafter, the processes of steps S1 to S10 are repeated.
 (8)本実施の形態の効果
 本実施の形態に係る映像処理装置100においては、入力された左目映像信号LSaおよび右目映像信号RSaから奥行き信号DSaが生成され、左目映像信号LSaから検出される左目動きベクトルおよび奥行き信号DSaから検出される奥行き動きベクトルのうちより信頼性が高い一方を用いて左目映像信号LSaおよび奥行き信号DSaのフレーム補間処理が行われる。
(8) Effects of this embodiment In the video processing apparatus 100 according to this embodiment, the depth signal DSa is generated from the input left-eye video signal LSa and right-eye video signal RSa and detected from the left-eye video signal LSa. Frame interpolation processing of the left-eye video signal LSa and the depth signal DSa is performed using one of the depth motion vectors detected from the left-eye motion vector and the depth signal DSa with higher reliability.
 これにより、画像データのみを用いてフレーム補間処理が行われる場合に比べて、3次元映像の動きを正確に検出することができる。例えば、複数の物体の立体映像が奥行き方向に重なるように提示される場合、これらの輝度および色等がほぼ同じであると、画像データに基づいてこれらの複数の物体を区別することは困難である。それに対して、奥行きデータが用いられることにより、立体映像の奥行き距離の違いに基づいてこれらの複数の物体を容易に区別することができる。そのため、これらの複数の物体の動きを正確に検出することができる。したがって、補間フレームに対応する左目画像データおよび奥行きデータを精度よく生成することができる。 Thereby, it is possible to accurately detect the motion of the three-dimensional image as compared with the case where the frame interpolation process is performed using only the image data. For example, when stereoscopic images of a plurality of objects are presented so as to overlap in the depth direction, it is difficult to distinguish between the plurality of objects based on image data if the luminance, color, and the like are substantially the same. is there. On the other hand, by using the depth data, it is possible to easily distinguish these objects based on the difference in depth distance of the stereoscopic video. Therefore, it is possible to accurately detect the movements of the plurality of objects. Therefore, the left-eye image data and depth data corresponding to the interpolation frame can be generated with high accuracy.
 さらに、フレーム補間処理後の左目映像信号LSbおよび奥行き信号DSbから右目映像信号RSbが生成される。これにより、補間フレームに対応する右目画像データを精度よく生成することができる。その結果、立体映像の質を低下させることなく、立体映像のフレームレート変換を行うことができる。 Further, the right eye video signal RSb is generated from the left eye video signal LSb and the depth signal DSb after the frame interpolation process. Thereby, the right eye image data corresponding to the interpolation frame can be generated with high accuracy. As a result, the frame rate conversion of the stereoscopic video can be performed without reducing the quality of the stereoscopic video.
 また、本実施の形態では、検出された左目動きベクトルを用いて、前フレームに対応する左目画像データから前方左目画像データが生成されるとともに後フレームに対応する左目画像データから後方左目画像データが生成され、これらの差分に基づいて左目動きベクトル信頼値が算出される。これにより、左目動きベクトルの信頼性を正確に評価することができる。また、検出された奥行き動きベクトルを用いて、前フレームに対応する奥行きデータから前方奥行きデータ生成されるとともに後フレームに対応する奥行きデータから後方奥行きデータが生成され、これらの差分に基づいて奥行き動きベクトル信頼値が算出される。これにより、奥行き動きベクトルの信頼性を正確に評価することができる。したがって、立体映像に応じて、左目動きベクトルおよび奥行き動きベクトルのうちより信頼性が高い一方を正確に選択することができる。その結果、補間フレームに対応する左目画像データおよび奥行きデータを精度よく生成することができる。 Further, in the present embodiment, using the detected left eye motion vector, front left eye image data is generated from left eye image data corresponding to the previous frame, and rear left eye image data is converted from left eye image data corresponding to the rear frame. And a left-eye motion vector confidence value is calculated based on these differences. Thereby, the reliability of the left eye motion vector can be accurately evaluated. In addition, using the detected depth motion vector, forward depth data is generated from depth data corresponding to the previous frame and backward depth data is generated from depth data corresponding to the rear frame, and the depth motion is based on these differences. A vector confidence value is calculated. Thereby, the reliability of the depth motion vector can be accurately evaluated. Therefore, it is possible to accurately select one of the left eye motion vector and the depth motion vector with higher reliability according to the stereoscopic video. As a result, the left-eye image data and depth data corresponding to the interpolation frame can be generated with high accuracy.
 (9)他の形態の効果
 (9-1)
 図9は、本発明の他の実施の形態に係る映像処理装置100aの構成を示すブロック図である。図9の映像処理装置100aについて、上記実施の形態に係る映像処理装置100と異なる点を説明する。
(9) Effects of other forms (9-1)
FIG. 9 is a block diagram showing a configuration of a video processing apparatus 100a according to another embodiment of the present invention. The video processing apparatus 100a in FIG. 9 will be described while referring to differences from the video processing apparatus 100 according to the above embodiment.
 図9の映像処理装置100aは、図1の比較部4および選択部5の代わりに、合成部4aを備える。左目動き解析部2は、ベクトル信号LVSおよび信頼性信号LRSを合成部4aに与える。奥行き動き解析部3は、ベクトル信号DVSおよび信頼性信号DRSを合成部4aに与える。合成部4aは、与えられた信頼性信号LRSおよび信頼性信号DRSに基づいて、ベクトル信号NVSを生成する。ベクトル信号NVSは、左目動きベクトルおよび奥行き動きベクトルが合成されることによって生成された合成ベクトルを表す。 The video processing apparatus 100a in FIG. 9 includes a synthesis unit 4a instead of the comparison unit 4 and the selection unit 5 in FIG. The left eye motion analysis unit 2 gives the vector signal LVS and the reliability signal LRS to the synthesis unit 4a. The depth motion analysis unit 3 gives the vector signal DVS and the reliability signal DRS to the synthesis unit 4a. The synthesizer 4a generates a vector signal NVS based on the given reliability signal LRS and reliability signal DRS. The vector signal NVS represents a combined vector generated by combining the left eye motion vector and the depth motion vector.
 例えば、合成部4aは、左目動きベクトルおよび奥行き動きベクトルの信頼性の高さに応じて、左目動きベクトルおよび奥行き動きベクトルの各々に対応する重み係数を設定し、左目動きベクトルと設定された重み係数との積および奥行き動きベクトルと設定された重み係数との積を加算する。この場合、左目動きベクトルの信頼性が奥行き動きベクトルの信頼性よりも高い場合、左目動きベクトルの重み係数が奥行き動きベクトルの重み係数よりも大きく設定され、奥行き動きベクトルの信頼性が左目動きベクトルの信頼性よりも高い場合、奥行き動きベクトルの重み係数が左目動きベクトルの重み係数よりも大きく設定される。また、左目動きベクトルの信頼性と奥行き動きベクトルの信頼性との差が大きいほど、左目動きベクトルの重み係数と奥行き動きベクトルの重み係数との差が大きく設定される。 For example, the synthesis unit 4a sets weighting coefficients corresponding to the left eye motion vector and the depth motion vector in accordance with the reliability of the left eye motion vector and the depth motion vector, and sets the left eye motion vector and the set weight. The product of the coefficient and the product of the depth motion vector and the set weight coefficient are added. In this case, when the reliability of the left eye motion vector is higher than the reliability of the depth motion vector, the weight coefficient of the left eye motion vector is set larger than the weight coefficient of the depth motion vector, and the reliability of the depth motion vector is set to the left eye motion vector. Is higher than the weight coefficient of the left-eye motion vector. Further, as the difference between the reliability of the left eye motion vector and the reliability of the depth motion vector is larger, the difference between the weight coefficient of the left eye motion vector and the weight coefficient of the depth motion vector is set larger.
 フレーム補間部6は、合成部4aにより生成されたベクトル信号NVSを用いて、左目映像信号LSaおよび奥行き信号DSaのフレーム補間処理を行う。 The frame interpolation unit 6 performs frame interpolation processing of the left-eye video signal LSa and the depth signal DSa using the vector signal NVS generated by the synthesis unit 4a.
 このように、左目動きベクトルと奥行き動きベクトルとの合成ベクトルを用いてフレーム補間処理が行われることにより、補間フレームに対応する左目画像データおよび奥行きデータをより精度よく生成することができる。その結果、立体映像の質を低下させることなく、立体映像のフレームレート変換を行うことができる。 As described above, by performing the frame interpolation process using the combined vector of the left eye motion vector and the depth motion vector, it is possible to generate the left eye image data and depth data corresponding to the interpolation frame with higher accuracy. As a result, the frame rate conversion of the stereoscopic video can be performed without reducing the quality of the stereoscopic video.
 (9-2)
 上記実施の形態では、左目映像信号LSaおよび奥行き信号DSaに対してフレーム補間処理が行われるが、これに限らず、右目映像信号RSaおよび奥行き信号DSaに対してフレーム補間処理が行われてもよい。この場合、左目動き解析部2の代わりに右目動き解析部が設けられる。
(9-2)
In the above embodiment, frame interpolation processing is performed on the left-eye video signal LSa and depth signal DSa. However, the present invention is not limited to this, and frame interpolation processing may be performed on the right-eye video signal RSa and depth signal DSa. . In this case, a right eye motion analysis unit is provided instead of the left eye motion analysis unit 2.
 信号変換部1は、右目映像信号RSaを右目動き解析部およびフレーム補間部6に与える。右目動き解析部は、右目映像信号RSaから動きベクトル(以下、右目動きベクトルと呼ぶ)を検出するとともに、検出された右目動きベクトルの信頼性を表す右目動きベクトル信頼値を算出する。 The signal conversion unit 1 gives the right-eye video signal RSa to the right-eye motion analysis unit and the frame interpolation unit 6. The right-eye motion analysis unit detects a motion vector (hereinafter referred to as a right-eye motion vector) from the right-eye video signal RSa, and calculates a right-eye motion vector reliability value representing the reliability of the detected right-eye motion vector.
 比較部4は、右目動きベクトルおよび奥行き動きベクトルの信頼性を比較する。選択部5は、比較部4による比較結果に基づいて、右目動きベクトルおよび奥行き動きベクトルのうちより信頼性が高い一方を選択する。フレーム補間部6は、選択部5により選択された右目動きベクトルまたは奥行き動きベクトルに基づいて、信号変換部1から与えられた右目映像信号RSaおよび奥行き信号DSaのフレーム補間処理を行う。信号変換部7は、フレーム補間処理後の右目映像信号RSbを出力するとともに、フレーム補間処理後の右目映像信号RSbおよび奥行き信号DSbに基づいて左目映像信号LSbを生成し、生成された左目映像信号LSbを出力する。 The comparison unit 4 compares the reliability of the right eye motion vector and the depth motion vector. The selection unit 5 selects one of the right eye motion vector and the depth motion vector with higher reliability based on the comparison result by the comparison unit 4. The frame interpolation unit 6 performs frame interpolation processing on the right-eye video signal RSa and the depth signal DSa given from the signal conversion unit 1 based on the right-eye motion vector or the depth motion vector selected by the selection unit 5. The signal converter 7 outputs the right-eye video signal RSb after the frame interpolation process, generates the left-eye video signal LSb based on the right-eye video signal RSb and the depth signal DSb after the frame interpolation process, and generates the generated left-eye video signal LSb is output.
 これにより、補間フレームに対応する右目画像データおよび奥行きデータを精度よく生成することができる。さらに、フレーム補間処理後の右目映像信号RSbおよび奥行き信号DSbから左目映像信号LSbを精度よく生成することができる。その結果、立体映像の質を低下させることなく、立体映像のフレームレート変換を行うことができる。 Thereby, the right-eye image data and depth data corresponding to the interpolation frame can be generated with high accuracy. Furthermore, the left-eye video signal LSb can be accurately generated from the right-eye video signal RSb and the depth signal DSb after the frame interpolation process. As a result, the frame rate conversion of the stereoscopic video can be performed without reducing the quality of the stereoscopic video.
 (10)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
(10) Correspondence between each constituent element of claim and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each element of the embodiment will be described. It is not limited to.
 上記実施の形態では、映像処理装置100,100aが映像処理装置の例であり、左目動き解析部2が第1の動きベクトル検出部および第1の信頼性生成部の例であり、奥行き動き解析部3が第2の動きベクトル検出部および第2の信頼性生成部の例であり、比較部4および選択部5または合成部4aが動きベクトル生成部の例であり、フレーム補間部6がフレーム補間部の例であり、信号変換部7が第1の信号変換部の例であり、信号変換部1が第2の信号変換部の例である。 In the above embodiment, the video processing devices 100 and 100a are examples of video processing devices, the left eye motion analysis unit 2 is an example of a first motion vector detection unit and a first reliability generation unit, and depth motion analysis is performed. The unit 3 is an example of a second motion vector detection unit and a second reliability generation unit, the comparison unit 4 and the selection unit 5 or the synthesis unit 4a are examples of a motion vector generation unit, and the frame interpolation unit 6 is a frame It is an example of an interpolation unit, the signal conversion unit 7 is an example of a first signal conversion unit, and the signal conversion unit 1 is an example of a second signal conversion unit.
 また、左目映像が左目用の2次元映像の例であり、右目映像が右目用の2次元映像の例であり、左目画像データが第1の画像データの例であり、右目画像データが第2の画像データの例であり、左目映像信号LSaが第1の映像信号の例であり、左目映像信号LSbが第2の映像信号の例であり、右目映像信号RSbが第3の映像信号の例であり、右目映像信号RSaが第4の映像信号の例であり、奥行き信号DSaが奥行き信号の例であり、左目動きベクトルが第1の動きベクトルの例であり、奥行き動きベクトルが第2の動きベクトルの例であり、左目動きベクトル、奥行き動きベクトルまたは合成ベクトルが第3の動きベクトルの例であり、左目動きベクトル信頼値が第1の信頼性情報の例であり、奥行き動きベクトル信頼値が第2の信頼性情報の例である。 The left-eye video is an example of a left-eye two-dimensional video, the right-eye video is an example of a right-eye two-dimensional video, the left-eye image data is an example of first image data, and the right-eye image data is second. The left-eye video signal LSa is an example of the first video signal, the left-eye video signal LSb is an example of the second video signal, and the right-eye video signal RSb is an example of the third video signal. The right-eye video signal RSa is an example of the fourth video signal, the depth signal DSa is an example of the depth signal, the left-eye motion vector is an example of the first motion vector, and the depth motion vector is the second It is an example of a motion vector, a left eye motion vector, a depth motion vector, or a composite vector is an example of a third motion vector, a left eye motion vector confidence value is an example of first reliability information, and a depth motion vector confidence value Is second It is an example of the reliability information.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 (11)実施の形態に係る映像処理装置および映像処理方法の包括的な説明
 (11-1)
 本発明の実施の形態に係る映像処理装置は、複数フレームにより構成される3次元映像のフレームレート変換のための処理を行う映像処理装置であって、左目用および右目用の2次元映像のうち一方の2次元映像を表示するための複数フレームの第1の画像データを含む第1の映像信号から第1の動きベクトルを検出するように構成される第1の動きベクトル検出部と、第1の動きベクトル検出部により検出される第1の動きベクトルの信頼性を表す第1の信頼性情報を生成するように構成される第1の信頼性生成部と、奥行き方向における3次元映像の提示位置を表す複数フレームの奥行きデータを含む奥行き信号から第2の動きベクトルを検出するように構成される第2の動きベクトル検出部と、第2の動きベクトル検出部により検出される第2の動きベクトルの信頼性を表す第2の信頼性情報を生成するように構成される第2の信頼性生成部と、第1の信頼性生成部により生成される第1の信頼性情報および第2の信頼性生成部により生成される第2の信頼性情報に基づいて、第1の動きベクトル検出部により検出される第1の動きベクトルおよび第2の動きベクトル検出部により検出される第2の動きベクトルから第3の動きベクトルを生成するように構成される動きベクトル生成部と、動きベクトル生成部により生成される第3の動きベクトルを用いて、3次元映像の少なくとも1つのフレームの第1の画像データおよび奥行きデータから補間されるべきフレームの第1の画像データおよび奥行きデータを生成するように構成されるフレーム補間部とを備えるものである。
(11) Comprehensive description of video processing apparatus and video processing method according to embodiment (11-1)
A video processing apparatus according to an embodiment of the present invention is a video processing apparatus that performs processing for frame rate conversion of a three-dimensional video composed of a plurality of frames, and includes a left-eye and a right-eye two-dimensional video. A first motion vector detection unit configured to detect a first motion vector from a first video signal including a plurality of frames of first image data for displaying one two-dimensional video; A first reliability generation unit configured to generate first reliability information representing the reliability of the first motion vector detected by the motion vector detection unit, and presentation of a three-dimensional image in the depth direction A second motion vector detection unit configured to detect a second motion vector from a depth signal including depth data of a plurality of frames representing a position, and detected by the second motion vector detection unit. A second reliability generator configured to generate second reliability information representing the reliability of the second motion vector, and a first reliability generated by the first reliability generator Based on the information and the second reliability information generated by the second reliability generation unit, the first motion vector detected by the first motion vector detection unit and the second motion vector detection unit are detected. A motion vector generation unit configured to generate a third motion vector from the second motion vector, and a third motion vector generated by the motion vector generation unit. A frame interpolator configured to generate first image data and depth data of a frame to be interpolated from the first image data and depth data of the frame.
 この映像処理装置においては、左目用および右目用の2次元映像のうち一方の2次元映像を表示するための複数フレームの第1の画像データを含む第1の映像信号から第1の動きベクトル検出部により第1の動きベクトルが検出される。検出された第1の動きベクトルの信頼性を表す第1の信頼性情報が第1の信頼性生成部により生成される。また、奥行き方向における3次元映像の提示位置を表す複数フレームの奥行きデータを含む奥行き信号から第2の動きベクトル検出部により第2の動きベクトルが検出される。検出された第2の動きベクトルの信頼性を表す第2の信頼性情報が第2の信頼性生成部により生成される。第1の動きベクトルの信頼性および第2の動きベクトルの信頼性とは、映像中の物体の動きを表す第1の動きベクトルおよび第2の動きベクトルの正確性の程度をいう。 In this video processing apparatus, first motion vector detection is performed from a first video signal including a plurality of frames of first image data for displaying one of the left-eye and right-eye 2D videos. The first motion vector is detected by the unit. First reliability information representing the reliability of the detected first motion vector is generated by the first reliability generation unit. Further, the second motion vector detection unit detects the second motion vector from the depth signal including depth data of a plurality of frames representing the presentation position of the 3D video in the depth direction. Second reliability information representing the reliability of the detected second motion vector is generated by the second reliability generation unit. The reliability of the first motion vector and the reliability of the second motion vector refer to the degree of accuracy of the first motion vector and the second motion vector representing the motion of the object in the video.
 生成された第1および第2の信頼性情報に基づいて、第1および第2の動きベクトルから第3の動きベクトルが動きベクトル生成部により生成される。生成された第3の動きベクトルを用いて、3次元映像の少なくとも1つのフレームの第1の画像データおよび奥行きデータから補間されるべきフレームの第1の画像データおよび奥行きデータがフレーム補間部により生成される。 Based on the generated first and second reliability information, a motion vector generation unit generates a third motion vector from the first and second motion vectors. Using the generated third motion vector, the first image data and the depth data of the frame to be interpolated from the first image data and the depth data of at least one frame of the 3D video are generated by the frame interpolation unit Is done.
 このように、2次元映像を表示するための第1の画像データに基づいて検出される第1の動きベクトル、および奥行き方向における3次元映像の提示位置を表す奥行きデータに基づいて検出される第2の動きベクトルを用いて、第3の動きベクトルが生成される。これにより、第3の動きベクトルは、3次元映像中の物体の動きを正確に表す。したがって、補間されるべきフレームの第1の画像データおよび奥行きデータを精度よく生成することができる。その結果、3次元映像の質を低下させることなく、3次元映像のフレームレート変換を行うことができる。 As described above, the first motion vector detected based on the first image data for displaying the 2D video and the first motion vector detected based on the depth data representing the presentation position of the 3D video in the depth direction. A second motion vector is used to generate a third motion vector. Thereby, the third motion vector accurately represents the motion of the object in the 3D video. Therefore, the first image data and depth data of the frame to be interpolated can be generated with high accuracy. As a result, the frame rate conversion of the 3D video can be performed without degrading the quality of the 3D video.
 (11-2)
 第1の信頼性生成部は、第1の動きベクトル検出部により検出された第1の動きベクトルを用いて異なるフレームの第1の画像データから補間されるべき共通のフレームの複数の第1の画像データを生成し、生成された共通のフレームの複数の第1の画像データに基づいて第1の信頼性情報を生成するように構成され、第2の信頼性生成部は、第2の動きベクトル検出部により検出された第2の動きベクトルを用いて異なるフレームの奥行きデータから補間されるべき共通のフレームの複数の奥行きデータを生成し、生成された共通のフレームの複数の奥行きデータに基づいて第2の信頼性情報を生成するように構成されてもよい。
(11-2)
The first reliability generation unit uses the first motion vector detected by the first motion vector detection unit to interpolate a plurality of first frames of the common frame to be interpolated from the first image data of different frames. Image data is generated, and the first reliability information is generated based on the plurality of first image data of the generated common frame, and the second reliability generation unit is configured to generate the second motion A plurality of depth data of a common frame to be interpolated from depth data of different frames using the second motion vector detected by the vector detection unit, and based on the generated plurality of depth data of the common frame The second reliability information may be generated.
 この場合、第1の動きベクトルの信頼性を正確に表す第1の信頼性情報および第2の動きベクトルの信頼性を正確に表す第2の信頼性情報を生成することができる。 In this case, the first reliability information that accurately represents the reliability of the first motion vector and the second reliability information that accurately represents the reliability of the second motion vector can be generated.
 (11-3)
 第1の信頼性生成部は、生成された共通のフレームの複数の第1の画像データの差または比を含む演算により第1の信頼性情報を生成するように構成され、第2の信頼性生成部は、生成された共通のフレームの複数の奥行きデータの差または比を含む演算により第2の信頼性情報を生成するように構成されてもよい。
(11-3)
The first reliability generation unit is configured to generate the first reliability information by an operation including a difference or a ratio of the plurality of first image data of the generated common frame, and the second reliability is generated. The generation unit may be configured to generate the second reliability information by an operation including a difference or ratio between a plurality of depth data of the generated common frame.
 この場合、第1の動きベクトルの信頼性を正確に表す第1の信頼性情報および第2の動きベクトルの信頼性を正確に表す第2の信頼性情報を生成することができる。 In this case, the first reliability information that accurately represents the reliability of the first motion vector and the second reliability information that accurately represents the reliability of the second motion vector can be generated.
 (11-4)
 動きベクトル生成部は、第1の信頼性生成部により生成される第1の信頼性情報および第2の信頼性生成部により生成される第2の信頼性情報に基づいて、第1および第2の動きベクトルのうちより信頼性が高い一方を第3の動きベクトルとして生成するように構成されてもよい。
(11-4)
The motion vector generation unit is configured to output the first and second based on the first reliability information generated by the first reliability generation unit and the second reliability information generated by the second reliability generation unit. One of the motion vectors having higher reliability may be generated as the third motion vector.
 この場合、第1および第2の動きベクトルから、3次元映像中の物体の動きを正確に表す第3の動きベクトルを容易に生成することができる。 In this case, the third motion vector that accurately represents the motion of the object in the three-dimensional image can be easily generated from the first and second motion vectors.
 (11-5)
 動きベクトル生成部は、第1の信頼性生成部により生成される第1の信頼性情報および第2の信頼性生成部により生成される第2の信頼性情報に基づいて、第1および第2の動きベクトルを合成することにより第3の動きベクトルを生成するように構成されてもよい。
(11-5)
The motion vector generation unit is configured to output the first and second based on the first reliability information generated by the first reliability generation unit and the second reliability information generated by the second reliability generation unit. The third motion vector may be generated by combining the motion vectors.
 この場合、第1および第2の動きベクトルから、3次元映像中の物体の動きをより正確に表す第3の動きベクトルを生成することができる。 In this case, a third motion vector that more accurately represents the motion of the object in the three-dimensional image can be generated from the first and second motion vectors.
 (11-6)
 映像処理装置は、第1の映像信号の複数フレームの第1の画像データ、フレーム補間部により生成される補間されるべきフレームの第1の画像データ、奥行き信号の複数フレームの奥行きデータ、およびフレーム補間部により生成される補間されるべきフレームの奥行きデータから、左目用および右目用の2次元映像のうち他方の2次元映像を表示するための複数フレームおよび補完されるべきフレームの第2の画像データを生成し、第1の映像信号の複数フレームの第1の画像データおよびフレーム補間部により生成される補間されるべきフレームの第1の画像データを含む第2の映像信号を生成するとともに、生成された複数フレームおよび補間されるべきフレームの第2の画像データを含む第3の映像信号を生成するように構成される第1の信号変換部をさらに備えてもよい。
(11-6)
The video processing device includes: first image data of a plurality of frames of a first video signal; first image data of a frame to be interpolated generated by a frame interpolation unit; depth data of a plurality of frames of a depth signal; From the depth data of the frame to be interpolated generated by the interpolating unit, a plurality of frames for displaying the other two-dimensional video among the two-dimensional video for the left eye and the right eye, and the second image of the frame to be complemented Generating data and generating a second video signal including the first image data of a plurality of frames of the first video signal and the first image data of the frame to be interpolated generated by the frame interpolation unit; Configured to generate a third video signal including the generated plurality of frames and the second image data of the frame to be interpolated Signal conversion unit 1 may further comprise a.
 この場合、第3の映像信号を用いて左目用の2次元映像が表示されるとともに、第4の映像信号を用いて右目用の2次元映像が表示される。それにより、フレームレート変換後の3次元映像をユーザに提示することができる。 In this case, the left-eye two-dimensional video is displayed using the third video signal, and the right-eye two-dimensional video is displayed using the fourth video signal. As a result, the 3D video after the frame rate conversion can be presented to the user.
 (11-7)
 映像処理装置は、第1の映像信号および左目用および右目用の2次元映像のうち他方の2次元映像を表示するための複数フレームの第2の画像データを含む第4の映像信号から奥行き信号を生成する第2の信号変換部をさらに備えてもよい。
(11-7)
The video processing apparatus obtains a depth signal from a first video signal and a fourth video signal including second image data of a plurality of frames for displaying the other two-dimensional video among the left-eye and right-eye two-dimensional videos. A second signal conversion unit that generates the signal may be further included.
 この場合、第1および第2の映像信号から補間されるべきフレームの第1の画像データおよび補間されるべきフレームの奥行きデータを精度よく生成することができる。 In this case, the first image data of the frame to be interpolated and the depth data of the frame to be interpolated can be accurately generated from the first and second video signals.
 (11-8)
 本発明の実施の形態に係る映像処理方法は、複数フレームにより構成される3次元映像のフレームレート変換のための処理を行う方法であって、左目用および右目用の2次元映像のうち一方の2次元映像を表示するための複数フレームの第1の画像データを含む第1の映像信号から第1の動きベクトルを検出するステップと、検出される第1の動きベクトルの信頼性を表す第1の信頼性情報を生成するステップと、奥行き方向における3次元映像の提示位置を表す複数フレームの奥行きデータを含む奥行き信号から第2の動きベクトルを検出するステップと、検出される第2の動きベクトルの信頼性を表す第2の信頼性情報を生成するステップと、生成される第1および第2の信頼性情報に基づいて、検出される第1および第2の動きベクトルから第3の動きベクトルを生成するステップと、生成される第3の動きベクトルを用いて、3次元映像の少なくとも1つのフレームの第1の画像データおよび奥行きデータから補間されるべきフレームの第1の画像データおよび奥行きデータを生成するステップとを備えるものである。
(11-8)
A video processing method according to an embodiment of the present invention is a method for performing a process for frame rate conversion of a three-dimensional video composed of a plurality of frames, and one of two-dimensional video for a left eye and a right eye. A step of detecting a first motion vector from a first video signal including a plurality of frames of first image data for displaying a two-dimensional video, and a first representing the reliability of the detected first motion vector Generating reliability information, detecting a second motion vector from a depth signal including depth data of a plurality of frames representing a 3D video presentation position in the depth direction, and a detected second motion vector Generating second reliability information representing the reliability of the first and second motion vectors detected based on the generated first and second reliability information Generating a third motion vector from the first motion data, and using the generated third motion vector, the first of the frames to be interpolated from the first image data and depth data of at least one frame of the 3D video Generating image data and depth data.
 この映像処理方法においては、左目用および右目用の2次元映像のうち一方の2次元映像を表示するための複数フレームの第1の画像データを含む第1の映像信号から第1の動きベクトルが検出され、検出された第1の動きベクトルの信頼性を表す第1の信頼性情報が生成される。また、奥行き方向における3次元映像の提示位置を表す複数フレームの奥行きデータを含む奥行き信号から第2の動きベクトルが検出され、検出された第2の動きベクトルの信頼性を表す第2の信頼性情報が生成される。 In this video processing method, a first motion vector is derived from a first video signal including a plurality of frames of first image data for displaying one of the left-eye and right-eye 2D videos. First reliability information representing the reliability of the detected first motion vector is generated. In addition, a second motion vector is detected from a depth signal including depth data of a plurality of frames representing a presentation position of a 3D image in the depth direction, and second reliability representing the reliability of the detected second motion vector. Information is generated.
 生成された第1および第2の信頼性情報に基づいて、第1および第2の動きベクトルから第3の動きベクトルが生成される。生成された第3の動きベクトルを用いて、3次元映像の少なくとも1つのフレームの第1の画像データおよび奥行きデータから補間されるべきフレームの第1の画像データおよび奥行きデータが生成される。 A third motion vector is generated from the first and second motion vectors based on the generated first and second reliability information. Using the generated third motion vector, first image data and depth data of a frame to be interpolated from the first image data and depth data of at least one frame of the three-dimensional video are generated.
 このように、2次元映像を表示するための第1の画像データに基づいて検出される第1の動きベクトル、および奥行き方向における3次元映像の提示位置を表す奥行きデータに基づいて検出される第2の動きベクトルを用いて、第3の動きベクトルが生成される。これにより、第3の動きベクトルは、3次元映像中の物体の動きを正確に表す。したがって、補間されるべきフレームの第1の画像データおよび奥行きデータを精度よく生成することができる。その結果、3次元映像の質を低下させることなく、3次元映像のフレームレート変換を行うことができる。 As described above, the first motion vector detected based on the first image data for displaying the 2D video and the first motion vector detected based on the depth data representing the presentation position of the 3D video in the depth direction. A second motion vector is used to generate a third motion vector. Thereby, the third motion vector accurately represents the motion of the object in the 3D video. Therefore, the first image data and depth data of the frame to be interpolated can be generated with high accuracy. As a result, the frame rate conversion of the 3D video can be performed without degrading the quality of the 3D video.
 本発明は、3次元映像のフレームレート変換のための処理を行う映像処理装置に有効に利用することができる。 The present invention can be effectively used in a video processing apparatus that performs processing for frame rate conversion of 3D video.

Claims (8)

  1. 複数フレームにより構成される3次元映像のフレームレート変換のための処理を行う映像処理装置であって、
     左目用および右目用の2次元映像のうち一方の2次元映像を表示するための前記複数フレームの第1の画像データを含む第1の映像信号から第1の動きベクトルを検出するように構成される第1の動きベクトル検出部と、
     前記第1の動きベクトル検出部により検出される第1の動きベクトルの信頼性を表す第1の信頼性情報を生成するように構成される第1の信頼性生成部と、
     奥行き方向における3次元映像の提示位置を表す前記複数フレームの奥行きデータを含む奥行き信号から第2の動きベクトルを検出するように構成される第2の動きベクトル検出部と、
     前記第2の動きベクトル検出部により検出される第2の動きベクトルの信頼性を表す第2の信頼性情報を生成するように構成される第2の信頼性生成部と、
     前記第1の信頼性生成部により生成される第1の信頼性情報および前記第2の信頼性生成部により生成される第2の信頼性情報に基づいて、前記第1の動きベクトル検出部により検出される第1の動きベクトルおよび前記第2の動きベクトル検出部により検出される第2の動きベクトルから第3の動きベクトルを生成するように構成される動きベクトル生成部と、
     前記動きベクトル生成部により生成される第3の動きベクトルを用いて、3次元映像の少なくとも1つのフレームの第1の画像データおよび奥行きデータから補間されるべきフレームの第1の画像データおよび奥行きデータを生成するように構成されるフレーム補間部とを備える、映像処理装置。
    A video processing apparatus that performs processing for frame rate conversion of a three-dimensional video composed of a plurality of frames,
    A first motion vector is detected from a first video signal including the plurality of frames of first image data for displaying one of the left-eye and right-eye two-dimensional videos. A first motion vector detection unit,
    A first reliability generator configured to generate first reliability information representing the reliability of the first motion vector detected by the first motion vector detector;
    A second motion vector detection unit configured to detect a second motion vector from a depth signal including the plurality of frames of depth data representing a presentation position of a three-dimensional image in the depth direction;
    A second reliability generator configured to generate second reliability information representing the reliability of the second motion vector detected by the second motion vector detector;
    Based on the first reliability information generated by the first reliability generation unit and the second reliability information generated by the second reliability generation unit, the first motion vector detection unit A motion vector generator configured to generate a third motion vector from the detected first motion vector and the second motion vector detected by the second motion vector detector;
    First image data and depth data of a frame to be interpolated from first image data and depth data of at least one frame of a three-dimensional video image using the third motion vector generated by the motion vector generation unit And a frame interpolation unit configured to generate the video processing device.
  2. 前記第1の信頼性生成部は、前記第1の動きベクトル検出部により検出された第1の動きベクトルを用いて異なるフレームの第1の画像データから補間されるべき共通のフレームの複数の第1の画像データを生成し、生成された前記共通のフレームの複数の第1の画像データに基づいて第1の信頼性情報を生成するように構成され、
     前記第2の信頼性生成部は、前記第2の動きベクトル検出部により検出された第2の動きベクトルを用いて異なるフレームの奥行きデータから補間されるべき共通のフレームの複数の奥行きデータを生成し、生成された前記共通のフレームの複数の奥行きデータに基づいて第2の信頼性情報を生成するように構成される、請求項1記載の映像処理装置。
    The first reliability generation unit uses a first motion vector detected by the first motion vector detection unit, and uses a plurality of common frames to be interpolated from first image data of different frames. 1 is generated, and the first reliability information is generated based on the plurality of first image data of the generated common frame,
    The second reliability generation unit generates a plurality of depth data of a common frame to be interpolated from the depth data of different frames using the second motion vector detected by the second motion vector detection unit. The video processing device according to claim 1, wherein the video processing device is configured to generate second reliability information based on the generated plurality of depth data of the common frame.
  3. 前記第1の信頼性生成部は、前記生成された共通のフレームの複数の第1の画像データの差または比を含む演算により前記第1の信頼性情報を生成するように構成され、
     前記第2の信頼性生成部は、前記生成された共通のフレームの複数の奥行きデータの差または比を含む演算により前記第2の信頼性情報を生成するように構成される、請求項1記載の映像処理装置。
    The first reliability generation unit is configured to generate the first reliability information by an operation including a difference or a ratio of a plurality of first image data of the generated common frame,
    The said 2nd reliability production | generation part is comprised so that the said 2nd reliability information may be produced | generated by the calculation containing the difference or ratio of several depth data of the produced | generated common frame. Video processing equipment.
  4. 前記動きベクトル生成部は、
     前記第1の信頼性生成部により生成される第1の信頼性情報および前記第2の信頼性生成部により生成される第2の信頼性情報に基づいて、前記第1および第2の動きベクトルのうちより信頼性が高い一方を前記第3の動きベクトルとして生成するように構成される、請求項1記載の映像処理装置。
    The motion vector generator is
    Based on the first reliability information generated by the first reliability generation unit and the second reliability information generated by the second reliability generation unit, the first and second motion vectors The video processing apparatus according to claim 1, wherein one of the more reliable ones is generated as the third motion vector.
  5. 前記動きベクトル生成部は、
     前記第1の信頼性生成部により生成される第1の信頼性情報および前記第2の信頼性生成部により生成される第2の信頼性情報に基づいて、前記第1および第2の動きベクトルを合成することにより第3の動きベクトルを生成するように構成される、請求項1記載の映像処理装置。
    The motion vector generator is
    Based on the first reliability information generated by the first reliability generation unit and the second reliability information generated by the second reliability generation unit, the first and second motion vectors The video processing device according to claim 1, configured to generate a third motion vector by combining the two.
  6. 前記第1の映像信号の前記複数フレームの第1の画像データ、前記フレーム補間部により生成される前記補間されるべきフレームの第1の画像データ、前記奥行き信号の前記複数フレームの奥行きデータ、および前記フレーム補間部により生成される前記補間されるべきフレームの奥行きデータから、左目用および右目用の2次元映像のうち他方の2次元映像を表示するための前記複数フレームおよび前記補完されるべきフレームの第2の画像データを生成し、前記第1の映像信号の前記複数フレームの第1の画像データおよび前記フレーム補間部により生成される前記補間されるべきフレームの第1の画像データを含む第2の映像信号を生成するとともに、生成された前記複数フレームおよび前記補間されるべきフレームの第2の画像データを含む第3の映像信号を生成するように構成される第1の信号変換部をさらに備える、請求項1記載の映像処理装置。 First image data of the plurality of frames of the first video signal, first image data of the frame to be interpolated generated by the frame interpolation unit, depth data of the plurality of frames of the depth signal, and From the depth data of the frame to be interpolated generated by the frame interpolation unit, the plurality of frames for displaying the other two-dimensional video out of the left-eye and right-eye two-dimensional images and the frame to be complemented Second image data is generated, and includes the first image data of the plurality of frames of the first video signal and the first image data of the frame to be interpolated generated by the frame interpolation unit. 2 video signals and second image data of the generated plurality of frames and the frame to be interpolated. Third further comprising a first signal converter configured to generate a video signal, the video processing apparatus according to claim 1 comprising a.
  7. 前記第1の映像信号および前記左目用および右目用の2次元映像のうち他方の2次元映像を表示するための前記複数フレームの第2の画像データを含む第4の映像信号から前記奥行き信号を生成する第2の信号変換部をさらに備える、請求項1記載の映像処理装置。 The depth signal from the first video signal and the fourth video signal including the second image data of the plurality of frames for displaying the other two-dimensional video among the left-eye and right-eye two-dimensional videos. The video processing apparatus according to claim 1, further comprising a second signal conversion unit to be generated.
  8. 複数フレームにより構成される3次元映像のフレームレート変換のための処理を行う方法であって、
     左目用および右目用の2次元映像のうち一方の2次元映像を表示するための前記複数フレームの第1の画像データを含む第1の映像信号から第1の動きベクトルを検出するステップと、
     前記検出される第1の動きベクトルの信頼性を表す第1の信頼性情報を生成するステップと、
     奥行き方向における3次元映像の提示位置を表す前記複数フレームの奥行きデータを含む奥行き信号から第2の動きベクトルを検出するステップと、
     前記検出される第2の動きベクトルの信頼性を表す第2の信頼性情報を生成するステップと、
     前記生成される第1および第2の信頼性情報に基づいて、前記検出される第1および第2の動きベクトルから第3の動きベクトルを生成するステップと、
     前記生成される第3の動きベクトルを用いて、3次元映像の少なくとも1つのフレームの第1の画像データおよび奥行きデータから補間されるべきフレームの第1の画像データおよび奥行きデータを生成するステップとを備える、映像処理方法。
    A method for performing processing for frame rate conversion of a three-dimensional video composed of a plurality of frames,
    Detecting a first motion vector from a first video signal including the plurality of frames of first image data for displaying one of the left-eye and right-eye two-dimensional videos;
    Generating first reliability information representing the reliability of the detected first motion vector;
    Detecting a second motion vector from a depth signal including depth data of the plurality of frames representing a presentation position of a 3D image in the depth direction;
    Generating second reliability information representing the reliability of the detected second motion vector;
    Generating a third motion vector from the detected first and second motion vectors based on the generated first and second reliability information;
    Generating first image data and depth data of a frame to be interpolated from the first image data and depth data of at least one frame of a three-dimensional image using the generated third motion vector; A video processing method comprising:
PCT/JP2011/006403 2011-11-17 2011-11-17 Video processing device and video processing method WO2013072965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006403 WO2013072965A1 (en) 2011-11-17 2011-11-17 Video processing device and video processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006403 WO2013072965A1 (en) 2011-11-17 2011-11-17 Video processing device and video processing method

Publications (1)

Publication Number Publication Date
WO2013072965A1 true WO2013072965A1 (en) 2013-05-23

Family

ID=48429082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006403 WO2013072965A1 (en) 2011-11-17 2011-11-17 Video processing device and video processing method

Country Status (1)

Country Link
WO (1) WO2013072965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533646A (en) * 2018-08-02 2021-12-02 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc Systems and methods for extrapolating 2D images using depth information

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325924A (en) * 1994-06-02 1995-12-12 Canon Inc Compound eye image pickup device
JPH0843055A (en) * 1994-07-29 1996-02-16 Canon Inc Method and apparatus for recognizing shape of three dimensional object
JP2001175863A (en) * 1999-12-21 2001-06-29 Nippon Hoso Kyokai <Nhk> Method and device for multi-viewpoint image interpolation
JP2001359119A (en) * 2000-06-15 2001-12-26 Toshiba Corp Stereoscopic video image generating method
JP2008244686A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Video processing device and video processing method
JP2009003507A (en) * 2007-06-19 2009-01-08 Victor Co Of Japan Ltd Image processing method, image processor, and image processing program
JP2011223493A (en) * 2010-04-14 2011-11-04 Canon Inc Image processing apparatus and image processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07325924A (en) * 1994-06-02 1995-12-12 Canon Inc Compound eye image pickup device
JPH0843055A (en) * 1994-07-29 1996-02-16 Canon Inc Method and apparatus for recognizing shape of three dimensional object
JP2001175863A (en) * 1999-12-21 2001-06-29 Nippon Hoso Kyokai <Nhk> Method and device for multi-viewpoint image interpolation
JP2001359119A (en) * 2000-06-15 2001-12-26 Toshiba Corp Stereoscopic video image generating method
JP2008244686A (en) * 2007-03-27 2008-10-09 Hitachi Ltd Video processing device and video processing method
JP2009003507A (en) * 2007-06-19 2009-01-08 Victor Co Of Japan Ltd Image processing method, image processor, and image processing program
JP2011223493A (en) * 2010-04-14 2011-11-04 Canon Inc Image processing apparatus and image processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINYA SHIMIZU: "Efficient Multi-view Video Coding using Multi-view Depth Map", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 63, no. 4, 1 April 2009 (2009-04-01), pages 524 - 532 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533646A (en) * 2018-08-02 2021-12-02 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニーFacebook Technologies, Llc Systems and methods for extrapolating 2D images using depth information

Similar Documents

Publication Publication Date Title
JP7294757B2 (en) Method and Apparatus for Synchronizing Viewing Angles in Virtual Reality Live Streaming
US8694922B2 (en) Method for displaying a setting menu and corresponding device
US8441521B2 (en) Method and apparatus for determining view of stereoscopic image for stereo synchronization
EP2866201B1 (en) Information processing apparatus and method for controlling the same
JP2010062695A (en) Image processing apparatus, image processing method, and program
JP5227993B2 (en) Parallax image generation apparatus and method thereof
KR20060133764A (en) Intermediate vector interpolation method and 3d display apparatus
JP4892113B2 (en) Image processing method and apparatus
JP2013073598A (en) Image processing device, image processing method, and program
JP5692051B2 (en) Depth estimation data generation apparatus, generation method and generation program, and pseudo stereoscopic image generation apparatus, generation method and generation program
KR100263936B1 (en) Apparatus and method for converting 2-d video sequence to 3-d video using virtual stereoscopic video
JP2012089986A (en) Image processing device and method, and image display device and method
TWI491244B (en) Method and apparatus for adjusting 3d depth of an object, and method and apparatus for detecting 3d depth of an object
JP2011155431A (en) Frame rate conversion device, and video display device
JP2012095048A (en) Image processor, image processing method, image display device, and image display method
WO2013072965A1 (en) Video processing device and video processing method
US9277202B2 (en) Image processing device, image processing method, image display apparatus, and image display method
US20120098942A1 (en) Frame Rate Conversion For Stereoscopic Video
KR101632514B1 (en) Method and apparatus for upsampling depth image
JP2014072809A (en) Image generation apparatus, image generation method, and program for the image generation apparatus
US20120008855A1 (en) Stereoscopic image generation apparatus and method
JP2013098961A (en) Image processing apparatus and method, and picture display apparatus and method
JP5087684B2 (en) Image processing apparatus, image processing method, and image display apparatus
US9269177B2 (en) Method for processing image and apparatus for processing image
JP5574830B2 (en) Image processing apparatus and method, and image display apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP