WO2013069326A1 - Electrical power conversion device - Google Patents
Electrical power conversion device Download PDFInfo
- Publication number
- WO2013069326A1 WO2013069326A1 PCT/JP2012/064035 JP2012064035W WO2013069326A1 WO 2013069326 A1 WO2013069326 A1 WO 2013069326A1 JP 2012064035 W JP2012064035 W JP 2012064035W WO 2013069326 A1 WO2013069326 A1 WO 2013069326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- control
- power
- phase inverter
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
- H02J3/44—Synchronising a generator for connection to a network or to another generator with means for ensuring correct phase sequence
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a power conversion device that converts DC power into AC power, and more particularly to a power conversion device that is used in a power conditioner or the like that links a solar cell voltage to a system.
- a power conversion device used in a power conditioner for photovoltaic power generation, etc. is a capacitor for boosting a solar cell voltage with a booster circuit and generating a DC voltage sufficient to output AC power to smooth the DC bus voltage. To charge. Then, using it as a DC voltage source, it is converted into AC power by a single-phase inverter composed of power devices consisting of switching elements such as MOSFETs and IGBTs, and then harmonic noise contained in the AC current is removed by a filter to remove noise. It is configured to output the subsequent AC power to an AC system.
- a booster circuit and a single-phase inverter are interposed between the two.
- the booster circuit boosts the boosting section so that the boosting section has a partially convex waveform only during the period when the voltage of the intermediate stage capacitor is lower than the absolute value of the system voltage, During that period, a single-phase inverter has been proposed that performs an operation of switching the polarity of the output current in accordance with the polarity of the system voltage (see, for example, Patent Document 1).
- the booster circuit and the single-phase inverter share the respective AC output waveforms.
- a dead time is usually provided to prevent an arm short circuit when a bridge-configured power device performs switching, and a voltage drop occurs due to the resistance component of the power device.
- the output voltage average value (absolute value) on the AC side is slightly lower than the input voltage average value on the DC side. For this reason, during the period when the single-phase inverter generates an AC output waveform without the booster circuit operating, the modulation rate of the power device of the single-phase inverter is maximized and a desired AC voltage cannot be output, resulting in an uncontrollable period. there were.
- the present invention has been made to solve the above-described problems, and in a power converter that includes a booster circuit and a single-phase inverter and is linked to a system, a loss associated with the switching operation of the power device.
- the purpose is to reduce the frequency and to generate a high-accuracy AC output waveform with all phases of the system voltage, and to connect to the system with high reliability.
- a power conversion device includes a booster circuit that boosts the voltage of a DC power source using a power device, a smoothing capacitor that smoothes the voltage boosted by the booster circuit, and the DC power of the smoothing capacitor to the power device.
- a single-phase inverter that converts to AC power, an output filter connected to the AC side of the single-phase inverter, a control circuit that controls each power device of the booster circuit and the single-phase inverter, and AC power from the phase inverter is output to the system via the output filter.
- the control circuit performs PWM control on the single-phase inverter without boosting the booster circuit during a period when the system voltage absolute value is less than the voltage value of the DC power supply, and the modulation rate of the single-phase inverter is
- the booster circuit is boosted by PWM control to adjust the voltage of the smoothing capacitor to PWM control the single-phase inverter, and the system voltage absolute value is greater than or equal to the voltage value of the DC power supply.
- the voltage of the DC power source is boosted by PWM control of the booster circuit.
- the loss associated with the switching operation of the power device can be reduced, and a high-accuracy AC output waveform can be generated at all phases of the system voltage without causing control failure. It can be connected to the system well.
- FIG. 1 is a diagram showing a circuit configuration of a power conversion device according to Embodiment 1 of the present invention.
- a booster circuit 2 is connected to a DC power source 1 such as a solar battery
- a smoothing capacitor 3 is connected to the output side of the booster circuit 2
- a booster circuit 2 is connected to the input side.
- the bypass power device 7 for directly connecting the DC power source 1 and the smoothing capacitor 3 is connected.
- a DC input side of the single-phase inverter 4 is connected in parallel with the smoothing capacitor 3, and a filter 5 for removing high-frequency noise is connected to the output side of the single-phase inverter 4.
- the output side of the filter 5 is connected to the system 6. It is connected.
- the booster circuit 2 includes a DC reactor 2a, a power device 2b that operates as a rectifying element, and a power device 2c that operates as a boost switch.
- the single-phase inverter 4 is configured by connecting four power devices 4a to 4d in a full bridge type.
- the filter 5 includes a reactor 5a and a capacitor 5b.
- the power devices 2b and 2c constituting the booster circuit 2 and the power devices 4a to 4d constituting the single-phase inverter 4 are switching elements such as MOSFETs and IGBTs and free-wheeling diodes connected in reverse parallel thereto. It is configured.
- the power device 2b in the booster circuit 2 performs a synchronous rectification operation that is turned on at a timing when a current flows through a diode connected in antiparallel, but may be configured with only a diode.
- a voltage sensor 9 for detecting the DC power supply voltage Vi and a current sensor 10 for detecting the DC power supply current Ii are installed in the vicinity of the DC power supply 1, and a smoothing capacitor
- a voltage sensor 11 for detecting the DC bus voltage Vc, which is the voltage of the smoothing capacitor 3 is installed in the vicinity of 3.
- a current sensor 13 for detecting the filter current If is installed near the reactor 5a of the filter 5, a voltage sensor 14 for detecting the AC output voltage Vo is installed near the capacitor 5b of the filter 5, and A current sensor 15 for detecting an AC output current Io to the grid 6 is installed on the output side of the filter 5.
- the power conversion apparatus also includes a control circuit 8 as a control means for controlling the power devices 2b, 2c, 4a to 4d of the booster circuit 2 and the single-phase inverter 4 and the bypass power device 7. .
- the control circuit 8 includes a bypass power device 7, a booster circuit 2, and a single-phase inverter based on the voltages and currents from the voltage sensors 9, 11, 14 and the current sensors 10, 13, 15 and the voltage Vac of the system 6.
- the control signals S1, S2 and S3a, S3b for switching control of each power device 4 are generated to control the bypass power device 7, the booster circuit 2 and the single-phase inverter 4.
- the control signal S3a to the single-phase inverter 4 controls switching of the power devices 4a and 4d
- the control signal S3b to the single-phase inverter 4 controls switching of the power devices 4b and 4c.
- the voltage Vac of the system 6 may be a reference sine wave voltage of the system voltage Vac.
- the control operation for the booster circuit 2, the single-phase inverter 4 and the bypass power device 7 by the control circuit 8 will be described with reference to the waveform diagram shown in FIG.
- FIG. 2 the waveform of the DC power supply voltage Vi, the waveform of the AC output voltage Vo (waveform of AC voltage) output so as to be equal to the system voltage Vac, and the power devices 4a to 4 of the single-phase inverter 4
- the waveforms of the modulation factor S3D of 4d and the modulation factor S2D of the power device 2c of the booster circuit 2 are shown.
- control signal S1 given to the bypass power device 7 the control signal S3a given to the power devices 4a and 4d of the single-phase inverter 4, the control signal S3b given to the power devices 4b and 4c of the single-phase inverter 4 and the booster circuit 2
- the waveform of the applied control signal S2 is shown.
- the power device is turned on when the signal is high, and the power device is turned off when the signal is low.
- the control circuit 8 compares the DC power supply voltage Vi detected by the voltage sensor 9 with the absolute value of the system voltage Vac.
- the control circuit 8 does not cause the booster circuit 2 to perform a boost operation, but makes the bypass power device 7 conductive by the control signal S1, and the DC power supply voltage Vi is applied to the smoothing capacitor 3.
- the control circuit 8 uses the detected values of the DC bus voltage Vc, the filter current If, the AC output voltage Vo, and the AC output current Io, so that the AC output voltage Vo and the AC output current Io become sine waves, and the AC output voltage Vo is a system.
- a control command value for the single-phase inverter 4 is generated so as to be equal to the voltage Vac, and control signals S3a and S3b for the power devices 4a to 4d of the single-phase inverter 4 are obtained by comparing this control command value with a carrier wave such as a triangular wave.
- the single-phase inverter 4 is generated and PWM-controlled.
- a maximum allowable value is set in advance for the magnitude of the modulation rate S3D of the power devices 4a to 4d, and the modulation rate S3D is generated in the generation of the control signals S3a and S3b.
- the control is switched.
- the power devices 4a to 4d are switched with a dead time, so that the maximum value of the modulation rate S3D is smaller than 100%.
- the control circuit 8 turns off the control signal S1 and shuts off the bypass power device 7, thereby boosting the circuit.
- the control signal S2 for the second power device 2b, 2c is generated, and the booster circuit 2 is boosted by PWM control.
- the control circuit 8 generates a command value Vc * of the DC bus voltage Vc so that the AC output voltage Vo equal to the system voltage Vac can be output by the single-phase inverter 4 by PWM control, and the DC power supply voltage Vi, DC power supply
- a control command value for booster circuit 2 is generated so that DC bus voltage Vc, which is the output voltage of booster circuit 2, becomes command value Vc * .
- the control signal S2 for the power devices 2b and 2c of the booster circuit 2 is generated by comparing the control command value with the carrier wave to control the booster circuit 2.
- the control circuit 8 performs PWM control of the single-phase inverter 4 with the control signals S3a and S3b, but it is desirable to perform PWM control while maintaining the modulation rate S3D at the maximum value.
- the control circuit 8 continues the OFF state of the control signal S1 to shut off the bypass power device 7, generates the control signal S2 for the power devices 2b and 2c of the booster circuit 2, and boosts the booster circuit 2 by PWM control.
- the control circuit 8 sets the command value Vc * of the DC bus voltage Vc to the system voltage absolute value
- the control command value of the booster circuit 2 is generated so that the DC bus voltage Vc, which is the output voltage of the booster circuit 2, becomes the command value Vc * .
- the control signal S2 for the power devices 2b and 2c of the booster circuit 2 is generated by comparing the control command value with the carrier wave, and the booster circuit 2 is PWM-controlled. That is, the DC power supply voltage Vi is boosted to a voltage corresponding to the system voltage absolute value
- the control circuit 8 controls the single-phase inverter 4 by generating control signals S3a and S3b so that the single-phase inverter 4 only switches the polarity of the AC output. At this time, the modulation rate S3D single-phase inverter 4 is approximately 100%.
- the single-phase inverter 4 outputs the AC output voltage Vo by PWM control during the period in which the system voltage absolute value
- the booster circuit 2 does not perform a boost operation, and when the magnitude of the modulation factor S3D reaches the maximum value, the single-phase inverter 4 performs a desired control by PWM control.
- the booster circuit 2 performs a boost operation by PWM control to adjust the DC bus voltage Vc.
- the booster circuit 2 outputs a voltage corresponding to the system voltage absolute value
- the booster circuit 2 does not perform unnecessary boosting, and the single-phase inverter 4 does not perform high-frequency switching of a high voltage, so that loss can be effectively reduced.
- the step-up circuit 2 does not perform a step-up operation and the magnitude of the modulation factor S3D of the single-phase inverter 4 reaches the maximum value
- the single-phase inverter 4 can output the desired AC output voltage Vo by PWM control. Since the circuit 2 performs a boost operation by PWM control to adjust the DC bus voltage Vc, the system voltage absolute value
- the single-phase inverter 4 outputs the AC output voltage Vo by PWM control while the booster circuit 2 performs the boost operation and adjusts the voltage of the smoothing capacitor 3, the magnitude of the modulation factor S3D of the single-phase inverter 4 is maximized.
- the booster circuit 2 is the minimum booster operation and the DC bus voltage Vc is kept low, and the switching loss of both the booster circuit 2 and the single-phase inverter 4 can be reduced.
- the booster circuit 2 when the booster circuit 2 does not perform a boost operation, the booster circuit 2 is bypassed by the bypass power device 7, so that the loss can be further reduced.
- the maximum value of the modulation factor S3D is set to an actual maximum value in consideration of the arm short-circuit prevention time of the single-phase inverter 4 or a small value with some margin.
- FIG. FIG. 3 is a diagram showing a circuit configuration of the power conversion device according to Embodiment 2 of the present invention
- FIG. 4 is a waveform diagram for explaining the operation of the power conversion device. 3 and FIG. 4, the same reference numerals are given to the portions corresponding to or corresponding to those of the first embodiment shown in FIG. 1 and FIG.
- the power converter according to the second embodiment is characterized in that the bypass power device 7 is omitted from the components shown in the first embodiment (FIG. 1) and the power to operate as a rectifying element of the booster circuit 2 is used. A diode 2d is used instead of the device 2b.
- the control circuit 8a as the control means does not output the control signal S1 to the bypass power device 7, and the control signal S2 to the booster circuit 2 only controls the power device 2c.
- the booster circuit 2 when the booster circuit 2 does not perform a boost operation, a current flows through a path passing through the DC reactor 2a and the diode 2d. Therefore, the conduction loss is lower than that in the first embodiment using the bypass power device 7. Although slightly increased, it is not necessary to control the bypass power device 7. For this reason, the control operation by the control circuit 8a is facilitated, and the number of parts can be reduced, so that the cost can be reduced.
- FIG. 5 is a block diagram illustrating control of the booster circuit according to the third embodiment of the present invention.
- the circuit configuration of the power conversion device according to the third embodiment and the operation waveforms of the respective parts are the same as those shown in FIGS. 1 and 2 of the first embodiment.
- the single-phase inverter 4 has a polarity from the control in which the modulation rate S3D is PWM controlled at a maximum value, for example, 97%. Only the switching is performed, that is, the control is switched to the modulation rate S3D of 100%.
- the control of the single-phase inverter 4 is switched at the phase ⁇ 2, and the control of the booster circuit 2 is switched as follows.
- the control circuit 8 sets the command value Vc * of the DC bus voltage Vc so that the single-phase inverter 4 can output the AC output voltage Vo equal to the system voltage Vac by PWM control.
- the control command value calculation unit 20 generates the DC bus voltage Vc, which is the output voltage of the booster circuit 2, using the detected values of the DC power supply voltage Vi, the DC power supply current Ii, and the DC bus voltage Vc .
- the control command value 21 of the booster circuit 2 is generated so that Then, by comparing the control command value 21 with a carrier wave 23 such as a triangular wave, a control signal S2 to the booster circuit 2 is generated to control the booster circuit 2.
- the command value Vc * of the DC bus voltage Vc is changed to the system voltage absolute value
- the forward correction amount is added to the control command value 21 for correction, and the control signal S2 to the booster circuit 2 is generated based on the corrected control command value.
- the control of the single-phase inverter 4 and the booster circuit 2 is switched, and the modulation rate S3D of the single-phase inverter 4 is set to a step of 3%, for example.
- the booster circuit 2 is controlled by correcting the control command value 21 of the booster circuit 2 with the feedforward correction amount. For this reason, it can suppress that the alternating current output of the single phase inverter 4 becomes large at control switching timing, and distortion of an alternating current output waveform can be suppressed, and the control precision and reliability of a power converter device improve.
- FIG. 6 is a waveform diagram for explaining the operation of the power conversion apparatus according to embodiment 4 of the present invention.
- the circuit configuration of the power conversion device according to the fourth embodiment is the same as that shown in FIG. 1 of the first embodiment. Further, parts other than the carrier frequency and the control signal S2 in FIG. 6 are the same as those in the waveform diagram shown in FIG. 2 in the first embodiment.
- the single-phase inverter 4 When the system voltage absolute value Vac is less than the DC power supply voltage Vi, the single-phase inverter 4 outputs the AC output voltage Vo by PWM control. When the modulation factor S3D of the single-phase inverter 4 is less than the set maximum value ( ⁇ ⁇ 1), the control circuit 8 does not boost the booster circuit 2 and uses the control power signal 7 by the control signal S1. And the DC power supply voltage Vi is applied to the smoothing capacitor 3.
- the control circuit 8 When the magnitude of the modulation factor S3D reaches the maximum value at the phase ⁇ 1, the control circuit 8 turns off the control signal S1 to shut off the bypass power device 7, generates the control signal S2, and controls the booster circuit 2 to PWM. The control is switched to control for adjusting the DC bus voltage Vc by boosting operation.
- the control circuit 8 When ⁇ 1 ⁇ ⁇ ⁇ 2, the control circuit 8 generates the command value Vc * of the DC bus voltage Vc so that the single-phase inverter 4 can output the AC output voltage Vo equal to the system voltage Vac by PWM control, and the DC power supply voltage Using the detected values of Vi, DC power supply current Ii, and DC bus voltage Vc, a control command value for booster circuit 2 is generated so that DC bus voltage Vc, which is the output voltage of booster circuit 2, becomes command value Vc *. .
- the frequency of a carrier wave such as a triangular wave is increased steplessly from a reference frequency, for example, 20 kHz, and the generated control command value and the carrier wave are compared with each other for the power devices 2b and 2c of the booster circuit 2
- a control signal S2 is generated to control the booster circuit 2.
- the control circuit 8 performs PWM control on the single-phase inverter 4 while maintaining the modulation rate S3D at the maximum value.
- the frequency of the carrier wave used to control the single-phase inverter 4 does not vary at a constant.
- the control circuit 8 switches the single-phase inverter 4 from PWM control to control that only performs polarity switching and raises it.
- the carrier frequency fa that has been reduced is steplessly lowered to the original reference frequency.
- the carrier frequency fa rises to, for example, 22 kHz at the phase ⁇ 2, and then falls back to 20kHz. While the value of the carrier frequency fa is higher than the reference frequency, the number of pulses of the control signal S2 increases as the switching frequency increases.
- the control circuit 8 switches the control of the single-phase inverter 4 and the booster circuit 2, and changes the modulation rate S3D of the single-phase inverter 4 to For example, a step change of 3% is caused.
- the carrier frequency fa used for the control of the booster circuit 2 is increased at the time of switching the control, the command in the output voltage (DC bus voltage Vc) of the booster circuit 2 is increased.
- Vc * is improved.
- the AC output of the single-phase inverter 4 becomes large at the control switching timing, and the distortion of the AC output waveform can be suppressed, and the control accuracy and reliability of the power conversion device are improved.
- the carrier frequency fa used for control of the booster circuit 2 is increased steplessly from the point of phase ⁇ 1 at which the magnitude of the modulation factor S3D of the single-phase inverter 4 becomes the maximum value. It may be raised from before or may be raised from a point closer to the phase ⁇ 2. It is desirable to change the carrier frequency fa steplessly in order to reduce distortion of the AC output waveform.
- the carrier frequency fa is set for a predetermined period including the time when the system voltage absolute value
- FIG. 7 is a waveform diagram for explaining the operation of the power conversion device according to embodiment 5 of the present invention. In FIG. 7, parts corresponding to or corresponding to those of the first embodiment shown in FIG.
- control circuit 8 does not switch the control at the timing when the magnitude relationship between the DC power supply voltage Vi detected by the voltage sensor 9 and the system voltage absolute value
- the control operation when 0 ⁇ ⁇ ⁇ / 2 is described below.
- a symmetrical or positive / negative reversal waveform may be output, and the description is omitted.
- the control circuit 8 As in the first embodiment, the booster circuit 2 is not boosted, and the bypass power device 7 is turned on by the control signal S1, and the DC power supply voltage Vi is applied to the smoothing capacitor 3. Further, using the detected values of the DC bus voltage Vc, the filter current If, the AC output voltage Vo, and the AC output current Io, the AC output voltage Vo and the AC output current Io become a sine wave, and the AC output voltage Vo becomes the system voltage Vac.
- a control command value for the single-phase inverter 4 is generated so as to be equal, and control signals S3a and S3b for the power devices 4a to 4d of the single-phase inverter 4 are generated by comparing this control command value with a carrier wave such as a triangular wave,
- the single phase inverter 4 is PWM controlled.
- the control circuit 8 When the magnitude of the modulation factor S3D reaches the maximum value at the phase ⁇ 1, the control circuit 8 turns off the control signal S1 to shut off the bypass power device 7, and the control signal for the power devices 2b and 2c of the booster circuit 2 S2 is generated, and the booster circuit 2 is switched to control for boosting operation by PWM control. Then, when ⁇ 1 ⁇ ⁇ ⁇ / 2, the control circuit 8 performs PWM control on the single-phase inverter 4 while maintaining the modulation factor S3D at the maximum value, and an AC output voltage Vo equal to the system voltage Vac is obtained. Thus, the command value Vc * of the DC bus voltage Vc is generated to control the booster circuit 2.
- the booster circuit 2 is controlled so that the DC bus voltage Vc, which is the output voltage of the booster circuit 2, becomes the command value Vc *.
- a command value is generated, and a control signal S2 for the power devices 2b and 2c of the booster circuit 2 is generated by comparing the control command value with the carrier wave to control the booster circuit 2. This control is continued even if the system voltage absolute value Vac becomes equal to or higher than the DC power supply voltage Vi through the phase ⁇ 2.
- the single-phase inverter 4 outputs the AC output voltage Vo equal to the system voltage Vac by PWM control in all phases, so that there is no step change in the modulation factor S3D of the single-phase inverter 4.
- a low distortion AC output waveform can be generated.
- the boosting operation period of the booster circuit 2 is limited, and the output voltage (DC bus voltage Vc) is also kept low.
- the voltage at which the single-phase inverter 4 performs high-frequency switching is also kept low, and loss can be effectively reduced.
- does not fall out of control with a proximity value less than the DC power supply voltage Vi, and it is possible to generate an AC output waveform with high reliability and high accuracy in all phases of the system voltage.
- the wide band gap semiconductor include silicon carbide, a gallium nitride-based material, and diamond.
- Elements formed of such a wide band gap semiconductor have high voltage resistance and high allowable current density, and thus can be miniaturized. By using these miniaturized elements, these elements are incorporated.
- the semiconductor module can be downsized.
- the heat resistance is high, the heat dissipating fins of the heat sink can be downsized and the water cooling section can be air cooled, so that the semiconductor module can be further downsized.
- the power loss is low, it is possible to increase the efficiency of the characteristics of the element itself, and further increase the efficiency of the semiconductor module.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Inverter Devices (AREA)
Abstract
In the present invention, after a voltage booster circuit (2) boosts the voltage of a direct current power supply (1), a single phase inverter (4) converts the power to alternating current and connects to a circuit (6). During periods where the absolute value of the circuit voltage (Vac) is less than the voltage of the direct current power supply (Vi), the single phase inverter (4) outputs the alternating current output voltage (Vo) by means of PWM control. When the modulation factor (S3D) is smaller than the maximum value that has been set, the voltage booster circuit (2) does not boost the voltage, and when the modulation factor (S3D) reaches the maximum value, the voltage booster circuit (2) executes boosting operations by means of PWM control and adjusts the direct current bus voltage (Vc) so that the single phase inverter (4) will output the desired alternating current output voltage (Vo) by means of PWM control. During periods where the absolute value of the circuit voltage (Vac) is equal to or greater than the voltage of the direct current power supply (Vi), the voltage booster circuit (2) outputs voltage equivalent to that of the absolute value of the circuit voltage (Vac) by means of PWM control, and the single phase inverter (4) only executes polarity switching of the alternating current output.
Description
この発明は、直流電力を交流電力に変換する電力変換装置に関し、特に太陽電池電圧を系統に連系するパワーコンディショナ等に用いる電力変換装置に関する。
The present invention relates to a power conversion device that converts DC power into AC power, and more particularly to a power conversion device that is used in a power conditioner or the like that links a solar cell voltage to a system.
太陽光発電用パワーコンディショナ等に用いられる電力変換装置は、太陽電池電圧を昇圧回路で昇圧し、交流電力を出力するのに十分な直流電圧を発生させて直流母線電圧を平滑するためのコンデンサを充電する。そして、それを直流電圧源として、MOSFETやIGBTといったスイッチング素子からなるパワーデバイスによって構成された単相インバータで交流電力に変換した後、交流電流に含まれる高調波ノイズをフィルタによって除去し、ノイズ除去後の交流電力を交流の系統に出力するように構成される。
A power conversion device used in a power conditioner for photovoltaic power generation, etc., is a capacitor for boosting a solar cell voltage with a booster circuit and generating a DC voltage sufficient to output AC power to smooth the DC bus voltage. To charge. Then, using it as a DC voltage source, it is converted into AC power by a single-phase inverter composed of power devices consisting of switching elements such as MOSFETs and IGBTs, and then harmonic noise contained in the AC current is removed by a filter to remove noise. It is configured to output the subsequent AC power to an AC system.
このような太陽光発電用パワーコンディショナ等に使用される電力変換装置において、パワーデバイスのスイッチング動作に伴う損失低減を図るための技術として、従来、昇圧回路と単相インバータと、両者の間に低容量の中間段コンデンサを備え、昇圧回路は、中間段コンデンサの電圧が系統電圧の絶対値に比べて低くなる期間でのみ、昇圧区間が部分的に凸形の波形となるように昇圧し、その期間では、単相インバータは系統電圧の極性に対応して出力電流の極性を切替える動作を行うようにしたものが提案されている(例えば、特許文献1参照)。
In a power conversion device used for such a power conditioner for photovoltaic power generation, as a technique for reducing loss associated with the switching operation of a power device, conventionally, a booster circuit and a single-phase inverter are interposed between the two. With a low-capacity intermediate stage capacitor, the booster circuit boosts the boosting section so that the boosting section has a partially convex waveform only during the period when the voltage of the intermediate stage capacitor is lower than the absolute value of the system voltage, During that period, a single-phase inverter has been proposed that performs an operation of switching the polarity of the output current in accordance with the polarity of the system voltage (see, for example, Patent Document 1).
上記特許文献1記載の従来技術では、昇圧回路と単相インバータとがそれぞれ分担して交流出力波形を生成する。単相インバータでは、ブリッジ構成されたパワーデバイスがスイッチングを行う際にアーム短絡を防止するために、通常デッドタイムが設けられており、またパワーデバイスの抵抗成分によって電圧降下が起こるため、単相インバータの交流側の出力電圧平均値(絶対値)は直流側の入力電圧平均値より若干低くなる。このため昇圧回路が動作しないで単相インバータが交流出力波形を生成する期間で、単相インバータのパワーデバイスの変調率が最大となって所望の交流電圧を出力できず制御不能期間が生じることがあった。
In the prior art described in Patent Document 1, the booster circuit and the single-phase inverter share the respective AC output waveforms. In a single-phase inverter, a dead time is usually provided to prevent an arm short circuit when a bridge-configured power device performs switching, and a voltage drop occurs due to the resistance component of the power device. The output voltage average value (absolute value) on the AC side is slightly lower than the input voltage average value on the DC side. For this reason, during the period when the single-phase inverter generates an AC output waveform without the booster circuit operating, the modulation rate of the power device of the single-phase inverter is maximized and a desired AC voltage cannot be output, resulting in an uncontrollable period. there were.
この発明は、上記のような問題点を解消するために成されたものであって、昇圧回路と単相インバータを備えて系統に連系する電力変換装置において、パワーデバイスのスイッチング動作に伴う損失低減を図り、しかも系統電圧の全位相で、高精度な交流出力波形の生成を可能にして信頼性良く系統に連系することを目的とする。
The present invention has been made to solve the above-described problems, and in a power converter that includes a booster circuit and a single-phase inverter and is linked to a system, a loss associated with the switching operation of the power device. The purpose is to reduce the frequency and to generate a high-accuracy AC output waveform with all phases of the system voltage, and to connect to the system with high reliability.
この発明に係る電力変換装置は、直流電源の電圧をパワーデバイスを用いて昇圧する昇圧回路と、該昇圧回路により昇圧された電圧を平滑する平滑コンデンサと、該平滑コンデンサの直流電力をパワーデバイスを用いて交流電力に変換する単相インバータと、該単相インバータの交流側に接続された出力フィルタと、上記昇圧回路と上記単相インバータの各パワーデバイスを制御する制御回路とを備え、上記単相インバータからの交流電力を上記出力フィルタを介して系統へ出力する。そして、上記制御回路は、系統電圧絶対値が上記直流電源の電圧値未満である期間では、上記昇圧回路を昇圧動作させずに上記単相インバータをPWM制御し、上記単相インバータの変調率が設定最大値に達すると、上記昇圧回路をPWM制御により昇圧動作させて上記平滑コンデンサの電圧を調整して上記単相インバータをPWM制御し、上記系統電圧絶対値が上記直流電源の電圧値以上である期間では、上記昇圧回路をPWM制御して上記直流電源の電圧を昇圧するものである。
A power conversion device according to the present invention includes a booster circuit that boosts the voltage of a DC power source using a power device, a smoothing capacitor that smoothes the voltage boosted by the booster circuit, and the DC power of the smoothing capacitor to the power device. A single-phase inverter that converts to AC power, an output filter connected to the AC side of the single-phase inverter, a control circuit that controls each power device of the booster circuit and the single-phase inverter, and AC power from the phase inverter is output to the system via the output filter. The control circuit performs PWM control on the single-phase inverter without boosting the booster circuit during a period when the system voltage absolute value is less than the voltage value of the DC power supply, and the modulation rate of the single-phase inverter is When the set maximum value is reached, the booster circuit is boosted by PWM control to adjust the voltage of the smoothing capacitor to PWM control the single-phase inverter, and the system voltage absolute value is greater than or equal to the voltage value of the DC power supply. During a certain period, the voltage of the DC power source is boosted by PWM control of the booster circuit.
この発明の電力変換装置によれば、パワーデバイスのスイッチング動作に伴う損失低減を図り、しかも系統電圧の全位相で、制御不能に陥ることなく高精度な交流出力波形の生成を可能にでき信頼性良く系統に連系できる。
According to the power conversion device of the present invention, the loss associated with the switching operation of the power device can be reduced, and a high-accuracy AC output waveform can be generated at all phases of the system voltage without causing control failure. It can be connected to the system well.
実施の形態1.
図1はこの発明の実施の形態1における電力変換装置の回路構成を示す図である。
この実施の形態1における電力変換装置は、太陽電池等の直流電源1に昇圧回路2が接続され、この昇圧回路2の出力側には平滑コンデンサ3が接続され、また入力側には昇圧回路2をバイパスさせて直流電源1と平滑コンデンサ3とを直接に接続するためのバイパス用パワーデバイス7が接続されている。また、平滑コンデンサ3と並列に単相インバータ4の直流入力側が接続され、この単相インバータ4の出力側には高周波ノイズを除くためのフィルタ5が接続され、このフィルタ5の出力側が系統6に接続されている。Embodiment 1 FIG.
1 is a diagram showing a circuit configuration of a power conversion device according toEmbodiment 1 of the present invention.
In the power conversion device according to the first embodiment, abooster circuit 2 is connected to a DC power source 1 such as a solar battery, a smoothing capacitor 3 is connected to the output side of the booster circuit 2, and a booster circuit 2 is connected to the input side. The bypass power device 7 for directly connecting the DC power source 1 and the smoothing capacitor 3 is connected. A DC input side of the single-phase inverter 4 is connected in parallel with the smoothing capacitor 3, and a filter 5 for removing high-frequency noise is connected to the output side of the single-phase inverter 4. The output side of the filter 5 is connected to the system 6. It is connected.
図1はこの発明の実施の形態1における電力変換装置の回路構成を示す図である。
この実施の形態1における電力変換装置は、太陽電池等の直流電源1に昇圧回路2が接続され、この昇圧回路2の出力側には平滑コンデンサ3が接続され、また入力側には昇圧回路2をバイパスさせて直流電源1と平滑コンデンサ3とを直接に接続するためのバイパス用パワーデバイス7が接続されている。また、平滑コンデンサ3と並列に単相インバータ4の直流入力側が接続され、この単相インバータ4の出力側には高周波ノイズを除くためのフィルタ5が接続され、このフィルタ5の出力側が系統6に接続されている。
1 is a diagram showing a circuit configuration of a power conversion device according to
In the power conversion device according to the first embodiment, a
ここに、昇圧回路2は、直流リアクトル2aと、整流素子として動作させるパワーデバイス2bと、昇圧スイッチとして動作するパワーデバイス2cとで構成される。単相インバータ4は、4つのパワーデバイス4a~4dをフルブリッジ型に接続して構成されている。また、フィルタ5は、リアクトル5aとコンデンサ5bで構成されている。なお、昇圧回路2を構成するパワーデバイス2b、2c、および単相インバータ4を構成する各パワーデバイス4a~4dは、MOSFETやIGBTといったスイッチング素子とこれに逆並列に接続された還流用のダイオードで構成されている。
なお、昇圧回路2内のパワーデバイス2bは、逆並列接続されるダイオードに電流が流れるタイミングでオンする同期整流動作をするものであるが、ダイオードのみの構成としても良い。 Here, thebooster circuit 2 includes a DC reactor 2a, a power device 2b that operates as a rectifying element, and a power device 2c that operates as a boost switch. The single-phase inverter 4 is configured by connecting four power devices 4a to 4d in a full bridge type. The filter 5 includes a reactor 5a and a capacitor 5b. The power devices 2b and 2c constituting the booster circuit 2 and the power devices 4a to 4d constituting the single-phase inverter 4 are switching elements such as MOSFETs and IGBTs and free-wheeling diodes connected in reverse parallel thereto. It is configured.
Thepower device 2b in the booster circuit 2 performs a synchronous rectification operation that is turned on at a timing when a current flows through a diode connected in antiparallel, but may be configured with only a diode.
なお、昇圧回路2内のパワーデバイス2bは、逆並列接続されるダイオードに電流が流れるタイミングでオンする同期整流動作をするものであるが、ダイオードのみの構成としても良い。 Here, the
The
さらに、この電力変換装置を制御動作させるため、直流電源1の近傍には直流電源電圧Viを検出するための電圧センサ9および直流電源電流Iiを検出するための電流センサ10が設置され、平滑コンデンサ3近傍には平滑コンデンサ3の電圧である直流母線電圧Vcを検出するための電圧センサ11が設置されている。また、フィルタ5のリアクトル5a近傍にはフィルタ電流Ifを検出するための電流センサ13が設置され、フィルタ5のコンデンサ5b近傍には交流出力電圧Voを検出するための電圧センサ14が設置され、さらに、フィルタ5の出力側には系統6への交流出力電流Ioを検出するための電流センサ15が設置されている。
Further, in order to control this power converter, a voltage sensor 9 for detecting the DC power supply voltage Vi and a current sensor 10 for detecting the DC power supply current Ii are installed in the vicinity of the DC power supply 1, and a smoothing capacitor A voltage sensor 11 for detecting the DC bus voltage Vc, which is the voltage of the smoothing capacitor 3, is installed in the vicinity of 3. A current sensor 13 for detecting the filter current If is installed near the reactor 5a of the filter 5, a voltage sensor 14 for detecting the AC output voltage Vo is installed near the capacitor 5b of the filter 5, and A current sensor 15 for detecting an AC output current Io to the grid 6 is installed on the output side of the filter 5.
また、この電力変換装置は、昇圧回路2および単相インバータ4の各パワーデバイス2b、2c、4a~4dと、バイパス用パワーデバイス7とを制御動作させるための制御手段としての制御回路8を備える。
制御回路8は、各電圧センサ9、11、14および電流センサ10、13、15からの電圧、電流と系統6の電圧Vacとに基づいて、バイパス用パワーデバイス7、昇圧回路2および単相インバータ4の各パワーデバイスをスイッチング制御する制御信号S1、S2およびS3a、S3bを生成してバイパス用パワーデバイス7、昇圧回路2および単相インバータ4を制御する。単相インバータ4への制御信号S3aは、パワーデバイス4a、4dをスイッチング制御し、単相インバータ4への制御信号S3bは、パワーデバイス4b、4cをスイッチング制御する。なお、系統6の電圧Vacは、系統電圧Vacの基準の正弦波電圧を用いても良い。 The power conversion apparatus also includes a control circuit 8 as a control means for controlling the power devices 2b, 2c, 4a to 4d of the booster circuit 2 and the single-phase inverter 4 and the bypass power device 7. .
The control circuit 8 includes a bypass power device 7, abooster circuit 2, and a single-phase inverter based on the voltages and currents from the voltage sensors 9, 11, 14 and the current sensors 10, 13, 15 and the voltage Vac of the system 6. The control signals S1, S2 and S3a, S3b for switching control of each power device 4 are generated to control the bypass power device 7, the booster circuit 2 and the single-phase inverter 4. The control signal S3a to the single-phase inverter 4 controls switching of the power devices 4a and 4d, and the control signal S3b to the single-phase inverter 4 controls switching of the power devices 4b and 4c. The voltage Vac of the system 6 may be a reference sine wave voltage of the system voltage Vac.
制御回路8は、各電圧センサ9、11、14および電流センサ10、13、15からの電圧、電流と系統6の電圧Vacとに基づいて、バイパス用パワーデバイス7、昇圧回路2および単相インバータ4の各パワーデバイスをスイッチング制御する制御信号S1、S2およびS3a、S3bを生成してバイパス用パワーデバイス7、昇圧回路2および単相インバータ4を制御する。単相インバータ4への制御信号S3aは、パワーデバイス4a、4dをスイッチング制御し、単相インバータ4への制御信号S3bは、パワーデバイス4b、4cをスイッチング制御する。なお、系統6の電圧Vacは、系統電圧Vacの基準の正弦波電圧を用いても良い。 The power conversion apparatus also includes a control circuit 8 as a control means for controlling the
The control circuit 8 includes a bypass power device 7, a
次に、上記構成を備えた電力変換装置において、制御回路8による昇圧回路2、単相インバータ4およびバイパス用パワーデバイス7に対する制御動作について、図2に示す波形図を参照して説明する。なお、図2では、直流電源電圧Viの波形、系統電圧Vacおよび系統電圧Vacに等しくなるように出力される交流出力電圧Voの波形(交流電圧の波形)、単相インバータ4のパワーデバイス4a~4dの変調率S3D、昇圧回路2のパワーデバイス2cの変調率S2Dの波形を示す。さらに、バイパス用パワーデバイス7に与える制御信号S1、単相インバータ4のパワーデバイス4a、4dに与える制御信号S3a、単相インバータ4のパワーデバイス4b、4cに与える制御信号S3b、および昇圧回路2に与える制御信号S2の波形を示す。なお、各制御信号S1、S2およびS3a、S3bでは、信号がハイの時にパワーデバイスをオンさせ、ローの時にパワーデバイスをオフさせる。
制御回路8は、電圧センサ9で検出される直流電源電圧Viと系統電圧Vacの絶対値とを比較する。系統電圧位相をθとし、0≦θ<2πの場合について、系統電圧絶対値|Vac|が直流電源電圧Viと一致する位相を、θ2、θ3(=π-θ2)、θ2+π、θ3+πとする。 Next, in the power conversion device having the above configuration, the control operation for thebooster circuit 2, the single-phase inverter 4 and the bypass power device 7 by the control circuit 8 will be described with reference to the waveform diagram shown in FIG. In FIG. 2, the waveform of the DC power supply voltage Vi, the waveform of the AC output voltage Vo (waveform of AC voltage) output so as to be equal to the system voltage Vac, and the power devices 4a to 4 of the single-phase inverter 4 The waveforms of the modulation factor S3D of 4d and the modulation factor S2D of the power device 2c of the booster circuit 2 are shown. Further, the control signal S1 given to the bypass power device 7, the control signal S3a given to the power devices 4a and 4d of the single-phase inverter 4, the control signal S3b given to the power devices 4b and 4c of the single-phase inverter 4 and the booster circuit 2 The waveform of the applied control signal S2 is shown. In each control signal S1, S2, and S3a, S3b, the power device is turned on when the signal is high, and the power device is turned off when the signal is low.
The control circuit 8 compares the DC power supply voltage Vi detected by the voltage sensor 9 with the absolute value of the system voltage Vac. When the system voltage phase is θ, and 0 ≦ θ <2π, the phases where the system voltage absolute value | Vac | matches the DC power supply voltage Vi are θ2, θ3 (= π−θ2), θ2 + π, and θ3 + π.
制御回路8は、電圧センサ9で検出される直流電源電圧Viと系統電圧Vacの絶対値とを比較する。系統電圧位相をθとし、0≦θ<2πの場合について、系統電圧絶対値|Vac|が直流電源電圧Viと一致する位相を、θ2、θ3(=π-θ2)、θ2+π、θ3+πとする。 Next, in the power conversion device having the above configuration, the control operation for the
The control circuit 8 compares the DC power supply voltage Vi detected by the voltage sensor 9 with the absolute value of the system voltage Vac. When the system voltage phase is θ, and 0 ≦ θ <2π, the phases where the system voltage absolute value | Vac | matches the DC power supply voltage Vi are θ2, θ3 (= π−θ2), θ2 + π, and θ3 + π.
まず、系統電圧絶対値|Vac|が直流電源電圧Vi未満である期間、即ち、0≦θ<θ2、θ3<θ<θ2+π、θ3+π<θ<2πのときの制御動作について以下に示す。 このとき、制御回路8は、昇圧回路2を昇圧動作させず、制御信号S1によりバイパス用パワーデバイス7を導通させ、直流電源電圧Viが平滑コンデンサ3に印加される。制御回路8は、直流母線電圧Vcとフィルタ電流Ifと交流出力電圧Voと交流出力電流Ioの各検出値を用いて、交流出力電圧Vo、交流出力電流Ioが正弦波となり交流出力電圧Voが系統電圧Vacと等しくなるように単相インバータ4の制御指令値を生成し、この制御指令値と三角波等のキャリア波との比較によって単相インバータ4のパワーデバイス4a~4dに対する制御信号S3a、S3bを生成し、単相インバータ4をPWM制御する。
First, the control operation when the system voltage absolute value | Vac | is less than the DC power supply voltage Vi, that is, when 0 ≦ θ <θ2, θ3 <θ <θ2 + π, and θ3 + π <θ <2π will be described below. At this time, the control circuit 8 does not cause the booster circuit 2 to perform a boost operation, but makes the bypass power device 7 conductive by the control signal S1, and the DC power supply voltage Vi is applied to the smoothing capacitor 3. The control circuit 8 uses the detected values of the DC bus voltage Vc, the filter current If, the AC output voltage Vo, and the AC output current Io, so that the AC output voltage Vo and the AC output current Io become sine waves, and the AC output voltage Vo is a system. A control command value for the single-phase inverter 4 is generated so as to be equal to the voltage Vac, and control signals S3a and S3b for the power devices 4a to 4d of the single-phase inverter 4 are obtained by comparing this control command value with a carrier wave such as a triangular wave. The single-phase inverter 4 is generated and PWM-controlled.
制御回路8では、単相インバータ4のPWM制御において、パワーデバイス4a~4dの変調率S3Dの大きさに対して予め許容できる最大値を設定し、制御信号S3a、S3bの生成において、変調率S3Dの大きさが最大値、例えば97%に達すると、制御を切り替える。昇圧回路2が昇圧動作しない場合に単相インバータ4の変調率S3Dの大きさが最大値になる位相を、θ1、θ4(=π-θ1)、θ1+π、θ4+πとする。
なお、PWM制御では、各パワーデバイス4a~4dがデッドタイムを有してスイッチング制御されるため、変調率S3Dの最大値は100%より小さい。 In the control circuit 8, in PWM control of the single-phase inverter 4, a maximum allowable value is set in advance for the magnitude of the modulation rate S3D of the power devices 4a to 4d, and the modulation rate S3D is generated in the generation of the control signals S3a and S3b. When the magnitude of reaches a maximum value, for example 97%, the control is switched. The phases where the magnitude of the modulation factor S3D of the single-phase inverter 4 becomes the maximum value when the booster circuit 2 does not perform the boosting operation are θ1, θ4 (= π−θ1), θ1 + π, and θ4 + π.
In the PWM control, thepower devices 4a to 4d are switched with a dead time, so that the maximum value of the modulation rate S3D is smaller than 100%.
なお、PWM制御では、各パワーデバイス4a~4dがデッドタイムを有してスイッチング制御されるため、変調率S3Dの最大値は100%より小さい。 In the control circuit 8, in PWM control of the single-
In the PWM control, the
即ち、θ1≦θ<θ2、θ3<θ≦θ4、θ1+π≦θ<θ2+π、θ3+π≦θ<θ4+πのとき、制御回路8は制御信号S1をオフしてバイパス用パワーデバイス7を遮断させ、昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2をPWM制御により昇圧動作させる。このとき、制御回路8は、単相インバータ4が系統電圧Vacと等しい交流出力電圧VoがPWM制御により出力できるように直流母線電圧Vcの指令値Vc*を生成し、直流電源電圧Vi、直流電源電流Iiおよび直流母線電圧Vcの各検出値を用いて、昇圧回路2の出力電圧である直流母線電圧Vcが指令値Vc*となるように昇圧回路2の制御指令値を生成する。そして、この制御指令値とキャリア波との比較によって昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2を制御する。また制御回路8は、単相インバータ4を制御信号S3a、S3bによりPWM制御するが、変調率S3Dを最大値に保持してPWM制御するのが望ましい。
That is, when θ1 ≦ θ <θ2, θ3 <θ ≦ θ4, θ1 + π ≦ θ <θ2 + π, θ3 + π ≦ θ <θ4 + π, the control circuit 8 turns off the control signal S1 and shuts off the bypass power device 7, thereby boosting the circuit. The control signal S2 for the second power device 2b, 2c is generated, and the booster circuit 2 is boosted by PWM control. At this time, the control circuit 8 generates a command value Vc * of the DC bus voltage Vc so that the AC output voltage Vo equal to the system voltage Vac can be output by the single-phase inverter 4 by PWM control, and the DC power supply voltage Vi, DC power supply Using the detected values of current Ii and DC bus voltage Vc, a control command value for booster circuit 2 is generated so that DC bus voltage Vc, which is the output voltage of booster circuit 2, becomes command value Vc * . Then, the control signal S2 for the power devices 2b and 2c of the booster circuit 2 is generated by comparing the control command value with the carrier wave to control the booster circuit 2. The control circuit 8 performs PWM control of the single-phase inverter 4 with the control signals S3a and S3b, but it is desirable to perform PWM control while maintaining the modulation rate S3D at the maximum value.
次に、系統電圧絶対値|Vac|が直流電源電圧Vi以上である期間、即ち、θ2≦θ<θ3、θ2+π≦θ<θ3+πのときの制御動作について以下に示す。
制御回路8は、制御信号S1のオフ状態を継続してバイパス用パワーデバイス7を遮断させ、昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2をPWM制御により昇圧動作させる。このとき、制御回路8は、直流母線電圧Vcの指令値Vc*を系統電圧絶対値|Vac|に設定し、直流電源電圧Vi、直流電源電流Iiおよび直流母線電圧Vcの各検出値を用いて、昇圧回路2の出力電圧である直流母線電圧Vcが指令値Vc*となるように昇圧回路2の制御指令値を生成する。そして、この制御指令値とキャリア波との比較によって昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2をPWM制御する。即ち、直流電源電圧Viは昇圧回路2により系統電圧絶対値|Vac|に相当する電圧に昇圧される。さらに制御回路8は、単相インバータ4が交流出力の極性切り替えのみを行うように制御信号S3a、S3bを生成して単相インバータ4を制御する。このとき、単相インバータ4の変調率S3Dはほぼ100%となる。 Next, the control operation when the system voltage absolute value | Vac | is equal to or higher than the DC power supply voltage Vi, that is, when θ2 ≦ θ <θ3 and θ2 + π ≦ θ <θ3 + π is described below.
The control circuit 8 continues the OFF state of the control signal S1 to shut off the bypass power device 7, generates the control signal S2 for the power devices 2b and 2c of the booster circuit 2, and boosts the booster circuit 2 by PWM control. Let At this time, the control circuit 8 sets the command value Vc * of the DC bus voltage Vc to the system voltage absolute value | Vac |, and uses the detected values of the DC power supply voltage Vi, the DC power supply current Ii, and the DC bus voltage Vc. The control command value of the booster circuit 2 is generated so that the DC bus voltage Vc, which is the output voltage of the booster circuit 2, becomes the command value Vc * . Then, the control signal S2 for the power devices 2b and 2c of the booster circuit 2 is generated by comparing the control command value with the carrier wave, and the booster circuit 2 is PWM-controlled. That is, the DC power supply voltage Vi is boosted to a voltage corresponding to the system voltage absolute value | Vac | by the booster circuit 2. Further, the control circuit 8 controls the single-phase inverter 4 by generating control signals S3a and S3b so that the single-phase inverter 4 only switches the polarity of the AC output. At this time, the modulation rate S3D single-phase inverter 4 is approximately 100%.
制御回路8は、制御信号S1のオフ状態を継続してバイパス用パワーデバイス7を遮断させ、昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2をPWM制御により昇圧動作させる。このとき、制御回路8は、直流母線電圧Vcの指令値Vc*を系統電圧絶対値|Vac|に設定し、直流電源電圧Vi、直流電源電流Iiおよび直流母線電圧Vcの各検出値を用いて、昇圧回路2の出力電圧である直流母線電圧Vcが指令値Vc*となるように昇圧回路2の制御指令値を生成する。そして、この制御指令値とキャリア波との比較によって昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2をPWM制御する。即ち、直流電源電圧Viは昇圧回路2により系統電圧絶対値|Vac|に相当する電圧に昇圧される。さらに制御回路8は、単相インバータ4が交流出力の極性切り替えのみを行うように制御信号S3a、S3bを生成して単相インバータ4を制御する。このとき、単相インバータ4の変調率S3Dはほぼ100%となる。 Next, the control operation when the system voltage absolute value | Vac | is equal to or higher than the DC power supply voltage Vi, that is, when θ2 ≦ θ <θ3 and θ2 + π ≦ θ <θ3 + π is described below.
The control circuit 8 continues the OFF state of the control signal S1 to shut off the bypass power device 7, generates the control signal S2 for the
以上のように、この実施の形態による電力変換装置では、系統電圧絶対値|Vac|が直流電源電圧Vi未満である期間において、単相インバータ4はPWM制御により交流出力電圧Voを出力するが、その変調率S3Dの大きさが設定された最大値未満の時は昇圧回路2は昇圧動作せず、そして変調率S3Dの大きさが最大値に達すると、単相インバータ4がPWM制御により所望の交流出力電圧Voを出力できるように、昇圧回路2がPWM制御により昇圧動作して直流母線電圧Vcを調整する。
また、系統電圧絶対値|Vac|が直流電源電圧Vi以上である期間は、昇圧回路2はPWM制御により系統電圧絶対値|Vac|に相当する電圧を出力し、単相インバータ4が交流出力の極性切り替えのみ行う。 As described above, in the power conversion device according to this embodiment, the single-phase inverter 4 outputs the AC output voltage Vo by PWM control during the period in which the system voltage absolute value | Vac | is less than the DC power supply voltage Vi. When the magnitude of the modulation factor S3D is less than the set maximum value, the booster circuit 2 does not perform a boost operation, and when the magnitude of the modulation factor S3D reaches the maximum value, the single-phase inverter 4 performs a desired control by PWM control. In order to output the AC output voltage Vo, the booster circuit 2 performs a boost operation by PWM control to adjust the DC bus voltage Vc.
Further, during a period when the system voltage absolute value | Vac | is equal to or higher than the DC power supply voltage Vi, thebooster circuit 2 outputs a voltage corresponding to the system voltage absolute value | Vac | by PWM control, and the single-phase inverter 4 outputs an AC output. Only switch polarity.
また、系統電圧絶対値|Vac|が直流電源電圧Vi以上である期間は、昇圧回路2はPWM制御により系統電圧絶対値|Vac|に相当する電圧を出力し、単相インバータ4が交流出力の極性切り替えのみ行う。 As described above, in the power conversion device according to this embodiment, the single-
Further, during a period when the system voltage absolute value | Vac | is equal to or higher than the DC power supply voltage Vi, the
このため、昇圧回路2は不要な昇圧を行うことなく、また、単相インバータ4は高い電圧を高周波スイッチングすることが無いため、効果的に損失低減を図ることができる。
また、昇圧回路2が昇圧動作しない場合に単相インバータ4の変調率S3Dの大きさが最大値に達すると、単相インバータ4がPWM制御により所望の交流出力電圧Voを出力できるように、昇圧回路2がPWM制御により昇圧動作して直流母線電圧Vcを調整するため、系統電圧絶対値|Vac|が直流電源電圧Vi未満の近接値で制御不能に陥ることがなく、系統電圧の全位相で信頼性良く高精度な交流出力波形の生成を可能にできる。 Therefore, thebooster circuit 2 does not perform unnecessary boosting, and the single-phase inverter 4 does not perform high-frequency switching of a high voltage, so that loss can be effectively reduced.
Further, when the step-upcircuit 2 does not perform a step-up operation and the magnitude of the modulation factor S3D of the single-phase inverter 4 reaches the maximum value, the single-phase inverter 4 can output the desired AC output voltage Vo by PWM control. Since the circuit 2 performs a boost operation by PWM control to adjust the DC bus voltage Vc, the system voltage absolute value | Vac | does not fall out of control with a proximity value less than the DC power supply voltage Vi, and the entire phase of the system voltage It is possible to generate a highly accurate AC output waveform with high reliability.
また、昇圧回路2が昇圧動作しない場合に単相インバータ4の変調率S3Dの大きさが最大値に達すると、単相インバータ4がPWM制御により所望の交流出力電圧Voを出力できるように、昇圧回路2がPWM制御により昇圧動作して直流母線電圧Vcを調整するため、系統電圧絶対値|Vac|が直流電源電圧Vi未満の近接値で制御不能に陥ることがなく、系統電圧の全位相で信頼性良く高精度な交流出力波形の生成を可能にできる。 Therefore, the
Further, when the step-up
また、昇圧回路2が昇圧動作して平滑コンデンサ3の電圧を調整しながら単相インバータ4がPWM制御により交流出力電圧Voを出力する際に、単相インバータ4の変調率S3Dの大きさを最大値に保持すると、昇圧回路2は最小限の昇圧動作であって直流母線電圧Vcも低く抑えられ、昇圧回路2および単相インバータ4双方のスイッチング損失を低減できる。
Further, when the single-phase inverter 4 outputs the AC output voltage Vo by PWM control while the booster circuit 2 performs the boost operation and adjusts the voltage of the smoothing capacitor 3, the magnitude of the modulation factor S3D of the single-phase inverter 4 is maximized. When held at the value, the booster circuit 2 is the minimum booster operation and the DC bus voltage Vc is kept low, and the switching loss of both the booster circuit 2 and the single-phase inverter 4 can be reduced.
また、昇圧回路2が昇圧動作しないときは、バイパス用パワーデバイス7により昇圧回路2をバイパスさせるため、さらに損失低減が図れる。
Further, when the booster circuit 2 does not perform a boost operation, the booster circuit 2 is bypassed by the bypass power device 7, so that the loss can be further reduced.
なお、変調率S3Dの大きさの最大値は、単相インバータ4のアーム短絡防止の時間などを考慮した実際の最大値、あるいは若干の余裕を持たせた小さめの値に設定する。
It should be noted that the maximum value of the modulation factor S3D is set to an actual maximum value in consideration of the arm short-circuit prevention time of the single-phase inverter 4 or a small value with some margin.
実施の形態2.
図3はこの発明の実施の形態2における電力変換装置の回路構成を示す図であり、図4は同電力変換装置の動作説明に供する波形図である。なお、図3および図4において、図1および図2に示した実施の形態1の場合と対応もしくは相当する部分には同一の符号を付す。
この実施の形態2の電力変換装置の特徴は、上記実施の形態1(図1)で示した構成部分から、バイパス用パワーデバイス7が省略され、また、昇圧回路2の整流素子として動作させるパワーデバイス2bの代わりにダイオード2dを用いている。このため制御手段としての制御回路8aは、バイパス用パワーデバイス7への制御信号S1を出力せず、昇圧回路2への制御信号S2は、パワーデバイス2cを制御するのみである。Embodiment 2. FIG.
FIG. 3 is a diagram showing a circuit configuration of the power conversion device according toEmbodiment 2 of the present invention, and FIG. 4 is a waveform diagram for explaining the operation of the power conversion device. 3 and FIG. 4, the same reference numerals are given to the portions corresponding to or corresponding to those of the first embodiment shown in FIG. 1 and FIG.
The power converter according to the second embodiment is characterized in that the bypass power device 7 is omitted from the components shown in the first embodiment (FIG. 1) and the power to operate as a rectifying element of thebooster circuit 2 is used. A diode 2d is used instead of the device 2b. For this reason, the control circuit 8a as the control means does not output the control signal S1 to the bypass power device 7, and the control signal S2 to the booster circuit 2 only controls the power device 2c.
図3はこの発明の実施の形態2における電力変換装置の回路構成を示す図であり、図4は同電力変換装置の動作説明に供する波形図である。なお、図3および図4において、図1および図2に示した実施の形態1の場合と対応もしくは相当する部分には同一の符号を付す。
この実施の形態2の電力変換装置の特徴は、上記実施の形態1(図1)で示した構成部分から、バイパス用パワーデバイス7が省略され、また、昇圧回路2の整流素子として動作させるパワーデバイス2bの代わりにダイオード2dを用いている。このため制御手段としての制御回路8aは、バイパス用パワーデバイス7への制御信号S1を出力せず、昇圧回路2への制御信号S2は、パワーデバイス2cを制御するのみである。
FIG. 3 is a diagram showing a circuit configuration of the power conversion device according to
The power converter according to the second embodiment is characterized in that the bypass power device 7 is omitted from the components shown in the first embodiment (FIG. 1) and the power to operate as a rectifying element of the
この場合、昇圧回路2のパワーデバイス2cの制御による昇圧動作をしない場合には、昇圧回路2の直流リアクトル2aとダイオード2dを介して平滑コンデンサ3の充電を行う。
その他の構成、および作用、効果は、上記実施の形態1の場合と同様である。 In this case, when the boosting operation by the control of thepower device 2c of the booster circuit 2 is not performed, the smoothing capacitor 3 is charged via the DC reactor 2a and the diode 2d of the booster circuit 2.
Other configurations, operations, and effects are the same as those in the first embodiment.
その他の構成、および作用、効果は、上記実施の形態1の場合と同様である。 In this case, when the boosting operation by the control of the
Other configurations, operations, and effects are the same as those in the first embodiment.
この実施の形態2によれば、昇圧回路2が昇圧動作しないとき直流リアクトル2aとダイオード2dを経る経路で電流が流れるため、バイパス用パワーデバイス7を用いた上記実施の形態1よりも導通損失が若干増加するが、バイパス用パワーデバイス7を制御する必要がない。このため、制御回路8aによる制御動作が容易になるとともに、部品点数を削減できるのでコスト削減を図ることができる。
According to the second embodiment, when the booster circuit 2 does not perform a boost operation, a current flows through a path passing through the DC reactor 2a and the diode 2d. Therefore, the conduction loss is lower than that in the first embodiment using the bypass power device 7. Although slightly increased, it is not necessary to control the bypass power device 7. For this reason, the control operation by the control circuit 8a is facilitated, and the number of parts can be reduced, so that the cost can be reduced.
実施の形態3.
この実施の形態3では、上記実施の形態1による電力変換装置において、系統電圧絶対値|Vac|が直流電源電圧Viとの大小関係で制御を切り替える際の制御精度を向上したものを示す。図5は、この発明の実施の形態3による昇圧回路の制御を説明するブロック図である。
なお、この実施の形態3による電力変換装置の回路構成および各部の動作波形は、上記実施の形態1の図1および図2で示したものと同様である。 Embodiment 3 FIG.
In the third embodiment, in the power conversion device according to the first embodiment, the control accuracy when the system voltage absolute value | Vac | is switched in the magnitude relationship with the DC power supply voltage Vi is improved. FIG. 5 is a block diagram illustrating control of the booster circuit according to the third embodiment of the present invention.
The circuit configuration of the power conversion device according to the third embodiment and the operation waveforms of the respective parts are the same as those shown in FIGS. 1 and 2 of the first embodiment.
この実施の形態3では、上記実施の形態1による電力変換装置において、系統電圧絶対値|Vac|が直流電源電圧Viとの大小関係で制御を切り替える際の制御精度を向上したものを示す。図5は、この発明の実施の形態3による昇圧回路の制御を説明するブロック図である。
なお、この実施の形態3による電力変換装置の回路構成および各部の動作波形は、上記実施の形態1の図1および図2で示したものと同様である。 Embodiment 3 FIG.
In the third embodiment, in the power conversion device according to the first embodiment, the control accuracy when the system voltage absolute value | Vac | is switched in the magnitude relationship with the DC power supply voltage Vi is improved. FIG. 5 is a block diagram illustrating control of the booster circuit according to the third embodiment of the present invention.
The circuit configuration of the power conversion device according to the third embodiment and the operation waveforms of the respective parts are the same as those shown in FIGS. 1 and 2 of the first embodiment.
例えば、系統電圧Vacが直流電源電圧Viよりも低い状態から高い状態へと移行する位相θ2において、単相インバータ4は、変調率S3Dが最大値、例えば97%でPWM制御される制御から、極性切り替えのみを行う、即ち変調率S3Dが100%の制御に切り替わる。制御回路8では、位相θ2において、単相インバータ4の制御を切り替えると共に、昇圧回路2の制御を以下のように切り替える。
For example, in the phase θ2 in which the system voltage Vac shifts from a lower state to a higher state than the DC power supply voltage Vi, the single-phase inverter 4 has a polarity from the control in which the modulation rate S3D is PWM controlled at a maximum value, for example, 97%. Only the switching is performed, that is, the control is switched to the modulation rate S3D of 100%. In the control circuit 8, the control of the single-phase inverter 4 is switched at the phase θ2, and the control of the booster circuit 2 is switched as follows.
図5に示すように、制御回路8は、位相θ2の直前では、単相インバータ4が系統電圧Vacと等しい交流出力電圧VoがPWM制御により出力できるように直流母線電圧Vcの指令値Vc*を生成し、制御指令値演算部20が、直流電源電圧Vi、直流電源電流Iiおよび直流母線電圧Vcの各検出値を用いて、昇圧回路2の出力電圧である直流母線電圧Vcが指令値Vc*となるように昇圧回路2の制御指令値21を生成する。そして、この制御指令値21と三角波等のキャリア波23との比較によって昇圧回路2への制御信号S2を生成して昇圧回路2を制御する。
そして、位相θ2において、直流母線電圧Vcの指令値Vc*を系統電圧絶対値|Vac|に変更すると共に、昇圧回路制御信号生成部24では、単相インバータ4の変調率変化量に応じたフィードフォワード補正量を制御指令値21に加算して補正し、補正後の制御指令値に基づいて昇圧回路2への制御信号S2を生成する。 As shown in FIG. 5, immediately before the phase θ2, the control circuit 8 sets the command value Vc * of the DC bus voltage Vc so that the single-phase inverter 4 can output the AC output voltage Vo equal to the system voltage Vac by PWM control. The control command value calculation unit 20 generates the DC bus voltage Vc, which is the output voltage of the booster circuit 2, using the detected values of the DC power supply voltage Vi, the DC power supply current Ii, and the DC bus voltage Vc . The control command value 21 of the booster circuit 2 is generated so that Then, by comparing the control command value 21 with a carrier wave 23 such as a triangular wave, a control signal S2 to the booster circuit 2 is generated to control the booster circuit 2.
Then, in phase θ2, the command value Vc * of the DC bus voltage Vc is changed to the system voltage absolute value | Vac |, and the booster circuitcontrol signal generator 24 feeds according to the modulation rate change amount of the single-phase inverter 4. The forward correction amount is added to the control command value 21 for correction, and the control signal S2 to the booster circuit 2 is generated based on the corrected control command value.
そして、位相θ2において、直流母線電圧Vcの指令値Vc*を系統電圧絶対値|Vac|に変更すると共に、昇圧回路制御信号生成部24では、単相インバータ4の変調率変化量に応じたフィードフォワード補正量を制御指令値21に加算して補正し、補正後の制御指令値に基づいて昇圧回路2への制御信号S2を生成する。 As shown in FIG. 5, immediately before the phase θ2, the control circuit 8 sets the command value Vc * of the DC bus voltage Vc so that the single-
Then, in phase θ2, the command value Vc * of the DC bus voltage Vc is changed to the system voltage absolute value | Vac |, and the booster circuit
なお、系統電圧Vacが直流電源電圧Viよりも低い状態から高い状態へと移行する位相θ2について説明したが、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする位相θ3(=π-θ2)、θ2+π、θ3+πにおいて、同様に、昇圧回路2の制御信号S2をフィードフォワード補正量を用いて生成する。
The phase θ2 in which the system voltage Vac shifts from a lower state to a higher state than the DC power supply voltage Vi has been described, but the phase θ3 (= π−θ2) in which the system voltage absolute value | Vac | crosses the DC power supply voltage Vi. ), Θ2 + π, and θ3 + π, similarly, the control signal S2 of the booster circuit 2 is generated using the feedforward correction amount.
このように、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする際に、単相インバータ4および昇圧回路2の制御を切り替え、単相インバータ4の変調率S3Dに、例えば3%のステップ変化を生じさせるものであるが、このタイミングで、昇圧回路2の制御指令値21をフィードフォワード補正量により補正して昇圧回路2を制御する。このため、制御切り替えタイミングで単相インバータ4の交流出力が大きくなって交流出力波形の歪むのが抑制でき、電力変換装置の制御精度および信頼性が向上する。
As described above, when the system voltage absolute value | Vac | crosses the DC power supply voltage Vi, the control of the single-phase inverter 4 and the booster circuit 2 is switched, and the modulation rate S3D of the single-phase inverter 4 is set to a step of 3%, for example. At this timing, the booster circuit 2 is controlled by correcting the control command value 21 of the booster circuit 2 with the feedforward correction amount. For this reason, it can suppress that the alternating current output of the single phase inverter 4 becomes large at control switching timing, and distortion of an alternating current output waveform can be suppressed, and the control precision and reliability of a power converter device improve.
実施の形態4.
上記実施の形態3では、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする際に昇圧回路2の制御指令値21を補正するものを示したが、この実施の形態4では、キャリア波を変化させるものを示す。
図6は、この発明の実施の形態4による電力変換装置の動作説明に供する波形図である。なお、この実施の形態4による電力変換装置の回路構成は、上記実施の形態1の図1で示したものと同様である。また、図6のキャリア周波数および制御信号S2以外の部分は、上記実施の形態1の図2で示した波形図と同様である。Embodiment 4 FIG.
In the third embodiment, the system command absolute value | Vac | corrects thecontrol command value 21 of the booster circuit 2 when the DC power supply voltage Vi is crossed. In the fourth embodiment, the carrier wave To change things.
FIG. 6 is a waveform diagram for explaining the operation of the power conversion apparatus according toembodiment 4 of the present invention. The circuit configuration of the power conversion device according to the fourth embodiment is the same as that shown in FIG. 1 of the first embodiment. Further, parts other than the carrier frequency and the control signal S2 in FIG. 6 are the same as those in the waveform diagram shown in FIG. 2 in the first embodiment.
上記実施の形態3では、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする際に昇圧回路2の制御指令値21を補正するものを示したが、この実施の形態4では、キャリア波を変化させるものを示す。
図6は、この発明の実施の形態4による電力変換装置の動作説明に供する波形図である。なお、この実施の形態4による電力変換装置の回路構成は、上記実施の形態1の図1で示したものと同様である。また、図6のキャリア周波数および制御信号S2以外の部分は、上記実施の形態1の図2で示した波形図と同様である。
In the third embodiment, the system command absolute value | Vac | corrects the
FIG. 6 is a waveform diagram for explaining the operation of the power conversion apparatus according to
例えば、系統電圧Vacが直流電源電圧Viよりも低い状態から高い状態へと移行する位相θ2周辺の制御について説明する。
系統電圧絶対値Vacが直流電源電圧Vi未満では、単相インバータ4はPWM制御により交流出力電圧Voを出力する。制御回路8は、単相インバータ4の変調率S3Dの大きさが設定された最大値未満の時(θ<θ1)は、昇圧回路2を昇圧動作させず、制御信号S1によりバイパス用パワーデバイス7を導通させ、直流電源電圧Viが平滑コンデンサ3に印加される。 For example, control around the phase θ2 in which the system voltage Vac shifts from a lower state to a higher state than the DC power supply voltage Vi will be described.
When the system voltage absolute value Vac is less than the DC power supply voltage Vi, the single-phase inverter 4 outputs the AC output voltage Vo by PWM control. When the modulation factor S3D of the single-phase inverter 4 is less than the set maximum value (θ <θ1), the control circuit 8 does not boost the booster circuit 2 and uses the control power signal 7 by the control signal S1. And the DC power supply voltage Vi is applied to the smoothing capacitor 3.
系統電圧絶対値Vacが直流電源電圧Vi未満では、単相インバータ4はPWM制御により交流出力電圧Voを出力する。制御回路8は、単相インバータ4の変調率S3Dの大きさが設定された最大値未満の時(θ<θ1)は、昇圧回路2を昇圧動作させず、制御信号S1によりバイパス用パワーデバイス7を導通させ、直流電源電圧Viが平滑コンデンサ3に印加される。 For example, control around the phase θ2 in which the system voltage Vac shifts from a lower state to a higher state than the DC power supply voltage Vi will be described.
When the system voltage absolute value Vac is less than the DC power supply voltage Vi, the single-
そして位相θ1において、変調率S3Dの大きさが最大値に達すると、制御回路8は制御信号S1をオフしてバイパス用パワーデバイス7を遮断させ、制御信号S2を生成して昇圧回路2をPWM制御により昇圧動作して直流母線電圧Vcを調整する制御に切り替える。θ1≦θ<θ2において、制御回路8は、単相インバータ4が系統電圧Vacと等しい交流出力電圧VoをPWM制御により出力できるように直流母線電圧Vcの指令値Vc*を生成し、直流電源電圧Vi、直流電源電流Iiおよび直流母線電圧Vcの各検出値を用いて、昇圧回路2の出力電圧である直流母線電圧Vcが指令値Vc*となるように昇圧回路2の制御指令値を生成する。そして、三角波等のキャリア波の周波数(キャリア周波数fa)を基準周波数、例えば20kHzから無段階で上昇させ、生成された制御指令値とキャリア波との比較によって昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2を制御する。また制御回路8は、単相インバータ4を、変調率S3Dを最大値に保持してPWM制御する。なお、単相インバータ4の制御に用いるキャリア波の周波数は一定で変化しない。
When the magnitude of the modulation factor S3D reaches the maximum value at the phase θ1, the control circuit 8 turns off the control signal S1 to shut off the bypass power device 7, generates the control signal S2, and controls the booster circuit 2 to PWM. The control is switched to control for adjusting the DC bus voltage Vc by boosting operation. When θ1 ≦ θ <θ2, the control circuit 8 generates the command value Vc * of the DC bus voltage Vc so that the single-phase inverter 4 can output the AC output voltage Vo equal to the system voltage Vac by PWM control, and the DC power supply voltage Using the detected values of Vi, DC power supply current Ii, and DC bus voltage Vc, a control command value for booster circuit 2 is generated so that DC bus voltage Vc, which is the output voltage of booster circuit 2, becomes command value Vc *. . Then, the frequency of a carrier wave such as a triangular wave (carrier frequency fa) is increased steplessly from a reference frequency, for example, 20 kHz, and the generated control command value and the carrier wave are compared with each other for the power devices 2b and 2c of the booster circuit 2 A control signal S2 is generated to control the booster circuit 2. The control circuit 8 performs PWM control on the single-phase inverter 4 while maintaining the modulation rate S3D at the maximum value. The frequency of the carrier wave used to control the single-phase inverter 4 does not vary at a constant.
そして、系統電圧Vacが直流電源電圧Viよりも低い状態から高い状態へと移行する位相θ2において、制御回路8は、単相インバータ4をPWM制御から極性切り替えのみを行う制御に切り替えると共に、上昇させていたキャリア周波数faを無段階で下降させ元の基準周波数に戻す。キャリア周波数faは、位相θ2において例えば22kHzに上昇し、その後下降して20kHzに戻る。キャリア周波数faの値が基準周波数より高い間、制御信号S2は、スイッチング周波数の増加によりパルス数が増加する。
Then, in the phase θ2 in which the system voltage Vac shifts from a lower state to a higher state than the DC power supply voltage Vi, the control circuit 8 switches the single-phase inverter 4 from PWM control to control that only performs polarity switching and raises it. The carrier frequency fa that has been reduced is steplessly lowered to the original reference frequency. The carrier frequency fa rises to, for example, 22 kHz at the phase θ2, and then falls back to 20kHz. While the value of the carrier frequency fa is higher than the reference frequency, the number of pulses of the control signal S2 increases as the switching frequency increases.
なお、図6に示すように、系統電圧Vacが直流電源電圧Viよりも高い状態から低い状態へと移行する位相θ3の周辺では、上述した位相θ2の場合と対称な波形となるように動作させる。また、系統電圧Vacが負極性の場合も同様であり、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする位相θ2、θ3(=π-θ2)、θ2+π、θ3+πにおいて、昇圧回路2の制御に用いるキャリア周波数faが高くなるように変化させる。
In addition, as shown in FIG. 6, in the vicinity of the phase θ3 where the system voltage Vac shifts from a higher state to a lower state than the DC power supply voltage Vi, the operation is performed so as to have a symmetrical waveform with the phase θ2 described above. . The same applies to the case where the system voltage Vac has a negative polarity. In the phases θ2, θ3 (= π−θ2), θ2 + π, and θ3 + π in which the system voltage absolute value | Vac | crosses the DC power supply voltage Vi, The carrier frequency fa used for control is changed so as to increase.
このように、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする際に、制御回路8は、単相インバータ4および昇圧回路2の制御を切り替え、単相インバータ4の変調率S3Dに、例えば3%のステップ変化を生じさせるものであるが、制御の切り替え時には、昇圧回路2の制御に用いるキャリア周波数faを高くしているため、昇圧回路2の出力電圧(直流母線電圧Vc)における指令値Vc*への追従性能が向上する。このため、上記実施の形態3と同様に、制御切り替えタイミングで単相インバータ4の交流出力が大きくなって交流出力波形の歪むのが抑制でき、電力変換装置の制御精度および信頼性が向上する。
As described above, when the system voltage absolute value | Vac | crosses the DC power supply voltage Vi, the control circuit 8 switches the control of the single-phase inverter 4 and the booster circuit 2, and changes the modulation rate S3D of the single-phase inverter 4 to For example, a step change of 3% is caused. However, since the carrier frequency fa used for the control of the booster circuit 2 is increased at the time of switching the control, the command in the output voltage (DC bus voltage Vc) of the booster circuit 2 is increased. The follow-up performance to the value Vc * is improved. For this reason, similarly to the third embodiment, the AC output of the single-phase inverter 4 becomes large at the control switching timing, and the distortion of the AC output waveform can be suppressed, and the control accuracy and reliability of the power conversion device are improved.
なお、上記実施の形態では、単相インバータ4の変調率S3Dの大きさが最大値になる位相θ1の時点から、昇圧回路2の制御に用いるキャリア周波数faを無段階で上昇させたが、それ以前から上昇させても良く、また、より位相θ2に近い時点から上昇させても良い。
また、キャリア周波数faを無段階で変化させるのが、交流出力波形の歪み低減には望ましいが、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする時点を含む所定期間でキャリア周波数faを高くすることで、制御切り替え時点での昇圧回路2の出力における指令値Vc*への追従性能が向上し交流出力波形の歪むのが抑制できる。 In the above embodiment, the carrier frequency fa used for control of thebooster circuit 2 is increased steplessly from the point of phase θ1 at which the magnitude of the modulation factor S3D of the single-phase inverter 4 becomes the maximum value. It may be raised from before or may be raised from a point closer to the phase θ2.
It is desirable to change the carrier frequency fa steplessly in order to reduce distortion of the AC output waveform. However, the carrier frequency fa is set for a predetermined period including the time when the system voltage absolute value | Vac | crosses the DC power supply voltage Vi. By increasing it, the follow-up performance to the command value Vc * in the output of thebooster circuit 2 at the time of control switching is improved, and distortion of the AC output waveform can be suppressed.
また、キャリア周波数faを無段階で変化させるのが、交流出力波形の歪み低減には望ましいが、系統電圧絶対値|Vac|が直流電源電圧Viをクロスする時点を含む所定期間でキャリア周波数faを高くすることで、制御切り替え時点での昇圧回路2の出力における指令値Vc*への追従性能が向上し交流出力波形の歪むのが抑制できる。 In the above embodiment, the carrier frequency fa used for control of the
It is desirable to change the carrier frequency fa steplessly in order to reduce distortion of the AC output waveform. However, the carrier frequency fa is set for a predetermined period including the time when the system voltage absolute value | Vac | crosses the DC power supply voltage Vi. By increasing it, the follow-up performance to the command value Vc * in the output of the
実施の形態5.
次に、この発明の実施の形態5による電力変換装置について説明する。この実施の形態5による電力変換装置の回路構成は、上記実施の形態1の図1で示したものと同様である。図7は、この発明の実施の形態5による電力変換装置の動作説明に供する波形図である。なお、図7において、図2に示した実施の形態1の場合と対応もしくは相当する部分には同一の符号を付す。
この場合、制御回路8は、電圧センサ9で検出される直流電源電圧Viと系統電圧絶対値|Vac|との大小関係が変化するタイミングでは制御を切り替えず、単相インバータ4の制御信号S3a、S3bの生成において、PWM制御での変調率S3Dの大きさが設定された最大値に達するか否かのみで制御を切り替える。Embodiment 5 FIG.
Next, a power conversion device according toembodiment 5 of the present invention will be described. The circuit configuration of the power conversion device according to the fifth embodiment is the same as that shown in FIG. 1 of the first embodiment. FIG. 7 is a waveform diagram for explaining the operation of the power conversion device according to embodiment 5 of the present invention. In FIG. 7, parts corresponding to or corresponding to those of the first embodiment shown in FIG.
In this case, the control circuit 8 does not switch the control at the timing when the magnitude relationship between the DC power supply voltage Vi detected by the voltage sensor 9 and the system voltage absolute value | Vac | changes, and the control signal S3a of the single-phase inverter 4 In the generation of S3b, the control is switched only by whether or not the magnitude of the modulation factor S3D in the PWM control reaches the set maximum value.
次に、この発明の実施の形態5による電力変換装置について説明する。この実施の形態5による電力変換装置の回路構成は、上記実施の形態1の図1で示したものと同様である。図7は、この発明の実施の形態5による電力変換装置の動作説明に供する波形図である。なお、図7において、図2に示した実施の形態1の場合と対応もしくは相当する部分には同一の符号を付す。
この場合、制御回路8は、電圧センサ9で検出される直流電源電圧Viと系統電圧絶対値|Vac|との大小関係が変化するタイミングでは制御を切り替えず、単相インバータ4の制御信号S3a、S3bの生成において、PWM制御での変調率S3Dの大きさが設定された最大値に達するか否かのみで制御を切り替える。
Next, a power conversion device according to
In this case, the control circuit 8 does not switch the control at the timing when the magnitude relationship between the DC power supply voltage Vi detected by the voltage sensor 9 and the system voltage absolute value | Vac | changes, and the control signal S3a of the single-
系統電圧位相0≦θ<2πにおいて、系統電圧絶対値|Vac|が直流電源電圧Viと一致する位相を、θ2、θ3(=π-θ2)、θ2+π、θ3+πとし、昇圧回路2が昇圧動作しない場合に単相インバータ4の変調率S3Dの大きさが設定された最大値になる位相を、θ1、θ4(=π-θ1)、θ1+π、θ4+πとする。
0≦θ<π/2における制御動作について以下に示す。その他の位相期間では、図7に示すように、対称、または正負逆転の波形を出力すれば良く、説明を省略する。 In thesystem voltage phase 0 ≦ θ <2π, the phase at which the system voltage absolute value | Vac | matches the DC power supply voltage Vi is θ2, θ3 (= π−θ2), θ2 + π, θ3 + π, and the booster circuit 2 does not perform the boost operation. In this case, the phase at which the magnitude of the modulation factor S3D of the single-phase inverter 4 becomes the maximum value is set to θ1, θ4 (= π−θ1), θ1 + π, and θ4 + π.
The control operation when 0 ≦ θ <π / 2 is described below. In other phase periods, as shown in FIG. 7, a symmetrical or positive / negative reversal waveform may be output, and the description is omitted.
0≦θ<π/2における制御動作について以下に示す。その他の位相期間では、図7に示すように、対称、または正負逆転の波形を出力すれば良く、説明を省略する。 In the
The control operation when 0 ≦ θ <π / 2 is described below. In other phase periods, as shown in FIG. 7, a symmetrical or positive / negative reversal waveform may be output, and the description is omitted.
系統電圧絶対値Vacが直流電源電圧Vi未満で、単相インバータ4の変調率S3Dの大きさが設定された最大値未満の期間(0≦θ<θ1)において、制御回路8は、上記実施の形態1と同様に、昇圧回路2を昇圧動作させず、制御信号S1によりバイパス用パワーデバイス7を導通させ、直流電源電圧Viが平滑コンデンサ3に印加される。また、直流母線電圧Vcとフィルタ電流Ifと交流出力電圧Voと交流出力電流Ioの各検出値を用いて、交流出力電圧Vo、交流出力電流Ioが正弦波となり交流出力電圧Voが系統電圧Vacと等しくなるように単相インバータ4の制御指令値を生成し、この制御指令値と三角波等のキャリア波との比較によって単相インバータ4のパワーデバイス4a~4dに対する制御信号S3a、S3bを生成し、単相インバータ4をPWM制御する。
During the period (0 ≦ θ <θ1) in which the system voltage absolute value Vac is less than the DC power supply voltage Vi and the magnitude of the modulation factor S3D of the single-phase inverter 4 is less than the set maximum value, the control circuit 8 As in the first embodiment, the booster circuit 2 is not boosted, and the bypass power device 7 is turned on by the control signal S1, and the DC power supply voltage Vi is applied to the smoothing capacitor 3. Further, using the detected values of the DC bus voltage Vc, the filter current If, the AC output voltage Vo, and the AC output current Io, the AC output voltage Vo and the AC output current Io become a sine wave, and the AC output voltage Vo becomes the system voltage Vac. A control command value for the single-phase inverter 4 is generated so as to be equal, and control signals S3a and S3b for the power devices 4a to 4d of the single-phase inverter 4 are generated by comparing this control command value with a carrier wave such as a triangular wave, The single phase inverter 4 is PWM controlled.
そして位相θ1において、変調率S3Dの大きさが最大値に達すると、制御回路8は制御信号S1をオフしてバイパス用パワーデバイス7を遮断させ、昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2をPWM制御により昇圧動作する制御に切り替える。そして、θ1≦θ<π/2において、制御回路8は、単相インバータ4を変調率S3Dの大きさを最大値に保持してPWM制御し、系統電圧Vacと等しい交流出力電圧Voが得られるように直流母線電圧Vcの指令値Vc*を生成して昇圧回路2を制御する。即ち、直流電源電圧Vi、直流電源電流Iiおよび直流母線電圧Vcの各検出値を用いて、昇圧回路2の出力電圧である直流母線電圧Vcが指令値Vc*となるように昇圧回路2の制御指令値を生成し、この制御指令値とキャリア波との比較によって昇圧回路2のパワーデバイス2b、2cに対する制御信号S2を生成して昇圧回路2を制御する。この制御は、位相θ2を経て系統電圧絶対値Vacが直流電源電圧Vi以上となっても継続される。
When the magnitude of the modulation factor S3D reaches the maximum value at the phase θ1, the control circuit 8 turns off the control signal S1 to shut off the bypass power device 7, and the control signal for the power devices 2b and 2c of the booster circuit 2 S2 is generated, and the booster circuit 2 is switched to control for boosting operation by PWM control. Then, when θ1 ≦ θ <π / 2, the control circuit 8 performs PWM control on the single-phase inverter 4 while maintaining the modulation factor S3D at the maximum value, and an AC output voltage Vo equal to the system voltage Vac is obtained. Thus, the command value Vc * of the DC bus voltage Vc is generated to control the booster circuit 2. That is, using the detected values of the DC power supply voltage Vi, the DC power supply current Ii, and the DC bus voltage Vc, the booster circuit 2 is controlled so that the DC bus voltage Vc, which is the output voltage of the booster circuit 2, becomes the command value Vc *. A command value is generated, and a control signal S2 for the power devices 2b and 2c of the booster circuit 2 is generated by comparing the control command value with the carrier wave to control the booster circuit 2. This control is continued even if the system voltage absolute value Vac becomes equal to or higher than the DC power supply voltage Vi through the phase θ2.
この実施の形態では、単相インバータ4は、全位相においてPWM制御により系統電圧Vacと等しい交流出力電圧Voを出力しているため、単相インバータ4の変調率S3Dにステップ変化を生じる事が無く、低歪の交流出力波形を生成できる。
また、昇圧回路2の昇圧動作の期間は限定的であり、出力電圧(直流母線電圧Vc)も低く抑えられている。これにより単相インバータ4が高周波スイッチングする電圧も低く抑えられ、効果的に損失低減を図ることができる。また、系統電圧絶対値|Vac|が直流電源電圧Vi未満の近接値で制御不能に陥ることがなく、系統電圧の全位相で信頼性良く高精度な交流出力波形の生成を可能にできる。 In this embodiment, the single-phase inverter 4 outputs the AC output voltage Vo equal to the system voltage Vac by PWM control in all phases, so that there is no step change in the modulation factor S3D of the single-phase inverter 4. A low distortion AC output waveform can be generated.
Further, the boosting operation period of thebooster circuit 2 is limited, and the output voltage (DC bus voltage Vc) is also kept low. As a result, the voltage at which the single-phase inverter 4 performs high-frequency switching is also kept low, and loss can be effectively reduced. Further, the system voltage absolute value | Vac | does not fall out of control with a proximity value less than the DC power supply voltage Vi, and it is possible to generate an AC output waveform with high reliability and high accuracy in all phases of the system voltage.
また、昇圧回路2の昇圧動作の期間は限定的であり、出力電圧(直流母線電圧Vc)も低く抑えられている。これにより単相インバータ4が高周波スイッチングする電圧も低く抑えられ、効果的に損失低減を図ることができる。また、系統電圧絶対値|Vac|が直流電源電圧Vi未満の近接値で制御不能に陥ることがなく、系統電圧の全位相で信頼性良く高精度な交流出力波形の生成を可能にできる。 In this embodiment, the single-
Further, the boosting operation period of the
なお、上記の各実施の形態1~5のパワーデバイス2b、2c、4a~4d、7やダイオード2dとして、ワイドバンドギャップ半導体によって形成された素子を適用すると、更にスイッチング損失や導通損失が低減するため、一層高効率化を達成できることは言うまでもない。ワイドバンドギャップ半導体としては、例えば、炭化珪素、窒化ガリウム系材料又はダイヤモンドがある。
In addition, when an element formed of a wide band gap semiconductor is applied to the power devices 2b, 2c, 4a to 4d, 7 and the diode 2d in the above-described first to fifth embodiments, switching loss and conduction loss are further reduced. Therefore, it goes without saying that higher efficiency can be achieved. Examples of the wide band gap semiconductor include silicon carbide, a gallium nitride-based material, and diamond.
このようなワイドバンドギャップ半導体によって形成された素子は、耐電圧性が高く、許容電流密度も高いため、小型化が可能であり、これら小型化された素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。また、耐熱性も高いため、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化が可能であるので、半導体モジュールの一層の小型化が可能になる。更に電力損失が低いため、素子自身の特性の高効率化が可能であり、延いては半導体モジュールの高効率化が可能になる。
Elements formed of such a wide band gap semiconductor have high voltage resistance and high allowable current density, and thus can be miniaturized. By using these miniaturized elements, these elements are incorporated. The semiconductor module can be downsized. In addition, since the heat resistance is high, the heat dissipating fins of the heat sink can be downsized and the water cooling section can be air cooled, so that the semiconductor module can be further downsized. Furthermore, since the power loss is low, it is possible to increase the efficiency of the characteristics of the element itself, and further increase the efficiency of the semiconductor module.
なお、この発明は、発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
Claims (9)
- 直流電源の電圧をパワーデバイスを用いて昇圧する昇圧回路と、該昇圧回路により昇圧された電圧を平滑する平滑コンデンサと、該平滑コンデンサの直流電力をパワーデバイスを用いて交流電力に変換する単相インバータと、該単相インバータの交流側に接続された出力フィルタと、上記昇圧回路と上記単相インバータの各パワーデバイスを制御する制御回路とを備え、上記単相インバータからの交流電力を上記出力フィルタを介して系統へ出力する電力変換装置において、
上記制御回路は、
系統電圧絶対値が上記直流電源の電圧値未満である期間では、上記昇圧回路を昇圧動作させずに上記単相インバータをPWM制御し、上記単相インバータの変調率が設定最大値に達すると、上記昇圧回路をPWM制御により昇圧動作させて上記平滑コンデンサの電圧を調整して上記単相インバータをPWM制御し、
上記系統電圧絶対値が上記直流電源の電圧値以上である期間では、上記昇圧回路をPWM制御して上記直流電源の電圧を昇圧する、
電力変換装置。 A booster circuit that boosts the voltage of a DC power source using a power device, a smoothing capacitor that smoothes the voltage boosted by the booster circuit, and a single phase that converts DC power of the smoothing capacitor into AC power using a power device An inverter, an output filter connected to the AC side of the single-phase inverter, a control circuit that controls each power device of the booster circuit and the single-phase inverter, and outputs AC power from the single-phase inverter to the output In the power converter that outputs to the grid through the filter,
The control circuit is
In a period in which the system voltage absolute value is less than the voltage value of the DC power supply, the single phase inverter is PWM controlled without boosting the boost circuit, and when the modulation factor of the single phase inverter reaches a set maximum value, PWM control of the single-phase inverter by adjusting the voltage of the smoothing capacitor by boosting the boost circuit by PWM control,
In a period in which the system voltage absolute value is equal to or greater than the voltage value of the DC power supply, the booster circuit is PWM controlled to boost the voltage of the DC power supply.
Power conversion device. - 上記制御回路は、上記系統電圧絶対値が上記直流電源の電圧値以上である期間は、上記昇圧回路をPWM制御して上記直流電源の電圧を上記系統電圧絶対値に相当する電圧に昇圧し、上記単相インバータに対して極性切り替え制御のみ行う、
請求項1に記載の電力変換装置。 The control circuit performs PWM control of the booster circuit to boost the voltage of the DC power supply to a voltage corresponding to the system voltage absolute value during a period when the system voltage absolute value is equal to or greater than the voltage value of the DC power supply. Only polarity switching control is performed for the single-phase inverter.
The power conversion device according to claim 1. - 上記制御回路は、上記系統へ出力する電圧が上記系統電圧となるように制御指令値を演算して上記昇圧回路を昇圧制御し、この昇圧制御において、上記系統電圧絶対値が上記直流電源の電圧値をクロスするタイミングで、上記制御指令値をフィードフォワード補正量により補正する、
請求項1または請求項2に記載の電力変換装置。 The control circuit calculates a control command value so that a voltage to be output to the system becomes the system voltage, and performs step-up control of the step-up circuit. In the step-up control, the system voltage absolute value is a voltage of the DC power supply. in the timing crossing the value is corrected by the feed forward correction amount the control command value,
The power converter device of Claim 1 or Claim 2. - 上記制御回路は、上記系統へ出力する電圧が上記系統電圧となるように制御指令値を演算して、該制御指令値とキャリア波との比較により上記昇圧回路を昇圧制御し、この昇圧制御において、上記系統電圧絶対値が上記直流電源の電圧値をクロスする時点を含む所定期間で、上記キャリア波の周波数を高くする、
請求項1または請求項2に記載の電力変換装置。 The control circuit calculates a control command value so that a voltage output to the system becomes the system voltage, and controls the boost circuit by comparing the control command value with a carrier wave. The frequency of the carrier wave is increased for a predetermined period including the time when the system voltage absolute value crosses the voltage value of the DC power supply.
The power converter device of Claim 1 or Claim 2. - 上記制御回路は、上記系統電圧絶対値が上記直流電源の電圧値以上である期間は、上記昇圧回路をPWM制御により昇圧動作させて上記平滑コンデンサの電圧を調整して上記単相インバータをPWM制御する、
請求項1に記載の電力変換装置。 The control circuit PWM-controls the single-phase inverter by adjusting the voltage of the smoothing capacitor by boosting the booster circuit by PWM control during a period when the system voltage absolute value is equal to or higher than the voltage value of the DC power supply. To
The power conversion device according to claim 1. - 上記制御回路は、上記昇圧回路をPWM制御により昇圧動作させて上記平滑コンデンサの電圧を調整して上記単相インバータをPWM制御する際、上記単相インバータの変調率を上記設定最大値に保持してPWM制御する、
請求項1または請求項2に記載の電力変換装置。 The control circuit holds the modulation rate of the single-phase inverter at the set maximum value when the single-phase inverter is PWM controlled by adjusting the voltage of the smoothing capacitor by boosting the boost circuit by PWM control. PWM control
The power converter device of Claim 1 or Claim 2. - 上記平滑コンデンサと上記直流電源の正極側とを接続するバイパス用パワーデバイスを備え、
上記制御回路は、上記昇圧回路を昇圧動作させずに上記単相インバータをPWM制御する際、上記バイパス用パワーデバイスを導通して上記昇圧回路をバイパスさせる、
請求項1または請求項2に記載の電力変換装置。 A bypass power device for connecting the smoothing capacitor and the positive side of the DC power supply;
The control circuit conducts the bypass power device and bypasses the boost circuit when PWM controlling the single-phase inverter without boosting the boost circuit.
The power converter device of Claim 1 or Claim 2. - 上記昇圧回路と上記単相インバータのパワーデバイスは、ワイドバンドギャップ半導体によって形成されている、
請求項1または請求項2に記載の電力変換装置。 The boost device and the power device of the single-phase inverter are formed of a wide band gap semiconductor,
The power converter device of Claim 1 or Claim 2. - 上記ワイドバンドギャップ半導体は、炭化珪素、窒化ガリウム系材料又はダイヤモンドである、
請求項8に記載の電力変換装置。 The wide band gap semiconductor is silicon carbide, a gallium nitride-based material or diamond.
The power conversion device according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013542877A JP5788017B2 (en) | 2011-11-07 | 2012-05-31 | Power converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-243411 | 2011-11-07 | ||
JP2011243411 | 2011-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069326A1 true WO2013069326A1 (en) | 2013-05-16 |
Family
ID=48289595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/064035 WO2013069326A1 (en) | 2011-11-07 | 2012-05-31 | Electrical power conversion device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5788017B2 (en) |
WO (1) | WO2013069326A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20131015A1 (en) * | 2013-06-19 | 2014-12-20 | Greenventive Ltd | MICROINVERTER AND METHOD FOR CHECKING A MICROINVERTER |
JP2015107027A (en) * | 2013-12-02 | 2015-06-08 | 株式会社日本自動車部品総合研究所 | Power conversion device |
CN104935200A (en) * | 2014-03-18 | 2015-09-23 | 株式会社安川电机 | Power converter, power generating system, apparatus for controlling power converter, and method for controlling power converter |
CN104953882A (en) * | 2014-03-31 | 2015-09-30 | 株式会社安川电机 | Power converter, power generation system, control apparatus, and power conversion method |
JP2015228728A (en) * | 2014-05-30 | 2015-12-17 | 住友電気工業株式会社 | Converter |
WO2016002053A1 (en) * | 2014-07-03 | 2016-01-07 | 三菱電機株式会社 | Power converter and air-conditioning device provided with said power converter |
JP2016123146A (en) * | 2014-12-24 | 2016-07-07 | 三菱電機株式会社 | System interconnection inverter device |
CN105897024A (en) * | 2016-05-25 | 2016-08-24 | 南通大学 | Single-phase Cuk integrated boost-buck inverter and control method and control system thereof |
JP2016163531A (en) * | 2015-03-05 | 2016-09-05 | 住友電気工業株式会社 | Conversion device |
EP3065285A1 (en) * | 2015-03-06 | 2016-09-07 | Sumitomo Electric Industries, Ltd. | Reversible dc-ac converter |
JP2017038496A (en) * | 2015-08-12 | 2017-02-16 | ニチコン株式会社 | Switching power supply and electromagnet power system |
WO2017061177A1 (en) * | 2015-10-07 | 2017-04-13 | 住友電気工業株式会社 | Power conversion device and control method for same |
CN106664034A (en) * | 2014-07-08 | 2017-05-10 | 住友电气工业株式会社 | Power conversion device and three-phase ac power supply device |
JP2017524323A (en) * | 2014-07-15 | 2017-08-24 | ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. | Single stage solar power grid tie inverter and its control method and application |
KR101830666B1 (en) * | 2013-09-17 | 2018-02-21 | 엘에스산전 주식회사 | Power conversion apparatus |
KR20180020959A (en) * | 2015-06-29 | 2018-02-28 | 스미토모덴키고교가부시키가이샤 | Conversion device and control method thereof |
JP2019004585A (en) * | 2017-06-14 | 2019-01-10 | 住友電気工業株式会社 | Electric power conversion system and control method of the same |
CN109639131A (en) * | 2018-12-14 | 2019-04-16 | 南方电网科学研究院有限责任公司 | Power signal output device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000050668A (en) * | 1998-07-28 | 2000-02-18 | Matsushita Electric Ind Co Ltd | Speed controller for motor |
JP2000152661A (en) * | 1998-11-10 | 2000-05-30 | Matsushita Electric Ind Co Ltd | System interconnection inverter device |
JP2005073362A (en) * | 2003-08-22 | 2005-03-17 | Rikogaku Shinkokai | Power converter, motor drive arrangement, btb system, and grid-connected inverter system |
JP2008079439A (en) * | 2006-09-21 | 2008-04-03 | Fuji Electric Holdings Co Ltd | Control system of step-up chopper |
JP2008140038A (en) * | 2006-11-30 | 2008-06-19 | Sanyo Electric Co Ltd | Converter device, and system linkage system |
JP2009291019A (en) * | 2008-05-30 | 2009-12-10 | Toyota Motor Corp | Controller for inverter for ac motor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07255103A (en) * | 1994-03-16 | 1995-10-03 | Toshiba Corp | Apparatus and method for controlling a.c. electric rolling stock |
JP4805302B2 (en) * | 2008-04-24 | 2011-11-02 | 本田技研工業株式会社 | Method for controlling operation of DC / DC converter device |
EP2562928B1 (en) * | 2010-04-21 | 2016-11-16 | Toyota Jidosha Kabushiki Kaisha | Control device for motor drive system and vehicle having same |
-
2012
- 2012-05-31 WO PCT/JP2012/064035 patent/WO2013069326A1/en active Application Filing
- 2012-05-31 JP JP2013542877A patent/JP5788017B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000050668A (en) * | 1998-07-28 | 2000-02-18 | Matsushita Electric Ind Co Ltd | Speed controller for motor |
JP2000152661A (en) * | 1998-11-10 | 2000-05-30 | Matsushita Electric Ind Co Ltd | System interconnection inverter device |
JP2005073362A (en) * | 2003-08-22 | 2005-03-17 | Rikogaku Shinkokai | Power converter, motor drive arrangement, btb system, and grid-connected inverter system |
JP2008079439A (en) * | 2006-09-21 | 2008-04-03 | Fuji Electric Holdings Co Ltd | Control system of step-up chopper |
JP2008140038A (en) * | 2006-11-30 | 2008-06-19 | Sanyo Electric Co Ltd | Converter device, and system linkage system |
JP2009291019A (en) * | 2008-05-30 | 2009-12-10 | Toyota Motor Corp | Controller for inverter for ac motor |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20131015A1 (en) * | 2013-06-19 | 2014-12-20 | Greenventive Ltd | MICROINVERTER AND METHOD FOR CHECKING A MICROINVERTER |
KR101830666B1 (en) * | 2013-09-17 | 2018-02-21 | 엘에스산전 주식회사 | Power conversion apparatus |
JP2015107027A (en) * | 2013-12-02 | 2015-06-08 | 株式会社日本自動車部品総合研究所 | Power conversion device |
CN104935200A (en) * | 2014-03-18 | 2015-09-23 | 株式会社安川电机 | Power converter, power generating system, apparatus for controlling power converter, and method for controlling power converter |
EP2922192A1 (en) | 2014-03-18 | 2015-09-23 | Kabushiki Kaisha Yaskawa Denki | Power converter, power generating system, apparatus for controlling power converter, and method for controlling power converter |
US9484839B2 (en) | 2014-03-18 | 2016-11-01 | Kabushiki Kaisha Yaskawa Denki | Power converter, power generating system, apparatus for controlling power converter, and method for controlling power converter |
CN104953882A (en) * | 2014-03-31 | 2015-09-30 | 株式会社安川电机 | Power converter, power generation system, control apparatus, and power conversion method |
JP2015195678A (en) * | 2014-03-31 | 2015-11-05 | 株式会社安川電機 | Power conversion device, power generation system, control device and power conversion method |
EP2937966A1 (en) | 2014-03-31 | 2015-10-28 | Kabushiki Kaisha Yaskawa Denki | Power converter, power generation system, control apparatus, and power conversion method |
US9509233B2 (en) | 2014-03-31 | 2016-11-29 | Kabushiki Kaisha Yaskawa Denki | Power converter, power generation system, control apparatus, and power conversion method |
JP2015228728A (en) * | 2014-05-30 | 2015-12-17 | 住友電気工業株式会社 | Converter |
WO2016002053A1 (en) * | 2014-07-03 | 2016-01-07 | 三菱電機株式会社 | Power converter and air-conditioning device provided with said power converter |
US9941834B2 (en) | 2014-07-03 | 2018-04-10 | Mitsubishi Electric Corporation | Power conversion apparatus and air-conditioning apparatus including the power conversion apparatus |
JPWO2016002053A1 (en) * | 2014-07-03 | 2017-04-27 | 三菱電機株式会社 | Power converter and air conditioner equipped with the power converter |
AU2015286473B2 (en) * | 2014-07-08 | 2019-02-14 | Sumitomo Electric Industries, Ltd. | Power conversion device and three-phase AC power supply device |
US10193434B2 (en) | 2014-07-08 | 2019-01-29 | Sumitomo Electric Industries, Ltd. | Power conversion device and three-phase AC power supply device |
CN106664034B (en) * | 2014-07-08 | 2019-04-09 | 住友电气工业株式会社 | Power conversion device and three-phase AC power source device |
EP3168975A4 (en) * | 2014-07-08 | 2018-02-14 | Sumitomo Electric Industries, Ltd. | Power conversion device and three-phase ac power supply device |
CN106664034A (en) * | 2014-07-08 | 2017-05-10 | 住友电气工业株式会社 | Power conversion device and three-phase ac power supply device |
JP2017524323A (en) * | 2014-07-15 | 2017-08-24 | ▲陽▼光▲電▼源股▲分▼有限公司Sungrow Power Supply Co., Ltd. | Single stage solar power grid tie inverter and its control method and application |
JP2016123146A (en) * | 2014-12-24 | 2016-07-07 | 三菱電機株式会社 | System interconnection inverter device |
WO2016139990A1 (en) * | 2015-03-05 | 2016-09-09 | 住友電気工業株式会社 | Conversion device |
US10644614B2 (en) | 2015-03-05 | 2020-05-05 | Sumitomo Electric Industries, Ltd. | Conversion device having a control unit for detecting arm short-circuit |
JP2016163531A (en) * | 2015-03-05 | 2016-09-05 | 住友電気工業株式会社 | Conversion device |
EP3267572A4 (en) * | 2015-03-05 | 2018-10-31 | Sumitomo Electric Industries, Ltd. | Conversion device |
CN105939128A (en) * | 2015-03-06 | 2016-09-14 | 住友电气工业株式会社 | Conversion device |
KR102441722B1 (en) * | 2015-03-06 | 2022-09-07 | 스미토모덴키고교가부시키가이샤 | Conversion device |
US9800177B2 (en) | 2015-03-06 | 2017-10-24 | Sumitomo Electric Industries, Ltd. | Conversion device |
JP2016165184A (en) * | 2015-03-06 | 2016-09-08 | 住友電気工業株式会社 | Conversion device |
EP3065285A1 (en) * | 2015-03-06 | 2016-09-07 | Sumitomo Electric Industries, Ltd. | Reversible dc-ac converter |
KR20160108216A (en) * | 2015-03-06 | 2016-09-19 | 스미토모덴키고교가부시키가이샤 | Conversion device |
KR20180020959A (en) * | 2015-06-29 | 2018-02-28 | 스미토모덴키고교가부시키가이샤 | Conversion device and control method thereof |
EP3316471A4 (en) * | 2015-06-29 | 2019-03-27 | Sumitomo Electric Industries, Ltd. | Conversion device and method for controlling the same |
KR102441724B1 (en) | 2015-06-29 | 2022-09-08 | 스미토모덴키고교가부시키가이샤 | Conversion device and its control method |
JP2017038496A (en) * | 2015-08-12 | 2017-02-16 | ニチコン株式会社 | Switching power supply and electromagnet power system |
CN108156833A (en) * | 2015-10-07 | 2018-06-12 | 住友电气工业株式会社 | Power inverter and the control method for power inverter |
CN108156833B (en) * | 2015-10-07 | 2020-01-24 | 住友电气工业株式会社 | Power conversion apparatus and control method for power conversion apparatus |
JP2017073896A (en) * | 2015-10-07 | 2017-04-13 | 住友電気工業株式会社 | Power conversion device and control method therefor |
WO2017061177A1 (en) * | 2015-10-07 | 2017-04-13 | 住友電気工業株式会社 | Power conversion device and control method for same |
CN105897024A (en) * | 2016-05-25 | 2016-08-24 | 南通大学 | Single-phase Cuk integrated boost-buck inverter and control method and control system thereof |
JP2019004585A (en) * | 2017-06-14 | 2019-01-10 | 住友電気工業株式会社 | Electric power conversion system and control method of the same |
CN109639131A (en) * | 2018-12-14 | 2019-04-16 | 南方电网科学研究院有限责任公司 | Power signal output device |
CN109639131B (en) * | 2018-12-14 | 2023-09-12 | 南方电网科学研究院有限责任公司 | Power signal output device |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013069326A1 (en) | 2015-04-02 |
JP5788017B2 (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5788017B2 (en) | Power converter | |
CN105900326B (en) | Conversion equipment | |
JP6569839B1 (en) | Power converter | |
US10622914B2 (en) | Multi-stage DC-AC inverter | |
JP5631499B2 (en) | Power converter | |
JP5400961B2 (en) | Power converter | |
JP2013055794A (en) | Power conversion device | |
JP2007166783A (en) | Power transforming apparatus | |
JP5132797B2 (en) | Power converter | |
US20120025609A1 (en) | Very high efficiency uninterruptible power supply | |
JP5523508B2 (en) | Power converter | |
JP5415387B2 (en) | Power converter | |
US20220263428A1 (en) | Power converting apparatus and photovoltaic module including the same | |
Watanabe et al. | DC to single-phase AC voltage source inverter with power decoupling circuit based on flying capacitor topology for PV system | |
US9431924B2 (en) | Power source inverter for use with a photovoltaic solar panel | |
Lee et al. | A dead-beat control for bridgeless inverter systems to reduce the distortion of grid current | |
JP5043585B2 (en) | Power converter | |
Xia et al. | A single stage common ground three-level PV inverter with integrated power decoupling | |
Mirzahosseini et al. | A lifetime improved single phase grid connected photovoltaic inverter | |
JP5490263B2 (en) | Power converter | |
JP5701595B2 (en) | Grid connection device | |
JP5400956B2 (en) | Power converter | |
JP2004120820A (en) | Power converter | |
JP6440067B2 (en) | Power converter | |
JP6567234B1 (en) | Power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12848014 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013542877 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12848014 Country of ref document: EP Kind code of ref document: A1 |