WO2013069251A1 - 高張力熱延鋼板およびその製造方法 - Google Patents
高張力熱延鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2013069251A1 WO2013069251A1 PCT/JP2012/007088 JP2012007088W WO2013069251A1 WO 2013069251 A1 WO2013069251 A1 WO 2013069251A1 JP 2012007088 W JP2012007088 W JP 2012007088W WO 2013069251 A1 WO2013069251 A1 WO 2013069251A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- hot
- rolled steel
- tensile
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/024—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention has excellent workability, particularly excellent stretch flangeability and bending properties suitable for materials such as transportation equipment and structural materials such as automobile parts, and excellent tensile strength with excellent material stability.
- TS tensile strength with excellent material stability.
- Patent Document 2 includes mass%, C: 0.02% to 0.20%, Si: 0.3% or less, Mn: 0.5% to 2.5%, P: 0.06% or less, S: 0.01% or less, Al: 0.1% or less, Ti: 0.05% or more and 0.25% or less, V: 0.05% or more and 0.25% or less, with the remaining component composition consisting of Fe and inevitable impurities, and substantially a ferrite single-phase structure, the ferrite In the single phase structure, Ti contained in precipitates having a size of less than 20 nm is 200 mass ppm to 1750 mass ppm, V is 150 mass ppm to 1750 mass ppm, and solid solution V is 200 mass ppm to 1750 mass.
- the strength of the steel sheet is increased by refining the precipitates contained in the steel sheet (less than 20 nm in size). Moreover, in the technique described in Patent Document 2, a precipitate containing Ti and V is used as a precipitate that can maintain the precipitate contained in the steel sheet as fine as possible, and further, the amount of solute V contained in the steel sheet is desired. By making it into this range, the stretch flange characteristics after processing are improved. And according to the technique of patent document 2, it is supposed that the high-strength hot-rolled steel plate which is excellent in the stretch flangeability after a process and the corrosion resistance after a coating, and whose tensile strength is 780 MPa or more is obtained.
- a hot-rolled steel sheet having excellent workability (elongation and stretch flangeability) and strength up to about 780 MPa class is manufactured by specifying precipitates of less than 20 nm. It is supposed to be possible. However, the strengthening of steel sheets by precipitates is mainly due to the fine particles having a particle size of less than 10 nm. Therefore, as in the technique proposed in Patent Document 2, sufficient precipitation strengthening cannot be obtained simply by defining a precipitate of less than 20 nm, and it is difficult to obtain a tensile strength of 980 MPa or more. Further, when precipitates of 20 nm to several nm are mixed, there is a problem that the amount of strengthening by the precipitates becomes unstable and the strength in the width direction of the steel sheet is not uniform.
- the present invention advantageously solves the above-mentioned problems of the prior art, and is suitable for transportation equipment and structural materials, especially for automobile parts, and has a tensile strength of 980 MPa or more and good workability (especially stretch flangeability, bending workability). It is an object of the present invention to provide a high-tensile hot-rolled steel sheet having excellent strength and workability uniformity and a method for producing the same.
- the present inventors have intensively studied various factors affecting the workability such as high strength and stretch flangeability and bending workability of the hot-rolled steel sheet and material stability in the width direction of the hot-rolled steel sheet. did. As a result, the following findings were obtained. 1) When the steel sheet structure is a ferrite single-phase structure with low dislocation density and excellent workability, and fine carbides are dispersed and precipitated to strengthen the precipitation, the strength of the hot-rolled steel sheet is improved and the stretch flangeability is also improved. .
- fine carbides having an average particle diameter of less than 10 nm effective for precipitation strengthening are dispersed and precipitated at a desired volume ratio. What you need.
- carbides containing Ti and V are effective from the viewpoint of securing strength and the like.
- the present invention has been completed based on the above findings, and the gist thereof is as follows.
- C more than 0.05% and 0.13% or less, Si: 0.3% or less, Mn: 0.5% or more and 2.0% or less, P: 0.025% or less, S: 0.005% or less, N: 0.0060% or less, Al : 0.1% or less, Ti: 0.07% or more and 0.18% or less, V: Including 0.13% or more and 0.30% or less, Ti and V contents satisfy the following formula (1), solid solution V: 0.05% or more and less than 0.15% In which the balance has a component composition including Fe and inevitable impurities, and the area ratio of the ferrite phase to the entire structure is 95% or more, and Ti and V are included, and the average particle size (particle size) is 10 nm.
- the component composition further includes, in mass%, at least one selected from the group consisting of Cu, Sn, Ni, Ca, Mg, Co, As, Cr, W, B, Pb, Ta, and Sb in total.
- the component composition further includes, in mass%, a total of at least one selected from the group consisting of Cu, Sn, Ni, Ca, Mg, Co, As, Cr, W, B, Pb, Ta, and Sb.
- the difference in tensile strength between the center position and the quarter width position of the steel sheet is 15 MPa or less, the difference in the hole expansion ratio at the position (duplex) is 10% or less, the limit bending radius at the position (duplex)
- a steel material having the composition described in any one of [1] to [4] is prepared, and hot rolling consisting of rough rolling and finish rolling at a rolling temperature of 880 ° C. or higher is applied to the steel material.
- the hot-rolled steel sheet is cooled at an average cooling rate of 10 ° C / s or higher and wound at a temperature of 550 ° C or higher and lower than 700 ° C.
- a method for producing rolled steel sheets [10] The method according to [9], wherein the surface of the hot-rolled steel sheet is plated after the winding.
- the high-tensile heat is suitable as a material for automobile parts that have good workability and have a tensile strength of 980 MPa or more, excellent material stability, and a complicated cross-sectional shape at the time of pressing. It becomes possible to produce a steel sheet in an industrially stable manner, and has a remarkable industrial effect.
- fine carbides containing Ti and V and having an average particle diameter of less than 10 nm are dispersed and precipitated in a matrix in which the ferrite phase is 95% or more in terms of the area ratio with respect to the entire structure.
- the volume ratio with respect to the whole structure is 0.0050 or more, and a hot-rolled steel sheet having a structure in which the proportion of the number of carbides containing Ti and the particle diameter of 30 nm or more in the total number of carbides is less than 10%, or the hot-rolled steel sheet It is a hot-rolled steel sheet having a plating layer on the surface.
- ferrite phase 95% or more in area ratio with respect to the entire structure
- formation of a ferrite phase is essential for maintaining the workability (stretch flangeability) of a hot-rolled steel sheet.
- it is effective to make the structure of the hot-rolled steel sheet a ferrite phase having a low dislocation density and excellent ductility.
- the structure of the hot-rolled steel sheet is a ferrite single phase, but even if it is not a complete ferrite single phase, it is substantially a ferrite single phase structure, that is, the entire structure.
- the area ratio of the ferrite phase to the entire structure is preferably 95% or more. More preferably, it is 97% or more.
- examples of the structure other than the ferrite phase include cementite, pearlite, bainite phase, martensite phase, retained austenite phase, and the like. If allowed.
- Fine carbides containing Ti and V tend to be fine carbides having an extremely small average particle size. Therefore, in the present invention for increasing the strength of a hot-rolled steel sheet by dispersing and precipitating fine carbide in the hot-rolled steel sheet, the fine carbide to be dispersed and precipitated is preferably a fine carbide containing Ti and V.
- the present invention is characterized by using a carbide containing V together with Ti. Since Ti has a strong tendency to form carbides, when it does not contain V, Ti carbides are likely to coarsen, and the contribution to increasing the strength of the steel sheet is reduced. Therefore, in order to give the steel sheet a desired strength (tensile strength: 980 MPa or more), it is necessary to add more Ti to form Ti carbide. On the other hand, if Ti is added excessively, the workability (stretch flangeability) may be lowered, and excellent workability that can be applied as a material such as a suspension part having a complicated cross-sectional shape cannot be obtained.
- V has a lower tendency to form carbides than Ti, and is therefore effective in suppressing the coarsening of carbides. Therefore, in the present invention, a composite carbide containing V together with Ti is used as the carbide to be dispersed and precipitated.
- the fine carbide containing Ti and V does not include a single carbide in the structure, but refers to a composite carbide in which both Ti and V are contained in one fine carbide.
- Average particle diameter of fine carbides containing Ti and V less than 10 nm
- the average particle diameter of fine carbides is extremely important for imparting desired strength to a hot-rolled steel sheet.
- the fine carbides containing Ti and V One feature is that the average particle size is less than 10 nm.
- the average particle size of the fine carbide containing Ti and V is preferably less than 10 nm. More preferably, it is 5 nm or less.
- volume ratio of fine carbides containing Ti and V to the entire structure 0.0050 or more
- the dispersion and precipitation state of fine carbides containing Ti and V is extremely important for imparting the desired strength (tensile strength: 980 MPa or more) to hot-rolled steel sheets.
- fine carbides containing Ti and V and having an average particle diameter of less than 10 nm are dispersed and precipitated so that the volume fraction of the entire structure is 0.0050 or more.
- this volume ratio is less than 0.0050, the amount of fine carbide is small even if the average particle diameter of fine carbide containing Ti and V is less than 10 nm, so that the desired hot-rolled steel sheet strength (tensile strength) It is difficult to reliably ensure (980 MPa or more). Therefore, the volume ratio is preferably 0.0050 or more. More preferably, it is 0.0070 or more.
- the precipitation form of fine carbides containing Ti and V in addition to the row precipitation that is the main precipitation form, even if fine carbides that are randomly precipitated are mixed, the characteristics are affected.
- the form of precipitation is not limited, and various precipitation forms are collectively referred to as dispersion precipitation.
- the ratio of the number of carbides containing Ti with a particle diameter of 30 nm or more to the total number of carbides less than 10% If steel containing Ti with a particle diameter of 30 nm or more is present in the steel sheet, the steel sheet strength becomes unstable. At the same time, workability (stretch flangeability) becomes unstable. Therefore, when there are many such coarse carbides, the above-described effects of the present invention are not exhibited. Therefore, it is preferable that the ratio of the number of the carbides containing Ti having a particle diameter of 30 nm or more to the total number of carbides is less than 10%. More preferably, it is 5% or less.
- C more than 0.05% and not more than 0.13%
- C is an essential element for forming fine carbides and strengthening steel. If the C content is 0.05% or less, fine carbide with a desired structure fraction cannot be secured, and a tensile strength of 980 MPa or more cannot be obtained. On the other hand, if the C content exceeds 0.13%, the strength becomes too high and the workability (stretch flangeability, bending workability) is impaired. Therefore, the C content is preferably more than 0.05% and 0.13% or less. More preferably, it is 0.07% or more and 0.11% or less.
- Si 0.3% or less
- Si is a solid solution strengthening element and is an element effective for increasing the strength of steel.
- the Si content exceeds 0.3%, C precipitation from the ferrite phase is promoted, coarse Fe carbides are likely to precipitate at the grain boundaries, and stretch flangeability is deteriorated.
- the Si content is preferably 0.3% or less. More preferably, it is 0.05% or less.
- Mn 0.5% or more and 2.0% or less
- Mn is a solid solution strengthening element and is an element effective for increasing the strength of steel. It is an element that lowers the Ar 3 transformation point of steel. If the Mn content is less than 0.5%, the Ar 3 transformation point becomes high, the carbide containing Ti is not sufficiently refined, and the amount of solid solution strengthening is not sufficient, so that a tensile strength of 980 MPa or more cannot be obtained. On the other hand, when the Mn content exceeds 2.0%, segregation becomes significant, and a phase other than the ferrite phase, that is, a hard phase is formed, and stretch flangeability is deteriorated. Therefore, the Mn content is preferably 0.5% or more and 2.0% or less. More preferably, it is 1.0% or more and 1.8% or less.
- P 0.025% or less
- P is a solid solution strengthening element and is an element effective for increasing the strength of steel.
- the P content is preferably 0.025% or less. More preferably, it is 0.02% or less.
- S 0.005% or less S is an element that decreases the hot workability (hot rollability), and increases the hot cracking susceptibility of the slab. Degradation of stretch flangeability). Moreover, TiS is formed in the steel, and Ti precipitated as fine carbides is reduced. Therefore, in the present invention, it is preferable to reduce S as much as possible to 0.005% or less.
- N 0.0060% or less
- N is a harmful element in the present invention and is preferably reduced as much as possible.
- the N content is preferably 0.0060% or less.
- Al 0.1% or less
- Al is an element that acts as a deoxidizer. In order to acquire such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.1% reduces stretch flangeability. For this reason, the Al content is preferably Al: 0.1% or less.
- Ti 0.07% to 0.18% Ti is one of the important elements in the present invention. Ti is an element that contributes to increasing the strength of steel sheets while ensuring excellent workability (stretch flangeability) by forming composite carbide with V. If the Ti content is less than 0.07%, the desired hot-rolled steel sheet strength cannot be ensured. On the other hand, when the Ti content exceeds 0.18%, coarse TiC (a carbide containing Ti) is likely to precipitate, and the strength of the steel sheet becomes unstable. Therefore, the Ti content is preferably 0.07% or more and 0.18% or less. More preferably, it is 0.10% or more and 0.16% or less.
- V more than 0.13% and not more than 0.30% V is one of the important elements in the present invention.
- V is an element that contributes to increasing the strength of a steel sheet while ensuring excellent elongation and stretch flangeability by forming composite carbide with Ti.
- V is an extremely important element that forms a composite carbide with Ti to stably exhibit the excellent mechanical properties (strength) of the steel sheet of the present invention and contributes to the material uniformity of the steel sheet. If the V content is 0.13% or less, coarse TiC that adversely affects the strength, stretch flangeability and material uniformity of the steel sheet tends to occur. On the other hand, if the V content exceeds 0.30%, the strength becomes excessively high and the workability (stretch flangeability) decreases. Therefore, the V content is preferably more than 0.13% and 0.30% or less.
- the hot-rolled steel sheet of the present invention contains Ti and V in the above-described range and satisfying the expression (1). 0.25 ⁇ Ti + V ⁇ 0.45... (1) (Ti, V: content of each element (mass%))
- Ti, V content of each element (mass%)
- the above formula (1) is a requirement that must be satisfied in order to impart stable strength and workability (stretch flangeability, bending workability) to the steel sheet.
- the total content of Ti and V is 0.25% or less, it is difficult to make the volume ratio of fine carbides containing Ti and V to the entire structure 0.0050 or more.
- the total content of Ti and V exceeds 0.45%, the steel sheet strength becomes too high, and the workability (stretch flangeability) is reduced.
- the total content (%) of Ti and V is preferably more than 0.25% and 0.45% or less. This makes it difficult to produce coarse TiC in the steel sheet, and fine carbides containing Ti and V are produced in the desired volume ratio, thereby stabilizing the steel sheet strength and workability (stretch flangeability, bending workability). Will also stabilize.
- Solid solution V 0.05% or more and less than 0.15%
- Solid solution V mainly dissolves at the ferrite grain boundaries and strengthens the grain boundaries, so it works extremely effectively to improve the workability of the steel sheet, especially the bending workability. To do.
- the content of the solute V is less than 0.05%, the above effect is not sufficiently exhibited.
- the content of solute V is 0.15% or more, fine carbides containing Ti and V necessary for ensuring the desired steel plate strength (tensile strength: 980 MPa or more) cannot be obtained sufficiently. Therefore, it is preferable that the amount of solute V is 0.05% or more and less than 0.15% of V contained in the hot-rolled steel sheet.
- Nb and Mo are combined with Ti and V to form a composite carbide and contribute to obtaining a desired strength. Therefore, Nb and Mo can be contained as necessary. In order to obtain such effects, it is preferable to contain Nb and Mo in a total amount of 0.005% or more. However, since the elongation tends to deteriorate if it is excessively contained, it is preferable that one or two of Nb and Mo be made 1% or less in total. More preferably, it is 0.5% or less.
- At least one selected from the group consisting of Cu, Sn, Ni, Ca, Mg, Co, As, Cr, W, B, Pb, Ta, and Sb is 1% in total. You may contain below. Preferably it is 0.5% or less. Components other than the above include Fe and inevitable impurities.
- a plated layer may be provided on the surface of the hot-rolled steel sheet having the structure and composition as described above.
- the kind of the plating layer is not particularly limited, and any conventionally known ones such as an electroplating layer, a hot dip galvanizing layer, and an alloyed hot dip galvanizing layer can be applied.
- the steel material is subjected to hot rolling consisting of rough rolling and finish rolling, and after finishing rolling, the steel material is cooled and wound to form a hot-rolled steel sheet.
- the finish rolling temperature of finish rolling is 880 ° C. or higher
- the average cooling rate of cooling is 10 ° C./s or higher
- the winding temperature of winding is 550 ° C. or higher and lower than 700 ° C.
- the melting method of the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Moreover, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation, but a slab can also be formed by a known casting method such as ingot-bundling rolling or thin slab continuous casting. good. In addition, when hot-rolling the slab after casting, the slab may be rolled after being reheated in a heating furnace, and when the temperature is maintained at a predetermined temperature or higher, direct rolling without heating the slab You may do it.
- the steel material obtained as described above is subjected to rough rolling and finish rolling.
- the heating temperature of the steel material is 1150 ° C. or higher and 1300 ° C. or lower.
- the step of heating the steel material before rough rolling can be omitted. It is.
- the rough rolling conditions are not particularly limited.
- Finishing rolling temperature 880 ° C. or more Optimization of the finishing rolling temperature is important for maintaining the stretch flangeability and bending workability of the hot-rolled steel sheet and for reducing the rolling load of finishing rolling.
- the finish rolling temperature is preferably 880 ° C. or higher. More preferably, it is 900 ° C. or higher. If the finish rolling temperature is excessively high, wrinkles due to secondary scale on the surface of the steel sheet are likely to occur. Therefore, the finish rolling temperature is desirably 1000 ° C. or lower.
- Average cooling rate 10 ° C / s or more If the average cooling rate from the finish rolling temperature to the coiling temperature is less than 10 ° C / s after finishing rolling, the Ar 3 transformation point becomes high, and carbides containing Ti and V Is not sufficiently refined. Therefore, the average cooling rate is preferably 10 ° C./s or more. More preferably, it is 30 ° C./s or more.
- Winding temperature 550 ° C or higher and lower than 700 ° C
- the optimization of the winding temperature is that the desired structure of the hot rolled steel sheet across the entire width direction of the steel sheet, that is, the ferrite phase is 95% or more in terms of the area ratio to the entire structure. This is extremely important in forming a structure in which a matrix and fine carbides containing Ti and V and having an average particle diameter of less than 10 nm are dispersed and precipitated to suppress carbides containing Ti and a particle diameter of 30 nm or more.
- the winding temperature is preferably 550 ° C. or higher and lower than 700 ° C. More preferably, it is 600 ° C. or higher and 650 ° C. or lower.
- the hot-rolled steel sheet obtained as described above may be plated to form a plating layer on the surface of the hot-rolled steel sheet.
- the kind of the plating treatment is not particularly limited, and plating treatment such as hot dip galvanization treatment and alloying hot dip galvanization treatment can be performed according to a conventionally known method.
- the material has excellent workability (stretch flangeability, bending workability) suitable as a material for automobile parts with a tensile strength of 980 MPa or more and a complicated cross-sectional shape, and is uniform and stable.
- it is important to disperse and precipitate fine carbides containing Ti and V and having an average particle diameter of less than 10 nm over the entire width direction of the steel sheet. It is also important to suppress precipitation of carbides containing Ti and having a particle diameter of 30 nm or more over the entire width direction of the steel sheet.
- the content of each of Ti and V in the steel that is the material of the hot-rolled steel sheet is specified, and the total content (Ti + V) is specified to be more than 0.25% and 0.45% or less, and Ti
- the composition is controlled such that the precipitation of carbides having a particle size of 30 nm or more is suppressed, and fine carbides having an average particle size of less than 10 nm are sufficiently dispersed and precipitated. Therefore, according to the present invention, when manufacturing a hot-rolled steel sheet, fine carbide having an average particle diameter of less than 10 nm is sufficiently provided at the end in the width direction of the steel sheet, where the material tends to become unstable in the cooling process after finishing rolling. It becomes possible to disperse and precipitate.
- the present invention it becomes possible to disperse and precipitate fine carbides having an average particle diameter of less than 10 nm over the entire width direction of the hot-rolled steel sheet, and uniform and good characteristics (tensile strength over the entire width direction of the hot-rolled steel sheet. , Stretch flangeability, bending workability).
- Molten steel having the composition shown in Table 1 was melted and continuously cast by a generally known technique to obtain a slab (steel material) having a thickness of 250 mm. These slabs were heated to 1250 ° C., subjected to rough rolling and finish rolling, and after finishing rolling, cooled and wound, hot rolled steel sheets having a thickness of 2.3 mm and a width of 1400 mm (hot rolling numbers in Table 2: 1 to 24).
- Table 2 shows the finish rolling temperature of the finish rolling, the average cooling rate of cooling (the average cooling rate from the finish rolling temperature to the winding temperature), and the winding temperature.
- a part of the hot-rolled steel sheet obtained as described above was pickled to remove the surface scale, and then annealed (annealing temperature: 680 ° C, holding time at annealing temperature: 120 s), immersed in hot dip galvanizing bath (plating composition: 0.1% Al-Zn, plating bath temperature: 480 ° C), hot dip galvanized film with an adhesion amount of 45 g / m 2 per side was formed on both sides of a hot-rolled steel sheet to obtain a hot-dip galvanized steel sheet. Further, a part of the obtained hot-dip galvanized steel sheet (hot rolling number: 5 in Table 2) was subjected to alloying treatment (alloying temperature: 520 ° C.) to obtain an alloyed hot-dip galvanized steel sheet.
- Samples are taken from the hot-rolled steel sheet (hot-rolled steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet) obtained as described above, microstructure observation, precipitate observation, chemical analysis, tensile test, hole expansion test, Bending test, ferrite phase area ratio, average particle size and volume ratio of fine carbides containing Ti and V, ratio of the number of carbides containing Ti and particles of 30 nm or more to the total number of carbides, containing solid solution V
- the amount, tensile strength, hole expansion ratio (stretch flangeability), and limit bending radius ratio (limit ⁇ ratio of bend radius) (bending workability) were determined.
- the test method was as follows.
- the volume of the carbide containing V was determined, the volume was determined by dividing this by the density of the carbide including Ti and V, and this volume was divided by the volume of the dissolved steel.
- the density of the carbide containing Ti and V was obtained by correcting the TiC density (4.25 g / cm 3 ) assuming that some Ti atoms in the TiC crystal were substituted with V atoms. That is, Ti and V in carbides containing Ti and V were measured by extraction residue analysis, the ratio of V replacing Ti was determined, and corrected considering the atomic weight of Ti and V.
- the ratio (%) of the number of carbides containing Ti and particles with a particle size of 30 nm or more to the total number of carbides is calculated from the total number of carbides N (total) based on TEM observation results for 30 fields at 260,000 times.
- the area of each carbide particle is measured by image processing, the particle diameter is calculated by circular approximation, and the number N (30) of carbides having a particle diameter of 30 nm or more is obtained, and N (30) / N (total) ⁇ 100 (%).
- test piece is taken from the obtained hot-rolled steel sheet, dissolved in an electrolytic solution, and an inductively coupled plasma (ICP) emission spectrometry, ICP mass spectrometry, or atomic absorption analysis method using the electrolytic solution as an analysis solution.
- ICP inductively coupled plasma
- Each of the hot-rolled steel sheets of the present invention has excellent mechanical properties such as a high strength with a tensile strength of 980 MPa or more, a hole expansion ratio ⁇ : 40% or more, and a limit bending radius ratio: 0.9 or less. The characteristics are shown. Moreover, the hot-rolled steel sheets of the examples of the present invention all have a strength difference of 15 MPa or less between the central part (central part) of the steel sheet and the 1/4 width position, and 1 in the central part (central part) of the steel sheet. The difference in the hole expansion ratio with the / 4 width position was within 10%, and the difference in the critical bending radius ratio was 0.15 or less, indicating the stability of mechanical properties and the uniformity of strength and workability.
- the hot-rolled steel sheet of the comparative example outside the scope of the present invention does not have a desired tensile strength, hole expansion ratio, or critical bending radius ratio, or the difference in strength and workability in the steel sheet width direction. Became larger.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
本発明は、上記した従来技術が抱える問題を有利に解決し、輸送機材や構造材、特に自動車部品用として好適な、980MPa以上の引張強さと良好な加工性(特に伸びフランジ性、曲げ加工性)を兼ね備え、しかも強度と加工性の均一性に優れた高張力熱延鋼板およびその製造方法を提供することを目的とする。
1)鋼板組織を転位密度が低い加工性に優れたフェライト単相組織とし、更に、微細炭化物を分散析出させて析出強化すると、熱延鋼板の強度が向上し、伸びフランジ性も良好になること。
2)加工性に優れるとともに引張強さ980MPa以上の高強度を有する熱延鋼板を得るためには、析出強化に有効な平均粒子径が10nm未満である微細炭化物を所望の体積比で分散析出させる必要があること。
3)析出強化に寄与する微細炭化物としては、強度確保等の観点からTiおよびVを含む炭化物が有効であること。
5)熱延鋼板幅方向の強度を均一化するには、析出強化元素であるTi、Vの含有量を規定することで、鋼板の幅方向端部での組織変化を抑制して強度低下を抑制することが有効であること。
6)熱延鋼板に所定量の固溶Vが存在すると、鋼板の曲げ加工性が安定的に向上すること。
7)鋼板組織のマトリックスを実質的にフェライト単相とし、且つ、上記の如く10nm未満であるTiおよびVを含む微細炭化物を所望の体積比で分散析出させるためには、熱延鋼板製造時の巻取り温度を所定の温度に制御することが重要であること。
[1] 質量%で、C :0.05%超0.13%以下、Si:0.3%以下、Mn:0.5%以上2.0%以下、P :0.025%以下、S :0.005%以下、N :0.0060%以下、Al:0.1%以下、Ti:0.07%以上0.18%以下、V :0.13%超0.30%以下を含み、TiおよびV含有量が下記(1)式を満足し、固溶V:0.05%以上0.15%未満であり、残部がFeおよび不可避的不純物を含む成分組成を有し、フェライト相の組織全体に対する面積率が95%以上であるマトリックス中に、TiおよびVを含み平均粒子径(particle size)が10nm未満である微細炭化物が分散析出し、該微細炭化物の組織全体に対する体積比が0.0050以上であり、Tiを含み粒子径が30nm以上である炭化物の全炭化物総数に占める個数の割合が10%未満である組織を有する、 引張強さが980MPa以上の高張力熱延鋼板。
0.25 < Ti+V ≦ 0.45 … (1)
(Ti、V:各元素の含有量(質量%))
[2] 前記成分組成がさらに、質量%でNb、Moからなる群から選ばれる少なくとも1種を合計で1%以下含む[1]に記載の高張力熱延鋼板。
[3] 前記成分組成がさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、W、B、Pb、Ta、Sbからなる群から選ばれる少なくとも1種を合計で1%以下含む[1]に記載の高張力熱延鋼板。
[4] 前記成分組成がさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、W、B、Pb、Ta、Sbからなる群から選ばれた少なくとも1種を合計で1%以下含む[2]に記載の高張力熱延鋼板。
[5] 表面にめっき層を有する[1]~[4]のいずれか1項に記載の高張力熱延鋼板。
[6] 穴拡げ率が40%以上である[1]~[4]のいずれか1項に記載の高張力熱延鋼板。
[7] 限界曲げ半径比が0.9以下である[6]に記載の高張力熱延鋼板。
[8] 前記鋼板の板幅中央位置と1/4幅位置における引張強度の差が15MPa以下、前記位置(複)における穴拡げ率の差が10%以下、前記位置(複)における限界曲げ半径比の差が0.15以下である[7]に記載の高張力熱延鋼板。
[9] [1]~[4]のいずれか1項に記載の成分組成を有する鋼素材を準備し、前記鋼素材に、粗圧延と圧延温度880℃以上の仕上げ圧延からなる熱間圧延を施して熱延鋼板とし、前記仕上げ圧延終了後、前記熱延鋼板を平均冷却速度10℃/s以上で冷却し、550℃以上700℃未満で巻き取る、引張強さが980MPa以上の高張力熱延鋼板の製造方法。
[10] 前記巻取った後に、前記熱延鋼板の表面にめっき処理する[9]に記載の方法。
まず、本発明鋼板の組織の限定理由について説明する。
本発明の熱延鋼板は、フェライト相が組織全体に対する面積率で95%以上であるマトリックス中に、TiおよびVを含み平均粒子径が10nm未満である微細炭化物が分散析出し、該微細炭化物の組織全体に対する体積比が0.0050以上であり、Tiを含み粒子径が30nm以上である炭化物の全炭化物総数に占める個数の割合が10%未満である組織を有する熱延鋼板、或いは該熱延鋼板の表面にめっき層を有する熱延鋼板である。
本発明においては、熱延鋼板の加工性(伸びフランジ性)を維持する上でフェライト相の形成が必須となる。熱延鋼板の加工性の向上には、熱延鋼板の組織を、転位密度の低い延性に優れたフェライト相とすることが有効である。特に、伸びフランジ性の向上には、熱延鋼板の組織をフェライト単相とすることが好ましいが、完全なフェライト単相でない場合であっても、実質的にフェライト単相組織、すなわち、組織全体に対する面積率で95%以上がフェライト相であれば、上記の効果を十分に発揮する。したがって、フェライト相の組織全体に対する面積率は95%以上であることが好ましい。より好ましくは97%以上である。
TiおよびVを含む炭化物は、その平均粒子径が極めて小さい微細炭化物となる傾向が強い。そのため、熱延鋼板中に微細炭化物を分散析出させることにより熱延鋼板の高強度化を図る本発明においては、分散析出させる微細炭化物を、TiおよびVを含む微細炭化物であることが好ましい。
Tiは炭化物形成傾向が強いため、Vを含まない場合はTi炭化物が粗大化し易く、鋼板の高強度化への寄与度が低くなる。それゆえ、鋼板に所望の強度(引張強さ:980MPa以上)を付与するために、より多くのTiを添加してTi炭化物を形成することが必要となる。その一方で、Tiを過剰に添加すると、加工性(伸びフランジ性)の低下が懸念され、断面形状が複雑な足回り部品等の素材としても適用可能な優れた加工性が得られなくなる。
熱延鋼板に所望の強度を付与する上では微細炭化物の平均粒子径が極めて重要であり、本発明においてはTiおよびVを含む微細炭化物の平均粒子径を10nm未満とすることが一つの特徴である。
マトリックス中に微細炭化物が析出すると、その微細炭化物が、鋼板に変形が加わった際に生じる転位の移動に対する抵抗として作用することにより、熱延鋼板が強化される。その効果は微細炭化物が小さいほど顕著となり、
微細炭化物の平均粒子径を10nm未満とすると、上記の作用がより一層顕著となる。したがって、TiおよびVを含む微細炭化物の平均粒子径は10nm未満であることが好ましい。より好ましくは5nm以下である。
熱延鋼板に所望の強度(引張強さ:980MPa以上)を付与する上ではTiおよびVを含む微細炭化物の分散析出状態も極めて重要であり、本発明においては、TiおよびVを含み平均粒子径が10nm未満である微細炭化物の、組織全体に対する組織分率が体積比で0.0050以上となるように分散析出させる。この体積比が0.0050未満である場合には、たとえTiおよびVを含む微細炭化物の平均粒子径が10nm未満であっても、該微細炭化物の量が少ないため、所望の熱延鋼板強度(引張強さ:980MPa以上)を確実に確保することが困難となる。したがって、上記体積比は0.0050以上であることが好ましい。より好ましくは、0.0070以上である。
鋼板中に、粒子径が30nm以上であるTiを含む炭化物が存在すると、鋼板強度が不安定になるとともに加工性(伸びフランジ性)も不安定となる。そのため、このような粗大な炭化物が多く存在すると、上記した本発明の効果が発現されない。したがって、粒子径が30nm以上であるTiを含む炭化物の全炭化物総数に占める個数の割合を10%未満であることが好ましい。より好ましくは5%以下である。
C :0.05%超0.13%以下
Cは、微細炭化物を形成し、鋼を強化する上で必須の元素である。C含有量が0.05%以下であると所望の組織分率の微細炭化物を確保することができず、980MPa以上の引張強さが得られなくなる。一方、C含有量が0.13%を超えると、強度が高くなりすぎ、加工性(伸びフランジ性、曲げ加工性)を損なう。したがって、C含有量は0.05%超0.13%以下であることが好ましい。より好ましくは0.07%以上0.11%以下である。
Siは、固溶強化元素であり、鋼の高強度化に有効な元素である。しかしながら、Si含有量が0.3%を超えると、フェライト相からのC析出が促進され、粒界に粗大なFe炭化物が析出し易くなり、伸びフランジ性が低下する。また、Si含有量が過剰になると、鋼板のめっき性にも悪影響を及ぼす。したがって、Si含有量は0.3%以下であることが好ましい。より好ましくは0.05%以下である。
Mnは、固溶強化元素であり、鋼の高強度化に有効な元素である。また、鋼のAr3変態点を低下させる元素である。Mn含有量が0.5%未満ではAr3変態点が高くなり、Tiを含む炭化物が十分に微細化されず、固溶強化量も十分でないため980MPa以上の引張強さが得られない。一方、Mn含有量が2.0%を超えると偏析が顕著になり、且つ、フェライト相以外の相、すなわち硬質相が形成され、伸びフランジ性が低下する。したがって、Mn含有量は0.5%以上2.0%以下であることが好ましい。より好ましくは1.0%以上1.8%以下である。
Pは、固溶強化元素であり鋼の高強度化に有効な元素であるが、P含有量が0.025%を超えると偏析が顕著になり伸びフランジ性が低下する。したがって、P含有量は0.025%以下であることが好ましい。より好ましくは0.02%以下である。
Sは、熱間加工性(熱間圧延性)を低下させる元素であり、スラブの熱間割れ感受性を高めるほか、鋼中にMnSとして存在して熱延鋼板の加工性(伸びフランジ性)を劣化させる。また、鋼中にTiSを形成し、微細炭化物として析出するTiを減じる。そのため、本発明ではSを極力低減し、0.005%以下とすることが好ましい。
Nは、本発明においては有害な元素であり、極力低減することが好ましい。特にN含有量が0.0060%を超えると、鋼中に粗大な窒化物が生成することに起因して、伸びフランジ性が低下する。したがって、N含有量は0.0060%以下であることが好ましい。
Alは、脱酸剤として作用する元素である。このような効果を得るためには0.001%以上含有することが望ましいが、0.1%を超える含有は、伸びフランジ性を低下させる。このため、Al含有量はAl:0.1%以下であることが好ましい。
Tiは、本発明において重要な元素のひとつである。Tiは、Vと複合炭化物を形成することにより、優れた加工性(伸びフランジ性)を確保しつつ鋼板の高強度化に寄与する元素である。Ti含有量が0.07%未満では、所望の熱延鋼板強度を確保することができない。一方、Ti含有量が0.18%を超えると、粗大なTiC(Tiを含む炭化物)が析出し易くなり、鋼板の強度が不安定となる。したがって、Ti含有量は0.07%以上0.18%以下であることが好ましい。より好ましくは0.10%以上0.16%以下である。
Vは、本発明において重要な元素のひとつである。上記したように、Vは、Tiと複合炭化物を形成することにより、優れた伸びおよび伸びフランジ性を確保しつつ鋼板の高強度化に寄与する元素である。また、Vは、Tiと複合炭化物を形成して本発明鋼板の優れた機械的特性(強度)を安定的に発現させ、鋼板の材質均一性に寄与する極めて重要な元素である。V含有量が0.13%以下では、鋼板の強度、伸びフランジ性や材質均一性に悪影響を及ぼす粗大なTiCが生じ易くなる。一方、V含有量が0.30%超になると、強度が過剰に高くなり、加工性(伸びフランジ性)の低下を招く。したがって、V含有量は0.13%超0.30%以下であることが好ましい。
0.25 < Ti+V ≦ 0.45 … (1)
(Ti、V:各元素の含有量(質量%))
上記(1)式は、鋼板に安定的な強度および加工性(伸びフランジ性、曲げ加工性)を付与するために満足すべき要件である。TiとVの合計含有量が0.25%以下になると、TiおよびVを含む微細炭化物の組織全体に対する体積比を0.0050以上とすることが困難となる。一方、TiとVの合計含有量が0.45%を超えると、鋼板強度が高くなり過ぎて加工性(伸びフランジ性)の低下を招く。そのため、TiとVの合計含有量(%)は0.25%超0.45%以下であることが好ましい。これにより、鋼板中に粗大なTiCが生成し難くなり、TiおよびVを含む微細炭化物が所望の体積比で生成することで、鋼板強度が安定し、加工性(伸びフランジ性、曲げ加工性)も安定化する。
固溶Vは、主にフェライト粒界に固溶し、該粒界を強化することで、鋼板の加工性、特に曲げ加工性の向上に極めて有効に作用する。熱延鋼板に含有されるVのうち、固溶Vの含有量が0.05%未満である場合には上記の効果が十分に発現しない。一方、固溶Vの含有量が0.15%以上になると、所望の鋼板強度(引張強さ:980MPa以上)を確保するために必要なTiおよびVを含む微細炭化物が十分に得られなくなる。したがって、熱延鋼板に含有されるVのうち、固溶V量は0.05%以上0.15%未満であることが好ましい。
鋼素材に、粗圧延と仕上げ圧延からなる熱間圧延を施し、仕上げ圧延終了後、冷却し、巻き取り、熱延鋼板とする。この際、仕上げ圧延の仕上げ圧延温度を880℃以上とし、冷却の平均冷却速度を10℃/s以上とし、巻き取りの巻取り温度を550℃以上700℃未満とすることを特徴とする。また、このようにして得られた熱延鋼板にめっき処理を施してもよい。
仕上げ圧延温度の適正化は、熱延鋼板の伸びフランジ性および曲げ加工性の維持、並びに、仕上げ圧延の圧延荷重の低減化を図るうえで重要となる。仕上げ圧延温度が880℃未満であると、熱延鋼板表層の結晶粒が粗大粒となり、鋼板の加工性(伸びフランジ性、曲げ加工性)が損なわれる。したがって、仕上げ圧延温度は880℃以上とすることが好ましい。より好ましくは900℃以上である。なお、仕上げ圧延温度が過剰に高くなると、鋼板表面の二次スケールによる疵が発生し易くなるため、仕上げ圧延温度は1000℃以下とすることが望ましい。
仕上げ圧延終了後、仕上げ圧延温度から巻取り温度までの平均冷却速度が10℃/s未満であると、Ar3変態点が高くなり、TiおよびVを含む炭化物が十分に微細化されない。したがって、上記平均冷却速度は10℃/s以上とすることが好ましい。より好ましくは30℃/s以上である。
巻取り温度の適正化は、熱延鋼板の組織を、鋼板幅方向全域にわたり所望の組織、すなわち、フェライト相が組織全体に対する面積率で95%以上であるマトリックスと、TiおよびVを含み平均粒子径が10nm未満である微細炭化物が分散析出し、Tiを含み粒子径が30nm以上である炭化物を抑制した組織とするうえで、極めて重要である。
本発明においては、熱延鋼板の素材となる鋼中のTi、V各々の含有量を規定するとともに、これらの合計含有量(Ti+V)を0.25%超0.45%以下に規定しており、Tiを含み粒子径が30nm以上である炭化物の析出が抑制され、平均粒子径が10nm未満である微細炭化物が十分に分散析出するような組成に制御されている。そのため、本発明によると、熱延鋼板を製造するに際し、仕上げ圧延終了後の冷却過程において材質が不安定となり易い鋼板幅方向端部にも、平均粒子径が10nm未満である微細炭化物を十分に分散析出させることが可能となる。すなわち、本発明によると、熱延鋼板の幅方向全域にわたって平均粒子径が10nm未満である微細炭化物を分散析出させることが可能となり、熱延鋼板の幅方向全域にわたり均一且つ良好な特性(引張強さ、伸びフランジ性、曲げ加工性)が付与される。
続いて、上記のようにして得られた熱延鋼板の一部(表2の熱延番号:3,5,15)を、酸洗して表面スケールを除去したのち、焼鈍し(焼鈍温度:680℃、焼鈍温度における保持時間:120s)、溶融亜鉛めっき浴に浸漬し(めっき組成:0.1%Al-Zn、めっき浴温度:480℃)、片面当たり付着量45g/m2の溶融亜鉛めっき皮膜を熱延鋼板の両面に形成して溶融亜鉛めっき鋼板とした。更に、得られた溶融亜鉛めっき鋼板の一部(表2の熱延番号:5)については、合金化処理を行い(合金化温度:520℃)、合金化溶融亜鉛めっき鋼板とした。
得られた熱延鋼板から試験片を採取し、試験片の圧延方向断面を機械的に研磨し、ナイタールで腐食した後、走査型電子顕微鏡(SEM)で倍率:3000倍にて撮影した組織写真(SEM写真)を用い、画像解析装置によりフェライト相、フェライト相以外の組織の種類、および、それらの面積率を求めた。
得られた熱延鋼板から作製した薄膜を、透過型電子顕微鏡(TEM)によって倍率260000倍で観察し、TiおよびVを含む微細炭化物の平均粒子径と体積比を求めた。
TiおよびVを含む微細炭化物の粒子径は、260000倍での30視野の観察結果をもとに、画像処理で個々の粒子の面積を求め、円近似で粒子径を求めた。求めた各粒子の粒子径を算術平均し、平均粒子径とした。
TiおよびVを含む微細炭化物の体積比は、10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メタノール溶液(AA溶液)を用いて地鉄を電解し、ろ過捕集した残渣の抽出残渣分析によりTiおよびVを含む炭化物の重量を求め、これをTiおよびVを含む炭化物の密度で割ることによって体積を求め、この体積を溶解した地鉄の体積で除することによって求めた。
TiおよびVを含む炭化物の密度はTiCの密度(4.25g/cm3)をTiC結晶のTi原子の一部がV原子で置換されているものとして補正し求めた。すなわち、抽出残渣分析によりTiおよびVを含む炭化物中のTiおよびVを測定し、Tiと置換しているVの割合を求め、TiとVの原子量を考慮して補正した。
得られた熱延鋼板から試験片を採取し、電解液中で溶解し、電解液を分析溶液として誘導結合プラズマ(ICP)発光分析法、ICP質量分析、或いは原子吸収分析法で固溶V量を分析した。
得られた熱延鋼板の板幅中央位置と1/4幅位置から、圧延方向に対して直角方向を引張方向とするJIS 5号引張試験片(JIS Z 2201)を採取し、JIS Z 2241の規定に準拠した引張試験を行い、引張強さ(TS)を測定した。
得られた熱延鋼板の板幅中央位置と1/4幅位置から、試験片(大きさ:130mm×130mm)を採取し、該試験片にポンチにより初期直径d0:10mmφの穴を打ち抜き加工で形成した。これら試験片を用いて、穴拡げ試験を実施した。該穴に頂角:60°の円錐ポンチを挿入し、該穴を押し広げ、亀裂が鋼板(試験片)を貫通したときの穴の径dを測定し、次式で穴拡げ率λ(%)を算出した。
穴拡げ率λ(%)={(d-d0)/d0}×100
得られた熱延鋼板の板幅中央部と1/4幅位置から、試験片の長手方向が圧延方向に対して直角になるように幅50mm長さ100mmの曲げ試験片を採取し、JIS Z 2248の規定に準拠したVブロック法(曲げ角:90°)で曲げ試験を実施した。割れが発生しない最小の曲げ半径R(mm)を板厚t(mm)で除した値、R/tを、鋼板の限界曲げ半径比として算出した。
得られた結果を表3に示す。
一方、本発明の範囲を外れた比較例の熱延鋼板は、所望の引張強さ、或いは穴拡げ率、限界曲げ半径比が得られていないか、鋼板幅方向での強度と加工性の差が大きくなった。
Claims (10)
- 質量%で、
C :0.05%超0.13%以下、
Si:0.3%以下、
Mn:0.5%以上2.0%以下、
P :0.025%以下、
S :0.005%以下、
N :0.0060%以下、
Al:0.1%以下、
Ti:0.07%以上0.18%以下、
V :0.13%超0.30%以下を含有し、
TiおよびV含有量が下記(1)式を満足し、
固溶V:0.05%以上0.15%未満であり、
残部がFeおよび不可避的不純物を含む成分組成を有し、
フェライト相の組織全体に対する面積率が95%以上であるマトリックス中に、TiおよびVを含み平均粒子径(particle size)が10nm未満である微細炭化物が分散析出し、
該微細炭化物の組織全体に対する体積比が0.0050以上であり、
Tiを含み粒子径が30nm以上である炭化物の全炭化物総数に占める個数の割合が10%未満である組織を有する、
引張強さが980MPa以上の高張力熱延鋼板。
0.25 < Ti+V ≦ 0.45 … (1)
(Ti、V:各元素の含有量(質量%)) - 前記成分組成がさらに、質量%でNb、Moからなる群から選ばれる少なくとも1種を合計で1%以下含む請求項1に記載の高張力熱延鋼板。
- 前記成分組成がさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、W、B、Pb、Ta、Sbからなる群から選ばれる少なくとも1種を合計で1%以下含有する請求項1に記載の高張力熱延鋼板。
- 前記成分組成がさらに、質量%で、Cu、Sn、Ni、Ca、Mg、Co、As、Cr、W、B、Pb、Ta、Sbからなる群から選ばれる少なくとも1種を合計で1%以下含む請求項2に記載の高張力熱延鋼板。
- 表面にめっき層を有する請求項1~4のいずれか1項に記載の高張力熱延鋼板。
- 穴拡げ率が40%以上である請求項1~4のいずれか1項に記載の高張力熱延鋼板。
- 限界曲げ半径比が0.9以下である請求項6に記載の高張力熱延鋼板。
- 鋼板の板幅中央位置と1/4幅位置における引張強度の差が15MPa以下、前記位置(複)における穴拡げ率の差が10%以下、前記位置(複)における限界曲げ半径比の差が0.15以下である請求項7に記載の高張力熱延鋼板。
- 請求項1~4のいずれか1項に記載の成分組成を有する鋼素材を準備し、
前記鋼素材に、粗圧延と圧延温度880℃以上の仕上げ圧延からなる熱間圧延を施して熱延鋼板とし、
前記仕上げ圧延終了後、前記熱延鋼板を平均冷却速度10℃/s以上で冷却し、
550℃以上700℃未満で巻き取る、
引張強さが980MPa以上の高張力熱延鋼板の製造方法。 - 前記巻取った後に、前記熱延鋼板の表面にめっき処理する請求項9に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280054899.4A CN103917680B (zh) | 2011-11-08 | 2012-11-06 | 高张力热轧钢板及其制造方法 |
IN840KON2014 IN2014KN00840A (ja) | 2011-11-08 | 2012-11-06 | |
EP12847373.3A EP2759613B1 (en) | 2011-11-08 | 2012-11-06 | High-tensile-strength hot-rolled steel sheet and method for producing same |
US14/355,114 US20140305550A1 (en) | 2011-11-08 | 2012-11-06 | High strength hot rolled steel sheet and method for producing the same |
KR1020147012273A KR20140073572A (ko) | 2011-11-08 | 2012-11-06 | 고장력 열연 강판 및 그 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011244269A JP5321671B2 (ja) | 2011-11-08 | 2011-11-08 | 強度と加工性の均一性に優れた高張力熱延鋼板およびその製造方法 |
JP2011-244269 | 2011-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069251A1 true WO2013069251A1 (ja) | 2013-05-16 |
Family
ID=48289344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/007088 WO2013069251A1 (ja) | 2011-11-08 | 2012-11-06 | 高張力熱延鋼板およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20140305550A1 (ja) |
EP (1) | EP2759613B1 (ja) |
JP (1) | JP5321671B2 (ja) |
KR (1) | KR20140073572A (ja) |
CN (1) | CN103917680B (ja) |
IN (1) | IN2014KN00840A (ja) |
TW (1) | TWI486459B (ja) |
WO (1) | WO2013069251A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015160986A (ja) * | 2014-02-27 | 2015-09-07 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
WO2017110579A1 (ja) * | 2015-12-22 | 2017-06-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2022070621A1 (ja) | 2020-09-29 | 2022-04-07 | 日本製鉄株式会社 | 熱間圧延鋼板 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101638715B1 (ko) | 2012-01-31 | 2016-07-11 | 제이에프이 스틸 가부시키가이샤 | 발전기 림용 열연 강판 및 그 제조 방법 |
JP5610003B2 (ja) * | 2013-01-31 | 2014-10-22 | Jfeスチール株式会社 | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 |
JP6071703B2 (ja) | 2013-03-29 | 2017-02-01 | 三菱重工業株式会社 | ガス内燃機関のガス漏チェック装置とその方法 |
JP5971281B2 (ja) * | 2013-06-14 | 2016-08-17 | Jfeスチール株式会社 | 加工性および靭性に優れた高強度熱延鋼板の製造方法 |
WO2017029814A1 (ja) * | 2015-08-19 | 2017-02-23 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
KR101899674B1 (ko) | 2016-12-19 | 2018-09-17 | 주식회사 포스코 | 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법 |
CN110402297B (zh) * | 2017-03-10 | 2022-04-12 | 杰富意钢铁株式会社 | 高强度热轧镀敷钢板 |
MX2019011940A (es) | 2017-04-07 | 2019-11-28 | Jfe Steel Corp | Elementos de acero, laminas de acero laminadas en caliente y metodo de produccion de los mismos. |
CN108165881A (zh) * | 2018-01-08 | 2018-06-15 | 哈尔滨工程大学 | 一种800MPa级多特性热轧钢板及其制备方法 |
CN113106337B (zh) * | 2021-03-18 | 2022-08-09 | 唐山科技职业技术学院 | 一种980MPa级以上高扩孔钢及其生产方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002406A (ja) * | 2003-06-11 | 2005-01-06 | Sumitomo Metal Ind Ltd | 高強度熱延鋼板とその製造方法 |
JP2006161112A (ja) | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | 高強度熱延鋼板とその製造方法 |
JP2008285741A (ja) * | 2007-05-21 | 2008-11-27 | Sumitomo Metal Ind Ltd | 高強度熱延鋼板及びその製造方法 |
JP2009052139A (ja) | 2007-07-31 | 2009-03-12 | Jfe Steel Kk | 高強度鋼板 |
JP2011225980A (ja) * | 2010-03-31 | 2011-11-10 | Jfe Steel Corp | 加工性に優れた高張力熱延鋼板およびその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2616360C (en) * | 2005-08-05 | 2014-07-15 | Jfe Steel Corporation | High strength steel sheet and method for manufacturing the same |
JP5076394B2 (ja) * | 2005-08-05 | 2012-11-21 | Jfeスチール株式会社 | 高張力鋼板ならびにその製造方法 |
JP5041083B2 (ja) * | 2010-03-31 | 2012-10-03 | Jfeスチール株式会社 | 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法 |
JP5609223B2 (ja) * | 2010-04-09 | 2014-10-22 | Jfeスチール株式会社 | 温間加工性に優れた高強度鋼板およびその製造方法 |
-
2011
- 2011-11-08 JP JP2011244269A patent/JP5321671B2/ja active Active
-
2012
- 2012-11-06 WO PCT/JP2012/007088 patent/WO2013069251A1/ja active Application Filing
- 2012-11-06 CN CN201280054899.4A patent/CN103917680B/zh not_active Expired - Fee Related
- 2012-11-06 KR KR1020147012273A patent/KR20140073572A/ko not_active Application Discontinuation
- 2012-11-06 IN IN840KON2014 patent/IN2014KN00840A/en unknown
- 2012-11-06 US US14/355,114 patent/US20140305550A1/en not_active Abandoned
- 2012-11-06 EP EP12847373.3A patent/EP2759613B1/en not_active Not-in-force
- 2012-11-07 TW TW101141413A patent/TWI486459B/zh not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005002406A (ja) * | 2003-06-11 | 2005-01-06 | Sumitomo Metal Ind Ltd | 高強度熱延鋼板とその製造方法 |
JP2006161112A (ja) | 2004-12-08 | 2006-06-22 | Sumitomo Metal Ind Ltd | 高強度熱延鋼板とその製造方法 |
JP2008285741A (ja) * | 2007-05-21 | 2008-11-27 | Sumitomo Metal Ind Ltd | 高強度熱延鋼板及びその製造方法 |
JP2009052139A (ja) | 2007-07-31 | 2009-03-12 | Jfe Steel Kk | 高強度鋼板 |
JP2011225980A (ja) * | 2010-03-31 | 2011-11-10 | Jfe Steel Corp | 加工性に優れた高張力熱延鋼板およびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015160986A (ja) * | 2014-02-27 | 2015-09-07 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
WO2017110579A1 (ja) * | 2015-12-22 | 2017-06-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
US11085107B2 (en) | 2015-12-22 | 2021-08-10 | Jfe Steel Corporation | High-strength steel sheet and method of manufacturing the same |
WO2022070621A1 (ja) | 2020-09-29 | 2022-04-07 | 日本製鉄株式会社 | 熱間圧延鋼板 |
KR20230046312A (ko) | 2020-09-29 | 2023-04-05 | 닛폰세이테츠 가부시키가이샤 | 열간 압연 강판 |
US11981984B2 (en) | 2020-09-29 | 2024-05-14 | Nippon Steel Corporation | Hot rolled steel sheet |
Also Published As
Publication number | Publication date |
---|---|
CN103917680A (zh) | 2014-07-09 |
JP2013100572A (ja) | 2013-05-23 |
EP2759613A1 (en) | 2014-07-30 |
TWI486459B (zh) | 2015-06-01 |
US20140305550A1 (en) | 2014-10-16 |
EP2759613A4 (en) | 2015-08-19 |
IN2014KN00840A (ja) | 2015-10-02 |
TW201326422A (zh) | 2013-07-01 |
EP2759613B1 (en) | 2016-10-05 |
CN103917680B (zh) | 2016-01-20 |
JP5321671B2 (ja) | 2013-10-23 |
KR20140073572A (ko) | 2014-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5321671B2 (ja) | 強度と加工性の均一性に優れた高張力熱延鋼板およびその製造方法 | |
JP5041083B2 (ja) | 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法 | |
JP5609786B2 (ja) | 加工性に優れた高張力熱延鋼板およびその製造方法 | |
JP5321672B2 (ja) | 材質均一性に優れた高張力熱延鋼板およびその製造方法 | |
JP5884476B2 (ja) | 曲げ加工性に優れた高張力熱延鋼板およびその製造方法 | |
WO2013099136A1 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP5637225B2 (ja) | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 | |
WO2015118864A1 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP5821864B2 (ja) | バーリング加工性に優れた高強度熱延鋼板およびその製造方法 | |
JP5610089B2 (ja) | 高張力熱延鋼板およびその製造方法 | |
JP5644964B2 (ja) | 高強度熱延鋼板およびその製造方法 | |
JP5594438B2 (ja) | 高張力熱延めっき鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12847373 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012847373 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012847373 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14355114 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147012273 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |