Nothing Special   »   [go: up one dir, main page]

WO2013065472A1 - Integrated power converter apparatus and dc-dc converter apparatus to be used therein - Google Patents

Integrated power converter apparatus and dc-dc converter apparatus to be used therein Download PDF

Info

Publication number
WO2013065472A1
WO2013065472A1 PCT/JP2012/076565 JP2012076565W WO2013065472A1 WO 2013065472 A1 WO2013065472 A1 WO 2013065472A1 JP 2012076565 W JP2012076565 W JP 2012076565W WO 2013065472 A1 WO2013065472 A1 WO 2013065472A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
flow path
power converter
power
opening
Prior art date
Application number
PCT/JP2012/076565
Other languages
French (fr)
Japanese (ja)
Inventor
順二 武藤
秀則 篠原
旭 石井
勝弘 樋口
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013065472A1 publication Critical patent/WO2013065472A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an integrated power converter in which a plurality of power converters are integrated and a DCDC converter used for the same.
  • Electric vehicles and plug-in hybrid vehicles are equipped with high voltage storage batteries and low voltage storage batteries.
  • the high voltage storage battery supplies power to an inverter device for driving a motor for driving a vehicle.
  • Low voltage storage batteries operate accessories such as lights and radios of vehicles.
  • Such a vehicle is equipped with a DCDC converter device that performs power conversion from a high voltage storage battery to a low voltage storage battery or power conversion from a low voltage storage battery to a high voltage storage battery.
  • Patent Document 1 since a cooling mechanism including a cooling pipe is required for each of the inverter device and the DCDC converter device, there is a problem that the cooling path becomes complicated and the space for mounting on the vehicle increases. In addition, there is a problem that the material of the hose is restricted, and it is necessary to control the resistance value of the hose.
  • the problem to be solved by the present invention is to reduce the size of an integrated power converter in which a plurality of power converters are integrated and a DC-DC converter used for the same.
  • an integrated power converter is an integrated power converter in which a first power converter and a second power converter are connected, and the first power converter is: A first power semiconductor module for converting power, a flow path forming portion for forming a flow path through which a cooling refrigerant flows, a first case for storing the first power semiconductor module and the flow path forming body, and the flow path A second power semiconductor module for converting electric power, and a second case for housing the second power semiconductor module, the apparatus including: an inlet pipe connected to each other; and an outlet pipe connected to the flow path.
  • the flow path forming body has an opening connected to the flow path, and the second case is such that the flow path forming body or the first case is formed such that a part of the second case closes the opening. It is fixed to
  • the DCDC converter device comprises a high voltage side switching element connected to a high voltage power supply, a low voltage side semiconductor element connected to a low voltage power supply, and a transformer circuit.
  • FIG. 6 is a circuit block diagram illustrating the configuration of inverter device 200.
  • FIG. 6 is an exploded perspective view of the inverter device 200.
  • (A) is a perspective view of the power semiconductor module 300a of this embodiment.
  • (B) is sectional drawing when the power semiconductor module 300a of this embodiment is cut
  • FIG. FIG. 6 is a view showing the power semiconductor module 300a from which the screw 309 and the second sealing resin 351 have been removed from the state shown in FIG. 5 in order to help understanding.
  • FIG. 1 is a perspective view
  • FIG. 5 is a cross-sectional view as viewed from the direction E, cut along the section D as in FIG. 5 (b).
  • FIG. 5 shows a cross-sectional view before the fin 305 is pressurized and the curved portion 304A is deformed.
  • FIG. (A) is a perspective view
  • FIG. 5 (b) is a cross-sectional view as viewed from the direction E, cut along the cross section D as in FIGS. 5 (b) and 6 (b).
  • FIG. 8 is a perspective view of a power semiconductor module 300a with the first sealing resin 348 and the wiring insulating portion 608 further removed from the state shown in FIG. 7. It is a figure for demonstrating the assembly process of the module primary sealing body 302.
  • FIG. 7 is an exploded perspective view of the bottom of the case 10 of the inverter device 200.
  • FIG. 2 is a diagram showing a circuit configuration of a DCDC converter device 100.
  • FIG. 2 is an exploded perspective view of the DCDC converter device 100.
  • FIG. 3 is a cross-sectional view of a power conversion device in which a DCDC converter device 100 and an inverter device 200 are integrated.
  • FIG. 3 schematically shows the arrangement of components in the case of the DCDC converter device 100.
  • case 111 of DCDC converter device 100 It is a perspective view of case 111 of DCDC converter device 100 concerning other examples. It is a perspective view of case 111 of DCDC converter device 100 concerning other examples. It is sectional drawing seen from the arrow direction of the cross section B of FIG. It is sectional drawing seen from the arrow direction of the cross section C of FIG. It is sectional drawing seen from the arrow direction of the cross section D of FIG.
  • FIGS. 1 and 2 are perspective views showing the appearance of an integrated power converter.
  • the integrated power converter according to the present embodiment integrates the DCDC converter device 100 and the inverter device 200.
  • FIGS. 1 and 2 the DCDC converter device 100 and the inverter device 200 are shown separated.
  • the DCDC converter device 100 is fixed to the case bottom side of the inverter device 200 by a plurality of bolts 113a and 113b.
  • the bolt 113a is a bolt fixed to the DC-DC converter 100 from the side of the inverter 200
  • the bolt 113b is a bolt fixed to the side of the inverter 200 from the DC-DC converter 100.
  • the integrated power conversion device is mainly applied to an electric vehicle or the like, and the inverter device 200 drives a traveling motor by electric power from a high voltage storage battery mounted on the vehicle.
  • the vehicle is equipped with a low voltage storage battery for operating accessories such as lights and radio, and the DCDC converter device 100 converts power from high voltage storage battery to low voltage storage battery or from low voltage storage battery to high voltage storage battery Power conversion.
  • the integrated power converter according to the present embodiment can also be applied to power converters other than electric vehicles if they have the same needs as the power converter for electric vehicles.
  • a flow path forming body 19 s that forms the refrigerant flow path 19 is housed in the case 10 of the inverter device 200.
  • the refrigerant flows into the flow path from the inlet pipe 13 and flows out from the outlet pipe 14.
  • the flow path forming body 19 s has an opening 404 connected to the refrigerant flow path 19.
  • the case 111 of the DCDC converter device 100 is fixed to the case 10 of the inverter device 200 so that a part of the case 111 closes the opening 404.
  • the case 111 may be fixed to the flow path forming body 19 s in order to promote heat transfer from the case 111 to the refrigerant flow path 19.
  • the case 111 of the DCDC converter device 100 forms a bottom portion 111 b and a recess 111 d described later.
  • the refrigerant flow path 19 includes the inlet pipe 13 and the outlet pipe 14, and it is important to cool the inverter device 200 whose calorific value is larger than that of the DCDC converter device 100. It is a structure. With the configuration of the present embodiment, the cooling performance of the DC-DC converter 100 can be improved without significantly reducing the cooling performance on the side of the inverter 200.
  • FIG. 3 is a circuit block diagram for explaining the configuration of inverter device 200.
  • an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT.
  • a series circuit 150 of the upper and lower arms is configured by the IGBT 328 and the diode 156 operating as the upper arm, and the IGBT 330 and the diode 166 operating as the lower arm.
  • the inverter circuit 140 includes the series circuit 150 corresponding to three phases of U-phase, V-phase, and W-phase of AC power to be output.
  • a series circuit 150 of upper and lower arms of each of the three phases outputs an alternating current from an intermediate electrode 169 which is a middle point portion of the series circuit.
  • Intermediate electrode 169 is connected to AC bus bar 802 which is an AC power line to motor generator MG1 through AC terminal 159 and AC terminal 188.
  • the collector electrode 153 of the IGBT 328 of the upper arm is electrically connected to the capacitor terminal 506 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157.
  • the emitter electrode of the lower arm IGBT 330 is electrically connected to the capacitor terminal 504 on the negative electrode side of the capacitor module 500 through the negative electrode terminal 158.
  • control circuit 172 receives a control command from the upper controller via the connector 21, and based on this, the IGBT 328 constituting the upper arm or the lower arm of the series circuit 150 of each phase constituting the inverter circuit 140. And generates a control pulse, which is a control signal for controlling the IGBT 330, and supplies the control pulse to the driver circuit 174.
  • the driver circuit 174 supplies drive pulses for controlling the IGBTs 328 and IGBTs 330 constituting the upper arm or lower arm of the series circuit 150 of each phase to the IGBTs 328 and IGBTs 330 of each phase based on the control pulse. Based on the drive pulse from driver circuit 174, IGBT 328 or IGBT 330 performs conduction or cutoff operation, converts DC power supplied from battery 136 into three-phase AC power, and supplies the converted power to motor generator MG1. Be done.
  • the IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154.
  • the IGBT 330 further includes a collector electrode 163, an emitter electrode 165 for signal, and a gate electrode 164.
  • a diode 156 is electrically connected between the collector electrode 153 and the emitter electrode 155.
  • a diode 166 is electrically connected between the collector electrode 163 and the emitter electrode 165.
  • a metal oxide semiconductor type field effect transistor (hereinafter abbreviated as a MOSFET) may be used as the switching power semiconductor element.
  • MOSFET metal oxide semiconductor type field effect transistor
  • the diode 156 and the diode 166 become unnecessary.
  • an IGBT is suitable when the DC voltage is relatively high
  • a MOSFET is suitable when the DC voltage is relatively low.
  • the capacitor module 500 includes a positive side capacitor terminal 506, a negative side capacitor terminal 504, a positive side power supply terminal 509, and a negative side power supply terminal 508.
  • the high voltage DC power from the battery 136 is supplied to the power terminal 509 on the positive side and the power terminal 508 on the negative side via the DC connector 138, and the capacitor terminal 506 on the positive side and the capacitor on the negative side of the capacitor module 500 It is supplied to the inverter circuit 140 from the terminal 504.
  • DC power converted from AC power by the inverter circuit 140 is supplied to the capacitor module 500 from the capacitor terminal 506 on the positive side and the capacitor terminal 504 on the negative side, and the power supply terminal 509 on the positive side and power supply terminal 508 on the negative side.
  • the battery 136 via the DC connector 138 and stored in the battery 136.
  • the control circuit 172 includes a microcomputer (hereinafter referred to as a “microcomputer”) for arithmetically processing the switching timing of the IGBT 328 and the IGBT 330.
  • the input information to the microcomputer includes a target torque value required for the motor generator MG1, a current value supplied from the series circuit 150 to the motor generator MG1, and a magnetic pole position of a rotor of the motor generator MG1.
  • the target torque value is based on a command signal output from a not-shown upper controller.
  • the current value is detected based on a detection signal from the current sensor 180.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator MG1.
  • a rotating magnetic pole sensor not shown
  • the case where the current sensor 180 detects current values of three phases is taken as an example, but current values of two phases may be detected and currents of three phases may be obtained by calculation. .
  • the microcomputer in control circuit 172 calculates the d-axis and q-axis current command values of motor generator MG1 based on the target torque value, and the calculated d-axis and q-axis current command values and detected d
  • the voltage command values of d axis and q axis are calculated based on the difference between the current values of the axis and q axis, and the calculated voltage command values of d axis and q axis are calculated based on the detected magnetic pole position. Convert to voltage command value of phase, V phase and W phase.
  • the microcomputer generates a pulse-like modulated wave based on the comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of U phase, V phase and W phase, and the generated modulation
  • the wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
  • the driver circuit 174 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the IGBT 330 of the corresponding lower arm. Also, when driving the upper arm, the driver circuit 174 shifts the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, amplifies the PWM signal, and uses it as a drive signal to drive the corresponding upper arm. Output to the gate electrodes of the IGBTs 328 of FIG.
  • the microcomputer in the control circuit 172 performs abnormality detection (overcurrent, overvoltage, overtemperature, etc.) to protect the series circuit 150. Therefore, sensing information is input to the control circuit 172. For example, from the emitter electrode 155 for signals of each arm and the emitter electrode 165 for signals, information of the current flowing to the emitter electrodes of the IGBTs 328 and IGBTs 330 is input to the corresponding driver (IC).
  • each drive unit (IC) performs overcurrent detection, and when an overcurrent is detected, stops the switching operation of the corresponding IGBT 328 and IGBT 330 and protects the corresponding IGBT 328 and IGBT 330 from the overcurrent.
  • Information on the temperature of the series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150. Also, information on the voltage on the DC positive side of the series circuit 150 is input to the microcomputer. The microcomputer performs over temperature detection and over voltage detection based on the information, and stops the switching operation of all the IGBTs 328 and IGBTs 330 when the over temperature or the over voltage is detected.
  • the control signal received from the host controller via the connector 21 and the DC voltage received via the DC connector 138 pass through the interface cable 102 and through the opening 201 of the inverter device 200 and through the opening 101 to the DCDC converter It is distributed to the device 100.
  • FIG. 4 is an exploded perspective view of the inverter device 200.
  • the flow path forming body 19s is configured to include the flow path forming portions 12a, 12b, and 12c.
  • the flow path forming portions 12 a, 12 b and 12 c are arranged in a U-shape on the bottom side in the case 10.
  • the flow passage forming portion 12c is disposed to face the flow passage forming portion 12a in parallel.
  • a plurality of openings 400 for mounting the power semiconductor modules 300a to 300c in the refrigerant flow passage are formed in the flow passage forming portions 12a and 12c parallel to each other.
  • two openings 400 in which the power semiconductor modules 300 a and 300 b are mounted are formed in the flow path forming portion 12c provided in parallel on the opposite side.
  • the openings 400 are closed by fixing the power semiconductor modules 300a to 300c to the flow path forming portions 12a to 12c.
  • a storage space 405 for storing the capacitor module 500 is formed between one of the first flow path portion 19 a and the other third flow path portion 19 c formed by the flow path formation body 12. It is stored in the storage space 405. Thereby, the condenser module 500 is cooled by the refrigerant flowing into the refrigerant flow path 19.
  • the capacitor module 500 is disposed so as to be surrounded by the flow path forming portions 12a to 12c, and thus can be efficiently cooled.
  • the flow path is formed along the outer side surface of the capacitor module 500, the flow path and the arrangement with the capacitor module 500 and the power semiconductor module 300 are neatly arranged, and the whole becomes smaller.
  • a bus bar assembly 800 which will be described later, is disposed above the capacitor module 500.
  • the refrigerant flow path 19 has an effect of strengthening mechanical strength in addition to a cooling effect. Further, by forming by aluminum casting, the flow path forming body 19s and the case 10 become an integral structure, the heat conduction of the entire inverter device 200 is improved, and the cooling efficiency is improved.
  • the driver circuit board 22 is disposed above the bus bar assembly 800.
  • a metal base plate 11 is disposed between the driver circuit board 22 and the control circuit board 20.
  • the metal base plate 11 is fixed to the case 10.
  • the metal base plate 11 functions as an electromagnetic shield for the driver circuit board 22 and the circuit group mounted on the control circuit board 20, and also functions to release and cool the heat generated by the driver circuit board 22 and the control circuit board 20. have.
  • the point that the metal base plate 11 has a high noise suppression function will be described later.
  • the lid 8 is fixed to the metal base plate 11 to protect the control circuit board 20 from external electromagnetic noise.
  • the portion in which the flow path forming body 12 is stored has a substantially rectangular parallelepiped shape, but a protruding storage portion 10 g is formed from one side of the case 10.
  • a terminal extended from the DCDC converter device 100 and a resistor 450 are stored in the protruding storage portion 10g.
  • the resistor 450 is a resistive element for discharging the charge stored in the capacitor element of the capacitor module 500.
  • the detailed configuration of the power semiconductor modules 300a to 300c used for the inverter circuit 140 will be described with reference to FIGS. 5 to 9.
  • the power semiconductor modules 300a to 300c all have the same structure, and the structure of the power semiconductor module 300a will be described as a representative.
  • the signal terminal 325U corresponds to the gate electrode 154 and the signal emitter electrode 155 disclosed in FIG. 3
  • the signal terminal 325L corresponds to the gate electrode 164 and the emitter electrode 165 disclosed in FIG. Do.
  • the direct current positive electrode terminal 315B is the same as the positive electrode terminal 157 disclosed in FIG. 3
  • the direct current negative electrode terminal 319B is the same as the negative electrode terminal 158 disclosed in FIG.
  • the AC terminal 320B is the same as the AC terminal 159 disclosed in FIG.
  • FIG. 5A is a perspective view of the power semiconductor module 300 a of the present embodiment.
  • FIG. 5 (b) is a cross-sectional view of the power semiconductor module 300 a of the present embodiment taken along the section D and viewed from the direction E.
  • FIG. 6 is a view showing the power semiconductor module 300a from which the screw 309 and the second sealing resin 351 have been removed from the state shown in FIG. 5 in order to aid understanding.
  • FIG. 6 (a) is a perspective view
  • FIG. 6 (b) is a cross-sectional view as viewed in the direction E, cut along the section D, as in FIG. 5 (b).
  • FIG. 6C shows a cross-sectional view before the fins 305 are pressurized and the curved portion 304A is deformed.
  • FIG. 7 is a diagram showing a power semiconductor module 300a in which the module case 304 is further removed from the state shown in FIG. FIG. 7 (a) is a perspective view, and FIG. 7 (b) is a cross-sectional view as viewed from the direction E by cutting it at the cross section D as in FIGS. 5 (b) and 6 (b).
  • FIG. 8 is a perspective view of the power semiconductor module 300 a with the first sealing resin 348 and the wiring insulating portion 608 further removed from the state shown in FIG. 7.
  • FIG. 9 is a view for explaining an assembly process of the module primary sealing body 302.
  • the power semiconductor elements IGBT 330, diode 156, diode 166) constituting the series circuit 150 of the upper and lower arms are, as shown in FIGS. 7 and 8, the conductor plate 315 or conductor plate 318 or the conductor plate 320 or conductor plate By 319, it is fixed by sandwiching from both sides.
  • the conductor plate 315 or the like is sealed by the first sealing resin 348 in a state where the heat dissipation surface is exposed, and the insulating sheet 333 is thermocompression-bonded to the heat dissipation surface.
  • the first sealing resin 348 has a polyhedral shape (here, a substantially rectangular parallelepiped shape).
  • the module primary sealing body 302 sealed by the first sealing resin 348 is inserted into the module case 304, sandwiching the insulating sheet 333 and thermocompression-bonded to the inner surface of the module case 304 which is a CAN type cooler. Ru.
  • the CAN-type cooler is a cylindrical cooler having an insertion port 306 on one side and a bottom on the other side.
  • the second sealing resin 351 is filled in the space remaining inside the module case 304.
  • the module case 304 is made of a member having electrical conductivity, such as an aluminum alloy material (Al, AlSi, AlSiC, Al-C, etc.), and is integrally molded in a jointless state.
  • the module case 304 has a structure in which no opening is provided other than the insertion opening 306, and the insertion opening 306 is surrounded by the flange 304B. Further, as shown in FIG. 5 (a), the first heat radiation surface 307A and the second heat radiation surface 307B, which have surfaces wider than the other surfaces, are disposed facing each other, and are made to face these heat radiation surfaces.
  • Each power semiconductor element (IGBT 328, IGBT 330, diode 156, diode 166) is disposed.
  • the insertion port 306 is formed in the The shape of the module case 304 does not have to be an accurate rectangular parallelepiped, and the corners may have a curved surface as shown in FIG. 5 (a).
  • the fins 305 are uniformly formed on the first heat radiation surface 307A and the second heat radiation surface 307B facing each other. Furthermore, a curved portion 304A whose thickness is extremely thin is formed on the outer periphery of the first heat radiating surface 307A and the second heat radiating surface 307B. The thickness of the curved portion 304A is extremely reduced to such an extent that the curved portion 304A is easily deformed by pressing the fin 305. Therefore, productivity after the module primary sealing body 302 is inserted is improved.
  • the gap between the conductor plate 315 or the like and the inner wall of the module case 304 can be reduced by thermocompression-bonding the conductor plate 315 or the like to the inner wall of the module case 304 via the insulating sheet 333.
  • the heat generated from the element can be efficiently transferred to the fins 305.
  • the insulating sheet 333 with a certain thickness and flexibility, the generation of thermal stress can be absorbed by the insulating sheet 333 and it becomes good for use in a power conversion device for vehicles with severe temperature change .
  • metal DC positive wire 315A and DC negative wire 319A for electrically connecting to the capacitor module 500 are provided, and a DC positive electrode terminal 315B (157) and DC are formed at the tip thereof. Negative electrode terminals 319B (158) are respectively formed.
  • a metal AC wire 320A for supplying AC power to the motor generator MG1 or MG2 is provided, and an AC terminal 320B (159) is formed at the tip thereof.
  • the DC positive wiring 315A is connected to the conductor plate 315
  • the DC negative wiring 319A is connected to the conductor plate 319
  • the AC wiring 320A is connected to the conductor plate 320.
  • metal signal wires 324U and 324L for electrically connecting to the driver circuit 174 are provided outside the module case 304, and the signal terminals 325U (154, 155) and the signal terminals 325L are provided at the tip thereof. (164, 165) are respectively formed.
  • the signal wiring 324U is connected to the IGBT 328, and the signal wiring 324L is connected to the IGBT 328.
  • DC positive electrode wiring 315A, DC negative electrode wiring 319A, AC wiring 320A, signal wiring 324U and signal wiring 324L are integrally molded as auxiliary mold body 600 in a state of being mutually insulated by wiring insulating portion 608 molded of a resin material. Be done.
  • the wire insulating portion 608 also functions as a support member for supporting each wire, and the resin material used for this is suitably a thermosetting resin or a thermoplastic resin having insulation.
  • the auxiliary molded body 600 is metal-joined to the module primary sealing body 302 at the connection portion 370 and then fixed to the module case 304 by a screw 309 penetrating a screw hole provided in the wiring insulating portion 608.
  • TIG welding can be used for metal bonding between the module primary sealing body 302 and the auxiliary mold body 600 at the connection portion 370.
  • the direct current positive wire 315A and the direct current negative wire 319A are stacked on each other with the wire insulating portion 608 interposed therebetween and are formed to extend substantially in parallel. With such an arrangement and shape, current instantaneously flowing in the switching operation of the power semiconductor element flows in the opposite direction and in the opposite direction. As a result, the magnetic fields generated by the current act to cancel each other, and this action makes it possible to reduce the inductance.
  • the AC wiring 320A and the signal terminals 325U and 325L also extend in the same direction as the DC positive wiring 315A and the DC negative wiring 319A.
  • connection portion 370 where the module primary sealing body 302 and the auxiliary molded body 600 are connected by metal bonding is sealed in the module case 304 by the second sealing resin 351.
  • a necessary insulation distance can be stably secured between the connection portion 370 and the module case 304, so that the power semiconductor module 300a can be miniaturized as compared with the case where the sealing is not performed.
  • auxiliary module side direct current positive electrode connection terminal 315C As shown in FIG. 8, on the auxiliary module 600 side of the connection portion 370, auxiliary module side direct current positive electrode connection terminal 315C, auxiliary module side direct current negative electrode connection terminal 319C, auxiliary module side alternating current connection terminal 320C, auxiliary module side signal connection The terminal 326U and the auxiliary module side signal connection terminal 326L are arranged in line.
  • the element-side AC connection terminal 320D, the element-side signal connection terminal 327U, and the element-side signal connection terminal 327L are arranged in a line. In this manner, the structure in which the terminals are arranged in a line in the connection portion 370 facilitates the manufacture of the module primary sealing body 302 by transfer molding.
  • a terminal constituted by the direct current positive electrode wiring 315A (including the direct current positive electrode terminal 315B and the auxiliary module side direct current positive electrode connection terminal 315C) and the element side direct current positive electrode connection terminal 315D is referred to as a positive electrode side terminal.
  • a terminal composed of a DC negative electrode terminal 319B and an auxiliary module side DC negative electrode connection terminal 319C and an element side DC negative electrode connection terminal 315D is referred to as a negative electrode side terminal
  • an AC wiring 320A AC terminal 320B and auxiliary module side AC connection A terminal configured by the terminal 320C and the element-side AC connection terminal 320D is referred to as an output terminal, and is configured by the signal wiring 324U (including the signal terminal 325U and the auxiliary module side signal connection terminal 326U) and the element-side signal connection terminal 327U.
  • Terminal called the upper arm signal terminal It refers to a line 324L (including signal terminals 325L and the auxiliary module-side signal connecting terminals 326L) and the terminal constituted by the element-side signal connecting terminals 327L and the signal terminal for the lower arm.
  • each of the above-described terminals protrudes from the first sealing resin 348 and the second sealing resin 351 through the connection portion 370, and each protruding portion from the first sealing resin 348 (element-side direct current positive electrode connection terminal 315D , Element-side DC negative connection terminal 319D, element-side AC connection terminal 320D, element-side signal connection terminal 327U and element-side signal connection terminal 327L) are one surface of the first sealing resin 348 having a polyhedral shape as described above. Lined up along the. Further, the positive electrode side terminal and the negative electrode side terminal protrude from the second sealing resin 351 in a stacked state, and extend out of the module case 304.
  • the auxiliary module side direct current positive electrode connection terminal 315C and the auxiliary module side direct current negative electrode connection terminal 319C are the tips of the direct current positive electrode wiring 315A opposite to the direct current positive electrode terminal 315B and the direct current negative electrode terminal 319B, and the direct current negative electrode wiring 319A. It is formed in each part.
  • the auxiliary module side AC connection terminal 320C is formed at the tip end of the AC wiring 320A on the opposite side to the AC terminal 320B.
  • the auxiliary module side signal connection terminals 326U and 326L are respectively formed at tip portions of the signal wirings 324U and 324L opposite to the signal terminals 325U and 325L.
  • the element side direct current positive electrode connection terminal 315D, the element side direct current negative electrode connection terminal 319D, and the element side alternating current connection terminal 320D are respectively formed in the conductor plates 315, 319, 320.
  • the element-side signal connection terminals 327U and 327L are connected to the IGBTs 328 and IGBTs 330 by bonding wires 371, respectively.
  • the conductor plate 315 on the direct current positive electrode side and the conductor plate 320 on the alternating current output side, and the element side signal connection terminals 327U and 327L are substantially identical to each other in a state of being connected to the common tie bar 372 It is integrally processed so as to become a planar arrangement.
  • the collector electrode of the IGBT 328 on the upper arm side and the cathode electrode of the diode 156 on the upper arm side are fixed to the conductor plate 315.
  • the collector electrode of the lower arm IGBT 330 and the cathode electrode of the lower arm diode 166 are fixed to the conductor plate 320.
  • Conductor plate 318 and conductor plate 319 are arranged substantially flush with each other on IGBTs 328 and 330 and diodes 155 and 166.
  • the emitter electrode of the IGBT 328 on the upper arm side and the anode electrode of the diode 156 on the upper arm side are fixed to the conductor plate 318.
  • the emitter electrode of the lower arm IGBT 330 and the anode electrode of the lower arm diode 166 are fixed to the conductor plate 319.
  • Each power semiconductor element is fixed to the element fixing portion 322 provided on each conductor plate via the metal bonding material 160.
  • the metal bonding material 160 is, for example, a solder material, a low temperature sintering bonding material including a silver sheet and fine metal particles, or the like.
  • Each power semiconductor element has a plate-like flat structure, and each electrode of the power semiconductor element is formed on the front and back surfaces. As shown in FIG. 9, each electrode of the power semiconductor element is sandwiched between the conductor plate 315 and the conductor plate 318, or the conductor plate 320 and the conductor plate 319. That is, the conductor plate 315 and the conductor plate 318 are in a stacked arrangement facing each other substantially in parallel via the IGBT 328 and the diode 156. Similarly, the conductor plate 320 and the conductor plate 319 are in a stacked arrangement facing substantially in parallel via the IGBT 330 and the diode 166. The conductor plate 320 and the conductor plate 318 are connected via the intermediate electrode 329.
  • the upper arm circuit and the lower arm circuit are electrically connected to form an upper and lower arm series circuit.
  • the IGBT 328 and the diode 156 are sandwiched between the conductor plate 315 and the conductor plate 318, and the IGBT 330 and the diode 166 are sandwiched between the conductor plate 320 and the conductor plate 319, and the conductor plate 320 and the conductor plate 318 are intermediate electrodes.
  • Connect via 329 Thereafter, the control electrode 328A of the IGBT 328 and the element-side signal connection terminal 327U are connected by the bonding wire 371, and the control electrode 330A of the IGBT 330 and the element-side signal connection terminal 327L are connected by the bonding wire 371.
  • FIG. 10 is an exploded perspective view seen from the bottom side of the case 10 of the inverter device 200.
  • the case 10 has a rectangular parallelepiped shape including four side walls 10a, 10b, 10c and 10d.
  • the U-shaped refrigerant flow path 19 is composed of three linear flow path portions (a first flow path portion 19a, a second flow path portion 19b, and a third flow path portion 19c).
  • the opening 404 is also U-shaped, and the opening 404 is closed by the case 111 of the DCDC converter device 100.
  • a seal member 409 is provided between the case 111 and the case 10 to maintain the airtightness of the refrigerant flow path.
  • the portion indicated by reference numeral 10 e forms the bottom of a storage space 405 (see FIG. 4) for storing the capacitor module 500.
  • the refrigerant flows into the inlet pipe 13 as indicated by the arrow 417, and flows in the direction of the arrow 418 in the first flow path 19a formed along the longitudinal side of the case 10. Further, the refrigerant flows in the direction of the arrow 421 in the second flow passage portion 19 b formed along the short side of the case 10. The second flow passage portion 19 b forms a return flow passage. Further, the refrigerant flows through the third flow passage portion 19 c of the flow passage forming portion 12 formed along the longitudinal side of the case 10. The third flow passage portion 19 c is provided in parallel to the first flow passage portion 19 a with the capacitor module 500 interposed therebetween. The refrigerant flows out of the outlet pipe 14 as indicated by an arrow 423.
  • Each of the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c is formed such that the depth direction is larger than the width direction.
  • FIG. 11 is a diagram showing a circuit configuration of the DC-DC converter device 100.
  • the DC-DC converter device 100 according to the present embodiment is compatible with bidirectional DC-DC that performs step-down and step-up. Therefore, the step-down circuit (HV circuit) and the booster circuit (LV circuit) are not in the diode rectification but in the synchronous rectification configuration. Also, in order to achieve high output in HV / LV conversion, a large current component is adopted as the switching element, and the smoothing coil is enlarged.
  • an H bridge type synchronous rectification switching circuit configuration (H1 to H4) using a MOSFET having a recovery diode is used on both the HV / LV side.
  • switching control zero cross switching is performed at a high switching frequency (100 kHz) using an LC series resonant circuit (Cr, Lr) to improve the conversion efficiency and reduce the heat loss.
  • an active clamp circuit is provided to reduce loss due to circulating current during step-down operation, and to suppress surge voltage generation during switching to reduce the withstand voltage of the switching element, thereby reducing the withstand voltage of the circuit component. To make the device smaller.
  • a full-wave rectification type double current (current doubler) system was used.
  • a high output is secured by simultaneously operating a plurality of switching elements.
  • four elements are arranged in parallel like SWA1 to SWA4 and SWB1 to SWB4.
  • high output is realized by arranging the small-sized reactors (L1 and L2) of the switching circuit and the smoothing reactor in parallel in two circuits so as to give symmetry. As described above, by arranging the small reactors in two circuits, it is possible to miniaturize the entire DC-DC converter as compared to the case where one large reactor is arranged.
  • the lower part of the circuit configuration diagram of FIG. 11 shows a drive circuit and operation detection circuit for a step-down circuit and a booster circuit, and a control circuit unit having a communication function with a higher-level control device via an inverter device.
  • FIG. 12 is an exploded perspective view of the DC-DC converter device 100.
  • FIG. 13 is a cross-sectional view of a power conversion device in which DCDC converter device 100 and inverter device 200 are integrated.
  • FIG. 14 is a view schematically showing the arrangement of components in the case of DCDC converter apparatus 100. As shown in FIG.
  • the circuit components of the DC-DC converter device 100 are housed in a case 111 made of metal (for example, made of aluminum die cast).
  • the case cover 112 is bolted to the opening of the case 111.
  • main transformer 33, inductor element 34, power semiconductor module 35 having switching elements H1 to H4 mounted, booster circuit board 32 having switching element 36 mounted, capacitor 38, etc. are mounted on the bottom of case 111.
  • the main heat generating components are the main transformer 33, the inductor element 34, the power semiconductor module 35, and the switching element 36.
  • the main transformer 33 corresponds to the transformer Tr, the inductor element 34 to the reactors L1 and L2 of the current doubler, and the switching element 36 to the switching elements SWA1 to SWA4 and SWB1 to SWB4, respectively. It corresponds.
  • the switching elements S1 and S2 of FIG. 11 and the like are also mounted on the booster circuit substrate 32.
  • the terminals 39 of the switching elements H1 to H4 extend toward the opening of the case 111, and are connected to the step-down circuit board 31 disposed above the power semiconductor module 35.
  • the step-down circuit board 31 is fixed on a plurality of support members protruding upward from the bottom surface of the case 111.
  • the switching elements H1 to H4 are mounted on a metal substrate on which a pattern is formed, and the back surface side of the metal substrate is fixed in close contact with the bottom of the case.
  • the booster circuit substrate 32 on which the switching element 36 is mounted is also formed of the same metal substrate. In FIG. 12, the booster circuit board 32 is shown by a broken line because it can not be seen behind the capacitor 38 or the like.
  • the control circuit board 30 on which a control circuit for controlling switching elements provided in the step-up circuit and the step-down circuit is mounted is fixed on a metal base plate 37.
  • the base plate 37 is fixed to a plurality of support portions 111 a protruding upward from the bottom of the case 111.
  • the control circuit board 30 is disposed above the heat generating components (the main transformer 33, the inductor element 34, the power semiconductor module 35, etc.) disposed on the bottom of the case via the base plate 37.
  • FIG. 13 is a cross-sectional view of the cross section A of FIG. 10 as viewed in the direction of the arrow.
  • the flow path forming portions 12a to 12c are provided along the side walls 10a, 10b, and 10c.
  • FIG. 13 only the flow path forming portions 12 a and 12 c are shown.
  • a first flow passage portion 19a is formed in the flow passage forming portion 12a along the side wall 10a, and a second flow passage portion 19b is formed in the flow passage forming portion 12b along the side wall 10b.
  • a third flow passage portion 19c is formed in the passage forming portion 12c.
  • the power semiconductor module 300a is inserted into the first flow passage 19a, and the power semiconductor module 300c is inserted into the third flow passage 19c.
  • a recess 111d is formed on the outer peripheral surface of the bottom of the case 111. As shown in FIG. 1, the recess 111 d of the case 111 is opposed to the first flow passage 19 a, the second flow passage 19 b, and the third flow passage 19 c provided on the outer peripheral surface of the bottom of the case 10.
  • the main transformer 33 is fixed to the inner circumferential surface of the case 111 facing the first flow passage 19a.
  • the booster circuit board 32 and the capacitor 38 mounted on the switching element 36 are fixed to the inner circumferential surface of the case 111 facing the third flow passage 19 c.
  • the base plate 37 is bolted on a support portion 111 a formed on the case 111.
  • the control circuit board 30 is fixed on a convex portion 37 a formed on the upper surface of the base plate 37 by a bolt or the like.
  • a case cover 112 is attached to the opening of the case 111, and the case 111 is sealed.
  • the recess 111 d of the case 111 forms a part of the wall of the refrigerant flow path 19 of the case 10 of the inverter device 200. Therefore, the case 111 is directly cooled by the refrigerant flowing through the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c.
  • the base plate 37 is formed of metal, heat generated at the control circuit board 30 is transmitted to the case 10 through the support portion 111 a and the case 111. Further, the base plate 37 functions as a shielding member of the radiation heat from the heat generating component provided on the bottom of the case 111, and also functions as a shield that shields the switching radiation noise from the switching element by using a copper material or the like. Do.
  • the case 10 of the inverter device 200 has an opening 201
  • the case 111 of the DC-DC converter 100 has an opening 101 on the surface facing the case 10.
  • the bonding member 103 is fitted to the opening 101 and the opening 201.
  • a seal member 104 is provided between the joint member 103 and the case 10 and between the joint member 103 and the case 111 to maintain airtightness with the outside.
  • the power conducting wire 701 transmits drive power to a drive circuit unit that generates a drive voltage of a switching element such as the step-down circuit unit 31 or the like.
  • the communication lead 702 transmits a signal for driving the drive circuit unit.
  • a cable having an interface function between the inverter device 200 and the DCDC converter device 100, such as the power lead 701 and the communication lead 702, is defined as an interface cable.
  • the interface cable connects the inverter device 200 and the DCDC converter device 100 through a through hole formed in the bonding member 103.
  • the interface cable connects the inverter device 200 and the DCDC converter device 100 through the opening 201 and the opening 101.
  • the surface on which the opening 201 and the opening 101 are formed is formed such that the case 10 and the case 111 face each other and the interface cable is covered with the metal case 10 and the case 111. .
  • the case 10 and the case 111 can strengthen the electromagnetic shield, and the electromagnetic noise emitted from the opening 201 and the opening 101 can be reduced.
  • concave portions 111d are respectively formed in portions facing the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c. Thereby, the part in which the recessed part 111d was formed becomes thin, and can accelerate cooling of the DCDC converter apparatus 100 side.
  • FIG. 14 shows the arrangement of heat-generating components provided on the bottom surface portion 111b of the case 111, and shows a state in which the case cover 112 is removed.
  • the broken line indicates the arrangement of the first flow passage 19 a, the second flow passage 19 b and the third flow passage 19 c provided in the case 10 of the inverter device 200.
  • the main transformer 33 and the two inductor elements 34 are disposed on the bottom of the case opposite to the first flow path 19a. Further, the power semiconductor module 35 and the step-down circuit board 31 that constitute the step-down circuit are mainly disposed on the bottom surface portion 111 b facing the second flow passage portion 19 b. The switching element 36 and the booster circuit board 32 which constitute the booster circuit are disposed on the bottom surface part 111b opposed to the third flow passage part 19c. As described above, parts having a relatively large calorific value are disposed at positions facing the first flow passage 19a, the second flow passage 19b, and the third flow passage 19c to increase the cooling efficiency.
  • the temperature rise of the MOSFET in the power semiconductor module 35 can be suppressed. It becomes easy to exhibit.
  • the main transformer 33 when the main transformer 33 is disposed on the bottom of the case 111 so as to face the first flow path 19a, the temperature rise of the winding of the main transformer 33 can be suppressed, and the performance of the DCDC converter device 100 is exhibited. It will be easier.
  • a cover for closing the opening 404 of the case 10 of the inverter device 200 is provided, and the case of the DCDC converter device 100 so that the heat conduction of the cover becomes good. It may be integrated with 111.
  • FIGS. 15 to 19 show another embodiment of the case 111 of the DC-DC converter device 100.
  • FIG. 15 to 19 show another embodiment of the case 111 of the DC-DC converter device 100.
  • FIG. 15 is a perspective view of a case 111 of a DC-DC converter device 100 according to another embodiment.
  • the case 111 of the DC-DC converter device 100 is provided with a recess 111 e.
  • FIG. 17 is a cross-sectional view of the cross section B of FIG. 15 as viewed from the arrow direction.
  • 18 is a cross-sectional view of the cross section C of FIG. 15 as viewed from the arrow direction.
  • the recess 111d is disposed at a position facing the first flow passage 19a, the second flow passage 19b, and the third flow passage 19c, as in the above-described embodiment.
  • the recess 111 e is formed in a portion different from the recess 111 d and is disposed at a position to be sandwiched by the recess 111 d.
  • the recess 111 e faces the bottom 10 e of the case 10 of the inverter device 200.
  • a space formed by the recess 111 e and the bottom 10 e is connected to the first flow passage 19 a, the second flow passage 19 b, and the third flow passage 19 c.
  • the refrigerant flowing in the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c flows into the space formed by the recess 111e and the bottom portion 10e. Therefore, the cooling performance of the central portion of the bottom portion 10e disposed at a position far from the flow passage portion can be improved.
  • a projection 105 projecting toward the inverter device 200 is provided at the opening 101 of the DCDC converter device 100 so that the joining member 103 described in the above embodiment is not necessary. Also, the seal member 104 maintains airtightness with the outside of the inverter device 200.
  • FIG. 16 is a perspective view of the case 111 of the DC-DC converter device 100 according to another embodiment.
  • the case 111 of the DCDC converter device 100 is formed with a recess 111 e and a protrusion 111 f.
  • FIG. 19 is a cross-sectional view of the cross section D of FIG. 16 as viewed from the arrow direction.
  • the recess 111e has the same configuration and function as those of the above-described embodiment.
  • the convex portion 111 f protrudes toward the second flow passage portion 19 b described in the above embodiment.
  • the cooling refrigerant flowing through the second flow passage portion 19 b is diverted to the concave portion 111 e side to promote flow.
  • the detour flow volume which flows to the recessed part 111e side increases, so that the height of this convex part 111f is high. Therefore, the height of the convex portion 111 f can be set in accordance with the electronic component to be cooled by the concave portion 111 e.
  • the above description is merely an example, and when interpreting the invention, the correspondence between the items described in the embodiment and the items described in the claims is not limited or restricted at all.
  • the power converter mounted on a vehicle such as PHEV or EV has been described as an example, but the present invention is not limited to these and is also applied to a power converter used for a vehicle such as a construction machine can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The objective of the present invention is to reduce the size of an integrated power converter apparatus in which a plurality of power converter apparatuses have been integrated, and of a DC-DC converter apparatus to be used therein. An integrated power converter apparatus according to the present invention has a first power converter apparatus and a second power converter apparatus connected together. The first power converter apparatus is provided with a first power semiconductor module that converts power, a flow-path forming section that forms a flow path through which a coolant flows, a first case that houses the first power semiconductor module and the flow-path forming section, an entrance piping connected to the flow path, and an exit piping connected to the flow path. The second power converter apparatus is provided with a second power semiconductor module that converts power, and a second case that houses the second power semiconductor module. The flow-path forming section comprises an opening section connected to the flow path, and the second case is anchored to the flow-path forming section or the first case such that a portion of the second case closes the opening section.

Description

一体型電力変換装置及びそれに用いられるDCDCコンバータ装置Integrated power converter and DC-DC converter used therein
 本発明は、複数の電力変換装置を一体化した一体型電力変換装置及びそれに用いられるDCDCコンバータ装置に関する。 The present invention relates to an integrated power converter in which a plurality of power converters are integrated and a DCDC converter used for the same.
 電気自動車やプラグインハイブリッド車は、高電圧蓄電池と低電圧蓄電池を搭載している。高電圧蓄電池は、車両駆動用のモータを駆動するためのインバータ装置に電力を供給する。低電圧蓄電池は、車両のライトやラジオなどの補機を作動させる。このような車両は、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行うDCDCコンバータ装置を搭載している。 Electric vehicles and plug-in hybrid vehicles are equipped with high voltage storage batteries and low voltage storage batteries. The high voltage storage battery supplies power to an inverter device for driving a motor for driving a vehicle. Low voltage storage batteries operate accessories such as lights and radios of vehicles. Such a vehicle is equipped with a DCDC converter device that performs power conversion from a high voltage storage battery to a low voltage storage battery or power conversion from a low voltage storage battery to a high voltage storage battery.
 このような車両においては、車両全体の容積に対する室内の割合をできるだけ大きくし、居住性を良くすることが望まれている。このため、インバータ装置やDCDCコンバータ装置は、車室外のとりわけエンジンルームの、できるだけ小さなスペースに搭載されることが望まれている。例えば、以下の特許文献1では、インバータ装置とDC/DCコンバータ装置との冷却水路を接続するホースに電食が生じないように、インバータ装置とDC/DCコンバータ装置とを一体型とする構造が提案されている。 In such a vehicle, it is desirable to make the ratio of the room to the volume of the whole vehicle as large as possible to improve the habitability. For this reason, it is desirable that the inverter device and the DCDC converter device be mounted as small space as possible, especially in the engine room outside the vehicle. For example, in Patent Document 1 below, a structure in which the inverter device and the DC / DC converter device are integrated so that electrolytic corrosion does not occur in the hose connecting the cooling water passage between the inverter device and the DC / DC converter device Proposed.
 エンジンルーム内の温度環境は高温域であるため、インバータ装置やDCDCコンバータ装置の制御機能低下や構造部品の劣化を早めることが考えられる。このためインバータ装置やDCDCコンバータ装置の冷却機構としては、一般に水に混合物で構成する冷媒によりこれらの装置を冷却しており、この冷却方法含む冷却機構として、冷却効率が高く省スペース性を良くすることが重要になっている。 Since the temperature environment in the engine room is a high temperature range, it is conceivable to accelerate the deterioration of control functions of the inverter device or the DCDC converter device and the deterioration of the structural parts. For this reason, as a cooling mechanism of an inverter device or a DCDC converter device, these devices are generally cooled by a refrigerant composed of a mixture in water, and as a cooling mechanism including this cooling method, the cooling efficiency is high and space saving is improved. Is becoming important.
 しかしながら、上記特許文献1においては、インバータ装置およびDCDCコンバータ装置のそれぞれに対して冷却パイプを含む冷却機構が必要なため、冷却経路が複雑化し、車載スペースが増大するという問題があった。また、ホースの材質に制約があり、かつ、ホースの抵抗値を管理する必要があるという問題も生じていた。 However, in Patent Document 1 described above, since a cooling mechanism including a cooling pipe is required for each of the inverter device and the DCDC converter device, there is a problem that the cooling path becomes complicated and the space for mounting on the vehicle increases. In addition, there is a problem that the material of the hose is restricted, and it is necessary to control the resistance value of the hose.
特開2010-119275号公報JP, 2010-119275, A
 本発明が解決しようとする課題は、複数の電力変換装置を一体化した一体型電力変換装置及びそれに用いられるDCDCコンバータ装置の小型化を図ることである。 The problem to be solved by the present invention is to reduce the size of an integrated power converter in which a plurality of power converters are integrated and a DC-DC converter used for the same.
 上記課題を解決するために、本発明に係る一体型電力変換装置は、第1電力変換装置と第2電力変換装置を接続した一体型電力変換装置であって、前記第1電力変換装置は、電力を変換する第1パワー半導体モジュールと、冷却冷媒が流れる流路を形成する流路形成部と、前記第1パワー半導体モジュールと前記流路形成体を収納する第1ケースと、前記流路と繋がる入口配管と、前記流路と繋がる出口配管と、を備え、前記第2電力変換装置は、電力を変換する第2パワー半導体モジュールと、前記第2パワー半導体モジュールを収納する第2ケースと、前記流路形成体は、前記流路と繋がる開口部を有し、前記第2ケースは、当該第2ケースの一部が前記開口部を塞ぐように、前記流路形成体または前記第1ケースに固定される。 In order to solve the above problem, an integrated power converter according to the present invention is an integrated power converter in which a first power converter and a second power converter are connected, and the first power converter is: A first power semiconductor module for converting power, a flow path forming portion for forming a flow path through which a cooling refrigerant flows, a first case for storing the first power semiconductor module and the flow path forming body, and the flow path A second power semiconductor module for converting electric power, and a second case for housing the second power semiconductor module, the apparatus including: an inlet pipe connected to each other; and an outlet pipe connected to the flow path. The flow path forming body has an opening connected to the flow path, and the second case is such that the flow path forming body or the first case is formed such that a part of the second case closes the opening. It is fixed to
 また、上記課題を解決するために、本発明に係るDCDCコンバータ装置は、高電圧電源に接続される高電圧側スイッチング素子と、低電圧電源に接続される低電圧側半導体素子と、トランス回路と、前記高電圧側スイッチング素子と前記低電圧側半導体素子と前記トランス回路を収納するケースと、を備え、前記ケースは、他の電子機器に設けられた流路の一部を形成するためのカバーと一体に形成される。 Further, in order to solve the above problems, the DCDC converter device according to the present invention comprises a high voltage side switching element connected to a high voltage power supply, a low voltage side semiconductor element connected to a low voltage power supply, and a transformer circuit. A case for containing the high voltage side switching element, the low voltage side semiconductor element, and the transformer circuit, the case being a cover for forming a part of a flow path provided in another electronic device Integrally formed with
 本発明によりは、複数の電力変換装置を一体化した一体型電力変換装置及びそれに用いられるDCDCコンバータ装置を小型化することができる。 According to the present invention, it is possible to miniaturize an integrated power converter in which a plurality of power converters are integrated and a DCDC converter used for the same.
一体型電力変換装置の外観を示す図である斜視図である。It is a perspective view which is a figure which shows the external appearance of an integrated power converter. 一体型電力変換装置の外観を示す図である斜視図である。It is a perspective view which is a figure which shows the external appearance of an integrated power converter. インバータ装置200の構成を説明する回路ブロック図である。FIG. 6 is a circuit block diagram illustrating the configuration of inverter device 200. インバータ装置200の分解斜視図である。FIG. 6 is an exploded perspective view of the inverter device 200. (a)は、本実施形態のパワー半導体モジュール300aの斜視図である。(b)は、本実施形態のパワー半導体モジュール300aを断面Dで切断して方向Eから見たときの断面図である。(A) is a perspective view of the power semiconductor module 300a of this embodiment. (B) is sectional drawing when the power semiconductor module 300a of this embodiment is cut | disconnected in the cross section D, and it sees from the direction E. FIG. 理解を助けるために、図5に示す状態からネジ309および第二封止樹脂351を取り除いたパワー半導体モジュール300aを示す図である。(a)は斜視図であり、(b)は図5(b)と同様に断面Dで切断して方向Eから見たときの断面図である。また、(c)はフィン305が加圧されて湾曲部304Aが変形される前の断面図を示している。FIG. 6 is a view showing the power semiconductor module 300a from which the screw 309 and the second sealing resin 351 have been removed from the state shown in FIG. 5 in order to help understanding. (A) is a perspective view, and (b) is a cross-sectional view as viewed from the direction E, cut along the section D as in FIG. 5 (b). Further, (c) shows a cross-sectional view before the fin 305 is pressurized and the curved portion 304A is deformed. 図6に示す状態からさらにモジュールケース304を取り除いたパワー半導体モジュール300aを示す図である。(a)は斜視図であり、(b)は図5(b),図6(b)と同様に断面Dで切断して方向Eから見たときの断面図である。It is a figure which shows the power semiconductor module 300a which removed the module case 304 further from the state shown in FIG. (A) is a perspective view, and (b) is a cross-sectional view as viewed from the direction E, cut along the cross section D as in FIGS. 5 (b) and 6 (b). 図7に示す状態からさらに第一封止樹脂348および配線絶縁部608を取り除いたパワー半導体モジュール300aの斜視図である。FIG. 8 is a perspective view of a power semiconductor module 300a with the first sealing resin 348 and the wiring insulating portion 608 further removed from the state shown in FIG. 7. モジュール一次封止体302の組立工程を説明するための図である。It is a figure for demonstrating the assembly process of the module primary sealing body 302. FIG. インバータ装置200のケース10の底面側から見た分解斜視図である。FIG. 7 is an exploded perspective view of the bottom of the case 10 of the inverter device 200. DCDCコンバータ装置100の回路構成を示す図である。FIG. 2 is a diagram showing a circuit configuration of a DCDC converter device 100. DCDCコンバータ装置100の分解斜視図である。FIG. 2 is an exploded perspective view of the DCDC converter device 100. DCDCコンバータ装置100とインバータ装置200とを一体化した電力変換装置の断面図である。FIG. 3 is a cross-sectional view of a power conversion device in which a DCDC converter device 100 and an inverter device 200 are integrated. DCDCコンバータ装置100のケース内の部品配置を模式的に示した図である。FIG. 3 schematically shows the arrangement of components in the case of the DCDC converter device 100. 他の実施例に係るDCDCコンバータ装置100のケース111の斜視図である。It is a perspective view of case 111 of DCDC converter device 100 concerning other examples. 他の実施例に係るDCDCコンバータ装置100のケース111の斜視図である。It is a perspective view of case 111 of DCDC converter device 100 concerning other examples. 図15の断面Bの矢印方向から見た断面図である。It is sectional drawing seen from the arrow direction of the cross section B of FIG. 図15の断面Cの矢印方向から見た断面図である。It is sectional drawing seen from the arrow direction of the cross section C of FIG. 図16の断面Dの矢印方向から見た断面図である。It is sectional drawing seen from the arrow direction of the cross section D of FIG.
 以下、図を参照して本発明を実施するための形態について説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 図1,図2は、一体型電力変換装置の外観を示す図である斜視図である。本実施形態に係る一体型電力変換装置は、DCDCコンバータ装置100とインバータ装置200とを一体化したものであり、図1,図2ではDCDCコンバータ装置100とインバータ装置200とを分離した状態で示した。DCDCコンバータ装置100は、複数のボルト113a及び113bによりインバータ装置200のケース底面側に固定されている。ボルト113aはインバータ装置200側からDCDCコンバータ装置100に対して固定されるボルトであり、ボルト113bはDCDCコンバータ装置100からインバータ装置200側に対して固定されるボルトである。 1 and 2 are perspective views showing the appearance of an integrated power converter. The integrated power converter according to the present embodiment integrates the DCDC converter device 100 and the inverter device 200. In FIGS. 1 and 2, the DCDC converter device 100 and the inverter device 200 are shown separated. The The DCDC converter device 100 is fixed to the case bottom side of the inverter device 200 by a plurality of bolts 113a and 113b. The bolt 113a is a bolt fixed to the DC-DC converter 100 from the side of the inverter 200, and the bolt 113b is a bolt fixed to the side of the inverter 200 from the DC-DC converter 100.
 本実施形態に係る一体型電力変換装置は主に電気自動車等に適用され、インバータ装置200は車載の高電圧蓄電池からの電力により走行用モータを駆動する。車両にはライトやラジオなどの補機を作動させるための低電圧蓄電池が搭載されており、DCDCコンバータ装置100は、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行う。なお、電気自動車以外の電力変換装置に、電気自動車用の電力変換装置と同様なニーズがあれば、本実施形態に係る一体型電力変換装置を適用することもできる。 The integrated power conversion device according to the present embodiment is mainly applied to an electric vehicle or the like, and the inverter device 200 drives a traveling motor by electric power from a high voltage storage battery mounted on the vehicle. The vehicle is equipped with a low voltage storage battery for operating accessories such as lights and radio, and the DCDC converter device 100 converts power from high voltage storage battery to low voltage storage battery or from low voltage storage battery to high voltage storage battery Power conversion. Note that the integrated power converter according to the present embodiment can also be applied to power converters other than electric vehicles if they have the same needs as the power converter for electric vehicles.
 図2に示されるように、冷媒流路19を形成する流路形成体19sが、インバータ装置200のケース10内に収納されている。冷媒は入口配管13から流路内に流入し、出口配管14から流出する。流路形成体19sは、冷媒流路19と繋がる開口部404を有する。DCDCコンバータ装置100のケース111は、このケース111の一部が開口部404を塞ぐように、インバータ装置200のケース10に固定される。なおケース111は、ケース111からの冷媒流路19への熱伝達を促進するために、流路形成体19s側に固定されていてもよい。DCDCコンバータ装置100のケース111は、後述する底面部111b及び凹部111dを形成する。 As shown in FIG. 2, a flow path forming body 19 s that forms the refrigerant flow path 19 is housed in the case 10 of the inverter device 200. The refrigerant flows into the flow path from the inlet pipe 13 and flows out from the outlet pipe 14. The flow path forming body 19 s has an opening 404 connected to the refrigerant flow path 19. The case 111 of the DCDC converter device 100 is fixed to the case 10 of the inverter device 200 so that a part of the case 111 closes the opening 404. The case 111 may be fixed to the flow path forming body 19 s in order to promote heat transfer from the case 111 to the refrigerant flow path 19. The case 111 of the DCDC converter device 100 forms a bottom portion 111 b and a recess 111 d described later.
 本実施形態に係る一体型電力変換装置は、冷媒流路19が入口配管13及び出口配管14を有しており、発熱量がDCDCコンバータ装置100よりも大きいインバータ装置200を冷却することを重視する構成となっている。本実施形態の構成により、インバータ装置200側の冷却性能を大幅に低減することなく、DCDCコンバータ装置100について冷却性能を向上させることできる。 In the integrated power converter according to the present embodiment, the refrigerant flow path 19 includes the inlet pipe 13 and the outlet pipe 14, and it is important to cool the inverter device 200 whose calorific value is larger than that of the DCDC converter device 100. It is a structure. With the configuration of the present embodiment, the cooling performance of the DC-DC converter 100 can be improved without significantly reducing the cooling performance on the side of the inverter 200.
 図3はインバータ装置200の構成を説明する回路ブロック図である。なお、図3では半導体素子として絶縁ゲート型バイポーラトランジスタを使用しており、以下略してIGBTと記す。上アームとして動作するIGBT328及びダイオード156と、下アームとして動作するIGBT330及びダイオード166とで、上下アームの直列回路150が構成される。インバータ回路140は、この直列回路150を、出力しようとする交流電力のU相、V相、W相の3相に対応して備えている。 FIG. 3 is a circuit block diagram for explaining the configuration of inverter device 200. Referring to FIG. In FIG. 3, an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT. A series circuit 150 of the upper and lower arms is configured by the IGBT 328 and the diode 156 operating as the upper arm, and the IGBT 330 and the diode 166 operating as the lower arm. The inverter circuit 140 includes the series circuit 150 corresponding to three phases of U-phase, V-phase, and W-phase of AC power to be output.
 これらの3相は、この実施の形態では走行用モータに対応するモータジェネレータMG1の電機子巻線の3相の各相巻線に対応している。3相のそれぞれの上下アームの直列回路150は、直列回路の中点部分である中間電極169から交流電流を出力する。この中間電極169は、交流端子159及び交流端子188を通して、モータジェネレータMG1への交流電力線である交流バスバー802と接続される。 These three phases correspond to the three phase windings of the armature winding of motor generator MG1 corresponding to the traveling motor in this embodiment. A series circuit 150 of upper and lower arms of each of the three phases outputs an alternating current from an intermediate electrode 169 which is a middle point portion of the series circuit. Intermediate electrode 169 is connected to AC bus bar 802 which is an AC power line to motor generator MG1 through AC terminal 159 and AC terminal 188.
 上アームのIGBT328のコレクタ電極153は、正極端子157を介してコンデンサモジュール500の正極側のコンデンサ端子506に電気的に接続されている。また、下アームのIGBT330のエミッタ電極は、負極端子158を介してコンデンサモジュール500の負極側のコンデンサ端子504に電気的に接続されている。 The collector electrode 153 of the IGBT 328 of the upper arm is electrically connected to the capacitor terminal 506 on the positive electrode side of the capacitor module 500 via the positive electrode terminal 157. The emitter electrode of the lower arm IGBT 330 is electrically connected to the capacitor terminal 504 on the negative electrode side of the capacitor module 500 through the negative electrode terminal 158.
 上述のように、制御回路172は上位の制御装置からコネクタ21を介して制御指令を受け、これに基づいてインバータ回路140を構成する各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための制御信号である制御パルスを発生し、ドライバ回路174に供給する。 As described above, the control circuit 172 receives a control command from the upper controller via the connector 21, and based on this, the IGBT 328 constituting the upper arm or the lower arm of the series circuit 150 of each phase constituting the inverter circuit 140. And generates a control pulse, which is a control signal for controlling the IGBT 330, and supplies the control pulse to the driver circuit 174.
 ドライバ回路174は、上記制御パルスに基づき、各相の直列回路150の上アームあるいは下アームを構成するIGBT328やIGBT330を制御するための駆動パルスを各相のIGBT328やIGBT330に供給する。IGBT328やIGBT330は、ドライバ回路174からの駆動パルスに基づき、導通あるいは遮断動作を行い、バッテリ136から供給された直流電力を三相交流電力に変換し、この変換された電力はモータジェネレータMG1に供給される。 The driver circuit 174 supplies drive pulses for controlling the IGBTs 328 and IGBTs 330 constituting the upper arm or lower arm of the series circuit 150 of each phase to the IGBTs 328 and IGBTs 330 of each phase based on the control pulse. Based on the drive pulse from driver circuit 174, IGBT 328 or IGBT 330 performs conduction or cutoff operation, converts DC power supplied from battery 136 into three-phase AC power, and supplies the converted power to motor generator MG1. Be done.
 IGBT328は、コレクタ電極153と、信号用エミッタ電極155と、ゲート電極154を備えている。また、IGBT330は、コレクタ電極163と、信号用のエミッタ電極165と、ゲート電極164を備えている。ダイオード156が、コレクタ電極153とエミッタ電極155との間に電気的に接続されている。また、ダイオード166が、コレクタ電極163とエミッタ電極165との間に電気的に接続されている。 The IGBT 328 includes a collector electrode 153, a signal emitter electrode 155, and a gate electrode 154. The IGBT 330 further includes a collector electrode 163, an emitter electrode 165 for signal, and a gate electrode 164. A diode 156 is electrically connected between the collector electrode 153 and the emitter electrode 155. In addition, a diode 166 is electrically connected between the collector electrode 163 and the emitter electrode 165.
 スイッチング用パワー半導体素子としては金属酸化物半導体型電界効果トランジスタ(以下略してMOSFETと記す)を用いてもよい、この場合はダイオード156やダイオード166は不要となる。スイッチング用パワー半導体素子としては、IGBTは直流電圧が比較的高い場合に適していて、MOSFETは直流電圧が比較的低い場合に適している。 A metal oxide semiconductor type field effect transistor (hereinafter abbreviated as a MOSFET) may be used as the switching power semiconductor element. In this case, the diode 156 and the diode 166 become unnecessary. As a switching power semiconductor element, an IGBT is suitable when the DC voltage is relatively high, and a MOSFET is suitable when the DC voltage is relatively low.
 コンデンサモジュール500は、正極側のコンデンサ端子506と負極側のコンデンサ端子504と正極側の電源端子509と負極側の電源端子508とを備えている。バッテリ136からの高電圧の直流電力は、直流コネクタ138を介して、正極側の電源端子509や負極側の電源端子508に供給され、コンデンサモジュール500の正極側のコンデンサ端子506および負極側のコンデンサ端子504から、インバータ回路140へ供給される。 The capacitor module 500 includes a positive side capacitor terminal 506, a negative side capacitor terminal 504, a positive side power supply terminal 509, and a negative side power supply terminal 508. The high voltage DC power from the battery 136 is supplied to the power terminal 509 on the positive side and the power terminal 508 on the negative side via the DC connector 138, and the capacitor terminal 506 on the positive side and the capacitor on the negative side of the capacitor module 500 It is supplied to the inverter circuit 140 from the terminal 504.
 一方、交流電力からインバータ回路140によって変換された直流電力は、正極側のコンデンサ端子506や負極側のコンデンサ端子504からコンデンサモジュール500に供給され、正極側の電源端子509や負極側の電源端子508から直流コネクタ138を介してバッテリ136に供給され、バッテリ136に蓄積される。 On the other hand, DC power converted from AC power by the inverter circuit 140 is supplied to the capacitor module 500 from the capacitor terminal 506 on the positive side and the capacitor terminal 504 on the negative side, and the power supply terminal 509 on the positive side and power supply terminal 508 on the negative side. Are supplied to the battery 136 via the DC connector 138 and stored in the battery 136.
 制御回路172は、IGBT328及びIGBT330のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンへの入力情報としては、モータジェネレータMG1に対して要求される目標トルク値、直列回路150からモータジェネレータMG1に供給される電流値、及びモータジェネレータMG1の回転子の磁極位置がある。 The control circuit 172 includes a microcomputer (hereinafter referred to as a “microcomputer”) for arithmetically processing the switching timing of the IGBT 328 and the IGBT 330. The input information to the microcomputer includes a target torque value required for the motor generator MG1, a current value supplied from the series circuit 150 to the motor generator MG1, and a magnetic pole position of a rotor of the motor generator MG1.
 目標トルク値は、不図示の上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ180による検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータMG1に設けられたレゾルバなどの回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。本実施形態では、電流センサ180は3相の電流値を検出する場合を例に挙げているが、2相分の電流値を検出するようにし、演算により3相分の電流を求めても良い。 The target torque value is based on a command signal output from a not-shown upper controller. The current value is detected based on a detection signal from the current sensor 180. The magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) such as a resolver provided in the motor generator MG1. In the present embodiment, the case where the current sensor 180 detects current values of three phases is taken as an example, but current values of two phases may be detected and currents of three phases may be obtained by calculation. .
 制御回路172内のマイコンは、目標トルク値に基づいてモータジェネレータMG1のd軸,q軸の電流指令値を演算し、この演算されたd軸,q軸の電流指令値と、検出されたd軸,q軸の電流値との差分に基づいてd軸,q軸の電圧指令値を演算し、この演算されたd軸,q軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいてパルス状の変調波を生成し、この生成された変調波をPWM(パルス幅変調)信号としてドライバ回路174に出力する。 The microcomputer in control circuit 172 calculates the d-axis and q-axis current command values of motor generator MG1 based on the target torque value, and the calculated d-axis and q-axis current command values and detected d The voltage command values of d axis and q axis are calculated based on the difference between the current values of the axis and q axis, and the calculated voltage command values of d axis and q axis are calculated based on the detected magnetic pole position. Convert to voltage command value of phase, V phase and W phase. Then, the microcomputer generates a pulse-like modulated wave based on the comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of U phase, V phase and W phase, and the generated modulation The wave is output to the driver circuit 174 as a PWM (pulse width modulation) signal.
 ドライバ回路174は、下アームを駆動する場合、PWM信号を増幅したドライブ信号を、対応する下アームのIGBT330のゲート電極に出力する。また、ドライバ回路174は、上アームを駆動する場合、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号として、対応する上アームのIGBT328のゲート電極にそれぞれ出力する。 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the IGBT 330 of the corresponding lower arm. Also, when driving the upper arm, the driver circuit 174 shifts the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, amplifies the PWM signal, and uses it as a drive signal to drive the corresponding upper arm. Output to the gate electrodes of the IGBTs 328 of FIG.
 また、制御回路172内のマイコンは、異常検知(過電流、過電圧、過温度など)を行い、直列回路150を保護している。このため、制御回路172にはセンシング情報が入力されている。例えば、各アームの信号用のエミッタ電極155及び信号用のエミッタ電極165からは各IGBT328とIGBT330のエミッタ電極に流れる電流の情報が、対応する駆動部(IC)に入力されている。これにより、各駆動部(IC)は過電流検知を行い、過電流が検知された場合には対応するIGBT328,IGBT330のスイッチング動作を停止させ、対応するIGBT328,IGBT330を過電流から保護する。 The microcomputer in the control circuit 172 performs abnormality detection (overcurrent, overvoltage, overtemperature, etc.) to protect the series circuit 150. Therefore, sensing information is input to the control circuit 172. For example, from the emitter electrode 155 for signals of each arm and the emitter electrode 165 for signals, information of the current flowing to the emitter electrodes of the IGBTs 328 and IGBTs 330 is input to the corresponding driver (IC). Thus, each drive unit (IC) performs overcurrent detection, and when an overcurrent is detected, stops the switching operation of the corresponding IGBT 328 and IGBT 330 and protects the corresponding IGBT 328 and IGBT 330 from the overcurrent.
 直列回路150に設けられた温度センサ(不図示)からは直列回路150の温度の情報がマイコンに入力されている。また、マイコンには直列回路150の直流正極側の電圧の情報が入力されている。マイコンは、それらの情報に基づいて過温度検知及び過電圧検知を行い、過温度或いは過電圧が検知された場合には全てのIGBT328,IGBT330のスイッチング動作を停止させる。 Information on the temperature of the series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the series circuit 150. Also, information on the voltage on the DC positive side of the series circuit 150 is input to the microcomputer. The microcomputer performs over temperature detection and over voltage detection based on the information, and stops the switching operation of all the IGBTs 328 and IGBTs 330 when the over temperature or the over voltage is detected.
 上位の制御装置からコネクタ21を介して受けた制御信号と、直流コネクタ138を介して受けた直流電圧は、インターフェースケーブル102を経由し、インバータ装置200の開口部201を通してまた開口部101を通してDCDCコンバータ装置100に配信される。 The control signal received from the host controller via the connector 21 and the DC voltage received via the DC connector 138 pass through the interface cable 102 and through the opening 201 of the inverter device 200 and through the opening 101 to the DCDC converter It is distributed to the device 100.
 図4は、インバータ装置200の分解斜視図である。流路形成体19sは、流路形成部12a,12b,12cを含んで構成される。流路形成部12a,12b,12cは、ケース10内の底部側に、コの字形状に配置される。なお、流路形成部12cは流路形成部12aと平行に対向配置されている。 FIG. 4 is an exploded perspective view of the inverter device 200. As shown in FIG. The flow path forming body 19s is configured to include the flow path forming portions 12a, 12b, and 12c. The flow path forming portions 12 a, 12 b and 12 c are arranged in a U-shape on the bottom side in the case 10. The flow passage forming portion 12c is disposed to face the flow passage forming portion 12a in parallel.
 互いに平行となっている流路形成部12a,12cには、パワー半導体モジュール300a~300cを冷媒流路内に装着するための開口部400が複数形成されている。図4に示す例では、図示左側の設けられた流路形成部12aには、パワー半導体モジュール300a,300bが装着される2つの開口部400が形成されている。一方、図では見えないが、反対側に平行に設けられた流路形成部12cにはパワー半導体モジュール300cが装着される開口部400が1つ形成されている。これらの開口部400は、流路形成部12a~12cにパワー半導体モジュール300a~300cを固定することによって塞がれる。 A plurality of openings 400 for mounting the power semiconductor modules 300a to 300c in the refrigerant flow passage are formed in the flow passage forming portions 12a and 12c parallel to each other. In the example shown in FIG. 4, in the flow path forming portion 12 a provided on the left side in the drawing, two openings 400 in which the power semiconductor modules 300 a and 300 b are mounted are formed. On the other hand, although not visible in the drawing, one opening 400 in which the power semiconductor module 300c is mounted is formed in the flow path forming portion 12c provided in parallel on the opposite side. The openings 400 are closed by fixing the power semiconductor modules 300a to 300c to the flow path forming portions 12a to 12c.
 流路形成体12が形成する一方の第1流路部19aと他方の第3流路部19cの間には、コンデンサモジュール500を収納するための収納空間405が形成され、コンデンサモジュール500は、収納空間405に収納される。これにより、冷媒流路19内に流れる冷媒によってコンデンサモジュール500が冷やされる。コンデンサモジュール500は、流路形成部12a~12cに囲まれるように配置されるため、効率良く冷却されることができる。 A storage space 405 for storing the capacitor module 500 is formed between one of the first flow path portion 19 a and the other third flow path portion 19 c formed by the flow path formation body 12. It is stored in the storage space 405. Thereby, the condenser module 500 is cooled by the refrigerant flowing into the refrigerant flow path 19. The capacitor module 500 is disposed so as to be surrounded by the flow path forming portions 12a to 12c, and thus can be efficiently cooled.
 またコンデンサモジュール500の外側面に沿って流路が形成されているので、流路やコンデンサモジュール500やパワー半導体モジュール300との配置が整然と整い、全体がより小型となる。 In addition, since the flow path is formed along the outer side surface of the capacitor module 500, the flow path and the arrangement with the capacitor module 500 and the power semiconductor module 300 are neatly arranged, and the whole becomes smaller.
 コンデンサモジュール500の上方には、後述するバスバーアッセンブリ800が配置される。 A bus bar assembly 800, which will be described later, is disposed above the capacitor module 500.
 流路形成体19sとケース10とは一体にアルミ材の鋳造で作ることにより、冷媒流路19は冷却効果に加え機械的強度を強くする効果がある。またアルミ鋳造で作ることで流路形成体19sとケース10とが一体構造となり、インバータ装置200全体の熱伝導が良くなり冷却効率が向上する。 By integrally forming the flow path forming body 19s and the case 10 by casting of an aluminum material, the refrigerant flow path 19 has an effect of strengthening mechanical strength in addition to a cooling effect. Further, by forming by aluminum casting, the flow path forming body 19s and the case 10 become an integral structure, the heat conduction of the entire inverter device 200 is improved, and the cooling efficiency is improved.
 ドライバ回路基板22は、バスバーアッセンブリ800の上方に配置される。またドライバ回路基板22と制御回路基板20の間には金属ベース板11が配置される。 The driver circuit board 22 is disposed above the bus bar assembly 800. A metal base plate 11 is disposed between the driver circuit board 22 and the control circuit board 20.
 金属ベース板11は、ケース10に固定される。当該金属ベース板11は、ドライバ回路基板22及び制御回路基板20に搭載される回路群の電磁シールドの機能を奏すると共にドライバ回路基板22と制御回路基板20とが発生する熱を逃がし、冷却する作用を有している。当該金属ベース板11が、高いノイズ抑制機能を有する点は後述する。 The metal base plate 11 is fixed to the case 10. The metal base plate 11 functions as an electromagnetic shield for the driver circuit board 22 and the circuit group mounted on the control circuit board 20, and also functions to release and cool the heat generated by the driver circuit board 22 and the control circuit board 20. have. The point that the metal base plate 11 has a high noise suppression function will be described later.
 蓋8は、金属ベース板11に固定されて、制御回路基板20を外部からの電磁ノイズから保護する。 The lid 8 is fixed to the metal base plate 11 to protect the control circuit board 20 from external electromagnetic noise.
 本実施形態に係るケース10は、流路形成体12が収納された部分は略直方体の形状を為しているが、ケース10の一側面側から突出収納部10gが形成されている。当該突出収納部10gには、DCDCコンバータ装置100から延ばされる端子や、抵抗器450が収納される。ここで抵抗器450は、コンデンサモジュール500のコンデンサ素子に蓄えられた電荷を放電するための抵抗素子である。このようにバッテリ136とコンデンサモジュール500との間の電気回路部品を突出収納部10gに集約しているため、配線の複雑化を抑制することができ、装置全体の小型化に寄与することができる。 In the case 10 according to the present embodiment, the portion in which the flow path forming body 12 is stored has a substantially rectangular parallelepiped shape, but a protruding storage portion 10 g is formed from one side of the case 10. A terminal extended from the DCDC converter device 100 and a resistor 450 are stored in the protruding storage portion 10g. Here, the resistor 450 is a resistive element for discharging the charge stored in the capacitor element of the capacitor module 500. As described above, since the electric circuit components between the battery 136 and the capacitor module 500 are concentrated in the protruding storage portion 10g, the wiring can be prevented from being complicated, which can contribute to the downsizing of the entire device. .
 図5ないし図9を用いてインバータ回路140に使用されるパワー半導体モジュール300a~300cの詳細構成を説明する。上記パワー半導体モジュール300a~300cはいずれも同じ構造であり、代表してパワー半導体モジュール300aの構造を説明する。尚、図5乃至図9において信号端子325Uは、図3に開示したゲート電極154および信号用エミッタ電極155に対応し、信号端子325Lは、図3に開示したゲート電極164およびエミッタ電極165に対応する。また直流正極端子315Bは、図3に開示した正極端子157と同一のものであり、直流負極端子319Bは、図3に開示した負極端子158と同一のものである。また交流端子320Bは、図3に開示した交流端子159と同じものである。 The detailed configuration of the power semiconductor modules 300a to 300c used for the inverter circuit 140 will be described with reference to FIGS. 5 to 9. The power semiconductor modules 300a to 300c all have the same structure, and the structure of the power semiconductor module 300a will be described as a representative. In FIGS. 5 to 9, the signal terminal 325U corresponds to the gate electrode 154 and the signal emitter electrode 155 disclosed in FIG. 3, and the signal terminal 325L corresponds to the gate electrode 164 and the emitter electrode 165 disclosed in FIG. Do. The direct current positive electrode terminal 315B is the same as the positive electrode terminal 157 disclosed in FIG. 3, and the direct current negative electrode terminal 319B is the same as the negative electrode terminal 158 disclosed in FIG. Further, the AC terminal 320B is the same as the AC terminal 159 disclosed in FIG.
 図5(a)は、本実施形態のパワー半導体モジュール300aの斜視図である。図5(b)は、本実施形態のパワー半導体モジュール300aを断面Dで切断して方向Eから見たときの断面図である。 FIG. 5A is a perspective view of the power semiconductor module 300 a of the present embodiment. FIG. 5 (b) is a cross-sectional view of the power semiconductor module 300 a of the present embodiment taken along the section D and viewed from the direction E.
 図6は、理解を助けるために、図5に示す状態からネジ309および第二封止樹脂351を取り除いたパワー半導体モジュール300aを示す図である。図6(a)は斜視図であり、図6(b)は図5(b)と同様に断面Dで切断して方向Eから見たときの断面図である。また、図6(c)はフィン305が加圧されて湾曲部304Aが変形される前の断面図を示している。 FIG. 6 is a view showing the power semiconductor module 300a from which the screw 309 and the second sealing resin 351 have been removed from the state shown in FIG. 5 in order to aid understanding. FIG. 6 (a) is a perspective view, and FIG. 6 (b) is a cross-sectional view as viewed in the direction E, cut along the section D, as in FIG. 5 (b). Further, FIG. 6C shows a cross-sectional view before the fins 305 are pressurized and the curved portion 304A is deformed.
 図7は、図6に示す状態からさらにモジュールケース304を取り除いたパワー半導体モジュール300aを示す図である。図7(a)は斜視図であり、図7(b)は図5(b),図6(b)と同様に断面Dで切断して方向Eから見たときの断面図である。 FIG. 7 is a diagram showing a power semiconductor module 300a in which the module case 304 is further removed from the state shown in FIG. FIG. 7 (a) is a perspective view, and FIG. 7 (b) is a cross-sectional view as viewed from the direction E by cutting it at the cross section D as in FIGS. 5 (b) and 6 (b).
 図8は、図7に示す状態からさらに第一封止樹脂348および配線絶縁部608を取り除いたパワー半導体モジュール300aの斜視図である。 FIG. 8 is a perspective view of the power semiconductor module 300 a with the first sealing resin 348 and the wiring insulating portion 608 further removed from the state shown in FIG. 7.
 図9は、モジュール一次封止体302の組立工程を説明するための図である。 
 上下アームの直列回路150を構成するパワー半導体素子(IGBT328,IGBT330,ダイオード156,ダイオード166)が、図7および図8に示す如く、導体板315や導体板318によって、あるいは導体板320や導体板319によって、両面から挟んで固着される。導体板315等は、その放熱面が露出した状態で第一封止樹脂348によって封止され、当該放熱面に絶縁シート333が熱圧着される。第一封止樹脂348は図7に示すように、多面体形状(ここでは略直方体形状)を有している。
FIG. 9 is a view for explaining an assembly process of the module primary sealing body 302. As shown in FIG.
The power semiconductor elements (IGBT 328, IGBT 330, diode 156, diode 166) constituting the series circuit 150 of the upper and lower arms are, as shown in FIGS. 7 and 8, the conductor plate 315 or conductor plate 318 or the conductor plate 320 or conductor plate By 319, it is fixed by sandwiching from both sides. The conductor plate 315 or the like is sealed by the first sealing resin 348 in a state where the heat dissipation surface is exposed, and the insulating sheet 333 is thermocompression-bonded to the heat dissipation surface. As shown in FIG. 7, the first sealing resin 348 has a polyhedral shape (here, a substantially rectangular parallelepiped shape).
 第一封止樹脂348により封止されたモジュール一次封止体302は、モジュールケース304の中に挿入して絶縁シート333を挟んで、CAN型冷却器であるモジュールケース304の内面に熱圧着される。ここで、CAN型冷却器とは、一面に挿入口306と他面に底を有する筒形状をした冷却器である。モジュールケース304の内部に残存する空隙には、第二封止樹脂351が充填される。 The module primary sealing body 302 sealed by the first sealing resin 348 is inserted into the module case 304, sandwiching the insulating sheet 333 and thermocompression-bonded to the inner surface of the module case 304 which is a CAN type cooler. Ru. Here, the CAN-type cooler is a cylindrical cooler having an insertion port 306 on one side and a bottom on the other side. The second sealing resin 351 is filled in the space remaining inside the module case 304.
 モジュールケース304は、電気伝導性を有する部材、例えばアルミ合金材料(Al,AlSi,AlSiC,Al-C等)で構成され、かつ、つなぎ目の無い状態で一体に成形される。モジュールケース304は、挿入口306以外に開口を設けない構造であり、挿入口306は、フランジ304Bによって、その外周を囲まれている。また、図5(a)に示されるように、他の面より広い面を有する第1放熱面307A及び第2放熱面307Bがそれぞれ対向した状態で配置され、これらの放熱面に対向するようにして、各パワー半導体素子(IGBT328,IGBT330,ダイオード156,ダイオード166)が配置されている。当該対向する第1放熱面307Aと第2放熱面307Bと繋ぐ3つの面は、当該第1放熱面307A及び第2放熱面307Bより狭い幅で密閉された面を構成し、残りの一辺の面に挿入口306が形成される。モジュールケース304の形状は、正確な直方体である必要が無く、角が図5(a)に示す如く曲面を成していても良い。 The module case 304 is made of a member having electrical conductivity, such as an aluminum alloy material (Al, AlSi, AlSiC, Al-C, etc.), and is integrally molded in a jointless state. The module case 304 has a structure in which no opening is provided other than the insertion opening 306, and the insertion opening 306 is surrounded by the flange 304B. Further, as shown in FIG. 5 (a), the first heat radiation surface 307A and the second heat radiation surface 307B, which have surfaces wider than the other surfaces, are disposed facing each other, and are made to face these heat radiation surfaces. Each power semiconductor element (IGBT 328, IGBT 330, diode 156, diode 166) is disposed. The three surfaces connecting the first heat radiation surface 307A and the second heat radiation surface 307B, which are opposite to each other, form a surface sealed with a narrower width than the first heat radiation surface 307A and the second heat radiation surface 307B. The insertion port 306 is formed in the The shape of the module case 304 does not have to be an accurate rectangular parallelepiped, and the corners may have a curved surface as shown in FIG. 5 (a).
 このような形状の金属製のケースを用いることで、モジュールケース304を水や油などの冷媒が流れる冷媒流路19内に挿入しても、冷媒に対するシールをフランジ304Bにて確保できるため、冷却媒体がモジュールケース304の内部に侵入するのを簡易な構成で防ぐことができる。また、対向した第1放熱面307Aと第2放熱面307Bに、フィン305がそれぞれ均一に形成される。さらに、第1放熱面307A及び第2放熱面307Bの外周には、厚みが極端に薄くなっている湾曲部304Aが形成されている。湾曲部304Aは、フィン305を加圧することで簡単に変形する程度まで厚みを極端に薄くしてあるため、モジュール一次封止体302が挿入された後の生産性が向上する。 By using a metal case of such a shape, even if the module case 304 is inserted into the refrigerant flow path 19 through which a refrigerant such as water or oil flows, a seal for the refrigerant can be secured by the flange 304B, so cooling A medium can be prevented from invading the inside of the module case 304 with a simple configuration. Further, the fins 305 are uniformly formed on the first heat radiation surface 307A and the second heat radiation surface 307B facing each other. Furthermore, a curved portion 304A whose thickness is extremely thin is formed on the outer periphery of the first heat radiating surface 307A and the second heat radiating surface 307B. The thickness of the curved portion 304A is extremely reduced to such an extent that the curved portion 304A is easily deformed by pressing the fin 305. Therefore, productivity after the module primary sealing body 302 is inserted is improved.
 上述のように導体板315等を絶縁シート333を介してモジュールケース304の内壁に熱圧着することにより、導体板315等とモジュールケース304の内壁の間の空隙を少なくすることができ、パワー半導体素子の発生熱を効率良くフィン305へ伝達できる。さらに絶縁シート333にある程度の厚みと柔軟性を持たせることにより、熱応力の発生を絶縁シート333で吸収することができ、温度変化の激しい車両用の電力変換装置に使用するのに良好となる。 As described above, the gap between the conductor plate 315 or the like and the inner wall of the module case 304 can be reduced by thermocompression-bonding the conductor plate 315 or the like to the inner wall of the module case 304 via the insulating sheet 333. The heat generated from the element can be efficiently transferred to the fins 305. Furthermore, by providing the insulating sheet 333 with a certain thickness and flexibility, the generation of thermal stress can be absorbed by the insulating sheet 333 and it becomes good for use in a power conversion device for vehicles with severe temperature change .
 モジュールケース304の外には、コンデンサモジュール500と電気的に接続するための金属製の直流正極配線315Aおよび直流負極配線319Aが設けられており、その先端部に直流正極端子315B(157)と直流負極端子319B(158)がそれぞれ形成されている。また、モータジェネレータMG1あるいはMG2に交流電力を供給するための金属製の交流配線320Aが設けられており、その先端に交流端子320B(159)が形成されている。本実施形態では、図8に示す如く、直流正極配線315Aは導体板315と接続され、直流負極配線319Aは導体板319と接続され、交流配線320Aは導体板320と接続される。 Outside the module case 304, metal DC positive wire 315A and DC negative wire 319A for electrically connecting to the capacitor module 500 are provided, and a DC positive electrode terminal 315B (157) and DC are formed at the tip thereof. Negative electrode terminals 319B (158) are respectively formed. Further, a metal AC wire 320A for supplying AC power to the motor generator MG1 or MG2 is provided, and an AC terminal 320B (159) is formed at the tip thereof. In the present embodiment, as shown in FIG. 8, the DC positive wiring 315A is connected to the conductor plate 315, the DC negative wiring 319A is connected to the conductor plate 319, and the AC wiring 320A is connected to the conductor plate 320.
 モジュールケース304の外にはさらに、ドライバ回路174と電気的に接続するための金属製の信号配線324Uおよび324Lが設けられており、その先端部に信号端子325U(154,155)と信号端子325L(164,165)がそれぞれ形成されている。本実施形態では、図8に示す如く、信号配線324UはIGBT328と接続され、信号配線324LはIGBT328と接続される。 Further, metal signal wires 324U and 324L for electrically connecting to the driver circuit 174 are provided outside the module case 304, and the signal terminals 325U (154, 155) and the signal terminals 325L are provided at the tip thereof. (164, 165) are respectively formed. In the present embodiment, as shown in FIG. 8, the signal wiring 324U is connected to the IGBT 328, and the signal wiring 324L is connected to the IGBT 328.
 直流正極配線315A,直流負極配線319A,交流配線320A,信号配線324Uおよび信号配線324Lは、樹脂材料で成形された配線絶縁部608によって相互に絶縁された状態で、補助モールド体600として一体に成型される。配線絶縁部608は、各配線を支持するための支持部材としても作用し、これに用いる樹脂材料は、絶縁性を有する熱硬化性樹脂かあるいは熱可塑性樹脂が適している。これにより、直流正極配線315A,直流負極配線319A,交流配線320A,信号配線324Uおよび信号配線324Lの間の絶縁性を確保でき、高密度配線が可能となる。 DC positive electrode wiring 315A, DC negative electrode wiring 319A, AC wiring 320A, signal wiring 324U and signal wiring 324L are integrally molded as auxiliary mold body 600 in a state of being mutually insulated by wiring insulating portion 608 molded of a resin material. Be done. The wire insulating portion 608 also functions as a support member for supporting each wire, and the resin material used for this is suitably a thermosetting resin or a thermoplastic resin having insulation. As a result, the insulation between the DC positive wiring 315A, the DC negative wiring 319A, the AC wiring 320A, the signal wiring 324U, and the signal wiring 324L can be secured, and high density wiring can be achieved.
 補助モールド体600は、モジュール一次封止体302と接続部370において金属接合された後に、配線絶縁部608に設けられたネジ穴を貫通するネジ309によってモジュールケース304に固定される。接続部370におけるモジュール一次封止体302と補助モールド体600との金属接合には、たとえばTIG溶接などを用いることができる。 The auxiliary molded body 600 is metal-joined to the module primary sealing body 302 at the connection portion 370 and then fixed to the module case 304 by a screw 309 penetrating a screw hole provided in the wiring insulating portion 608. For metal bonding between the module primary sealing body 302 and the auxiliary mold body 600 at the connection portion 370, for example, TIG welding can be used.
 直流正極配線315Aと直流負極配線319Aは、配線絶縁部608を間に挟んで対向した状態で互いに積層され、略平行に延びる形状を成している。こうした配置および形状とすることで、パワー半導体素子のスイッチング動作時に瞬間的に流れる電流が、対向してかつ逆方向に流れる。これにより、電流が作る磁界が互いに相殺する作用をなし、この作用により低インダクタンス化が可能となる。なお、交流配線320Aや信号端子325U,325Lも、直流正極配線315A及び直流負極配線319Aと同様の方向に向かって延びている。 The direct current positive wire 315A and the direct current negative wire 319A are stacked on each other with the wire insulating portion 608 interposed therebetween and are formed to extend substantially in parallel. With such an arrangement and shape, current instantaneously flowing in the switching operation of the power semiconductor element flows in the opposite direction and in the opposite direction. As a result, the magnetic fields generated by the current act to cancel each other, and this action makes it possible to reduce the inductance. The AC wiring 320A and the signal terminals 325U and 325L also extend in the same direction as the DC positive wiring 315A and the DC negative wiring 319A.
 モジュール一次封止体302と補助モールド体600が金属接合により接続されている接続部370は、第二封止樹脂351によりモジュールケース304内で封止される。これにより、接続部370とモジュールケース304との間で必要な絶縁距離を安定的に確保することができるため、封止しない場合と比較してパワー半導体モジュール300aの小型化が実現できる。 The connection portion 370 where the module primary sealing body 302 and the auxiliary molded body 600 are connected by metal bonding is sealed in the module case 304 by the second sealing resin 351. As a result, a necessary insulation distance can be stably secured between the connection portion 370 and the module case 304, so that the power semiconductor module 300a can be miniaturized as compared with the case where the sealing is not performed.
 図8に示されるように、接続部370の補助モジュール600側には、補助モジュール側直流正極接続端子315C,補助モジュール側直流負極接続端子319C,補助モジュール側交流接続端子320C,補助モジュール側信号接続端子326Uおよび補助モジュール側信号接続端子326Lが一列に並べて配置される。一方、接続部370のモジュール一次封止体302側には、多面体形状を有する第一封止樹脂348の一つの面に沿って、素子側直流正極接続端子315D,素子側直流負極接続端子319D,素子側交流接続端子320D,素子側信号接続端子327Uおよび素子側信号接続端子327Lが一列に並べて配置される。こうして接続部370において各端子が一列に並ぶような構造とすることで、トランスファーモールドによるモジュール一次封止体302の製造が容易となる。 As shown in FIG. 8, on the auxiliary module 600 side of the connection portion 370, auxiliary module side direct current positive electrode connection terminal 315C, auxiliary module side direct current negative electrode connection terminal 319C, auxiliary module side alternating current connection terminal 320C, auxiliary module side signal connection The terminal 326U and the auxiliary module side signal connection terminal 326L are arranged in line. On the other hand, on the module primary sealing body 302 side of the connection portion 370, an element-side DC positive electrode connecting terminal 315D, an element-side DC negative electrode connecting terminal 319D, along one surface of the first sealing resin 348 having a polyhedral shape. The element-side AC connection terminal 320D, the element-side signal connection terminal 327U, and the element-side signal connection terminal 327L are arranged in a line. In this manner, the structure in which the terminals are arranged in a line in the connection portion 370 facilitates the manufacture of the module primary sealing body 302 by transfer molding.
 ここで、モジュール一次封止体302の第一封止樹脂348から外側に延出している部分をその種類ごとに一つの端子として見た時の各端子の位置関係について述べる。以下の説明では、直流正極配線315A(直流正極端子315Bと補助モジュール側直流正極接続端子315Cを含む)および素子側直流正極接続端子315Dにより構成される端子を正極側端子と称し、直流負極配線319A(直流負極端子319Bと補助モジュール側直流負極接続端子319Cを含む)および素子側直流負極接続端子315Dにより構成される端子を負極側端子と称し、交流配線320A(交流端子320Bと補助モジュール側交流接続端子320Cを含む)および素子側交流接続端子320Dにより構成される端子を出力端子と称し、信号配線324U(信号端子325Uと補助モジュール側信号接続端子326Uを含む)および素子側信号接続端子327Uにより構成される端子を上アーム用信号端子と称し、信号配線324L(信号端子325Lと補助モジュール側信号接続端子326Lを含む)および素子側信号接続端子327Lにより構成される端子を下アーム用信号端子と称する。 Here, the positional relationship of each terminal when the part extended outside from the 1st sealing resin 348 of the module primary sealing body 302 is seen as one terminal for every kind is described. In the following description, a terminal constituted by the direct current positive electrode wiring 315A (including the direct current positive electrode terminal 315B and the auxiliary module side direct current positive electrode connection terminal 315C) and the element side direct current positive electrode connection terminal 315D is referred to as a positive electrode side terminal. A terminal composed of a DC negative electrode terminal 319B and an auxiliary module side DC negative electrode connection terminal 319C and an element side DC negative electrode connection terminal 315D is referred to as a negative electrode side terminal, and an AC wiring 320A (AC terminal 320B and auxiliary module side AC connection A terminal configured by the terminal 320C and the element-side AC connection terminal 320D is referred to as an output terminal, and is configured by the signal wiring 324U (including the signal terminal 325U and the auxiliary module side signal connection terminal 326U) and the element-side signal connection terminal 327U. Terminal called the upper arm signal terminal, It refers to a line 324L (including signal terminals 325L and the auxiliary module-side signal connecting terminals 326L) and the terminal constituted by the element-side signal connecting terminals 327L and the signal terminal for the lower arm.
 上記の各端子は、いずれも第一封止樹脂348および第二封止樹脂351から接続部370を通して突出しており、その第一封止樹脂348からの各突出部分(素子側直流正極接続端子315D,素子側直流負極接続端子319D,素子側交流接続端子320D,素子側信号接続端子327Uおよび素子側信号接続端子327L)は、上記のように多面体形状を有する第一封止樹脂348の一つの面に沿って一列に並べられている。また、正極側端子と負極側端子は、第二封止樹脂351から積層状態で突出しており、モジュールケース304の外に延出している。このような構成としたことで、第一封止樹脂348でパワー半導体素子を封止してモジュール一次封止体302を製造する時の型締めの際に、パワー半導体素子と当該端子との接続部分への過大な応力や金型の隙間が生じるのを防ぐことができる。また、積層された正極側端子と負極側端子の各々を流れる反対方向の電流により、互いに打ち消しあう方向の磁束が発生されるため、低インダクタンス化を図ることができる。 Each of the above-described terminals protrudes from the first sealing resin 348 and the second sealing resin 351 through the connection portion 370, and each protruding portion from the first sealing resin 348 (element-side direct current positive electrode connection terminal 315D , Element-side DC negative connection terminal 319D, element-side AC connection terminal 320D, element-side signal connection terminal 327U and element-side signal connection terminal 327L) are one surface of the first sealing resin 348 having a polyhedral shape as described above. Lined up along the. Further, the positive electrode side terminal and the negative electrode side terminal protrude from the second sealing resin 351 in a stacked state, and extend out of the module case 304. With such a configuration, when clamping the power semiconductor element with the first sealing resin 348 to produce the module primary sealing body 302, the connection between the power semiconductor element and the corresponding terminal is performed. It is possible to prevent the occurrence of excessive stress on the part or a mold gap. In addition, since magnetic flux in the direction of canceling each other is generated by the current in the opposite direction flowing through each of the stacked positive electrode side terminal and negative electrode side terminal, it is possible to reduce the inductance.
 補助モジュール600側において、補助モジュール側直流正極接続端子315C,補助モジュール側直流負極接続端子319Cは、直流正極端子315B,直流負極端子319Bとは反対側の直流正極配線315A,直流負極配線319Aの先端部にそれぞれ形成されている。また、補助モジュール側交流接続端子320Cは、交流配線320Aにおいて交流端子320Bとは反対側の先端部に形成されている。補助モジュール側信号接続端子326U,326Lは、信号配線324U,324Lにおいて信号端子325U,325Lとは反対側の先端部にそれぞれ形成されている。 In the auxiliary module 600 side, the auxiliary module side direct current positive electrode connection terminal 315C and the auxiliary module side direct current negative electrode connection terminal 319C are the tips of the direct current positive electrode wiring 315A opposite to the direct current positive electrode terminal 315B and the direct current negative electrode terminal 319B, and the direct current negative electrode wiring 319A. It is formed in each part. Further, the auxiliary module side AC connection terminal 320C is formed at the tip end of the AC wiring 320A on the opposite side to the AC terminal 320B. The auxiliary module side signal connection terminals 326U and 326L are respectively formed at tip portions of the signal wirings 324U and 324L opposite to the signal terminals 325U and 325L.
 一方、モジュール一次封止体302側において、素子側直流正極接続端子315D,素子側直流負極接続端子319D,素子側交流接続端子320Dは、導体板315,319,320にそれぞれ形成されている。また、素子側信号接続端子327U,327Lは、ボンディングワイヤ371によりIGBT328,IGBT330とそれぞれ接続されている。 On the other hand, on the module primary sealing body 302 side, the element side direct current positive electrode connection terminal 315D, the element side direct current negative electrode connection terminal 319D, and the element side alternating current connection terminal 320D are respectively formed in the conductor plates 315, 319, 320. The element-side signal connection terminals 327U and 327L are connected to the IGBTs 328 and IGBTs 330 by bonding wires 371, respectively.
 図9に示すように、直流正極側の導体板315および交流出力側の導体板320と、素子側信号接続端子327Uおよび327Lとは、共通のタイバー372に繋がれた状態で、これらが略同一平面状の配置となるように一体的に加工される。導体板315には、上アーム側のIGBT328のコレクタ電極と上アーム側のダイオード156のカソード電極が固着される。導体板320には、下アーム側のIGBT330のコレクタ電極と下アーム側のダイオード166のカソード電極が固着される。IGBT328,330およびダイオード155,166の上には、導体板318と導体板319が略同一平面状に配置される。導体板318には、上アーム側のIGBT328のエミッタ電極と上アーム側のダイオード156のアノード電極が固着される。導体板319には、下アーム側のIGBT330のエミッタ電極と下アーム側のダイオード166のアノード電極が固着される。各パワー半導体素子は、各導体板に設けられた素子固着部322に、金属接合材160を介してそれぞれ固着される。金属接合材160は、例えばはんだ材や銀シート及び微細金属粒子を含んだ低温焼結接合材、等である。 As shown in FIG. 9, the conductor plate 315 on the direct current positive electrode side and the conductor plate 320 on the alternating current output side, and the element side signal connection terminals 327U and 327L are substantially identical to each other in a state of being connected to the common tie bar 372 It is integrally processed so as to become a planar arrangement. The collector electrode of the IGBT 328 on the upper arm side and the cathode electrode of the diode 156 on the upper arm side are fixed to the conductor plate 315. The collector electrode of the lower arm IGBT 330 and the cathode electrode of the lower arm diode 166 are fixed to the conductor plate 320. Conductor plate 318 and conductor plate 319 are arranged substantially flush with each other on IGBTs 328 and 330 and diodes 155 and 166. The emitter electrode of the IGBT 328 on the upper arm side and the anode electrode of the diode 156 on the upper arm side are fixed to the conductor plate 318. The emitter electrode of the lower arm IGBT 330 and the anode electrode of the lower arm diode 166 are fixed to the conductor plate 319. Each power semiconductor element is fixed to the element fixing portion 322 provided on each conductor plate via the metal bonding material 160. The metal bonding material 160 is, for example, a solder material, a low temperature sintering bonding material including a silver sheet and fine metal particles, or the like.
 各パワー半導体素子は板状の扁平構造であり、当該パワー半導体素子の各電極は表裏面に形成されている。図9に示されるように、パワー半導体素子の各電極は、導体板315と導体板318、または導体板320と導体板319によって挟まれる。つまり、導体板315と導体板318は、IGBT328及びダイオード156を介して略平行に対向した積層配置となる。同様に、導体板320と導体板319は、IGBT330及びダイオード166を介して略平行に対向した積層配置となる。また、導体板320と導体板318は中間電極329を介して接続されている。この接続により上アーム回路と下アーム回路が電気的に接続され、上下アーム直列回路が形成される。上述したように、導体板315と導体板318の間にIGBT328及びダイオード156を挟み込むと共に、導体板320と導体板319の間にIGBT330及びダイオード166を挟み込み、導体板320と導体板318を中間電極329を介して接続する。その後、IGBT328の制御電極328Aと素子側信号接続端子327Uとをボンディングワイヤ371により接続すると共に、IGBT330の制御電極330Aと素子側信号接続端子327Lとをボンディングワイヤ371により接続する。 Each power semiconductor element has a plate-like flat structure, and each electrode of the power semiconductor element is formed on the front and back surfaces. As shown in FIG. 9, each electrode of the power semiconductor element is sandwiched between the conductor plate 315 and the conductor plate 318, or the conductor plate 320 and the conductor plate 319. That is, the conductor plate 315 and the conductor plate 318 are in a stacked arrangement facing each other substantially in parallel via the IGBT 328 and the diode 156. Similarly, the conductor plate 320 and the conductor plate 319 are in a stacked arrangement facing substantially in parallel via the IGBT 330 and the diode 166. The conductor plate 320 and the conductor plate 318 are connected via the intermediate electrode 329. By this connection, the upper arm circuit and the lower arm circuit are electrically connected to form an upper and lower arm series circuit. As described above, the IGBT 328 and the diode 156 are sandwiched between the conductor plate 315 and the conductor plate 318, and the IGBT 330 and the diode 166 are sandwiched between the conductor plate 320 and the conductor plate 319, and the conductor plate 320 and the conductor plate 318 are intermediate electrodes. Connect via 329. Thereafter, the control electrode 328A of the IGBT 328 and the element-side signal connection terminal 327U are connected by the bonding wire 371, and the control electrode 330A of the IGBT 330 and the element-side signal connection terminal 327L are connected by the bonding wire 371.
 図10は、インバータ装置200のケース10の底面側から見た分解斜視図である。ケース10は、4つの側壁10a,10b,10c,10dを備える直方体形状を有している。コの字形状の冷媒流路19は、直線状の3つの流路部(第1流路部19a,第2流路部19b,第3流路部19c)から構成される。開口部404もコの字形状をしており、この開口部404はDCDCコンバータ装置100のケース111によって塞がれる。ケース111とケース10の間には、シール部材409が設けられ冷媒流路の気密性を保っている。 FIG. 10 is an exploded perspective view seen from the bottom side of the case 10 of the inverter device 200. As shown in FIG. The case 10 has a rectangular parallelepiped shape including four side walls 10a, 10b, 10c and 10d. The U-shaped refrigerant flow path 19 is composed of three linear flow path portions (a first flow path portion 19a, a second flow path portion 19b, and a third flow path portion 19c). The opening 404 is also U-shaped, and the opening 404 is closed by the case 111 of the DCDC converter device 100. A seal member 409 is provided between the case 111 and the case 10 to maintain the airtightness of the refrigerant flow path.
 符号10eで示す部分は、コンデンサモジュール500を収納する収納空間405(図4参照)の底部を形成する。 The portion indicated by reference numeral 10 e forms the bottom of a storage space 405 (see FIG. 4) for storing the capacitor module 500.
 冷媒は、矢印417で示すように入口配管13に流入し、ケース10の長手方向の辺に沿って形成された第1流路部19a内を矢印418の方向に流れる。さらに、冷媒は、ケース10の短手方向の辺に沿って形成された第2流路部19b内を、矢印421の方向に流れる。この第2流路部19bは折り返し流路を形成する。さらに、冷媒は、ケース10の長手方向の辺に沿って形成された流路形成部12の第3流路部19cを流れる。第3流路部19cは、コンデンサモジュール500を挟んで第1流路部19aと平行に設けられている。冷媒は、矢印423で示すように出口配管14から流出される。 The refrigerant flows into the inlet pipe 13 as indicated by the arrow 417, and flows in the direction of the arrow 418 in the first flow path 19a formed along the longitudinal side of the case 10. Further, the refrigerant flows in the direction of the arrow 421 in the second flow passage portion 19 b formed along the short side of the case 10. The second flow passage portion 19 b forms a return flow passage. Further, the refrigerant flows through the third flow passage portion 19 c of the flow passage forming portion 12 formed along the longitudinal side of the case 10. The third flow passage portion 19 c is provided in parallel to the first flow passage portion 19 a with the capacitor module 500 interposed therebetween. The refrigerant flows out of the outlet pipe 14 as indicated by an arrow 423.
 第1流路部19a,第2流路部19b,第3流路部19cは、いずれも幅方向より深さ方向が大きく形成される。 Each of the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c is formed such that the depth direction is larger than the width direction.
 次に、DCDCコンバータ装置100について説明する。図11は、DCDCコンバータ装置100の回路構成を示す図である。図11に示すように、本実施形態のDCDCコンバータ装置100では、降圧及び昇圧を行う双方向DCDC対応としている。そのために、降圧回路(HV回路)、昇圧回路(LV回路)は、ダイオード整流ではなく同期整流構成としている。また、HV/LV変換で高出力とするために、スイッチング素子に大電流部品を採用し、かつ、平滑コイルの大型化を図っている。 Next, the DCDC converter device 100 will be described. FIG. 11 is a diagram showing a circuit configuration of the DC-DC converter device 100. As shown in FIG. As shown in FIG. 11, the DC-DC converter device 100 according to the present embodiment is compatible with bidirectional DC-DC that performs step-down and step-up. Therefore, the step-down circuit (HV circuit) and the booster circuit (LV circuit) are not in the diode rectification but in the synchronous rectification configuration. Also, in order to achieve high output in HV / LV conversion, a large current component is adopted as the switching element, and the smoothing coil is enlarged.
 具体的には、HV/LV側共に、リカバリーダイオードを持つMOSFETを利用したHブリッジ型・同期整流スイッチング回路構成(H1~H4)とした。スイッチング制御にあっては、LC直列共振回路(Cr,Lr)を用いて高スイッチング周波数(100kHz)でゼロクロススイッチングさせ、変換効率を向上させて熱損失を低減するようにした。加えて、アクティブクランプ回路を設けて、降圧動作時の循環電流による損失を低減させ、ならびに、スイッチング時のサージ電圧発生を抑制してスイッチング素子の耐圧を低減させることで、回路部品の低耐圧化を図ることで装置を小型化している。 Specifically, an H bridge type synchronous rectification switching circuit configuration (H1 to H4) using a MOSFET having a recovery diode is used on both the HV / LV side. In switching control, zero cross switching is performed at a high switching frequency (100 kHz) using an LC series resonant circuit (Cr, Lr) to improve the conversion efficiency and reduce the heat loss. In addition, an active clamp circuit is provided to reduce loss due to circulating current during step-down operation, and to suppress surge voltage generation during switching to reduce the withstand voltage of the switching element, thereby reducing the withstand voltage of the circuit component. To make the device smaller.
 さらに、LV側の高出力を確保するために、全波整流型の倍電流(カレントダブラー)方式とした。なお、高出力化にあたり、複数のスイッチング素子を並列同時作動させることで高出力を確保している。図11の例では、SWA1~SWA4,SWB1~SWB4のように4素子並列とした。また、スイッチング回路および平滑リアクトルの小型リアクトル(L1,L2)を、対称性を持たせるように2回路並列配置とすることで高出力化している。このように、小型リアクトルを2回路配置とすることで、大型リアクトル1台を配置させる場合に比べて、DCDCコンバータ装置全体の小型化が可能となる。 Furthermore, in order to secure a high output on the LV side, a full-wave rectification type double current (current doubler) system was used. In addition, in order to achieve high output, a high output is secured by simultaneously operating a plurality of switching elements. In the example of FIG. 11, four elements are arranged in parallel like SWA1 to SWA4 and SWB1 to SWB4. In addition, high output is realized by arranging the small-sized reactors (L1 and L2) of the switching circuit and the smoothing reactor in parallel in two circuits so as to give symmetry. As described above, by arranging the small reactors in two circuits, it is possible to miniaturize the entire DC-DC converter as compared to the case where one large reactor is arranged.
 図11の回路構成図の下部に、降圧回路および昇圧回路用の駆動回路および動作検出回路、インバータ装置経由で上位の制御装置との通信機能を担う制御回路部を示す。上位の制御装置との通信をインバータ装置経由とすることにより、インバータ装置とDCDCコンバータ装置を一体化した構成、インバータ装置単体の構成の各場合でも、上位の制御装置との通信インターフェースは共通化が可能となる。 The lower part of the circuit configuration diagram of FIG. 11 shows a drive circuit and operation detection circuit for a step-down circuit and a booster circuit, and a control circuit unit having a communication function with a higher-level control device via an inverter device. By making the communication with the upper control device via the inverter device, the communication interface with the upper control device is common even in each of the configuration in which the inverter device and the DCDC converter device are integrated and the configuration of the inverter device alone. It becomes possible.
 図12,図13および図14は、DCDCコンバータ装置100における部品配置を説明する図である。図12はDCDCコンバータ装置100の分解斜視図である。図13は、DCDCコンバータ装置100とインバータ装置200とを一体化した電力変換装置の断面図である。図14は、DCDCコンバータ装置100のケース内の部品配置を模式的に示した図である。 12, 13 and 14 are diagrams for explaining the arrangement of parts in DCDC converter apparatus 100. FIG. FIG. 12 is an exploded perspective view of the DC-DC converter device 100. As shown in FIG. FIG. 13 is a cross-sectional view of a power conversion device in which DCDC converter device 100 and inverter device 200 are integrated. FIG. 14 is a view schematically showing the arrangement of components in the case of DCDC converter apparatus 100. As shown in FIG.
 図12に示すように、DCDCコンバータ装置100の回路部品は、金属製(例えば、アルミダイカスト製)のケース111内に収納されている。ケース111の開口部にはケースカバー112がボルト固定される。ケース111内の底面部分には、主トランス33,インダクタ素子34,スイッチング素子H1~H4が搭載されたパワー半導体モジュール35,スイッチング素子36が搭載されている昇圧回路基板32,コンデンサ38等が載置されている。主な発熱部品は、主トランス33,インダクタ素子34,パワー半導体モジュール35およびスイッチング素子36である。 As shown in FIG. 12, the circuit components of the DC-DC converter device 100 are housed in a case 111 made of metal (for example, made of aluminum die cast). The case cover 112 is bolted to the opening of the case 111. On the bottom of case 111, main transformer 33, inductor element 34, power semiconductor module 35 having switching elements H1 to H4 mounted, booster circuit board 32 having switching element 36 mounted, capacitor 38, etc. are mounted. It is done. The main heat generating components are the main transformer 33, the inductor element 34, the power semiconductor module 35, and the switching element 36.
 なお、図11の回路図との対応を記載すると、主トランス33はトランスTrに、インダクタ素子34はカレントダブラーのリアクトルL1,L2に、スイッチング素子36はスイッチング素子SWA1~SWA4,SWB1~SWB4にそれぞれ対応している。昇圧回路基板32には、図11のスイッチング素子S1,S2等も搭載されている。 The main transformer 33 corresponds to the transformer Tr, the inductor element 34 to the reactors L1 and L2 of the current doubler, and the switching element 36 to the switching elements SWA1 to SWA4 and SWB1 to SWB4, respectively. It corresponds. The switching elements S1 and S2 of FIG. 11 and the like are also mounted on the booster circuit substrate 32.
 スイッチング素子H1~H4の端子39はケース111の開口部側へと延在しており、パワー半導体モジュール35の上方に配置された降圧回路基板31と接続されている。降圧回路基板31はケース111の底面から上方に突出した複数の支持部材上に固定される。パワー半導体モジュール35においては、スイッチング素子H1~H4は、パターンが形成された金属基板上に実装されており、金属基板の裏面側はケース底面に密着するように固定されている。スイッチング素子36が実装される昇圧回路基板32も同様の金属基板で構成されている。図12では、昇圧回路基板32はコンデンサ38等の陰に隠れて見えないので、破線で示している。 The terminals 39 of the switching elements H1 to H4 extend toward the opening of the case 111, and are connected to the step-down circuit board 31 disposed above the power semiconductor module 35. The step-down circuit board 31 is fixed on a plurality of support members protruding upward from the bottom surface of the case 111. In the power semiconductor module 35, the switching elements H1 to H4 are mounted on a metal substrate on which a pattern is formed, and the back surface side of the metal substrate is fixed in close contact with the bottom of the case. The booster circuit substrate 32 on which the switching element 36 is mounted is also formed of the same metal substrate. In FIG. 12, the booster circuit board 32 is shown by a broken line because it can not be seen behind the capacitor 38 or the like.
 制御回路基板30には、昇圧回路や降圧回路に設けられたスイッチング素子を制御する制御回路が実装されている制御回路基板30は金属製のベース板37上に固定されている。ベース板37はケース111の底面部から上方に突出した複数の支持部111aに固定されている。これにより、制御回路基板30は、ケース底面部に配置された発熱部品(主トランス33,インダクタ素子34やパワー半導体モジュール35など)の上方に、ベース板37を介して配置されることになる。 The control circuit board 30 on which a control circuit for controlling switching elements provided in the step-up circuit and the step-down circuit is mounted is fixed on a metal base plate 37. The base plate 37 is fixed to a plurality of support portions 111 a protruding upward from the bottom of the case 111. Thus, the control circuit board 30 is disposed above the heat generating components (the main transformer 33, the inductor element 34, the power semiconductor module 35, etc.) disposed on the bottom of the case via the base plate 37.
 図13および図14を参照して、DCDCコンバータ装置100に設けられた部品の配置について説明する。図13は、図10の断面Aの矢印方向から見た断面図である。前述したように、インバータ装置200のケース10内には、側壁10a,10b,10cに沿って流路形成部12a~12cが設けられている。図13に示される断面図には、流路形成部12a及び12cのみ示されている。 The arrangement of components provided in DCDC converter device 100 will be described with reference to FIGS. 13 and 14. 13 is a cross-sectional view of the cross section A of FIG. 10 as viewed in the direction of the arrow. As described above, in the case 10 of the inverter device 200, the flow path forming portions 12a to 12c are provided along the side walls 10a, 10b, and 10c. In the cross-sectional view shown in FIG. 13, only the flow path forming portions 12 a and 12 c are shown.
 側壁10aに沿った流路形成部12aには第1流路部19aが形成され、側壁10bに沿った流路形成部12bには第2流路部19bが形成され、側壁10cに沿った流路形成部12cには第3流路部19cが形成されている。第1流路部19aにはパワー半導体モジュール300aが挿入され、第3流路部19cにはパワー半導体モジュール300cが挿入されている。 A first flow passage portion 19a is formed in the flow passage forming portion 12a along the side wall 10a, and a second flow passage portion 19b is formed in the flow passage forming portion 12b along the side wall 10b. A third flow passage portion 19c is formed in the passage forming portion 12c. The power semiconductor module 300a is inserted into the first flow passage 19a, and the power semiconductor module 300c is inserted into the third flow passage 19c.
 DCDCコンバータ装置100のケース111には、このケース111の底面の外周面に凹部111dが形成されている。図1に示すように、ケース111の凹部111dは、ケース10の底部外周面に設けられた第1流路部19a,第2流路部19b,第3流路部19cに対向している。 In the case 111 of the DCDC converter device 100, a recess 111d is formed on the outer peripheral surface of the bottom of the case 111. As shown in FIG. 1, the recess 111 d of the case 111 is opposed to the first flow passage 19 a, the second flow passage 19 b, and the third flow passage 19 c provided on the outer peripheral surface of the bottom of the case 10.
 主トランス33は、第1流路部19aと対向するケース111内周面に固定されている。一方、スイッチング素子36と搭載する昇圧回路基板32やコンデンサ38は、第3流路部19cと対向するケース111内周面に固定されている。 The main transformer 33 is fixed to the inner circumferential surface of the case 111 facing the first flow passage 19a. On the other hand, the booster circuit board 32 and the capacitor 38 mounted on the switching element 36 are fixed to the inner circumferential surface of the case 111 facing the third flow passage 19 c.
 ベース板37はケース111に形成された支持部111a上にボルト固定されている。制御回路基板30はベース板37の上面に形成された凸部37a上にボルト等により固定されている。ケース111の開口部にはケースカバー112が取り付けられ、ケース111は密閉されている。 The base plate 37 is bolted on a support portion 111 a formed on the case 111. The control circuit board 30 is fixed on a convex portion 37 a formed on the upper surface of the base plate 37 by a bolt or the like. A case cover 112 is attached to the opening of the case 111, and the case 111 is sealed.
 ケース111の凹部111dは、インバータ装置200のケース10の冷媒流路19の壁の一部を形成する。このため、ケース111は、第1流路部19a,第2流路部19b及び第3流路部19cを流れる冷媒によって直接的に冷却されている。 The recess 111 d of the case 111 forms a part of the wall of the refrigerant flow path 19 of the case 10 of the inverter device 200. Therefore, the case 111 is directly cooled by the refrigerant flowing through the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c.
 また、ケース111の底面部に、DCDCコンバータ装置100の構成部品のうち発熱量が大きい部品を固定することにより、効果的に冷却が行われる。また、ベース板37は金属で形成されているので、制御回路基板30で発生した熱は支持部111aおよびケース111を介してケース10へと伝達される。また、ベース板37は、ケース111の底面部に設けられた発熱部品からの輻射熱の遮蔽部材として機能するとともに、銅材等を用いることでスイッチング素子からのスイッチング放射ノイズを遮蔽するシールドとしても機能する。 In addition, by fixing a component that generates a large amount of heat among the components of the DCDC converter device 100 to the bottom of the case 111, cooling is effectively performed. Further, since the base plate 37 is formed of metal, heat generated at the control circuit board 30 is transmitted to the case 10 through the support portion 111 a and the case 111. Further, the base plate 37 functions as a shielding member of the radiation heat from the heat generating component provided on the bottom of the case 111, and also functions as a shield that shields the switching radiation noise from the switching element by using a copper material or the like. Do.
 インバータ装置200のケース10は開口部201を有し、DCDCコンバータ装置100のケース111はケース10との対向面に開口部101を有する。接合部材103は、開口部101及び開口部201に嵌め合わせられる。接合部材103とケース10との間と、接合部材103とケース111との間には、シール部材104が設けられ、外部との気密性を保っている。 The case 10 of the inverter device 200 has an opening 201, and the case 111 of the DC-DC converter 100 has an opening 101 on the surface facing the case 10. The bonding member 103 is fitted to the opening 101 and the opening 201. A seal member 104 is provided between the joint member 103 and the case 10 and between the joint member 103 and the case 111 to maintain airtightness with the outside.
 またパワー導線701は、例えば降圧回路部31等のスイッチング素子の駆動電圧を生成する駆動回路部に対して駆動電力を伝達する。通信導線702は、駆動回路部を駆動するための信号を伝達する。本実施形態では、パワー導線701や通信導線702のようなインバータ装置200とDCDCコンバータ装置100とのインターフェースの機能を担うケーブルをインターフェースケーブルと定義する。 Further, the power conducting wire 701 transmits drive power to a drive circuit unit that generates a drive voltage of a switching element such as the step-down circuit unit 31 or the like. The communication lead 702 transmits a signal for driving the drive circuit unit. In the present embodiment, a cable having an interface function between the inverter device 200 and the DCDC converter device 100, such as the power lead 701 and the communication lead 702, is defined as an interface cable.
 このインターフェースケーブルは、接合部材103に形成された貫通孔を通ってインバータ装置200とDCDCコンバータ装置100とを接続する。また別の言い方をすると、インターフェースケーブルは、開口部201及び開口部101を通ってインバータ装置200とDCDCコンバータ装置100とを接続する。本実施形態においては、開口部201及び開口部101が形成された面は、ケース10とケース111が対向しかつ、インターフェースケーブルが金属製のケース10とケース111に覆われるように、形成される。これにより、ケース10とケース111が電磁シールドを強化され、開口部201及び開口部101から放射される電磁ノイズを低減することができる。 The interface cable connects the inverter device 200 and the DCDC converter device 100 through a through hole formed in the bonding member 103. In other words, the interface cable connects the inverter device 200 and the DCDC converter device 100 through the opening 201 and the opening 101. In the present embodiment, the surface on which the opening 201 and the opening 101 are formed is formed such that the case 10 and the case 111 face each other and the interface cable is covered with the metal case 10 and the case 111. . Thereby, the case 10 and the case 111 can strengthen the electromagnetic shield, and the electromagnetic noise emitted from the opening 201 and the opening 101 can be reduced.
 またケース111は、第1流路部19a,第2流路部19b及び第3流路部19cと対向する部分に凹部111dがそれぞれ形成されている。これにより、凹部111dが形成された部分が薄くなり、DCDCコンバータ装置100側の冷却を促進することができる。 Further, in the case 111, concave portions 111d are respectively formed in portions facing the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c. Thereby, the part in which the recessed part 111d was formed becomes thin, and can accelerate cooling of the DCDC converter apparatus 100 side.
 図14の平面図は、ケース111の底面部111bに設けられた発熱部品の配置を示したものであり、ケースカバー112を外した状態を示す。破線はインバータ装置200のケース10に設けられた第1流路部19a,第2流路部19b及び第3流路部19cの配置を示している。 The plan view of FIG. 14 shows the arrangement of heat-generating components provided on the bottom surface portion 111b of the case 111, and shows a state in which the case cover 112 is removed. The broken line indicates the arrangement of the first flow passage 19 a, the second flow passage 19 b and the third flow passage 19 c provided in the case 10 of the inverter device 200.
 主トランス33および2つのインダクタ素子34は、第1流路部19aと対向するケース底面部に配置されている。また、降圧回路を構成するパワー半導体モジュール35および降圧回路基板31は、主に第2流路部19bと対向する底面部111bに配置されている。昇圧回路を構成するスイッチング素子36および昇圧回路基板32は、第3流路部19cと対向する底面部111bに配置されている。このように、比較的発熱量の大きな部品を第1流路部19a,第2流路部19b及び第3流路部19cと対向する位置に配置して、冷却効率を高めるようにしている。 The main transformer 33 and the two inductor elements 34 are disposed on the bottom of the case opposite to the first flow path 19a. Further, the power semiconductor module 35 and the step-down circuit board 31 that constitute the step-down circuit are mainly disposed on the bottom surface portion 111 b facing the second flow passage portion 19 b. The switching element 36 and the booster circuit board 32 which constitute the booster circuit are disposed on the bottom surface part 111b opposed to the third flow passage part 19c. As described above, parts having a relatively large calorific value are disposed at positions facing the first flow passage 19a, the second flow passage 19b, and the third flow passage 19c to increase the cooling efficiency.
 特に、パワー半導体モジュール35が第2流路部19bと対向するようにケース111の底面に配置した場合、パワー半導体モジュール35内のMOSFETの温度上昇を抑えることができ、DCDCコンバータ装置100の性能を発揮しやすくなる。 In particular, when the power semiconductor module 35 is disposed on the bottom of the case 111 so as to face the second flow path portion 19 b, the temperature rise of the MOSFET in the power semiconductor module 35 can be suppressed. It becomes easy to exhibit.
 また、主トランス33が第1流路部19aと対向するようにケース111の底面に配置した場合、主トランス33の巻線の温度上昇を抑えることができ、DCDCコンバータ装置100の性能を発揮しやすくなる。 In addition, when the main transformer 33 is disposed on the bottom of the case 111 so as to face the first flow path 19a, the temperature rise of the winding of the main transformer 33 can be suppressed, and the performance of the DCDC converter device 100 is exhibited. It will be easier.
 なお、本実施形態と同様の作用及び効果を発揮するために、インバータ装置200のケース10の開口部404を塞ぐカバーを設け、そのカバーの熱伝導が良好となるようにDCDCコンバータ装置100のケース111と一体に構成されていてもよい。 In addition, in order to exhibit the same operation and effect as the present embodiment, a cover for closing the opening 404 of the case 10 of the inverter device 200 is provided, and the case of the DCDC converter device 100 so that the heat conduction of the cover becomes good. It may be integrated with 111.
 図15ないし図19は、DCDCコンバータ装置100のケース111の他の実施例を示す図である。 FIGS. 15 to 19 show another embodiment of the case 111 of the DC-DC converter device 100. FIG.
 図15は、他の実施例に係るDCDCコンバータ装置100のケース111の斜視図である。本実施例は、DCDCコンバータ装置100のケース111は、凹部111eが形成されている。図17は、図15の断面Bの矢印方向から見た断面図である。図18は、図15の断面Cの矢印方向から見た断面図である。 FIG. 15 is a perspective view of a case 111 of a DC-DC converter device 100 according to another embodiment. In the present embodiment, the case 111 of the DC-DC converter device 100 is provided with a recess 111 e. FIG. 17 is a cross-sectional view of the cross section B of FIG. 15 as viewed from the arrow direction. 18 is a cross-sectional view of the cross section C of FIG. 15 as viewed from the arrow direction.
 本実施形態に係る凹部111dは、前述の実施例と同様に第1流路部19a,第2流路部19b及び第3流路部19cと対向する位置に配置される。凹部111eは、凹部111dとは異なる部分に形成され、凹部111dに挟まれる位置に配置される。凹部111eは、インバータ装置200のケース10の底部10eと対向する。この凹部111eと底部10eとにより形成される空間は、第1流路部19a,第2流路部19b及び第3流路部19cと繋がっている。これにより、第1流路部19a,第2流路部19b及び第3流路部19cに流れる冷媒が、凹部111eと底部10eとにより形成される空間に流れることになる。したがって、流路部から遠い位置に配置されている底部10eの中央部の冷却性能を向上させることができる。本実施形態においては、底面10eの中央部に位置しているコンデンサモジュール500や昇圧回路基板32の冷却条件を改善することができる。また、昇圧回路基板32上のスイッチング素子36の温度を低減することもできる。また、ケース111の軽量化を図ることができる。 The recess 111d according to the present embodiment is disposed at a position facing the first flow passage 19a, the second flow passage 19b, and the third flow passage 19c, as in the above-described embodiment. The recess 111 e is formed in a portion different from the recess 111 d and is disposed at a position to be sandwiched by the recess 111 d. The recess 111 e faces the bottom 10 e of the case 10 of the inverter device 200. A space formed by the recess 111 e and the bottom 10 e is connected to the first flow passage 19 a, the second flow passage 19 b, and the third flow passage 19 c. As a result, the refrigerant flowing in the first flow passage portion 19a, the second flow passage portion 19b, and the third flow passage portion 19c flows into the space formed by the recess 111e and the bottom portion 10e. Therefore, the cooling performance of the central portion of the bottom portion 10e disposed at a position far from the flow passage portion can be improved. In the present embodiment, it is possible to improve the cooling conditions of the capacitor module 500 and the booster circuit board 32 located at the center of the bottom surface 10 e. Also, the temperature of the switching element 36 on the booster circuit substrate 32 can be reduced. Further, the weight of the case 111 can be reduced.
 また図17に示されるように、前述の実施形態にて説示した接合部材103が不要となるように、DCDCコンバータ装置100の開口部101にインバータ装置200に向けて突出する突起部105が設けられ、かつ、シール部材104がインバータ装置200の外部との気密性を保っている。 Further, as shown in FIG. 17, a projection 105 projecting toward the inverter device 200 is provided at the opening 101 of the DCDC converter device 100 so that the joining member 103 described in the above embodiment is not necessary. Also, the seal member 104 maintains airtightness with the outside of the inverter device 200.
 図16は、他の実施例に係るDCDCコンバータ装置100のケース111の斜視図である。DCDCコンバータ装置100のケース111は、凹部111e及び凸部111fが形成されている。図19は、図16の断面Dの矢印方向から見た断面図である。 FIG. 16 is a perspective view of the case 111 of the DC-DC converter device 100 according to another embodiment. The case 111 of the DCDC converter device 100 is formed with a recess 111 e and a protrusion 111 f. FIG. 19 is a cross-sectional view of the cross section D of FIG. 16 as viewed from the arrow direction.
 凹部111eは前述の実施例と同様の構成及び機能である。凸部111fは、前述の実施例において説示した第2流路部19bに向かって突出する。これにより、第2流路部19bを流れる冷却冷媒が凹部111e側に迂回して流れることを促進する。なお、この凸部111fの高さが高いほど、凹部111e側に流れる迂回流量が増える。そのため、凹部111eによって冷却される電子部品に応じて、この凸部111fの高さを設定することができる。 The recess 111e has the same configuration and function as those of the above-described embodiment. The convex portion 111 f protrudes toward the second flow passage portion 19 b described in the above embodiment. As a result, the cooling refrigerant flowing through the second flow passage portion 19 b is diverted to the concave portion 111 e side to promote flow. In addition, the detour flow volume which flows to the recessed part 111e side increases, so that the height of this convex part 111f is high. Therefore, the height of the convex portion 111 f can be set in accordance with the electronic component to be cooled by the concave portion 111 e.
 なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。例えば、上述した実施の形態では、PHEVあるいはEV等の車両に搭載される電力変換装置を例に説明したが、本発明はこれらに限らず建設機械等の車両に用いられる電力変換装置にも適用することができる。 The above description is merely an example, and when interpreting the invention, the correspondence between the items described in the embodiment and the items described in the claims is not limited or restricted at all. For example, in the embodiment described above, the power converter mounted on a vehicle such as PHEV or EV has been described as an example, but the present invention is not limited to these and is also applied to a power converter used for a vehicle such as a construction machine can do.
10,111 ケース
10a~10d 側壁
10f 側面
19 冷媒流路
19a 第1流路部
19b 第2流路部
19c 第3流路部
20,30 制御回路基板
33 主トランス
34 インダクタ素子
35 パワー半導体モジュール
36 スイッチング素子
37 ベース板
100 DCDCコンバータ装置
101,201 開口部
103 接合部材
104,409 シール部材
111a 支持部
111b 底面部
111d,111e 凹部
111f 凸部
200 インバータ装置
10, 111 Case 10a to 10d Sidewall 10f Side 19 Refrigerant channel 19a First channel 19b Second channel 19c Third channel 20, 30 Control circuit board 33 Main transformer 34 Inductor element 35 Power semiconductor module 36 Switching Element 37 Base plate 100 DCDC converter device 101, 201 Opening portion 103 Bonding member 104, 409 Seal member 111a Support portion 111b Bottom portion 111d, 111e Recess 111f Convex portion 200 Inverter device

Claims (14)

  1.  第1電力変換装置と第2電力変換装置を接続した一体型電力変換装置であって、
     前記第1電力変換装置は、電力を変換する第1パワー半導体モジュールと、冷却冷媒が流れる流路を形成する流路形成部と、前記第1パワー半導体モジュールと前記流路形成体を収納する第1ケースと、前記流路と繋がる入口配管と、前記流路と繋がる出口配管と、を備え、
     前記第2電力変換装置は、電力を変換する第2パワー半導体モジュールと、前記第2パワー半導体モジュールを収納する第2ケースと、
     前記流路形成体は、前記流路と繋がる開口部を有し、
     前記第2ケースは、当該第2ケースの一部が前記開口部を塞ぐように、前記流路形成体または前記第1ケースに固定される一体型電力変換装置。
    An integrated power converter in which a first power converter and a second power converter are connected, comprising:
    The first power converter includes a first power semiconductor module for converting power, a flow path forming portion for forming a flow path for a cooling refrigerant, a first power semiconductor module, and a flow path forming body. 1 case, an inlet pipe connected to the flow path, and an outlet pipe connected to the flow path,
    The second power converter includes a second power semiconductor module for converting power, and a second case for housing the second power semiconductor module.
    The flow path forming body has an opening connected to the flow path,
    The second case is an integrated power converter fixed to the flow path forming body or the first case such that a part of the second case closes the opening.
  2.  請求項1に記載された一体型電力変換装置であって、
     前記開口部を塞ぐ前記第2ケースの一部は、前記流路と対向する部分に凹部を形成する一体型電力変換装置。
    An integrated power converter according to claim 1, wherein
    The one part of said 2nd case which blocks the said opening part forms the recessed part in the part which opposes the said flow path.
  3.  請求項1に記載された一体型電力変換装置であって、
     前記開口部を塞ぐ前記第2ケースの一部は、前記流路と対向する部分とは異なる部分に凹部を形成し、
     前記凹部は前記流路と繋がる一体型電力変換装置。
    An integrated power converter according to claim 1, wherein
    A portion of the second case closing the opening forms a recess in a portion different from the portion facing the flow path,
    The said recessed part is an integrated power converter connected with the said flow path.
  4.  請求項3に記載された一体型電力変換装置であって、
     前記開口部を塞ぐ前記第2ケースの一部は、前記流路内に向かって突出する凸部を有し、
     前記凸部は、前記流路内に流れる前記冷却冷媒を前記第2ケースの前記凹部に迂回させる一体型電力変換装置。
    An integrated power converter according to claim 3, wherein
    A part of the second case closing the opening has a protrusion protruding toward the inside of the flow path,
    The said convex part diverts the said cooling refrigerant | coolant which flows in the said flow path to the said recessed part of 2nd case, The integrated power converter device.
  5.  請求項1ないし4に記載されたいずれかの一体型電力変換装置であって、
     前記第2パワー半導体モジュールは、前記流路と対向するように前記第2ケースの底面に配置される一体型電力変換装置。
    The integrated power converter according to any one of claims 1 to 4, comprising:
    The second power semiconductor module is disposed on a bottom surface of the second case so as to face the flow path.
  6.  請求項1ないし5に記載されたいずれかの一体型電力変換装置であって、
     前記第1電力変換装置は、車両駆動用モータを駆動する交流電流を出力し、
     前記第2電力変換装置は、前記第2パワー半導体モジュールに収納されかつ高電圧電源に接続される高電圧側スイッチング素子と、低電圧電源に接続される低電圧側半導体素子と、トランス回路と、を有するDCDCコンバータであり、
     前記トランス回路は、前記流路と対向するように前記第2ケースの底面に配置される一体型電力変換装置。
    The integrated power converter according to any one of claims 1 to 5, comprising:
    The first power converter outputs an alternating current for driving a vehicle drive motor,
    The second power conversion device includes a high voltage side switching element housed in the second power semiconductor module and connected to a high voltage power supply, a low voltage side semiconductor element connected to a low voltage power supply, and a transformer circuit. DCDC converter with
    The integrated power converter according to claim 1, wherein the transformer circuit is disposed on a bottom surface of the second case so as to face the flow path.
  7.  請求項6に記載された一体型電力変換装置であって、
     前記流路形成体は、第1流路と、前記第1流路と平行に形成された第2流路と、を有し、
     前記トランス回路は、前記第1流路と対向するように前記第2ケースの底面に配置され、
     前記第2パワー半導体モジュールは、前記第2流路と対向するように前記第2ケースの底面に配置される一体型電力変換装置。 
    An integrated power converter according to claim 6, wherein
    The flow path forming body has a first flow path and a second flow path formed in parallel with the first flow path,
    The transformer circuit is disposed on the bottom surface of the second case so as to face the first flow path,
    The second power semiconductor module is disposed on a bottom surface of the second case so as to face the second flow path.
  8.  請求項7に記載された一体型電力変換装置であって、
     前記流路形成体は、前記第1流路と前記第2流路を接続する第3流路を有し、
     前記低電圧側半導体素子は、前記第3流路と対向するように前記第2ケースの底面に配置される一体型電力変換装置。 
    The integrated power converter according to claim 7, wherein
    The flow path forming body has a third flow path connecting the first flow path and the second flow path,
    The integrated power conversion device, wherein the low voltage side semiconductor element is disposed on the bottom surface of the second case so as to face the third flow path.
  9.  請求項6又は7に記載されたいずれかの一体型電力変換装置であって、
     前記第1電力変換装置は、前記第1パワー半導体モジュールに供給される直流電流を平滑化するコンデンサを有し、
     前記コンデンサは、前記第1流路と前記第2流路の間に挟まれる一体型電力変換装置。
    The integrated power converter according to any one of claims 6 and 7, wherein
    The first power converter has a capacitor for smoothing a direct current supplied to the first power semiconductor module,
    The integrated power converter according to claim 1, wherein the capacitor is sandwiched between the first flow path and the second flow path.
  10.  請求項1に記載された一体型電力変換装置であって、
     前記第1電力変換装置は、車両駆動用モータを駆動する交流電流を出力し、
     前記第2電力変換装置は、前記第2パワー半導体モジュールに収納されかつ高電圧電源に接続される高電圧側スイッチング素子と、低電圧電源に接続される低電圧側半導体素子と、トランス回路と、前記高電圧側スイッチング素子と前記低電圧側半導体素子を駆動する駆動回路部と、前記駆動回路部の駆動電力を伝達するパワー導線と、前記駆動回路部を駆動するための信号を伝達する通信導線と、を有するDCDCコンバータであり、
     前記第1ケースは、第1開口部を有し、
     前記第2ケースは、前記第1ケースとの対向面に第2開口部を有し、
     前記第2開口部は、前記第1開口部と対向するように設けられ、
     前記パワー導線及び前記通信導線は、前記第1開口部及び前記第2開口部を貫通し、前記駆動回路部の駆動電力及び駆動信号を前記第1電力変換装置側から取得する一体型電力変換装置。
    An integrated power converter according to claim 1, wherein
    The first power converter outputs an alternating current for driving a vehicle drive motor,
    The second power conversion device includes a high voltage side switching element housed in the second power semiconductor module and connected to a high voltage power supply, a low voltage side semiconductor element connected to a low voltage power supply, and a transformer circuit. A drive circuit for driving the high voltage side switching element and the low voltage side semiconductor element, a power lead for transmitting drive power of the drive circuit, and a communication lead for transmitting a signal for driving the drive circuit. And a DCDC converter,
    The first case has a first opening,
    The second case has a second opening on a surface facing the first case,
    The second opening is provided to face the first opening,
    The power conducting wire and the communication conducting wire pass through the first opening and the second opening, and obtain the drive power and the drive signal of the drive circuit unit from the first power converter side. .
  11.  請求項10に記載された一体型電力変換装置であって、
     前記第2ケースは、前記第1開口部に嵌め合わされる凸部を有する一体型電力変換装置。
    The integrated power converter according to claim 10, wherein
    The said 2nd case is an integrated power converter device which has a convex part fitted by the said 1st opening part.
  12.  請求項1ないし11に記載されたいずれかの一体型電力変換装置であって、
     前記開口部を塞ぐ前記第2ケースの一部は、前記第1ケースに固定されるカバーであり、
     前記カバーは、前記第2ケースに一体に形成される一体型電力変換装置。 
    The integrated power converter according to any one of claims 1 to 11, wherein
    A part of the second case closing the opening is a cover fixed to the first case,
    The integrated power converter, wherein the cover is integrally formed with the second case.
  13.  高電圧電源に接続される高電圧側スイッチング素子と、
     低電圧電源に接続される低電圧側半導体素子と、
     トランス回路と、
     前記高電圧側スイッチング素子と前記低電圧側半導体素子と前記トランス回路を収納するケースと、を備え、
     前記ケースは、他の電子機器に設けられた流路の一部を形成するためのカバーと一体に形成されるDCDCコンバータ装置。 
    A high voltage side switching element connected to a high voltage power supply,
    A low voltage side semiconductor element connected to a low voltage power supply;
    Transformer circuit,
    And a case for housing the high voltage side switching element, the low voltage side semiconductor element, and the transformer circuit.
    The said case is a DCDC converter apparatus integrally formed with the cover for forming a part of flow path provided in other electronic devices.
  14.  請求項13に記載されたDCDCコンバータ装置であって、
     前記第2パワー半導体モジュールは、前記流路と対向するように前記ケースの底面に配置されるDCDCコンバータ装置。 
    14. The DCDC converter device according to claim 13, wherein
    The DCDC converter device wherein the second power semiconductor module is disposed on the bottom surface of the case so as to face the flow path.
PCT/JP2012/076565 2011-10-31 2012-10-15 Integrated power converter apparatus and dc-dc converter apparatus to be used therein WO2013065472A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011238159A JP5846854B2 (en) 2011-10-31 2011-10-31 Integrated power converter and DCDC converter used therefor
JP2011-238159 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065472A1 true WO2013065472A1 (en) 2013-05-10

Family

ID=48191829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076565 WO2013065472A1 (en) 2011-10-31 2012-10-15 Integrated power converter apparatus and dc-dc converter apparatus to be used therein

Country Status (2)

Country Link
JP (1) JP5846854B2 (en)
WO (1) WO2013065472A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3065283A1 (en) * 2015-03-06 2016-09-07 Nissan Motor Manufacturing (UK) Ltd. Integrated power module
EP3294047A1 (en) * 2016-09-09 2018-03-14 Delta Electronics (Thailand) Public Co., Ltd. Power conversion device
CN107809172A (en) * 2016-09-09 2018-03-16 泰达电子股份有限公司 Power supply change-over device
CN108235633A (en) * 2016-12-12 2018-06-29 深圳市蓝海华腾技术股份有限公司 Integrated electric automobile drive controller cabinet
CN110100505A (en) * 2016-12-14 2019-08-06 Lg伊诺特有限公司 Electronic component shell and DC-DC converter including the electronic component shell
US20220346286A1 (en) * 2021-04-22 2022-10-27 Hyundai Motor Company Power inverter
EP4301101A4 (en) * 2021-04-28 2024-08-14 Byd Co Ltd Motor controller and vehicle having same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504219B2 (en) 2011-07-27 2014-05-28 日立オートモティブシステムズ株式会社 Power converter
JP5855899B2 (en) 2011-10-27 2016-02-09 日立オートモティブシステムズ株式会社 DC-DC converter and power converter
WO2014045708A1 (en) * 2012-09-21 2014-03-27 日産自動車株式会社 Vehicle-mounted power unit
JP6236904B2 (en) * 2013-06-19 2017-11-29 株式会社デンソー Power converter
JP6180857B2 (en) * 2013-09-06 2017-08-16 日立オートモティブシステムズ株式会社 Power converter
JP5661163B1 (en) 2013-10-16 2015-01-28 三菱電機株式会社 Vehicle power supply
JP6213356B2 (en) * 2014-04-08 2017-10-18 株式会社デンソー Power supply
JP6383408B2 (en) * 2014-04-25 2018-08-29 日立オートモティブシステムズ株式会社 Converter and power converter
JP6161127B2 (en) 2014-12-03 2017-07-12 オムロンオートモーティブエレクトロニクス株式会社 Power converter
FR3043880B1 (en) * 2015-11-13 2017-12-29 Valeo Systemes De Controle Moteur HOUSING FOR ELECTRICAL EQUIPMENT
FR3043857B1 (en) * 2015-11-13 2017-12-29 Valeo Systemes De Controle Moteur BOXING ASSEMBLY FOR ELECTRICAL EQUIPMENT
CN108988655B (en) * 2017-06-05 2022-04-19 蔚来(安徽)控股有限公司 Electric power electronic controller and electric automobile
JP7035543B2 (en) * 2018-01-15 2022-03-15 株式会社デンソー Power converter
JP6670353B2 (en) * 2018-09-21 2020-03-18 ローム株式会社 Gate driver unit and power module
JP6785274B2 (en) * 2018-10-02 2020-11-18 本田技研工業株式会社 Electrical equipment
KR102447824B1 (en) * 2020-12-29 2022-09-27 쌍용자동차 주식회사 Integrated module of power distribution system for electric vehicles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143215A (en) * 2003-11-06 2005-06-02 Nichicon Corp Dc-dc converter device
JP2006261368A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Electronic component accommodation structure
JP2008312413A (en) * 2007-06-18 2008-12-25 Shindengen Electric Mfg Co Ltd Liquid-cooled power conversion device
JP2010200433A (en) * 2009-02-24 2010-09-09 Denso Corp Power converter
JP2011004520A (en) * 2009-06-18 2011-01-06 Honda Motor Co Ltd Power converter
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device
WO2011125781A1 (en) * 2010-04-01 2011-10-13 日立オートモティブシステムズ株式会社 Power conversion device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143215A (en) * 2003-11-06 2005-06-02 Nichicon Corp Dc-dc converter device
JP2006261368A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Electronic component accommodation structure
JP2008312413A (en) * 2007-06-18 2008-12-25 Shindengen Electric Mfg Co Ltd Liquid-cooled power conversion device
JP2010200433A (en) * 2009-02-24 2010-09-09 Denso Corp Power converter
JP2011004520A (en) * 2009-06-18 2011-01-06 Honda Motor Co Ltd Power converter
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device
WO2011125781A1 (en) * 2010-04-01 2011-10-13 日立オートモティブシステムズ株式会社 Power conversion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3065283A1 (en) * 2015-03-06 2016-09-07 Nissan Motor Manufacturing (UK) Ltd. Integrated power module
EP3294047A1 (en) * 2016-09-09 2018-03-14 Delta Electronics (Thailand) Public Co., Ltd. Power conversion device
CN107809172A (en) * 2016-09-09 2018-03-16 泰达电子股份有限公司 Power supply change-over device
US10411486B2 (en) 2016-09-09 2019-09-10 Delta Electronics (Thailand) Public Company Limited Power conversion device
CN107809172B (en) * 2016-09-09 2020-01-31 泰达电子股份有限公司 Power supply conversion device
CN108235633A (en) * 2016-12-12 2018-06-29 深圳市蓝海华腾技术股份有限公司 Integrated electric automobile drive controller cabinet
CN110100505A (en) * 2016-12-14 2019-08-06 Lg伊诺特有限公司 Electronic component shell and DC-DC converter including the electronic component shell
US20220346286A1 (en) * 2021-04-22 2022-10-27 Hyundai Motor Company Power inverter
EP4301101A4 (en) * 2021-04-28 2024-08-14 Byd Co Ltd Motor controller and vehicle having same

Also Published As

Publication number Publication date
JP5846854B2 (en) 2016-01-20
JP2013099053A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
WO2013065472A1 (en) Integrated power converter apparatus and dc-dc converter apparatus to be used therein
JP7012813B2 (en) Power semiconductor device and power conversion device using it
JP5855899B2 (en) DC-DC converter and power converter
JP5738794B2 (en) Power converter
JP5504219B2 (en) Power converter
JP5455888B2 (en) Power converter for vehicle
EP2717461B1 (en) Power conversion apparatus
JP5506749B2 (en) Power converter
JP5789576B2 (en) Power converter
JP6097557B2 (en) Power converter
JP5738817B2 (en) Power converter
JP5455887B2 (en) Power converter
JP6072492B2 (en) Capacitor module and power converter
JP5592496B2 (en) Power converter
WO2012165226A1 (en) Power conversion apparatus
JP6055868B2 (en) Power converter
JP5978324B2 (en) Power converter
JP5953152B2 (en) Power semiconductor module and power converter using the same
JP5966065B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846379

Country of ref document: EP

Kind code of ref document: A1