WO2013061923A1 - Conductive adhesive, solar cell module, and method for manufacturing solar cell module - Google Patents
Conductive adhesive, solar cell module, and method for manufacturing solar cell module Download PDFInfo
- Publication number
- WO2013061923A1 WO2013061923A1 PCT/JP2012/077238 JP2012077238W WO2013061923A1 WO 2013061923 A1 WO2013061923 A1 WO 2013061923A1 JP 2012077238 W JP2012077238 W JP 2012077238W WO 2013061923 A1 WO2013061923 A1 WO 2013061923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- acrylate
- solar cell
- conductive adhesive
- mass
- Prior art date
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 88
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 88
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 113
- 239000007870 radical polymerization initiator Substances 0.000 claims abstract description 61
- 239000002245 particle Substances 0.000 claims abstract description 32
- 239000011230 binding agent Substances 0.000 claims abstract description 24
- 229910019142 PO4 Inorganic materials 0.000 claims description 54
- 239000010452 phosphate Substances 0.000 claims description 54
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 49
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract description 20
- 238000010248 power generation Methods 0.000 abstract description 16
- 125000002270 phosphoric acid ester group Chemical group 0.000 abstract description 7
- 239000002313 adhesive film Substances 0.000 description 56
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 29
- 239000010949 copper Substances 0.000 description 26
- 229910052802 copper Inorganic materials 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 24
- 239000000843 powder Substances 0.000 description 19
- 150000001451 organic peroxides Chemical class 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- -1 2-ethylhexyl Chemical group 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000004342 Benzoyl peroxide Substances 0.000 description 12
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 235000019400 benzoyl peroxide Nutrition 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000010908 decantation Methods 0.000 description 8
- 230000035939 shock Effects 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 229920002725 thermoplastic elastomer Polymers 0.000 description 7
- 238000007747 plating Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 125000004185 ester group Chemical group 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 4
- 239000005022 packaging material Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229920000800 acrylic rubber Polymers 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000005026 oriented polypropylene Substances 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- 239000013034 phenoxy resin Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 239000012945 sealing adhesive Substances 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- PAOHAQSLJSMLAT-UHFFFAOYSA-N 1-butylperoxybutane Chemical compound CCCCOOCCCC PAOHAQSLJSMLAT-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000003522 acrylic cement Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- KQNZLOUWXSAZGD-UHFFFAOYSA-N benzylperoxymethylbenzene Chemical compound C=1C=CC=CC=1COOCC1=CC=CC=C1 KQNZLOUWXSAZGD-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013039 cover film Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 125000003011 styrenyl group Chemical class [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- YIJYFLXQHDOQGW-UHFFFAOYSA-N 2-[2,4,6-trioxo-3,5-bis(2-prop-2-enoyloxyethyl)-1,3,5-triazinan-1-yl]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCN1C(=O)N(CCOC(=O)C=C)C(=O)N(CCOC(=O)C=C)C1=O YIJYFLXQHDOQGW-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- NLSFWPFWEPGCJJ-UHFFFAOYSA-N 2-methylprop-2-enoyloxysilicon Chemical compound CC(=C)C(=O)O[Si] NLSFWPFWEPGCJJ-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CCVZNCCBVWUOCH-UHFFFAOYSA-N OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C CCVZNCCBVWUOCH-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- ZLMKQJQJURXYLC-UHFFFAOYSA-N bis(2-ethylhexoxy)-oxophosphanium Chemical compound CCCCC(CC)CO[P+](=O)OCC(CC)CCCC ZLMKQJQJURXYLC-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- RXFVKZHOXNKNEU-UHFFFAOYSA-N s-(aminodisulfanyl)thiohydroxylamine Chemical compound NSSSN RXFVKZHOXNKNEU-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- XNRABACJWNCNEQ-UHFFFAOYSA-N silver;azane;nitrate Chemical compound N.[Ag+].[O-][N+]([O-])=O XNRABACJWNCNEQ-UHFFFAOYSA-N 0.000 description 1
- 239000001476 sodium potassium tartrate Substances 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
- C09J9/02—Electrically-conducting adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0512—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a conductive adhesive in which conductive particles are dispersed, a solar battery module formed by connecting an electrode of a solar battery cell and a tab wire using the conductive adhesive, and manufacture of the solar battery module. Regarding the method.
- This application claims priority on the basis of Japanese Patent Application No. 2011-237362 filed on Oct. 28, 2011 in Japan, and is incorporated herein by reference. Is done.
- a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature is used for connection between the solar cell electrode and the tab wire.
- One end of the tab wire is connected to the front surface electrode of one solar battery cell, and the other end is connected to the back surface electrode of another adjacent solar battery cell, thereby connecting the solar battery cells in series.
- an epoxy resin As a resin contained in a binder (insulating adhesive composition) of a conductive adhesive applied to such a solar cell module, an epoxy resin has been widely used conventionally.
- an acrylic resin (acrylate) is widely used instead of the epoxy resin (see Patent Document 1).
- the acrylic resin By using the acrylic resin, the conductive adhesive can be pressure-bonded at a lower temperature, and the tact time can be shortened, and the advantage that metal corrosion can be suppressed can be obtained.
- the conductive adhesive containing an acrylic resin generally tends to have a low adhesion to an object to be bonded. For this reason, there is a possibility that excellent connection reliability cannot be obtained with a conductive adhesive containing an acrylic resin.
- the tact time required for adhesion is 15 to 20 seconds, and there is a problem that it takes 3 to 4 times as long as the method using solder.
- the present invention has been proposed in view of such a conventional situation, and secures high adhesive force in a conductive adhesive containing an acrylic resin in a binder and has excellent connection reliability in a short time at low temperature. It is an object of the present invention to provide a conductive adhesive capable of obtaining the above. And this invention aims at providing the solar cell module which can connect the electrode and tab wire of a photovoltaic cell using this conductive adhesive, and can obtain high electric power generation efficiency.
- the conductive adhesive according to the present invention includes a surface electrode of one solar battery cell, a back electrode of another solar battery cell adjacent to the one solar battery cell, a tab wire,
- a conductive adhesive for electrically connecting a radical polymerization initiator a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a phosphate group or a phosphate ester group (meta )
- Conductive particles are dispersed in a binder containing acrylate, and the radical polymerization initiator has a one-minute half-life temperature of 110 to 140 ° C.
- the acrylate is characterized by being contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group.
- the solar cell module according to the present invention is such that the surface electrode of one solar cell and the back electrode of another solar cell adjacent to the one solar cell are conductive.
- Solar cell module electrically connected to a tab wire via a conductive adhesive, wherein the conductive adhesive does not contain a radical polymerization initiator and a phosphate group or a phosphate ester group (meth) acrylate
- conductive particles are dispersed in a binder containing a phosphoric acid group or a (meth) acrylate containing a phosphoric acid ester group, and the one minute half-life temperature of the radical polymerization initiator is 110 to 140 ° C.
- the (meth) acrylate containing a phosphoric acid group or a phosphoric acid ester group is 0.1 to 5 mass based on 54 parts by mass of the (meth) acrylate not containing a phosphoric acid group or a phosphoric acid ester group. Characterized in that it is contained.
- the manufacturing method of the solar cell module which concerns on this invention is the surface electrode of one photovoltaic cell, and the back surface electrode of the other photovoltaic cell adjacent to one photovoltaic cell.
- the conductive adhesive does not contain a radical polymerization initiator and a phosphate group or a phosphate ester group (meta )
- conductive particles are dispersed in a binder containing an acrylate and a (meth) acrylate containing a phosphate group or a phosphate ester group, and the half-life temperature of the radical polymerization initiator is 110 to 140 ° C.
- the (meth) acrylate containing a phosphate group or a phosphate ester group is based on 54 parts by mass of a (meth) acrylate that does not contain a phosphate group or a phosphate ester group. 0.1 to 5 are contained parts by mass, the tab lead, disposed on the surface electrode and the rear electrode through the conductive adhesive, wherein the hot-pressing pressure.
- the conductive adhesive comprises a radical polymerization initiator, a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a (meth) acrylate that contains a phosphate group or a phosphate ester group.
- Conductive particles are dispersed in the binder to be contained.
- the 1 minute half-life temperature of this radical polymerization initiator is 110 to 140 ° C.
- the (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. Yes.
- the conductive adhesive of the present invention thus adjusted, it is possible to provide a conductive adhesive that has a high adhesive force to an inorganic base material such as a metal while being an acrylic adhesive film. And the solar cell module which can exhibit the outstanding connection reliability and can obtain high electric power generation efficiency by using the conductive adhesive which acquired such high adhesive force can be provided.
- FIG. 1 is a figure showing typically the conductive adhesive film which is an example of the product form of a conductive adhesive.
- FIG. 2 is a diagram illustrating a configuration example of the solar cell module.
- FIG. 3 is a schematic cross-sectional view of a solar battery cell.
- the conductive adhesive in the present embodiment is obtained by dispersing conductive particles in a binder (insulating adhesive composition). This conductive adhesive is used as an adhesive for electrically connecting a surface electrode of one solar cell and a back electrode of another solar cell adjacent to this one solar cell with a tab wire. It is done.
- the binder contains a radical polymerization initiator, a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a phosphate group or a phosphate ester group (meta ) Acrylate.
- the one minute half-life temperature of the radical polymerization initiator is 110 to 140 ° C., and particularly preferably 116 to 131 ° C.
- the thermosetting reaction proceeds rapidly during the heat pressurization, so that the conductive particles are placed between the tab wire and the solar cell electrode. In this case, a so-called indentation failure that cannot be sufficiently crimped occurs.
- the thermosetting reaction becomes slow.
- the tab wire and the front and back electrodes of the solar cell are connected by thermal pressurization at a low temperature in a short time.
- the thermosetting reaction becomes insufficient, and the power generation efficiency decreases as proved by the thermal shock test.
- the conductive adhesive in the present embodiment by adding a phosphoric acid group or a phosphoric ester group-containing (meth) acrylate, adhesion to an inorganic substrate such as a metal can be improved and the adhesive force can be increased.
- the (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. If it is less than 0.1 part by mass, the adhesion on the surface of an inorganic material such as metal cannot be secured. If it exceeds 5 parts by mass, the adhesive strength may decrease due to a decrease in the life of the conductive adhesive.
- the radical polymerization initiator is preferably contained in an amount of 1 to 5 parts by mass with respect to 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group. If it is less than 1 part by mass, curing in a short time is insufficient and poor connection occurs. When the amount exceeds 5 parts by mass, the curing reaction is accelerated, so that the connection of the conductive particles becomes unstable.
- the conductive adhesive preferably contains a film-forming resin, a thermoplastic elastomer, a silane coupling agent, an inorganic filler, and the like as other additive compositions.
- the shape of the conductive adhesive is not limited to the film shape, and may be a paste.
- (Meth) acrylate containing no phosphate group or phosphate ester group is a curable resin having a radical functional group and cured by a radical polymerization initiator.
- (Meth) acrylates that do not contain phosphoric acid groups or phosphate ester groups are monofunctional (meth) acrylates, bifunctional (meth) acrylates, trifunctional (meth) acrylates, tetrafunctional (meth) acrylates, and many more than five functional groups. It is 1 type, or 2 or more types selected from functional (meth) acrylate.
- Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, t-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, 2-methylhexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) acrylate, isooctyl (meth) acrylate, isopentyl (meth) acrylate, isononyl (meth) acrylate, isode
- Bifunctional (meth) acrylates include bisphenol F-EO modified di (meth) acrylate, bisphenol A-EO modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, and tricyclodecanedi. Examples include methylol di (meth) acrylate and dicyclopentadiene (meth) acrylate.
- Trifunctional or higher (meth) acrylates include trimethylolpropane tri (meth) acrylate, trimethylolpropane PO-modified (meth) acrylate, isocyanuric acid EO-modified tri (meth) acrylate, tris (2-acryloyloxyethyl) isocyanurate Dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, polyfunctional urethane (meth) acrylate, and the like.
- the conductive adhesive in the present embodiment 10 to 30 parts by mass of trifunctional or higher acrylate (trifunctional acrylate (triacrylate) among 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group. ) And tetrafunctional or higher functional acrylates.
- trifunctional or higher acrylate triacrylate
- (meth) acrylate having three or more functional groups the adhesiveness of the conductive adhesive can be increased because the adhesiveness of the cured resin can be improved by forming a crosslinked structure.
- the (meth) acrylate containing a phosphate group or a phosphate ester group a monoester, a diester, a triester, or the like can be used.
- the (meth) acrylate containing a phosphoric acid group or a phosphate ester group include ethylene oxide-modified phenoxylated phosphoric acid (meth) acrylate, ethylene oxide-modified butoxylated phosphoric acid (meth) acrylate, ethylene oxide-modified octyloxylated phosphoric acid ( Examples thereof include meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, ethylene oxide-modified phosphoric acid tri (meth) acrylate, and the like.
- the radical polymerization initiator a known one can be used, and among them, an organic peroxide is preferably used.
- the organic peroxide include benzoyl peroxide, lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, benzyl peroxide, and peroxydicarbonate.
- the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
- various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
- a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
- Thermoplastic elastomer is a so-called rubber component that softens and exhibits fluidity when heated and returns to a rubbery elastic body when cooled.
- the thermoplastic elastomer include rubber-based elastic bodies such as acrylic rubber (ACR), butadiene rubber (BR), and nitrile rubber (NBR), and hydrogenated styrene-based thermoplastic elastomer (SEBS).
- ACR acrylic rubber
- BR butadiene rubber
- NBR nitrile rubber
- SEBS hydrogenated styrene-based thermoplastic elastomer
- SEBS hydrogenated styrene-based thermoplastic elastomer
- thermoplastic elastomer is 30 mass parts or less with respect to 54 mass parts of (meth) acrylates which do not contain a phosphate group or a phosphate ester group. If the amount exceeds 30 parts by mass, there is a problem that the power generation efficiency decreases in the thermal shock test.
- silane coupling agent epoxy, amino, mercapto sulfide, ureido, etc. can be used.
- the adhesion at the interface between the organic material and the inorganic material can be improved by the silane coupling agent.
- silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used as the inorganic filler.
- the fluidity can be controlled and the particle capture rate can be improved.
- Examples of the conductive particles that can be used include metal particles such as nickel, gold, and copper, and resin particles that are plated with gold.
- the average particle diameter of the conductive particles is preferably 1 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, from the viewpoint of connection reliability.
- the average particle density of the conductive particles, the connection in terms of reliability and insulation reliability preferably 500 to 50000 / mm 2, more preferably 1,000 to 30,000 pieces / mm 2.
- the conductive adhesive in the present embodiment includes (meth) acrylate as a curable resin that does not contain a phosphate group or a phosphate ester group, and a radical polymerization initiator as a curing agent. And a (meth) acrylate containing a phosphate group or a phosphate ester group.
- the 1 minute half-life temperature of this radical polymerization initiator is 110 to 140 ° C.
- the (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. Yes.
- the conductive adhesive in the present embodiment it is possible to improve the adhesion to the metal surface such as the bus bar electrode while being an acrylic adhesive film. Accordingly, high adhesiveness to the metal surface can be obtained in the thermocompression treatment at a relatively low temperature of about 200 ° C. or less.
- the tab wire and the bus bar electrode whose surface is made of Ag can be firmly connected through such a conductive adhesive, and high connection reliability can be obtained between the tab wire and the bus bar electrode. it can.
- FIG. 1 is a diagram schematically showing a conductive adhesive film which is an example of a product form of a conductive adhesive in the present embodiment.
- the conductive adhesive film 20 is formed in a tape shape by laminating a conductive adhesive layer on a release substrate 21.
- the tape-like conductive adhesive film 20 is wound and laminated on the reel 22 so that the peeling base material 21 is on the outer peripheral side.
- the above-mentioned PET, OPP, PMP, PTFE, etc. can be used.
- the conductive adhesive film 20 may have a configuration in which a transparent cover film is provided on the conductive adhesive layer.
- a tab wire may be used as the cover film to be attached on the conductive adhesive layer.
- the peeling base material 21 is peeled off, and the conductive adhesive layer of the conductive adhesive film 20 is placed on the surface electrode ( The tab wire and each electrode can be connected by sticking on the tab wire connecting portion of the bus bar electrode) and the back electrode.
- the method for producing a conductive adhesive film in the present embodiment includes a coating step of applying a composition containing conductive particles in a binder composed of the above-described components on a release substrate, and a composition on the release substrate. And a drying step for drying.
- a composition in which conductive particles are contained in a binder composed of the above-described components is prepared using an organic solvent, and this composition is coated on a release substrate using a bar coater, a coating apparatus, or the like. .
- the release substrate is, for example, a laminate in which a release agent such as silicone is applied to a film such as PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), etc. It consists of a structure, prevents the composition from drying, and maintains the film shape of the composition.
- the composition on the release substrate is dried by a device such as a heat oven or a heat drying device.
- a device such as a heat oven or a heat drying device.
- the solar cell module in this embodiment includes a single crystal silicon photoelectric conversion device, a crystalline silicon solar cell module using a polycrystalline photoelectric conversion device, a cell made of amorphous silicon, microcrystalline silicon, and amorphous as a photoelectric conversion device.
- This is a thin film silicon solar cell using a photoelectric conversion element in which cells made of silicon germanium are stacked.
- the solar cell module 1 includes a matrix 5 in which a plurality of solar cells 2 are connected in series by tab wires 3 serving as interconnectors, and a plurality of strings 4 are arranged.
- the matrix 5 is sandwiched between the sheets 6 of the sealing adhesive, and together with the front cover 7 provided on the light receiving surface side as the protective base material and the back sheet 8 provided on the back surface side. It is formed by laminating and attaching a metal frame 9 such as aluminum around it.
- sealing adhesive for example, a translucent sealing material such as ethylene vinyl alcohol resin (EVA) is used.
- EVA ethylene vinyl alcohol resin
- surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
- back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
- Each solar cell 2 of the solar cell module 1 has a photoelectric conversion element 10 made of a silicon substrate, as shown in FIG.
- the photoelectric conversion element 10 is provided with a bus bar electrode 11 serving as a surface electrode on the light receiving surface side and a finger electrode 12 that is a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11.
- the photoelectric conversion element 10 is provided with a back electrode 13 made of Al, Ag, or the like on the back side opposite to the light receiving surface.
- the solar battery cell 2 is electrically connected to the bus bar electrode 11 as the front electrode and the back electrode 13 of the adjacent solar battery cell 2 by the tab wire 3, thereby connecting the strings 4 connected in series. Constitute.
- the tab wire 3 is connected to the bus bar electrode 11 and the back electrode 13 by the conductive adhesive film 20.
- the tab wire 3 can use the tab wire used in the conventional solar cell module.
- the tab wire 3 is formed by using, for example, a ribbon-like copper foil having a thickness of 50 to 300 ⁇ m and performing gold plating, silver plating, tin plating, solder plating, or the like as necessary. Moreover, you may use what laminated
- the bus bar electrode 11 is formed by applying a metal paste such as Ag, Cu or Al and heating.
- the bus bar electrode 11 formed on the light receiving surface of the solar battery cell 2 is formed in a line shape with a width of 1 mm, for example, in order to reduce the area that blocks incident light and suppress shadow loss.
- the number of bus bar electrodes 11 can be appropriately set in consideration of the size and resistance of the solar battery cell 2.
- the finger electrode 12 is made of a metal material such as Ag, Cu, or Al, and is formed over substantially the entire light receiving surface of the solar cell 2 by intersecting with the bus bar electrode 11 by the same method as the bus bar electrode 11. .
- the finger electrodes 12 are formed with lines having a width of about 100 ⁇ m, for example, at a predetermined interval, for example, every 2 mm.
- the back electrode 13 is formed of an aluminum electrode on the back surface of the solar cell 2 by, for example, screen printing or sputtering.
- the solar battery cell is not limited to such a configuration of the solar battery cell 2.
- the bus bar electrode is not necessarily provided.
- the current of the finger electrode is collected by a tab line intersecting the finger electrode.
- an opening may be formed in the Al back electrode to such an extent that it does not cause poor connection with the tab wire, thereby securing adhesive strength. That is, the conductive adhesive in the present embodiment can be used for a solar cell having a bus bar-less structure in which no bus bar electrode is present, and can exhibit an excellent adhesive force.
- the manufacturing method of the solar cell module 1 in the present embodiment includes a bus bar electrode 11 (surface electrode) made of Ag or the like of one solar cell 2 and another solar cell 2 adjacent to the one solar cell 2.
- the back electrode 13 is electrically connected with the tab wire 3 through the conductive adhesive film 20.
- the tab wire 3 is disposed on the front bus bar electrode 11 and the back electrode 13 through the conductive adhesive film 20.
- the solar cell module 1 is manufactured by crimping and connecting the tab wire 3 and each electrode by thermal pressurization.
- the finger electrode 12 and the bus bar electrode 11 are formed on the surface of the photoelectric conversion element 10 by applying and baking Ag paste, and the back electrode 13 is formed on the connection portion of the tab wire 3 by Al screen printing on the back surface. It forms and the photovoltaic cell 2 is produced.
- the conductive adhesive film 20 is stuck to the bus bar electrode 11 on the surface of the photoelectric conversion element 10 and the back electrode 13 on the back surface, and the tab wire 3 is disposed on the conductive adhesive film 20, and predetermined heat and pressure conditions
- the tab wire 3 is temporarily crimped at (for example, 70 ° C., 0.5 MPa, 1 second).
- the tab wire 3 is finally pressure-bonded under predetermined heat and pressure conditions (for example, 140 to 200 ° C., 0.5 MPa to 3 MPa, 3 to 10 seconds), and the tab wire 3 and the bus bar electrode 11 and the back electrode 13 are electrically connected. Connect to. At this time, the tab wire 3 is mechanically firmly connected to the bus bar electrode 11 because the binder of the conductive adhesive film 20 has good adhesiveness with the bus bar electrode 11 formed of Ag paste. The tab wire 3 is electrically connected to the back electrode 13.
- predetermined heat and pressure conditions for example, 140 to 200 ° C., 0.5 MPa to 3 MPa, 3 to 10 seconds
- the matrix 5 to which the solar cells 2 are connected is sandwiched between sheets 6 of a sealing adhesive and laminated together with a front cover 7 provided on the light receiving surface side and a back sheet 8 provided on the back surface side as protective materials.
- the solar cell module 1 is manufactured.
- the tab wire 3 and the bus bar electrode 11 and the back electrode 13 made of Ag on the surface are connected using the conductive adhesive film.
- the binder of the conductive adhesive film contains a radical polymerization initiator, a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a (meth) acrylate that contains a phosphate group or a phosphate ester group.
- the 1 minute half-life temperature of this radical polymerization initiator is 110 to 140 ° C.
- the (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. Yes.
- the adhesiveness with respect to the bus-bar electrode 11 which has metal surfaces, such as Ag, can be improved by using the conductive adhesive film 20 which consists of such a component. That is, the tab wire 3 and each electrode can be firmly connected by a relatively low thermocompression treatment of about 200 ° C. or less when pressed by the heating and pressing head, and the manufactured solar cell module 1 has high connection reliability. Sex can be obtained.
- the manufacturing method of a solar cell module is not limited to such a method.
- the front electrode and the tab wire of one solar cell and the back electrode and the tab wire of the other solar cell are temporarily fixed with the above-described conductive adhesive film interposed, and the upper and lower surfaces of the solar cell are fixed.
- a sealing material and a protective base material are laminated in order, and laminated and pressure-bonded with a laminating apparatus (decompression laminator) from the upper surface of the protective base material, the sealing material is cured, and the front surface electrode and the tab wire and the back surface electrode and the tab wire are bonded. You may connect.
- Example 1 A conductive adhesive film comprising conductive particles in a binder was produced.
- the binder was composed of the following components.
- phenoxy resin FX280, manufactured by Toto Kasei Co., Ltd.
- rubber components 5 parts by mass of acrylic rubber (SG series, manufactured by Nagase Chemtex Co., Ltd.) and 15 parts by mass of hydrogenated styrene-based thermoplastic elastomer (SEBS) (Tuftec series, manufactured by Asahi Kasei Chemicals Co., Ltd.) were used.
- acrylate 5 parts by mass of epoxy acrylate (V # 540, manufactured by Osaka Organic Chemical Industry Co., Ltd.), 24 parts by mass of dimethacrylate (NK ester DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), trifunctional acrylate, that is, triacrylate (NK ester A9300) , Shin-Nakamura Chemical Co., Ltd.) 25 parts by mass and phosphate ester group-containing acrylate (PM series, Nippon Kayaku Co., Ltd.) 2 parts by mass were used.
- silane coupling agent 1 part by mass of methacryloxysilane (KBE503, manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
- radical polymerization initiator organic peroxide
- 3 parts by mass of lauroyl peroxide (Perroyl L, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 116 ° C. was used.
- a conductive adhesive was obtained by dispersing 15 parts by mass of Ni powder (manufactured by Montco) having an average particle size of 10 ⁇ m as conductive particles in a binder composed of these components. This conductive adhesive was applied onto a release substrate and dried to produce a conductive adhesive film.
- Example 2 Instead of the radical polymerization initiator of Example 1, 3 parts by weight of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
- Example 3 The phosphate ester group-containing acrylate of Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was 0.1 mass part. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. A conductive adhesive film was produced in the same manner as in Example 1 except that was used.
- Example 4 3 parts by mass of the phosphate group-containing acrylate of Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was used. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
- Example 5 Instead of the radical polymerization initiator of Example 1, 1 part by weight of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
- Example 6 Instead of the radical polymerization initiator of Example 1, 5 parts by mass of benzoyl peroxide (Niper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
- Example 7 The epoxy acrylate of Example 1 (V # 540, manufactured by Osaka Organic Chemical Co., Ltd.) was 4 parts by mass, and dimethacrylate (NK ester DCP, manufactured by Shin Nakamura Chemical Co., Ltd.) was 20 parts by mass. Further, 30 parts by mass of the triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was used. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
- V # 540 manufactured by Osaka Organic Chemical Co., Ltd.
- dimethacrylate NK ester DCP, manufactured by Shin Nakamura Chemical Co.,
- Example 8 The epoxy acrylate of Example 1 (V # 540, Osaka Organic Chemical Industries, Ltd.) was 14 parts by mass, and dimethacrylate (NK ester DCP, Shin-Nakamura Chemical Co., Ltd.) was 30 parts by mass.
- the triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was 10 parts by mass.
- 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
- Example 9 instead of the conductive particles of Example 1, 5 parts by mass of substituted plating silver-coated copper powder having an average particle size of 10 ⁇ m was used as the conductive particles.
- the copper fine powder obtained by further mechanically pulverizing the atomized copper powder obtained by a so-called atomizing method was used.
- the fatty acid is added in order to prevent the coarsening by aggregation of copper powder.
- flake copper fine powder (model number: AFS-Cu 7 ⁇ m) manufactured by Nippon Atomizing Co., Ltd. was used.
- the flake copper fine powder had a weight cumulative particle diameter D50 of 7.9 ⁇ m as measured by a laser diffraction scattering particle size distribution measurement method.
- the 500 g of the flaky copper fine powder was heat-treated in the atmosphere at a temperature of 250 ° C. for 5 minutes, and then the oxidized copper fine powder was coarsely crushed in a mortar.
- 500 g of coarsely pulverized copper fine powder was added to 1000 ml of 1% potassium hydroxide aqueous solution and stirred for 20 minutes, followed by primary decantation treatment, and further 1000 ml of pure water was added and stirred for several minutes.
- a sixth decantation treatment was performed, and 2500 ml of a 1% sodium potassium tartrate solution was added and stirred for several minutes to form a copper slurry. Dilute sulfuric acid or potassium hydroxide solution was added to the copper slurry to adjust the pH of the copper slurry to 3.5 to 4.5.
- the seventh decantation treatment was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes.
- an eighth decantation treatment was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes. Then, the silver-plated copper fine powder and the solution were separated by filtration washing and suction dehydration, and the silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.
- the dried silver-plated copper fine powder (500 g) was placed in a tubular furnace and heat-treated at 200 ° C. for 30 minutes in a reducing atmosphere under a hydrogen stream (3.0 to 3.5 l / min).
- the heat-treated silver-plated copper fine powder was pulverized in a mortar.
- 500 g of heat-treated silver-plated copper fine powder was dispersed in 1000 ml of 0.5% isopropyl alcohol stearate solution and stirred for 30 minutes.
- the heat-treated stearic acid-coated silver-plated copper fine powder and the solution are separated by filtration, washing and dehydrating, and the heat-treated stearic acid-coated silver-plated copper fine powder is dried at a temperature of 90 ° C. for 2 hours and heat-treated.
- a fine powder of stearic acid-coated silver-plated copper (displacement-plated silver-coated copper powder) was obtained (see JP 2010-174411 A).
- Example 9 instead of the radical polymerization initiator of Example 1, a benzoyl peroxide (Nyper BMT-K40, NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as a radical polymerization initiator. 3 parts by mass were used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
- a benzoyl peroxide Niper BMT-K40, NOF Corporation
- Example 1 The triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was 15 parts by mass. Further, in place of the radical polymerization initiator of Example 1, t-butyl peroxyneodecanoate (perbutyl ND, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 104 ° C. was used as a radical polymerization initiator. 3 parts by weight were used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
- t-butyl peroxyneodecanoate perbutyl ND, manufactured by NOF Corporation
- Comparative Example 4 The phosphate group-containing acrylate of Comparative Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was 6 parts by mass. Further, in place of the radical polymerization initiator of Comparative Example 1, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. as a radical polymerization initiator was used. Other than that was carried out similarly to the comparative example 1, and produced the electroconductive adhesive film.
- the conductive adhesive films of Examples 1 to 7 and Comparative Examples 1 to 5 were formed using the 6-inch single crystal Si cell (dimensions: 15.6 cm ⁇ 15.6 cm, thickness: 180 ⁇ m) surface Ag bus bar electrode and Ag.
- the lead-free solder tab wire (width: 1.5 mm, thickness: 0.15 mm) was heat-pressed and adhered on the conductive adhesive film with a heat-pressure head.
- the heat and pressure conditions were 160 ° C., 1 MPa, and 5 seconds.
- the adhesive strength of the conductive adhesive films of Examples 1 to 7 and Comparative Examples 1 to 5 was measured by this thermal pressing. Regarding the adhesive strength, the conductive adhesive film adhered on the bus bar electrode on the surface made of Ag was peeled in the direction of 90 degrees at a separation speed of 50 mm / min. Evaluation was made by measuring the force required for this peeling (peel strength, in accordance with JIS K6854-1). Table 1 shows the measurement results of peel strength as adhesive strength.
- the conditions of the main pressure bonding were performed by heating and pressing at a heating temperature of 160 ° C. and a pressure of 1 MPa for 5 seconds.
- a surface cover made of glass a first sheet made of ethylene vinyl acetate resin (EVA), a battery cell connected with tab wires, a second sheet made of ethylene vinyl acetate resin (EVA), After laminating in the order of the back sheets and applying a vacuum, the laminate was laminated at 150 ° C. for 3 minutes. Then, it was made to harden completely by heating at 150 degreeC for 30 minutes, and the solar cell module was produced.
- EVA ethylene vinyl acetate resin
- EVA ethylene vinyl acetate resin
- the thermal shock test ( ⁇ 40 ° C. to 110 ° C.) for the initial power generation efficiency in this solar cell module conforms to JIS C8914 (crystalline solar cell module output measurement method) for the output (power generation efficiency) of the solar cell module after 1000 cycles. Measurement conditions: illuminance of 1000 W / m 2 , temperature of 25 ° C., spectrum AM1.5G, using a solar simulator (solar simulator PVS1116i-M, manufactured by Nisshinbo Mechatronics Inc.). From the obtained measurement results, the rate of change (%) in power generation efficiency was calculated. When the rate of change was 97% or more, the power generation efficiency was evaluated as good ( ⁇ ), 95% or more and less than 97% as slightly poor ( ⁇ ), and less than 95% as poor ( ⁇ ). The evaluation results are shown in Table 1.
- the conductive adhesive films of Examples 1 to 9 contain a radical polymerization initiator having a half-life temperature of 116 to 131 ° C. for 1 minute, and 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group In contrast, 0.1 to 3 parts by mass of phosphoric acid group or phosphoric ester group-containing (meth) acrylate is contained.
- the adhesion to the bus bar electrode on the surface made of Ag can be improved and the adhesive force can be increased, and is comparable to the solder connection in the thermocompression treatment at a relatively low temperature of 160 ° C. It is considered that high adhesive strength was obtained in a short tact time.
- high connection reliability can be obtained between the tab wire, the front surface electrode, and the back surface electrode. It is considered that high power generation efficiency could be obtained in the thermal shock test because the connection by the conductive particles can be kept in a good state by appropriately selecting the polymerization initiator.
- Comparative Example 1 a radical polymerization initiator having a 1 minute half-life temperature of 104 ° C. was used as a curing agent to be included in the binder of the conductive adhesive film.
- Comparative Example 2 a radical polymerization initiator having a 1 minute half-life temperature of 142 ° C. was used as a curing agent to be included in the binder of the conductive adhesive film.
- a radical polymerization initiator having a 1 minute half-life temperature of 142 ° C. was used as a curing agent to be included in the binder of the conductive adhesive film.
- Comparative Example 4 6 parts by mass of phosphoric acid group or phosphoric ester group-containing (meth) acrylate was contained in the binder of the conductive adhesive film. Thereby, it is thought that the adhesive strength of the conductive adhesive film was lowered by reducing the life of the conductive adhesive film. And in the solar cell module manufactured using such an electroconductive adhesive film, it is thought that electric power generation efficiency fell in the thermal shock test because adhesive strength fell and a tab wire peeled.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Sustainable Development (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Conductive Materials (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Photovoltaic Devices (AREA)
Abstract
Provided are: a conductive adhesive which is capable of achieving excellent connection reliability by ensuring high adhesive power; and a solar cell module which is capable of achieving high power generation efficiency by connecting electrodes of a solar cell and tab wires using this conductive adhesive. This conductive adhesive is obtained by dispersing conductive particles in a binder which contains a radical polymerization initiator, a (meth)acrylate that does not contain a phosphoric acid group or a phosphoric acid ester group, and a (meth)acrylate that contains a phosphoric acid group or a phosphoric acid ester group. The radical polymerization initiator has a 1-minute half-life temperature of 110-140°C. The (meth)acrylate that contains a phosphoric acid group or a phosphoric acid ester group is contained in an amount of 0.1-5 parts by mass per 54 parts by mass of the (meth)acrylate that does not contain a phosphoric acid group or a phosphoric acid ester group.
Description
本発明は、導電性粒子が分散された導電性接着剤、及びこの導電性接着剤を用いて太陽電池セルの電極とタブ線とを接続してなる太陽電池モジュール、並びにこの太陽電池モジュールの製造方法に関する。本出願は、日本国において2011年10月28日に出願された日本特許出願番号特願2011-237362を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
The present invention relates to a conductive adhesive in which conductive particles are dispersed, a solar battery module formed by connecting an electrode of a solar battery cell and a tab wire using the conductive adhesive, and manufacture of the solar battery module. Regarding the method. This application claims priority on the basis of Japanese Patent Application No. 2011-237362 filed on Oct. 28, 2011 in Japan, and is incorporated herein by reference. Is done.
太陽電池モジュールにおいて、太陽電池セルの電極とタブ線との接続に、比較的低い温度での熱圧着処理による接続が可能な導電性接着フィルムが用いられている。タブ線は、その一端側を一の太陽電池セルの表面電極と接続し、他端側を隣接する他の太陽電池セルの裏面電極と接続することにより、各太陽電池セルを直列に接続する。
In the solar cell module, a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature is used for connection between the solar cell electrode and the tab wire. One end of the tab wire is connected to the front surface electrode of one solar battery cell, and the other end is connected to the back surface electrode of another adjacent solar battery cell, thereby connecting the solar battery cells in series.
このような太陽電池モジュールに適用される導電性接着剤のバインダ(絶縁性接着剤組成物)に含まれる樹脂としては、従来より、エポキシ樹脂が広く用いられている。しかしながら、近年、このエポキシ樹脂に代えてアクリル樹脂(アクリレート)を用いることが広く行われている(特許文献1参照)。アクリル樹脂を用いることで、導電性接着剤をより低温で圧着することが可能となり、タクトタイムを短くすることができる上、金属腐食を抑制できるという利点を得ることができる。
As a resin contained in a binder (insulating adhesive composition) of a conductive adhesive applied to such a solar cell module, an epoxy resin has been widely used conventionally. However, in recent years, an acrylic resin (acrylate) is widely used instead of the epoxy resin (see Patent Document 1). By using the acrylic resin, the conductive adhesive can be pressure-bonded at a lower temperature, and the tact time can be shortened, and the advantage that metal corrosion can be suppressed can be obtained.
しかしながら、アクリル樹脂を含有させた導電性接着剤は、一般に、接着対象物に対する接着力が低くなる傾向にある。このため、アクリル樹脂を含有させた導電性接着剤では、優れた接続信頼性が得られない可能性がある。また、従来の導電性接着剤では、低温実装によりセルのダメージを低減させることにより、歩留まりを改善した事例は存在する。しかしながら、接着に要するタクト時間が15~20秒であり、ハンダを用いる方法に比べて3~4倍の時間を要するとった問題があった。
However, the conductive adhesive containing an acrylic resin generally tends to have a low adhesion to an object to be bonded. For this reason, there is a possibility that excellent connection reliability cannot be obtained with a conductive adhesive containing an acrylic resin. In addition, in the case of conventional conductive adhesives, there are cases in which yield is improved by reducing cell damage by low-temperature mounting. However, the tact time required for adhesion is 15 to 20 seconds, and there is a problem that it takes 3 to 4 times as long as the method using solder.
本発明は、このような従来の実情に鑑みて提案されたものであり、バインダにアクリル樹脂を含有させた導電性接着剤において高い接着力を確保し、且つ低温短時間で優れた接続信頼性を得ることが可能な導電性接着剤を提供することを目的とする。そして、本発明は、この導電性接着剤を用いて太陽電池セルの電極とタブ線とを接続し、高い発電効率を得ることが可能な太陽電池モジュールを提供することを目的とする。
The present invention has been proposed in view of such a conventional situation, and secures high adhesive force in a conductive adhesive containing an acrylic resin in a binder and has excellent connection reliability in a short time at low temperature. It is an object of the present invention to provide a conductive adhesive capable of obtaining the above. And this invention aims at providing the solar cell module which can connect the electrode and tab wire of a photovoltaic cell using this conductive adhesive, and can obtain high electric power generation efficiency.
上述した課題を解決するために、本発明に係る導電性接着剤は、一の太陽電池セルの表面電極と、一の太陽電池セルと隣接する他の太陽電池セルの裏面電極と、タブ線とを電気的に接続するための導電性接着剤において、ラジカル重合開始剤と、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有するバインダに導電性粒子が分散されてなり、ラジカル重合開始剤の1分間半減期温度は、110~140℃であり、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されていることを特徴とする。
In order to solve the above-described problem, the conductive adhesive according to the present invention includes a surface electrode of one solar battery cell, a back electrode of another solar battery cell adjacent to the one solar battery cell, a tab wire, In a conductive adhesive for electrically connecting a radical polymerization initiator, a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a phosphate group or a phosphate ester group (meta ) Conductive particles are dispersed in a binder containing acrylate, and the radical polymerization initiator has a one-minute half-life temperature of 110 to 140 ° C. and contains a phosphate group or a phosphate ester group (meth) The acrylate is characterized by being contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group.
また、上述した課題を解決するために、本発明に係る太陽電池モジュールは、一の太陽電池セルの表面電極と、一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とが、導電性接着剤を介してタブ線と電気的に接続されてなる太陽電池モジュールであって、導電性接着剤は、ラジカル重合開始剤と、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有するバインダに導電性粒子が分散されてなり、ラジカル重合開始剤の1分間半減期温度は、110~140℃であり、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されていることを特徴とする。
In order to solve the above-described problem, the solar cell module according to the present invention is such that the surface electrode of one solar cell and the back electrode of another solar cell adjacent to the one solar cell are conductive. Solar cell module electrically connected to a tab wire via a conductive adhesive, wherein the conductive adhesive does not contain a radical polymerization initiator and a phosphate group or a phosphate ester group (meth) acrylate And conductive particles are dispersed in a binder containing a phosphoric acid group or a (meth) acrylate containing a phosphoric acid ester group, and the one minute half-life temperature of the radical polymerization initiator is 110 to 140 ° C. The (meth) acrylate containing a phosphoric acid group or a phosphoric acid ester group is 0.1 to 5 mass based on 54 parts by mass of the (meth) acrylate not containing a phosphoric acid group or a phosphoric acid ester group. Characterized in that it is contained.
また、上述した課題を解決するために、本発明に係る太陽電池モジュールの製造方法は、一の太陽電池セルの表面電極と、一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを、導電性接着剤を介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、導電性接着剤は、ラジカル重合開始剤と、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有するバインダに導電性粒子が分散されてなり、ラジカル重合開始剤の1分間半減期温度は、110~140℃であり、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されており、タブ線を、導電性接着剤を介して表面電極及び裏面電極上に配置し、熱加圧することを特徴とする。
Moreover, in order to solve the subject mentioned above, the manufacturing method of the solar cell module which concerns on this invention is the surface electrode of one photovoltaic cell, and the back surface electrode of the other photovoltaic cell adjacent to one photovoltaic cell. In the method for manufacturing a solar cell module in which the conductive adhesive is electrically connected with the tab wire via the conductive adhesive, the conductive adhesive does not contain a radical polymerization initiator and a phosphate group or a phosphate ester group (meta ) And conductive particles are dispersed in a binder containing an acrylate and a (meth) acrylate containing a phosphate group or a phosphate ester group, and the half-life temperature of the radical polymerization initiator is 110 to 140 ° C. The (meth) acrylate containing a phosphate group or a phosphate ester group is based on 54 parts by mass of a (meth) acrylate that does not contain a phosphate group or a phosphate ester group. 0.1 to 5 are contained parts by mass, the tab lead, disposed on the surface electrode and the rear electrode through the conductive adhesive, wherein the hot-pressing pressure.
本発明では、導電性接着剤は、ラジカル重合開始剤と、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有するバインダに導電性粒子が分散されてなる。このラジカル重合開始剤の1分間半減期温度は、110~140℃である。また、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されている。このように調整された本発明の導電性接着剤によれば、アクリル系接着フィルムでありながら、金属等の無機基材に対して高い接着力を得た導電接着剤を提供することができる。そして、このような高い接着力を得た導電性接着剤を用いることで、優れた接続信頼性を発揮して高い発電効率を得ることが可能な太陽電池モジュールを提供することができる。
In the present invention, the conductive adhesive comprises a radical polymerization initiator, a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a (meth) acrylate that contains a phosphate group or a phosphate ester group. Conductive particles are dispersed in the binder to be contained. The 1 minute half-life temperature of this radical polymerization initiator is 110 to 140 ° C. Further, the (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. Yes. According to the conductive adhesive of the present invention thus adjusted, it is possible to provide a conductive adhesive that has a high adhesive force to an inorganic base material such as a metal while being an acrylic adhesive film. And the solar cell module which can exhibit the outstanding connection reliability and can obtain high electric power generation efficiency by using the conductive adhesive which acquired such high adhesive force can be provided.
以下、本発明の実施の形態(本実施の形態)について、図面を参照しながら下記順序にて詳細に説明する。
1.導電性接着剤
2.導電性接着剤の製造方法
3.太陽電池モジュール
4.太陽電池モジュールの製造方法
5.実施例 Hereinafter, embodiments of the present invention (this embodiment) will be described in detail in the following order with reference to the drawings.
1. 1.Conductive adhesive 2. Manufacturing method of conductive adhesive Solar cell module 4. 4. Manufacturing method of solar cell module Example
1.導電性接着剤
2.導電性接着剤の製造方法
3.太陽電池モジュール
4.太陽電池モジュールの製造方法
5.実施例 Hereinafter, embodiments of the present invention (this embodiment) will be described in detail in the following order with reference to the drawings.
1. 1.
<1.導電性接着剤>
先ず、本実施の形態における導電性接着剤について説明する。本実施の形態における導電性接着剤は、バインダ(絶縁性の接着剤組成物)に導電性粒子が分散されてなるものである。この導電性接着剤は、一の太陽電池セルの表面電極と、この一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とをタブ線で電気的に接続させるための接着剤として用いられる。 <1. Conductive adhesive>
First, the conductive adhesive in the present embodiment will be described. The conductive adhesive in the present embodiment is obtained by dispersing conductive particles in a binder (insulating adhesive composition). This conductive adhesive is used as an adhesive for electrically connecting a surface electrode of one solar cell and a back electrode of another solar cell adjacent to this one solar cell with a tab wire. It is done.
先ず、本実施の形態における導電性接着剤について説明する。本実施の形態における導電性接着剤は、バインダ(絶縁性の接着剤組成物)に導電性粒子が分散されてなるものである。この導電性接着剤は、一の太陽電池セルの表面電極と、この一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とをタブ線で電気的に接続させるための接着剤として用いられる。 <1. Conductive adhesive>
First, the conductive adhesive in the present embodiment will be described. The conductive adhesive in the present embodiment is obtained by dispersing conductive particles in a binder (insulating adhesive composition). This conductive adhesive is used as an adhesive for electrically connecting a surface electrode of one solar cell and a back electrode of another solar cell adjacent to this one solar cell with a tab wire. It is done.
本実施の形態における導電性接着剤において、バインダは、ラジカル重合開始剤と、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有する。
In the conductive adhesive in the present embodiment, the binder contains a radical polymerization initiator, a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a phosphate group or a phosphate ester group (meta ) Acrylate.
本実施の形態における導電性接着剤において、ラジカル重合開始剤の1分間半減期温度は、110~140℃であり、特に好ましくは、116~131℃である。ラジカル重合開始剤の1分間半減期温度が110℃未満であると、熱加圧の際、熱硬化反応が急速に進んでしまうため、導電性粒子をタブ線と太陽電池セルの電極との間で十分に圧着させることできなくなる、いわゆる押し込み不良が発生する。そして、1分間半減期温度が110℃未満であるラジカル重合開始剤を含有する導電性接着剤を用いて、タブ線と太陽電池セルの表面電極及び裏面電極とを接続した場合、得られた太陽電池モジュールにおいては、接続が不安定になり、熱衝撃試験で立証されるように、発電効率が低下する。
In the conductive adhesive in the present embodiment, the one minute half-life temperature of the radical polymerization initiator is 110 to 140 ° C., and particularly preferably 116 to 131 ° C. When the half-life temperature of the radical polymerization initiator is less than 110 ° C., the thermosetting reaction proceeds rapidly during the heat pressurization, so that the conductive particles are placed between the tab wire and the solar cell electrode. In this case, a so-called indentation failure that cannot be sufficiently crimped occurs. And when connecting the tab wire and the front electrode and the back electrode of the solar battery cell using a conductive adhesive containing a radical polymerization initiator having a 1 minute half-life temperature of less than 110 ° C., the obtained solar In the battery module, the connection becomes unstable, and the power generation efficiency is lowered as evidenced by the thermal shock test.
一方、ラジカル重合開始剤は、1分間半減期温度が高いと、熱硬化反応が緩慢になる。
例えば、1分間半減期温度が140℃を超えるラジカル重合開始剤を含有する導電性接着剤を用いてタブ線と太陽電池セルの表面電極及び裏面電極とを低温短時間での熱加圧により接続した場合、得られた太陽電池モジュールにおいては、熱硬化反応が不十分となり、熱衝撃試験で立証されるように、発電効率が低下する。 On the other hand, when the radical polymerization initiator has a high half-life temperature of 1 minute, the thermosetting reaction becomes slow.
For example, using a conductive adhesive containing a radical polymerization initiator whose half-life temperature exceeds 140 ° C. for 1 minute, the tab wire and the front and back electrodes of the solar cell are connected by thermal pressurization at a low temperature in a short time. In such a case, in the obtained solar cell module, the thermosetting reaction becomes insufficient, and the power generation efficiency decreases as proved by the thermal shock test.
例えば、1分間半減期温度が140℃を超えるラジカル重合開始剤を含有する導電性接着剤を用いてタブ線と太陽電池セルの表面電極及び裏面電極とを低温短時間での熱加圧により接続した場合、得られた太陽電池モジュールにおいては、熱硬化反応が不十分となり、熱衝撃試験で立証されるように、発電効率が低下する。 On the other hand, when the radical polymerization initiator has a high half-life temperature of 1 minute, the thermosetting reaction becomes slow.
For example, using a conductive adhesive containing a radical polymerization initiator whose half-life temperature exceeds 140 ° C. for 1 minute, the tab wire and the front and back electrodes of the solar cell are connected by thermal pressurization at a low temperature in a short time. In such a case, in the obtained solar cell module, the thermosetting reaction becomes insufficient, and the power generation efficiency decreases as proved by the thermal shock test.
本実施の形態における導電性接着剤において、リン酸基又はリン酸エステル基含有(メタ)アクリレートを配合することにより、金属等の無機基材に対する密着性を向上させて接着力を高めることができる。リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されている。0.1質量部未満であると、金属等の無機物表面での接着性を確保することができない。5質量部を超えると、導電性接着剤のライフが低下することにより、接着力が低下することがある。
In the conductive adhesive in the present embodiment, by adding a phosphoric acid group or a phosphoric ester group-containing (meth) acrylate, adhesion to an inorganic substrate such as a metal can be improved and the adhesive force can be increased. . The (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. If it is less than 0.1 part by mass, the adhesion on the surface of an inorganic material such as metal cannot be secured. If it exceeds 5 parts by mass, the adhesive strength may decrease due to a decrease in the life of the conductive adhesive.
ラジカル重合開始剤は、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して1~5質量部含有されることが好ましい。1質量部未満であると、短時間での硬化が不十分となり接続不良が発生する。5質量部を超えると、硬化反応が早くなることから導電性粒子の接続が不安定となる不具合が生じる。
The radical polymerization initiator is preferably contained in an amount of 1 to 5 parts by mass with respect to 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group. If it is less than 1 part by mass, curing in a short time is insufficient and poor connection occurs. When the amount exceeds 5 parts by mass, the curing reaction is accelerated, so that the connection of the conductive particles becomes unstable.
導電性接着剤には、その他の添加組成物として、膜形成樹脂、熱可塑性エラストマー、シランカップリング剤、無機フィラー等を含有することが好ましい。また、導電性接着剤の形状は、フィルム形状に限定されず、ペーストであってもよい。
The conductive adhesive preferably contains a film-forming resin, a thermoplastic elastomer, a silane coupling agent, an inorganic filler, and the like as other additive compositions. The shape of the conductive adhesive is not limited to the film shape, and may be a paste.
リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートは、ラジカル性の官能基を有し、ラジカル重合開始剤によって硬化する硬化性樹脂である。リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートは、単官能(メタ)アクリレート、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート、5官能以上の多官能(メタ)アクリレートから選択される1種又は2種以上である。
(Meth) acrylate containing no phosphate group or phosphate ester group is a curable resin having a radical functional group and cured by a radical polymerization initiator. (Meth) acrylates that do not contain phosphoric acid groups or phosphate ester groups are monofunctional (meth) acrylates, bifunctional (meth) acrylates, trifunctional (meth) acrylates, tetrafunctional (meth) acrylates, and many more than five functional groups. It is 1 type, or 2 or more types selected from functional (meth) acrylate.
単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-メチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、2-メチルヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ブチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。
Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) ) Acrylate, t-butyl (meth) acrylate, 2-methylbutyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, 2-methylhexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) acrylate, isooctyl (meth) acrylate, isopentyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, cyclohexyl ( Acrylate), benzyl (meth) acrylate, phenoxy (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, lauryl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, etc. Is mentioned.
2官能(メタ)アクリレートとしては、ビスフェノールF―EO変性ジ(メタ)アクリレート、ビスフェノールA―EO変性ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、トリシクロデカンジメチロールジ(メタ)アクリレート、ジシクロペンタジエン(メタ)アクリレート等が挙げられる。
Bifunctional (meth) acrylates include bisphenol F-EO modified di (meth) acrylate, bisphenol A-EO modified di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol (meth) acrylate, and tricyclodecanedi. Examples include methylol di (meth) acrylate and dicyclopentadiene (meth) acrylate.
3官能以上の(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンPO変性(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、多官能ウレタン(メタ)アクリレート等を挙げることができる。
Trifunctional or higher (meth) acrylates include trimethylolpropane tri (meth) acrylate, trimethylolpropane PO-modified (meth) acrylate, isocyanuric acid EO-modified tri (meth) acrylate, tris (2-acryloyloxyethyl) isocyanurate Dipentaerythritol penta (meth) acrylate, pentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, polyfunctional urethane (meth) acrylate, and the like.
これらの(メタ)アクリレートは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
These (meth) acrylates may be used alone or in combination of two or more.
本実施の形態における導電性接着剤において、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部の内、10~30質量部を3官能以上のアクリレート(3官能アクリレート(トリアクリレート)及び4官能以上のアクリレートのうちの1種又は2種以上)とすることが好ましい。3官能以上の(メタ)アクリレートによれば、架橋構造を形成することで、硬化物樹脂の密着性を向上させることができるため、導電性接着剤の接着力を高めることができる。
In the conductive adhesive in the present embodiment, 10 to 30 parts by mass of trifunctional or higher acrylate (trifunctional acrylate (triacrylate) among 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group. ) And tetrafunctional or higher functional acrylates. According to the (meth) acrylate having three or more functional groups, the adhesiveness of the conductive adhesive can be increased because the adhesiveness of the cured resin can be improved by forming a crosslinked structure.
リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、モノエステル、ジエステル、トリエステル等を用いることができる。リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとしては、例えば、エチレンオキシド変性フェノキシ化リン酸(メタ)アクリレート、エチレンオキシド変性ブトキシ化リン酸(メタ)アクリレート、エチレンオキシド変性オクチルオキシ化リン酸(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、エチレンオキシド変性リン酸トリ(メタ)アクリレート等が挙げられ、これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。リン酸基又はリン酸エステル基含有(メタ)アクリレートを配合することにより、金属等の無機物表面での接着性を向上させることができる。
As the (meth) acrylate containing a phosphate group or a phosphate ester group, a monoester, a diester, a triester, or the like can be used. Examples of the (meth) acrylate containing a phosphoric acid group or a phosphate ester group include ethylene oxide-modified phenoxylated phosphoric acid (meth) acrylate, ethylene oxide-modified butoxylated phosphoric acid (meth) acrylate, ethylene oxide-modified octyloxylated phosphoric acid ( Examples thereof include meth) acrylate, ethylene oxide-modified phosphoric acid di (meth) acrylate, ethylene oxide-modified phosphoric acid tri (meth) acrylate, and the like. These may be used alone or in combination of two or more. By blending a phosphoric acid group or a phosphoric ester group-containing (meth) acrylate, the adhesion on the surface of an inorganic substance such as a metal can be improved.
ラジカル重合開始剤は、公知のものを使用することができ、中でも、有機過酸化物を用いることが好ましい。有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、ベンジルパーオキサイド、パーオキシジカーボネート等を挙げることができる。
As the radical polymerization initiator, a known one can be used, and among them, an organic peroxide is preferably used. Examples of the organic peroxide include benzoyl peroxide, lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, benzyl peroxide, and peroxydicarbonate.
膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用することができ、その中でも膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好適に用いられる。
The film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation. As the film-forming resin, various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used. Among them, a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
熱可塑性エラストマーは、熱を加えると軟化して流動性を示し、冷却するとゴム状弾性体に戻る挙動を示す、いわゆるゴム成分である。熱可塑性エラストマーとしては、アクリルゴム(ACR)、ブタジエンゴム(BR)、ニトリルゴム(NBR)等のゴム系弾性体、水添スチレン系熱可塑性エラストマー(SEBS)等を挙げることができる。熱可塑性エラストマーは、接続時に内部応力を吸収することができ、また、硬化阻害を起こさないため、高い接続信頼性を与えることができる。熱可塑性エラストマーは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して30質量部以下であることが好ましい。30質量部を超えると、熱衝撃試験において、発電効率が低下するといった不具合が生じる。
Thermoplastic elastomer is a so-called rubber component that softens and exhibits fluidity when heated and returns to a rubbery elastic body when cooled. Examples of the thermoplastic elastomer include rubber-based elastic bodies such as acrylic rubber (ACR), butadiene rubber (BR), and nitrile rubber (NBR), and hydrogenated styrene-based thermoplastic elastomer (SEBS). The thermoplastic elastomer can absorb internal stress at the time of connection and does not cause curing inhibition, so that high connection reliability can be provided. It is preferable that a thermoplastic elastomer is 30 mass parts or less with respect to 54 mass parts of (meth) acrylates which do not contain a phosphate group or a phosphate ester group. If the amount exceeds 30 parts by mass, there is a problem that the power generation efficiency decreases in the thermal shock test.
シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。シランカップリング剤により、有機材料と無機材料の界面における接着性を向上させることができる。
As the silane coupling agent, epoxy, amino, mercapto sulfide, ureido, etc. can be used. The adhesion at the interface between the organic material and the inorganic material can be improved by the silane coupling agent.
無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウムなどを用いることができる。無機フィラーの含有量により、流動性を制御し、粒子捕捉率を向上させることができる。
As the inorganic filler, silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used. Depending on the content of the inorganic filler, the fluidity can be controlled and the particle capture rate can be improved.
導電性粒子としては、例えば、ニッケル、金、銅等の金属粒子、樹脂粒子に金めっきなどを施したものなどを用いることができる。導電性粒子の平均粒径は、接続信頼性の観点から、好ましくは1~20μm、より好ましくは2~10μmである。また、導電性粒子の平均粒子密度は、接続信頼性及び絶縁信頼性の観点から、好ましくは500~50000個/mm2、より好ましくは1000~30000個/mm2である。
Examples of the conductive particles that can be used include metal particles such as nickel, gold, and copper, and resin particles that are plated with gold. The average particle diameter of the conductive particles is preferably 1 to 20 μm, more preferably 2 to 10 μm, from the viewpoint of connection reliability. The average particle density of the conductive particles, the connection in terms of reliability and insulation reliability, preferably 500 to 50000 / mm 2, more preferably 1,000 to 30,000 pieces / mm 2.
このように、本実施の形態における導電性接着剤は、バインダに、硬化性樹脂としての、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、硬化剤としてのラジカル重合開始剤と、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとが含有されている。このラジカル重合開始剤の1分間半減期温度は、110~140℃である。また、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されている。リン酸基又はリン酸エステル基含有(メタ)アクリレートをこのような割合で配合することにより、金属等の無機基材に対する密着性を向上させて接着力を高めることができる。
Thus, the conductive adhesive in the present embodiment includes (meth) acrylate as a curable resin that does not contain a phosphate group or a phosphate ester group, and a radical polymerization initiator as a curing agent. And a (meth) acrylate containing a phosphate group or a phosphate ester group. The 1 minute half-life temperature of this radical polymerization initiator is 110 to 140 ° C. Further, the (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. Yes. By blending phosphoric acid group or phosphoric ester group-containing (meth) acrylate at such a ratio, adhesion to an inorganic base material such as metal can be improved and the adhesive force can be increased.
このように、本実施の形態における導電性接着剤によれば、アクリル系接着フィルムでありながら、バスバー電極等の金属表面に対する接着性を向上させることができる。したがって、200℃以下程度の比較的低い温度での熱圧着処理において、金属表面に対して高い接着性を得ることができる。例えば、このような導電性接着剤を介してタブ線と表面がAgからなるバスバー電極とを強固に接続させることができ、タブ線とバスバー電極との間において、高い接続信頼性を得ることができる。
As described above, according to the conductive adhesive in the present embodiment, it is possible to improve the adhesion to the metal surface such as the bus bar electrode while being an acrylic adhesive film. Accordingly, high adhesiveness to the metal surface can be obtained in the thermocompression treatment at a relatively low temperature of about 200 ° C. or less. For example, the tab wire and the bus bar electrode whose surface is made of Ag can be firmly connected through such a conductive adhesive, and high connection reliability can be obtained between the tab wire and the bus bar electrode. it can.
図1は、本実施の形態における導電性接着剤の製品形態の一例である導電性接着フィルムを模式的に示す図である。導電性接着フィルム20は、剥離基材21上に導電性接着剤層が積層され、テープ状に成型されている。このテープ状の導電性接着フィルム20は、リール22に剥離基材21が外周側となるように巻回積層される。剥離基材21としては、特に制限はなく、上述のPET、OPP、PMP、PTFE等を用いることができる。
FIG. 1 is a diagram schematically showing a conductive adhesive film which is an example of a product form of a conductive adhesive in the present embodiment. The conductive adhesive film 20 is formed in a tape shape by laminating a conductive adhesive layer on a release substrate 21. The tape-like conductive adhesive film 20 is wound and laminated on the reel 22 so that the peeling base material 21 is on the outer peripheral side. There is no restriction | limiting in particular as the peeling base material 21, The above-mentioned PET, OPP, PMP, PTFE, etc. can be used.
なお、導電性接着フィルム20は、導電性接着剤層上に透明なカバーフィルムを備えた構成としてもよい。導電性接着剤層上に貼付するカバーフィルムとしては、タブ線であってもよい。予めタブ線と導電性接着フィルム20とを積層一体化させておくことにより、実使用時においては、剥離基材21を剥離し、導電性接着フィルム20の導電性接着剤層を、表面電極(バスバー電極)及び裏面電極のタブ線接続部上に貼着することによりタブ線と、各電極との接続を図ることができる。
Note that the conductive adhesive film 20 may have a configuration in which a transparent cover film is provided on the conductive adhesive layer. A tab wire may be used as the cover film to be attached on the conductive adhesive layer. By preliminarily laminating and integrating the tab wire and the conductive adhesive film 20, in actual use, the peeling base material 21 is peeled off, and the conductive adhesive layer of the conductive adhesive film 20 is placed on the surface electrode ( The tab wire and each electrode can be connected by sticking on the tab wire connecting portion of the bus bar electrode) and the back electrode.
<2.導電性接着剤の製造方法>
次に、本発明を適用した導電性接着剤の製造方法について説明する。ここでは、導電性接着剤が膜状に形成された導電性接着フィルムの製造方法について説明する。本実施の形態における導電性接着フィルムの製造方法は、剥離基材上に、上述の成分からなるバインダに導電性粒子を含有させた組成物を塗布する塗布工程と、剥離基材上の組成物を乾燥させる乾燥工程とを有する。 <2. Method for producing conductive adhesive>
Next, a method for producing a conductive adhesive to which the present invention is applied will be described. Here, the manufacturing method of the electroconductive adhesive film in which the electroconductive adhesive was formed in the film form is demonstrated. The method for producing a conductive adhesive film in the present embodiment includes a coating step of applying a composition containing conductive particles in a binder composed of the above-described components on a release substrate, and a composition on the release substrate. And a drying step for drying.
次に、本発明を適用した導電性接着剤の製造方法について説明する。ここでは、導電性接着剤が膜状に形成された導電性接着フィルムの製造方法について説明する。本実施の形態における導電性接着フィルムの製造方法は、剥離基材上に、上述の成分からなるバインダに導電性粒子を含有させた組成物を塗布する塗布工程と、剥離基材上の組成物を乾燥させる乾燥工程とを有する。 <2. Method for producing conductive adhesive>
Next, a method for producing a conductive adhesive to which the present invention is applied will be described. Here, the manufacturing method of the electroconductive adhesive film in which the electroconductive adhesive was formed in the film form is demonstrated. The method for producing a conductive adhesive film in the present embodiment includes a coating step of applying a composition containing conductive particles in a binder composed of the above-described components on a release substrate, and a composition on the release substrate. And a drying step for drying.
塗布工程では、上述の成分からなるバインダに導電性粒子を含有させた組成物を、有機溶剤を用いて調整し、この組成物を剥離基材上にバーコーター、塗布装置等を用いて塗布する。
In the coating step, a composition in which conductive particles are contained in a binder composed of the above-described components is prepared using an organic solvent, and this composition is coated on a release substrate using a bar coater, a coating apparatus, or the like. .
有機溶剤としては、トルエン、酢酸エチル、又はこれらの混合溶剤、その他各種有機溶剤を用いることができる。また、剥離基材は、例えば、シリコーン等の剥離剤をPET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等のフィルムに塗布した積層構造からなり、組成物の乾燥を防ぐとともに、組成物のフィルム形状を維持する。
As the organic solvent, toluene, ethyl acetate, or a mixed solvent thereof, and other various organic solvents can be used. The release substrate is, for example, a laminate in which a release agent such as silicone is applied to a film such as PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), etc. It consists of a structure, prevents the composition from drying, and maintains the film shape of the composition.
乾燥工程では、剥離基材上の組成物を熱オーブン、加熱乾燥装置等の装置によって乾燥させる。これにより、フィルム状に形成された導電性接着剤である導電性接着フィルムを得ることができる。
In the drying step, the composition on the release substrate is dried by a device such as a heat oven or a heat drying device. Thereby, the conductive adhesive film which is the conductive adhesive formed in the film form can be obtained.
<3.太陽電池モジュール>
次に、本実施の形態における太陽電池モジュールについて説明する。本実施の形態における太陽電池モジュールは、光電変換素子として、単結晶型シリコン光電変換素子、多結晶型光電変換素子を用いる結晶シリコン系太陽電池モジュールや、アモルファスシリコンからなるセルと微結晶シリコンやアモルファスシリコンゲルマニウムからなるセルとを積層させた光電変換素子を用いた薄膜シリコン系太陽電池である。 <3. Solar cell module>
Next, the solar cell module in this Embodiment is demonstrated. The solar cell module in this embodiment includes a single crystal silicon photoelectric conversion device, a crystalline silicon solar cell module using a polycrystalline photoelectric conversion device, a cell made of amorphous silicon, microcrystalline silicon, and amorphous as a photoelectric conversion device. This is a thin film silicon solar cell using a photoelectric conversion element in which cells made of silicon germanium are stacked.
次に、本実施の形態における太陽電池モジュールについて説明する。本実施の形態における太陽電池モジュールは、光電変換素子として、単結晶型シリコン光電変換素子、多結晶型光電変換素子を用いる結晶シリコン系太陽電池モジュールや、アモルファスシリコンからなるセルと微結晶シリコンやアモルファスシリコンゲルマニウムからなるセルとを積層させた光電変換素子を用いた薄膜シリコン系太陽電池である。 <3. Solar cell module>
Next, the solar cell module in this Embodiment is demonstrated. The solar cell module in this embodiment includes a single crystal silicon photoelectric conversion device, a crystalline silicon solar cell module using a polycrystalline photoelectric conversion device, a cell made of amorphous silicon, microcrystalline silicon, and amorphous as a photoelectric conversion device. This is a thin film silicon solar cell using a photoelectric conversion element in which cells made of silicon germanium are stacked.
図2に示すように、太陽電池モジュール1は、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、ストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、マトリクス5が封止接着剤のシート6で挟まれ、保護基材として受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、周囲にアルミニウム等の金属フレーム9が取り付けられることにより形成される。
As shown in FIG. 2, the solar cell module 1 includes a matrix 5 in which a plurality of solar cells 2 are connected in series by tab wires 3 serving as interconnectors, and a plurality of strings 4 are arranged. In the solar cell module 1, the matrix 5 is sandwiched between the sheets 6 of the sealing adhesive, and together with the front cover 7 provided on the light receiving surface side as the protective base material and the back sheet 8 provided on the back surface side. It is formed by laminating and attaching a metal frame 9 such as aluminum around it.
封止接着剤としては、例えばエチレンビニルアルコール樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスやアルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
As the sealing adhesive, for example, a translucent sealing material such as ethylene vinyl alcohol resin (EVA) is used. Moreover, as the surface cover 7, for example, a light-transmitting material such as glass or light-transmitting plastic is used. Further, as the back sheet 8, a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
太陽電池モジュール1の各太陽電池セル2は、図3に示すように、シリコン基板からなる光電変換素子10を有する。光電変換素子10は、受光面側に表面電極となるバスバー電極11と、バスバー電極11とほぼ直交する方向に形成された集電極であるフィンガー電極12が設けられている。また、光電変換素子10は、受光面と反対の裏面側に、Al、Ag等からなる裏面電極13が設けられている。
Each solar cell 2 of the solar cell module 1 has a photoelectric conversion element 10 made of a silicon substrate, as shown in FIG. The photoelectric conversion element 10 is provided with a bus bar electrode 11 serving as a surface electrode on the light receiving surface side and a finger electrode 12 that is a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11. The photoelectric conversion element 10 is provided with a back electrode 13 made of Al, Ag, or the like on the back side opposite to the light receiving surface.
そして、太陽電池セル2は、タブ線3によって、表面電極としてのバスバー電極11と、隣接する太陽電池セル2の裏面電極13とが電気的に接続され、これにより直列に接続されたストリングス4を構成する。タブ線3とバスバー電極11及び裏面電極13との接続は、導電性接着フィルム20によって行う。
The solar battery cell 2 is electrically connected to the bus bar electrode 11 as the front electrode and the back electrode 13 of the adjacent solar battery cell 2 by the tab wire 3, thereby connecting the strings 4 connected in series. Constitute. The tab wire 3 is connected to the bus bar electrode 11 and the back electrode 13 by the conductive adhesive film 20.
タブ線3は、従来の太陽電池モジュールで使用されているタブ線を利用することができる。タブ線3は、例えば、50~300μm厚のリボン状銅箔を使用し、必要に応じて金メッキ、銀メッキ、スズメッキ、ハンダメッキ等を施すことにより形成される。また、タブ線3に、予め前述した導電性接着フィルムが積層されたものを用いてもよい。
The tab wire 3 can use the tab wire used in the conventional solar cell module. The tab wire 3 is formed by using, for example, a ribbon-like copper foil having a thickness of 50 to 300 μm and performing gold plating, silver plating, tin plating, solder plating, or the like as necessary. Moreover, you may use what laminated | stacked the conductive adhesive film previously mentioned on the tab wire 3 previously.
バスバー電極11は、Ag、Cu、Al等の金属ペーストを塗布し、加熱することにより形成される。太陽電池セル2の受光面に形成されるバスバー電極11は、入射光を遮る面積を小さくし、シャドーロスを抑えるために、例えば1mm幅でライン状に形成されている。バスバー電極11の数は、太陽電池セル2のサイズや抵抗を考慮して適宜設定することができる。
The bus bar electrode 11 is formed by applying a metal paste such as Ag, Cu or Al and heating. The bus bar electrode 11 formed on the light receiving surface of the solar battery cell 2 is formed in a line shape with a width of 1 mm, for example, in order to reduce the area that blocks incident light and suppress shadow loss. The number of bus bar electrodes 11 can be appropriately set in consideration of the size and resistance of the solar battery cell 2.
フィンガー電極12は、Ag、Cu、Al等の金属材料からなり、バスバー電極11と同様の方法により、バスバー電極11と交差して、太陽電池セル2の受光面のほぼ全面に亘って形成される。また、フィンガー電極12は、例えば約100μm程度の幅を有するラインが、所定間隔、例えば2mmおきに形成されている。
The finger electrode 12 is made of a metal material such as Ag, Cu, or Al, and is formed over substantially the entire light receiving surface of the solar cell 2 by intersecting with the bus bar electrode 11 by the same method as the bus bar electrode 11. . The finger electrodes 12 are formed with lines having a width of about 100 μm, for example, at a predetermined interval, for example, every 2 mm.
裏面電極13は、アルミニウムからなる電極が、例えばスクリーン印刷やスパッタ等により太陽電池セル2の裏面に形成される。
The back electrode 13 is formed of an aluminum electrode on the back surface of the solar cell 2 by, for example, screen printing or sputtering.
なお、本実施の形態において、太陽電池セルは、このような太陽電池セル2の構成に限定されない。例えば、バスバー電極を必ずしも設ける必要はない。このようなバスバーレス構造の太陽電池セルは、フィンガー電極の電流が、フィンガー電極と交差するタブ線によって集められる。また、Al裏面電極にタブ線と接続不良にならない程度に開口部を形成してもよく、これによって接着強度を確保してもよい。すなわち、本実施の形態における導電性接着剤は、バスバー電極が存在しない、バスバーレス構造の太陽電池セルにも使用でき、優れた接着力を発揮することができる。
In the present embodiment, the solar battery cell is not limited to such a configuration of the solar battery cell 2. For example, the bus bar electrode is not necessarily provided. In such a solar cell having a bus barless structure, the current of the finger electrode is collected by a tab line intersecting the finger electrode. In addition, an opening may be formed in the Al back electrode to such an extent that it does not cause poor connection with the tab wire, thereby securing adhesive strength. That is, the conductive adhesive in the present embodiment can be used for a solar cell having a bus bar-less structure in which no bus bar electrode is present, and can exhibit an excellent adhesive force.
<4.太陽電池モジュールの製造方法>
次に、太陽電池モジュール1の製造方法について図1~3を参照して説明する。本実施の形態における太陽電池モジュール1の製造方法は、一の太陽電池セル2のAg等からなるバスバー電極11(表面電極)と、一の太陽電池セル2と隣接する他の太陽電池セル2の裏面電極13とを導電性接着フィルム20を介してタブ線3で電気的に接続させるものである。タブ線3は、導電性接着フィルム20を介して表面のバスバー電極11及び裏面電極13上に配置する。そして、熱加圧によって、タブ線3と各電極とを圧着接続することにより、太陽電池モジュール1を製造する。 <4. Manufacturing method of solar cell module>
Next, a method for manufacturing thesolar cell module 1 will be described with reference to FIGS. The manufacturing method of the solar cell module 1 in the present embodiment includes a bus bar electrode 11 (surface electrode) made of Ag or the like of one solar cell 2 and another solar cell 2 adjacent to the one solar cell 2. The back electrode 13 is electrically connected with the tab wire 3 through the conductive adhesive film 20. The tab wire 3 is disposed on the front bus bar electrode 11 and the back electrode 13 through the conductive adhesive film 20. And the solar cell module 1 is manufactured by crimping and connecting the tab wire 3 and each electrode by thermal pressurization.
次に、太陽電池モジュール1の製造方法について図1~3を参照して説明する。本実施の形態における太陽電池モジュール1の製造方法は、一の太陽電池セル2のAg等からなるバスバー電極11(表面電極)と、一の太陽電池セル2と隣接する他の太陽電池セル2の裏面電極13とを導電性接着フィルム20を介してタブ線3で電気的に接続させるものである。タブ線3は、導電性接着フィルム20を介して表面のバスバー電極11及び裏面電極13上に配置する。そして、熱加圧によって、タブ線3と各電極とを圧着接続することにより、太陽電池モジュール1を製造する。 <4. Manufacturing method of solar cell module>
Next, a method for manufacturing the
具体的には、先ず、光電変換素子10の表面にAgペーストの塗布、焼成によってフィンガー電極12及びバスバー電極11を形成し、裏面にAlスクリーン印刷等によってタブ線3の接続部に裏面電極13を形成し、太陽電池セル2を作製する。
Specifically, first, the finger electrode 12 and the bus bar electrode 11 are formed on the surface of the photoelectric conversion element 10 by applying and baking Ag paste, and the back electrode 13 is formed on the connection portion of the tab wire 3 by Al screen printing on the back surface. It forms and the photovoltaic cell 2 is produced.
次に、光電変換素子10表面のバスバー電極11及び裏面の裏面電極13に導電性接着フィルム20を貼着し、この導電性接着フィルム20上にタブ線3を配置し、所定の熱加圧条件(例えば、70℃、0.5MPa、1秒)でタブ線3を仮圧着する。
Next, the conductive adhesive film 20 is stuck to the bus bar electrode 11 on the surface of the photoelectric conversion element 10 and the back electrode 13 on the back surface, and the tab wire 3 is disposed on the conductive adhesive film 20, and predetermined heat and pressure conditions The tab wire 3 is temporarily crimped at (for example, 70 ° C., 0.5 MPa, 1 second).
そして、所定の熱加圧条件(例えば、140~200℃、0.5MPa~3MPa、3~10秒)でタブ線3を本圧着し、タブ線3とバスバー電極11及び裏面電極13を電気的に接続する。このとき、タブ線3は、導電性接着フィルム20のバインダがAgペーストにより形成されたバスバー電極11と良好な接着性を備えることから、バスバー電極11と機械的に強固に接続される。また、タブ線3は、裏面電極13と電気的に接続される。
Then, the tab wire 3 is finally pressure-bonded under predetermined heat and pressure conditions (for example, 140 to 200 ° C., 0.5 MPa to 3 MPa, 3 to 10 seconds), and the tab wire 3 and the bus bar electrode 11 and the back electrode 13 are electrically connected. Connect to. At this time, the tab wire 3 is mechanically firmly connected to the bus bar electrode 11 because the binder of the conductive adhesive film 20 has good adhesiveness with the bus bar electrode 11 formed of Ag paste. The tab wire 3 is electrically connected to the back electrode 13.
太陽電池セル2が接続されたマトリクス5を封止接着剤のシート6で挟み、保護材として受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートすることにより、太陽電池モジュール1が製造される。
The matrix 5 to which the solar cells 2 are connected is sandwiched between sheets 6 of a sealing adhesive and laminated together with a front cover 7 provided on the light receiving surface side and a back sheet 8 provided on the back surface side as protective materials. Thus, the solar cell module 1 is manufactured.
このように、太陽電池モジュール1の製造方法では、導電性接着フィルムを用いてタブ線3と表面のAgからなるバスバー電極11及び裏面電極13とを接続する。導電性接着フィルムのバインダは、ラジカル重合開始剤と、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有する。このラジカル重合開始剤の1分間半減期温度は、110~140℃である。また、リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されている。
Thus, in the manufacturing method of the solar cell module 1, the tab wire 3 and the bus bar electrode 11 and the back electrode 13 made of Ag on the surface are connected using the conductive adhesive film. The binder of the conductive adhesive film contains a radical polymerization initiator, a (meth) acrylate that does not contain a phosphate group or a phosphate ester group, and a (meth) acrylate that contains a phosphate group or a phosphate ester group. . The 1 minute half-life temperature of this radical polymerization initiator is 110 to 140 ° C. Further, the (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of a (meth) acrylate not containing a phosphate group or a phosphate ester group. Yes.
太陽電池モジュール1の製造方法では、このような成分からなる導電性接着フィルム20を用いることで、Ag等の金属表面を有するバスバー電極11に対する接着性を向上させることができる。すなわち、加熱押圧ヘッドによる押圧時に、200℃以下程度の比較的低い熱圧着処理によってタブ線3と各電極とを強固に接続させることができ、製造された太陽電池モジュール1においては、高い接続信頼性を得ることができる。
In the manufacturing method of the solar cell module 1, the adhesiveness with respect to the bus-bar electrode 11 which has metal surfaces, such as Ag, can be improved by using the conductive adhesive film 20 which consists of such a component. That is, the tab wire 3 and each electrode can be firmly connected by a relatively low thermocompression treatment of about 200 ° C. or less when pressed by the heating and pressing head, and the manufactured solar cell module 1 has high connection reliability. Sex can be obtained.
なお、太陽電池モジュールの製造方法は、このような方法に限定されない。例えば、一の太陽電池セルの表面電極とタブ線、及び他の太陽電池セルの裏面電極とタブ線とを、前述した導電性接着フィルムを介在させて仮固定し、太陽電池セルの上下面に封止材、保護基材を順に積層し、保護基材の上面からラミネート装置(減圧ラミネータ)にてラミネート圧着させ、封止材を硬化させるとともに表面電極とタブ線及び裏面電極とタブ線とを接続させてもよい。
In addition, the manufacturing method of a solar cell module is not limited to such a method. For example, the front electrode and the tab wire of one solar cell and the back electrode and the tab wire of the other solar cell are temporarily fixed with the above-described conductive adhesive film interposed, and the upper and lower surfaces of the solar cell are fixed. A sealing material and a protective base material are laminated in order, and laminated and pressure-bonded with a laminating apparatus (decompression laminator) from the upper surface of the protective base material, the sealing material is cured, and the front surface electrode and the tab wire and the back surface electrode and the tab wire are bonded. You may connect.
<5.実施例>
以下、実施例を挙げて、本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 <5. Example>
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.
以下、実施例を挙げて、本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。 <5. Example>
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.
(実施例1)
バインダに導電性粒子を含有させてなる導電性接着フィルムを作製した。バインダは、以下の成分によって構成した。 Example 1
A conductive adhesive film comprising conductive particles in a binder was produced. The binder was composed of the following components.
バインダに導電性粒子を含有させてなる導電性接着フィルムを作製した。バインダは、以下の成分によって構成した。 Example 1
A conductive adhesive film comprising conductive particles in a binder was produced. The binder was composed of the following components.
すなわち、膜形成樹脂として、フェノキシ樹脂(FX280、東都化成株式会社製)20質量部を用いた。ゴム成分として、アクリルゴム(SGシリーズ、長瀬ケムテックス株式会社製)5質量部、及び水添スチレン系熱可塑性エラストマー(SEBS)(タフテックシリーズ、旭化成ケミカルズ株式会社製)15質量部を用いた。
That is, 20 parts by mass of phenoxy resin (FX280, manufactured by Toto Kasei Co., Ltd.) was used as the film forming resin. As rubber components, 5 parts by mass of acrylic rubber (SG series, manufactured by Nagase Chemtex Co., Ltd.) and 15 parts by mass of hydrogenated styrene-based thermoplastic elastomer (SEBS) (Tuftec series, manufactured by Asahi Kasei Chemicals Co., Ltd.) were used.
アクリレートとして、エポキシアクリレート(V♯540、大阪有機化学工業株式会社製)5質量部、ジメタクリレート(NKエステルDCP、新中村化学株式会社製)24質量部、3官能アクリレートすなわちトリアクリレート(NKエステルA9300、新中村化学株式会社製)25質量部、リン酸エステル基含有アクリレート(PMシリーズ、日本化薬株式会社製)2質量部を用いた。
As the acrylate, 5 parts by mass of epoxy acrylate (V # 540, manufactured by Osaka Organic Chemical Industry Co., Ltd.), 24 parts by mass of dimethacrylate (NK ester DCP, manufactured by Shin Nakamura Chemical Co., Ltd.), trifunctional acrylate, that is, triacrylate (NK ester A9300) , Shin-Nakamura Chemical Co., Ltd.) 25 parts by mass and phosphate ester group-containing acrylate (PM series, Nippon Kayaku Co., Ltd.) 2 parts by mass were used.
シランカップリング剤として、メタクリロキシシラン(KBE503、信越化学株式会社製)1質量部を用いた。ラジカル重合開始剤(有機過酸化物)として、有機過酸化物1分半減期温度116℃のラウロイルパーオキシド(パーロイルL、日油株式会社製)3質量部を用いた。
As a silane coupling agent, 1 part by mass of methacryloxysilane (KBE503, manufactured by Shin-Etsu Chemical Co., Ltd.) was used. As a radical polymerization initiator (organic peroxide), 3 parts by mass of lauroyl peroxide (Perroyl L, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 116 ° C. was used.
これらの成分からなるバインダに、導電性粒子として、平均粒径10μmのNi粉(バーレインコ社製)15質量部を分散させて導電性接着剤を得た。この導電性接着剤を剥離基材上に塗布して乾燥させ、導電性接着フィルムを作製した。
A conductive adhesive was obtained by dispersing 15 parts by mass of Ni powder (manufactured by Bahrainco) having an average particle size of 10 μm as conductive particles in a binder composed of these components. This conductive adhesive was applied onto a release substrate and dried to produce a conductive adhesive film.
(実施例2)
実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 2)
Instead of the radical polymerization initiator of Example 1, 3 parts by weight of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 2)
Instead of the radical polymerization initiator of Example 1, 3 parts by weight of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
(実施例3)
実施例1のリン酸エステル基含有アクリレート(PMシリーズ、日本化薬株式会社製)を0.1質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 3)
The phosphate ester group-containing acrylate of Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was 0.1 mass part. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. A conductive adhesive film was produced in the same manner as in Example 1 except that was used.
実施例1のリン酸エステル基含有アクリレート(PMシリーズ、日本化薬株式会社製)を0.1質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 3)
The phosphate ester group-containing acrylate of Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was 0.1 mass part. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. A conductive adhesive film was produced in the same manner as in Example 1 except that was used.
(実施例4)
実施例1のリン酸エステル基含有アクリレート(PMシリーズ、日本化薬株式会社製)を3質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 4)
3 parts by mass of the phosphate group-containing acrylate of Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was used. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. Was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
実施例1のリン酸エステル基含有アクリレート(PMシリーズ、日本化薬株式会社製)を3質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 4)
3 parts by mass of the phosphate group-containing acrylate of Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was used. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. Was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
(実施例5)
実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)1質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 5)
Instead of the radical polymerization initiator of Example 1, 1 part by weight of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)1質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 5)
Instead of the radical polymerization initiator of Example 1, 1 part by weight of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
(実施例6)
実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)5質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 6)
Instead of the radical polymerization initiator of Example 1, 5 parts by mass of benzoyl peroxide (Niper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)5質量部を用いた以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 6)
Instead of the radical polymerization initiator of Example 1, 5 parts by mass of benzoyl peroxide (Niper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as the radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Example 1 except that.
(実施例7)
実施例1のエポキシアクリレート(V♯540、大阪有機化学工業株式会社製)を4質量部、ジメタクリレート(NKエステルDCP、新中村化学株式会社製)を20質量部とした。また、実施例1のトリアクリレート(NKエステルA9300、新中村化学株式会社製)を30質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 7)
The epoxy acrylate of Example 1 (V # 540, manufactured by Osaka Organic Chemical Co., Ltd.) was 4 parts by mass, and dimethacrylate (NK ester DCP, manufactured by Shin Nakamura Chemical Co., Ltd.) was 20 parts by mass. Further, 30 parts by mass of the triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was used. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. Was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
実施例1のエポキシアクリレート(V♯540、大阪有機化学工業株式会社製)を4質量部、ジメタクリレート(NKエステルDCP、新中村化学株式会社製)を20質量部とした。また、実施例1のトリアクリレート(NKエステルA9300、新中村化学株式会社製)を30質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 7)
The epoxy acrylate of Example 1 (V # 540, manufactured by Osaka Organic Chemical Co., Ltd.) was 4 parts by mass, and dimethacrylate (NK ester DCP, manufactured by Shin Nakamura Chemical Co., Ltd.) was 20 parts by mass. Further, 30 parts by mass of the triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was used. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. Was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
(実施例8)
実施例1のエポキシアクリレート(V♯540、大阪有機化学工業株式会社製)を14質量部、ジメタクリレート(NKエステルDCP、新中村化学株式会社製)を30質量部とした。実施例1のトリアクリレート(NKエステルA9300、新中村化学株式会社製)を10質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 8)
The epoxy acrylate of Example 1 (V # 540, Osaka Organic Chemical Industries, Ltd.) was 14 parts by mass, and dimethacrylate (NK ester DCP, Shin-Nakamura Chemical Co., Ltd.) was 30 parts by mass. The triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was 10 parts by mass. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. Was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
実施例1のエポキシアクリレート(V♯540、大阪有機化学工業株式会社製)を14質量部、ジメタクリレート(NKエステルDCP、新中村化学株式会社製)を30質量部とした。実施例1のトリアクリレート(NKエステルA9300、新中村化学株式会社製)を10質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Example 8)
The epoxy acrylate of Example 1 (V # 540, Osaka Organic Chemical Industries, Ltd.) was 14 parts by mass, and dimethacrylate (NK ester DCP, Shin-Nakamura Chemical Co., Ltd.) was 30 parts by mass. The triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was 10 parts by mass. Further, in place of the radical polymerization initiator of Example 1, as a radical polymerization initiator, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. Was used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
(実施例9)
実施例1の導電性粒子に代えて、導電性粒子として、平均粒径10μmの置換メッキ銀コート銅粉5質量部を用いた。この置換メッキ銀コート銅粉の製造においては、いわゆるアトマイズ法と呼ばれる製法により得られたアトマイズ銅粉を、さらに機械的粉砕を施して得られた銅微粉を使用した。なお、機械的粉砕時には、銅粉同士の凝集による粗大化を防止する目的で、脂肪酸が添加されていると推察される。具体的には、日本アトマイズ加工(株)製フレーク銅微粉(型番:AFS-Cu 7μm)を使用した。このフレーク銅微粉は、レーザー回折散乱式粒度分布測定法による重量累積粒径D50が7.9μmであった。 Example 9
Instead of the conductive particles of Example 1, 5 parts by mass of substituted plating silver-coated copper powder having an average particle size of 10 μm was used as the conductive particles. In the production of this substitution plating silver coat copper powder, the copper fine powder obtained by further mechanically pulverizing the atomized copper powder obtained by a so-called atomizing method was used. In addition, at the time of mechanical grinding | pulverization, it is guessed that the fatty acid is added in order to prevent the coarsening by aggregation of copper powder. Specifically, flake copper fine powder (model number: AFS-Cu 7 μm) manufactured by Nippon Atomizing Co., Ltd. was used. The flake copper fine powder had a weight cumulative particle diameter D50 of 7.9 μm as measured by a laser diffraction scattering particle size distribution measurement method.
実施例1の導電性粒子に代えて、導電性粒子として、平均粒径10μmの置換メッキ銀コート銅粉5質量部を用いた。この置換メッキ銀コート銅粉の製造においては、いわゆるアトマイズ法と呼ばれる製法により得られたアトマイズ銅粉を、さらに機械的粉砕を施して得られた銅微粉を使用した。なお、機械的粉砕時には、銅粉同士の凝集による粗大化を防止する目的で、脂肪酸が添加されていると推察される。具体的には、日本アトマイズ加工(株)製フレーク銅微粉(型番:AFS-Cu 7μm)を使用した。このフレーク銅微粉は、レーザー回折散乱式粒度分布測定法による重量累積粒径D50が7.9μmであった。 Example 9
Instead of the conductive particles of Example 1, 5 parts by mass of substituted plating silver-coated copper powder having an average particle size of 10 μm was used as the conductive particles. In the production of this substitution plating silver coat copper powder, the copper fine powder obtained by further mechanically pulverizing the atomized copper powder obtained by a so-called atomizing method was used. In addition, at the time of mechanical grinding | pulverization, it is guessed that the fatty acid is added in order to prevent the coarsening by aggregation of copper powder. Specifically, flake copper fine powder (model number: AFS-
このフレーク状の銅微粉500gを大気中で250℃の温度で5分間熱処理し、その後酸化処理を行った銅微粉を乳鉢にて粗砕した。粗砕された銅微粉500gを1%水酸化カリウム水溶液1000mlに加えて20分間攪拌し、続いて一次デカンテーション処理を行い、さらに純水1000mlを加えて数分間攪拌した。
The 500 g of the flaky copper fine powder was heat-treated in the atmosphere at a temperature of 250 ° C. for 5 minutes, and then the oxidized copper fine powder was coarsely crushed in a mortar. 500 g of coarsely pulverized copper fine powder was added to 1000 ml of 1% potassium hydroxide aqueous solution and stirred for 20 minutes, followed by primary decantation treatment, and further 1000 ml of pure water was added and stirred for several minutes.
次に、二次デカンテーション処理を行い、硫酸濃度15g/Lの硫酸水溶液2500mlを加えて30分間攪拌した。さらに、硫酸水溶液による酸洗浄をもう1回繰り返した。さらに、三次デカンテーション処理を行い、純水2500mlを加えて数分間攪拌した。そして、四次デカンテーション処理を行い、濾過洗浄、吸引脱水することで、フレーク状の銅微粉と溶液とを濾別した。フレーク状の銅微粉を90℃の温度で2時間乾燥させた。
Next, secondary decantation treatment was performed, and 2500 ml of sulfuric acid aqueous solution having a sulfuric acid concentration of 15 g / L was added and stirred for 30 minutes. Further, the acid washing with the sulfuric acid aqueous solution was repeated once more. Further, tertiary decantation treatment was performed, 2500 ml of pure water was added, and the mixture was stirred for several minutes. Then, a quaternary decantation treatment was performed, followed by filtration washing and suction dehydration to separate the flaky copper fine powder from the solution. The flaky copper fine powder was dried at a temperature of 90 ° C. for 2 hours.
この乾燥済みのフレーク状の銅微粉に、硫酸濃度7.5g/Lの硫酸水溶液2500mlを加え、30分間攪拌した。次いで、五次デカンテーション処理を行い、純水2500mlを加えて数分間攪拌した。
To this dried flaky copper fine powder, 2500 ml of sulfuric acid aqueous solution having a sulfuric acid concentration of 7.5 g / L was added and stirred for 30 minutes. Subsequently, a fifth decantation treatment was performed, 2500 ml of pure water was added, and the mixture was stirred for several minutes.
さらに、六次デカンテーション処理を行い、1%酒石酸ナトリウムカリウム溶液2500mlを加えて数分間攪拌し、銅スラリーを形成させた。この銅スラリーに希硫酸又は水酸化カリウム溶液を加え、銅スラリーのpHを3.5~4.5になるように調整した。
Further, a sixth decantation treatment was performed, and 2500 ml of a 1% sodium potassium tartrate solution was added and stirred for several minutes to form a copper slurry. Dilute sulfuric acid or potassium hydroxide solution was added to the copper slurry to adjust the pH of the copper slurry to 3.5 to 4.5.
pHを調整した銅スラリーに、硝酸銀アンモニア溶液1000ml(硝酸銀87.5gを水に添加してアンモニア水を加え、1000mlとして調整したもの)を、30分間かけてゆっくりと添加しながら置換反応処理及び還元反応処理を行い、さらに30分間の攪拌をして銀メッキ銅微粉を得た。
Substitution reaction treatment and reduction while adding silver nitrate ammonia solution 1000ml (added 87.5g of silver nitrate to water and adding ammonia water to 1000ml) to pH adjusted copper slurry slowly over 30 minutes. The reaction treatment was performed, and the mixture was further stirred for 30 minutes to obtain silver-plated copper fine powder.
その後、七次デカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。さらに、八次デカンテーション処理を行い、純水3500mlを加えて数分間攪拌した。そして、濾過洗浄、吸引脱水することで銀メッキ銅微粉と溶液とを濾別し、銀メッキ銅微粉を90℃の温度で2時間乾燥させた。
Thereafter, the seventh decantation treatment was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes. Further, an eighth decantation treatment was performed, 3500 ml of pure water was added, and the mixture was stirred for several minutes. Then, the silver-plated copper fine powder and the solution were separated by filtration washing and suction dehydration, and the silver-plated copper fine powder was dried at a temperature of 90 ° C. for 2 hours.
乾燥させた銀メッキ銅微粉500gを管状炉に入れ、水素気流下(3.0~3.5l/min)の還元性雰囲気中で200℃、30分間熱処理を行った。熱処理済みの銀メッキ銅微粉を乳鉢で粉砕した。熱処理済みの銀メッキ銅微粉500gを0.5%ステアリン酸イソピルアルコール溶液1000mlに分散させ、30分間攪拌した。
The dried silver-plated copper fine powder (500 g) was placed in a tubular furnace and heat-treated at 200 ° C. for 30 minutes in a reducing atmosphere under a hydrogen stream (3.0 to 3.5 l / min). The heat-treated silver-plated copper fine powder was pulverized in a mortar. 500 g of heat-treated silver-plated copper fine powder was dispersed in 1000 ml of 0.5% isopropyl alcohol stearate solution and stirred for 30 minutes.
そして、濾過洗浄、吸引脱水することで熱処理済みのステアリン酸被覆銀メッキ銅微粉と溶液とを濾別し、熱処理済みのステアリン酸被覆銀メッキ銅微粉を温度90℃で2時間乾燥させ、熱処理済みのステアリン酸被覆銀メッキ銅微粉(置換メッキ銀コート銅粉)を得た(特開2010-174311号公報参照)。
Then, the heat-treated stearic acid-coated silver-plated copper fine powder and the solution are separated by filtration, washing and dehydrating, and the heat-treated stearic acid-coated silver-plated copper fine powder is dried at a temperature of 90 ° C. for 2 hours and heat-treated. A fine powder of stearic acid-coated silver-plated copper (displacement-plated silver-coated copper powder) was obtained (see JP 2010-174411 A).
また、実施例9では、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。
Further, in Example 9, instead of the radical polymerization initiator of Example 1, a benzoyl peroxide (Nyper BMT-K40, NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. was used as a radical polymerization initiator. 3 parts by mass were used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
(比較例1)
実施例1のトリアクリレート(NKエステルA9300、新中村化学株式会社製)を15質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度104℃のt-ブチルペルオキシネオデカノエイト(パーブチルND、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 1)
The triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was 15 parts by mass. Further, in place of the radical polymerization initiator of Example 1, t-butyl peroxyneodecanoate (perbutyl ND, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 104 ° C. was used as a radical polymerization initiator. 3 parts by weight were used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
実施例1のトリアクリレート(NKエステルA9300、新中村化学株式会社製)を15質量部とした。また、実施例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度104℃のt-ブチルペルオキシネオデカノエイト(パーブチルND、日油株式会社製)3質量部を用いた。それ以外は、実施例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 1)
The triacrylate of Example 1 (NK ester A9300, manufactured by Shin-Nakamura Chemical Co., Ltd.) was 15 parts by mass. Further, in place of the radical polymerization initiator of Example 1, t-butyl peroxyneodecanoate (perbutyl ND, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 104 ° C. was used as a radical polymerization initiator. 3 parts by weight were used. Other than that was carried out similarly to Example 1, and produced the electroconductive adhesive film.
(比較例2)
比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度142℃の1,1-ジ-t-ブチルペルオキシ-2-メチルシクロヘキサン(パーヘキサMC、日油株式会社製)3質量部を用いた以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 2)
In place of the radical polymerization initiator of Comparative Example 1, 1,1-di-t-butylperoxy-2-methylcyclohexane (Perhexa MC, JP) having a one minute half-life temperature of 142 ° C. as an organic peroxide was used as a radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Comparative Example 1 except that 3 parts by mass of Yurai Co., Ltd. was used.
比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度142℃の1,1-ジ-t-ブチルペルオキシ-2-メチルシクロヘキサン(パーヘキサMC、日油株式会社製)3質量部を用いた以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 2)
In place of the radical polymerization initiator of Comparative Example 1, 1,1-di-t-butylperoxy-2-methylcyclohexane (Perhexa MC, JP) having a one minute half-life temperature of 142 ° C. as an organic peroxide was used as a radical polymerization initiator. A conductive adhesive film was produced in the same manner as in Comparative Example 1 except that 3 parts by mass of Yurai Co., Ltd. was used.
(比較例3)
リン酸エステル基含有アクリレートを含有させなかった。また、比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 3)
The phosphate ester group-containing acrylate was not contained. Further, in place of the radical polymerization initiator of Comparative Example 1, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. as a radical polymerization initiator Was used. Other than that was carried out similarly to the comparative example 1, and produced the electroconductive adhesive film.
リン酸エステル基含有アクリレートを含有させなかった。また、比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 3)
The phosphate ester group-containing acrylate was not contained. Further, in place of the radical polymerization initiator of Comparative Example 1, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. as a radical polymerization initiator Was used. Other than that was carried out similarly to the comparative example 1, and produced the electroconductive adhesive film.
(比較例4)
比較例1のリン酸エステル基含有アクリレート(PMシリーズ、日本化薬株式会社製)を6質量部とした。また、比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 4)
The phosphate group-containing acrylate of Comparative Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was 6 parts by mass. Further, in place of the radical polymerization initiator of Comparative Example 1, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. as a radical polymerization initiator Was used. Other than that was carried out similarly to the comparative example 1, and produced the electroconductive adhesive film.
比較例1のリン酸エステル基含有アクリレート(PMシリーズ、日本化薬株式会社製)を6質量部とした。また、比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 4)
The phosphate group-containing acrylate of Comparative Example 1 (PM series, manufactured by Nippon Kayaku Co., Ltd.) was 6 parts by mass. Further, in place of the radical polymerization initiator of Comparative Example 1, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. as a radical polymerization initiator Was used. Other than that was carried out similarly to the comparative example 1, and produced the electroconductive adhesive film.
(比較例5)
リン酸エステル基含有アクリレートを含有させなかった。また、添加剤としてリン酸エステル(LB-58、ビス(2エチルヘキシル)ホスフォネート、城北化学工業株式会社製)2質量部を添加した。また、比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 5)
The phosphate ester group-containing acrylate was not contained. Further, 2 parts by mass of phosphate ester (LB-58, bis (2 ethylhexyl) phosphonate, manufactured by Johoku Chemical Co., Ltd.) was added as an additive. Further, in place of the radical polymerization initiator of Comparative Example 1, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. as a radical polymerization initiator Was used. Other than that was carried out similarly to the comparative example 1, and produced the electroconductive adhesive film.
リン酸エステル基含有アクリレートを含有させなかった。また、添加剤としてリン酸エステル(LB-58、ビス(2エチルヘキシル)ホスフォネート、城北化学工業株式会社製)2質量部を添加した。また、比較例1のラジカル重合開始剤に代えて、ラジカル重合開始剤として、有機過酸化物1分半減期温度131℃のベンゾイルパーオキサイド(ナイパーBMT-K40、日油株式会社製)3質量部を用いた。それ以外は、比較例1と同様にして導電性接着フィルムを作製した。 (Comparative Example 5)
The phosphate ester group-containing acrylate was not contained. Further, 2 parts by mass of phosphate ester (LB-58, bis (2 ethylhexyl) phosphonate, manufactured by Johoku Chemical Co., Ltd.) was added as an additive. Further, in place of the radical polymerization initiator of Comparative Example 1, 3 parts by mass of benzoyl peroxide (Nyper BMT-K40, manufactured by NOF Corporation) having an organic peroxide 1-minute half-life temperature of 131 ° C. as a radical polymerization initiator Was used. Other than that was carried out similarly to the comparative example 1, and produced the electroconductive adhesive film.
<接着強度の測定>
実施例1~7、比較例1~5の導電性接着フィルムを、6インチ単結晶Siセル(寸法:15.6cm×15.6cm、厚さ:180μm)のAgからなる表面のバスバー電極及びAgからなる裏面電極に貼り合わせ、導電性接着フィルム上に鉛フリーはんだタブ線(幅:1.5mm、厚さ:0.15mm)を熱加圧ヘッドにより熱加圧して接着させた。熱加圧条件は、160℃、1MPa、5秒間とした。 <Measurement of adhesive strength>
The conductive adhesive films of Examples 1 to 7 and Comparative Examples 1 to 5 were formed using the 6-inch single crystal Si cell (dimensions: 15.6 cm × 15.6 cm, thickness: 180 μm) surface Ag bus bar electrode and Ag. The lead-free solder tab wire (width: 1.5 mm, thickness: 0.15 mm) was heat-pressed and adhered on the conductive adhesive film with a heat-pressure head. The heat and pressure conditions were 160 ° C., 1 MPa, and 5 seconds.
実施例1~7、比較例1~5の導電性接着フィルムを、6インチ単結晶Siセル(寸法:15.6cm×15.6cm、厚さ:180μm)のAgからなる表面のバスバー電極及びAgからなる裏面電極に貼り合わせ、導電性接着フィルム上に鉛フリーはんだタブ線(幅:1.5mm、厚さ:0.15mm)を熱加圧ヘッドにより熱加圧して接着させた。熱加圧条件は、160℃、1MPa、5秒間とした。 <Measurement of adhesive strength>
The conductive adhesive films of Examples 1 to 7 and Comparative Examples 1 to 5 were formed using the 6-inch single crystal Si cell (dimensions: 15.6 cm × 15.6 cm, thickness: 180 μm) surface Ag bus bar electrode and Ag. The lead-free solder tab wire (width: 1.5 mm, thickness: 0.15 mm) was heat-pressed and adhered on the conductive adhesive film with a heat-pressure head. The heat and pressure conditions were 160 ° C., 1 MPa, and 5 seconds.
実施例1~7、比較例1~5の導電性接着フィルムのこの熱加圧による接着強度を測定した。接着強度は、Agからなる表面のバスバー電極上に接着された導電性接着フィルムを、離速度50mm/minで90度方向に剥離した。この剥離に要した力(剥離強度、JIS K6854-1に準拠)を測定することで評価した。接着強度としての剥離強度の測定結果を表1に示す。
The adhesive strength of the conductive adhesive films of Examples 1 to 7 and Comparative Examples 1 to 5 was measured by this thermal pressing. Regarding the adhesive strength, the conductive adhesive film adhered on the bus bar electrode on the surface made of Ag was peeled in the direction of 90 degrees at a separation speed of 50 mm / min. Evaluation was made by measuring the force required for this peeling (peel strength, in accordance with JIS K6854-1). Table 1 shows the measurement results of peel strength as adhesive strength.
<太陽電池モジュールの製造、発電効率の測定>
実施例1~9、比較例1~5の導電性接着フィルムを、それぞれ太陽電池セル(6インチ単結晶太陽電池セル)が備えるバスバー電極及び裏面電極上に、仮貼りヘッドにより加熱温度70℃、圧力0.5MPaにて1秒間加熱加圧することで仮貼りした。次いで、バスバー電極に仮貼りされた導電性接着フィルム上、及び裏面電極上に仮貼りされた導電性接着フィルム上のそれぞれに両面が平坦で、鉛フリーはんだにより被覆された厚さ0.20mm、幅1.5mmのタブ線を本圧着させた。本圧着の条件は、加熱温度160℃、圧力1MPaにて5秒間加熱加圧して行った。次に、受光面側から、ガラスからなる表面カバー、エチレンビニルアセテート樹脂(EVA)からなる第1のシート、タブ線を接続した電池セル、エチレンビニルアセテート樹脂(EVA)からなる第2のシート、バックシートの順で積層し、真空にした後、150℃で3分間ラミネートした。その後、150℃で30分間加熱することで、完全に硬化させて、太陽電池モジュールを作製した。 <Manufacture of solar cell modules, measurement of power generation efficiency>
The conductive adhesive films of Examples 1 to 9 and Comparative Examples 1 to 5 were respectively heated on a bus bar electrode and a back electrode provided in a solar cell (6-inch single crystal solar cell) with a heating temperature of 70 ° C. by a temporary attachment head. Temporary pasting was performed by heating and pressing at a pressure of 0.5 MPa for 1 second. Next, on the conductive adhesive film temporarily attached to the bus bar electrode and on the conductive adhesive film temporarily attached on the back electrode, both surfaces are flat, and the thickness is 0.20 mm covered with lead-free solder, A tab wire having a width of 1.5 mm was press-bonded. The conditions of the main pressure bonding were performed by heating and pressing at a heating temperature of 160 ° C. and a pressure of 1 MPa for 5 seconds. Next, from the light-receiving surface side, a surface cover made of glass, a first sheet made of ethylene vinyl acetate resin (EVA), a battery cell connected with tab wires, a second sheet made of ethylene vinyl acetate resin (EVA), After laminating in the order of the back sheets and applying a vacuum, the laminate was laminated at 150 ° C. for 3 minutes. Then, it was made to harden completely by heating at 150 degreeC for 30 minutes, and the solar cell module was produced.
実施例1~9、比較例1~5の導電性接着フィルムを、それぞれ太陽電池セル(6インチ単結晶太陽電池セル)が備えるバスバー電極及び裏面電極上に、仮貼りヘッドにより加熱温度70℃、圧力0.5MPaにて1秒間加熱加圧することで仮貼りした。次いで、バスバー電極に仮貼りされた導電性接着フィルム上、及び裏面電極上に仮貼りされた導電性接着フィルム上のそれぞれに両面が平坦で、鉛フリーはんだにより被覆された厚さ0.20mm、幅1.5mmのタブ線を本圧着させた。本圧着の条件は、加熱温度160℃、圧力1MPaにて5秒間加熱加圧して行った。次に、受光面側から、ガラスからなる表面カバー、エチレンビニルアセテート樹脂(EVA)からなる第1のシート、タブ線を接続した電池セル、エチレンビニルアセテート樹脂(EVA)からなる第2のシート、バックシートの順で積層し、真空にした後、150℃で3分間ラミネートした。その後、150℃で30分間加熱することで、完全に硬化させて、太陽電池モジュールを作製した。 <Manufacture of solar cell modules, measurement of power generation efficiency>
The conductive adhesive films of Examples 1 to 9 and Comparative Examples 1 to 5 were respectively heated on a bus bar electrode and a back electrode provided in a solar cell (6-inch single crystal solar cell) with a heating temperature of 70 ° C. by a temporary attachment head. Temporary pasting was performed by heating and pressing at a pressure of 0.5 MPa for 1 second. Next, on the conductive adhesive film temporarily attached to the bus bar electrode and on the conductive adhesive film temporarily attached on the back electrode, both surfaces are flat, and the thickness is 0.20 mm covered with lead-free solder, A tab wire having a width of 1.5 mm was press-bonded. The conditions of the main pressure bonding were performed by heating and pressing at a heating temperature of 160 ° C. and a pressure of 1 MPa for 5 seconds. Next, from the light-receiving surface side, a surface cover made of glass, a first sheet made of ethylene vinyl acetate resin (EVA), a battery cell connected with tab wires, a second sheet made of ethylene vinyl acetate resin (EVA), After laminating in the order of the back sheets and applying a vacuum, the laminate was laminated at 150 ° C. for 3 minutes. Then, it was made to harden completely by heating at 150 degreeC for 30 minutes, and the solar cell module was produced.
そして、この太陽電池モジュールにおける初期発電効率に対する熱衝撃試験(-40℃⇔110℃)1000サイクル後の太陽電池モジュールの出力(発電効率)をJIS C8914(結晶系太陽電池モジュール出力測定方法)に準拠し、測定条件:照度1000W/m2、温度25℃、スペクトルAM1.5Gにて、ソーラーシュミレーター(ソーラーシュミレーターPVS1116i-M、日清紡メカトロニクス株式会社製)を用いて測定した。得られた測定結果から、発電効率の変化率(%)を算出した。この変化率が97%以上を発電効率が良好(○)、95%以上97%未満をやや不良(△)、95%未満を不良(×)として評価した。評価結果を表1に示す。
The thermal shock test (−40 ° C. to 110 ° C.) for the initial power generation efficiency in this solar cell module conforms to JIS C8914 (crystalline solar cell module output measurement method) for the output (power generation efficiency) of the solar cell module after 1000 cycles. Measurement conditions: illuminance of 1000 W / m 2 , temperature of 25 ° C., spectrum AM1.5G, using a solar simulator (solar simulator PVS1116i-M, manufactured by Nisshinbo Mechatronics Inc.). From the obtained measurement results, the rate of change (%) in power generation efficiency was calculated. When the rate of change was 97% or more, the power generation efficiency was evaluated as good (◯), 95% or more and less than 97% as slightly poor (Δ), and less than 95% as poor (×). The evaluation results are shown in Table 1.
実施例1~9の導電性接着フィルムは、1分間半減期温度が116~131℃のラジカル重合開始剤を含有するとともに、リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対し、リン酸基又はリン酸エステル基含有(メタ)アクリレートを0.1~3質量部含有する。
The conductive adhesive films of Examples 1 to 9 contain a radical polymerization initiator having a half-life temperature of 116 to 131 ° C. for 1 minute, and 54 parts by mass of (meth) acrylate not containing a phosphate group or a phosphate ester group In contrast, 0.1 to 3 parts by mass of phosphoric acid group or phosphoric ester group-containing (meth) acrylate is contained.
これにより、実施例1~9では、Agからなる表面のバスバー電極に対する密着性を向上させて接着力を高めることができ、160℃という比較的低温での熱圧着処理において、はんだ接続に匹敵する短いタクト時間で、高い接着強度が得られたと考えられる。そして、このような導電性接着剤を用いて製造した実施例1~9の太陽電池モジュールにおいては、タブ線と表面電極及び裏面電極との間において、高い接続信頼性を得ることができ、ラジカル重合開始剤を適正に選択することで、導電性粒子による接続が良好な状態を保つことができることから、熱衝撃試験において高い発電効率を得ることができたと考えられる。
As a result, in Examples 1 to 9, the adhesion to the bus bar electrode on the surface made of Ag can be improved and the adhesive force can be increased, and is comparable to the solder connection in the thermocompression treatment at a relatively low temperature of 160 ° C. It is considered that high adhesive strength was obtained in a short tact time. In the solar cell modules of Examples 1 to 9 manufactured using such a conductive adhesive, high connection reliability can be obtained between the tab wire, the front surface electrode, and the back surface electrode. It is considered that high power generation efficiency could be obtained in the thermal shock test because the connection by the conductive particles can be kept in a good state by appropriately selecting the polymerization initiator.
比較例1では、導電性接着フィルムのバインダに含ませる硬化剤として、1分間半減期温度が104℃のラジカル重合開始剤を用いた。これにより、熱圧着において、導電性粒子がタブ線と太陽電池セルの電極との間で十分に圧着される前に、バインダが硬化したことにより、接続抵抗が上昇したと考えられる。したがって、比較例1の導電性接着フィルムを用いて製造した太陽電池モジュールにおいては、接続状態が不安定なため、熱衝撃試験において、発電効率が低下したと考えられる。
In Comparative Example 1, a radical polymerization initiator having a 1 minute half-life temperature of 104 ° C. was used as a curing agent to be included in the binder of the conductive adhesive film. Thereby, in thermocompression bonding, it is considered that the connection resistance is increased by hardening the binder before the conductive particles are sufficiently pressed between the tab wire and the solar cell electrode. Therefore, in the solar cell module manufactured using the conductive adhesive film of Comparative Example 1, since the connection state is unstable, it is considered that the power generation efficiency has decreased in the thermal shock test.
比較例2では、導電性接着フィルムのバインダに含ませる硬化剤として、1分間半減期温度が142℃のラジカル重合開始剤を用いた。これにより、比較例2では、高い接着強度が得られたものの、このような導電性接着フィルムを用いて製造した太陽電池モジュールにおいては、バインダの硬化状態が不十分なため、導電性粒子による電気的接続状態が不安定となってしまったことにより、発電効率が低下したと考えられる。
In Comparative Example 2, a radical polymerization initiator having a 1 minute half-life temperature of 142 ° C. was used as a curing agent to be included in the binder of the conductive adhesive film. As a result, although high adhesive strength was obtained in Comparative Example 2, in the solar cell module manufactured using such a conductive adhesive film, the cured state of the binder is insufficient, so that the electric power generated by the conductive particles is It is considered that the power generation efficiency has decreased due to the unstable connection state.
比較例3、5では、リン酸基又はリン酸エステル基含有(メタ)アクリレートを含有しないことから、リン酸基又はリン酸エステル基含有(メタ)アクリレートによる金属に対する接着性向上の効果が得られないため、Agからなる表面電極に対して導電性接着フィルムの接着性を向上させることができず、接着強度が低くなったと考えられる。
In Comparative Examples 3 and 5, since the phosphate group or phosphate ester group-containing (meth) acrylate is not contained, the effect of improving the adhesion to metal by the phosphate group or phosphate ester group-containing (meth) acrylate is obtained. Therefore, it is considered that the adhesive strength of the conductive adhesive film with respect to the surface electrode made of Ag could not be improved, and the adhesive strength was lowered.
そして、このような導電性接着フィルムを用いて製造した比較例3、5の太陽電池モジュールにおいては、タブ線が剥離することにより、熱衝撃試験において発電効率が低下したと考えられる。
And in the solar cell modules of Comparative Examples 3 and 5 manufactured using such a conductive adhesive film, it is considered that the power generation efficiency was lowered in the thermal shock test due to the tab wire peeling off.
比較例4では、導電性接着フィルムのバインダ中に、リン酸基又はリン酸エステル基含有(メタ)アクリレートを6質量部含有させた。これにより、導電性接着フィルムのライフが低下することにより、導電性接着フィルムの接着強度は低くなったと考えられる。そして、このような導電性接着フィルムを用いて製造した太陽電池モジュールにおいては、接着強度が低下し、タブ線が剥離することにより、熱衝撃試験において発電効率が低下したと考えられる。
In Comparative Example 4, 6 parts by mass of phosphoric acid group or phosphoric ester group-containing (meth) acrylate was contained in the binder of the conductive adhesive film. Thereby, it is thought that the adhesive strength of the conductive adhesive film was lowered by reducing the life of the conductive adhesive film. And in the solar cell module manufactured using such an electroconductive adhesive film, it is thought that electric power generation efficiency fell in the thermal shock test because adhesive strength fell and a tab wire peeled.
1 太陽電池モジュール、 2 太陽電池セル、 3 タブ線、 4 ストリングス、 5 マトリクス、 6 シート、 7 表面カバー、 8 バックシート、 9 金属フレーム、 10 光電変換素子、 11 バスバー電極、 12 フィンガー電極、 13 裏面電極、 20 導電性接着フィルム、 21 剥離基材、 22 リール
1 solar cell module, 2 solar cell, 3 tab line, 4 strings, 5 matrix, 6 sheet, 7 front cover, 8 back sheet, 9 metal frame, 10 photoelectric conversion element, 11 bus bar electrode, 12 finger electrode, 13 back surface Electrode, 20 conductive adhesive film, 21 release substrate, 22 reel
Claims (6)
- 一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極と、タブ線とを電気的に接続するための導電性接着剤において、
ラジカル重合開始剤と、
リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、
リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有するバインダに導電性粒子が分散されてなり、
前記ラジカル重合開始剤の1分間半減期温度は、110~140℃であり、
前記リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、前記リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されている導電性接着剤。 In a conductive adhesive for electrically connecting a surface electrode of one solar cell, a back electrode of another solar cell adjacent to the one solar cell, and a tab wire,
A radical polymerization initiator;
(Meth) acrylates that do not contain phosphate groups or phosphate ester groups;
Conductive particles are dispersed in a binder containing a (meth) acrylate containing a phosphate group or a phosphate ester group,
The one minute half-life temperature of the radical polymerization initiator is 110 to 140 ° C.,
The (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of the (meth) acrylate not containing the phosphate group or the phosphate ester group. Conductive adhesive. - 前記ラジカル重合開始剤の1分間半減期温度は、116~131℃である請求項1記載の導電性接着剤。 The conductive adhesive according to claim 1, wherein the radical polymerization initiator has a one-minute half-life temperature of 116 to 131 ° C.
- 前記ラジカル重合開始剤は、前記リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して1~5質量部含有されている請求項1又は2記載の導電性接着剤。 The conductive adhesive according to claim 1 or 2, wherein the radical polymerization initiator is contained in an amount of 1 to 5 parts by mass with respect to 54 parts by mass of the (meth) acrylate not containing the phosphate group or the phosphate ester group.
- 前記リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部の内の10~30質量部は、3官能アクリレートである請求項1乃至3の何れか1項記載の導電性接着剤。 The conductive adhesive according to any one of claims 1 to 3, wherein 10 to 30 parts by mass of 54 parts by mass of (meth) acrylate containing no phosphate group or phosphate ester group is a trifunctional acrylate. .
- 一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とが、導電性接着剤を介してタブ線と電気的に接続されてなる太陽電池モジュールであって、
前記導電性接着剤は、
ラジカル重合開始剤と、
リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、
リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有するバインダに導電性粒子が分散されてなり、
前記ラジカル重合開始剤の1分間半減期温度は、110~140℃であり、
前記リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、前記リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されている太陽電池モジュール。 A solar cell module in which a surface electrode of one solar cell and a back electrode of another solar cell adjacent to the one solar cell are electrically connected to a tab wire via a conductive adhesive Because
The conductive adhesive is
A radical polymerization initiator;
(Meth) acrylates that do not contain phosphate groups or phosphate ester groups;
Conductive particles are dispersed in a binder containing a (meth) acrylate containing a phosphate group or a phosphate ester group,
The one minute half-life temperature of the radical polymerization initiator is 110 to 140 ° C.,
The (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of the (meth) acrylate not containing the phosphate group or the phosphate ester group. Solar cell module. - 一の太陽電池セルの表面電極と、該一の太陽電池セルと隣接する他の太陽電池セルの裏面電極とを、導電性接着剤を介してタブ線で電気的に接続させる太陽電池モジュールの製造方法において、
前記導電性接着剤は、
ラジカル重合開始剤と、
リン酸基又はリン酸エステル基を含有しない(メタ)アクリレートと、
リン酸基又はリン酸エステル基を含有する(メタ)アクリレートとを含有するバインダに導電性粒子が分散されてなり、
前記ラジカル重合開始剤の1分間半減期温度は、110~140℃であり、
前記リン酸基又はリン酸エステル基を含有する(メタ)アクリレートは、前記リン酸基又はリン酸エステル基を含有しない(メタ)アクリレート54質量部に対して0.1~5質量部含有されており、
前記タブ線を、前記導電性接着剤を介して前記表面電極及び前記裏面電極上に配置し、熱加圧する太陽電池モジュールの製造方法。 Manufacture of a solar cell module in which a surface electrode of one solar cell and a back electrode of another solar cell adjacent to the one solar cell are electrically connected by a tab wire via a conductive adhesive In the method
The conductive adhesive is
A radical polymerization initiator;
(Meth) acrylates that do not contain phosphate groups or phosphate ester groups;
Conductive particles are dispersed in a binder containing a (meth) acrylate containing a phosphate group or a phosphate ester group,
The one minute half-life temperature of the radical polymerization initiator is 110 to 140 ° C.,
The (meth) acrylate containing a phosphate group or a phosphate ester group is contained in an amount of 0.1 to 5 parts by mass with respect to 54 parts by mass of the (meth) acrylate not containing the phosphate group or the phosphate ester group. And
The manufacturing method of the solar cell module which arrange | positions the said tab wire on the said surface electrode and the said back surface electrode through the said conductive adhesive, and heat-presses.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147013844A KR20140098090A (en) | 2011-10-28 | 2012-10-22 | Conductive adhesive, solar cell module, and method for manufacturing solar cell module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-237362 | 2011-10-28 | ||
JP2011237362A JP5960408B2 (en) | 2011-10-28 | 2011-10-28 | Conductive adhesive, solar cell module, and method for manufacturing solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013061923A1 true WO2013061923A1 (en) | 2013-05-02 |
Family
ID=48167755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/077238 WO2013061923A1 (en) | 2011-10-28 | 2012-10-22 | Conductive adhesive, solar cell module, and method for manufacturing solar cell module |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5960408B2 (en) |
KR (1) | KR20140098090A (en) |
WO (1) | WO2013061923A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015140408A (en) * | 2014-01-29 | 2015-08-03 | 日立化成株式会社 | Adhesive composition, electronic member using the adhesive composition and manufacturing method of semiconductor device |
CN115232573A (en) * | 2021-04-23 | 2022-10-25 | 大洲电子材料(株) | High-temperature-separable conductive adhesive and solar cell module |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015056463A (en) * | 2013-09-11 | 2015-03-23 | デクセリアルズ株式会社 | Solar cell, solar cell module and manufacturing method therefor |
JP6441023B2 (en) * | 2014-10-22 | 2018-12-19 | 株式会社Adeka | Resin composition and heat radiation cured product |
CN109661447B (en) * | 2016-09-06 | 2021-03-30 | 三键有限公司 | Heat-curable conductive adhesive |
KR102339881B1 (en) * | 2016-09-06 | 2021-12-14 | 가부시끼가이샤 쓰리본드 | Thermosetting conductive adhesive |
JP6946395B2 (en) * | 2019-10-25 | 2021-10-06 | 日本化学工業株式会社 | Conductive adhesives, adhesive structures and electronic components using them |
JP7510292B2 (en) * | 2020-07-17 | 2024-07-03 | 京都エレックス株式会社 | Conductive adhesive composition |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199825A (en) * | 2005-01-20 | 2006-08-03 | Soken Chem & Eng Co Ltd | Anisotropic conductive adhesive tape and anisotropic conductive bonded wiring board |
JP2006241215A (en) * | 2005-03-01 | 2006-09-14 | Toray Ind Inc | Member for flexible film substrate |
JP2008085227A (en) * | 2006-09-28 | 2008-04-10 | Sanyo Electric Co Ltd | Solar battery module |
JP2010037539A (en) * | 2008-07-11 | 2010-02-18 | Sony Chemical & Information Device Corp | Anisotropic conductive film |
WO2011001908A1 (en) * | 2009-07-01 | 2011-01-06 | 積水化学工業株式会社 | Binder resin for conductive paste, conductive paste, and solar cell element |
JP2011509332A (en) * | 2008-01-11 | 2011-03-24 | エルジー・ケム・リミテッド | Adhesive composition, adhesive polarizing plate containing the same, and liquid crystal display device |
WO2011093321A1 (en) * | 2010-01-26 | 2011-08-04 | 三洋電機株式会社 | Solar cell module and manufacturing method of same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103360976B (en) * | 2006-04-26 | 2016-08-03 | 日立化成株式会社 | Splicing tape and use its solar module |
-
2011
- 2011-10-28 JP JP2011237362A patent/JP5960408B2/en active Active
-
2012
- 2012-10-22 WO PCT/JP2012/077238 patent/WO2013061923A1/en active Application Filing
- 2012-10-22 KR KR1020147013844A patent/KR20140098090A/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199825A (en) * | 2005-01-20 | 2006-08-03 | Soken Chem & Eng Co Ltd | Anisotropic conductive adhesive tape and anisotropic conductive bonded wiring board |
JP2006241215A (en) * | 2005-03-01 | 2006-09-14 | Toray Ind Inc | Member for flexible film substrate |
JP2008085227A (en) * | 2006-09-28 | 2008-04-10 | Sanyo Electric Co Ltd | Solar battery module |
JP2011509332A (en) * | 2008-01-11 | 2011-03-24 | エルジー・ケム・リミテッド | Adhesive composition, adhesive polarizing plate containing the same, and liquid crystal display device |
JP2010037539A (en) * | 2008-07-11 | 2010-02-18 | Sony Chemical & Information Device Corp | Anisotropic conductive film |
WO2011001908A1 (en) * | 2009-07-01 | 2011-01-06 | 積水化学工業株式会社 | Binder resin for conductive paste, conductive paste, and solar cell element |
WO2011093321A1 (en) * | 2010-01-26 | 2011-08-04 | 三洋電機株式会社 | Solar cell module and manufacturing method of same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015140408A (en) * | 2014-01-29 | 2015-08-03 | 日立化成株式会社 | Adhesive composition, electronic member using the adhesive composition and manufacturing method of semiconductor device |
CN115232573A (en) * | 2021-04-23 | 2022-10-25 | 大洲电子材料(株) | High-temperature-separable conductive adhesive and solar cell module |
CN115232573B (en) * | 2021-04-23 | 2024-03-26 | 大洲电子材料(株) | High-temperature separable conductive adhesive and solar cell module |
Also Published As
Publication number | Publication date |
---|---|
KR20140098090A (en) | 2014-08-07 |
JP5960408B2 (en) | 2016-08-02 |
JP2013098230A (en) | 2013-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5960408B2 (en) | Conductive adhesive, solar cell module, and method for manufacturing solar cell module | |
JP5415396B2 (en) | Solar cell module manufacturing method and solar cell module | |
JP5446420B2 (en) | Solar cell module and manufacturing method thereof | |
JP5886588B2 (en) | Conductive adhesive, solar cell module using the same, and manufacturing method thereof | |
JP5840418B2 (en) | Conductive adhesive and solar cell module | |
JP5707110B2 (en) | Conductive adhesive material, solar cell module and manufacturing method thereof | |
WO2007125903A1 (en) | Adhesive tape and solar cell module using the same | |
JP6247059B2 (en) | Conductive adhesive, solar cell module, and method for manufacturing solar cell module | |
WO2013035667A1 (en) | Solar cell module manufacturing method, solar cell module, and tab wire connection method | |
WO2011132682A1 (en) | Solar cell module, and production method for solar cell module | |
WO2012005318A1 (en) | Solar cell module and method for manufacturing solar cell module | |
JP6154625B2 (en) | Conductive adhesive, solar cell module, and method for manufacturing solar cell module | |
JP2015228457A (en) | Conductive adhesive for solar cell, solar cell module, and manufacturing method of solar cell module | |
EP2816612A1 (en) | Electrically conductive adhesive agent, solar cell module, and method for producing solar cell module | |
WO2012099257A1 (en) | Solar cell module and method of manufacturing solar cell module | |
WO2013031519A1 (en) | Solar cell conductive adhesive and connection method using same, solar cell module, and method for producing solar cell module | |
JP2016048807A (en) | Conductive adhesive and solar cell module using the same, and manufacturing method thereof | |
WO2012073702A1 (en) | Solar cell module and production method for same | |
TW201410838A (en) | Electrically conductive adhesive for solar battery, solar battery module and method for producing the solar battery module | |
JP2016178312A (en) | Conductive adhesive for solar cell, connection method using the same, solar cell module, and manufacturing method of solar cell module | |
JP5692347B2 (en) | Conductive adhesive | |
JP2016195146A (en) | Sealing sheet for solar battery module and use thereof | |
JP2016001765A (en) | Solar cell module and manufacturing method of the solar cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12843614 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147013844 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12843614 Country of ref document: EP Kind code of ref document: A1 |