Nothing Special   »   [go: up one dir, main page]

WO2013061799A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2013061799A1
WO2013061799A1 PCT/JP2012/076380 JP2012076380W WO2013061799A1 WO 2013061799 A1 WO2013061799 A1 WO 2013061799A1 JP 2012076380 W JP2012076380 W JP 2012076380W WO 2013061799 A1 WO2013061799 A1 WO 2013061799A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
inductor element
rib
main transformer
heat
Prior art date
Application number
PCT/JP2012/076380
Other languages
French (fr)
Japanese (ja)
Inventor
秀則 篠原
中津 欣也
芳春 山下
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013061799A1 publication Critical patent/WO2013061799A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power converter such as a DC-DC converter having a magnetic part such as a transformer and / or a coil, and more particularly to a power converter having improved heat resistance.
  • Electric vehicles and plug-in hybrid vehicles are equipped with an inverter device for driving a motor with a high-voltage storage battery for driving power and a low-voltage storage battery for operating auxiliary equipment such as a vehicle light and radio.
  • Such a vehicle is equipped with a DC-DC converter device that performs power conversion from a high voltage storage battery to a low voltage storage battery or power conversion from a low voltage storage battery to a high voltage storage battery.
  • Patent Document 1 discloses a cooling structure for such a power conversion device.
  • Patent Document 1 aims to provide a compact magnetic component by cooling a coil of a magnetic component such as a reactor, and specifically, the first coil portion and the second coil portion of the reactor.
  • the first and second coil portions of the reactor without adding a liquid cooling mechanism by bringing the free flat main surface of the liquid cooling fin of the liquid cooling type inverter device into close contact with each other through a mold resin and a metal case It can be cooled well.
  • the device is generally cooled by a refrigerant composed of a mixture of water, and how to efficiently radiate heat to this cooling mechanism is stable. It is an important technical element to improve the space and save space.
  • a feature of the present invention is a power converter having a DC-DC converter having two or more magnetic parts such as transformers and / or inductor elements and having a step-down circuit and / or a step-up circuit arranged in a case.
  • a transformer and / or an inductor element is disposed in a storage space formed by ribs planted in the case, and a resin having heat dissipation and insulation is filled between the transformer and / or the inductor element and the rib. Power converter.
  • heat generated by a magnetic component such as a transformer and / or an inductor element can be dissipated to the rib and the case via a resin having heat dissipation properties and insulation properties, so that the temperature rise of the magnetic component can be reduced. . Therefore, it is possible to provide a power conversion device that prevents deterioration of the function of the device due to the high temperature environment of the converter device and the progress of deterioration of the components, and suppresses the increase in size.
  • FIG. 3 is an exploded perspective view around a main transformer and an inductor element of a DC-DC converter device. It is a perspective view which shows the inside of a DC-DC converter apparatus. It is sectional drawing which shows the state which has arrange
  • FIG. 1 and 2 are perspective views showing an external appearance of a power conversion device including an inverter device and a DC-DC converter device.
  • the power conversion device 1 is an integrated DC-DC converter device 100 and inverter device 200.
  • FIG. 1 and 2 the DC-DC converter device 100 and the inverter device 200 are shown in a separated state.
  • the DC-DC converter device 100 is fixed to the case bottom side of the inverter device 200 by a plurality of bolts (not shown).
  • the power conversion device 1 is applied to an electric vehicle or the like, and the inverter device 200 drives a traveling motor with electric power from an on-vehicle high voltage storage battery.
  • the vehicle is equipped with a low voltage storage battery for operating auxiliary equipment such as a light and a radio, and the DC-DC converter device 100 converts power from a high voltage storage battery to a low voltage storage battery or a high voltage from a low voltage storage battery. Perform power conversion to storage battery.
  • a refrigerant flow path through which a refrigerant flows is formed in the side wall of the case 201 of the inverter device 200.
  • the refrigerant flows into the flow path from the inlet pipe 13 and flows out from the outlet pipe 14.
  • the case 101 of the DC-DC converter device 100 faces the bottom surface of the inverter device 200 and is fixed without a gap.
  • the DC-DC converter device 100 is also configured to use the refrigerant flow path.
  • water is most suitable as the refrigerant, but the refrigerant is not necessarily limited to water and can be used even if it is other than water.
  • a gasket such as an O-ring is provided in the gap between the case 101 and the case 201 in order to prevent the refrigerant from flowing out of the refrigerant flow path.
  • FIG. 3 is a diagram showing a circuit configuration of the DC-DC converter device 100.
  • the DC-DC converter device 100 of the present embodiment is compatible with bidirectional DC-DC. Therefore, the step-down circuit (HV circuit) and the step-up circuit (LV circuit) have a synchronous rectification configuration rather than a diode rectification.
  • HV circuit step-down circuit
  • LV circuit step-up circuit
  • large current components are used for the switching elements and the smoothing coil is enlarged.
  • the H bridge type and synchronous rectification switching circuit configurations H1 to H4 using MOSFETs having recovery diodes on both the HV / LV sides.
  • the LC series resonance circuits Cr and Lr are used to perform zero-cross switching at a high switching frequency (100 kHz) to improve the conversion efficiency and reduce the heat loss.
  • the active clamp circuits S1 and S2 are provided to reduce the loss due to the circulating current during the step-down operation, and suppress the generation of the surge voltage at the time of switching, thereby reducing the breakdown voltage of the switching element.
  • the device is miniaturized by reducing the breakdown voltage.
  • the high output is achieved by arranging the small reactors L1 and L2 of the switching circuit and the smoothing reactor in parallel so as to have symmetry. As described above, by arranging the small reactors in two circuits, it is possible to reduce the size of the entire DC-DC converter device as compared with the case of arranging one large reactor.
  • FIG. 4 to 7 are diagrams for explaining the arrangement of components in the DC-DC converter device 100
  • FIG. 4 is an exploded perspective view of the DC-DC converter device 100
  • FIG. 5 is a top view of the DC-DC converter device 100
  • FIG. 6 is an exploded perspective view around the main transformer and the inductor element of the DC-DC converter device
  • FIG. 7 is a perspective view showing the inside of the DC-DC converter device.
  • the circuit components of the DC-DC converter device 100 are housed in a case 101 made of metal (for example, made of aluminum die casting).
  • a case cover 102 is bolted to the opening of the case 101.
  • the case 201 of the inverter device 200 is fixed to the bottom surface side of the case 101.
  • a step-up circuit board on which a main transformer 104, an inductor element 105, a step-down circuit on which switching elements H1 to H4 are mounted, and a switching element SWA1 to SWA4 and SAWB1 to SWB4 (not shown) are mounted on the bottom surface in the case 107 and the like are placed.
  • the main heat generating components are the main transformer 104, the inductor element 105, the power semiconductor module, the switching element, and the like.
  • the main transformer 104 corresponds to the transformer Tr
  • the inductor element 105 corresponds to the reactors L1 and L2 of the current doubler
  • the booster circuit board 107 includes the switching element of FIG. S1, S2, etc. are also mounted.
  • the booster circuit board 107 is mounted on a metal substrate on which switching elements are patterned, and the back surface side of the metal substrate is fixed so as to be in close contact with the bottom surface of the case.
  • the control circuit board 108 is mounted with a control circuit for controlling switching elements provided in the booster circuit and the step-down circuit.
  • the control circuit board 108 is fixed to a convex portion formed on the upper surface of the metal base plate 109 with a bolt or the like.
  • the base plate 109 is bolted to a plurality of support portions (not shown) protruding upward from the bottom surface portion of the case 101.
  • the control circuit board 108 is disposed via the base plate 109 above the heat generating components (the main transformer 104, the inductor element 105, etc.) disposed on the bottom surface of the case.
  • the base plate 109 has the function of releasing and cooling the heat generated by the control circuit board, and the function of increasing the mechanical resonance frequency of the control circuit board 108. That is, it is possible to dispose screwing portions for fixing the control circuit board 108 to the base plate 109 at short intervals, shorten the distance between the support points when mechanical vibration occurs, and increase the resonance frequency. it can. Since the resonance frequency of the control circuit board 108 can be increased with respect to the vibration frequency transmitted from the engine or the like, it is difficult to be influenced by vibration and the reliability is improved.
  • the base plate 109 functions as a shielding member for radiant heat from the heat-generating components provided on the bottom surface of the case, and also functions as a shield for shielding switching radiation noise from the switching element.
  • a case cover 102 is attached to the opening of the case 101, and the inside of the case is sealed.
  • FIG. 5A and 5B are perspective views of the DC-DC converter device 100, where FIG. 5A is a perspective view seen from the top, FIG. 5B is a perspective view seen from the bottom, and reference numeral 103 is the bottom of the DC-DC converter device.
  • the refrigerant flow path range is shown.
  • the heat generated by the DC-DC converter device 100 is radiated to the refrigerant flow path range 103.
  • the refrigerant flows in from the inlet pipe 13 of the inverter device 200 and flows out of the outlet pipe 14 in the direction indicated by the arrow.
  • ribs 101a, 101b, 101c, 101d, and 101e are formed on the case 101.
  • the ribs 101a to 101e are connected to each other, and form a storage space in which the main transformer 104 and the inductor element 105 are stored as described below.
  • the main transformer 104 and the two inductor elements 105 are disposed on the bottom surface of the case, but the main transformer 104 is disposed in the first storage space A surrounded by the rib 101b and the ribs 101c and 101d.
  • the inductance element 105a is disposed in the second storage space B surrounded by the rib 101a and the ribs 101b and 101c.
  • the inductance element 105b is disposed in the third storage space C surrounded by the rib 101d and the ribs 101b and 101e.
  • the metal plate 110 is a leaf spring, and is made of a stainless spring material.
  • the metal plate 1110 has a function of pressing and fixing the main transformer 104 and the inductor element 105 to the case 101 with a predetermined force.
  • the AC bus bar 111 is a member that electrically connects the main transformer 104, the HV side modules 113a and 113b, and the resonance coils 114a and 114b as shown in FIG.
  • the AC bus bar 111 includes bus bars 111a and 111b and a resin holder 111c, and the bus bars 111a and 111b are integrally formed with the resin holder 111c.
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • the metal plate 110 and the AC bus bar 111 are fixed to the case 101 with bolts 112a to 112f.
  • the case 101 has a plurality of support portions 101f to 101k protruding upward.
  • the bolt 112a is the support portion 101f
  • the bolt 112b is the support portion 101g
  • the bolt 112c is the support portion 101h
  • the bolt 112d are fixed to the support portion 101i
  • the bolt 112e is fixed to the support portion 101j
  • the bolt 112f is fixed to the support portion 101k.
  • metal plate 110 and the AC bus bar 111 are fastened together by bolts 112c and 112e, and both are integrated.
  • the AC bus bar 111a is connected to the terminal 104b of the main transformer and the resonance coil 114a, and the AC bus bar 111b is connected to the terminal 104a of the main transformer and the terminal 113a of the HV module by welding.
  • the HV module terminal 113b and the resonance coil 114b are also connected by welding, and an alternating current flows.
  • FIG. 8 is a cross-sectional view showing a state in which the main transformer 104 and the inductor element 105 are arranged in the case 101.
  • the case 101 is firmly fixed to the case 201 of the inverter device 200, and the main transformer 104 and the inductor element 105 are fixed. Are arranged along the flow of the cooling medium in the direction of the arrow. Thereby, the surface where the main transformer 104 and the inductor element 105 are located is in a stably cooled state.
  • the main transformer 104 is stored in the first storage space A, the inductor element 105a is stored in the second storage space B, and the inductor element 105b is stored in the third storage space C.
  • the main transformer 104, the inductor element 105a, and the inductor The element 105b is fixed in contact with the bottom surfaces of the respective storage spaces A, B, and C. That is, it contacts the bottom wall surface that forms the storage spaces A, B, and C of the case 101.
  • the storage spaces A, B, and C are also arranged along the flow of the cooling medium in the arrow direction.
  • heat generated from the main transformer 104 and / or the inductor element 105 is transmitted from the bottom surface of the main transformer 104 and / or the inductor element 105 to the bottom wall surface of the case 101 and directly radiated.
  • each storage space A, B, and C is formed by the wall-like ribs 101a to 101e having a predetermined height as described above, and thus also functions as a reservoir. Therefore, the reservoir portion where the ribs 101a to 101e are present is filled with a resin having both heat dissipation and insulation properties.
  • a gap is provided between the main transformer 104, the inductor element 105, and the ribs 101a to 101e of the case.
  • a urethane resin having heat dissipation and insulation
  • a heat radiating resin 300 made of silicon resin or the like having heat radiating and insulating properties is filled.
  • the heat-dissipating resin 300 is represented by diagonal grid lines shown in the storage spaces A, B, and C in the drawing.
  • This heat-dissipating resin 300 is obtained by mixing insulating resin having fluidity as a base material and powder having insulating properties and heat-dissipating properties such as alumina powder, and after filling each storage space A, B, C. It is solidified by natural drying or heat drying.
  • the four side surfaces of the main transformer 104 and the inductor element 105 are also in contact with the case 101 so as to be able to dissipate heat via the heat radiating resin 300, and the heat from the four side surfaces is absorbed by the heat radiating resin 300 and Heat is radiated to the case through the ribs 101a to 101e.
  • the coil part 105c of the inductor element 105a and the coil part 105d part of the inductor element 105b can transmit heat directly to the wall surface of the case 101 through the heat-dissipating resin 300, so that heat can be radiated efficiently.
  • the filling time of the heat-dissipating resin 300 is a method of filling the heat-dissipating resin 300 after the main transformer 104 and the inductor element 105 are assembled in the storage spaces A, B, and C, and the heat-dissipating property in the storage spaces A, B, and C. There is a method of assembling the main transformer 104 and the inductor element 105 after filling the resin 300.
  • the main transformer 104 and the inductor element 105 are assembled after the storage spaces A, B, and C are filled with the heat radiating resin 300. This is because voids and the like can be reduced between the ribs 101a to 101e and the main transformer 104 and the inductor element 105.
  • the heat generated from the main transformer 104 and the inductor element 105 is radiated from the bottom surfaces of the main transformer 104 and the inductor element 105, and is also radiated from the four side surfaces of the main transformer 104 and the inductor element 105. Heat can be dissipated very efficiently.
  • the rib 101c causes interference between the heat generated from the main transformer 104 and the heat generated by the inductor element 105a, and the rib 101d corresponds to the main transformer 104.
  • This serves to prevent interference between the heat generation from the inductor element 105b and the inductor element 105b. That is, thermal interference between the main transformer 104 and the inductor element 105 is prevented, and the temperature rise of the magnetic component is reduced.
  • the thickness of the rib is set to 2 mm or more because the thickness is preferably 2 mm or more from the viewpoint of molding and strength by using aluminum die cast as the material of the case 101. Yes.
  • the ribs 101c and 101d are formed with a continuous groove 115a and groove 115b having a predetermined depth along the rib in the vicinity of the center thereof, thereby preventing the heat from the main transformer 104 and the interference of the inductor element 105b. It also plays a role to prevent.
  • the gap between the main transformer 104, the inductor element 105, and each of the ribs 101a to 101e is preferably as narrow as possible from the viewpoint of heat dissipation. Therefore, a space of 1 mm or more is provided.
  • the main transformer 104 and the inductor element 105 which are heat generating components of the DC-DC converter device 100, can be efficiently cooled, and as a result, the device in a high temperature environment It is possible to prevent the deterioration of the function and the deterioration of the component parts.
  • the present invention is not limited to these and may be applied to a power conversion device used for a vehicle such as a construction machine. it can.
  • the power conversion device in which the inverter and the converter are integrated has been described as an example.
  • a configuration in which a refrigerant water channel is provided on the converter side to form a single unit is also applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Conventional cooling structures had the issues of only having cooling by direct contact with a side surface of a metal case, no consideration being given to heat transfer in many directions, and more efficient cooling being required. Heat generated by a magnetic component is efficiently dispersed to a case, by having a transformer and an inductor element positioned in a housing space formed by a rib planted inside the case, and by filling between the transformer and inductor element and the rib, using a resin having radiation and insulation properties.

Description

電力変換装置Power converter
 本発明はトランス及び/またはコイルなどの磁気部品有するDC-DCコンバータ装置のような電力変換装置に係り、特に耐熱性を向上した電力変換装置に関するものである。 The present invention relates to a power converter such as a DC-DC converter having a magnetic part such as a transformer and / or a coil, and more particularly to a power converter having improved heat resistance.
 電気自動車やプラグインハイブリッド車は、動力駆動用の高電圧蓄電池でモータ駆動するためのインバータ装置と車両のライトやラジオなどの補機を作動させるための低電圧蓄電池を搭載している。このような車両においては、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行うDC-DCコンバータ装置を搭載している。 Electric vehicles and plug-in hybrid vehicles are equipped with an inverter device for driving a motor with a high-voltage storage battery for driving power and a low-voltage storage battery for operating auxiliary equipment such as a vehicle light and radio. Such a vehicle is equipped with a DC-DC converter device that performs power conversion from a high voltage storage battery to a low voltage storage battery or power conversion from a low voltage storage battery to a high voltage storage battery.
 このような車両においては、車両全体の容積に対する室内の割合をできるだけ大きくし、居住性を良くすることが望まれている。このため、インバータ装置やDC-DCコンバータ装置等の電力変換装置は車室外のできるだけ小さなスペースに搭載されることが望まれている。 In such a vehicle, it is desired to increase the ratio of the room to the total volume of the vehicle as much as possible to improve the comfort. For this reason, it is desired that power converters such as an inverter device and a DC-DC converter device be mounted in a space as small as possible outside the passenger compartment.
 したがって、小型化するためには電力変換装置を構成する発熱素子からの熱を効率よく外部に放散することが重要であり、このような電力変換装置の冷却構造については特開2007-173700号公報(特許文献1)に開示されている。 Therefore, in order to reduce the size, it is important to efficiently dissipate the heat from the heat generating elements constituting the power conversion device to the outside. Japanese Patent Application Laid-Open No. 2007-173700 discloses a cooling structure for such a power conversion device. (Patent Document 1).
 特許文献1に記載の技術は、リアクトルのごとき磁気部品のコイルを良好に冷却することによりコンパクトな磁気部品を提供することを目的とし、具体的にはリアクトルの第1コイル部及び第2コイル部にモールド樹脂及び金属ケースを介して液冷型インバータ装置の液冷フィンのフリーな平坦な主面を密着させことによって、液冷機構を増設することなくリアクトルの第1コイル部及び第2コイル部を良好に冷却することができる、としている。 The technology described in Patent Document 1 aims to provide a compact magnetic component by cooling a coil of a magnetic component such as a reactor, and specifically, the first coil portion and the second coil portion of the reactor. The first and second coil portions of the reactor without adding a liquid cooling mechanism by bringing the free flat main surface of the liquid cooling fin of the liquid cooling type inverter device into close contact with each other through a mold resin and a metal case It can be cooled well.
特開2007-173700号公報JP 2007-173700 A
 ところで、温度環境、特に高温域での使用は、インバータ装置やDC-DCコンバータ装置の制御機能低下や構造部品の劣化を早めることが考えられる。このためインバータ装置やDC-DCコンバータ装置の冷却機構としては、一般に水に混合物で構成する冷媒により装置を冷却しており、この冷却機構に、いかにして効率よく放熱するかが、性能の安定性を高めつつ、省スペース性を良くするための重要な技術要素となっている。 By the way, use in a temperature environment, particularly in a high temperature range, can be considered to accelerate the deterioration of the control function of the inverter device and the DC-DC converter device and the deterioration of the structural parts. For this reason, as a cooling mechanism for inverter devices and DC-DC converter devices, the device is generally cooled by a refrigerant composed of a mixture of water, and how to efficiently radiate heat to this cooling mechanism is stable. It is an important technical element to improve the space and save space.
 この課題を改善するための一手段として特許文献1に記載のものが知られているが、本技術においては、冷却構造は金属ケースの側面側であって、金属ケースの直接接触による冷却のみで、多方面方向の熱伝導についての考慮はされておらず、さらなる省スペース性(装置の小型化)を確保するためには、より効率的な冷却を行う必要があるという課題があった。 Although the thing of patent document 1 is known as one means for improving this subject, in this technique, the cooling structure is the side of the metal case, and only cooling by the direct contact of the metal case. However, no consideration has been given to heat conduction in various directions, and there has been a problem that more efficient cooling is necessary to ensure further space saving (miniaturization of the apparatus).
 本発明の特徴は、2個以上のトランス及び/またはインダクタ素子等の磁気部品を有し、降圧回路及び/または昇圧回路をケース内に配置したDC-DCコンバータ装置を備えた電力変換装置であって、ケース内に植立したリブによって形成された収納空間にトランス及び/またはインダクタ素子を配置すると共に、トランス及び/またはインダクタ素子とリブの間に放熱性と絶縁性を有した樹脂を充填した電力変換装置、にある。 A feature of the present invention is a power converter having a DC-DC converter having two or more magnetic parts such as transformers and / or inductor elements and having a step-down circuit and / or a step-up circuit arranged in a case. In addition, a transformer and / or an inductor element is disposed in a storage space formed by ribs planted in the case, and a resin having heat dissipation and insulation is filled between the transformer and / or the inductor element and the rib. Power converter.
 本発明によれば、トランス及び/またはインダクタ素子等の磁気部品の発する熱を放熱性と絶縁性を有した樹脂を介してリブ及びケースに放熱できるので磁気部品の温度上昇を低減することができる。よって、コンバ-タ装置の高温度環境による装置の機能低下や構成部品の劣化進行を防ぎ、大型化を抑えた電力変換装置を提供することができる。 According to the present invention, heat generated by a magnetic component such as a transformer and / or an inductor element can be dissipated to the rib and the case via a resin having heat dissipation properties and insulation properties, so that the temperature rise of the magnetic component can be reduced. . Therefore, it is possible to provide a power conversion device that prevents deterioration of the function of the device due to the high temperature environment of the converter device and the progress of deterioration of the components, and suppresses the increase in size.
インバータ装置とDC-DCコンバータ装置を組み合わせた電力変換装置を説明するための外観斜視図である。It is an external appearance perspective view for demonstrating the power converter device which combined the inverter apparatus and the DC-DC converter apparatus. インバータ装置を断面した外観斜視図である。It is the external appearance perspective view which carried out the cross section of the inverter apparatus. DC-DCコンバータ装置の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of a DC-DC converter apparatus. DC-DCコンバータ装置の部品配置を示す分解斜視図である。It is a disassembled perspective view which shows the components arrangement | positioning of a DC-DC converter apparatus. DC-DCコンバータ装置を説明するための外観斜視図である。It is an external appearance perspective view for demonstrating a DC-DC converter apparatus. DC-DCコンバータ装置の主トランスとインダクタ素子周りの分解斜視図である。FIG. 3 is an exploded perspective view around a main transformer and an inductor element of a DC-DC converter device. DC-DCコンバータ装置の内部を示す斜視図である。It is a perspective view which shows the inside of a DC-DC converter apparatus. 主トランスとインダクタ素子をケースに配置された状態を示す断面図である。It is sectional drawing which shows the state which has arrange | positioned the main transformer and the inductor element in the case.
 以下、図面を参照して本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
 図1及び図2はインバータ装置とDC-DCコンバータ装置よりなる電力変換装置の外観を示す斜視図であり、電力変換装置1はDC-DCコンバータ装置100とインバータ装置200とを一体化したものであって図1及び図2ではDC-DCコンバータ装置100とインバータ装置200とを分離した状態で示している。 1 and 2 are perspective views showing an external appearance of a power conversion device including an inverter device and a DC-DC converter device. The power conversion device 1 is an integrated DC-DC converter device 100 and inverter device 200. FIG. 1 and 2, the DC-DC converter device 100 and the inverter device 200 are shown in a separated state.
 DC-DCコンバータ装置100は、複数のボルト(図示せず)によりインバータ装置200のケース底面側に固定されている。 The DC-DC converter device 100 is fixed to the case bottom side of the inverter device 200 by a plurality of bolts (not shown).
 この電力変換装置1は電気自動車等に適用され、インバータ装置200は車載の高電圧蓄電池からの電力により走行用モータを駆動する。車両にはライトやラジオなどの補機を作動させるための低電圧蓄電池が搭載されており、DC-DCコンバータ装置100は、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行う。 The power conversion device 1 is applied to an electric vehicle or the like, and the inverter device 200 drives a traveling motor with electric power from an on-vehicle high voltage storage battery. The vehicle is equipped with a low voltage storage battery for operating auxiliary equipment such as a light and a radio, and the DC-DC converter device 100 converts power from a high voltage storage battery to a low voltage storage battery or a high voltage from a low voltage storage battery. Perform power conversion to storage battery.
 インバータ装置200のケース201の側壁内には冷媒が流れる冷媒流路が形成されている。冷媒は入口配管13から流路内に流入し、出口配管14から流出する。一方、DC-DCコンバータ装置100のケース101はインバータ装置200の底面部と対向して隙間なく固定される。 A refrigerant flow path through which a refrigerant flows is formed in the side wall of the case 201 of the inverter device 200. The refrigerant flows into the flow path from the inlet pipe 13 and flows out from the outlet pipe 14. On the other hand, the case 101 of the DC-DC converter device 100 faces the bottom surface of the inverter device 200 and is fixed without a gap.
 固定された状態では、DC-DCコンバータ装置100も冷媒流路を供用するかたちになっている。本実施の形態では、冷媒としては水が最も適しているが、必ずしも水に限定されることなく水以外であっても利用できるものである。図1では図示を省略しているが、ケース101とケース201との隙間には、冷媒流路の冷媒の流出を防止するため、Oリング等のガスケットが設けられている。 In the fixed state, the DC-DC converter device 100 is also configured to use the refrigerant flow path. In the present embodiment, water is most suitable as the refrigerant, but the refrigerant is not necessarily limited to water and can be used even if it is other than water. Although not shown in FIG. 1, a gasket such as an O-ring is provided in the gap between the case 101 and the case 201 in order to prevent the refrigerant from flowing out of the refrigerant flow path.
 次に、DC-DCコンバータ装置100について説明する。図3はDC-DCコンバータ装置100の回路構成を示す図である。図3に示すように、本実施の形態のDC-DCコンバータ装置100では双方向DC-DC対応としている。そのために、降圧回路(HV回路)と昇圧回路(LV回路)はダイオード整流ではなく同期整流構成としている。また、HV/LV変換で高出力とするために、スイッチング素子への大電流部品の採用、平滑コイルの大型化を図っている。 Next, the DC-DC converter device 100 will be described. FIG. 3 is a diagram showing a circuit configuration of the DC-DC converter device 100. As shown in FIG. 3, the DC-DC converter device 100 of the present embodiment is compatible with bidirectional DC-DC. Therefore, the step-down circuit (HV circuit) and the step-up circuit (LV circuit) have a synchronous rectification configuration rather than a diode rectification. In addition, in order to achieve high output by HV / LV conversion, large current components are used for the switching elements and the smoothing coil is enlarged.
 具体的には、HV/LV側共に、リカバリーダイオードを持つMOSFETを利用したHブリッジ型・同期整流スイッチング回路構成H1乃至H4とした。スイッチング制御にあっては、LC直列共振回路Cr、Lrを用いて高スイッチング周波数(100kHz)でゼロクロススイッチングさせ、変換効率を向上させて熱損失を低減するようにした。 Specifically, the H bridge type and synchronous rectification switching circuit configurations H1 to H4 using MOSFETs having recovery diodes on both the HV / LV sides. In the switching control, the LC series resonance circuits Cr and Lr are used to perform zero-cross switching at a high switching frequency (100 kHz) to improve the conversion efficiency and reduce the heat loss.
 加えて、アクティブクランプ回路S1、S2を設けて、降圧動作時の循環電流による損失を低減させ、ならびに、スイッチング時のサージ電圧発生を抑制してスイッチング素子の耐圧を低減させることで、回路部品の低耐圧化を図ることで装置を小型化している。 In addition, the active clamp circuits S1 and S2 are provided to reduce the loss due to the circulating current during the step-down operation, and suppress the generation of the surge voltage at the time of switching, thereby reducing the breakdown voltage of the switching element. The device is miniaturized by reducing the breakdown voltage.
 さらに、LV側の高出力を確保するために、全波整流型の倍電流(カレントダブラー)方式とした。なお、高出力化にあたり、複数のスイッチング素子を並列同時作動させることで高出力を確保している。 Furthermore, in order to secure a high output on the LV side, a full-wave rectification type double current (current doubler) method was adopted. In addition, in order to increase output, high output is ensured by operating a plurality of switching elements simultaneously in parallel.
 図3の例では、スイッチング素子SWA1~SWA4、SWB1~SWB4のように4素子並列とした。また、スイッチング回路および平滑リアクトルの小型リアクトルL1、L2を、対称性を持たせるように2回路並列配置とすることで高出力化している。このように、小型リアクトルを2回路配置とすることで大型リアクトル1台を配置させる場合に比べて、DC-DCコンバータ装置全体の小型化が可能となる。 In the example of FIG. 3, four elements are arranged in parallel such as switching elements SWA1 to SWA4 and SWB1 to SWB4. Further, the high output is achieved by arranging the small reactors L1 and L2 of the switching circuit and the smoothing reactor in parallel so as to have symmetry. As described above, by arranging the small reactors in two circuits, it is possible to reduce the size of the entire DC-DC converter device as compared with the case of arranging one large reactor.
 図4乃至図7は、DC-DCコンバータ装置100における部品配置を説明する図であり、図4はDC-DCコンバータ装置100の分解斜視図、図5はDC-DCコンバータ装置100を上面から見た斜視図及び底面から見た斜視図、図6はDC-DCコンバータ装置の主トランスとインダクタ素子周りの分解斜視図及び図7はDC-DCコンバータ装置の内部を示す斜視図である。 4 to 7 are diagrams for explaining the arrangement of components in the DC-DC converter device 100, FIG. 4 is an exploded perspective view of the DC-DC converter device 100, and FIG. 5 is a top view of the DC-DC converter device 100. FIG. 6 is an exploded perspective view around the main transformer and the inductor element of the DC-DC converter device, and FIG. 7 is a perspective view showing the inside of the DC-DC converter device.
 図4に示すように、DC-DCコンバータ装置100の回路部品は金属製(例えば、アルミダイカスト製)のケース101内に収納されている。ケース101の開口部にはケースカバー102がボルト固定される。 As shown in FIG. 4, the circuit components of the DC-DC converter device 100 are housed in a case 101 made of metal (for example, made of aluminum die casting). A case cover 102 is bolted to the opening of the case 101.
 上述したように、ケース101の底面側に、インバータ装置200のケース201が固定される。ケース内の底面部分には、主トランス104、インダクタ素子105、スイッチング素子H1~H4が搭載された降圧回路、スイッチング素子SWA1~SWA4、SAWB1~SWB4(図示せず)が搭載されている昇圧回路基板107等が載置されている。主な発熱部品は、主トランス104、インダクタ素子105、パワー半導体モジュールおよびスイッチング素子等である。 As described above, the case 201 of the inverter device 200 is fixed to the bottom surface side of the case 101. A step-up circuit board on which a main transformer 104, an inductor element 105, a step-down circuit on which switching elements H1 to H4 are mounted, and a switching element SWA1 to SWA4 and SAWB1 to SWB4 (not shown) are mounted on the bottom surface in the case 107 and the like are placed. The main heat generating components are the main transformer 104, the inductor element 105, the power semiconductor module, the switching element, and the like.
 尚、図3の回路図との対応を記載すると、主トランス104はトランスTrに、インダクタ素子105はカレントダブラーのリアクトルL1、L2に対応しており、昇圧回路基板107には図3のスイッチング素子S1、S2等も搭載されている。 When the correspondence with the circuit diagram of FIG. 3 is described, the main transformer 104 corresponds to the transformer Tr, the inductor element 105 corresponds to the reactors L1 and L2 of the current doubler, and the booster circuit board 107 includes the switching element of FIG. S1, S2, etc. are also mounted.
 昇圧回路基板107は、スイッチング素子がパターン形成された金属基板上に実装されており、金属基板の裏面側はケース底面に密着するように固定されている。 The booster circuit board 107 is mounted on a metal substrate on which switching elements are patterned, and the back surface side of the metal substrate is fixed so as to be in close contact with the bottom surface of the case.
 制御回路基板108には、昇圧回路や降圧回路に設けられたスイッチング素子を制御する制御回路が実装されている。制御回路基板108は、金属製のベース板109の上面に形成された凸部にボルト等により固定されている。 The control circuit board 108 is mounted with a control circuit for controlling switching elements provided in the booster circuit and the step-down circuit. The control circuit board 108 is fixed to a convex portion formed on the upper surface of the metal base plate 109 with a bolt or the like.
 ベース板109はケース101の底面部から上方に突出した複数の支持部(図示せず)にボルト固定されている。これにより、制御回路基板108は、ケース底面部に配置された発熱部品(主トランス104、インダクタ素子105等)の上方にベース板109を介して配置されることになる。 The base plate 109 is bolted to a plurality of support portions (not shown) protruding upward from the bottom surface portion of the case 101. As a result, the control circuit board 108 is disposed via the base plate 109 above the heat generating components (the main transformer 104, the inductor element 105, etc.) disposed on the bottom surface of the case.
 ベース板109は、制御回路基板が発生する熱を逃がし冷却する作用を有していると共に、制御回路基板108の機械的な共振周波数を高める作用を奏する。すなわちベース板109に制御回路基板108を固定するためのねじ止め部を短い間隔で配置することが可能となり、機械的な振動が発生した場合の支持点間の距離を短くでき、共振周波数を高くできる。エンジン等から伝わる振動周波数に対して制御回路基板108の共振周波数を高くできるので、振動の影響を受け難く、信頼性が向上する。 The base plate 109 has the function of releasing and cooling the heat generated by the control circuit board, and the function of increasing the mechanical resonance frequency of the control circuit board 108. That is, it is possible to dispose screwing portions for fixing the control circuit board 108 to the base plate 109 at short intervals, shorten the distance between the support points when mechanical vibration occurs, and increase the resonance frequency. it can. Since the resonance frequency of the control circuit board 108 can be increased with respect to the vibration frequency transmitted from the engine or the like, it is difficult to be influenced by vibration and the reliability is improved.
 また、ベース板109は、ケース底面部に設けられた発熱部品からの輻射熱の遮蔽部材として機能すると共に、スイッチング素子からのスイッチング放射ノイズを遮蔽するシールドとしても機能する。 Also, the base plate 109 functions as a shielding member for radiant heat from the heat-generating components provided on the bottom surface of the case, and also functions as a shield for shielding switching radiation noise from the switching element.
 また、ケース101の開口部にはケースカバー102が取り付けられ、ケース内部が密閉されている。 Further, a case cover 102 is attached to the opening of the case 101, and the inside of the case is sealed.
 図5はDC-DCコンバータ装置100の斜視図であり、(a)は上面から見た斜視図、(b)は底面から見た斜視図であり、参照番号103はDC-DCコンバータ装置底面に冷媒流路範囲を示している。DC-DCコンバータ装置100が発する熱は冷媒流路範囲103に放熱している。冷媒は、矢印で示された方向に、インバータ装置200の入口配管13から流入し、出口配管14から流出している。 5A and 5B are perspective views of the DC-DC converter device 100, where FIG. 5A is a perspective view seen from the top, FIG. 5B is a perspective view seen from the bottom, and reference numeral 103 is the bottom of the DC-DC converter device. The refrigerant flow path range is shown. The heat generated by the DC-DC converter device 100 is radiated to the refrigerant flow path range 103. The refrigerant flows in from the inlet pipe 13 of the inverter device 200 and flows out of the outlet pipe 14 in the direction indicated by the arrow.
 次に、主トランス104とインダクタ素子105周りの配置について図6及び図7を用いて説明する。 Next, the arrangement around the main transformer 104 and the inductor element 105 will be described with reference to FIGS.
 図6において、ケース101にはリブ101a、101b、101c、101d、101eが形成されている。リブ101a~101eは各々つながった形状となっており、これらは以下に述べるように主トランス104とインダクタ素子105が収納される収納空間を形成する。 In FIG. 6, ribs 101a, 101b, 101c, 101d, and 101e are formed on the case 101. The ribs 101a to 101e are connected to each other, and form a storage space in which the main transformer 104 and the inductor element 105 are stored as described below.
 主トランス104および2つのインダクタ素子105はケース底面部に配置されるが、主トランス104は、リブ101bとリブ101cと101dに囲まれた第1の収納空間Aに配置される。 The main transformer 104 and the two inductor elements 105 are disposed on the bottom surface of the case, but the main transformer 104 is disposed in the first storage space A surrounded by the rib 101b and the ribs 101c and 101d.
 インダクタンス素子105aは、リブ101aとリブ101bと101cに囲まれた第2の収納空間Bに配置される。 The inductance element 105a is disposed in the second storage space B surrounded by the rib 101a and the ribs 101b and 101c.
 インダクタンス素子105bは、リブ101dとリブ101bと101eに囲まれた第3の収納空間Cに配置される。 The inductance element 105b is disposed in the third storage space C surrounded by the rib 101d and the ribs 101b and 101e.
 金属板110は板ばねであり、ステンレス系のばね材で作られており、この金属板1110によって主トランス104とインダクタ素子105を所定の力でケース101に押圧固定する機能を有している。 The metal plate 110 is a leaf spring, and is made of a stainless spring material. The metal plate 1110 has a function of pressing and fixing the main transformer 104 and the inductor element 105 to the case 101 with a predetermined force.
 ACバスバー111は、図7に示すように主トランス104とHV側のモジュール113a、113bと共振コイル114a、114bを電気的に接続する部材である。ACバスバー111はバスバー111a、111bと樹脂ホルダ111cとによりなり、バスバー111aと111bは樹脂ホルダ111cに一体に成形されている。樹脂ホルダの材質は、寸法の安定性および耐熱性に優れるガラス入りPPS(ポリフェニレンサルファイド)あるいはガラス入りPBT(ポリブチレンテレフタレート)を使用している。 The AC bus bar 111 is a member that electrically connects the main transformer 104, the HV side modules 113a and 113b, and the resonance coils 114a and 114b as shown in FIG. The AC bus bar 111 includes bus bars 111a and 111b and a resin holder 111c, and the bus bars 111a and 111b are integrally formed with the resin holder 111c. As the material of the resin holder, PPS (polyphenylene sulfide) containing glass or PBT (polybutylene terephthalate) containing glass having excellent dimensional stability and heat resistance is used.
 金属板110とACバスバー111はボルト112a乃至112fによってケース101に固定される。 The metal plate 110 and the AC bus bar 111 are fixed to the case 101 with bolts 112a to 112f.
 ケース101の内部には、上方に突出した複数の支持部101f~101kを有しており、ボルト112aは支持部101fに、ボルト112bは支持部101gに、ボルト112cは支持部101hに、ボルト112dは支持部101iに、ボルト112eは支持部101jに、ボルト112fは支持部101kにそれぞれねじ止め固定される。 The case 101 has a plurality of support portions 101f to 101k protruding upward. The bolt 112a is the support portion 101f, the bolt 112b is the support portion 101g, the bolt 112c is the support portion 101h, and the bolt 112d. Are fixed to the support portion 101i, the bolt 112e is fixed to the support portion 101j, and the bolt 112f is fixed to the support portion 101k.
 また、ボルト112cと112eにより、金属板110とACバスバー111は共締めにされて両者が一体化されている。 Further, the metal plate 110 and the AC bus bar 111 are fastened together by bolts 112c and 112e, and both are integrated.
 ACバスバー111aは主トランスの端子104bと共振コイル114aを、ACバスバー111bは主トランスの端子104aとHVモジュールの端子113aとを溶接することによって接続している。また、HVモジュール端子113bと共振コイル114bも溶接にて接続されており、交流の電流が流れている。 The AC bus bar 111a is connected to the terminal 104b of the main transformer and the resonance coil 114a, and the AC bus bar 111b is connected to the terminal 104a of the main transformer and the terminal 113a of the HV module by welding. The HV module terminal 113b and the resonance coil 114b are also connected by welding, and an alternating current flows.
 本発明の特徴部分である主トランス104とインダクタ素子105周りの放熱構造について図8を用いて説明する。 The heat dissipation structure around the main transformer 104 and the inductor element 105, which is a characteristic part of the present invention, will be described with reference to FIG.
 図8は、主トランス104とインダクタ素子105がケース101に配置された状態の断面図を示しており、ケース101はインバータ装置200のケース201に密着固定されており、主トランス104とインダクタ素子105は冷却媒体の矢印方向の流れに沿って配置されている。これにより、主トランス104とインダクタ素子105が位置する当該面は安定的に冷却された状態にある。 FIG. 8 is a cross-sectional view showing a state in which the main transformer 104 and the inductor element 105 are arranged in the case 101. The case 101 is firmly fixed to the case 201 of the inverter device 200, and the main transformer 104 and the inductor element 105 are fixed. Are arranged along the flow of the cooling medium in the direction of the arrow. Thereby, the surface where the main transformer 104 and the inductor element 105 are located is in a stably cooled state.
 主トランス104は第1収納空間Aに収納され、インダクタ素子105aは第2収納空間Bに収納され、インダクタ素子105bは第3収納空間Cに収納されており、主トランス104、インダクタ素子105a及びインダクタ素子105bは夫々の収納空間A、B、Cの底面に接して固定されている。つまり、ケース101の収納空間A、B、Cを形成する底壁面に接している。また、各収納空間A、B、Cも冷却媒体の矢印方向の流れに沿って配置されている。 The main transformer 104 is stored in the first storage space A, the inductor element 105a is stored in the second storage space B, and the inductor element 105b is stored in the third storage space C. The main transformer 104, the inductor element 105a, and the inductor The element 105b is fixed in contact with the bottom surfaces of the respective storage spaces A, B, and C. That is, it contacts the bottom wall surface that forms the storage spaces A, B, and C of the case 101. The storage spaces A, B, and C are also arranged along the flow of the cooling medium in the arrow direction.
 したがって、主トランス104及び/あるいはインダクタ素子105からの発熱は、主トランス104及び/あるいはインダクタ素子105の底面からケース101の底壁面に伝達されて直接的に放熱される。 Therefore, heat generated from the main transformer 104 and / or the inductor element 105 is transmitted from the bottom surface of the main transformer 104 and / or the inductor element 105 to the bottom wall surface of the case 101 and directly radiated.
 また、各収納空間はA、B、Cは上述したように所定の高さ寸法を有した壁状のリブ101a乃至101eによって形成されているので溜まり部としても機能している。したがって、このリブ101a乃至101eが存在する溜まり部には放熱性と絶縁性を兼ね備えた樹脂が充填されている。 Also, each storage space A, B, and C is formed by the wall-like ribs 101a to 101e having a predetermined height as described above, and thus also functions as a reservoir. Therefore, the reservoir portion where the ribs 101a to 101e are present is filled with a resin having both heat dissipation and insulation properties.
 すなわち、図8で示したように主トランス104とインダクタ素子105とケースのリブ101a乃至101eの間に隙間が設けられており、この隙間には放熱性と絶縁性を備えたウレタン樹脂や、これも放熱性と絶縁性を備えたシリコン樹脂等よりなる放熱樹脂300が充填されている。尚、放熱樹脂300は図面上では収納空間A、B、Cに示した斜め格子状の線分で表現している。 That is, as shown in FIG. 8, a gap is provided between the main transformer 104, the inductor element 105, and the ribs 101a to 101e of the case. In this gap, a urethane resin having heat dissipation and insulation, Also, a heat radiating resin 300 made of silicon resin or the like having heat radiating and insulating properties is filled. The heat-dissipating resin 300 is represented by diagonal grid lines shown in the storage spaces A, B, and C in the drawing.
 この放熱樹脂300は基材と成る流動性を有する絶縁性の樹脂にアルミナ粉等からなる絶縁性と放熱性を備えた粉末を混合したもので、各収納空間A、B、Cに充填した後に自然乾燥、或いは加熱乾燥させて固化させるものである。 This heat-dissipating resin 300 is obtained by mixing insulating resin having fluidity as a base material and powder having insulating properties and heat-dissipating properties such as alumina powder, and after filling each storage space A, B, C. It is solidified by natural drying or heat drying.
 したがって、主トランス104とインダクタ素子105の4個の側面も放熱樹脂300を介してケース101に熱を放散できるように接触している状態にあり、4個の側面からの熱が放熱樹脂300及びリブ101a乃至101eを介してケースに放熱されるものである。 Accordingly, the four side surfaces of the main transformer 104 and the inductor element 105 are also in contact with the case 101 so as to be able to dissipate heat via the heat radiating resin 300, and the heat from the four side surfaces is absorbed by the heat radiating resin 300 and Heat is radiated to the case through the ribs 101a to 101e.
 特に、インダクタ素子105aのコイル部105cと、インダクタ素子105bのコイル部105d部は放熱樹脂300を介して直接的にケース101の壁面に熱を伝えることができるので効率的に放熱することができる。 In particular, the coil part 105c of the inductor element 105a and the coil part 105d part of the inductor element 105b can transmit heat directly to the wall surface of the case 101 through the heat-dissipating resin 300, so that heat can be radiated efficiently.
 定性的には、リブ101a乃至101eの肉厚を大きくとるほど、熱を底面に伝える効果が大きくなる。 Qualitatively, the greater the thickness of the ribs 101a to 101e, the greater the effect of transferring heat to the bottom surface.
 ここで、放熱性樹脂300の充填時期は主トランス104及びインダクタ素子105を収納空間A、B、Cに組み付けた後に放熱性樹脂300を充填する方法と、収納空間A、B、Cに放熱性樹脂300を充填した後に主トランス104及びインダクタ素子105を組み付ける方法がある。 Here, the filling time of the heat-dissipating resin 300 is a method of filling the heat-dissipating resin 300 after the main transformer 104 and the inductor element 105 are assembled in the storage spaces A, B, and C, and the heat-dissipating property in the storage spaces A, B, and C. There is a method of assembling the main transformer 104 and the inductor element 105 after filling the resin 300.
 本実施例では、収納空間A、B、Cに放熱性樹脂300を充填した後に主トランス104及びインダクタ素子105を組み付けるようにしている。このようにすると、各リブ101a乃至101eと主トランス104及びインダクタ素子105の間にボイド等の発生を少なくできるためである。 In this embodiment, the main transformer 104 and the inductor element 105 are assembled after the storage spaces A, B, and C are filled with the heat radiating resin 300. This is because voids and the like can be reduced between the ribs 101a to 101e and the main transformer 104 and the inductor element 105.
 前述したように、主トランス104とインダクタ素子105からの発熱は、主トランス104とインダクタ素子105の底面から放熱されると共に、主トランス104とインダクタ素子105の4つの側面からも放熱されるために非常に効率良く放熱することができる。 As described above, the heat generated from the main transformer 104 and the inductor element 105 is radiated from the bottom surfaces of the main transformer 104 and the inductor element 105, and is also radiated from the four side surfaces of the main transformer 104 and the inductor element 105. Heat can be dissipated very efficiently.
 また、主トランス104とインダクタ素子105の間にリブ105c、105dが存在しているので、リブ101cは、主トランス104からの発熱とインダクタ素子105aの発熱の干渉を、リブ101dは、主トランス104からの発熱とインダクタ素子105bの干渉を防止する役割を果たしている。つまり、主トランス104とインダクタ素子105同士の熱干渉を防止して磁気部品の温度上昇を低減している。 Further, since ribs 105c and 105d exist between the main transformer 104 and the inductor element 105, the rib 101c causes interference between the heat generated from the main transformer 104 and the heat generated by the inductor element 105a, and the rib 101d corresponds to the main transformer 104. This serves to prevent interference between the heat generation from the inductor element 105b and the inductor element 105b. That is, thermal interference between the main transformer 104 and the inductor element 105 is prevented, and the temperature rise of the magnetic component is reduced.
 本実施例においては、ケース101の材質としてアルミダイキャストを使用していることにより、成形の観点と強度の観点から肉厚が2mm以上とするのが好ましいためリブの幅を2mm以上の形状としている。 In this embodiment, the thickness of the rib is set to 2 mm or more because the thickness is preferably 2 mm or more from the viewpoint of molding and strength by using aluminum die cast as the material of the case 101. Yes.
 更にリブ101c、101dにはその中央付近にリブに沿った所定深さ寸法を有する連続した溝115aと溝115bが形成されており、これによって、主トランス104からの発熱とインダクタ素子105bの干渉を更に防止する役割を果たしている。 Further, the ribs 101c and 101d are formed with a continuous groove 115a and groove 115b having a predetermined depth along the rib in the vicinity of the center thereof, thereby preventing the heat from the main transformer 104 and the interference of the inductor element 105b. It also plays a role to prevent.
 また、主トランス104とインダクタ素子105と各リブ101a乃至101eの隙間は、放熱の点からいうとなるべく狭い方が良いのであるが、隙間に放熱樹脂を充填することから、組み立てに支障にならない範囲ということを考慮して1mm以上の空間を設けている。 In addition, the gap between the main transformer 104, the inductor element 105, and each of the ribs 101a to 101e is preferably as narrow as possible from the viewpoint of heat dissipation. Therefore, a space of 1 mm or more is provided.
 当然ながら、使用するケースの材質や組み立て方法により変わるので、その状況にあわせて、上記の寸法をどのようにするかは適宜選択可能である。 Of course, since it varies depending on the material of the case to be used and the assembling method, it is possible to appropriately select how to measure the dimensions according to the situation.
 上述した本実施の形態の電力変換装置1によれば、DC-DCコンバータ装置100の発熱部品である主トランス104やインダクタ素子105を効率良く冷却することができ、その結果、高温度環境による装置の機能低下や構成部品の劣化進行を防止することができる。 According to the power conversion device 1 of the present embodiment described above, the main transformer 104 and the inductor element 105, which are heat generating components of the DC-DC converter device 100, can be efficiently cooled, and as a result, the device in a high temperature environment It is possible to prevent the deterioration of the function and the deterioration of the component parts.
 尚、以上の説明はPHEVあるいはEV等の車両に搭載される電力変換装置を例に説明したが、本発明はこれらに限らず建設機械等の車両に用いられる電力変換装置にも適用することができる。 Although the above explanation has been given taking an example of a power conversion device mounted on a vehicle such as PHEV or EV, the present invention is not limited to these and may be applied to a power conversion device used for a vehicle such as a construction machine. it can.
 また、本実施例では、インバータとコンバータを一体にした電力変換装置を例にして説明したが、コンバータ側に冷媒水路を設けて単体とする構成のものでも適用可能である。 Further, in this embodiment, the power conversion device in which the inverter and the converter are integrated has been described as an example. However, a configuration in which a refrigerant water channel is provided on the converter side to form a single unit is also applicable.
 100…コンバータ装置、101…ケース、13…入口配管、14…出口配管、200…インバータ装置、201…インバータケース、102…ケースカバー、104…主トランス、104a、b…主トランスの端子、105…インダクタ素子、103…冷媒水路、107…昇圧回路基板(LV回路基板)、108…制御回路基板、109…ベース板、101a~e…ケース上のリブ、101f~k…ケース上のベース板の固定部、110…金属板、111…ACバスバー、111a、b…バスバー、111c…樹脂ホルダ、112a~112f…止めねじ、113a、b…HVモジュールの端子、114共振コイル、114a、b…共振コイルの端子、H1~H4…スイッチング素子。 DESCRIPTION OF SYMBOLS 100 ... Converter apparatus, 101 ... Case, 13 ... Inlet piping, 14 ... Outlet piping, 200 ... Inverter apparatus, 201 ... Inverter case, 102 ... Case cover, 104 ... Main transformer, 104a, b ... Terminal of main transformer, 105 ... Inductor element, 103 ... Refrigerant water channel, 107 ... Boost circuit board (LV circuit board), 108 ... Control circuit board, 109 ... Base plate, 101a-e ... Rib on case, 101f-k ... Fixing of base plate on case 110, metal plate, 111 ... AC bus bar, 111a, b ... bus bar, 111c ... resin holder, 112a to 112f ... set screw, 113a, b ... terminal of HV module, 114 resonance coil, 114a, b ... resonance coil Terminals, H1 to H4... Switching elements.

Claims (2)

  1.  電圧値を変換するトランスと、
     インダクタ素子と、
     前記トランスと前記インダクタ素子を収容する金属製のケースと、
     前記ケース外側の底面に沿って配置される冷媒流路と、を備え、
     前記ケースは、当該ケース内側の底面から立設するリブを形成し、
     前記トランスは、前記リブと前記ケースによって形成される第1収容空間に配置され、 前記インダクタ素子は、前記リブと前記ケースによって形成される第2収容空間に配置され、
     前記第1収容空間には、前記トランスと前記リブとの間を満たすように樹脂組成物が充填され、
     前記第2収容空間には、前記インダクタ素子と前記リブとの間を満たすように樹脂組成物が充填され、
     前記第1収容空間と前記第2収容空間は、前記冷媒流路の流れ方向に沿って配置される電力変換装置。
    A transformer that converts voltage values;
    An inductor element;
    A metal case for housing the transformer and the inductor element;
    A refrigerant flow path disposed along the bottom surface outside the case,
    The case forms a rib standing from the bottom surface inside the case,
    The transformer is disposed in a first housing space formed by the rib and the case, and the inductor element is disposed in a second housing space formed by the rib and the case,
    The first housing space is filled with a resin composition so as to fill between the transformer and the rib,
    The second housing space is filled with a resin composition so as to fill between the inductor element and the rib,
    The first storage space and the second storage space are power conversion devices arranged along the flow direction of the refrigerant flow path.
  2.  請求項1に記載された電力変換装置であって、
     前記リブは、当該リブの先端から当該リブの略中央まで延びる溝を形成する電力変換装置。
    The power conversion device according to claim 1,
    The said rib is a power converter device which forms the groove | channel extended from the front-end | tip of the said rib to the approximate center of the said rib.
PCT/JP2012/076380 2011-10-27 2012-10-12 Power conversion device WO2013061799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011236000A JP2013094023A (en) 2011-10-27 2011-10-27 Electric power conversion apparatus
JP2011-236000 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013061799A1 true WO2013061799A1 (en) 2013-05-02

Family

ID=48167632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076380 WO2013061799A1 (en) 2011-10-27 2012-10-12 Power conversion device

Country Status (2)

Country Link
JP (1) JP2013094023A (en)
WO (1) WO2013061799A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016069101A1 (en) * 2014-10-31 2016-05-06 Raytheon Company Power converter magnetics assembly
EP3185406A1 (en) * 2015-12-24 2017-06-28 Fico Triad, S.A. On board charger for electric vehicles
US9730366B2 (en) 2015-02-10 2017-08-08 Raytheon Company Electromagnetic interference suppressing shield
CN111133625A (en) * 2017-04-07 2020-05-08 法雷奥西门子新能源汽车(深圳)有限公司 Battery charger for use in electric or hybrid vehicles
EP3796765A1 (en) * 2019-09-23 2021-03-24 Wall Box Chargers S.L. Power converting system and battery charger with improved thermal dissipation
FR3150060A1 (en) * 2023-06-16 2024-12-20 Valeo Eautomotive Germany Gmbh A magnetic core device and a power converter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504219B2 (en) 2011-07-27 2014-05-28 日立オートモティブシステムズ株式会社 Power converter
KR101477191B1 (en) * 2013-07-17 2014-12-29 (주) 테크로스 Encapsulated type transformer
CN104684338B (en) * 2013-11-26 2018-01-30 台达电子企业管理(上海)有限公司 Cooling base and electronic installation
JP6554299B2 (en) * 2015-03-25 2019-07-31 株式会社タムラ製作所 Terminal unit and reactor
WO2018184216A1 (en) * 2017-04-07 2018-10-11 Valeo Siemens Eautomotive Shenzhen Co., Ltd A battery charger for use in an electrical or hybrid vehicle
JP6903156B2 (en) 2017-11-14 2021-07-14 三菱電機株式会社 Power converter
CN109256260B (en) * 2018-09-29 2021-01-15 江苏汇鑫新能源汽车科技有限公司 New energy automobile is strutting arrangement for transformer
KR102740559B1 (en) * 2019-07-09 2024-12-11 엘지이노텍 주식회사 Converter
JP7569184B2 (en) 2020-09-09 2024-10-17 株式会社タムラ製作所 Coil component fixing structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244959A (en) * 2002-02-20 2003-08-29 Tdk Corp Switching power source and its manufacturing method
JP2006261368A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Electronic component housing structure
JP2008206252A (en) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd Semiconductor power converter
JP2011004520A (en) * 2009-06-18 2011-01-06 Honda Motor Co Ltd Power converter
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244959A (en) * 2002-02-20 2003-08-29 Tdk Corp Switching power source and its manufacturing method
JP2006261368A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Electronic component housing structure
JP2008206252A (en) * 2007-02-19 2008-09-04 Fuji Electric Systems Co Ltd Semiconductor power converter
JP2011004520A (en) * 2009-06-18 2011-01-06 Honda Motor Co Ltd Power converter
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564266B2 (en) 2014-10-31 2017-02-07 Raytheon Company Power converter magnetics assembly
WO2016069101A1 (en) * 2014-10-31 2016-05-06 Raytheon Company Power converter magnetics assembly
AU2015339980B2 (en) * 2014-10-31 2018-03-08 Raytheon Company Power converter magnetics assembly
US9730366B2 (en) 2015-02-10 2017-08-08 Raytheon Company Electromagnetic interference suppressing shield
US10286788B2 (en) 2015-12-24 2019-05-14 Fico Triad, S.A. On board charger for electric vehicles
CN106915264A (en) * 2015-12-24 2017-07-04 法可特里亚股份有限公司 On-board charger for electric vehicle
EP3185406A1 (en) * 2015-12-24 2017-06-28 Fico Triad, S.A. On board charger for electric vehicles
CN106915264B (en) * 2015-12-24 2021-10-15 法可特里亚股份有限公司 On-board charger for electric vehicle
CN111133625A (en) * 2017-04-07 2020-05-08 法雷奥西门子新能源汽车(深圳)有限公司 Battery charger for use in electric or hybrid vehicles
EP3607604A4 (en) * 2017-04-07 2020-09-09 Valeo Siemens Eautomotive Shenzhen Co., Ltd A battery charger for use in an electrical or hybrid vehicle
EP3796765A1 (en) * 2019-09-23 2021-03-24 Wall Box Chargers S.L. Power converting system and battery charger with improved thermal dissipation
WO2021059120A1 (en) * 2019-09-23 2021-04-01 Wall Box Chargers S. L. Power converting system and battery charger with improved thermal dissipation
FR3150060A1 (en) * 2023-06-16 2024-12-20 Valeo Eautomotive Germany Gmbh A magnetic core device and a power converter

Also Published As

Publication number Publication date
JP2013094023A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
WO2013061799A1 (en) Power conversion device
JP5855899B2 (en) DC-DC converter and power converter
CN104081648B (en) Power-converting device
JP7055800B2 (en) DC-DC converter
JP6045340B2 (en) DC-DC converter device
JP5743851B2 (en) Electronic equipment
JP6104347B1 (en) Power converter
JP2017112768A (en) Electric power conversion system
WO2014103521A1 (en) Reactor, converter, and power conversion device
KR20150096455A (en) Reactor provided with a cooler
WO2014024555A1 (en) Reactor, assembly for reactor, converter, and power conversion device
JP6234537B1 (en) Power converter
JP6180857B2 (en) Power converter
US20200235657A1 (en) Power conversion device
WO2014030499A1 (en) Dc-dc converter apparatus, and electric power conversion apparatus
JP6945671B2 (en) Power converter
JP2005143215A (en) Dc-dc converter device
JP2013125857A (en) Reactor and electric power conversion apparatus
JP2014131395A (en) Dc-dc converter device and resonance coil unit
JP5321531B2 (en) Reactor device
JP5640497B2 (en) Reactor device
JP5684974B2 (en) Block type power module and power conversion device
JP2023024493A (en) POWER CONVERTER AND METHOD FOR MANUFACTURING POWER CONVERTER
JP6809563B2 (en) Power converter
JP2014150171A (en) Reactor, converter, and electric power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844499

Country of ref document: EP

Kind code of ref document: A1