Nothing Special   »   [go: up one dir, main page]

WO2013060969A1 - Melange-maitre pour la fabrication d'une couche isolante de cable electrique - Google Patents

Melange-maitre pour la fabrication d'une couche isolante de cable electrique Download PDF

Info

Publication number
WO2013060969A1
WO2013060969A1 PCT/FR2012/052389 FR2012052389W WO2013060969A1 WO 2013060969 A1 WO2013060969 A1 WO 2013060969A1 FR 2012052389 W FR2012052389 W FR 2012052389W WO 2013060969 A1 WO2013060969 A1 WO 2013060969A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
masterbatch
weight
antioxidant
parts
Prior art date
Application number
PCT/FR2012/052389
Other languages
English (en)
Inventor
Alfredo Defrancisci
Vincent PALLUAULT
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to IN3523CHN2014 priority Critical patent/IN2014CN03523A/en
Priority to JP2014536319A priority patent/JP2014534991A/ja
Priority to KR1020147013751A priority patent/KR20140081889A/ko
Priority to US14/353,720 priority patent/US20140305677A1/en
Priority to SG11201401782VA priority patent/SG11201401782VA/en
Priority to EP12787776.9A priority patent/EP2771401A1/fr
Priority to CN201280052032.5A priority patent/CN103890077A/zh
Publication of WO2013060969A1 publication Critical patent/WO2013060969A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/375Thiols containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/447Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from acrylic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2813Protection against damage caused by electrical, chemical or water tree deterioration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49227Insulator making

Definitions

  • the present invention relates to a masterbatch consisting essentially of a copolymer (A) of ethylene and at least one ethylenic comonomer having at least one polar group, an organic peroxide (B) and an antioxidant (C), its method of preparation and its uses for the manufacture of insulating layers for electric cables and for limiting or preventing the water tree phenomenon of electric cables.
  • A copolymer
  • B organic peroxide
  • C antioxidant
  • An electric wire or an electrical cable is generally made of a conductive material coated with one or more layers of polymeric materials.
  • the nature and thickness of the different layers depend on the type of electrical cable, eg medium voltage cable (1-35 kV), high voltage cable (36-132 kV) or very high voltage cable (> 132 kV).
  • At least one layer is generally an insulating layer which provides electrical insulation of the conductive part of the cable.
  • Crosslinked low density polyethylene or XLPE for "Cross-Linked PolyEthylene"
  • XLPE Crosslinked low density polyethylene
  • Water treeing is a phenomenon of deterioration of solid insulators which is manifested by the appearance, inside or on the surface of the insulation, of channels or furrows. water more or less fine having a tree shape. The water tree has the effect of causing electrical breakdown and thus reduce the life of the cables.
  • the first technique is physical protection, which consists of protecting the cable with an aluminum "sheath" that acts as a barrier to water and moisture. This process is widely used for high and very high voltage cables.
  • the second technique consists in using additives within the polyethylene insulating layer, typically silane compounds. This technique is generally used for medium voltage cables.
  • the third method consists in incorporating an ethylene / acrylate copolymer into the polyethylene insulating layer.
  • This third method of incorporating a copolymer into a polyethylene matrix presents difficulties of implementation. To make such insulating layers, it is necessary to implement several steps, for example:
  • Another possible method consists of:
  • DPI direct peroxide injection
  • DPI units are manufactured by the companies INOEX and LICO and are mentioned in the patent applications EP 0 472 949 and EP 1 221 702.
  • the Applicant has set itself the objective of proposing a method for producing a layer insulation having anti-tree water properties, which is advantageously simpler, faster to implement, and less expensive than known methods and which, in particular, does not require the use of very specific and expensive devices.
  • the present invention thus relates to a masterbatch consisting essentially of:
  • the total weight of the copolymer (A), the peroxide (B) and the antioxidant (C) representing at least 90% of the weight of the masterbatch;
  • the organic peroxide (B) representing from 0.2 to 100 parts by weight, per 100 parts by weight of the copolymer (A)
  • the antioxidant (C) representing from 0.02 to 50 parts by weight, per 100 parts by weight; weight of the copolymer (A).
  • the invention also relates to a process for the preparation of said masterbatch.
  • the process for preparing the masterbatch comprises the steps of:
  • the process for preparing the masterbatch comprises the steps of:
  • the process for preparing the masterbatch comprises the steps of:
  • This masterbatch is intended to be incorporated into a crosslinkable polymer matrix, and may be used to limit or prevent the tree phenomenon of water electric cables.
  • the present invention therefore also relates to the use of said masterbatch for the manufacture of insulating layers on electrical cables.
  • the method of manufacturing an insulating layer on electrical cables comprising the steps of:
  • the term "essentially consisting of” means that the total weight of copolymer (A), peroxide (B) and antioxidant (C) is at least 90% of the weight of the mixture. master. Any components of the masterbatch other than the copolymer (A), the peroxide (B) and the antioxidant (C) therefore represent at most 10% of the weight of the masterbatch. These other components may be chosen from compounds conventionally present in an insulating layer of electrical cable, for example stabilizers, technical adjuvants, premature vulcanization retarders, crosslinking accelerators, flame retardants, acid scavengers or loads.
  • the presence of components other than the copolymer (A), the peroxide (B) and the antioxidant (C) in the masterbatch may not be desirable when said masterbatch is used to make insulating layers. water tree on medium or high voltage electrical cables. Indeed, the presence of other components can create inhomogeneities in the polymer, which can promote the risk of electrical breakdown.
  • the optional components of the masterbatch other than the copolymer (A), the peroxide (B) and one antioxidant (C) thus represent more than 5% / more preferably at most 1%, and even more preferred at most 0.1%, of the weight of the masterbatch.
  • the masterbatch which is the subject of the present invention consists solely of the copolymer (A), the peroxide (B) and the antioxidant (C).
  • A copolymer
  • B peroxide
  • C antioxidant
  • the copolymer (A) comprises an ethylene comonomer and at least one ethylenic comonomer having at least one polar group.
  • the copolymer (A) may optionally comprise other comonomer (s).
  • the ethylenic comonomer having at least one polar group may be chosen from the group consisting of:
  • vinyl esters such as vinyl acetate and vinyl pivalate
  • acrylates and methacrylates of alkyl and hydroxyalkyls such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, hydroxyethyl acrylate and hydroxyethyl methacrylate;
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and fumaric acid;
  • acrylic acid derivatives or methacrylic acid derivatives such as acrylonitrile, methacrylonitrile, acrylic amide and methacrylic amide
  • vinyl ethers such as methyl vinyl ether and vinyl phenyl ether.
  • alkyl acrylates or methacrylates having 1 to 4 carbon atoms are preferred.
  • Particularly preferred comonomers are n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, methyl methacrylate and the like. ethyl methacrylate.
  • the copolymer (A) consists of an ethylene comonomer and an ethylenic comonomer having at least one polar group.
  • the copolymer (A) comprises from 10 to 60%, preferably from 15 to 25% by weight of ethylenic comonomer having at least one polar group, relative to the total weight of the copolymer.
  • the organic peroxide (B) included in the masterbatch of the present invention has the following formula (I):
  • n is an integer equal to 1, 2, 3 or 4;
  • R 1 and R 1 are each, independently of each other, an oxygen atom, a linear or branched, saturated or partially unsaturated C 1 to C 5 divalent hydrocarbon radical, and preferably a linear C 1 -C 4 alkylene chain; unsubstituted C5,
  • R 2 , R 2 ', R 3 and R 3' are each, independently of each other, a linear or branched, saturated or partially unsaturated C 1 -C 5 hydrocarbon-based radical, and preferably a linear C 1 -C 5 linear alkyl group; substituted
  • R 4 and R 4 ' are each, independently of each other, a hydrogen atom, a linear or branched, saturated or partially unsaturated C 1 -C 5 hydrocarbon-based radical, and preferably a linear C 1 -C 4 alkyl group; unsubstituted C5.
  • R 1 and R 1 ' are each, independently of one another, an alkylene chain of formula - (C3 ⁇ 4) - or - (CH 2 -CH 2) -;
  • R 2 , R 2 ', R 3 and R 3' are each, independently of one another, selected from the group consisting of methyl, ethyl, 1-propyl, isopropyl, 1-butyl, isobutyl and tert-butyl, preferably methyl ;
  • R 4 and R 4 ' are each, independently of one another, selected from the group consisting of the hydrogen atom, methyl, ethyl, 1-propyl, isopropyl, 1-butyl, isobutyl and tert-butyl, preferably the hydrogen atom.
  • the organic peroxide (B) is selected from the group consisting of dimethyl-2,5-di- (tert-butylperoxy) hexane, di-tert-amyl peroxide, di-tert-butyl peroxide and tert-butylcumyl peroxide.
  • These organic peroxides are available on the market from ARKEMA under the trade name Luperox® 101, Luperox® DTA, Luperox® DI, Luperox® DC, Luperox® DCP and Luperox® 801.
  • the organic peroxide (B) is 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane of formula (II):
  • the organic peroxide (B) is tert-butyl cumyl peroxide of formula (III):
  • organic peroxide (B) is dicumyl peroxide of formula (IV):
  • n 1;
  • R 4 and R 4 ' together form a carbocycle or a heterocycle comprising from 3 to 14 carbon atoms and optionally 1 to 4 heteroatoms selected from 0, N, P, S and Si.
  • an organic peroxide (B) of this type is 3, 6, 9-triethyl-3, 6, 9-trimethyl-1,4,7-triperoxonane of (V) form:
  • This organic peroxide is available on the market from the company AKZO NOBEL under the trade name Trigonox® 301.
  • the organic peroxide (B) may be an organic peroxide as described above, or a mixture of several of said organic peroxides.
  • the organic peroxide (B) is from 0.2 to 100 parts by weight, per 100 parts by weight of the copolymer (A). More preferably, the organic peroxide (B) is from 2 to 50 parts by weight, per 100 parts by weight of the copolymer (A). Even more preferably, the organic peroxide (B) represents from 9 to 15 parts by weight, per 100 parts by weight of the copolymer (A).
  • the antioxidant (C) may be chosen from those conventionally used in polymer matrices, in particular from hindered or semi-congested phenols. sterically, optionally substituted by one or more functional groups, aromatic amines, sterically hindered aliphatic amines, organic phosphates and thio compounds.
  • antioxidants are commercially available from BASF under the trade name Irganox® 1035 and Irganox® PS802.
  • the antioxidant (C) may be an antioxidant or a mixture of several antioxidants.
  • the antioxidant (C) is from 0.02 to 50 parts by weight per 100 parts by weight of the copolymer (A). More preferably, the antioxidant (C) is 0.1 to 10 parts by weight per 100 parts by weight of the copolymer (A). Even more preferably, the antioxidant (C) is from 1 to 3 parts by weight per 100 parts by weight of the copolymer (A).
  • the invention also relates to a process for preparing the masterbatch according to the invention. According to a first embodiment, this method comprises the steps of:
  • the homogeneous liquid mixture of the organic peroxide (B) and the antioxidant (C) can be produced in different ways depending on the nature of the compounds. If the organic peroxide (B) is in liquid form, the mixture can be obtained by adding the antioxidant (C), itself in liquid or solid form, into the organic peroxide (B) and mixing with the aid of magnetic or mechanical agitation. If the organic peroxide (B) is in solid form, the homogeneous liquid mixture can be obtained by preheating the organic peroxide (B) above its melting point, then adding the antioxidant (C) and mixing . The heating can be achieved for example using a water bath.
  • an additional step of heating for example with the aid of a water bath, the mixture can to be implemented.
  • the temperature of the heating may be between 30 ° C and 80 ° C, preferably between 40 ° C and 70 ° C.
  • the nature and the relative amounts of the organic peroxide (B) and the antioxidant (C) are chosen so that their liquid mixture is homogeneous, that is to say they are totally miscible together with the naked eye.
  • the homogeneous liquid mixture between the organic peroxide (B) and the antioxidant (C) can be obtained by dissolving the organic peroxide (B) and the antioxidant (C), these two compounds possibly being in liquid form or solid, in a suitable solvent.
  • the solvent may preferably be removed in a subsequent step of preparing the masterbatch, preferably by evaporation.
  • the choice of the solvent can be made by the skilled person depending on the solubility of the various components and depending on the boiling temperature of the solvent.
  • the organic peroxide (B) and the antioxidant (C) are preferably selected from low volatility compounds so that they are not removed together with the solvent.
  • the resulting liquid mixture is contacted with the copolymer (A).
  • the copolymer (A) is preferably in the form of granules.
  • the contacting is carried out so that the liquid mixture is absorbed by the copolymer (A).
  • the absorption of the liquid mixture by the copolymer (A) may be complete or not.
  • the liquid mixture can be brought into contact with the copolymer (A) by quenching, with or without stirring.
  • the liquid mixture can be brought into contact with the copolymer (A) at ambient temperature (approximately 25 ° C.) or with heating.
  • the use of heating is advantageous if, in particular, the liquid mixture is homogeneous only at a temperature above room temperature.
  • the contacting step can therefore be carried out at a temperature of between 40 ° C. and 80 ° C., preferably between 50 ° C. and 70 ° C.
  • the copolymer (A) and the liquid mixture are introduced into a mixer.
  • a mechanical stirring is carried out, so that the copolymer (A) is impregnated with the liquid mixture.
  • the mechanical stirring is interrupted and quenching is continued until the liquid mixture has been completely absorbed by the copolymer (A).
  • the duration of the contacting step may be adapted by those skilled in the art depending on the speed with which the liquid mixture is absorbed by the copolymer (A). This step may for example take between 5 minutes and 12 hours.
  • copolymer (A) may be contact with components other than peroxide (B) and antioxidant (C).
  • these other components which have been described above, can be added to the homogeneous liquid mixture, before or after its formation, or be brought into contact with the copolymer (A), independently, before, during or after the step contacting the liquid mixture.
  • the copolymer (A) impregnated with the peroxide (B) and the antioxidant (C) is recovered.
  • the relative proportions of copolymer (A), organic peroxide (B), antioxidant (C), and optionally other components are chosen so that the organic peroxide (B) represents from 0.2 to 100 parts by weight, per 100 parts by weight of the copolymer (A), and the antioxidant (C) is from 0.02 to 50 parts by weight, per 100 parts by weight of the copolymer (A).
  • these proportions can be adapted according to whether the absorption of the liquid mixture by the copolymer (A) is complete or not.
  • the process for preparing the masterbatch comprises the steps of:
  • the extrusion of the copolymer (A) with the antioxidant (C) can be carried out according to the techniques known to those skilled in the art, for example by means of a single screw or twin screw extruder.
  • the antioxidant (C) may be in liquid form or in solid form.
  • the temperature of the extrusion is adapted, as known to those skilled in the art, to the melting temperature of the copolymer (A).
  • the extrudate is preferably recovered in the form of granules.
  • Said extrudate is then brought into contact with the organic peroxide (B) once it is at a sufficiently low temperature not to trigger the thermal decomposition of the peroxide.
  • the extrudate can be actively cooled, or it can be allowed to cool freely.
  • the contact with the organic peroxide (B) can be carried out as described above for the first embodiment of the process for preparing the masterbatch. In particular, if the organic peroxide (B) is not liquid at room temperature, it can be heated.
  • the process for preparing the masterbatch comprises the steps of:
  • the extrusion of the copolymer (A) with the antioxidant (C) can be carried out as described above for the second embodiment of the process for preparing the masterbatch.
  • the extrudate is then extruded a second time with the organic peroxide (B).
  • the temperature of the extrusion is adapted, as known to those skilled in the art, to the melting temperature of the copolymer (A), so as to allow extrusion.
  • the temperature of this second extrusion is adjusted so that the temperature is low enough not to trigger the thermal decomposition of the peroxide.
  • the adjustment of the extrusion temperature is part of the know-how of the person skilled in the art.
  • the masterbatch thus obtained is stable over time.
  • the contents of organic peroxide (B) and antioxidant (C) do not vary significantly after storage under usual conditions of 12 months at room temperature, that is to say below 30 ° C.
  • These master batches can be transported in bags or drums from the production center to the processing center.
  • the electrical cable may be in particular a medium voltage cable (1-35 kV) or a high voltage cable (36-132 kV).
  • the present invention also relates to a method of manufacturing an insulating layer on electrical cables comprising the steps of: diluting the masterbatch described above in a crosslinkable polymer matrix to obtain a polymeric composition;
  • the dilution step can be carried out by means of any device conventionally used in the plastics industry, in particular using internal mixers, or mixers or roll mills (bi- or tri-cylindrical).
  • the dilution step may also consist of introducing the compounds into the hopper of an extruder using gravimetric feeders, for example. It is also possible to carry out this dilution using a lateral extruder.
  • the crosslinkable polymer matrix preferably consists of polyethylene, more preferably low density polyethylene (or LDPE for "Low Density PolyEthylene"). It is preferably in the form of granules.
  • the masterbatch and the crosslinkable polymer matrix are introduced into the feed hopper of the extruder without adding any other component.
  • the dilution ratio by weight of the masterbatch in the crosslinkable polymer matrix may be between 0.1 / 99.9 and 60/40, preferably between 5/95 and 30. / 70, and even more preferably between 10/90 and 20/80. This rate may vary depending on the composition of the masterbatch.
  • the masterbatch and the crosslinkable polymer matrix are introduced into the feed hopper of the extruder, with additionally an additional amount of copolymer (A).
  • this dilution step makes it possible to obtain a polymeric composition.
  • a polymeric composition comprising the crosslinkable polymer, the copolymer (A), the organic peroxide (B) and the antioxidant (C).
  • Other components may optionally be present, such as, for example, stabilizers, technical adjuvants, premature vulcanization retarders, crosslinking accelerators, flame retardants, acid traps or fillers. These optional components may come from the masterbatch or be added during the dilution of the masterbatch in the crosslinkable polymer matrix.
  • the copolymer (A) is from 0.2% to 50% by weight, more preferably from 5% to 20% by weight, and even more preferably from 10 to 15% by weight, of the composition. polymer.
  • the organic peroxide (B) is preferably from 0.1 to 100 parts by weight, and more preferably from 0.5 to 2 parts by weight, per 100 parts of the total weight of the crosslinkable polymer and the copolymer. (AT) .
  • the antioxidant (C) is preferably 0.01 to 1 part by weight, and more preferably 0.2 0.3 part by weight, per 100 parts of the total weight of the crosslinkable polymer and the copolymer (A).
  • the polymeric composition obtained is shaped by extrusion so as to form a layer around an electric cable.
  • the extrusion may be simple or consist of coextrusion with other polymeric compositions.
  • the extrusion can be made directly on the conductive material forming the electrical cable.
  • Other layers may conventionally be arranged between the conductive material and the insulating layer, for example an internal semiconducting layer.
  • the extruded polymeric composition is then subjected to a crosslinking step.
  • the organic peroxide (B) present in the polymeric composition allows crosslinking of the crosslinkable polymer.
  • the crosslinking step may vary depending on the nature of the materials used and the size of the electric cable.
  • this step comprises subjecting the extruded polymeric composition to an elevated temperature, preferably from 100 ° C to 450 ° C, more preferably from 110 ° C to 400 ° C.
  • the insulating layer obtained on the electric cable has a thickness advantageously between 1 millimeter and 5 centimeters.
  • the thickness of the insulating layer may be about 5 millimeters.
  • the thickness of the insulating layer may be several centimeters.
  • the crosslinked polymeric composition constitutes an insulating layer on the electrical cable.
  • the use of the masterbatch according to the invention makes it easy to manufacture this insulating layer, without using several extrusion devices or specific equipment such as a unit for direct injection of peroxides.
  • the crosslinking density obtained with the masterbatch according to the present invention is comparable to that obtained with a masterbatch containing no antioxidant (C).
  • the presence of the antioxidant (C) in the masterbatch does not therefore alter the crosslinking density of the insulating layer.
  • Peroxide (B) and then the antioxidant (C) were added to a flask.
  • the flask was placed in a water bath at a temperature of 57 ° C and the peroxide and antioxidant mixture was stirred with a magnet bar to obtain a homogeneous liquid mixture.
  • the granular copolymer (A) was introduced into a 250 ml Schott® glass bottle.
  • the homogeneous liquid mixture of peroxide and antioxidant was warmed in a water bath at 60 ° C and then the desired amount was removed and introduced into the vial containing the copolymer (A).
  • the flask was placed in apparatus allowing continuous agitation and the temperature was maintained at 60 ° C until the homogeneous liquid mixture of peroxide and antioxidant was fully absorbed by the copolymer (A).
  • the liquid mixture was absorbed in 3 hours.
  • the liquid mixture was absorbed in 6 hours.
  • copolymer granules (A) originally translucent, became opaque white after adsorption.
  • the 2 masterbatches prepared are therefore stable over time.
  • Table 4 The values of MH-ML (dNm) are directly correlable to the crosslinking density.
  • the values obtained for the crosslinked polymer compositions of LDPE prepared with masterbatches 1 and 2 show that these compositions have a correct crosslinking density.
  • the T90 values represent the time required to reach 90% of the maximum crosslinking density.
  • the values of Ts2 represent the time of pre-crosslinking, or roasting, of the mixture studied.
  • the T90 and TsO2 values obtained at 180 ° C for the crosslinked polymer compositions of LDPE prepared with master batches 1 and 2 are as expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Organic Insulating Materials (AREA)

Abstract

La présente invention concerne un mélange-maître consistant essentiellement en un copolymère (A) d'éthylène et d'au moins un comonomère éthylénique ayant au moins un groupe polaire, un peroxyde organique (B), et un antioxydant (C),le peroxyde organique (B) représentant de 0,2 à 100 parties en poids, pour 100 parties en poids du copolymère (A), et l'antioxydant (C) représentant de 0,02 à 50 parties en poids, pour 100 parties en poids du copolymère (A). L'invention concerne également les procédés de préparation du mélange-maître et les utilisations de ce mélange-maître pour la fabrication de couches isolantes pour des câbles électriques et pour limiter ou empêcher le phénomène d'arborescence d'eau de câbles électriques.

Description

MELANGE-MAI RE POUR LA FABRICATION 'UNE COUCHE ISOLANTE DE CABLE ELECTRIQUE
DOMAINE TECHNIQUE
La présente invention concerne un mélange-maître consistant essentiellement en un copolymère (A) d' éthylène et d'au moins un comonomère éthylénique ayant au moins un groupe polaire, un peroxyde organique (B) et un antioxydant (C) , son procédé de préparation et ses utilisations pour la fabrication de couches isolantes pour des câbles électriques et pour limiter ou empêcher le phénomène d'arborescence d'eau de câbles électriques .
ARRIERE-PLAN TECHNOLOGIQUE
Un fil électrique ou un câble électrique est généralement constitué d'un matériau conducteur enrobé par une ou plusieurs couches de matériaux polymères. La nature et l'épaisseur des différentes couches dépendent du type de câble électrique, par exemple câble moyenne tension (1- 35 kV) , câble haute tension (36-132 kV) ou câble très haute tension (> 132 kV) .
Parmi ces couches polymériques , au moins une couche est généralement une couche isolante qui assure l'isolation électrique de la partie conductrice du câble. Le polyéthylène basse densité réticulé (ou XLPE pour « Cross-Linked PolyEthylene ») est le plus souvent utilisé pour réaliser la couche isolante car ce matériau polymère possède les propriétés de résistance électrique adéquates. Toutefois, il a été constaté que les câbles électriques moyenne ou haute tension comprenant des isolants polymères sont exposés au phénomène d'arborescence électrique lorsqu'ils sont utilisés dans des milieux humides.
L'arborescence d'eau (en anglais « water treeing ») est un phénomène de détérioration des isolants solides qui se manifeste par l'apparition, à l'intérieur ou à la surface de l'isolant, de canaux ou de sillons d'eau plus ou moins fins possédant une forme arborescente. L'arborescence d'eau a pour effet de provoquer des claquages électriques et donc de diminuer la durée de vie des câbles.
Des solutions ont été apportées dans l'art antérieur pour éviter le phénomène d'arborescence d'eau. On peut estimer qu'il existe trois moyens de prévenir l'apparition des arborescences dans les câbles :
La première technique est la protection physique, qui consiste à protéger le câble à l'aide d'un « fourreau » en aluminium qui joue le rôle de barrière à l'eau et l'humidité. Ce procédé est très utilisé pour des câbles de haute et très haute tension.
La deuxième technique consiste à utiliser des additifs au sein de la couche isolante en polyéthylène, classiquement des composés de type silane. Cette technique est généralement utilisée pour des câbles de moyenne tension.
La troisième méthode consiste en l'incorporation d'un copolymère éthylène/acrylate dans la couche isolante en polyéthylène. Cette troisième méthode d'incorporation d'un copolymère dans une matrice en polyéthylène présente des difficultés de réalisation. Pour réaliser de telles couches isolantes, il est nécessaire de mettre œuvre plusieurs étapes, par exemple :
- le mélange des polymères sous forme de granulés ;
- l'extrusion du mélange de polymères ;
- l'imprégnation de ce mélange extrudé avec des peroxydes et d'éventuels additifs ;
l'extrusion du mélange imprégné de peroxydes sous forme de couche isolante ;
la réticulation des polymères par réaction radicalaire.
Un autre procédé possible consiste en :
- le mélange des polymères sous forme de granulés ;
- l'extrusion du mélange de polymères ;
- l'introduction dans une seconde extrudeuse du mélange obtenu et son extrusion sous forme de couche isolante, avec injection des peroxydes et éventuels additifs durant l'extrusion ;
la réticulation des polymères par réaction radicalaire.
Enfin, il est également possible de mettre en œuvre une unité de dosage spécifique, qui est une unité d'injection directe de peroxydes désignée par DPI (pour « direct peroxyde injection ») , de la façon suivante :
l'introduction en continu des différents polymères sous forme de granulés et des peroxydes et les éventuels additifs dans l'unité DPI ;
l'extrusion de ce mélange sous forme de couche isolante ;
la réticulation des polymères par réaction radicalaire . Par exemple, des unités DPI sont fabriquées par les sociétés INOEX et LICO et sont mentionnées dans les demandes de brevet EP 0 472 949 et EP 1 221 702. La Demanderesse s'est fixé comme objectif de proposer un procédé de production d'une couche isolante ayant des propriétés anti-arborescence d'eau, qui soit avantageusement plus simple, plus rapide à mettre en œuvre, et moins coûteux que les procédés connus et qui, en particulier, ne nécessite pas l'utilisation de dispositifs très spécifiques et coûteux.
Cet objectif a été atteint grâce à la mise en œuvre d'un mélange-maître, qui fait également l'objet de la présente invention .
RESUME DE L'INVENTION
La présente invention a ainsi pour objet un mélange-maître consistant essentiellement en :
- un copolymère (A) d' éthylène et d'au moins un comonomère éthylénique ayant au moins un groupe polaire,
- un peroxyde organique (B) , et
- un antioxydant (C) ,
le poids total du copolymère (A) , du peroxyde (B) et de 1 ' antioxydant (C) représentant au moins 90% du poids du mélange maître ;
le peroxyde organique (B) représentant de 0,2 à 100 parties en poids, pour 100 parties en poids du copolymère (A) , et 1 ' antioxydant (C) représentant de 0,02 à 50 parties en poids, pour 100 parties en poids du copolymère (A) .
L' invention concerne également un procédé de préparation dudit mélange-maître. Selon un premier mode de réalisation, le procédé de préparation du mélange-maître comprend les étapes consistant à :
- former un mélange liquide homogène entre le peroxyde organique (B) et 1 ' antioxydant (C) ;
mettre en contact ledit mélange liquide avec le copolymère (A) ;
- récupérer le mélange-maître. Selon un deuxième mode de réalisation, le procédé de préparation du mélange-maître comprend les étapes consistant à :
procéder à l'extrusion du copolymère (A) avec 1 ' antioxydant (C) pour obtenir un extrudat ;
- mettre en contact le peroxyde organique (B) avec ledit extrudat une fois que celui-ci est à une température suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde ;
- récupérer le mélange-maître.
Selon un troisième mode de réalisation, le procédé de préparation du mélange-maître comprend les étapes consistant à :
procéder à l'extrusion du copolymère (A) avec 1 ' antioxydant (C) pour obtenir un extrudat ;
- procéder à l'extrusion du peroxyde organique (B) avec ledit extrudat à une température suffisamment élevée pour permettre l'extrusion du copolymère, mais suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde ;
- récupérer le mélange-maître.
Ce mélange-maître est destiné à être incorporé dans une matrice de polymère réticulable, et peut être utilisé pour limiter ou empêcher le phénomène d'arborescence d'eau câbles électriques.
La présente invention a donc également pour objet l'utilisation dudit mélange-maître pour la fabrication de couches isolantes sur des câbles électriques. Le procédé de fabrication d'une couche isolante sur des câbles électriques comprenant les étapes consistant à :
- diluer le mélange-maître décrit précédemment dans une matrice de polymère réticulable pour obtenir une composition polymérique ;
procéder à l'extrusion de ladite composition polymérique sur un câble électrique ;
provoquer la réticulation de la composition polymérique extrudée ;
est donc également un objet de la présente invention.
DESCRIPTION DETAILLEE Dans la présente invention, on entend par « consistant essentiellement en » le fait que le poids total du copolymère (A), du peroxyde (B) et de 1 ' antioxydant (C) représente au moins 90% du poids du mélange-maître. Les éventuels composants du mélange-maître autres que le copolymère (A) , le peroxyde (B) et 1 ' antioxydant (C) représentent donc au plus 10% du poids du mélange-maître. Ces autres composants peuvent être choisis parmi les composés classiquement présents dans une couche isolante de câble électrique, par exemple des stabilisants, des adjuvants techniques, des retardateurs de vulcanisation prématurée, des accélérateurs de réticulation, des agents ignifugeants, des piégeant d'acides ou des charges . Toutefois, la présence de composants autres que le copolymère (A), le peroxyde (B) et 1 ' antioxydant (C) dans le mélange- maître peut ne pas être souhaitable lorsque ledit mélange- maître est utilisé pour fabriquer des couches isolantes anti- arborescence d'eau sur des câbles électriques moyenne ou haute tension. En effet, la présence d'autres composants peut créer des inhomogénéités dans le polymère, ce qui peut favoriser les risques de claquages électriques. Avantageusement, les éventuels composants du mélange-maître autres que le copolymère (A) , le peroxyde (B) et 1 ' antioxydant (C) représentent donc au plus 5% / de façon plus préférée au plus 1%, et de façon encore plus préférée au plus 0,1%, du poids du mélange-maître. Selon un mode de réalisation avantageux, le mélange-maître objet de la présente invention consiste uniquement en le copolymère (A) , le peroxyde (B) et 1 ' antioxydant (C) . Toutefois, on ne peut exclure la présence d'éventuelles impuretés que les composants renferment par suite de leur procédé de synthèse. Les constituants du mélange-maître selon l'invention seront à présent décrits plus en détail.
Le copolymère (A) comprend un comonomère d' éthylène et au moins un comonomère éthylénique ayant au moins un groupe polaire. Le copolymère (A) peut éventuellement comprendre d'autre (s) comonomère ( s ) .
De préférence, le comonomère éthylénique ayant au moins un groupe polaire peut être choisi dans le groupe constitué par :
- les esters de vinyles, tels que l'acétate de vinyle et le pivalate de vinyle ;
- les acrylates et les méthacrylates d'alkyle et d' hydroxy-alkyles , tels que l'acrylate de méthyle, le méthacrylate de méthyle, l'acrylate d'éthyle, le méthacrylate d'éthyle, l'acrylate de butyle, le méthacrylate de butyle, l'acrylate d' hydroxy-éthyle et le méthacrylate d' hydroxy-éthyle ;
- les acides carboxyliques insaturés, tels que l'acide acrylique, l'acide méthacrylique, l'acide maléique et l'acide fumarique ;
- les dérivés d'acides acryliques ou les dérivés d'acides méthacryliques , tels que l' acrylonitrile, le méthacrylonitrile, l'amide acrylique et l'amide méthacrylique ; et
- les éthers vinyliques, tels que l'éther de vinyle et de méthyle et l'éther de vinyle et de phényle. Parmi ces comonomères, les acrylates ou méthacrylates d'alkyle ayant de 1 à 4 atomes de carbone sont préférés. Les comonomères particulièrement préférés sont l'acrylate de n- butyle, l'acrylate d'isobutyle, l'acrylate d'éthyl-2 hexyle, l'acrylate de cyclohexyle, l'acrylate de n-octyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
Préférentiellement , le copolymère (A) est constitué d'un comonomère d' éthylène et d'un comonomère éthylénique ayant au moins un groupe polaire.
Avantageusement, le copolymère (A) comprend de 10 à 60%, de préférence de 15 à 25% en poids de comonomère éthylénique ayant au moins un groupe polaire, par rapport au poids total du copolymère.
Des copolymères présentant les caractéristiques techniques ci-dessus sont disponibles sur le marché auprès de la société ARKEMA sous la dénomination commerciale Lotryl®. De préférence, le peroxyde organique (B) compris dans le mélange-maître objet de la présente invention a la formule (I) suivante :
Figure imgf000010_0001
dans laquelle :
- n est un entier égal à 1, 2, 3 ou 4 ;
- Ri et Ri' sont chacun, indépendamment l'un de l'autre, un atome d'oxygène, un radical hydrocarboné bivalent en Ci à C5, linéaire ou ramifié, saturé ou partiellement insaturé, et de préférence une chaîne alkylène linéaire en Ci à C5 non substituée,
- R2, R2' , R3 et R3' sont chacun, indépendamment les uns des autres, un radical hydrocarboné en Ci à C5, linéaire ou ramifié, saturé ou partiellement insaturé, et de préférence un groupe alkyle linéaire en Ci à C5 non substitué,
- R4 et R4' sont chacun, indépendamment l'un de l'autre, un atome d'hydrogène, un radical hydrocarboné en Ci à C5, linéaire ou ramifié, saturé ou partiellement insaturé, et de préférence un groupe alkyle linéaire en Ci à C5 non substitué.
Selon un premier mode de réalisation, dans la formule (I) : - Ri et Ri' sont chacun, indépendamment l'un de l'autre, une chaîne alkylène de formule - (C¾) - ou - (CH2-CH2) - ;
- R2, R2' , R3 et R3' sont chacun, indépendamment les uns des autres, choisis dans le groupe constitué par méthyle, éthyle, 1-propyle, isopropyle, 1-butyle, isobutyle et tert-butyle, de préférence méthyle ;
R4 et R4' sont chacun, indépendamment l'un de l'autre, choisis dans le groupe constitué par l'atome d'hydrogène, méthyle, éthyle, 1-propyle, isopropyle, 1-butyle, isobutyle et tert-butyle, de préférence l'atome d'hydrogène.
De préférence, le peroxyde organique (B) est choisi dans le groupe constitué par le diméthyl-2, 5-di- (tert- butylperoxy) hexane, le di-tertioamyl peroxyde, le di- tertiobutyl peroxyde et le tert-butylcumylperoxyde . Ces peroxydes organiques sont disponibles sur le marché auprès de la société ARKEMA sous la dénomination commerciale Luperox® 101, Luperox® DTA, Luperox® DI, Luperox® DC, Luperox® DCP et Luperox® 801.
De façon encore plus préférée, le peroxyde organique (B) est le 2 , 5-diméthyl-2 , 5-di- (tert-butylperoxy) hexane de formule (II) :
Figure imgf000011_0001
De façon encore plus préférée, le peroxyde organique (B) est le tert-butyl cumyl peroxyde de formule (III) :
Figure imgf000011_0002
De façon encore plus préférée, le peroxyde organique (B) est le peroxyde de dicumyle de formule (IV) :
Figure imgf000011_0003
Selon un autre mode de réalisation, dans la formule (I) - n est égal à 1 ;
- R4 et R4' forment ensemble un carbocycle ou un hétérocycle comprenant de 3 à 14 atomes de carbone et optionnellement 1 à 4 hétéroatomes choisis parmi 0, N, P, S et Si.
De préférence, un peroxyde organique (B) de ce type est le 3, 6, 9-triéthyl-3, 6, 9- triméthyl-1 , 4 , 7-triperoxonane de forme (V) :
Figure imgf000012_0001
(V)
Ce peroxyde organique est disponible sur le marché auprès de la société AKZO NOBEL sous la dénomination commerciale Trigonox® 301.
Dans la cadre de la présente invention, le peroxyde organique (B) peut être un peroxyde organique tel que décrit ci-avant, ou un mélange de plusieurs desdits peroxydes organiques.
Dans le mélange-maître objet de la présente invention, le peroxyde organique (B) représente de 0,2 à 100 parties en poids, pour 100 parts en poids du copolymère (A) . De façon plus préférée, le peroxyde organique (B) représente de 2 à 50 parts en poids, pour 100 parts en poids du copolymère (A) . De façon encore plus préférée, le peroxyde organique (B) représente de 9 à 15 parts en poids, pour 100 parts en poids du copolymère (A) .
De préférence, 1 ' antioxydant (C) peut être choisi parmi ceux classiquement utilisés dans les matrices polymères, en particulier parmi les phénols encombrés ou semi-encombrés stériquement , éventuellement substitués par un ou plusieurs groupes fonctionnels, les aminés aromatiques, les aminés aliphatiques encombrées stériquement, les phosphates organiques et les composés thio.
De tels antioxydants sont disponibles sur le marché auprès de la société BASF sous la dénomination commerciale Irganox® 1035 et Irganox® PS802. Dans la présente invention, 1 ' antioxydant (C) peut être un antioxydant ou un mélange de plusieurs antioxydants.
Dans le mélange-maître objet de la présente invention, 1 ' antioxydant (C) représente de 0,02 à 50 parties en poids, pour 100 parties en poids du copolymère (A) . De façon plus préférée, 1 ' antioxydant (C) représente de 0,1 à 10 parties en poids, pour 100 parties en poids du copolymère (A) . De façon encore plus préférée, 1 ' antioxydant (C) représente de 1 à 3 parties en poids, pour 100 parties en poids du copolymère (A) .
Comme indiqué précédemment, l'invention concerne également un procédé de préparation du mélange-maître selon l'invention. Selon un premier mode de réalisation, ce procédé comprend les étapes consistant à :
- former un mélange liquide homogène entre le peroxyde organique (B) et 1 ' antioxydant (C) ;
mettre en contact ledit mélange liquide avec le copolymère (A) ;
- récupérer le mélange-maître.
Le mélange liquide homogène du peroxyde organique (B) et de 1 ' antioxydant (C) peut être réalisé de différentes manières selon la nature des composés. Si le peroxyde organique (B) est sous forme liquide, le mélange peut être obtenu en ajoutant 1 ' antioxydant (C) , lui-même sous forme liquide ou solide, dans le peroxyde organique (B) et en mélangeant à l'aide d'une agitation magnétique ou mécanique. Si le peroxyde organique (B) est sous forme solide, le mélange liquide homogène peut être obtenu en chauffant préalablement le peroxyde organique (B) au-delà de sa température de fusion, pour ensuite ajouter 1 ' antioxydant (C) et procéder au mélange. Le chauffage peut être réalisé par exemple à l'aide d'un bain-marie.
Pour obtenir la dissolution complète de 1 ' antioxydant (C) dans le peroxyde organique (B) , et ainsi un mélange liquide homogène, une étape supplémentaire consistant à chauffer, par exemple à l'aide d'un bain-marie, le mélange peut être mise en œuvre. La température du chauffage peut être comprise entre 30 °C et 80 °C, de préférence entre 40 °C et 70 °C. La nature et les quantités relatives du peroxyde organique (B) et de 1 ' antioxydant (C) sont choisies de manière à ce que leur mélange liquide soit homogène, c'est-à-dire qu'ils sont totalement miscibles ensemble à l'œil nu. Alternativement, le mélange liquide homogène entre le peroxyde organique (B) et 1 ' antioxydant (C) peut être obtenu en mettant en solution le peroxyde organique (B) et 1 ' antioxydant (C) , ces deux composés pouvant être sous forme liquide ou solide, dans un solvant approprié. Le solvant peut de préférence être éliminé lors d'une étape ultérieure de préparation du mélange-maître, de préférence par évaporation. Le choix du solvant peut être réalisé par l'homme du métier en fonction de la solubilité des différents composants et en fonction de la température d'ébullition du solvant. Dans ce mode de réalisation, le peroxyde organique (B) et 1 ' antioxydant (C) sont de préférence choisis parmi les composés peu volatils, de manière à ce qu'ils ne soient pas éliminés en même temps que le solvant.
Le mélange liquide obtenu est mis en contact avec le copolymère (A) . Le copolymère (A) est de préférence sous forme de granulés. La mise en contact est réalisée de manière à ce que le mélange liquide soit absorbé par le copolymère (A) . L'absorption du mélange liquide par le copolymère (A) peut être complète ou non.
La mise en contact du mélange liquide avec le copolymère (A) peut se faire par trempe, accompagnée ou non d'un brassage.
La mise en contact du mélange liquide avec le copolymère (A) peut être réalisée à température ambiante (environ 25°C) ou avec un chauffage. L'utilisation d'un chauffage est avantageuse si, en particulier, le mélange liquide n'est homogène qu'à une température supérieure à la température ambiante. L'étape de mise en contact peut donc être réalisée à une température comprise entre 40 °C et 80 °C, de préférence entre 50 °C et 70 °C. Selon un mode de réalisation avantageux, le copolymère (A) et le mélange liquide sont introduits dans un mélangeur. Un brassage mécanique est réalisé, de façon à ce que le copolymère (A) soit imprégné du mélange liquide. Puis le brassage mécanique est interrompu et la trempe est poursuivie jusqu'à ce que le mélange liquide ait été totalement absorbé par le copolymère (A) .
La durée de l'étape de mise en contact peut être adaptée par l'homme du métier en fonction de la vitesse à laquelle le mélange liquide est absorbé par le copolymère (A) . Cette étape peut par exemple durer entre 5 minutes et 12 heures.
Il est éventuellement possible de mettre en contact le copolymère (A) avec des composants autres que le peroxyde (B) et d' antioxydant (C) . Ces autres composants, qui ont été décrits ci-avant, peuvent être ajoutés au mélange liquide homogène, avant ou après sa formation, ou être mis en contact avec le copolymère (A) , de façon indépendante, avant, pendant ou après l'étape de mise en contact avec le mélange liquide.
A l'issue de cette étape de mise en contact du mélange liquide avec le copolymère (A) , on récupère le copolymère (A) imprégné du peroxyde (B) et de 1 ' antioxydant (C) . Les proportions relatives de copolymère (A) , de peroxyde organique (B) , d' antioxydant (C) , et éventuellement d'autres composants, sont choisies de façon à ce que le peroxyde organique (B) représente de 0,2 à 100 parties en poids, pour 100 parties en poids du copolymère (A), et 1 ' antioxydant (C) représente de 0,02 à 50 parties en poids, pour 100 parties en poids du copolymère (A) . En particulier, ces proportions peuvent être adaptées selon que l'absorption du mélange liquide par le copolymère (A) est complète ou non. Selon un deuxième mode de réalisation, le procédé de préparation du mélange-maître comprend les étapes consistant à :
procéder à l'extrusion du copolymère (A) avec 1 ' antioxydant (C) pour obtenir un extrudat ;
- mettre en contact le peroxyde organique (B) avec ledit extrudat une fois que celui-ci est à une température suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde ;
- récupérer le mélange-maître. L'extrusion du copolymère (A) avec 1 ' antioxydant (C) peut être réalisée selon les techniques connues de l'homme du métier, par exemple à l'aide d'une extrudeuse mono-vis ou bi- vis. L' antioxydant (C) peut se présenter sous forme liquide ou sous forme solide. La température de l'extrusion est adaptée, comme cela est connu de l'homme du métier, à la température de fusion du copolymère (A) . L'extrudat est de préférence récupéré sous forme de granulés.
Ledit extrudat est ensuite mis en contact avec le peroxyde organique (B) une fois que celui-ci est à une température suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde. L'extrudat peut être refroidi activement, ou bien il peut être laissé refroidir librement. La mise en contact avec le peroxyde organique (B) peut être effectuée tel que cela a été décrit ci-avant pour le premier mode de réalisation du procédé de préparation du mélange- maître. En particulier, si le peroxyde organique (B) n'est pas liquide à température ambiante, celui-ci peut être chauffé .
Selon un troisième mode de réalisation, le procédé de préparation du mélange-maître comprend les étapes consistant à :
procéder à l'extrusion du copolymère (A) avec 1 ' antioxydant (C) pour obtenir un extrudat ;
- procéder à l'extrusion du peroxyde organique (B) avec ledit extrudat à une température suffisamment élevée pour permettant l'extrusion du copolymère, mais suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde ;
- récupérer le mélange-maître. L'extrusion du copolymère (A) avec 1 ' antioxydant (C) peut être effectuée tel que cela a été décrit ci-avant pour le deuxième mode de réalisation du procédé de préparation du mélange-maître .
L'extrudat est ensuite extrudé une seconde fois avec le peroxyde organique (B) . La température de l'extrusion est adaptée, comme cela est connu de l'homme du métier, à la température de fusion du copolymère (A) , de manière à permettre l'extrusion. Toutefois, la température de cette seconde extrusion est ajustée de manière à ce que la température soit suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde. L'ajustement de la température d' extrusion fait partie du savoir-faire de l'homme du métier.
Quel que soit le mode de réalisation de son procédé de préparation, le mélange-maître ainsi obtenu est stable dans le temps. Avantageusement, les teneurs en peroxyde organique (B) et en antioxydant (C) ne varient pas de façon significative après un stockage dans des conditions habituelles de 12 mois à température ambiante, c'est-à-dire inférieure à 30 °C. Ces mélanges-maîtres peuvent être transportés en sacs ou en fûts du centre de production au centre de transformation.
Ce mélange-maître peut avantageusement être utilisé pour fabriquer des couches isolantes sur des câbles électriques. Le câble électrique peut être en particulier un câble moyenne tension (1-35 kV) ou un câble haute tension (36-132 kV) .
La présente invention a également pour objet un procédé de fabrication d'une couche isolante sur des câbles électriques comprenant les étapes consistant à : - diluer le mélange-maître décrit précédemment dans une matrice de polymère réticulable pour obtenir une composition polymérique ;
procéder à l'extrusion de ladite composition polymérique sur un câble électrique ;
provoquer la réticulation de la composition polymérique extrudée.
L'étape de dilution peut être réalisée au moyen de tout dispositif classiquement utilisé dans l'industrie de la plasturgie, en particulier à l'aide de mélangeurs internes, ou de mélangeurs ou broyeurs à cylindres (bi- ou tricylindriques ) . L'étape de dilution peut également consister en l'introduction des composés dans la trémie d'une extrudeuse à l'aide de doseurs gravimétriques par exemple. Il est aussi possible d'effectuer cette dilution à l'aide d'une extrudeuse latérale.
La matrice de polymère réticulable est constituée de préférence de polyéthylène, de façon plus préférée de polyéthylène basse densité (ou LDPE pour « Low Density PolyEthylene ») . Elle se présente de préférence sous la forme de granulés. Selon un premier mode de réalisation, le mélange-maître et la matrice de polymère réticulable sont introduits dans la trémie d'alimentation de l' extrudeuse, sans ajout d'autre composant. Le taux de dilution en poids du mélange-maître dans la matrice de polymère réticulable (mélange- maître/matrice de polymère réticulable) peut être compris entre 0,1/99,9 et 60/40, de préférence entre 5/95 et 30/70, et de façon encore plus préférée entre 10/90 et 20/80. Ce taux peut varier en fonction de la composition du mélange- maître . Selon un second mode de réalisation, le mélange-maître et la matrice de polymère réticulable sont introduits dans la trémie d'alimentation de l' extrudeuse, avec en outre une quantité additionnelle de copolymère (A) .
Quel que soit le mode de réalisation mis en œuvre, cette étape de dilution permet d'obtenir une composition polymérique .
Avantageusement, on obtient ainsi une composition polymérique comprenant le polymère réticulable, le copolymère (A) , le peroxyde organique (B) et 1 ' antioxydant (C) . D'autres composants peuvent éventuellement être présents, comme par exemple des stabilisants, des adjuvants techniques, des retardateurs de vulcanisation prématurée, des accélérateurs de réticulation, des agents ignifugeants, des pièges à acides ou des charges. Ces éventuels composants peuvent provenir du mélange-maître ou être ajoutés lors de la dilution du mélange-maître dans la matrice de polymère réticulable.
De préférence, le copolymère (A) représente de 0,2% à 50% en poids, de façon plus préférée de 5% à 20% en poids, et de façon encore plus préférée de 10 à 15% en poids, de la composition polymérique.
En outre, le peroxyde organique (B) représente de façon préférée de 0,1 à 100 parties en poids, et de façon plus préférée de 0,5 à 2 parties en poids, pour 100 parties du poids total du polymère réticulable et du copolymère (A) .
Par ailleurs, 1 ' antioxydant (C) représente de façon préférée de 0,01 à 1 partie en poids, et de façon plus préférée de 0,2 à 0,3 partie en poids, pour 100 parties du poids total du polymère réticulable et du copolymère (A) .
La composition polymérique obtenue est mise en forme par extrusion de manière à former une couche autour d'un câble électrique. L' extrusion peut être simple ou consister en une co-extrusion avec d'autres compositions polymériques . L' extrusion peut être faite directement sur le matériau conducteur formant le câble électrique. D'autres couches peuvent classiquement être disposées entre le matériau conducteur et la couche isolante, par exemple une couche semi-conductrice interne.
La composition polymérique extrudée est ensuite soumise à une étape de réticulation . Le peroxyde organique (B) présent dans la composition polymérique permet la réticulation du polymère réticulable. L'étape de réticulation peut varier selon la nature des matériaux utilisés et la dimension du câble électrique. De préférence, cette étape consiste à soumettre la composition polymérique extrudée à une température élevée, comprise de façon préférée entre 100 °C et 450 °C, de façon plus préférée entre 110 °C et 400 °C.
La couche isolante obtenue sur le câble électrique a une épaisseur avantageusement comprise entre 1 millimètre et 5 centimètres. Pour un câble électrique moyenne tension (1- 35 kV) , l'épaisseur de la couche isolant peut être d'environ 5 millimètres. Pour un câble électrique haute tension (36- 132 kV) , l'épaisseur de la couche isolant peut être de plusieurs centimètres.
La composition polymérique réticulée constitue une couche isolante sur le câble électrique. L'utilisation du mélange- maître selon l'invention permet de fabriquer facilement cette couche isolante, sans utiliser plusieurs dispositifs d'extrusion ou d'appareillages spécifiques comme une unité d'injection directe de peroxydes.
En outre, il a été constaté que la densité de réticulation obtenue avec le mélange-maître selon la présente invention est comparable à celle obtenue avec un mélange-maître ne contenant pas d' antioxydant (C) . La présence de 1 ' antioxydant (C) dans le mélange-maître n'altère donc pas la densité de réticulation de la couche isolante.
L' invention sera mieux comprise à la lumière des exemples non limitatifs et purement illustratifs suivants.
EXEMPLE
Matières premières utilisées
Figure imgf000022_0001
Tableau 1 Préparation de deux mélanges-maîtres :
Figure imgf000023_0001
Les deux mélanges-maîtres ont été préparés selon le même protocole décrit ci-dessous.
On a introduit dans un flacon le peroxyde (B) , puis 1 ' antioxydant (C) . Le flacon a été placé dans un bain-marie à une température de 57 °C et le mélange peroxyde et antioxydant a été agité avec un barreau aimanté pour obtenir un mélange liquide homogène.
Le copolymère (A) sous forme de granulés a été introduit dans un flacon en verre Schott® de 250 ml.
Le mélange liquide homogène de peroxyde et d' antioxydant a été réchauffé au bain-marie à 60 °C, puis la quantité désirée a été prélevée et introduite dans le flacon en ve contenant le copolymère (A) .
Le flacon a été placé dans un appareillage permettant une agitation continue et la température a été maintenue à 60 °C jusqu'à ce que le mélange liquide homogène de peroxyde et d' antioxydant ait été totalement absorbé par le copolymère (A) .
Pour le mélange-maître 1, le mélange liquide a été absorbé en 3 heures. Pour le mélange-maître 2, le mélange liquide a été absorbé en 6 heures.
On a noté que les granulés de copolymère (A) , à la base translucides, sont devenus blancs opaques après adsorption.
Test de vieillissement accéléré des mélanges-maîtres
Environ 20 g de mélange-maître ont été pesés dans des flacons en verre Schott® de 100 ml. Ils ont été soumis à un vieillissement de 7 jours en étuve à 50 °C.
Après 7 jours, des mesures en HPLC ou GC ont permis de déterminer l'évolution de la teneur en peroxyde et en antioxydants dans les 2 mélanges-maîtres étudiés.
Quantité Quantités après initiales vieillissement
Luperox® 801 12, 41% 12, 52%
Mélange- maître Irganox® 1035 0, 97% 0,87%
1
Irganox® PS802 1,06% 1, 02%
Luperox® 101 11, 51% 11, 47%%
Mélange- maître Irganox® 1035 0, 95% 0, 91%
2
Irganox® PS802 0,87% 0, 90%
Tableau 3
La différence entre les valeurs mesurées et théoriques s'explique par la technique de mesure quantitative utilisée.
Sur le plan seulement de l'évolution des teneurs obtenues, on a constaté que la variation avant et après vieillissement n'est pas significativement différente.
Les 2 mélanges-maîtres préparés sont donc stables dans le temps .
Réalisation d'une composition polymérique réticulée
Pour réaliser 55 g de la composition polymérique, on a introduit 47,5 g de LPDE dans un mélangeur interne de type N50 équipé de rotors à cames (Brabender) chauffé à 120 °C. 7, 5 g de mélange-maître 1 ou 2 ont été ajoutés dans le mélangeur, et le mélange a été poursuivi pendant 2 minutes à 50 tours/minutes. Le mélange a été ensuite récupéré du mélangeur. A partir du dosage des matières premières jusqu'à la récupération du mélange, l'opération dure environ 6 minutes. Le mélange résultant a été passé dans une calandreuse GUMIX® à une température de 120 °C à travers un entrefer de 1,5 mm. On a obtenu une plaque d'aspect homogène qui a été utilisée pour le test suivant : Test de densité de réticulation
L'évolution du couple visco-élastique d'un mélange réticulable a été mesurée au cours du temps au moyen du RPA (Rubber Process Analizer) 2000 d'Alpha Technologies.
Les valeurs obtenues correspondent à une moyenne sur trois essais.
Figure imgf000026_0001
Tableau 4 Les valeurs de MH-ML (dNm) sont directement corrélables à la densité de réticulation. Les valeurs obtenues pour les compositions polymériques réticulées de LDPE préparées avec les mélanges-maîtres 1 et 2 montrent que ces compositions ont une densité de réticulation correcte.
Les valeurs de T90 représentent le temps nécessaire pour atteindre 90% de la densité de réticulation maximale. Les valeurs de Ts2 représentent le temps de pré-réticulation, ou grillage, du mélange étudié. Les valeurs de T90 et Ts02 obtenues à 180 °C pour les compositions polymériques réticulées de LDPE préparées avec les mélanges-maîtres 1 et 2 sont conformes aux attentes.

Claims

REVENDICATIONS
1. Mélange-maître consistant essentiellement en :
un copolymère (A) d' éthylène et d'au moins un comonomère éthylénique ayant au moins un groupe polaire,
- un peroxyde organique (B) , et
- un antioxydant (C) ,
le poids total du copolymère (A) , du peroxyde (B) et de 1 ' antioxydant (C) représentant au moins 90% du poids du mélange maître ;
le peroxyde organique (B) représentant de 0,2 à 100 parties en poids, pour 100 parties en poids du copolymère (A) , et 1 ' antioxydant (C) représentant de 0,02 à 50 parties en poids, pour 100 parties en poids du copolymère (A) .
2. Mélange-maître selon la revendication 1, caractérisé en ce qu' il consiste uniquement en le copolymère (A) , le peroxyde (B) et 1 ' antioxydant (C) .
3. Mélange-maître selon l'une ou l'autre des revendications 1 ou 2, caractérisé en ce que le comonomère éthylénique ayant au moins un groupe polaire est choisi dans le groupe constitué par :
- les esters de vinyles, tels que l'acétate de vinyle et le pivalate de vinyle ;
- les acrylates et les méthacrylates d'alkyle et d' hydroxy-alkyles , tels que l'acrylate de méthyle, le méthacrylate de méthyle, l'acrylate d'éthyle, le méthacrylate d'éthyle, l'acrylate de butyle, le méthacrylate de butyle, l'acrylate d' hydroxy-éthyle et le méthacrylate d' hydroxy-éthyle ;
- les acides carboxyliques insaturés, tels que l'acide acrylique, l'acide méthacrylique, l'acide maléique et l'acide fumarique ; - les dérivés d'acides acryliques ou les dérivés d'acides méthacryliques , tels que l' acrylonitrile, le méthacrylonitrile, l'amide acrylique et l'amide méthacrylique ; et
- les éthers vinyliques, tels que l'éther de vinyle et de méthyle et l'éther de vinyle et de phényle.
4. Mélange-maître selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le comonomère éthylénique ayant au moins un groupe polaire est choisi dans le groupe constitué par l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate d'éthyl-2 hexyle, l'acrylate de cyclohexyle, l'acrylate de n-octyle, le méthacrylate de méthyle et le méthacrylate d'éthyle.
5. Mélange-maître selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le peroxyde organique (B) a la formule (I) suivante :
Figure imgf000029_0001
dans laquelle :
- n est un entier égal à 1, 2, 3 ou 4 ;
- Ri et Ri' sont chacun, indépendamment l'un de l'autre, un atome d'oxygène, un radical hydrocarboné bivalent en Ci à C5, linéaire ou ramifié, saturé ou partiellement insaturé, et de préférence une chaîne alkylène linéaire en Ci à C5 non substituée,
- R2, R2' , R3 et R3' sont chacun, indépendamment les uns des autres, un radical hydrocarboné en Ci à C5, linéaire ou ramifié, saturé ou partiellement insaturé, et de préférence un groupe alkyle linéaire en Ci à C5 non substitué, - R4 et R4' sont chacun, indépendamment l'un de l'autre, un atome d'hydrogène, un radical hydrocarboné en Ci à C5, linéaire ou ramifié, saturé ou partiellement insaturé, et de préférence un groupe alkyle linéaire en Ci à C5 non substitué.
6. Mélange-maître selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le peroxyde organique (B) représente de 2 à 50 parties en poids, et de façon préférée de 9 à 15 parties en poids, pour 100 parties en poids du copolymère (A) .
7. Mélange-maître selon l'une quelconque des revendications 1 à 6, caractérisé en ce que 1 ' antioxydant (C) représente de 0,1 à 10 parties en poids, et de façon préférée de 1 à 3 parties en poids, pour 100 parties en poids du copolymère (A) .
8. Procédé de préparation du mélange-maître selon l'une quelconque des revendications 1 à 7, comprenant les étapes consistant à :
- former un mélange liquide homogène entre le peroxyde organique (B) et 1 ' antioxydant (C) ;
mettre en contact ledit mélange liquide avec le copolymère (A) ;
- récupérer le mélange-maître.
9. Procédé de préparation du mélange-maître selon l'une quelconque des revendications 1 à 7, comprenant les étapes consistant à :
procéder à l'extrusion du copolymère (A) avec 1 ' antioxydant (C) pour obtenir un extrudat ;
- mettre en contact le peroxyde organique (B) avec ledit extrudat une fois que celui-ci est à une température suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde ;
- récupérer le mélange-maître.
10. Procédé de préparation du mélange-maître selon l'une quelconque des revendications 1 à 7, comprenant les étapes consistant à :
procéder à l'extrusion du copolymère (A) avec 1 ' antioxydant (C) pour obtenir un extrudat ;
- procéder à l'extrusion du peroxyde organique (B) avec ledit extrudat à une température suffisamment élevée pour permettant l'extrusion du copolymère, mais suffisamment basse pour ne pas déclencher la décomposition thermique du peroxyde ;
- récupérer le mélange-maître.
11. Utilisation du mélange-maître selon l'une quelconque des revendications 1 à 7 pour la fabrication de couches isolantes sur des câbles électriques.
12. Utilisation du mélange-maître selon l'une quelconque des revendications 1 à 7 pour limiter ou empêcher le phénomène d'arborescence d'eau de câbles électriques.
13. Procédé de fabrication d'une couche isolante sur des câbles électriques comprenant les étapes consistant à :
- diluer le mélange-maître selon l'une quelconque des revendications 1 à 7 dans une matrice de polymère réticulable pour obtenir une composition polymérique ;
- procéder à l'extrusion de ladite composition polymérique sur un câble électrique ;
provoquer la réticulation de la composition polymérique extrudée.
PCT/FR2012/052389 2011-10-24 2012-10-19 Melange-maitre pour la fabrication d'une couche isolante de cable electrique WO2013060969A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IN3523CHN2014 IN2014CN03523A (fr) 2011-10-24 2012-10-19
JP2014536319A JP2014534991A (ja) 2011-10-24 2012-10-19 電気ケーブル絶縁層製造用マスターバッチ
KR1020147013751A KR20140081889A (ko) 2011-10-24 2012-10-19 전기 케이블의 절연층을 제조하기 위한 마스터배치
US14/353,720 US20140305677A1 (en) 2011-10-24 2012-10-19 Masterbatch for manufacturing an insulating layer of an electric cable
SG11201401782VA SG11201401782VA (en) 2011-10-24 2012-10-19 Masterbatch for manufacturing an insulating layer of an electric cable
EP12787776.9A EP2771401A1 (fr) 2011-10-24 2012-10-19 Melange-maitre pour la fabrication d'une couche isolante de cable electrique
CN201280052032.5A CN103890077A (zh) 2011-10-24 2012-10-19 用于制备电缆的绝缘层的母料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11.59597 2011-10-24
FR1159597A FR2981655B1 (fr) 2011-10-24 2011-10-24 Melange-maitre pour la fabrication d'une couche isolante de cable electrique

Publications (1)

Publication Number Publication Date
WO2013060969A1 true WO2013060969A1 (fr) 2013-05-02

Family

ID=47191958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052389 WO2013060969A1 (fr) 2011-10-24 2012-10-19 Melange-maitre pour la fabrication d'une couche isolante de cable electrique

Country Status (9)

Country Link
US (1) US20140305677A1 (fr)
EP (1) EP2771401A1 (fr)
JP (1) JP2014534991A (fr)
KR (1) KR20140081889A (fr)
CN (1) CN103890077A (fr)
FR (1) FR2981655B1 (fr)
IN (1) IN2014CN03523A (fr)
SG (1) SG11201401782VA (fr)
WO (1) WO2013060969A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972560A1 (fr) * 2011-03-08 2012-09-14 Nexans Cable electrique a moyenne ou haute tension
FR3023295B1 (fr) * 2014-07-02 2017-12-08 Arkema France Encapsulant d'un module photovoltaique
TW201936749A (zh) 2018-02-09 2019-09-16 荷蘭商安科智諾貝爾化學國際公司 硫化經補強之橡膠組合物之方法
WO2019178747A1 (fr) * 2018-03-20 2019-09-26 Dow Global Technologies Llc Formulation de polyoléfine et de polyvinylpyrrolidone
CN111135343B (zh) * 2019-12-19 2021-09-14 江苏集萃先进高分子材料研究所有限公司 一种高交联高抗氧剂掺杂的人工关节假体材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269543A (ja) * 1988-09-02 1990-03-08 Fujikura Ltd 絶縁組成物および電力ケーブル
JPH03277641A (ja) * 1990-03-28 1991-12-09 Showa Electric Wire & Cable Co Ltd 耐水トリー性電気絶縁組成物
EP0472949A1 (fr) 1990-08-25 1992-03-04 INOEX GmbH Dispositif d'alimentation d'une extrudeuse pour un matériel à extruder avec plusieurs composantes
US5256482A (en) * 1982-06-23 1993-10-26 Sumitomo Electric Industries Cross-linked polyethylene insulated cables
US5719218A (en) * 1995-06-01 1998-02-17 At Plastics Inc. Water resistant electrical insulation compositions
JPH11255972A (ja) * 1998-03-06 1999-09-21 Fujikura Ltd 電気絶縁組成物、電力ケーブル及びケーブル絶縁処理部
EP1221702A1 (fr) 2000-12-27 2002-07-10 PIRELLI CAVI E SISTEMI S.p.A. Procedé pour la fabrication d'un câble électrique, en particulier pour la transmission du courant continu à haute tension

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1605473T3 (pl) * 2004-06-11 2011-10-31 Borealis Tech Oy Kompozycja izolująca do elektrycznego kabla zasilającego
JP5450607B2 (ja) * 2008-06-05 2014-03-26 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー 水トリー耐性、trxlpe型ケーブルシースを製造する方法
CN101838416A (zh) * 2010-02-05 2010-09-22 上海子元汽车零部件有限公司 可发性膨胀母粒、可发性膨胀材料及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256482A (en) * 1982-06-23 1993-10-26 Sumitomo Electric Industries Cross-linked polyethylene insulated cables
JPH0269543A (ja) * 1988-09-02 1990-03-08 Fujikura Ltd 絶縁組成物および電力ケーブル
JPH03277641A (ja) * 1990-03-28 1991-12-09 Showa Electric Wire & Cable Co Ltd 耐水トリー性電気絶縁組成物
EP0472949A1 (fr) 1990-08-25 1992-03-04 INOEX GmbH Dispositif d'alimentation d'une extrudeuse pour un matériel à extruder avec plusieurs composantes
US5719218A (en) * 1995-06-01 1998-02-17 At Plastics Inc. Water resistant electrical insulation compositions
JPH11255972A (ja) * 1998-03-06 1999-09-21 Fujikura Ltd 電気絶縁組成物、電力ケーブル及びケーブル絶縁処理部
EP1221702A1 (fr) 2000-12-27 2002-07-10 PIRELLI CAVI E SISTEMI S.p.A. Procedé pour la fabrication d'un câble électrique, en particulier pour la transmission du courant continu à haute tension

Also Published As

Publication number Publication date
KR20140081889A (ko) 2014-07-01
EP2771401A1 (fr) 2014-09-03
FR2981655B1 (fr) 2014-03-14
US20140305677A1 (en) 2014-10-16
FR2981655A1 (fr) 2013-04-26
SG11201401782VA (en) 2014-09-26
IN2014CN03523A (fr) 2015-10-09
CN103890077A (zh) 2014-06-25
JP2014534991A (ja) 2014-12-25

Similar Documents

Publication Publication Date Title
EP2771401A1 (fr) Melange-maitre pour la fabrication d'une couche isolante de cable electrique
JP2008531795A (ja) 架橋されたポリマーを調製する方法
EP3005377B1 (fr) Dispositif électrique à moyenne ou haute tension
TWI780044B (zh) 具有甲基自由基清除劑之可交聯聚合組合物及由其製備之物品
CA2616341C (fr) Particules nanocomposites electriquement conductrices possedant un coeur de polyacrylate d'alkyle et une ecorce de polyaniline
FR3055629A1 (fr)
EP3172274A1 (fr) Utilisation des mélanges des peroxydes monoperoxycarbonate pour la réticulation et composition de polymères réticulables
EP2895536B1 (fr) Melange primaire d'initiateur et de promoteur de reticulation
FR3026547A1 (fr) Dispositif electrique comprenant une couche reticulee
EP3146533A1 (fr) Câble électrique comprenant une couche réticulée
EP3143084B1 (fr) Compositions polymères réticulables comprenant des interpolymères à fonctionnalisation amine, procédés pour leur préparation et objets produits à partir de celles-ci
FR2866892A1 (fr) Composition de peroxyde organique et alcool pour la reticulation des elastomeres
EP2507304A1 (fr) Systeme de reticulation a haute vitesse
EP3415560A1 (fr) Composition de polyéthylène réticulé
EP0002418B1 (fr) Procédé de fabrication de produits extrudés à base de compositions polyoléfiniques
FR2972559A1 (fr) Cable electrique a moyenne ou haute tension
CN106478887B (zh) 一种可交联接枝聚乙烯组合物、交联接枝聚乙烯制品及制备方法和制品
FR2808527A1 (fr) Composition a proprietes thermomecaniques ameliorees et procede pour sa reticulation
EP0004826B1 (fr) Compositions stabilisées à base de chlorure de polyvinyle et produits conformés obtenus à partir de ces compositions
FR2950352A1 (fr) Composition melange-maitre utile dans les modules photovoltaiques
EP2598559B1 (fr) Procede pour preparer un cable et utilisation de peroxydes organiques pour reduire l'etape de degazage dans un procede pour preparer un cable
EP3990535A1 (fr) Materiau pour emballage alimentaire et son procede de préparation
CN109627563A (zh) 一种易剥离的eva/pop半导电外屏蔽材料
EP0252061A1 (fr) Procédé de production de polymères et copolymères vinyliques réticulables par greffage d'un composé hydrolysable du silane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12787776

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012787776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012787776

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014536319

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14353720

Country of ref document: US

Ref document number: P407/2014

Country of ref document: AE

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013751

Country of ref document: KR

Kind code of ref document: A