Nothing Special   »   [go: up one dir, main page]

WO2013060165A1 - 垂直轴风力发电机储能发电系统及方法 - Google Patents

垂直轴风力发电机储能发电系统及方法 Download PDF

Info

Publication number
WO2013060165A1
WO2013060165A1 PCT/CN2012/078330 CN2012078330W WO2013060165A1 WO 2013060165 A1 WO2013060165 A1 WO 2013060165A1 CN 2012078330 W CN2012078330 W CN 2012078330W WO 2013060165 A1 WO2013060165 A1 WO 2013060165A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pressure gas
tank
air
power
Prior art date
Application number
PCT/CN2012/078330
Other languages
English (en)
French (fr)
Inventor
邓允河
Original Assignee
Deng Yunhe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deng Yunhe filed Critical Deng Yunhe
Priority to AU2012327765A priority Critical patent/AU2012327765A1/en
Priority to CA2853306A priority patent/CA2853306A1/en
Priority to JP2014537462A priority patent/JP2014532825A/ja
Priority to US14/353,321 priority patent/US9546642B2/en
Priority to EP12843953.6A priority patent/EP2772645A4/en
Publication of WO2013060165A1 publication Critical patent/WO2013060165A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/005Installations wherein the liquid circulates in a closed loop ; Alleged perpetua mobilia of this or similar kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/008Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with water energy converters, e.g. a water turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/17Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/212Rotors for wind turbines with vertical axis of the Darrieus type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/85Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/902Braking using frictional mechanical forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to the field of vertical axis wind power generation, and more particularly to a large vertical axis wind power generator having parallel/off-grid power generation.
  • China's current power supply system is that the substation supplies electricity from the power generation equipment to the substations in each area, and then the power station supplies power to the residents and factories in the area.
  • this kind of grid-connected power supply There are many problems such as high cost of construction, difficult maintenance, etc., thus causing remoteness.
  • the problem of difficult power supply in the region is also an issue that governments at all levels need to solve.
  • Off-grid power generation is undoubtedly the best way to solve this problem, and how to use wind power to solve this problem has become the direction of people's research and development.
  • One of the technical problems to be solved by the present invention is to provide a vertical axis wind power generator energy storage power generation system, when the power is generated on the grid, the power generation power does not impact the power grid; the electric energy can be converted into other forms of energy for storage, and then The conversion to electric energy solves the problem of waste of electric energy to a certain extent, and at the same time, the problem of large-scale vertical-axis wind turbines off-grid power generation is also eliminated.
  • the second technical problem to be solved by the present invention is to provide a vertical axis wind power generator energy storage power generation method, and when the power is generated on the grid, the power generation power does not impact the power grid; the electric energy can be converted into other forms of energy for storage, and then The conversion to electric energy solves the problem of waste of electric energy to a certain extent, and at the same time, the problem of large-scale vertical-axis wind turbines off-grid power generation is also eliminated.
  • the technical solution of the present invention is: comprising an energy storage system and a power generation system, the power generation system comprising a central tower, and more than one power generation unit disposed on the central tower, the power generation unit including a ⁇ -shaped wind wheel pivotally connected to the central tower, a main gear sleeved on the central tower, two or more generators, a mounting platform for mounting the generator; the main gear is disposed on the wind wheel Lower and connected to the wind wheel; the main gear is respectively coupled to a rotating shaft of the generator through a gear transmission system; the energy storage system includes a high pressure gas generating device, a water storage device and a water turbine, the high pressure gas The generating device comprises at least one high-pressure gas storage tank and an air compressor cooperating therewith, the water storage device comprising at least one water tank; the air compressor is connected to the high-pressure gas storage tank through an intake pipe, the high-pressure gas storage a tank is communicated with the water tank through an air outlet duct; the water turbine is
  • the upper end of the wind wheel is provided with a first bearing, the inner ring of the first bearing is fixedly sleeved on the central tower, and the outer ring of the first bearing is fixedly connected with the upper end of the wind wheel; a second bearing is disposed at a lower end of the wind wheel, an inner ring of the second bearing is fixedly sleeved on the central tower, and an outer ring of the second bearing is fixedly connected with a lower end of the wind wheel and a main gear,
  • the wind wheel is pivotally coupled to the center tower column by a first bearing and a second bearing.
  • a coupling and a brake device are disposed between the main gear and the wind wheel, an upper end of the coupling is connected to a lower end of the wind wheel, and a lower end of the coupling is connected to a main gear;
  • the brake device An annular brake disc disposed on the coupling and one or more brake devices fixed to the tower, the brake device including a brake and a power source for driving the brake, the brake and the brake Disk fit.
  • the central tower is a reinforced concrete structure
  • the center of the central tower is provided with a passage from the bottom to the top
  • the installation platform surrounds the central tower
  • the mounting platform is provided with a mounting screw hole
  • the inner rotor generator is fixed on the mounting platform by bolts.
  • the water storage device includes two water tanks, and the water turbine outlet communicates with the water tank through a return water pipe.
  • the high-pressure gas generating device includes two high-pressure gas storage tanks and two air compressors, and the two high-pressure gas storage tanks are respectively a first high-pressure gas storage tank and a second high-pressure gas storage tank, and two The air compressors are respectively a first air compressor and a second air compressor, wherein the second air compressor is in communication with the first high pressure gas storage tank through a first air pipe; the first air compressor passes through a second The air pipe is in communication with the air outlet pipe.
  • the intake pipe, the air outlet pipe, the first air pipe, the second air pipe, the water outlet pipe and the return water pipe are all provided with a valve, and the water outlet pipe is provided with a supercharging device.
  • a vertical axis wind power generator energy storage power generation method including an energy storage system and a power generation system, the power generation system including one or more disposed on a central tower Power generation unit, the power generation unit includes a ⁇ -shaped wind wheel pivotally connected to the central tower column, a main gear sleeved on the central tower column, two or more generators, a mounting platform for installing a generator;
  • the energy storage system includes a high pressure gas generating device, a water storage device, and a water turbine, the high pressure gas generating device including at least one sealed high pressure gas storage tank and an air compressor coupled therewith,
  • the water storage device comprises at least one sealed water tank;
  • the specific power generation method comprises the following steps:
  • the power generation system delivers excess electricity through the cable to the air compressor of the energy storage system
  • the air compressor is electrically operated, and the air is compressed into the high-pressure gas storage tank through the intake pipe to increase the potential energy of the air molecules in the high-pressure gas storage tank, and complete the conversion of the potential energy of the electric energy to the air;
  • the high-pressure gas generating device includes two high-pressure gas storage tanks and two air compressors, and the two high-pressure gas storage tanks are respectively a first high-pressure gas storage tank and a second high-pressure gas storage tank, and two The air compressors are respectively a first air compressor and a second air compressor, wherein the second air compressor is in communication with the first high pressure gas storage tank through a first air pipe; the first air compressor passes through a second The air pipe is connected to the air outlet pipe; the step (2) is specifically: the first air compressor compresses air into the first high-pressure gas storage tank through the air inlet pipe, so that the air molecular potential energy in the first high-pressure gas storage tank The second air compressor compresses air into the second high-pressure gas storage tank through the intake pipe to increase the potential energy of the air molecules in the second high-pressure gas storage tank.
  • the water storage device includes two water tanks, which are a first water tank and a second water tank, respectively, wherein the water turbine outlet is connected to the first water tank and the second water tank through a water return pipe; the step (3) Specifically, the first water tank or the second water tank is filled with water, the water tank containing water is a working water tank, and the water tank without water is a reserve water tank, and when the energy storage system needs to be activated to generate electricity, the high pressure gas in the high pressure gas storage tank passes through the gas outlet. The pipe is released into the working water tank, and the air pressure in the working water tank is increased.
  • the pressure reaches the specified value
  • the water in the working water tank is released to the water turbine through the water outlet pipe; after the work is done on the water turbine, it enters the standby water tank through the return water pipe, until the water in the working water tank is completely transferred to the reserve water tank, the reserve water tank becomes The new working water tank, the original working water tank becomes a new spare water tank, and thus cycles to generate electricity.
  • the turbine can be used as an auxiliary start when the low wind speed rotor is difficult to start the generator. Under the common driving of the wind turbine and the turbine, the generator can be easily started;
  • the energy storage system and the power generation system cooperate to convert the electric energy into other forms of energy for storage, and then convert it into electric energy, which solves the problem of waste of electric energy to some extent, and also eliminates the large-scale vertical axis wind turbine off-grid. The problem of power generation.
  • FIG. 1 is a schematic structural view of a power generation system according to Embodiment 1 of the present invention.
  • Figure 2 is an enlarged view of A of Figure 1.
  • FIG. 3 is a schematic structural view of a power generation system according to Embodiment 2 of the present invention.
  • Figure 4 is a schematic diagram of the internal structure of the installation platform.
  • Figure 5 is a schematic view of the structure of the brake device.
  • Figure 6 is a schematic view of the structure
  • Figure 7 is a piping diagram of an energy storage system according to Embodiment 1 of the present invention.
  • Figure 8 is a piping diagram of an energy storage system according to Embodiment 2 of the present invention.
  • Figure 9 is a cross-sectional view of the water tank in the energy storage system of the second embodiment.
  • FIG. 10 is a piping diagram of the energy storage system of Embodiment 3. detailed description
  • a vertical axis wind turbine energy storage power generation system including an energy storage system and a power generation system.
  • the energy storage system includes a central tower 24 and more than one power generating unit disposed on the central tower 24.
  • the central tower 24 is provided with a power generating unit.
  • the power generating unit is close to the ground.
  • the power generating unit includes a wind wheel 17, a main gear 18, two or more generators 20, and a mounting platform 23 for mounting the generator 20.
  • two generators 20 are symmetrically disposed around the main gear 18; the wind wheel 17 is a ⁇ -shaped wind wheel, and the wind wheel 17 is composed of two symmetrical blades.
  • a first bearing 16 is disposed on the center tower 24 at the upper end of the corresponding wind wheel 17, and a second bearing 19 is disposed at a position corresponding to the lower end of the corresponding wind wheel 17 on the center tower 24.
  • the upper end of the blade is connected to the outer ring of the first bearing 16 through the first connecting flange 27; the lower end of the blade passes through the second connecting flange 28, the coupling 29, the third connecting flange (not labeled), the main gear 18 and then The outer ring of the second bearing 19 is connected.
  • the first and second bearings 16 and 19 of the present embodiment are double volleyball slewing bearings, and the bearing is prior art, and will not be described in detail herein. Those skilled in the art should know the structure and working principle.
  • the wind wheel 17 is pivotally connected to the center column 24 via a first bearing 16 and a second bearing 19, and the wind wheel 17 and the main gear 18 have a synchronous speed.
  • the main gear 18 is connected to the rotating shaft of the generator 20 through a gear transmission system.
  • the gear transmission system is a bevel gear 22, and the main gear 18 meshes with the bevel gear 22, and The bevel gear 22 is sleeved on the rotating shaft of the horizontally placed generator 20. Therefore, the wind wheel 17 is coupled with the rotating shaft of the generator 20 through the main gear 18 and the bevel gear 22, thereby realizing the vertical rotation of the wind wheel 17 into The horizontal rotation of the generator 20 makes the installation of the generator 20 simpler and more convenient for a vertical axis wind turbine.
  • the squirrel cage 41 is designed to transmit the torque at the upper end of the blade to the lower end of the blade, so as to reduce the degree of distortion of the blade as much as possible during the rotation.
  • a clutch (not labeled) for controlling the gear transmission system to be coupled to the main gear 18 is disposed between the main gear 18 and the bevel gear 22, and a speed sensor (not labeled) is disposed on the rotating shaft of the wind wheel 17 and the generator 20, The speed sensor is electrically coupled to the clutch.
  • a signal is sent to the clutch to disconnect the clutch transmission system from the main gear 18; when the speed sensor detects the rotational speed of the wind wheel 17 When the preset value is reached, a signal is sent to the clutch to reconnect the clutch to the gear train and the main gear 18.
  • the central tower 24 is a hollow reinforced concrete structure, and the installation platform 23 surrounds the central tower 24, and the installation platform 23 and the central tower 24 are body-molded.
  • the mounting platform 23 is internally provided with an I-beam, and the I-beam is horizontally disposed and extends through the central tower 24, and is vertically interlaced to form a grid-like distribution, and the building structure in the central tower 24 is extended by the steel bar 30. Up to the installation platform 23.
  • the mounting platform 23 is provided with a mounting screw hole, and the power generating device such as the generator 20 and the control cabinet 25 is fixed to the mounting platform 23 by bolts.
  • a protective cover 21 is disposed on the mounting platform 23, and the protective cover 21 surrounds the mounting platform 23.
  • the protective cover 21 is provided with doors and windows to form a weatherproof house, and the generator 20 is disposed in the house. It is used to protect power generation equipment such as generator 20, control cabinet 25, and gear transmission system from the external environment, and confirm that it operates in a safe environment, which can increase the service life of power generation equipment.
  • the distance between the adjacent two mounting platforms 23 is for mounting the wind wheel 17 of the power generating unit.
  • the center tower 24 can be provided with a service port to the passage 31 in the center tower 24, and the maintenance personnel can enter the passage 31 of the center tower 24 through the maintenance port, and set the crane in the passage 31.
  • the cage, the maintenance personnel reach the different heights of the central tower 24 through the cage, is very convenient for the vertical axis wind turbine 20 having the multi-layer power generating unit; the cable of the upper power generating unit can also pass through the passage 31. Route the wiring.
  • the coupling 29 is an elastic coupling 29, the upper end of the coupling 29 is connected to the lower end of the wind wheel 17 through the second connecting flange 28, and the lower end of the coupling 29 is passed through the third connecting flange.
  • the main gear 18 is coupled, and the main gear 18 is fixed to the outer ring of the second bearing 19, so that the wind wheel 17, the coupling 29, and the main gear 18 can be synchronized.
  • a brake device is disposed in the coupling 29, and the brake is provided
  • the vehicle assembly includes an annular brake disc 32 and more than one brake device 36.
  • the brake disc 32 includes a fixing portion 40 and a friction portion 39.
  • the fixing portion 40 and the friction portion 39 are provided with a slope transition.
  • the fixing portion 40 is fixed on the coupling 29;
  • the lower surface is provided with anti-slip stripes along the radial direction, and the anti-slip stripes are radial, which increases the friction between the brake and the brake disc 32, thereby enhancing the braking effect.
  • the brake device 36 includes a brake pad 35, a damper 34, a damper pad 33, a brake 38, and a power source 37 that drives the brake.
  • An annular boss 43 is disposed on the central tower 24, the damper pad 33 is disposed on the boss 43, and the damper 34 is disposed on the damper pad 33.
  • the brake pad 35 is disposed on the damper 34, the brake 38 is disposed on the brake pad 35, and the brake 38 is evenly distributed around the center tower 24 to form a multi-point brake
  • the brake 38 includes brake pads disposed on the upper and lower sides of the brake disc 32, and the brake pads cooperate with the friction portion 39 of the brake disc 32; the power source 37 in the brake device 36 is a hydraulic drive system. Provide reliable and powerful power.
  • the braking device When braking, the braking device actually brakes the coupling 29, but since the coupling 29 integrates the wind wheel 17 with the main gear 18, the wind wheel 17 of the vertical axis wind power generator 20 can be reduced.
  • the speed of the main gear 18 is such that not only the wind wheel 17 can be protected from being damaged by stalling, but also the generator 20 is protected from burning due to excessive power generation.
  • the brake device and the vertical shaft wind generator 20 cooperate with each other, and the structure is simple and the braking effect is remarkable.
  • the wind wheel 17 is rotated by the wind, and its power is transmitted to the rotating shaft of each of the generators 20 through the main gear 18 and the gear transmission system in turn, and mechanical energy is supplied to each of the generators 20 to generate electricity.
  • the speed ratio of the main gear 18 to the rotating shaft of the generator 20 can be changed by the gear transmission system.
  • the rotational speed of the wind wheel 17 is low, after the adjustment of the gear transmission system, a large rotational speed can also be output to the rotating shaft of the generator 20. In this way, the high-speed generator 20 can be utilized, and the high-speed generator 20 is smaller in volume than the prior art low-speed generator 20 at the same power generation.
  • the load of the wind wheel 17 is reduced, and the starting wind speed is smaller, which is advantageous for the wind power generator 20 to generate electricity even at a low wind speed;
  • the generator 20 in each power generating unit is small in volume, and the manufacturing cost thereof is low, and Reduce the difficulty of maintenance and repair;
  • the number of power generation units that can be installed on the central tower 24 is more, which further increases the power generation of the vertical axis wind turbine generator system.
  • the energy storage system includes a high pressure gas generating device, a water storage device, and a water turbine.
  • the high pressure gas generating device includes at least one sealed high pressure gas storage tank 2 and cooperates therewith
  • the air compressor 1, this embodiment includes only one closed high pressure gas storage tank 2 and one air compressor 1;
  • the water storage means includes at least one closed water tank 3, and this embodiment includes only one water tank 3.
  • the air compressor 1 is connected to the high-pressure gas storage tank 2 through an intake pipe 4, and the intake pipe 4 is provided with a manual valve 8; the high-pressure gas storage tank 2 is connected to the gas outlet pipe 5 through a regulating valve 9.
  • the air outlet duct 5 is connected to the top of the water tank 3, and the air outlet duct 5 is provided with a manual valve 8; the air compressor 1 is connected to the air outlet duct 5 through the second air pipe 14, and the second air pipe 14 is provided with a manual valve.
  • the bottom of the water tank 3 leads out the water outlet pipe 6, and is connected to the water inlet of the water turbine 10 through the water outlet pipe 6, and the water outlet pipe 6 is provided with a manual valve 8 and at least one supercharger 13, and the water outlet pipe 6 passes
  • the booster valve 11 is connected to the water inlet of the water turbine 10; the water turbine 10 is disposed below the power generating unit, and the water turbine 10 includes an impeller 102 surrounding the central tower 24 and a casing 101 enclosing the impeller, the impeller 102 and the main of the turbine The gears 18 are connected.
  • the power generation system delivers excess power through the cable to the air compressor 1 of the energy storage system;
  • the air compressor 1 is electrically operated, and the air is compressed into the high-pressure gas storage tank 2 through the intake duct 4, so that the potential energy of the air molecules in the high-pressure gas storage tank 2 is increased, and the conversion of the potential energy of the electric energy to the air is completed;
  • the energy storage system can also serve to adjust the output power of the generator 20:
  • the startup mode of the generator 20 When the low wind speed generator 20 is difficult to start, the energy storage system is started, and the turbine 10 is driven to rotate through the wind. The interaction of the wheel 17 and the impeller 102 of the turbine effects the activation of the generator 20.
  • the power generation mode of the generator 20 When the generator 20 generates power normally but does not reach full power, the speed sensor measures the rotation speed of the wind wheel 17, and feeds the signal back to the controller, and the controller signals the signal with the preset The signals are compared to control the flow of the solenoid valve on the outlet pipe, and the water flow in the outlet pipe is repressurized by the supercharger 13 to form a powerful water column rushing toward the impeller 102 of the turbine, accelerating the impeller 102 of the turbine and the rotor of the generator 20.
  • the rotational speed as the speed of the wind wheel 17 rises slowly, the flow rate of the solenoid valve is gradually reduced, so that the action of the water column in the water outlet pipe to the impeller 102 of the water turbine is weakened, so that the rotor of the generator 20 can smoothly reach the rated rotational speed.
  • the power generation unit can be kept in a full state at all times, making the power generation unit more stable when it is connected to the power grid.
  • the braking mode of the generator 20 When the super-high wind causes the speed of the generator 20 to exceed the predetermined speed, the speed sensor measures the rotation speed of the wind wheel 17, and feeds the signal back to the controller, and the controller signals the signal with the preset The signals are compared to control the flow of the solenoid valve and the direction of the turbine inlet.
  • the water column in the water outlet pipe 6 acts on the impeller 102 opposite to the direction of rotation of the impeller 102, and applies a reverse thrust to the first impeller 102, thereby limiting the maximum rotor speed of the generator 20 and maintaining the power generation state of the power generating unit. In full status.
  • Example 2 Example 2
  • a vertical axis wind turbine energy storage power generation system including an energy storage system and a power generation system.
  • the energy storage system includes a central tower 24 and more than one power generating unit disposed on the tower.
  • the central tower 24 is provided with two power generating devices. unit.
  • the power generating unit includes a wind wheel 17, a main gear 18, two or more generators 20, and a mounting platform 23 for mounting the generator 20.
  • two generators 20 are symmetrically disposed around the main gear 18; the wind wheel 17 is a ⁇ -shaped wind wheel, and the wind wheel 17 is composed of two symmetrical blades.
  • a first bearing 16 is disposed on the center tower 24 at an upper end of the corresponding wind wheel 17, and a second bearing 19 is disposed on the center tower 24 at a position corresponding to the lower end of the wind wheel 17.
  • the upper end of the blade is connected to the outer ring of the first bearing 16 through the first connecting flange 27; the lower end of the blade passes through the second connecting flange 28, the coupling 29, the third connecting flange, the main gear 18 and the second bearing 19 in sequence.
  • the outer ring is connected.
  • the first and second bearings of the present embodiment are double volleyball slewing bearings, and the bearing is prior art, and will not be described in detail herein, and those skilled in the art should be aware of its structure and working principle.
  • the wind wheel 17 is pivotally connected to the central tower 24 by a first bearing 16 and a second bearing 19, and The rotor 17 has a synchronous rotational speed with the main gear 18.
  • the main gear 18 is connected to the rotating shaft of the generator 20 through a gear transmission system.
  • the gear transmission system is a bevel gear 22, and the main gear 18 meshes with the bevel gear 22, and The bevel gear 22 is sleeved on the rotating shaft of the horizontally placed generator 20. Therefore, the wind wheel 17 is coupled with the rotating shaft of the generator 20 through the main gear 18 and the bevel gear 22, thereby realizing the vertical rotation of the wind wheel 17 into The horizontal rotation of the generator 20 makes the installation of the generator 20 simpler and more convenient for a vertical axis wind turbine.
  • first connecting pipes 26 uniformly distributed on the same circumference are provided, and the upper end of the connecting pipe 26 passes through the first connecting flange 27 and the first bearing.
  • the outer ring of the 16 is fixedly connected, and the lower end of the connecting pipe 26 is connected to the second connecting flange 28, and the outer ring of the first bearing 16 is synchronized with the outer ring of the second bearing 19 via the connecting pipe 26.
  • the first connecting flange 27 and the second connecting flange 28 of the connecting pipe 26 are distributed to form a squirrel cage 41 structure. Since the wind speed at the upper end of the blade is different from the wind speed at the lower end, the wind speed at the upper end is generally larger than the wind speed at the lower end.
  • the speed of the upper end of the blade is faster than that of the lower end when rotating, but since the blade is an entire structure, the upper end and the lower end of the blade must have synchronous rotation speeds, so that the blade may be twisted, thereby destroying the most Good windward area, reducing the utilization of wind energy.
  • the squirrel cage 41 is designed to transmit the torque at the upper end of the blade to the lower end of the blade, so that the blade is less likely to reduce the degree of distortion during rotation.
  • a clutch (not labeled) for controlling the gear transmission system to be coupled to the main gear 18 is disposed between the main gear 18 and the bevel gear 22, and a speed sensor (not labeled) is disposed on the rotating shaft of the wind wheel 17 and the generator 20, The speed sensor is electrically coupled to the clutch.
  • a signal is sent to the clutch to disconnect the clutch transmission system from the main gear 18; when the speed sensor detects the rotational speed of the wind wheel 17 When the preset value is reached, a signal is sent to the clutch to reconnect the clutch to the gear train and the main gear 18.
  • the central tower 24 is a hollow reinforced concrete structure
  • the mounting platform 23 surrounds the central tower 24, and the mounting platform 23 is integrally formed with the central tower 24.
  • the mounting platform 23 is internally provided with an I-beam, and the I-beam is horizontally disposed and extends through the central tower 24, and is vertically interlaced to form a grid-like distribution, and the building structure in the central tower 24 is extended by the steel bar 30. Up to the installation platform 23.
  • the mounting platform 23 is provided with a mounting screw
  • a power generating device such as a hole, a generator 20, a control cabinet 25, and the like are fixed to the mounting platform 23 by bolts.
  • a protective cover 21 is disposed on the mounting platform 23, and the protective cover 21 surrounds the mounting platform 23.
  • the protective cover 21 is provided with doors and windows to form a weatherproof house, and the generator 20 is disposed in the house. It is used to protect power generation equipment such as generator 20, control cabinet 25, and gear transmission system from the external environment, and confirm that it operates in a safe environment, which can increase the service life of power generation equipment.
  • the distance between the two adjacent mounting platforms 23 is used to mount the wind wheel 17 of the vertical axis wind turbine.
  • the center tower 24 can be provided with a service port to the passage 31 in the center tower 24, and the maintenance personnel can enter the passage 31 of the center tower 24 through the maintenance port, and set the crane in the passage 31.
  • the cage, the maintenance personnel reach the different heights of the central tower 24 through the cage, which is very convenient for the vertical axis wind turbine with the multi-layer power generation unit; the cable of the upper power generation unit can also pass through the passage 31 wiring.
  • the coupling 29 is an elastic coupling 29, the upper end of the coupling 29 is connected to the lower end of the wind wheel 17 through the second connecting flange 28, and the lower end of the coupling 29 is passed through the third connecting flange.
  • the main gear 18 is coupled, and the main gear 18 is fixed to the outer ring of the second bearing 19, so that the wind wheel 17, the coupling 29, and the main gear 18 can be synchronized.
  • a brake device is disposed in the coupling 29, and the brake device includes an annular brake disc 32 and one or more brake devices 36.
  • the brake disc 32 includes a fixing portion 40 and a friction portion 39.
  • the fixing portion 40 and the friction portion 39 are provided with a slope transition.
  • the fixing portion 40 is fixed on the coupling 29;
  • the lower surface is provided with anti-slip stripes along the radial direction, and the anti-slip strips are radial, which increases the friction between the brake 38 and the brake disc 32, thereby enhancing the braking effect.
  • the brake device 36 includes a brake pad 35, a damper 34, a damper pad 33, a brake 28, and a power source 37 that drives the brake.
  • An annular boss 43 is disposed on the central tower 24, the damper pad 33 is disposed on the boss 43, and the damper 34 is disposed on the damper pad 33.
  • the brake pad 35 is disposed on the damper 34, the brake 38 is disposed on the brake pad 35, and the brake 38 is evenly distributed around the center tower 24 to form a multi-point brake
  • the brake 38 includes brake pads disposed on the upper and lower sides of the brake disc 32, and the brake pads cooperate with the friction portion 39 of the brake disc 32; the power source 37 in the brake device 36 is a hydraulic drive system. Provide reliable and powerful power.
  • the braking device When braking, the braking device actually brakes the coupling 29, but since the coupling 29 integrates the wind wheel 17 with the main gear 18, the wind wheel 17 and the main gear of the power generating unit can be reduced.
  • the speed of 18, in this way not only protects the wind wheel 17 from damage due to stalling, but also protects the generator 20 from burning due to excessive power generation.
  • the brake device cooperates with the vertical axis wind turbine, and has a simple structure and a remarkable braking effect.
  • the wind wheel 17 is rotated by the wind, and its power is transmitted to the rotating shaft of each of the generators 20 through the main gear 18 and the gear transmission system in turn, and mechanical energy is supplied to each of the generators 20 to generate electricity.
  • the speed ratio of the main gear 18 to the rotating shaft of the generator 20 can be changed by the gear transmission system.
  • the rotational speed of the wind wheel 17 is low, after the adjustment of the gear transmission system, a large rotational speed can also be output to the rotating shaft of the generator 20. In this way, the high-speed generator 20 can be utilized, and the high-speed generator 20 is smaller in volume than the prior art low-speed generator 20 at the same power generation.
  • the load of the wind wheel 17 is reduced, and the starting wind speed is smaller, which is advantageous for the wind power generator 20 to generate electricity even at a low wind speed;
  • the generator 20 in each power generating unit is small in volume, and the manufacturing cost thereof is low, and Reduce the difficulty of maintenance and repair;
  • the number of power generation units that can be installed on the central tower 24 is more, which further increases the power generation of the vertical axis wind turbine generator system.
  • the energy storage system includes a high pressure gas generating device, a water storage device, and a water turbine 10.
  • the high-pressure gas generating device comprises two sealed high-pressure gas storage tanks and two air compressors, and the two high-pressure gas storage tanks are respectively a first high-pressure gas storage tank 2a and a second high-pressure gas storage tank 2b, two The air compressors are a first air compressor la and a second air compressor lb, respectively;
  • the water storage device includes two water tanks, which are a first water tank 3a and a second water tank 3b, respectively.
  • the first air compressor 1a is in communication with the first high pressure gas storage tank 2a via an intake duct 4, and the intake duct 4 is provided with a manual valve 8; the second air compressor lb passes through an intake duct 4 communicating with the second high-pressure gas storage tank 2b, the intake pipe 4 is provided with a manual valve 8; the second air compressor lb is connected to the first high-pressure gas storage tank 2a through the first air pipe 15
  • the first air pipe 15 is provided with a manual valve 8;
  • the first high-pressure gas storage tank 2a is connected to two air outlet pipes 5 through a regulating valve 9, and the air outlet pipe 5 and the first water tank 3a and the first
  • the top of the two water tanks 3b is connected, and the outlet pipe 5 is provided with a manual valve 8;
  • the first air compressor la is connected to the air outlet pipe 5 through the second air pipe 14, and the second air pipe 14 is provided with a manual valve 8;
  • the second high-pressure gas storage tank 2b is connected to the two outlet pipes 5 through the regulating valve
  • the power generation system delivers excess power through the cable to the first air compressor la and the second air compressor lb of the energy storage system;
  • the first air compressor 1a and the second air compressor 1b are electrically operated, and the first air compressor 1a compresses air into the first high-pressure gas storage tank 2a through the intake duct 4, so that the first high-pressure gas storage gas
  • the potential energy of the air molecules in the tank 2a is increased
  • the second air compressor lb compresses the air into the second high-pressure gas storage tank 2b through the intake duct 4, so that the potential energy of the air molecules in the second high-pressure gas storage tank 2b is increased to complete the electric energy.
  • the first water tank 3a or the second water tank 3b is filled with water, the water tank containing water is the working water tank, and the water tank without water is the reserve water tank, and when the energy storage system needs to be activated to generate electricity, the first high pressure gas storage tank 2a and / or the high pressure gas in the second high pressure gas storage tank 2b is released into the working water tank through the gas outlet pipe 5, the gas pressure in the working water tank is increased, and when the gas pressure reaches a specified value, the water in the working water tank is released to the water turbine 10 through the water discharge pipe 6.
  • the water in the water outlet pipe 6 generates a certain kinetic energy under the action of the air pressure, thereby completing the conversion of the kinetic energy of the air molecular potential energy to the water;
  • the power station has the surplus electric energy or the first high pressure gas storage tank 2a and
  • the first air compressor 1a directly injects the high pressure gas into the working water tank through the second air pipe 14 and the air outlet pipe 5;
  • the energy storage system serves to regulate the output of the generator 20:
  • the starting mode of the generator 20 When the low wind speed generator 20 is difficult to start, the energy storage system is started to push the water turbine 10 to rotate, and the start of the generator 20 is realized by the cooperation of the wind wheel 17 and the impeller 102 of the water turbine 10.
  • the power generation mode of the generator 20 When the generator 20 generates power normally but does not reach full power, the speed sensor measures the rotation speed of the wind wheel 17, and feeds the signal back to the controller, and the controller signals the signal with the preset The signals are compared to control the flow rate of the solenoid valve on the water outlet pipe 6, and the water flow in the water outlet pipe 6 is again pressurized by the supercharger 13 to form a powerful water column to rush the impeller 102 of the water turbine 10, accelerating the impeller 102 of the water turbine 10 and generating electricity.
  • the rotational speed of the rotor of the machine 20 as the speed of the wind wheel 17 gradually rises, the flow rate of the electromagnetic valve gradually decreases, so that the action of the water column in the water outlet pipe 6 on the impeller 102 of the water turbine 10 is weakened, and the rotor of the outer rotor generator 20 is made It can reach the rated speed smoothly.
  • the bottom power generation unit can be kept in a full state at all times, making the power generation unit more stable when it is connected to the power grid.
  • the braking mode of the generator 20 When the super-high wind causes the outer rotor generator 20 to exceed the predetermined speed, the speed sensor measures the rotational speed of the wind wheel 17, and feeds the signal back to the controller, and the controller signals the signal The preset signals are compared to control the flow of the solenoid valve and the direction of the turbine 10 inlet.
  • the water column in the water outlet pipe 6 acts on the impeller 102 opposite to the direction of rotation of the impeller 102, and applies a reverse thrust to the first impeller 102, thereby limiting the maximum rotor speed of the outer rotor generator 20, so that the bottom power generating unit
  • the power generation state remains in a full state.
  • the water storage device comprises two mutually connected water tanks, a first water tank 3a and a second water tank 3b, and a valve is provided between the two water tanks (not Mark) Control its connectivity.
  • the air compressor 1 is connected to the high-pressure gas storage tank 2 through an intake pipe 4, and the intake pipe 4 is provided with a manual valve 8; the high-pressure gas storage tank 2 is connected to the gas outlet pipe 5 through a regulating valve 9.
  • the air outlet duct 5 is connected to the top of the first water tank 3a, and the air outlet duct 5 is provided with a manual valve 8; the air compressor 1 is connected to the air outlet duct 5 through the second air duct 14, and the second air duct 14 is provided with a manual valve 8; a water outlet pipe 6 is connected to the bottom of the first water tank 3a, and is connected to the water inlet of the water turbine 10 through a water outlet pipe 6, and the water outlet pipe 6 is provided with a manual valve 8 and at least one supercharger 13, The water outlet pipe 6 is connected to the water inlet of the water turbine 10 through the pressure increasing valve 11; the water outlet of the water turbine 10 communicates with the second water tank 3b through the return water pipe 7.
  • the power generation system delivers excess power through the cable to the air compressor 1 of the energy storage system;
  • the air compressor 1 is energized, and the air compressor 1 compresses the air into the high-pressure gas storage tank 2 through the intake duct 4, so that the potential energy of the air molecules in the high-pressure gas storage tank 2 is increased;
  • the air compressor 1 directly injects the high pressure gas into the first water tank 3a through the second air pipe 14 and the air outlet pipe 5.
  • the vertical axis wind turbine energy storage power generation system of the present invention when the vertical axis wind turbine energy storage power generation system of the present invention is connected to the grid for power generation, the power generation power does not impact the power grid; the electric energy can be converted into other forms of energy for storage, and then converted into electric energy, which must be To solve the problem of power waste, the problem of large-scale vertical axis wind turbines off-grid power generation is also eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种垂直轴风力发电机储能发电系统及方法,该储能发电系统包括储能系统和发电系统,储能系统包括高压气体发生装置、蓄水装置和水轮机,高压气体发生装置包括至少一个密闭的高压储气罐(2)和与其配合的空气压缩机(1),蓄水装置包括至少一个密闭的水箱(3);空气压缩机通过进气管道(4)与高压储气罐连通,高压储气罐通过出气管道(5)与水箱连通;水箱通过出水管道与水轮机(10)的进水口连接,水轮机的叶轮(102)通过主齿轮与发电机连接;所述发电系统通过电缆向所述空气压缩机供电。在该系统并网发电时,其发电功率对电网不会造成冲击,并且能够将电能转化成其他形式的能量进行储存,然后再转换为电能,从而在一定程度上解决的电能浪费的问题,同时也解决了大型垂直轴风力发电机离网发电的问题。

Description

垂直轴风力发电机储能发电系统及方法 技术领域
本发明涉及垂直轴风力发电领域, 尤其是具备并 /离网发电的大型垂直 轴风力发电机。
说 背景技术
人们的生活和工作离不开电, 没有了电的世界是无法想象的, 人们的 生活没有了电将是无趣乏味的, 人们的生产没有了电将会停滞, 会直接导 致整个社会生产力崩溃。 电能如此的重要, 书目前世界各国都相当的重视电 能的开发, 比较常用的发电设备有风力发电、 水力发电、 火力发电以及核 能发电, 火力发电和核能发电存在重大污染, 不符合人类发展的需求, 目 前正逐渐被人类所放弃; 而水力发电的资源小, 远远满足不了人类对电量 的需求; 因此清洁环保、 资源丰富的风力发电将成为今后人类主要开发的 方向。
目前采用并网发电的大型垂直轴风力发电机还存在很多问题, 而这些 难题都是由于自然风存在许多的不稳定性所引起的。 在低风速时, 大型的 垂直轴风力发电机难以启动, 或者根本无法启动, 导致发电机白白浪费了 资源; 在正常风速时, 大型的垂直轴风力发电机虽然能够启动并工作, 但 是发电机的发电效率不高, 往往是没有达到满发的状态; 在超大风时, 发 电机的转速明显加快, 甚至超过了发电机本身的额定功率, 这时候的发电 机处于危险状态, 发电机部件有可能会被损坏, 而超高的功率输出同时也 存在一定的危险。 另外, 因为自然风会无时无刻的存在小风、 低风速或者 高风速, 导致发电机的发电功率极其不稳定, 接入电网时会对电网造成冲 击。
我国目前的供电系统是变电站将发电设备发出来的电供应到各个片区 的配电站, 再由配电站向该区域的居民和工厂供电, 对于偏远的地区来说, 这种并网供电的方式存在造价成本高, 维修难等诸多问题, 因此造成偏远 地区供电难的问题, 目前也是各级政府亟须解决的问题, 离网发电无疑是 决绝该问题的最好的途径, 而如何利用风力发电解决该问题成为了人们研 发的方向。
无论是并网还是离网的风力发电, 在白天, 人们的生产活动用电需求 比较大, 变电站的供电十分紧张, 有时候甚至需要实行区域分开用电来解 决用电紧缺的问题; 而到了夜晚, 人们的生产活动用电需求比较小, 此时 变电站的供电是富余, 这些富余的电能无法投入到人们的生产生活中而最 后导致浪费, 如何将该部分浪费的电能再利用也是更好解决风力发电机并 网或离网发电存在的其他问题。 发明内容
本发明所要解决技术问题之一是提供一种垂直轴风力发电机储能 发电系统, 并网发电时, 使其发电功率对电网不会造成冲击; 能够将电 能转化其他形式的能量进行储存, 然后再转换为电能, 一定程度上解决了 电能浪费的问题, 同时也决绝了大型垂直轴风力发电机离网发电的问题。
本发明所要解决技术问题之二是提供一种垂直轴风力发电机储能 发电方法, 并网发电时, 使其发电功率对电网不会造成冲击; 能够将电 能转化其他形式的能量进行储存, 然后再转换为电能, 一定程度上解决了 电能浪费的问题, 同时也决绝了大型垂直轴风力发电机离网发电的问题。
为解决上述技术问题之一, 本发明的技术方案是: 包括储能系统和 发电系统, 所述发电系统包括中心塔柱、 设置在中心塔柱上一个以上的发 电单元, 所述发电单元包括与所述中心塔柱枢接的 Φ形的风轮、 套在中心 塔柱上的主齿轮、 两个以上的发电机、 用于安装发电机的安装平台; 所述 主齿轮设置在所述风轮下方且与所述风轮连接; 所述主齿轮分别通过一套 齿轮传动系统与所述发电机的转轴联接; 所述储能系统包括高压气体发生 装置、 蓄水装置和水轮机, 所述高压气体发生装置包括至少一个高压储气 罐和与其配合的空气压缩机, 所述蓄水装置包括至少一个水箱; 所述空气 压缩机通过进气管道与所述高压储气罐连通, 所述高压储气罐通过出气管 道与所述水箱连通; 所述水轮机设置在靠近地面的发电单元下方, 水轮机 包括环抱所述中心塔柱的叶轮和包裹叶轮的壳体, 所述壳体上设有进水口 和出水口, 所述水箱通过出水管道与所述水轮机进水口连接, 所述水轮机 的叶轮与靠近地面的发电单元的主齿轮连接; 所述发电系统通过电缆向所 述空气压缩机供电。
作为改进, 所述风轮上端设有第一轴承, 所述第一轴承的内圈固定套 在所述中心塔柱上, 所述第一轴承的外圈与所述风轮上端固定连接; 所述 风轮下端设有第二轴承, 所述第二轴承的内圈固定套在所述中心塔柱上, 所述第二轴承的外圈与所述风轮下端和主齿轮固定连接, 所述风轮通过第 一轴承和第二轴承与所述中心塔柱枢接。
作为改进, 所述主齿轮与所述风轮之间设有联轴器和刹车装置, 所述 联轴器上端与所述风轮下端连接, 联轴器下端与主齿轮连接; 所述刹车装 置包括设于所述联轴器上的环形刹车盘和固定在所述塔柱上的一个以上的 制动装置, 所述制动装置包括制动器和驱动制动器的动力源, 所述制动器 与所述刹车盘配合。
作为改进, 所述中心塔柱为钢筋混凝土结构, 所述中心塔柱的中心设 有从底部直通顶部的通道, 所述安装平台环抱所述中心塔柱, 所述安装平 台与所述中心塔柱一体灌浆成型, 所述安装平台上设有安装螺孔, 所述内 转子发电机通过螺栓固定在所述安装平台上。
作为改进, 所述蓄水装置包括两个水箱, 所述水轮机出水口通过回水 管道与所述水箱连通。
作为改进, 所述高压气体发生装置包括两个高压储气罐和两个空气压 缩机, 两个所述高压储气罐分别为第一高压储气罐、 第二高压储气罐, 两 个所述空气压缩机分别为第一空气压缩机、 第二空气压缩机, 所述第二空 气压缩机通过第一气管与所述第一高压储气罐连通; 所述第一空气压缩机 通过第二气管与所述出气管道连通。
作为改进, 所述进气管道、 出气管道、 第一气管、 第二气管、 出水管 道及回水管道上均设有阀门, 所述出水管道上设有增压设备。
为解决上述技术问题之二, 本发明的技术方案是: 一种垂直轴风力发 电机储能发电方法, 其中包括储能系统和发电系统, 所述发电系统包括设 置在中心塔柱上的一个以上的发电单元, 所述发电单元包括与所述中心塔 柱枢接的 Φ形的风轮、 套在中心塔柱上的主齿轮、 两个以上的发电机、 用 于安装发电机的安装平台; 所述储能系统包括高压气体发生装置、 蓄水装 置和水轮机, 所述高压气体发生装置包括至少一个密闭的高压储气罐和与 其配合的空气压缩机, 所述蓄水装置包括至少一个密闭的水箱; 具体发电 方法包括以下步骤:
( 1 ) 发电系统将富余的电量通过电缆向储能系统的空气压缩机输送;
(2 ) 空气压缩机得电工作, 通过进气管道将空气压缩进高压储气罐中, 使高压储气罐中的空气分子势能增加,完成电能到空气的分子势能 的转换;
( 3 )水箱内装有水, 需要启动储能系统发电时, 高压储气罐中的高压气 体通过出气管道释放到水箱中, 水箱内气压增加, 当气压达到指定 值时, 将水箱内的水通过出水管道释放至水轮机, 出水管道内的水 在气压作用下产生一定的动能,从而完成空气分子势能到水的动能 的转换;
(4 ) 具有动能的水沿着出水管道达到水轮机并推动水轮机的叶轮转动, 从而完成水的动能到机械能的转换;水轮机的叶轮带动靠近地面的 发电单元的主齿轮旋转,主齿轮通过齿轮传动系统将动力传递至两 个以上的发电机, 最后完成机械能到电能的转换。
作为改进, 所述高压气体发生装置包括两个高压储气罐和两个空气压 缩机, 两个所述高压储气罐分别为第一高压储气罐、 第二高压储气罐, 两 个所述空气压缩机分别为第一空气压缩机、 第二空气压缩机, 所述第二空 气压缩机通过第一气管与所述第一高压储气罐连通; 所述第一空气压缩机 通过第二气管与所述出气管道连通; 所述步骤(2 )具体为: 第一空气压缩 机通过进气管道将空气压缩进第一高压储气罐中, 使第一高压储气罐中的 空气分子势能增加; 第二空气压缩机通过进气管道将空气压缩进第二高压 储气罐中, 使第二高压储气罐中的空气分子势能增加。
作为改进, 所述蓄水装置包括两个水箱, 分别为第一水箱和第二水箱, 所述水轮机出水口通过回水管道与所述第一水箱和第二水箱连通; 所述步 骤(3 )具体为:第一水箱或第二水箱内装有水, 装有水的水箱为工作水箱, 没有水的水箱为备用水箱, 需要启动储能系统进行发电时, 高压储气罐中 的高压气体通过出气管道释放到工作水箱中, 工作水箱内气压增加, 当气 压达到指定值时, 将工作水箱内的水通过出水管道释放至水轮机; 对水轮 机做功后通过回水管道进入到备用水箱中, 直到工作水箱中的水全部转移 到备用水箱中后, 备用水箱成为新的工作水箱, 原工作水箱成为新的备用 水箱, 如此循环进行发电。
本发明与现有技术相比所带来的有益效果是:
1) 能够在低风速风轮难以启动发电机时, 水轮机可作为辅助启动, 在风轮 和水轮机共同带动下, 发电机可以做到轻松启动;
2) 发电机在正常运行状态下, 通过水轮机推动发电机转子, 从而拖动发电 机转子增速, 使发电机达到满发功率状态;
3) 在超大风速时,使水轮机反方向旋转,从而抑制发电机转子速度的增加, 使发电机转子恢复到额定转速状态, 使其发电功率对电网不会造成冲 击;
4) 储能系统与发电系统相互配合,能够将电能转化其他形式的能量进行储 存, 然后再转换为电能, 一定程度上解决了电能浪费的问题, 同时也决 绝了大型垂直轴风力发电机离网发电的问题。 附图说明
图 1为本发明实施例 1发电系统结构示意图。
图 2为图 1的 A处放大图。
图 3为本发明实施例 2发电系统结构示意图。
图 4为安装平台内部结构示意图。
图 5为刹车装置结构示意图。
图 6为鼠笼结构示意图。
图 7为本发明实施例 1储能系统管路图。
图 8为本发明实施例 2储能系统管路图。
图 9为实施例 2储能系统中水箱的剖视图。
图 10为实施例 3储能系统管路图。 具体实施方式
下面结合说明书附图对本发明作进一步说明。 实施例 1
一种垂直轴风力发电机储能发电系统, 包括储能系统和发电系统。 如图 1、 2所示, 所述储能系统包括中心塔柱 24、 设置在中心塔柱 24 上的一个以上的发电单元, 本实施例中, 所述中心塔柱 24上设有一个发电 单元, 且该发电单元靠近地面。 所述发电单元包括风轮 17、 主齿轮 18、 两 个以上的发电机 20和用于安装所述发电机 20的安装平台 23。本实施例中, 在主齿轮 18周边对称设有两个发电机 20; 所述风轮 17为 Φ形风轮, 所述 风轮 17由两片对称设置的叶片组成。所述中心塔柱 24上对应风轮 17上端 位置设有第一轴承 16, 中心塔柱 24上对应风轮 17下端位置设有第二轴承 19。 叶片上端通过第一连接法兰 27与第一轴承 16的外圈连接; 叶片下端 依次通过第二连接法兰 28、 联轴器 29、 第三连接法兰 (未标示)、 主齿轮 18后与第二轴承 19的外圈连接。 其中本实施例的第一、 二轴承 16、 19为 双排球转盘轴承, 且该轴承为现有技术, 在这里不再详细描述, 本领域技 术人员应当知晓其结构和工作原理。 所述风轮 17通过第一轴承 16和第二 轴承 19与所述中心塔柱 24枢接, 且风轮 17与所述主齿轮 18具有同步转 速。
所述主齿轮 18分别通过一套齿轮传动系统与所述发电机 20的转轴连 接, 本实施例中, 所述齿轮传动系统为一锥齿轮 22, 主齿轮 18与所述锥 齿轮 22啮合,且所述锥齿轮 22套在水平放置的发电机 20的转轴上,因此, 风轮 17通过主齿轮 18和锥齿轮 22与所述发电机 20的转轴联动, 实现由 风轮 17的垂直旋转转变成发电机 20的水平旋转, 对于垂直轴风力发电机 来说, 发电机 20的安装更简单方便了。
如图 6所示, 所述第一轴承 16与第二轴承 19之间设有两根以上均匀 分布在同一圆周上的连接管 26, 连接管 26上端通过第一连接法兰 27与第 一轴承 16的外圈固定连接, 连接管 26的下端与第二连接法兰 28连接, 第 一轴承 16的外圈通过所述连接管 26与所述第二轴承 19的外圈联动同步。 所述第一连接法兰 27、 连接管 26和第二连接法兰 28的分布构成一个鼠笼 41结构, 由于叶片上端的风速与下端的风速往往不一样, 上端的风速一般 比下端的风速大, 从而会造成叶片在旋转时上端的速度比下端的速度快, 但是由于叶片是一个整个结构, 叶片的上端和下端必须具有同步的转速, 这样一来叶片有可能会发生扭曲, 从而破坏叶片的最佳迎风面积, 降低叶 片对的风能的利用率。鼠笼 41的设计正是为了传递叶片上端的力矩到叶片 下端, 使叶片在旋转过程中, 尽可能的降低叶片的扭曲程度。
所述主齿轮 18与锥齿轮 22之间设有控制齿轮传动系统与主齿轮 18连 接的离合器(未标示), 所述风轮 17及发电机 20的转轴上设有速度传感器 (未标示), 所述速度传感器与所述离合器电连接。 当速度传感器检测到风 轮 17或发电机 20的转轴转速超过预设值时, 发送信号至离合器, 使离合 器断开齿轮传动系统与主齿轮 18的连接; 当速度传感器检测到风轮 17转 速回到预设值内时, 发送信号至离合器, 使离合器重新连接齿轮传动系统 与主齿轮 18。
如图 4所示, 所述中心塔柱 24为中空的钢筋混凝土结构, 所述安装平 台 23环抱所述中心塔柱 24, 所述安装平台 23与所述中心塔柱 24—体灌 浆成型。所述安装平台 23内部设有工字钢, 所述工字钢水平设置且贯穿所 述中心塔柱 24, 相互垂直交错形成网格状分布, 且中心塔柱 24 内的建筑 构造用钢筋 30延伸至所述安装平台 23内。所述安装平台 23上设有安装螺 孔,发电机 20、控制柜 25等发电设备通过螺栓固定在所述安装平台 23上。 所述安装平台 23上设有防护罩 21, 所述防护罩 21环绕所述安装平台 23, 所述防护罩 21上设有门窗形成防风雨的房屋, 所述发电机 20设于所述房 屋内, 用于保护发电机 20、 控制柜 25、 齿轮传动系统等发电设备免受外界 环境影响, 确认其运行在安全的环境, 能够增加发电设备的使用寿命。 所 述相邻两个安装平台 23之间的距离用于安装发电单元的风轮 17。 为了以 后的维修方便, 中心塔柱 24上可以设置维修口通往中心塔柱 24内的通道 31, 维修人员就可以通过维修口进入到中心塔柱 24的通道 31内, 在通道 31 内设置吊笼, 维修人员通过吊笼到达中心塔柱 24的不同高度, 对具有 多层发电单元的垂直轴风力发电机 20来说是十分方便的;另外上层的发电 单元的电缆线还可以通过该通道 31进行布线。
如图 5所示, 所述联轴器 29为弹性联轴器 29, 联轴器 29上端通过第 二连接法兰 28与风轮 17下端连接,联轴器 29下端通过第三连接法兰与主 齿轮 18连接, 主齿轮 18固定在第二轴承 19的外圈上, 从而使风轮 17、 联轴器 29、 主齿轮 18能够同步。 所述联轴器 29内设有刹车装置, 所述刹 车装置包括环形刹车盘 32和一个以上的制动装置 36。 所述刹车盘 32包括 固定部 40和摩擦部 39, 所述固定部 40与摩擦部 39之间设有斜面过渡, 所述固定部 40固定在联轴器 29上; 所述摩擦部 39上、 下表面沿半径方向 设有防滑条紋,防滑条紋呈放射状,增大制动器与刹车盘 32之间的摩擦力, 从而增强其制动效果。 所述制动装置 36包括制动器垫板 35、 减振器 34、 减振器垫板 33、制动器 38和驱动制动器的动力源 37。所述中心塔柱 24上 延伸设有环形凸台 43, 所述减振器垫板 33设在所述凸台 43上, 所述减振 器 34设在所述减振器垫板 33上, 所述制动器垫板 35设在所述减振器 34 上, 所述制动器 38设在所述制动器垫板 35上, 且所述制动器 38均匀分布 在所述中心塔柱 24周边形成多点制动; 所述制动器 38包括设置在刹车盘 32上、 下两侧的刹车片, 所述刹车片与刹车盘 32的摩擦部 39配合; 所述 制动装置 36中的动力源 37为液压驱动系统,提供可靠且强而有力的动力。
制动时, 实际是刹车装置对联轴器 29的制动, 但由于联轴器 29将风 轮 17与主齿轮 18连成一体,就可以起到降低垂直轴风力发电机 20的风轮 17及主齿轮 18的速度,这样一来不仅可以保护风轮 17不会因失速而损坏, 而且保护发电机 20不会因发电功率过高而烧毁。该种刹车装置与垂直轴风 力发电机 20相互配合, 而且结构简单, 制动效果显著。
风轮 17受风力作用旋转, 其动力依次通过主齿轮 18、 齿轮传动系统 传递到每台发电机 20的转轴, 为每一台发电机 20提供机械能, 从而进行 发电。通过齿轮传动系统可以改变主齿轮 18与发电机 20的转轴的转速比, 尽管风轮 17的转速较低, 但是经过齿轮传动系统的调整后, 同样可以输出 较大的转速到发电机 20的转轴上, 从而可以利用高转速的发电机 20, 高 转速的发电机 20与现有技术低转速发电机 20相比,在同样的发电功率下, 高转速的发电机 20体积更小。 本发明中, 风轮 17的负载减小, 启动风速 更小, 有利于风力发电机 20在低风速时也能够发电; 每台发电单元中的发 电机 20体积较小, 其制造成本低, 且降低维修检修难度; 中心塔柱 24上 可安装的发电单元数量更多, 进一步提高了垂直轴风力发电机发电系统的 发电功率。
如图 7所示, 所述储能系统包括高压气体发生装置、 蓄水装置和水轮 机。 所述高压气体发生装置包括至少一个密闭的高压储气罐 2和与其配合 的空气压缩机 1, 本实施例只包括一个密闭的高压储气罐 2和一个空气压 缩机 1 ; 所述蓄水装置包括至少一个密闭的水箱 3, 本实施例只包括一个水 箱 3。 所述空气压缩机 1通过进气管道 4与所述高压储气罐 2连通, 所述 进气管道 4上设有手动阀门 8; 所述高压储气罐 2通过调节阀 9与出气管 道 5连接, 出气管道 5与所述水箱 3顶部连通, 所述出气管道 5上设有手 动阀门 8; 空气压缩机 1通过第二气管 14与出气管道 5连通, 所述第二气 管 14上设有手动阀门 8; 所述水箱 3底部引出出水管道 6, 通过出水管道 6与所述水轮机 10进水口连接, 所述出水管道 6上设有手动阀门 8和至少 一个增压机 13,所述出水管道 6通过增压阀门 11与水轮机 10进水口连接; 所述水轮机 10设置在发电单元下方, 水轮机 10包括环抱所述中心塔柱 24 的叶轮 102和包裹叶轮的壳体 101, 所述水轮机的叶轮 102与主齿轮 18连 接。
本发明垂直轴风力发电机储能发电原理如下:
( 1 ) 发电系统将富余的电量通过电缆向储能系统的空气压缩机 1输送;
(2)空气压缩机 1得电工作, 通过进气管道 4将空气压缩进高压储气罐 2中, 使高压储气罐 2中的空气分子势能增加, 完成电能到空气的 分子势能的转换;
(3 )水箱 3内装有水, 需要启动储能系统发电时, 高压储气罐 2中的高 压气体通过出气管道 5释放到水箱 3中, 水箱 3内气压增加, 当气 压达到指定值时, 将水箱 3 内的水通过出水管道 6释放至水轮机 10, 出水管道 6内的水在气压作用下产生一定的动能, 从而完成空 气分子势能到水的动能的转换;
(4)具有动能的水沿着出水管道 6达到水轮机 10并推动水轮机 10的叶 轮 102转动, 从而完成水的动能到机械能的转换; 水轮机 10的叶 轮 102通过主齿轮 18带动发电机 20旋转, 使发电单元发电, 最后 完成机械能到电能的转换。
对发电单元来说, 储能系统也能起到调节发电机 20输出功率的目的: 发电机 20的启动方式: 低风速发电机 20难以启动时, 启动储能系统, 推动水轮机 10转动, 通过风轮 17和水轮机的叶轮 102的共同作用实现发 电机 20的启动。 发电机 20的发电方式: 发电机 20在正常发电但没有达到满发的情况 下, 速度传感器测量出风轮 17的旋转速度, 并将信号回馈到控制器中, 控 制器将该信号与预设信号进行比较, 控制出水管道上电磁阀的流量, 出水 管道中的水流经过增压机 13 的再次增压形成强大的水柱冲向水轮机的叶 轮 102, 加快了水轮机的叶轮 102以及发电机 20转子的转动速度, 随着风 轮 17速度慢慢上升, 电磁阀的流量逐渐减小, 使出水管道中的水柱对水轮 机的叶轮 102的作用减弱, 使发电机 20的转子能够平稳的到达额定转速。 在储能系统的辅助下, 发电单元能够时刻的保持在满发状态, 使该发电单 元接入电网时更稳定。
发电机 20的刹车方式: 超大风使发电机 20转速超过而定转速的情况 下, 速度传感器测量出风轮 17的旋转速度, 并将信号回馈到控制器中, 控 制器将该信号与预设信号进行比较, 控制电磁阀的流量和水轮机进水口的 方向。出水管道 6中的水柱与叶轮 102旋转方向相反的作用在叶轮 102上, 对第叶轮 102施加一个反向的推力,从而限制了发电机 20的转子速度的最 大值, 使发电单元的发电状态保持在满发状态。 实施例 2
一种垂直轴风力发电机储能发电系统, 包括储能系统和发电系统。 如图 3所示, 所述储能系统包括中心塔柱 24、 设置在心塔柱上的一个 以上的发电单元, 本实施例中, 所述中心塔柱 24上设有两个呈上下设置的 发电单元。 所述发电单元包括风轮 17、 主齿轮 18、 两个以上的发电机 20 和用于安装所述发电机 20的安装平台 23。 本实施例中, 在主齿轮 18周边 对称设有两个发电机 20; 所述风轮 17为 Φ形风轮, 所述风轮 17由两片对 称设置的叶片组成。 所述中心塔柱 24上对应风轮 17上端位置设有第一轴 承 16, 中心塔柱 24上对应风轮 17下端位置设有第二轴承 19。 叶片上端通 过第一连接法兰 27与第一轴承 16的外圈连接; 叶片下端依次通过第二连 接法兰 28、 联轴器 29、 第三连接法兰、 主齿轮 18后与第二轴承 19的外圈 连接。 其中本实施例的第一、 二轴承为双排球转盘轴承, 且该轴承为现有 技术, 在这里不再详细描述, 本领域技术人员应当知晓其结构和工作原理。 所述风轮 17通过第一轴承 16和第二轴承 19与所述中心塔柱 24枢接, 且 风轮 17与所述主齿轮 18具有同步转速。
所述主齿轮 18分别通过一套齿轮传动系统与所述发电机 20的转轴连 接, 本实施例中, 所述齿轮传动系统为一锥齿轮 22, 主齿轮 18与所述锥 齿轮 22啮合,且所述锥齿轮 22套在水平放置的发电机 20的转轴上,因此, 风轮 17通过主齿轮 18和锥齿轮 22与所述发电机 20的转轴联动, 实现由 风轮 17的垂直旋转转变成发电机 20的水平旋转, 对于垂直轴风力发电机 来说, 发电机 20的安装更简单方便了。
如图 6所示, 所述第一轴承 16与第二轴承 19之间设有两根以上均匀 分布在同一圆周上的连接管 26, 连接管 26上端通过第一连接法兰 27与第 一轴承 16的外圈固定连接, 连接管 26的下端与第二连接法兰 28连接, 第 一轴承 16的外圈通过所述连接管 26与所述第二轴承 19的外圈联动同步。 所述第一连接法兰 27、连接管 26第二连接法兰 28的分布构成一个鼠笼 41 结构, 由于叶片上端的风速与下端的风速往往不一样, 上端的风速一般比 下端的风速大, 从而会造成叶片在旋转时上端的速度比下端的速度快, 但 是由于叶片是一个整个结构, 叶片的上端和下端必须具有同步的转速, 这 样一来叶片有可能会发生扭曲, 从而破坏叶片的最佳迎风面积, 降低叶片 对的风能的利用率。鼠笼 41的设计正是为了传递叶片上端的力矩到叶片下 端, 使叶片在旋转过程中, 尽可能的降低叶片的扭曲程度。
所述主齿轮 18与锥齿轮 22之间设有控制齿轮传动系统与主齿轮 18连 接的离合器(未标示), 所述风轮 17及发电机 20的转轴上设有速度传感器 (未标示), 所述速度传感器与所述离合器电连接。 当速度传感器检测到风 轮 17或发电机 20的转轴转速超过预设值时, 发送信号至离合器, 使离合 器断开齿轮传动系统与主齿轮 18的连接; 当速度传感器检测到风轮 17转 速回到预设值内时, 发送信号至离合器, 使离合器重新连接齿轮传动系统 与主齿轮 18。
如图 4所示, 所述中心塔柱 24为中空的钢筋混凝土结构, 所述安装平 台 23环抱所述中心塔柱 24, 所述安装平台 23与所述中心塔柱 24—体灌 浆成型。所述安装平台 23内部设有工字钢, 所述工字钢水平设置且贯穿所 述中心塔柱 24, 相互垂直交错形成网格状分布, 且中心塔柱 24 内的建筑 构造用钢筋 30延伸至所述安装平台 23内。所述安装平台 23上设有安装螺 孔,发电机 20、控制柜 25等发电设备通过螺栓固定在所述安装平台 23上。 所述安装平台 23上设有防护罩 21, 所述防护罩 21环绕所述安装平台 23, 所述防护罩 21上设有门窗形成防风雨的房屋, 所述发电机 20设于所述房 屋内, 用于保护发电机 20、 控制柜 25、 齿轮传动系统等发电设备免受外界 环境影响, 确认其运行在安全的环境, 能够增加发电设备的使用寿命。 所 述相邻两个安装平台 23 之间的距离用于安装所述垂直轴风力发电机的风 轮 17。 为了以后的维修方便, 中心塔柱 24上可以设置维修口通往中心塔 柱 24内的通道 31, 维修人员就可以通过维修口进入到中心塔柱 24的通道 31内, 在通道 31内设置吊笼, 维修人员通过吊笼到达中心塔柱 24的不同 高度, 对具有多层发电单元的垂直轴风力发电机来说是十分方便的; 另外 上层的发电单元的电缆线还可以通过该通道 31进行布线。
如图 5所示, 所述联轴器 29为弹性联轴器 29, 联轴器 29上端通过第 二连接法兰 28与风轮 17下端连接,联轴器 29下端通过第三连接法兰与主 齿轮 18连接, 主齿轮 18固定在第二轴承 19的外圈上, 从而使风轮 17、 联轴器 29、 主齿轮 18能够同步。 所述联轴器 29内设有刹车装置, 所述刹 车装置包括环形刹车盘 32和一个以上的制动装置 36。 所述刹车盘 32包括 固定部 40和摩擦部 39, 所述固定部 40与摩擦部 39之间设有斜面过渡, 所述固定部 40固定在联轴器 29上; 所述摩擦部 39上、 下表面沿半径方向 设有防滑条紋, 防滑条紋呈放射状, 增大制动器 38与刹车盘 32之间的摩 擦力, 从而增强其制动效果。 所述制动装置 36包括制动器垫板 35、 减振 器 34、 减振器垫板 33、 制动器 28和驱动制动器的动力源 37。 所述中心塔 柱 24上延伸设有环形凸台 43, 所述减振器垫板 33设在所述凸台 43上, 所述减振器 34设在所述减振器垫板 33上,所述制动器垫板 35设在所述减 振器 34上, 所述制动器 38设在所述制动器垫板 35上, 且所述制动器 38 均匀分布在所述中心塔柱 24周边形成多点制动; 所述制动器 38包括设置 在刹车盘 32上、 下两侧的刹车片, 所述刹车片与刹车盘 32的摩擦部 39配 合; 所述制动装置 36中的动力源 37为液压驱动系统, 提供可靠且强而有 力的动力。
制动时, 实际是刹车装置对联轴器 29的制动, 但由于联轴器 29将风 轮 17与主齿轮 18连成一体,就可以起到降低发电单元的风轮 17及主齿轮 18 的速度, 这样一来不仅可以保护风轮 17不会因失速而损坏, 而且保护 发电机 20不会因发电功率过高而烧毁。该种刹车装置与垂直轴风力发电机 相互配合, 而且结构简单, 制动效果显著。
风轮 17受风力作用旋转, 其动力依次通过主齿轮 18、 齿轮传动系统 传递到每台发电机 20的转轴, 为每一台发电机 20提供机械能, 从而进行 发电。通过齿轮传动系统可以改变主齿轮 18与发电机 20的转轴的转速比, 尽管风轮 17的转速较低, 但是经过齿轮传动系统的调整后, 同样可以输出 较大的转速到发电机 20的转轴上, 从而可以利用高转速的发电机 20, 高 转速的发电机 20与现有技术低转速发电机 20相比,在同样的发电功率下, 高转速的发电机 20体积更小。 本发明中, 风轮 17的负载减小, 启动风速 更小, 有利于风力发电机 20在低风速时也能够发电; 每台发电单元中的发 电机 20体积较小, 其制造成本低, 且降低维修检修难度; 中心塔柱 24上 可安装的发电单元数量更多, 进一步提高了垂直轴风力发电机发电系统的 发电功率。
如图 8、 9所示, 所述储能系统包括高压气体发生装置、 蓄水装置和水 轮机 10。 所述高压气体发生装置包括两个密闭的高压储气罐和两个空气压 缩机,两个所述高压储气罐分别为第一高压储气罐 2a、第二高压储气罐 2b, 两个所述空气压缩机分别为第一空气压缩机 la、 第二空气压缩机 lb; 所述 蓄水装置包括两个水箱,分别为第一水箱 3a和第二水箱 3b。所述第一空气 压缩机 la通过进气管道 4与所述第一高压储气罐 2a连通,所述进气管道 4 上设有手动阀门 8; 所述第二空气压缩机 lb通过进气管道 4与所述第二高 压储气罐 2b连通, 所述进气管道 4上设有手动阀门 8; 所述第二空气压缩 机 lb通过第一气管 15与所述第一高压储气罐 2a连通, 所述第一气管 15 上设有手动阀门 8; 所述第一高压储气罐 2a通过调节阀 9与两根出气管道 5连接, 所述出气管道 5分别与所述第一水箱 3a和第二水箱 3b顶部连通, 所述出气管道 5上设有手动阀门 8; 第一空气压缩机 la通过第二气管 14 与出气管道 5连通, 所述第二气管 14上设有手动阀门 8; 所述第二高压储 气罐 2b通过调节阀 9与两根出气管道 5连接,所述出气管道 5分别与所述 第一水箱 3a和第二水箱 3b的顶部连通,所述出气管道 5上设有手动阀门 8; 所述第一水箱 3a和第二水箱 3b底部引出出水管道 6,所述出水管道 6通过 增压阀门 11与水轮机 10进水口连接,且所述出水管道 6上设有手动阀门 8 和增压机 13 ; 所述水轮机 10设置在靠近地面的发电单元下方, 水轮机 10 包括环抱所述中心塔柱 24的叶轮 102和包裹叶轮的壳体 101, 所述水轮机 的叶轮 102与主齿轮 18连接, 所述水轮机 10出水口通过回水管道 7分别 与所述第一水箱 3a和第二水箱 3b顶部连通, 所述回水管道 7上设有手动 阀门 8。
本发明垂直轴风力发电机的储能发电原理如下:
( 1 ) 发电系统将富余的电量通过电缆向储能系统的第一空气压缩机 la 和第二空气压缩机 lb输送;
(2)第一空气压缩机 la和第二空气压缩机 lb得电工作, 第一空气压缩 机 la通过进气管道 4将空气压缩进第一高压储气罐 2a中, 使第一 高压储气罐 2a中的空气分子势能增加;第二空气压缩机 lb通过进 气管道 4将空气压缩进第二高压储气罐 2b中, 使第二高压储气罐 2b 中的空气分子势能增加, 完成电能到空气的分子势能的转换; 必要时,第二空气压缩机 lb通过第一气管 15将空气压缩进第一高 压储气罐 2a中, 加快第一高压储气罐 2a的储气速度;
(2) 第一水箱 3a或第二水箱 3b内装有水, 装有水的水箱为工作水箱, 没有水的水箱为备用水箱, 需要启动储能系统进行发电时, 第一高 压储气罐 2a和 /或第二高压储气罐 2b中的高压气体通过出气管道 5 释放到工作水箱中, 工作水箱内气压增加, 当气压达到指定值时, 将工作水箱内的水通过出水管道 6释放至水轮机 10, 出水管道 6 内的水在气压作用下产生一定的动能,从而完成空气分子势能到水 的动能的转换;在启动储能发电系统时发电站然具有富余电能或者 第一高压储气罐 2a和第二高压储气罐 2b内的气压无法达到工作状 态时,第一空气压缩机 la通过第二气管 14和出气管道 5直接将高 压气体注入工作水箱中;
(3 )具有动能的水沿着出水管道 6达到水轮机 10并推动水轮机 10的叶 轮 102转动, 从而完成水的动能到机械能的转换; 水轮机 10的叶 轮 102通过齿轮传动系统带同发电机 20旋转, 使发电单元发电, 最后完成机械能到电能的转换; (4)具有动能的水对水轮机 10做功后通过回水管道进入到备用水箱中, 直到工作水箱中的水全部转移到备用水箱中后,备用水箱成为新的 工作水箱, 原工作水箱成为新的备用水箱;
(5 )第一高压储气罐 2a和 /或第二高压储气罐 2b中的高压气体通过出气 管道 5释放到新的工作水箱中, 如此循环上述步骤(2) ~ (4 )直到 将第一高压储气罐 2a和第二高压储气罐 2b中的高压气体释放完为 止。
对靠近地面的发电单元来说,储能系统起到调节发电机 20输出功率的 目的:
发电机 20的启动方式: 低风速发电机 20难以启动时, 启动储能系统, 推动水轮机 10转动,通过风轮 17和水轮机 10的叶轮 102的共同作用实现 发电机 20的启动。
发电机 20的发电方式: 发电机 20在正常发电但没有达到满发的情况 下, 速度传感器测量出风轮 17的旋转速度, 并将信号回馈到控制器中, 控 制器将该信号与预设信号进行比较, 控制出水管道 6上电磁阀的流量, 出 水管道 6 中的水流经过增压机 13 的再次增压形成强大的水柱冲向水轮机 10的叶轮 102, 加快了水轮机 10的叶轮 102以及发电机 20转子的转动速 度, 随着风轮 17速度慢慢上升, 电磁阀的流量逐渐减小, 使出水管道 6中 的水柱对水轮机 10的叶轮 102的作用减弱, 使外转子发电机 20的转子能 够平稳的到达额定转速。 在储能系统的辅助下, 底层发电单元能够时刻的 保持在满发状态, 使该发电单元接入电网时更稳定。
发电机 20的刹车方式: 超大风使外转子发电机 20转速超过而定转速 的情况下, 速度传感器测量出风轮 17的旋转速度, 并将信号回馈到控制器 中, 控制器将该信号与预设信号进行比较, 控制电磁阀的流量和水轮机 10 进水口的方向。 出水管道 6中的水柱与叶轮 102旋转方向相反的作用在叶 轮 102上, 对第叶轮 102施加一个反向的推力, 从而限制了外转子发电机 20的转子速度的最大值, 使底层发电单元的发电状态保持在满发状态。 只包括一个密闭的高压储气罐 2和一个空气压缩机 1 ; 所述蓄水装置包括 两个相互连通的水箱,第一水箱 3a和第二水箱 3b,两个水箱之间设有阀门 (未标示) 控制其连通。 所述空气压缩机 1通过进气管道 4与所述高压储 气罐 2连通, 所述进气管道 4上设有手动阀门 8; 所述高压储气罐 2通过 调节阀 9与出气管道 5连接, 出气管道 5与所述第一水箱 3a顶部连通, 所 述出气管道 5上设有手动阀门 8; 空气压缩机 1通过第二气管 14与出气管 道 5连通,所述第二气管 14上设有手动阀门 8;所述第一水箱 3a底部引出 出水管道 6, 通过出水管道 6与所述水轮机 10进水口连接, 所述出水管道 6上设有手动阀门 8和至少一个增压机 13, 所述出水管道 6通过增压阀门 11与水轮机 10进水口连接; 水轮机 10出水口通过回水管道 7与第二水箱 3b连通。
本发明垂直轴风力发电机的储能发电原理如下:
( 1 ) 发电系统将富余的电量通过电缆向储能系统的空气压缩机 1输送;
(2)空气压缩机 1得电工作, 空气压缩机 1通过进气管道 4将空气压缩 进高压储气罐 2中, 使高压储气罐 2中的空气分子势能增加;
(2) 第一水箱 3a内装有水, 需要启动储能系统进行发电时, 高压储气 罐 2中的高压气体通过出气管道 5释放到第一水箱 3a中, 第一水 箱 3a内气压增加, 当气压达到指定值时, 第一作水箱 3a内的水通 过出水管道 6释放至水轮机 10, 出水管道 6内的水在气压作用下 产生一定的动能, 从而完成空气分子势能到水的动能的转换; 在启 动储能发电系统时发电站然具有富余电能或者高压储气罐 2 内的 气压无法达到工作状态时, 空气压缩机 1通过第二气管 14和出气 管道 5直接将高压气体注入第一水箱 3a中;
( 3 )具有动能的水沿着出水管道 6达到水轮机 10并推动水轮机 10的叶 轮 101转动, 从而完成水的动能到机械能的转换; 水轮机 10的叶 轮 101带动外转子发电机 12的转子旋转, 使底层发电单元发电, 最后完成机械能到电能的转换;
(4) 具有动能的水对水轮机 10做功后通过回水管道 7进入到第二水箱 3b中, 直到第一水箱 3a中的水全部转移到第二水箱中后, 释放第 一水箱 3a内的高压气体并将第二水箱 3b中的水重新流回到第一水 箱 3a中;
(5 )高压储气罐中的高压气体再次通过出气管道 5释放到新的第一水箱 中, 如此循环上述步骤 (2) ~ (4) 直到将高压储气罐 2中的高压 气体释放完为止。
综上所述, 本发明垂直轴风力发电机储能发电系统并网发电时, 使其 发电功率对电网不会造成冲击;能够将电能转化其他形式的能量进行储存, 然后再转换为电能, 一定程度上解决了电能浪费的问题, 同时也决绝了大 型垂直轴风力发电机离网发电的问题。

Claims

权 利 要 求 书 一种垂直轴风力发电机储能发电系统, 其特征在于: 包括储能系统和发 电系统, 所述发电系统包括中心塔柱、 设置在中心塔柱上一个以上的发 电单元, 所述发电单元包括与所述中心塔柱枢接的 Φ形的风轮、 套在中 心塔柱上的主齿轮、 两个以上的发电机、 用于安装发电机的安装平台; 所述主齿轮设置在所述风轮下方且与所述风轮连接;所述主齿轮分别通 过一套齿轮传动系统与所述发电机的转轴联接;所述储能系统包括高压 气体发生装置、 蓄水装置和水轮机, 所述高压气体发生装置包括至少一 个高压储气罐和与其配合的空气压缩机,所述蓄水装置包括至少一个水 箱; 所述空气压缩机通过进气管道与所述高压储气罐连通, 所述高压储 气罐通过出气管道与所述水箱连通;所述水轮机设置在靠近地面的发电 单元下方, 水轮机包括环抱所述中心塔柱的叶轮和包裹叶轮的壳体, 所 述壳体上设有进水口和出水口,所述水箱通过出水管道与所述水轮机进 水口连接, 所述水轮机的叶轮与靠近地面的发电单元的主齿轮连接; 所 述发电系统通过电缆向所述空气压缩机供电。
根据权利要求 1所述的垂直轴风力发电机储能发电系统, 其特征在于: 所述风轮上端设有第一轴承,所述第一轴承的内圈固定套在所述中心塔 柱上, 所述第一轴承的外圈与所述风轮上端固定连接; 所述风轮下端设 有第二轴承, 所述第二轴承的内圈固定套在所述中心塔柱上, 所述第二 轴承的外圈与所述风轮下端和主齿轮固定连接,所述风轮通过第一轴承 和第二轴承与所述中心塔柱枢接。
根据权利要求 1所述的垂直轴风力发电机储能发电系统, 其特征在于: 所述主齿轮与所述风轮之间设有联轴器和刹车装置,所述联轴器上端与 所述风轮下端连接, 联轴器下端与主齿轮连接; 所述刹车装置包括设于 所述联轴器上的环形刹车盘和固定在所述塔柱上的一个以上的制动装 置, 所述制动装置包括制动器和驱动制动器的动力源, 所述制动器与所 述刹车盘配合。
根据权利要求 1所述的垂直轴风力发电机储能发电系统, 其特征在于: 所述中心塔柱为钢筋混凝土结构,所述中心塔柱的中心设有从底部直通 顶部的通道, 所述安装平台环抱所述中心塔柱, 所述安装平台与所述中 心塔柱一体灌浆成型, 所述安装平台上设有安装螺孔, 所述内转子发电 机通过螺栓固定在所述安装平台上。
根据权利要求 1所述的垂直轴风力发电机储能发电系统, 其特征在于: 所述蓄水装置包括两个水箱,所述水轮机出水口通过回水管道与所述水 箱连通。
根据权利要求 1或 5所述的垂直轴风力发电机储能发电系统,其特征在 于: 所述高压气体发生装置包括两个高压储气罐和两个空气压缩机, 两 个所述高压储气罐分别为第一高压储气罐、第二高压储气罐, 两个所述 空气压缩机分别为第一空气压缩机、第二空气压缩机, 所述第二空气压 缩机通过第一气管与所述第一高压储气罐连通;所述第一空气压缩机通 过第二气管与所述出气管道连通。
根据权利要求 6所述的垂直轴风力发电机储能发电系统, 其特征在于: 所述进气管道、 出气管道、 第一气管、 第二气管、 出水管道及回水管道 上均设有阀门, 所述出水管道上设有增压设备。
一种垂直轴风力发电机储能发电方法, 其特征在于: 其中包括储能系统 和发电系统,所述发电系统包括设置在中心塔柱上的一个以上的发电单 元, 所述发电单元包括与所述中心塔柱枢接的 Φ形的风轮、套在中心塔 柱上的主齿轮、 两个以上的发电机、 用于安装发电机的安装平台; 所述 储能系统包括高压气体发生装置、蓄水装置和水轮机, 所述高压气体发 生装置包括至少一个密闭的高压储气罐和与其配合的空气压缩机,所述 蓄水装置包括至少一个密闭的水箱; 具体发电方法包括以下步骤:
( 1 ) 发电系统将富余的电量通过电缆向储能系统的空气压缩机输送;
(2) 空气压缩机得电工作, 通过进气管道将空气压缩进高压储气罐中, 使高压储气罐中的空气分子势能增加,完成电能到空气的分子势能 的转换;
(3 )水箱内装有水, 需要启动储能系统发电时, 高压储气罐中的高压气 体通过出气管道释放到水箱中, 水箱内气压增加, 当气压达到指定 值时, 将水箱内的水通过出水管道释放至水轮机, 出水管道内的水 在气压作用下产生一定的动能,从而完成空气分子势能到水的动能 的转换;
(4) 具有动能的水沿着出水管道达到水轮机并推动水轮机的叶轮转动, 从而完成水的动能到机械能的转换;水轮机的叶轮带动靠近地面的 发电单元的主齿轮旋转,主齿轮通过齿轮传动系统将动力传递至两 个以上的发电机, 最后完成机械能到电能的转换。
9. 根据权利要求 8所述的一种垂直轴风力发电机储能发电方法,其特征在 于: 所述高压气体发生装置包括两个高压储气罐和两个空气压缩机, 两 个所述高压储气罐分别为第一高压储气罐、第二高压储气罐, 两个所述 空气压缩机分别为第一空气压缩机、第二空气压缩机, 所述第二空气压 缩机通过第一气管与所述第一高压储气罐连通;所述第一空气压缩机通 过第二气管与所述出气管道连通; 所述步骤 (2) 具体为: 第一空气压 缩机通过进气管道将空气压缩进第一高压储气罐中,使第一高压储气罐 中的空气分子势能增加;第二空气压缩机通过进气管道将空气压缩进第 二高压储气罐中, 使第二高压储气罐中的空气分子势能增加。
10.根据权利要求 8所述的一种垂直轴风力发电机储能发电方法,其特征在 于: 所述蓄水装置包括两个水箱, 分别为第一水箱和第二水箱, 所述水 轮机出水口通过回水管道与所述第一水箱和第二水箱连通; 所述步骤
(3 ) 具体为: 第一水箱或第二水箱内装有水, 装有水的水箱为工作水 箱, 没有水的水箱为备用水箱, 需要启动储能系统进行发电时, 高压储 气罐中的高压气体通过出气管道释放到工作水箱中,工作水箱内气压增 力口, 当气压达到指定值时, 将工作水箱内的水通过出水管道释放至水轮 机; 对水轮机做功后通过回水管道进入到备用水箱中, 直到工作水箱中 的水全部转移到备用水箱中后, 备用水箱成为新的工作水箱, 原工作水 箱成为新的备用水箱, 如此循环进行发电。
PCT/CN2012/078330 2011-10-29 2012-07-09 垂直轴风力发电机储能发电系统及方法 WO2013060165A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2012327765A AU2012327765A1 (en) 2011-10-29 2012-07-09 Energy-storing and power-generating system and method for vertical-axis wind generator
CA2853306A CA2853306A1 (en) 2011-10-29 2012-07-09 Energy-storing and power-generating system and method for vertical-axis wind generator
JP2014537462A JP2014532825A (ja) 2011-10-29 2012-07-09 垂直軸風力発電機のエネルギー蓄積発電システム及び方法
US14/353,321 US9546642B2 (en) 2011-10-29 2012-07-09 Energy-storing and power-generating system and method for a vertical-axis wind generator
EP12843953.6A EP2772645A4 (en) 2011-10-29 2012-07-09 SYSTEM AND METHOD FOR ELECTRICITY GENERATION WITH ENERGY STORAGE FROM A VERTICAL MAST WIND TURBINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103344411A CN102392795B (zh) 2011-10-29 2011-10-29 垂直轴风力发电机储能发电系统及方法
CN201110334441.1 2011-10-29

Publications (1)

Publication Number Publication Date
WO2013060165A1 true WO2013060165A1 (zh) 2013-05-02

Family

ID=45860160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078330 WO2013060165A1 (zh) 2011-10-29 2012-07-09 垂直轴风力发电机储能发电系统及方法

Country Status (7)

Country Link
US (1) US9546642B2 (zh)
EP (1) EP2772645A4 (zh)
JP (1) JP2014532825A (zh)
CN (1) CN102392795B (zh)
AU (1) AU2012327765A1 (zh)
CA (1) CA2853306A1 (zh)
WO (1) WO2013060165A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103448734A (zh) * 2013-08-01 2013-12-18 国家电网公司 一种利用索道运输储能的风电功率调节装置
CN111997836A (zh) * 2019-05-27 2020-11-27 广州雅图新能源科技有限公司 一种垂直轴风力发电机储水塔筒

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013053251A1 (zh) * 2011-10-14 2013-04-18 Deng Yunhe 一种垂直轴风力发电机
CN102392795B (zh) * 2011-10-29 2013-05-08 邓允河 垂直轴风力发电机储能发电系统及方法
CN103511179B (zh) * 2012-06-21 2016-08-10 广州雅图新能源科技有限公司 一种垂直轴风力发电机风轮结构及其安装方法
CN103967725A (zh) * 2013-01-31 2014-08-06 邓允河 一种能量远程输送转换系统、方法及其应用
CN103967691B (zh) * 2013-01-31 2017-12-05 广州雅图新能源科技有限公司 一种实现远程储能发电的系统
WO2014117651A1 (zh) * 2013-01-31 2014-08-07 广州雅图新能源科技有限公司 一种高压气体远程输送转换系统、方法及其应用
CN104074668B (zh) * 2013-03-27 2017-12-05 广州雅图新能源科技有限公司 能量转换系统及方法
CN104454302A (zh) * 2014-11-05 2015-03-25 武汉包尼喜科技有限公司 高楼雨水收集装置
US10205323B2 (en) * 2014-11-21 2019-02-12 James Arthur Lowell Hydroelectricity and compressed-air power converter system
CN106121898B (zh) * 2016-07-04 2019-10-29 上海理工大学 基于智能化电源管理的循环冷却水余压回收节能系统
WO2018109776A1 (en) * 2016-12-12 2018-06-21 S v vijay Design and fabrication of advanced vertical axis wind turbine with self-alignment blades
DE102017102816A1 (de) * 2017-02-13 2018-08-16 Directtech Global Gmbh Windkraftanlage mit Radialturbinen und einem Generator
KR102058077B1 (ko) 2019-08-02 2019-12-20 이원강 자가 진단 지능형 발전기를 이용한 무인 안전 점검 시스템
CN110645136B (zh) * 2019-10-25 2021-04-09 国网湖南省电力有限公司 一种发电系统
CN110685890B (zh) * 2019-10-25 2021-01-22 国网湖南省电力有限公司 一种发电系统
CN110714903A (zh) * 2019-10-25 2020-01-21 国网湖南省电力有限公司 一种发电系统
FR3119870B1 (fr) * 2021-02-18 2024-04-19 Collaborative Energy Eolienne à flux transverse à pales jumelles, et à axes de rotation inclinés
CN113279909B (zh) * 2021-07-05 2022-03-18 陆文娇 一种利用浮力和重力复合式海上风力发电储能装置
US12021404B2 (en) * 2021-09-23 2024-06-25 Der-X Energy Llc Mobile generator charging system and method
CN114039530A (zh) * 2021-11-22 2022-02-11 山东鑫宏光电科技股份有限公司 一种光伏储能系统及其控制方法
CN114087128A (zh) * 2021-12-23 2022-02-25 哈尔滨环宇通电站设备有限公司 一种基于自然风转化为高压气体的蓄能设备
CN118541912A (zh) * 2022-12-31 2024-08-23 罗建 一种多组合低噪音清洁型动力发电装置及发电系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188783A (en) * 1981-05-15 1982-11-19 Shigeyoshi Jinnai Wind-force accumulating and storing power generator
US4426846A (en) * 1978-04-24 1984-01-24 Wayne Bailey Hydraulic power plant
CN1348062A (zh) * 2001-11-26 2002-05-08 孙建章 风水结合发电法及装置
CN1509373A (zh) * 2001-04-10 2004-06-30 ������һ���ɷ����޹�˾ 风动力的水力发电厂及电厂运行的方法
CN2667190Y (zh) * 2003-09-19 2004-12-29 黄东升 水力风力联合发电装置
CN1752437A (zh) * 2005-10-31 2006-03-29 朱汪逸 风力抽水发电系统
CN201090375Y (zh) * 2007-07-23 2008-07-23 周国华 风能水轮发电机
CN101629549A (zh) * 2009-08-14 2010-01-20 广州雅图风电设备制造有限公司 一种垂直轴风力发电机
CN101737270A (zh) * 2010-02-05 2010-06-16 济南高新开发区中泰环保技术开发中心 特大型垂直轴风力发电装置
CN101943126A (zh) * 2010-09-03 2011-01-12 张远林 一种垂直轴大功率风力发电机
CN101956672A (zh) * 2010-10-12 2011-01-26 张远林 一种适于宽风速范围的风力发电方法及装置
CN201884215U (zh) * 2010-12-02 2011-06-29 卢顺从 风力与水力相辅的发电装置
CN102192103A (zh) * 2011-04-04 2011-09-21 戴克发 水蓄能型风力发电系统
CN102392795A (zh) * 2011-10-29 2012-03-28 邓允河 垂直轴风力发电机储能发电系统及方法
CN202348584U (zh) * 2011-10-29 2012-07-25 邓允河 垂直轴风力发电机储能发电系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7514750A (nl) * 1975-12-18 1977-06-21 Stichting Reactor Centrum Windmoleninstallatie voor het opwekken van energie.
US4421967A (en) * 1980-07-21 1983-12-20 Vs Systems, Inc. Windmill driven eddy current heater
US4464579A (en) * 1982-06-17 1984-08-07 Control Data Corporation Derrieus wind turbine electric generating system
US5384489A (en) * 1994-02-07 1995-01-24 Bellac; Alphonse H. Wind-powered electricity generating system including wind energy storage
JPH11351125A (ja) * 1998-06-05 1999-12-21 Masao Shinozaki 電力、動力など使用せず風力、空気の圧力、水の圧力を組合せ利用した発電装置
JPH11351118A (ja) * 1998-06-10 1999-12-21 Masao Shinozaki 水を高いところから落とさず、低いところの水を利用し風力、空気の圧力、水の圧力を組み合わせ利用した発電装置
CN1392341A (zh) * 2001-06-15 2003-01-22 北京欧泰克斯科技发展有限公司 风能储存动力发电方法和设备
JP3368536B1 (ja) * 2001-11-08 2003-01-20 学校法人東海大学 流体発電装置
CA2369229A1 (en) * 2002-01-24 2003-07-24 Jacquelin Dery Vertical axis windmill and self-erecting structure therefor
US7740401B2 (en) * 2007-04-16 2010-06-22 Vita-Mix Corporation Food mixing machine and agitator therefor
US7804182B2 (en) * 2007-11-30 2010-09-28 Deangeles Steven J System and process for generating hydroelectric power
US7877992B2 (en) * 2008-05-29 2011-02-01 Tien-Chuan Chen Hydraulic power generation system driven by compression air produced by fluid
CN101280766B (zh) * 2008-05-30 2010-07-07 哈尔滨工程大学 变攻角阻力型垂直轴风-光互补式发电机
CH699791A2 (it) * 2008-10-24 2010-04-30 Vittorio Perregrini Dispositivo generatore integrato per la produzione di energia da fonti alternative rinnovabili ad emissioni zero nel rispetto e protezione ambientale.
US8030790B2 (en) * 2009-04-08 2011-10-04 Kamen George Kamenov Hybrid water pressure energy accumulating wind turbine and method
CN101526069B (zh) * 2009-04-17 2010-12-29 邓允河 一种垂直风力发电机
CN101603511B (zh) * 2009-07-16 2011-07-27 广州雅图风电设备制造有限公司 一种垂直风力发电机
CN201606189U (zh) * 2010-03-10 2010-10-13 邓允河 一种垂直轴风力发电机
CN201786576U (zh) * 2010-09-09 2011-04-06 赵俊文 多功能风力、水力发电储能装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426846A (en) * 1978-04-24 1984-01-24 Wayne Bailey Hydraulic power plant
JPS57188783A (en) * 1981-05-15 1982-11-19 Shigeyoshi Jinnai Wind-force accumulating and storing power generator
CN1509373A (zh) * 2001-04-10 2004-06-30 ������һ���ɷ����޹�˾ 风动力的水力发电厂及电厂运行的方法
CN1348062A (zh) * 2001-11-26 2002-05-08 孙建章 风水结合发电法及装置
CN2667190Y (zh) * 2003-09-19 2004-12-29 黄东升 水力风力联合发电装置
CN1752437A (zh) * 2005-10-31 2006-03-29 朱汪逸 风力抽水发电系统
CN201090375Y (zh) * 2007-07-23 2008-07-23 周国华 风能水轮发电机
CN101629549A (zh) * 2009-08-14 2010-01-20 广州雅图风电设备制造有限公司 一种垂直轴风力发电机
CN101737270A (zh) * 2010-02-05 2010-06-16 济南高新开发区中泰环保技术开发中心 特大型垂直轴风力发电装置
CN101943126A (zh) * 2010-09-03 2011-01-12 张远林 一种垂直轴大功率风力发电机
CN101956672A (zh) * 2010-10-12 2011-01-26 张远林 一种适于宽风速范围的风力发电方法及装置
CN201884215U (zh) * 2010-12-02 2011-06-29 卢顺从 风力与水力相辅的发电装置
CN102192103A (zh) * 2011-04-04 2011-09-21 戴克发 水蓄能型风力发电系统
CN102392795A (zh) * 2011-10-29 2012-03-28 邓允河 垂直轴风力发电机储能发电系统及方法
CN202348584U (zh) * 2011-10-29 2012-07-25 邓允河 垂直轴风力发电机储能发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772645A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103448734A (zh) * 2013-08-01 2013-12-18 国家电网公司 一种利用索道运输储能的风电功率调节装置
CN103448734B (zh) * 2013-08-01 2016-09-21 国家电网公司 一种利用索道运输储能的风电功率调节装置
CN111997836A (zh) * 2019-05-27 2020-11-27 广州雅图新能源科技有限公司 一种垂直轴风力发电机储水塔筒

Also Published As

Publication number Publication date
CN102392795A (zh) 2012-03-28
JP2014532825A (ja) 2014-12-08
AU2012327765A1 (en) 2014-05-22
US20140255166A1 (en) 2014-09-11
CA2853306A1 (en) 2013-05-02
EP2772645A1 (en) 2014-09-03
EP2772645A4 (en) 2015-07-15
CN102392795B (zh) 2013-05-08
US9546642B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
WO2013060165A1 (zh) 垂直轴风力发电机储能发电系统及方法
US8030790B2 (en) Hybrid water pressure energy accumulating wind turbine and method
US8492918B1 (en) Hybrid water pressure energy accumulating tower(s) connected to a wind turbine or power plants
CN102400858B (zh) 一种垂直轴风力发电机储能发电系统及方法
EP2660466B1 (en) Impact type wind-driven power generating device
CN201443471U (zh) 圆通水平轴风力发电机组
WO2012169991A1 (en) Hybrid water pressure energy accumulating wind turbine and method
CN201443472U (zh) 圆通垂直轴气动风力发电机组
CN101994652B (zh) 圆通水平轴风力发电机组
CN201606189U (zh) 一种垂直轴风力发电机
CN104847588A (zh) 一种综合利用海洋能、风能集中压缩空气发电方法和装置
CN113217291B (zh) 一种集成压缩空气储能功能的双馈风电机组及其工作方法
CN202348585U (zh) 一种垂直轴风力发电机储能发电系统
CN202690327U (zh) 压缩空气储能式风力发电机
CN107740754A (zh) 一种风能发电用传动装置
CN101994653B (zh) 圆通垂直轴气动风力发电机组
CN201198817Y (zh) 一种离并网两用直驱变桨式风力发电机
CN101004167A (zh) 花瓣状风叶垂直轴高效风力发电机
CN202732202U (zh) 一种小型水压冲力发电装置
KR20090086859A (ko) 풍력발전 시스템
CN202348584U (zh) 垂直轴风力发电机储能发电系统
CN201225234Y (zh) 风筝发电机
CN103195667B (zh) 一种分布式液控稳频垂直轴风力机发电系统
CN201221445Y (zh) 高层楼顶上风力发电
CN207161261U (zh) 垂稳立风座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014537462

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14353321

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2853306

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012327765

Country of ref document: AU

Date of ref document: 20120709

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012843953

Country of ref document: EP