WO2013051206A1 - 端末、基地局および通信方法 - Google Patents
端末、基地局および通信方法 Download PDFInfo
- Publication number
- WO2013051206A1 WO2013051206A1 PCT/JP2012/005950 JP2012005950W WO2013051206A1 WO 2013051206 A1 WO2013051206 A1 WO 2013051206A1 JP 2012005950 W JP2012005950 W JP 2012005950W WO 2013051206 A1 WO2013051206 A1 WO 2013051206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- srs
- transmission
- base station
- terminal
- bandwidth
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000004891 communication Methods 0.000 title claims description 12
- 230000005540 biological transmission Effects 0.000 claims abstract description 242
- 238000005259 measurement Methods 0.000 claims description 45
- 230000000737 periodic effect Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 description 34
- 238000010586 diagram Methods 0.000 description 11
- 239000000284 extract Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000000605 extraction Methods 0.000 description 6
- 238000001774 stimulated Raman spectroscopy Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 101150069124 RAN1 gene Proteins 0.000 description 1
- 101100355633 Salmo salar ran gene Proteins 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/30—Transmission power control [TPC] using constraints in the total amount of available transmission power
- H04W52/32—TPC of broadcast or control channels
- H04W52/325—Power control of control or pilot channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/22—TPC being performed according to specific parameters taking into account previous information or commands
- H04W52/221—TPC being performed according to specific parameters taking into account previous information or commands using past power control commands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/248—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/54—Signalisation aspects of the TPC commands, e.g. frame structure
- H04W52/58—Format of the TPC bits
Definitions
- the present invention relates to a terminal, a base station, and a communication method used in a heterogeneous cell network.
- LTE 3rd Generation Generation Partnership Project Long-term Evolution, hereinafter referred to simply as LTE
- SC-FDMA Single-Power-Ratio
- PAPR Peak-to-Average Power Ratio
- CSI Channel State Information
- Each terminal transmits an SRS at a preset period in time and frequency resources allocated in advance.
- the base station measures the uplink CSI based on the SRS periodically received from each terminal in the cell, and refers to the CSI of each terminal to determine the frequency scheduling of PUSCH (Packet Uplink Shared Channel) (frequency domain resources). Assignment).
- PUSCH Packet Uplink Shared Channel
- the broadband LTE uplink is a frequency selective fading channel whose gain varies greatly depending on the frequency. Therefore, the base station can maintain high channel quality by allocating PUSCH to frequency resources having a large gain.
- the terminal In order for the base station to perform PUSCH frequency scheduling, the terminal needs to transmit SRS for all available bands.
- the terminal When the terminal exists in the vicinity of the base station, the terminal transmits an SRS with a wide band and low power density.
- the base station can measure the wideband CSI required for PUSCH scheduling only by receiving one SRS.
- the terminal when the terminal is located far away from the base station such as the cell edge, the path loss in the propagation path is large, and thus the signal transmitted from the terminal is significantly attenuated before reaching the base station. Therefore, in order to obtain a desired reception quality in the base station, the terminal must increase the transmission power.
- the terminal transmits an SRS having a narrow band (a band obtained by dividing the entire band into n, where n is an integer of 2 or more) and a large power density, multiple times while changing the band (frequency hopping).
- the base station can measure the CSI of the entire band necessary for PUSCH scheduling by receiving a plurality of SRSs and accumulating them over time.
- Rel.10 In LTE-Advanced Release 10 (hereinafter referred to as “Rel.10”), which is an evolution of LTE, SRS (Periodic-SRS, hereinafter referred to as “P-SRS”) is transmitted periodically.
- P-SRS Period-SRS
- A-SRS Aperiodic-SRS
- A-SRS is transmitted from a terminal only once in response to a transmission request transmitted from a base station. Since the base station only needs to send a transmission request to the terminal when it wants to obtain a CSI of a predetermined bandwidth, Rel.10 can now operate with minimal resource consumption. .
- HetNet Heterogeneous Network
- CoMP Coordinatd Multi-Point
- HetNet is composed of a macro base station and a pico base station.
- the macro base station is a base station (node) having large transmission power and coverage
- the pico base station is a base station (node) having small transmission power and coverage.
- a base station that performs transmission / reception with the terminal is appropriately selected (hereinafter, a base station that performs transmission / reception with the terminal is referred to as a “transmission / reception participating base station”).
- transmission / reception participating base stations must be switched as appropriate according to the movement of the terminal. This transmission / reception participating base station is selected by the macro base station.
- the use of reference signals (CRS, CSI-RS, and SRS) transmitted on the uplink and downlink is under consideration.
- CRS, CSI-RS, and SRS reference signals
- the terminal measures CSI to each base station and feeds back using the uplink.
- the macro base station determines transmission / reception participating base stations.
- SRS transmitted on the uplink the base station can directly measure CSI using the SRS transmitted by the terminal. Therefore, compared with the case where CRS or CSI-RS is used, the amount of information that the terminal feeds back to the base station can be reduced.
- the SRS is used for two purposes: (1) PUSCH frequency scheduling and (2) selection of transmission / reception participating base stations.
- 3GPP TS36.211 v10.1.0 “3GPP TSG RAN; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation 3GPP TS 36.213 V10.1.0, “Physical layer procedures (Release 10),” March 2011 M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, “Coordinated multipoint transmission / reception techniques for LTE-advanced,” IEEE Wireless Commun., Vol. 17, No. 3, pp. -34, June 2010. R1-080994 LG Electronics, “UL sounding RS Operation”, Feb. 11 ⁇ 15, 2008, RAN1 # 52
- the terminal In order to select a transmission / reception participating base station, it is necessary that a base station located far from the terminal can also receive the SRS. Therefore, a narrow band and high power density SRS is suitable for this application. Further, in order to satisfy this application, the terminal needs to transmit the SRS at a transmission cycle that can follow the base station switching accompanying the movement.
- A-SRS In the case of A-SRS, transmission of SRS with different bandwidths can be instructed by a transmission request. However, since the A-SRS of each terminal must not interfere with P-SRS / A-SRS transmitted by other terminals, the degree of freedom of setting is greatly limited.
- the transmission power is set so that the power density of P-SRS and A-SRS is constant regardless of the bandwidth. Therefore, it is impossible to give different power densities to SRSs having different bandwidths.
- TPC Transmit Power Control
- the TPC command is composed of 2 bits, and is a command for instructing increase / decrease of transmission power by a predetermined step width.
- the macro base station In order to greatly change the power density, the macro base station must send multiple TPC commands to the terminal. Considering that the power density of P-SRS and A-SRS is constant regardless of bandwidth, even if SRS with different bandwidths is transmitted by the combination of P-SRS and A-SRS, each has different power To set the density, it is necessary to adjust the power frequently by TPC command. Such frequent transmission of TPC commands results in a large overhead increase.
- Non-Patent Document 4 As a method using a plurality of types of SRS having different bandwidths, for example, the method proposed in Non-Patent Document 4 is known. This method prepares multiple types of P-SRS with the same bandwidth, different period, frequency position, and frequency shift, and selects one or more P-SRS as required and multiplex-transmits them. It is. With this method, it is possible to increase the apparent P-SRS bandwidth by selecting P-SRS in a continuous band, or select the P-SRS with a different period to increase the apparent P-SRS bandwidth. Can be varied. However, Non-Patent Document 4 does not present transmission power control that changes power density, and does not show a method for realizing different coverages in one P-SRS set.
- An object of the present invention is to transmit P-SRS (or A-SRS) at a transmission cycle necessary for performing both processing of selection of transmission / reception participating base stations and PUSCH frequency scheduling in HetNet. It is to provide a terminal, a base station and a communication method.
- a terminal includes a reception unit that receives control information including information indicating a transmission parameter of a periodic sounding reference signal (P-SRS), and a transmission parameter included in the received control information
- the first P-SRS having the first power density with the first bandwidth is transmitted in the first period, and the second power higher than the first power density with the second bandwidth narrower than the first bandwidth.
- a transmission unit that transmits the second P-SRS having the density in the second period.
- a terminal includes a receiving unit that receives control information including information indicating a transmission parameter of an aperiodic sounding reference signal (A-SRS), and a transmission parameter of the received control information.
- the first A-SRS having the first power density with the first bandwidth is transmitted only when there is a transmission request from the base station in the first period, and the second bandwidth is narrower than the first bandwidth.
- a transmission unit that transmits a second A-SRS having a second power density higher than the first power density only when there is a transmission request from the base station in the second period.
- a base station includes a transmission unit that transmits control information including information indicating a transmission parameter of a periodic sounding reference signal (P-SRS), and a first power density with a first bandwidth.
- a receiving unit that receives the first P-SRS and a second P-SRS having a second power density higher than the first power density in a second bandwidth that is narrower than the first bandwidth; and the received first P-SRS
- a measurement unit that measures channel state information (CSI) using the SRS and the second P-SRS; frequency scheduling using the CSI based on the first P-SRS and the second P-SRS; And a selection unit that selects base stations participating in transmission / reception using the CSI based on 2P-SRS.
- CSI channel state information
- a base station includes a transmission unit that transmits control information including information indicating transmission parameters of an aperiodic sounding reference signal (A-SRS), and a first power density with a first bandwidth.
- A-SRS aperiodic sounding reference signal
- Receiving a first A-SRS of the first A-SRS and a second A-SRS of a second power density higher than the first power density with a second bandwidth narrower than the first bandwidth, and the received first A-SRS A measurement unit that measures channel state information (CSI) using -SRS and the second A-SRS; and frequency scheduling using the CSI based on the first A-SRS and the second A-SRS; And a selection unit that selects base stations participating in transmission / reception using the CSI based on the second A-SRS.
- CSI channel state information
- the communication method receives control information including information indicating a transmission parameter of a periodic sounding reference signal (P-SRS), and uses the received transmission parameter of the control information, A first P-SRS having a first power density in a first bandwidth is transmitted in a first period, and a second P having a second power density higher than the first power density in a second bandwidth narrower than the first bandwidth. -SRS is transmitted in the second period.
- P-SRS periodic sounding reference signal
- the communication method receives control information including information indicating a transmission parameter of an aperiodic sounding reference signal (A-SRS), and uses the received transmission parameter of the control information.
- the first A-SRS having the first power density in the first bandwidth is transmitted only when there is a transmission request from the base station in the first period, and the first A-SRS is transmitted in the second bandwidth narrower than the first bandwidth.
- a second A-SRS having a second power density higher than one power density is transmitted only when a transmission request is received from the base station in the second period.
- the terminal based on the transmission parameter notified from the macro base station, the terminal periodically and P-SRS (or A-SRS) with a low power density in a wide band and a P with a high power density in a narrow band.
- P-SRS or A-SRS
- A-SRS two types of SRS are time-multiplexed and transmitted at the transmission cycle required to perform both the selection of base stations for transmission and reception and PUSCH frequency scheduling.
- A-SRS can be transmitted.
- the figure which shows an example of P-SRS and the transmission power control time which are transmitted from the terminal which concerns on Embodiment 2 of this invention The figure which shows the other example of P-SRS transmitted from the terminal which concerns on Embodiment 2 of this invention, and transmission power control time
- the figure which shows an example of P-SRS transmitted from the terminal which concerns on other embodiment of this invention The figure which shows the other example of P-SRS transmitted from the terminal which concerns on other embodiment of this invention.
- Cell conceptual diagram of heterogeneous network with two-layer structure The figure which shows the state at the time of applying this invention to the heterogeneous network which has a two-layer structure
- the figure which shows an example of A-SRS transmitted from the terminal which concerns on Embodiment 3 of this invention The figure which shows an example of A-SRS and the transmission power control time which are transmitted from the terminal which concerns on Embodiment 4 of this invention
- the network system according to Embodiment 1 of the present invention is HetNet, and includes a macro base station (Macro eNB) 100, a pico base station (Pico eNB) 200, and a terminal (UE) 300 as shown in FIG. Is done.
- a macro base station Mocro eNB
- a pico base station Pico eNB
- UE terminal
- FIG. Is done In each cell, one macro base station 100 and one or a plurality of pico base stations 200 are installed.
- the macro base station 100 and each pico base station 200 are connected by a low-delay large-capacity interface such as an optical fiber.
- the macro base station 100 and each pico base station 200 in the cell use the same cell ID, share SRS transmission parameters assigned to each terminal 300 existing in the cell, receive the SRS, and perform CSI. taking measurement.
- Each terminal 300 performs radio communication with the macro base station 100 and / or the pico base station 200 selected by the macro base station 100.
- each terminal 300 the base station that transmits data and the base station that receives data may be different. Further, the macro base station 100 can communicate with both the terminal 300a corresponding to the specification of Rel.11 and the terminal 300b corresponding to the specification before Rel.10. In the following description, a terminal 300 (terminal 300a in FIG. 1) that supports the specification of Rel. 11 will be described.
- each terminal 300 periodically, based on the transmission parameter notified from the macro base station 100, the first P-SRS having a low power density in a wide band and the second P-S having a high power density in a narrow band.
- Two types of SRS, SRS, are time-multiplexed.
- FIG. 2 is a block diagram showing a main configuration of macro base station 100 according to the present embodiment.
- the macro base station 100 shown in FIG. 2 mainly includes a reception unit 101, a measurement unit 102, an inter-base station interface unit (IF) 103, a control unit 104, and a transmission unit 105.
- IF inter-base station interface unit
- the receiving unit 101 performs reception radio processing (down-conversion, demodulation, decoding, etc.) on a radio signal transmitted from each terminal 300 and received via an antenna, and performs P-SRS, PUSCH, and uplink control signal (PUCCH : Physical Uplink Control Channel) etc.
- the receiving unit 101 outputs the P-SRS to the measuring unit 102.
- receiving section 101 extracts both the first P-SRS and the second P-SRS.
- receiving section 101 extracts the second P-SRS.
- the measurement unit 102 measures CSI by P-SRS and outputs the measurement result to the control unit 104.
- measurement section 102 measures CSI using each of the first P-SRS and the second P-SRS.
- measurement section 102 measures CSI using the second P-SRS.
- the inter-base station interface unit 103 performs wired communication with the pico base station 200. Specifically, the inter-base station interface unit 103 transmits information indicating an instruction to participate in transmission / reception to the transmission / reception participating base stations selected by the control unit 104. Further, the inter-base station interface unit 103 transmits scheduling information and PUSCH transmission parameters of the terminal 300 to the pico base station 200 that receives PUSCH. Further, the inter-base station interface unit 103 receives the CSI measurement result transmitted from the pico base station 200 and transfers it to the control unit 104. Further, the inter-base station interface unit 103 receives data from the terminal 300 transferred from the pico base station 200.
- the control unit 104 performs various controls such as PUSCH frequency scheduling and selection of transmission / reception participating base stations. Specifically, the control unit 104 has a wide band with low power density and channel fluctuation among a plurality of P-SRS candidates having different transmission parameters (bandwidth, power offset, period, and presence / absence of frequency hopping). Is selected as the first P-SRS, and a P-SRS having a high power density in a narrow band and capable of following the switching of the base station accompanying the movement of the terminal 300 is selected as the second P-SRS. Select as SRS. The P-SRS candidates are listed and stored on the table, and each P-SRS candidate is numbered.
- control unit 104 transmits information on numbers indicating the two types of selected P-SRSs (hereinafter referred to as “P-SRS selection set”) and information indicating the transmission timings of the two types of P-SRSs.
- the data is transmitted to terminal 300 via unit 105 and transmitted to each pico base station 200 via inter-base station interface unit 103.
- control unit 104 calculates SINR based on the CSI reported from each pico base station 200 via the inter-base station interface unit 103 and the CSI output from the measurement unit 102, and downloads based on the SINR.
- a base station (transmission / reception participating base station) participating in line transmission or uplink reception is selected.
- the control unit 104 transmits information indicating the selected transmission / reception participating base station to the terminal 300 via the transmission unit 105, and transmits the information to each pico base station 200 via the inter-base station interface unit 103.
- the control unit 104 determines the CSI measurement result of the first P-SRS output from the measurement unit 102, and the base station from the pico base station 200 participating in PUSCH reception. Based on the CSI measurement result of the first P-SRS reported through the inter-interface unit 103, PUSCH frequency scheduling and PUSCH transmission parameters of the terminal 300 are determined. In addition, when the macro base station 100 itself does not participate in PUSCH reception, the control unit 104 reports the CSI measurement result of the first P-SRS reported via the inter-base station interface unit 103 from the pico base station 200 participating in PUSCH reception. Based on the above, PUSCH frequency scheduling and PUSCH transmission parameters of terminal 300 are determined.
- control unit 104 transmits information indicating the PUSCH frequency scheduling result and information indicating the PUSCH transmission parameter of the terminal 300 to the terminal 300 via the transmission unit 105, and transmits the PUSCH via the inter-base station interface unit 103. It transmits to the pico base station 200 participating in reception.
- each pico base station 200 can sequentially average the CSI measured by the second P-SRS. For example, by averaging the CSI measured every time one second P-SRS is newly received, it is possible to follow the CSI variation caused by the movement of the terminal 300 while suppressing the CSI variation.
- the transmission unit 105 outputs the P-SRS selection set and each information (information indicating transmission / reception participating base stations, information indicating PUSCH scheduling results, information indicating PUSCH transmission parameters of the terminal 300, etc.) output from the control unit 104, , PDSCH (Packet Downlink Shared Channel), downlink control signal (PDCCH: Physical Downlink Control Channel), etc. are subjected to transmission radio processing (encoding, modulation, up-conversion, etc.) and transmitted to each terminal 300 via an antenna .
- the P-SRS selection set may be notified as terminal-specific RRC control information or may be included in the MAC header.
- FIG. 3 is a block diagram showing a main configuration of pico base station 200 according to the present embodiment.
- the pico base station 200 illustrated in FIG. 3 mainly includes a receiving unit 201, a measuring unit 202, an inter-base station interface unit 203, and a transmitting unit 204.
- the reception unit 201 performs reception radio processing on a radio signal transmitted from each terminal 300 and received via an antenna, extracts a P-SRS, a control signal, and the like, and outputs the P-SRS to the measurement unit 202 To do. Further, when instructed to participate in PUSCH reception from the macro base station 100, the receiving unit 201 processes the PUSCH included in the received signal according to the PUSCH transmission parameter of the terminal 300 instructed from the macro base station 100. When terminal 300 is located in the vicinity of pico base station 200, receiving section 201 extracts both the first P-SRS and the second P-SRS. On the other hand, when terminal 300 is located far from pico base station 200, receiving section 201 extracts the second P-SRS.
- the measurement unit 202 measures CSI by P-SRS and transmits the measurement result to the macro base station 100 via the inter-base station interface unit 203.
- measurement section 202 measures CSI using each of the first P-SRS and the second P-SRS.
- measurement section 202 measures CSI using the second P-SRS.
- the inter-base station interface unit 203 performs wired communication with the macro base station 100. Specifically, the inter-base station interface unit 203 receives the P-SRS selection set transmitted from the macro base station 100 and transfers it to the measurement unit 202. Further, the inter-base station interface unit 203 transmits the CSI measurement result output from the measurement unit 202 to the macro base station 100. Further, the inter-base station interface unit 203 receives information indicating an instruction to participate in transmission / reception from the macro base station 100. Further, when instructed to participate in PUSCH reception, the inter-base station interface unit 203 transmits the PUSCH received from the terminal 300 to the macro base station 100.
- the transmission unit 204 When instructed to participate in PDSCH transmission from the macro base station 100, the transmission unit 204 performs transmission radio processing on the PDSCH according to the transmission parameters instructed from the macro base station 100, and transmits the processed signal to the antenna. To each terminal 300.
- FIG. 4 is a block diagram showing a main configuration of terminal 300 according to the present embodiment.
- a terminal 300 illustrated in FIG. 4 mainly includes a reception unit 301, a control unit 302, and a transmission unit 303.
- the receiving unit 301 performs reception radio processing on a radio signal transmitted from the macro base station 100 and the pico base station 200 and received via the antenna, and indicates information indicating a P-SRS selection set and a transmission / reception participating base station , Information indicating the result of PUSCH scheduling, information indicating the PUSCH transmission parameter of the terminal 300, PDSCH, downlink control signal, etc., and extracting the P-SRS selection set, information indicating the result of PUSCH scheduling, and the PUSCH transmission parameter of the terminal 300 Is output to the control unit 302.
- the control unit 302 transmits transmission parameters (bandwidth, power offset, period, and presence / absence of frequency hopping) of the first P-SRS and the second P-SRS according to the P-SRS selection set output from the reception unit 301. To instruct. Further, control section 302 instructs PUSCH transmission parameters to transmission section 303 according to the information indicating the result of PUSCH scheduling output from reception section 301 and the transmission parameter information of terminal 300.
- the transmission unit 303 performs transmission radio processing on the first P-SRS, the second P-SRS, the PUSCH, the uplink control signal, and the like, and transmits the processed signal to each terminal 300 via the antenna. Note that the transmission unit 303 performs transmission radio processing on the first P-SRS, the second P-SRS, and the PUSCH according to the transmission parameter instructed from the control unit 302.
- terminal 300 performs transmission power control on the first P-SRS, the second P-SRS, and the PUSCH. Specifically, the terminal 300 first performs open-loop transmission power control according to the path loss in the propagation path between the communication partner base stations 100 and 200 and the terminal 300, and then from the base stations 100 and 200. Performs closed-loop transmission power control based on the transmitted TPC command.
- the macro base station 100 has a first P-SRS with a low power density in a wide band and a second P-SRS with a high power density in a narrow band. Select two types of P-SRS. Then, macro base station 100 transmits a P-SRS selection set, which is information of numbers indicating the two types of selected P-SRSs, to terminal 300 (ST501).
- terminal 300 sets transmission resources for the first P-SRS and the second P-SRS based on the P-SRS selection set received from macro base station 100.
- Terminal 300 then time-multiplexes the first P-SRS and the second P-SRS according to the set transmission resource toward base stations 100 and 200 (ST502). For example, in FIG. 6, when SRS no. 0 is selected as the first P-SRS and SRS no. 5 is selected as the second P-SRS, the terminal 300 transmits transmission parameters (bandwidth, The first P-SRS and the second P-SRS are transmitted based on the transmission timing and period).
- each base station 100, 200 measures CSI using the received P-SRS. Then, the macro base station 100 determines PUSCH frequency scheduling and transmission parameters based on the CSI measured by the base stations 100 and 200. Further, the macro base station 100 calculates SINR based on the CSI measured by the base stations 100 and 200, and selects a transmission / reception participating base station based on the SINR. Then, the macro base station 100 notifies the terminal 300 and each pico base station 200 of information indicating the selected transmission / reception participating base station. Also, macro base station 100 notifies PUSCH frequency scheduling and PUSCH transmission parameters to terminal 300 and pico base station 200 participating in PUSCH reception (ST503).
- terminal 300 performs PUSCH transmission based on the notified PUSCH transmission parameters (ST504).
- the macro base station 100 continues to monitor the CSI measurement results of the base stations 100 and 200, and switches the transmission / reception participating base stations and changes the frequency resource for scheduling the PUSCH according to the change in the CSI measurement results. .
- terminal 300 is based on the transmission parameter notified from macro base station 100, and the first P-SRS with a low power density in a wide band and the second P-SRS with a high power density in a narrow band.
- the two types of SRS are time-multiplexed. Accordingly, it is possible to transmit the P-SRS at a transmission cycle necessary for performing both the selection of the transmission / reception participating base stations and the frequency scheduling of the PUSCH.
- the overhead required for the macro base station 100 to notify the terminal 300 of the selected P-SRS can be reduced.
- the macro base station 100 may select two types of P-SRSs from the existing Rel. 10 SRS list without creating a new table. For example, the macro base station 100 selects two types of P-SRSs that do not collide with each other from the tables of FIGS. 9 and 10. However, in this case, it is necessary to separately notify the power offset information for differentiating the coverages of the two types of P-SRS from the terminal-specific RRC control information or the MAC header.
- the P-SRS to be transmitted is a combination of the P-SRS used by the terminal before Rel.10 and a power offset, the coexistence (orthogonal multiplexing) with the terminal before Rel.10 It can be easily achieved.
- terminal 300 may determine power offsets of two types of P-SRSs based on the following mathematical formula.
- P W-SRS, c (i) is the transmission power of the first P-SRS and is the same as the power formula defined in Rel.
- P N-SRS, c (i) is the transmission power of the second P-SRS.
- the above equation (1) represents that the transmission power of the first P-SRS is determined based on the power equation of Rel.10, and the second P-SRS is set to the same transmission power based on this.
- the transmission power is given by bandwidth ⁇ power density. Therefore, for example, when the bandwidth of the second P-SRS is 1 ⁇ 4 that of the first P-SRS, the power density of the second P-SRS is four times that of the first P-SRS.
- the terminal 300 can transmit two types of P-SRSs having different bandwidths and power densities without notifying the terminal 300 of the power offset from the macro base station 100, thereby forming two different coverages. Can do.
- terminal 300 periodically stops transmission of the first P-SRS, and instead transmits the second P-SRS. good.
- the transmission cycle of P-SRS can be made constant.
- Embodiment 2 In Embodiment 2, a case will be described in which closed-loop transmission power control is performed on each of two types of P-SRS transmitted by terminal 300.
- the configuration of the network system of the second embodiment is the same as that of the first embodiment.
- the main configurations of macro base station 100, pico base station 200, and terminal 300 are the same as those in Embodiment 1.
- the functions of the control unit 104 and the transmission unit 105 of the macro base station 100, and the reception unit 301 and the control unit 302 of the terminal 300 are different from those of the first embodiment.
- control section 104 of macro base station 100 performs the processing described in Embodiment 1, and further, based on the magnitude relationship between the received SINR of the P-SRS and the target SINR, the downlink A TPC command (2 bits) of the control signal (PDCCH) is generated and output to the transmission unit 105.
- the control unit 104 outputs the PDCCH to the transmission unit 105, and controls the transmission unit 105 so that the TPC command is transmitted at a timing applied to a desired P-SRS.
- the transmission unit 105 performs the processing described in the first embodiment, and further transmits a PDCCH including a TPC command based on an instruction from the control unit 104.
- the signal to which the TPC command is applied varies depending on the time when the macro base station 100 transmits the TPC command.
- the relationship between the transmission time of the TPC command and the signal to which the TPC command is applied is determined in advance between the macro base station 100 and the terminal 300.
- the receiving unit 301 of the terminal 300 performs the processing described in the first embodiment, further extracts a PDCCH including a TPC command from the received signal, and outputs the TPC command to the control unit 302.
- the control unit 302 performs the processing described in the first embodiment. Furthermore, the control unit 302 monitors the timing at which the receiving unit 301 receives the PDCCH, and determines a signal to which the TPC command included in the PDCCH is applied. Then, the control unit 302 performs transmission power control indicated by the TPC command on the application target signal.
- the Tel command of Rel. 10 can be used as it is.
- the second P-SRS is a signal intended for reception at the base stations 100 and 200 located far from the terminal 300
- the first P-SRS PUSCH is a signal intended for reception at base stations 100 and 200 located in the vicinity of terminal 300. Therefore, in the present embodiment, as shown in FIG.
- two types of independent control may be performed: closed loop control of the second P-SRS and closed loop control in which both the first P-SRS and the PUSCH are interlocked.
- the application destination of the TPC command can be weighted by changing the combination of two types of P-SRS periods. For example, in the example of FIG. 12, the time 602 for applying the TPC command to the first P-SRS and PUSCH is seven times the time 601 for applying to the second P-SRS.
- the signal to which the TPC command is applied can be switched by the frequency resource (search space) to which the PDCCH including the TPC command is mapped.
- a plurality of controls can be performed without causing time restrictions.
- a plurality of frequency resources for mapping the PDCCH can be prepared, and the control can be switched according to the time and frequency resources at which the PDCCH including the TPC command is transmitted and received.
- time and frequency may be superior or inferior.
- the application target of the TPC command is switched using the time division as in FIG.
- the control signal including the TPC command is placed at the position of the specific frequency resource (search space) only when the power adjustment of the first P-SRS and PUSCH is performed. Map.
- the control signal for adjusting the power of the second P-SRS and the control signal for adjusting the power of the first P-SRS and PUSCH are multiplexed on the frequency resource and transmitted at the same time in some cases.
- the control signal including the TPC command is transmitted to the frequency resource position B. Map to (Position B).
- the control signal for power adjustment of the second P-SRS mapped to the frequency resource position A (Position A) and the frequency resource position B are mapped.
- the first P-SRS and the control signal for adjusting the power of the PUSCH are multiplexed on the frequency resource and transmitted at the same time. This represents a case where priority is given to switching the target of application of the TPC command using time division, and a control signal is mapped to a specific frequency resource only when necessary.
- the base station 100 can select the transmission / reception participating base stations as long as the first P-SRS can be received. , And PUSCH frequency scheduling can be performed.
- terminal 300 has received a specific A-SRS transmission request (hereinafter referred to as “A-SRS trigger”) at a specific timing for such terminal 300 in the first and second embodiments. Only in some cases, transmission of the second P-SRS may be stopped.
- A-SRS trigger a specific A-SRS transmission request
- terminal 300 instructs A-SRS trigger to transmit an A-SRS having the same bandwidth as the second P-SRS currently being transmitted at the same timing as the second P-SRS. Is received, the subsequent transmission of the second P-SRS is stopped.
- the terminal 300 stops transmission of only the second P-SRS at that timing.
- the present invention can also be applied when the macro base station 100 and the pico base station 200 configure cells having different cell IDs.
- a common cell ID also referred to as a virtual cell ID
- SRS using a base sequence and a hopping pattern generated with individual cell IDs are not orthogonal to each other and cause interference.
- SRS using a base sequence and a hopping pattern generated with a common cell ID can be easily orthogonalized at all base stations in the cell.
- terminal 300 in a heterogeneous network having a two-layer structure, terminal 300 generates a first P-SRS using a base sequence and a hopping pattern generated by an individual cell ID, and is generated by a common cell ID.
- a second P-SRS is generated using the base sequence and the hopping pattern.
- the first P-SRS and PUSCH can be used for measurement only by the connected base stations 100 and 200 (base station of Cell ID # 5 in the example of FIG. 17), similarly to the conventional heterogeneous network.
- the second P-SRS can be orthogonalized in the surrounding base stations 100 and 200, and can be used for accurate measurement without causing interference. Therefore, smooth handover can be realized.
- terminal 300 uses the first P-SRS with a low power density in a wide band and the second P-SRS with a high power density in a narrow band based on the transmission parameters notified from macro base station 100.
- the case where two types of SRS are time-multiplexed has been described.
- Embodiment 3 based on the transmission parameter notified from macro base station 100, terminal 300 has two types, a first A-SRS with a wide band and low power density, and a second A-SRS with a narrow band and high power density. A case where the SRS is time-multiplexed will be described.
- the configuration of the network system of the third embodiment is the same as that of the first embodiment. Further, in Embodiment 3, the main configurations of macro base station 100, pico base station 200, and terminal 300 are the same as those in Embodiment 1.
- the functions of unit 302 and transmission unit 303 are different from those in the first embodiment.
- the receiving unit 101 performs A-SRS extraction processing instead of P-SRS extraction processing as compared with the processing described in the first embodiment.
- the reception unit 101 outputs A-SRS to the measurement unit 102.
- receiving section 101 extracts both the first A-SRS and the second A-SRS.
- receiving section 101 extracts the second A-SRS.
- the measuring unit 102 measures CSI by A-SRS and outputs the measurement result to the control unit 104.
- measurement section 102 measures CSI using each of the first A-SRS and the second A-SRS.
- measurement section 102 measures CSI using the second A-SRS.
- the control unit 104 performs the selection process of the first A-SRS and the second A-SRS instead of the selection process of the first P-SRS and the second P-SRS, as compared with the process described in the first embodiment.
- the control unit 104 has a wide band with low power density and channel fluctuation among a plurality of A-SRS candidates having different transmission parameters (bandwidth, frequency position, power offset, period, and timing).
- the A-SRS having a transmission cycle that can be followed is selected as the first A-SRS, and the A-SRS having a high power density in a narrow band and capable of following the switching of the base station accompanying the movement of the terminal 300 is the second A-SRS. Choose as.
- the control unit 104 transmits information indicating transmission parameters of a plurality of A-SRSs including the first A-SRS and the second A-SRS (hereinafter referred to as “A-SRS parameter set”) via the transmission unit 105 to the terminal. 300 to each pico base station 200 via the inter-base station interface 103.
- A-SRS parameter set information indicating transmission parameters of a plurality of A-SRSs including the first A-SRS and the second A-SRS
- the transmission parameters of A-SRS may be the same as or different from those of P-SRS.
- the control unit 104 determines the CSI measurement result of the first A-SRS output from the measurement unit 102 and the base station from the pico base station 200 participating in PUSCH reception. Based on the CSI measurement result of the first A-SRS reported through the inter-interface unit 103, PUSCH frequency scheduling and PUSCH transmission parameters of the terminal 300 are determined. In addition, when the macro base station 100 itself does not participate in PUSCH reception, the control unit 104 reports the CSI measurement result of the first A-SRS reported from the pico base station 200 participating in PUSCH reception via the inter-base station interface unit 103. Based on the above, PUSCH frequency scheduling and PUSCH transmission parameters of terminal 300 are determined.
- control unit 104 transmits information indicating the PUSCH frequency scheduling result and information indicating the PUSCH transmission parameter of the terminal 300 to the terminal 300 via the transmission unit 105, and transmits the PUSCH via the inter-base station interface unit 103. It transmits to the pico base station 200 participating in reception.
- transmission section 105 performs transmission radio processing (encoding, modulation, up-conversion, etc.) on the A-SRS parameter set instead of the P-SRS selection set. And transmitted to each terminal 300 via an antenna.
- the A-SRS parameter set may be notified as terminal-specific RRC control information, or may be included in the MAC header.
- transmission section 105 determines whether to request transmission of A-SRS at the next A-SRS transmission possible timing for each individual terminal, and includes a 1- or 2-bit A-SRS trigger in PDCCH. To send.
- the receiving unit 201 performs A-SRS extraction processing instead of the P-SRS extraction processing as compared with the processing described in the first embodiment.
- the receiving unit 201 also outputs A-SRS to the measuring unit 202.
- receiving section 201 extracts both the first A-SRS and the second A-SRS.
- receiving section 201 extracts the second A-SRS.
- the measuring unit 202 measures CSI by A-SRS and transmits the measurement result to the macro base station 100 via the inter-base station interface unit 203.
- measurement section 202 measures CSI using each of the first A-SRS and the second A-SRS.
- measurement section 202 measures CSI using the second A-SRS.
- the receiving unit 301 performs an A-SRS parameter set extraction process instead of the P-SRS selection set extraction process as compared with the process described in the first embodiment.
- the receiving unit 301 outputs the extracted A-SRS parameter set to the control unit 302.
- receiving section 301 detects an A-SRS trigger from PDCCH and outputs it to control section 302.
- the control unit 302 transmits transmission parameters (bandwidth, frequency position, power offset, period, and timing) of the first A-SRS and the second A-SRS according to the A-SRS parameter set output from the reception unit 301. To instruct. In addition, the control unit 302 instructs the transmission unit 303 to transmit the first A-SRS or the second A-SRS according to the A-SRS trigger output from the reception unit 301.
- transmission parameters bandwidth, frequency position, power offset, period, and timing
- transmission section 303 performs first A-SRS and second A-SRS transmission radio processing instead of first P-SRS and second P-SRS transmission radio processing. .
- a predetermined time for example, 4 ms
- the later is the starting point, and the wireless transmission processing is performed on the A-SRS at the closest transmittable timing after that point.
- terminal 300 performs transmission power control for the first A-SRS and the second A-SRS instead of the transmission power control for the first P-SRS and the second P-SRS, compared to the processing described in the first embodiment. Do.
- the macro base station 100 selects a first A-SRS with a wide band and a low power density and a second A-SRS with a narrow band and a high power density. Then, macro base station 100 transmits an A-SRS parameter set, which is information indicating transmission parameters of a plurality of A-SRSs including the two types of selected A-SRSs, to terminal 300.
- A-SRS parameter set which is information indicating transmission parameters of a plurality of A-SRSs including the two types of selected A-SRSs
- FIG. 18 is a diagram illustrating an example of preset A-SRS transmission resources.
- the macro base station 100 includes an A-SRS trigger in the PDCCH and transmits it to the terminal 300 as necessary.
- FIG. 19 is a diagram illustrating an example of A-SRS transmitted from the terminal according to the third embodiment.
- FIG. 19 shows a state in which each of the first A-SRS and the second A-SRS is transmitted a plurality of times in accordance with the A-SRS trigger.
- the first A-SRS and the second A-SRS are transmitted only at respective preset periods and timings. Accordingly, the first A-SRS and the second A-SRS are not transmitted redundantly.
- each base station 100, 200 measures CSI using the received A-SRS. Then, the macro base station 100 determines PUSCH frequency scheduling and transmission parameters based on the CSI measured by the base stations 100 and 200. Further, the macro base station 100 calculates SINR based on the CSI measured by the base stations 100 and 200, and selects a transmission / reception participating base station based on the SINR. Then, the macro base station 100 notifies the terminal 300 and each pico base station 200 of information indicating the selected transmission / reception participating base station. Also, the macro base station 100 notifies the terminal 300 and the pico base station 200 participating in PUSCH reception of PUSCH frequency scheduling and PUSCH transmission parameters.
- the terminal 300 performs PUSCH transmission based on the notified PUSCH transmission parameters.
- the macro base station 100 continues to monitor the CSI measurement results of the base stations 100 and 200, and switches the transmission / reception participating base stations and changes the frequency resource for scheduling the PUSCH according to the change in the CSI measurement results. .
- the terminal 300 based on the transmission parameter notified from the macro base station 100, the first A-SRS with a low power density in a wide band and the second A-SRS with a high power density in a narrow band.
- the two types of SRS are time-multiplexed.
- the effect similar to Embodiment 1 can be acquired.
- terminal 300 since terminal 300 transmits the first A-SRS or the second A-SRS only when receiving the A-SRS trigger, SRS is used when not required in each base station 100, 200. Not sent. Thereby, the power consumption of terminal 300 and the interference given to other cells can be suppressed.
- macro base station 100 can select an A-SRS to be transmitted to terminal 300 by an A-SRS trigger, so it is not necessary to change A-SRS transmission parameter settings.
- the transmission ratio of the first A-SRS and the second A-SRS can be freely changed.
- terminal 300 generates the first A-SRS using the base sequence and hopping pattern generated by the dedicated cell ID, and uses the common cell ID.
- the second A-SRS may be generated using the generated base sequence and hopping pattern.
- the base stations 100 and 200 located in the vicinity of the terminal 300 can use the first A-SRS for measurement.
- the second A-SRS can be easily orthogonalized by all the base stations 100 and 200 in the cell, all the base stations 100 and 200 perform accurate measurement using the second A-SRS. be able to. Therefore, smooth handover and A-SRS orthogonalization in a wide area can be realized.
- terminal 300 contrary to variation 1, terminal 300 generates a first A-SRS using a base sequence generated by a common cell ID and a hopping pattern, and a base sequence generated by an individual cell ID.
- the second A-SRS may be generated using the hopping pattern.
- the base stations 100 and 200 cannot separate the second A-SRS.
- interference is randomized and reduced by generating A-SRS with different cell IDs rather than generating A-SRS with a single cell ID. can do. Therefore, A-SRS interference randomization can be realized in a wide area in a situation where the number of terminals is very large and the orthogonal capacity of A-SRS is insufficient.
- frequency hopping of preset A-SRS transmission resources may be performed. That is, the frequency position of the A-SRS transmission resource may be hopped according to a preset pattern, and when a trigger is generated, the A-SRS may be transmitted at the frequency position determined by hopping.
- wideband CSI measurement can be performed by triggering multiple times even in the second A-SRS, that is, the narrowband A-SRS, so that even the base stations 100 and 200 located far from the terminal 300 can perform wideband and high performance. Accurate CSI can be obtained.
- Embodiment 4 In Embodiment 4, a case will be described in which closed-loop transmission power control is performed on each of two types of A-SRS transmitted by terminal 300.
- the configuration of the network system of the fourth embodiment is the same as that of the third embodiment. Further, in the fourth embodiment, the main configurations of macro base station 100, pico base station 200, and terminal 300 are the same as those in the third embodiment. In the fourth embodiment, the functions of control section 104 and transmission section 105 of macro base station 100, and reception section 301 and control section 302 of terminal 300 are different from those in the third embodiment.
- control section 104 of macro base station 100 performs the processing described in Embodiment 3, and further, based on the magnitude relationship between the received SINR of A-SRS and the target SINR, the downlink A TPC command (2 bits) of the control signal (PDCCH) is generated and output to the transmission unit 105. Further, the control unit 104 outputs the PDCCH to the transmission unit 105, and controls the transmission unit 105 so that the TPC command is transmitted at a timing applied to a desired A-SRS.
- PDCCH control signal
- the transmission unit 105 performs the processing described in the third embodiment, and further transmits a PDCCH including a TPC command based on an instruction from the control unit 104.
- the signal to which the TPC command is applied varies depending on the time when the macro base station 100 transmits the TPC command.
- the relationship between the transmission time of the TPC command and the signal to which the TPC command is applied is determined in advance between the macro base station 100 and the terminal 300.
- the receiving unit 301 of the terminal 300 performs the processing described in the third embodiment, further extracts a PDCCH including a TPC command from the received signal, and outputs the TPC command to the control unit 302.
- the control unit 302 performs the processing described in the third embodiment, further monitors the timing at which the receiving unit 301 receives the PDCCH, and determines a signal to which the TPC command included in the PDCCH is applied. Then, the control unit 302 performs transmission power control indicated by the TPC command on the application target signal.
- the Tel command of Rel. 10 can be used as it is.
- the second A-SRS is a signal intended for reception at the base stations 100 and 200 located far away from the terminal 300
- the first A-SRS PUSCH is a signal intended for reception at base stations 100 and 200 located in the vicinity of terminal 300.
- two types of independent control may be performed: closed loop control that links both the first A-SRS and the PUSCH and closed loop control of the second A-SRS.
- the application destination of the TPC command can be weighted by changing the combination of the two types of A-SRS periods. For example, in the example of FIG. 20, the time 1002 for applying the TPC command to the first A-SRS and the PUSCH is seven times the time 1001 for applying to the second A-SRS.
- the signal to which the TPC command is applied can be switched by the frequency resource (search space) to which the PDCCH including the TPC command is mapped.
- a plurality of controls can be performed without causing time restrictions.
- a plurality of frequency resources for mapping the PDCCH are prepared, and the control can be switched according to the time and frequency resources for transmitting / receiving the PDCCH including the TPC command.
- time and frequency may be superior or inferior.
- closed loop control may be applied to the A-SRS to which the trigger corresponds. That is, only the TDC command of PDCCH instructing transmission of each A-SRS trigger is applied to the corresponding closed-loop control of A-SRS.
- the setting rule of the TPC command application destination of this embodiment and variations 1 to 3 may be a rule determined in advance in the base station and the terminal or the system, or the base station may be selected from a plurality of rules.
- the rule may be applied by selecting and notifying each terminal.
- An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
- 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
- the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
- each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
- the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
- the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
- An FPGA Field Programmable Gate Array
- a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
- the present invention is useful as a terminal, a base station, and a communication method capable of performing both processing of transmission / reception participating base station selection and PUSCH frequency scheduling using SRS in HetNet.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
P-SRSの場合、帯域幅の切り替えには上位レイヤからの通知が必要であり、大きな切り替え遅延を伴う。さらに、上位レイヤからの通知による頻繁な切り替えは、オーバーヘッドが大幅に増加するため好ましくない。
Rel.10以前の仕様では、P-SRSおよびA-SRSは、帯域幅によらず電力密度が一定となるように送信電力が設定される。したがって、異なる帯域幅のSRSそれぞれに異なる電力密度を与えることは不可能である。
[ネットワークシステムの構成]
本発明の実施の形態1に係るネットワークシステムは、HetNetであり、図1に示すように、マクロ基地局(Macro eNB)100、ピコ基地局(Pico eNB)200、および端末(UE)300から構成される。各セルには、1つのマクロ基地局100と1つ又は複数のピコ基地局200が設置される。マクロ基地局100と各ピコ基地局200とは、光ファイバなど低遅延大容量のインターフェースで接続されている。セル内のマクロ基地局100および各ピコ基地局200は、同一セルIDを使用し、セル内に存在する各端末300に割り当てられたSRSの送信パラメータを共有し、そのSRSを受信してCSIを測定する。各端末300は、マクロ基地局100によって選択された当該マクロ基地局100および/またはピコ基地局200と無線通信を行う。
図2は、本実施の形態に係るマクロ基地局100の要部構成を示すブロック図である。図2に示すマクロ基地局100は、受信部101と、測定部102と、基地局間インターフェース部(IF)103と、制御部104と、送信部105と、から主に構成されている。
図3は、本実施の形態に係るピコ基地局200の要部構成を示すブロック図である。図3に示すピコ基地局200は、受信部201と、測定部202と、基地局間インターフェース部203と、送信部204と、から主に構成されている。
図4は、本実施の形態に係る端末300の要部構成を示すブロック図である。図4に示す端末300は、受信部301と、制御部302と、送信部303と、から主に構成されている。
次に、本実施の形態に係る各装置の主要な処理手順について図5を用いて説明する。
以上の通り、本実施の形態では、端末300が、マクロ基地局100から通知された送信パラメータに基づいて、広帯域で電力密度が低い第1P-SRSと狭帯域で電力密度が高い第2P-SRSとの2種類のSRSを時間多重送信する。これにより、送受信参加基地局の選択、および、PUSCHの周波数スケジューリングの両方の処理を行うために必要な送信周期でP-SRSを送信することができる。
なお、本実施の形態では、図8に示すように、第1P-SRSおよび第2P-SRSとしてペアで選択される可能性が高い、あるいは、第1P-SRSおよび第2P-SRSとしてペアで選択することによる効果が高いP-SRS候補の組み合わせを予め選定しても良い。この際、各P-SRS候補に対して番号を付す代わりに、P-SRS候補の組み合わせに対して番号(図8のSet. No)を付すようにしても良い。
ところで、SRSの帯域幅や周期、周波数ホッピングパターン等は、Rel.10の仕様において既に規定されている。そこで、本実施の形態では、新たにテーブルを作成せず、既に存在するRel.10のSRSリストから、マクロ基地局100が2種類のP-SRSを選択するようにしても良い。例えば、マクロ基地局100は、図9および図10のテーブルの中から、互いに衝突しない2種類のP-SRSを選択する。ただし、この場合、2種類のP-SRSのカバレッジを異ならせるための電力オフセット情報は、端末個別のRRC制御情報またはMACヘッダなどから別途通知する必要がある。
また、本実施の形態では、図11に示すように、端末300が、第1P-SRSの一部の送信を周期的に停止し、その代わりに、第2P-SRSを送信するようにしても良い。この場合、P-SRSの送信周期を一定にすることができる。
実施の形態2では、端末300が送信する2種類のP-SRSのそれぞれに対して、閉ループの送信電力制御を行う場合について説明する。なお、実施の形態2のネットワークシステムの構成は、実施の形態1の場合と同一である。また、実施の形態2において、マクロ基地局100、ピコ基地局200、および端末300の主要な構成は、実施の形態1の場合と同一である。実施の形態2では、マクロ基地局100の制御部104および送信部105、ならびに、端末300の受信部301および制御部302の各機能が、実施の形態1の場合と異なる。
本実施の形態において、マクロ基地局100の制御部104は、実施の形態1で説明した処理を行い、さらに、受信されたP-SRSのSINRと目標SINRとの大小関係に基づいて、下り回線制御信号(PDCCH)のTPCコマンド(2ビット)を生成し、送信部105に出力する。また、制御部104は、PDCCHを送信部105に出力し、TPCコマンドが所望のP-SRSに適用されるタイミングで送信されるよう送信部105を制御する。
端末300の受信部301は、実施の形態1で説明した処理を行い、さらに、受信信号からTPCコマンドを含むPDCCHを抽出し、TPCコマンドを制御部302に出力する。
本実施の形態によれば、実施の形態1の効果に加えて、さらに、TPCコマンドの拡張を最小限に抑えつつ、複数種類の閉ループ電力制御を独立に実行することができるという効果を奏する。例えば、本実施の形態によれば、Rel.10のTPCコマンドをそのまま用いることもできる。なお、第1P-SRS、第2P-SRS、およびPUSCHのうち、第2P-SRSは端末300の遠方に位置する基地局100、200での受信を目的とした信号であり、第1P-SRSとPUSCHは端末300の近傍に位置する基地局100、200での受信を目的とした信号である。したがって、本実施の形態では、図12のように、第2P-SRSの閉ループ制御と、第1P-SRSおよびPUSCHの双方を連動させる閉ループ制御との2種類の独立した制御を行えば良い。また、本実施の形態では、2種類のP-SRSの周期の組み合わせを変えることで、TPCコマンドの適用先に重みづけを行うことができる。例えば、図12の例では、TPCコマンドを第1P-SRSおよびPUSCHに適用させる時間602は、第2P-SRSに適用させる時間601の7倍となる。
なお、本実施の形態では、TPCコマンドの適用対象の信号を、TPCコマンドを含むPDCCHがマッピングされる周波数リソース(サーチスペース)によって切り替えることもできる。この場合、時間的制約を生じずに複数の制御を行うことができる。
また、本実施の形態では、閉ループ制御を導入したうえでPDCCHをマッピングする周波数リソースを複数準備し、TPCコマンドを含むPDCCHが送受信される時間および周波数リソースに応じて制御を切り替えこともできる。ただし、時間と周波数に優劣をつけても良い。例えば、通常は、図12と同様に時間の区分けを利用してTPCコマンドの適用対象を切り替える。しかし、第2P-SRSをTPCコマンドの対象とする時間601において、第1P-SRSおよびPUSCHの電力調整をする場合に限り、TPCコマンドを含む制御信号を特定の周波数リソース(サーチスペース)の位置にマッピングする。すなわち、時間601において,場合によっては第2P-SRSの電力調整をする制御信号と第1P-SRSおよびPUSCHの電力調整をする制御信号とが周波数リソース上では多重化され,時間的には同時に送信されることもある。例えば、図13のように、第2P-SRSをTPCコマンドの対象とする時間601において、第1P-SRSおよびPUSCHの電力調整をする場合に限り、TPCコマンドを含む制御信号を周波数リソースの位置B(Position B)にマッピングする。これにより、第2P-SRSをTPCコマンドの対象とする時間601において、周波数リソースの位置A(Position A)にマッピングされた第2P-SRSの電力調整をする制御信号と周波数リソースの位置Bにマッピングされた第1P-SRSおよびPUSCHの電力調整をする制御信号とが周波数リソース上では多重化され、時間的には同時に送信される。これは、時間の区分けを利用したTPCコマンドの適用対象の切り替えを優先し、必要に迫られた場合のみ特定の周波数リソースに制御信号をマッピングする場合を表している。
基地局100、200との接続品質が十分良く、かつ、CSIの変動が緩やかな端末300に対しては、基地局100は、第1P-SRSさえ受信できれば、十分に、送受信参加基地局の選択、および、PUSCHの周波数スケジューリングの両方の処理を行うことができる。このような端末300に対し、本発明では、上記実施の形態1および2において、特定のA-SRSの送信要求(以下、「A-SRSトリガー」という)を特定のタイミングで端末300が受信した場合に限り、第2P-SRSの送信を停止しても良い。
本発明は、マクロ基地局100およびピコ基地局200が互いに異なるセルIDのセルを構成する場合にも適用することができる。この場合、マクロ基地局100およびピコ基地局200に対し、個別のセルIDとは別に、同一セル内の全ての基地局で共通に定義される共通セルID(バーチャルセルIDとも呼ぶ)を定義する(図16)。個別のセルIDで生成したベース系列およびホッピングパターンを用いるSRSは、互いに直交せず、干渉となる。一方、共通セルIDで生成したベース系列およびホッピングパターンを用いるSRSは、セル内の全ての基地局で容易に直交させることができる。
上記実施の形態1および2では、端末300が、マクロ基地局100から通知された送信パラメータに基づいて、広帯域で電力密度が低い第1P-SRSと狭帯域で電力密度の高い第2P-SRSの2種類のSRSを時間多重送信する場合について説明した。
受信部101は、実施の形態1で説明した処理と比較して、P-SRSの抽出処理の代わりに、A-SRSの抽出処理を行う。また、受信部101は、A-SRSを測定部102に出力する。なお、端末300がマクロ基地局100の近傍に位置する場合、受信部101は、第1A-SRSと第2A-SRSの両方を抽出する。一方、端末300がマクロ基地局100の遠方に位置する場合、受信部101は、第2A-SRSを抽出する。
受信部201は、実施の形態1で説明した処理と比較して、P-SRSの抽出処理の代わりに、A-SRSの抽出処理を行う。また、受信部201は、A-SRSを測定部202に出力する。端末300がピコ基地局200の近傍に位置する場合、受信部201は、第1A-SRSおよび第2A-SRSの両方を抽出する。一方、端末300がピコ基地局200の遠方に位置する場合、受信部201は、第2A-SRSを抽出する。
受信部301は、実施の形態1で説明した処理と比較して、P-SRS選択セットの抽出処理の代わりに、A-SRSパラメータセットの抽出処理を行う。受信部301は、抽出したA-SRSパラメータセットを制御部302に出力する。また、受信部301は、PDCCHからA-SRSトリガーを検出して制御部302に出力する。
次に、本実施の形態における処理に係る各装置の主要な処理手順について説明する。
以上の通り、本実施の形態では、端末300が、マクロ基地局100から通知された送信パラメータに基づいて、広帯域で電力密度が低い第1A-SRSと狭帯域で電力密度が高い第2A-SRSとの2種類のSRSを時間多重送信する。これにより、実施の形態1と同様の効果を得ることができる。さらに、本実施の形態では、端末300が、A-SRSトリガーを受信した場合にのみ第1A-SRSまたは第2A-SRSを送信するため、各基地局100、200において不要な場合にはSRSが送信されない。これにより、端末300の電力消費および他セルに与える干渉を抑えることができる。また、本実施の形態では、マクロ基地局100が、A-SRSトリガーにより、端末300に送信させるA-SRSを選択することができるので、A-SRSの送信パラメータの設定を変更しなくても、第1A-SRSと第2A-SRSの送信比率を自由に変えることができる。
本実施の形態においては、上記実施の形態2のバリエーション4と同様に、端末300が、個別セルIDにより生成されるベース系列およびホッピングパターンを用いて第1A-SRSを生成し、共通セルIDにより生成されるベース系列およびホッピングパターンを用いて第2A-SRSを生成しても良い。
本実施の形態においては、バリエーション1とは反対に、端末300が、共通セルIDにより生成されるベース系列およびホッピングパターンを用いて第1A-SRSを生成し、個別セルIDにより生成されるベース系列およびホッピングパターンを用いて第2A-SRSを生成しても良い。
本実施の形態においては、あらかじめ設定されるA-SRS送信リソースの周波数ホッピングを行っても良い。すなわち、A-SRS送信リソースの周波数位置をあらかじめ設定されるパターンに従ってホッピングさせておき、トリガーがあった場合には、ホッピングによって決定される周波数位置でA-SRSを送信しても良い。
実施の形態4では、端末300が送信する2種類のA-SRSのそれぞれに対して、閉ループの送信電力制御を行う場合について説明する。なお、実施の形態4のネットワークシステムの構成は、実施の形態3の場合と同一である。また、実施の形態4において、マクロ基地局100、ピコ基地局200、および端末300の主要な構成は、実施の形態3の場合と同一である。実施の形態4では、マクロ基地局100の制御部104および送信部105、ならびに、端末300の受信部301および制御部302の各機能が、実施の形態3の場合と異なる。
本実施の形態において、マクロ基地局100の制御部104は、実施の形態3で説明した処理を行い、さらに、受信されたA-SRSのSINRと目標SINRとの大小関係に基づいて、下り回線制御信号(PDCCH)のTPCコマンド(2ビット)を生成し、送信部105に出力する。また、制御部104は、PDCCHを送信部105に出力し、TPCコマンドが所望のA-SRSに適用されるタイミングで送信されるよう送信部105を制御する。
端末300の受信部301は、実施の形態3で説明した処理を行い、さらに、受信信号からTPCコマンドを含むPDCCHを抽出し、TPCコマンドを制御部302に出力する。
本実施の形態によれば、実施の形態3の効果に加えて、さらに、TPCコマンドの拡張を最小限に抑えつつ、複数種類の閉ループ電力制御を独立に実行することができるという効果を奏する。例えば、本実施の形態によれば、Rel.10のTPCコマンドをそのまま用いることもできる。なお、第1A-SRS、第2A-SRS、およびPUSCHのうち、第2A-SRSは端末300の遠方に位置する基地局100、200での受信を目的とした信号であり、第1A-SRSとPUSCHは端末300の近傍に位置する基地局100、200での受信を目的とした信号である。したがって、本実施の形態では、第1A-SRSおよびPUSCHの双方を連動させる閉ループ制御と、第2A-SRSの閉ループ制御との2種類の独立した制御を行えば良い。また、本実施の形態では、2種類のA-SRSの周期の組み合わせを変えることで、TPCコマンドの適用先に重みづけを行うことができる。例えば、図20の例では、TPCコマンドを第1A-SRSおよびPUSCHに適用させる時間1002は、第2A-SRSに適用させる時間1001の7倍となる。
なお、本実施の形態では、TPCコマンドの適用対象の信号を、TPCコマンドを含むPDCCHがマッピングされる周波数リソース(サーチスペース)によって切り替えることもできる。この場合、時間的制約を生じずに複数の制御を行うことができる。
また、本実施の形態では、閉ループ制御を導入したうえでPDCCHをマッピングする周波数リソースを複数準備し、TPCコマンドを含むPDCCHが送受信される時間および周波数リソースに応じて制御を切り替えることもできる。この場合、時間と周波数に優劣をつけても良い。
また、本実施の形態では、A-SRSトリガーを送信する場合のみ、そのトリガーが対応するA-SRSに対して閉ループ制御を適用しても良い。すなわち、それぞれのA-SRSトリガーの送信を指示するPDCCHのTPCコマンドのみ、対応するA-SRSの閉ループ制御に適用する。
また、本実施の形態およびバリエーション1~3のTPCコマンド適用先の設定ルールは、基地局および端末、または、システムにおいてあらかじめ定められたルールであっても良いし、複数のルールの中から基地局が選択し、それぞれの端末に通知することで適用されるルールであっても良い。
(1)上記各実施の形態ではアンテナを例にとって説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
101 受信部
102 測定部
103 基地局間インターフェース部
104 制御部
105 送信部
200 ピコ基地局
201 受信部
202 測定部
203 基地局間インターフェース部
204 送信部
300 端末
301 受信部
302 制御部
303 送信部
Claims (18)
- ピリオディック・サウンディング・リファレンス・シグナル(P-SRS)の送信パラメータを示す情報を含む制御情報を受信する受信部と、
受信された前記制御情報に含まれる送信パラメータを用いて、第1帯域幅で第1電力密度の第1P-SRSを第1周期で送信し、前記第1帯域幅よりも狭い第2帯域幅で前記第1電力密度よりも高い第2電力密度の第2P-SRSを第2周期で送信する送信部と、
を有する端末。 - 前記送信部は、帯域を変えずに前記第1P-SRSを送信し、周波数ホッピングを用いて帯域を変更させながら前記第2P-SRSを送信する、
請求項1に記載の端末。 - 前記送信部は、Rel.10で既に規定されている既存のP-SRSの設定から選択された、互いに衝突しない2種類のP-SRSを、前記第1P-SRSおよび前記第2P-SRSとして送信する、
請求項1に記載の端末。 - 前記送信部は、帯域幅に電力密度を乗算した値である送信電力が、前記第1P-SRSと前記第2P-SRSとにおいて等しくなるように送信する、
請求項1に記載の端末。 - 前記受信部は、送信電力制御(TPC)コマンドが含まれる制御信号を受信し、
前記送信部は、受信された前記TPCコマンドの時刻・周波数に応じて、前記第1P-SRSの送信電力制御に用いるTPCコマンドと、前記第2P-SRSの送信電力制御に用いるTPCコマンドとを区別する、
請求項1に記載の端末。 - 前記送信部は、第1時間内に受信されたTPCコマンドを用いて前記第1P-SRSの送信電力制御を行い、前記第1時間以外の時間である第2時間内に受信されたTPCコマンドを用いて前記第2P-SRSの送信電力制御を行う、
請求項5に記載の端末。 - 前記送信部は、第1帯域内に受信されたTPCコマンドを用いて前記第1P-SRSの送信電力制御を行い、前記第1帯域以外の帯域である第2帯域内に受信されたTPCコマンドを用いて前記第2P-SRSの送信電力制御を行う、
請求項5に記載の端末。 - 前記受信部は、アピリオディック・サウンディング・リファレンス・シグナル(A-SRS)のトリガーを含む制御情報を受信し、
前記送信部は、前記A-SRSのトリガーが特定の条件で受信された場合、前記第2P-SRSの送信を停止する、
請求項1に記載の端末。 - 前記送信部は、各セル固有のIDで生成したベース系列およびホッピングパターンを用いて前記第1P-SRSを送信し、複数のセル間で共通に定義される共通IDで生成したベース系列およびホッピングパターンを用いて前記第2P-SRSを送信する、
請求項1に記載の端末。 - アピリオディック・サウンディング・リファレンス・シグナル(A-SRS)の送信パラメータを示す情報を含む制御情報を受信する受信部と、
受信された前記制御情報の送信パラメータを用いて、第1帯域幅で第1電力密度の第1A-SRSを第1周期の中で基地局から送信要求があった場合のみ送信し、前記第1帯域幅よりも狭い第2帯域幅で前記第1電力密度よりも高い第2電力密度の第2A-SRSを第2周期の中で基地局から送信要求があった場合のみ送信する送信部と、
を有する端末。 - 前記送信部は、帯域幅に電力密度を乗算した値である送信電力が、前記第1A-SRSと前記第2A-SRSとにおいて等しくなるように送信する、
請求項10に記載の端末。 - 前記受信部は、送信電力制御(TPC)コマンドが含まれる制御信号を受信し、
前記送信部は、受信された前記TPCコマンドの時刻・周波数に応じて、前記第1A-SRSの送信電力制御に用いるTPCコマンドと、前記第2A-SRSの送信電力制御に用いるTPCコマンドとを区別する、
請求項10に記載の端末。 - 前記送信部は、第1時間内に受信されたTPCコマンドを用いて前記第1A-SRSの送信電力制御を行い、前記第1時間以外の時間である第2時間内に受信されたTPCコマンドを用いて前記第2A-SRSの送信電力制御を行う、
請求項12に記載の端末。 - 前記送信部は、第1帯域内に受信されたTPCコマンドを用いて前記第1A-SRSの送信電力制御を行い、前記第1帯域以外の帯域である第2帯域内に受信されたTPCコマンドを用いて前記第2A-SRSの送信電力制御を行う、
請求項12に記載の端末。 - ピリオディック・サウンディング・リファレンス・シグナル(P-SRS)の送信パラメータを示す情報を含む制御情報を送信する送信部と、
第1帯域幅で第1電力密度の第1P-SRS、および、前記第1帯域幅よりも狭い第2帯域幅で前記第1電力密度よりも高い第2電力密度の第2P-SRSを受信する受信部と、
受信した前記第1P-SRSおよび前記第2P-SRSを用いてチャネル・ステイト・インフォメーション(CSI)を測定する測定部と、
前記第1P-SRSおよび前記第2P-SRSに基づく前記CSIを用いて周波数スケジューリングを行い、前記第2P-SRSに基づく前記CSIを用いて送受信に参加する基地局を選択する選択部と、
を有する基地局。 - アピリオディック・サウンディング・リファレンス・シグナル(A-SRS)の送信パラメータを示す情報を含む制御情報を送信する送信部と、
第1帯域幅で第1電力密度の第1A-SRS、および、前記第1帯域幅よりも狭い第2帯域幅で前記第1電力密度よりも高い第2電力密度の第2A-SRSを受信する受信部と、
受信した前記第1A-SRSおよび前記第2A-SRSを用いてチャネル・ステイト・インフォメーション(CSI)を測定する測定部と、
前記第1A-SRSおよび前記第2A-SRSに基づく前記CSIを用いて周波数スケジューリングを行い、前記第2A-SRSに基づく前記CSIを用いて送受信に参加する基地局を選択する選択部と、
を有する基地局。 - ピリオディック・サウンディング・リファレンス・シグナル(P-SRS)の送信パラメータを示す情報を含む制御情報を受信し、
受信された前記制御情報の送信パラメータを用いて、第1帯域幅で第1電力密度の第1P-SRSを第1周期で送信し、
前記第1帯域幅よりも狭い第2帯域幅で前記第1電力密度よりも高い第2電力密度の第2P-SRSを第2周期で送信する、
通信方法。 - アピリオディック・サウンディング・リファレンス・シグナル(A-SRS)の送信パラメータを示す情報を含む制御情報を受信し、
受信された前記制御情報の送信パラメータを用いて、第1帯域幅で第1電力密度の第1A-SRSを第1周期の中で基地局から送信要求があった場合のみ送信し、
前記第1帯域幅よりも狭い第2帯域幅で前記第1電力密度よりも高い第2電力密度の第2A-SRSを第2周期の中で基地局から送信要求があった場合のみ送信する、
通信方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280041878.9A CN103765969B (zh) | 2011-10-03 | 2012-09-19 | 终端、基站以及通信方法 |
JP2013537390A JP6048755B2 (ja) | 2011-10-03 | 2012-09-19 | 端末、通信方法および集積回路 |
EP19211743.0A EP3634063B1 (en) | 2011-10-03 | 2012-09-19 | Base station and communication method |
US14/239,907 US9497711B2 (en) | 2011-10-03 | 2012-09-19 | Terminal, base station, and communication method |
EP12838410.4A EP2765816B1 (en) | 2011-10-03 | 2012-09-19 | Terminal and communication method |
US15/285,386 US10257790B2 (en) | 2011-10-03 | 2016-10-04 | Terminal, base station, and communication method |
US16/274,886 US11019578B2 (en) | 2011-10-03 | 2019-02-13 | Terminal, base station, and communication method |
US17/243,367 US11825424B2 (en) | 2011-10-03 | 2021-04-28 | Terminal, base station, and communication method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-219540 | 2011-10-03 | ||
JP2011219540 | 2011-10-03 | ||
JP2012108449 | 2012-05-10 | ||
JP2012-108449 | 2012-05-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/239,907 A-371-Of-International US9497711B2 (en) | 2011-10-03 | 2012-09-19 | Terminal, base station, and communication method |
US15/285,386 Continuation US10257790B2 (en) | 2011-10-03 | 2016-10-04 | Terminal, base station, and communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013051206A1 true WO2013051206A1 (ja) | 2013-04-11 |
Family
ID=48043391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/005950 WO2013051206A1 (ja) | 2011-10-03 | 2012-09-19 | 端末、基地局および通信方法 |
Country Status (5)
Country | Link |
---|---|
US (4) | US9497711B2 (ja) |
EP (2) | EP2765816B1 (ja) |
JP (3) | JP6048755B2 (ja) |
CN (2) | CN103765969B (ja) |
WO (1) | WO2013051206A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014208141A1 (ja) * | 2013-06-28 | 2014-12-31 | 株式会社Nttドコモ | 無線基地局、ユーザ端末及び参照信号送信方法 |
CN109842473A (zh) * | 2017-11-27 | 2019-06-04 | 华为技术有限公司 | 一种发送信号的方法及设备 |
WO2019127462A1 (zh) * | 2017-12-29 | 2019-07-04 | Oppo广东移动通信有限公司 | 无线通信方法、终端设备和网络设备 |
JPWO2018230138A1 (ja) * | 2017-06-15 | 2020-04-16 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 端末及び通信方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2702816B1 (en) * | 2011-04-29 | 2017-10-11 | Nokia Solutions and Networks Oy | Method and device for processing uplink control data in a wireless network |
KR102364695B1 (ko) * | 2013-08-17 | 2022-02-18 | 엘지전자 주식회사 | 무선 통신 시스템에서 사운딩 참조 신호의 전송 전력 제어 방법 및 이를 위한 장치 |
US9900074B2 (en) | 2014-08-12 | 2018-02-20 | Qualcomm Incorporated | CSI request procedure in LTE/LTE-A with unlicensed spectrum |
US9974027B2 (en) * | 2016-02-23 | 2018-05-15 | Spidercloud Wireless, Inc. | System and method for closed loop uplink power control |
CN108702747A (zh) * | 2016-03-31 | 2018-10-23 | 华为技术有限公司 | 信息传输方法及装置 |
JP6891419B2 (ja) * | 2016-07-29 | 2021-06-18 | ソニーグループ株式会社 | 端末装置、基地局、方法及び記録媒体 |
WO2018053755A1 (zh) | 2016-09-22 | 2018-03-29 | 华为技术有限公司 | 一种探测参考信号发送方法及用户设备 |
JP6833225B2 (ja) * | 2016-09-30 | 2021-02-24 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 基準信号送信及び測定のための方法及びデバイス |
CN209545887U (zh) | 2016-11-05 | 2019-10-25 | 苹果公司 | 基站、装置和无线设备 |
JP6963193B2 (ja) * | 2017-03-14 | 2021-11-05 | 富士通株式会社 | 通信装置、通信システム、及び通信方法 |
EP4336743A3 (en) | 2017-03-23 | 2024-06-12 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting data in wireless communication system |
KR102233220B1 (ko) * | 2017-04-28 | 2021-03-29 | 후지쯔 가부시끼가이샤 | 단말 장치, 기지국 장치, 무선 통신 시스템 및 단말 장치 제어 방법 |
CN116669161A (zh) | 2017-06-15 | 2023-08-29 | 三星电子株式会社 | 用于控制波束成形系统中的终端的发送功率的方法和装置 |
KR102379822B1 (ko) * | 2017-06-15 | 2022-03-30 | 삼성전자 주식회사 | 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치 |
CN109151984B (zh) | 2017-06-16 | 2021-01-29 | 华为技术有限公司 | 测量信号发送方法、指示信息发送方法和设备 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009019879A1 (ja) * | 2007-08-08 | 2009-02-12 | Panasonic Corporation | 無線通信基地局装置および関連付け設定方法 |
JP2010258831A (ja) * | 2009-04-24 | 2010-11-11 | Kyocera Corp | 無線基地局及び無線通信方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8452317B2 (en) * | 2006-09-15 | 2013-05-28 | Qualcomm Incorporated | Methods and apparatus related to power control and/or interference management in a mixed wireless communications system supporting WAN signaling and peer to peer signaling |
US8437792B2 (en) * | 2007-02-14 | 2013-05-07 | Qualcomm Incorporated | Uplink power control for LTE |
US9072060B2 (en) * | 2008-06-03 | 2015-06-30 | Nokia Technologies Oy | Method, apparatus and computer program for power control to mitigate interference |
JP5279386B2 (ja) * | 2008-07-24 | 2013-09-04 | 株式会社エヌ・ティ・ティ・ドコモ | 閉ループ送信電力制御方法及び無線基地局装置 |
CN101771463B (zh) * | 2009-01-05 | 2012-12-12 | 电信科学技术研究院 | 一种发送上行探测参考信号的方法、装置和系统 |
TWI508590B (zh) * | 2009-02-09 | 2015-11-11 | Interdigital Patent Holdings | 利用多載波無線傳送器/接收器單元之上鏈功率控制裝置及方法 |
EP2409533B1 (en) * | 2009-03-17 | 2019-11-06 | InterDigital Patent Holdings, Inc. | Method and apparatus for power control of sounding reference signal (srs) transmission |
US8938247B2 (en) * | 2009-04-23 | 2015-01-20 | Qualcomm Incorporated | Sounding reference signal for coordinated multi-point operation |
JP5111536B2 (ja) | 2009-04-27 | 2013-01-09 | 株式会社エヌ・ティ・ティ・ドコモ | ユーザ装置、基地局装置及び通信制御方法 |
EP2484161B1 (en) * | 2009-10-02 | 2019-03-27 | InterDigital Patent Holdings, Inc. | Power control for devices having multiple antennas |
US8417236B2 (en) | 2009-10-22 | 2013-04-09 | Cisco Technology, Inc. | Systems and methods for classifying user equipment and selecting tracking areas |
JP4981929B2 (ja) | 2010-01-08 | 2012-07-25 | シャープ株式会社 | 無線通信システム、移動局装置、基地局装置、無線通信方法および集積回路 |
US8848520B2 (en) * | 2010-02-10 | 2014-09-30 | Qualcomm Incorporated | Aperiodic sounding reference signal transmission method and apparatus |
JP5539780B2 (ja) | 2010-04-05 | 2014-07-02 | 住友ゴム工業株式会社 | マスターバッチ、タイヤ用ゴム組成物、及び空気入りタイヤ |
EP3393047B1 (en) * | 2010-04-30 | 2020-11-18 | Sun Patent Trust | Wireless communication device and method for controlling transmission power |
CN101958772B (zh) * | 2010-09-29 | 2016-03-02 | 中兴通讯股份有限公司 | 用于跨载波调度的物理下行控制信道发送方法和基站 |
US9350506B2 (en) * | 2010-09-30 | 2016-05-24 | Qualcomm Incorporated | Aperiodic SRS for carrier aggregation |
TW201222057A (en) | 2010-11-16 | 2012-06-01 | E Pin Optical Industry Co Ltd | Imaging lens system with two lenses |
US20130007755A1 (en) * | 2011-06-29 | 2013-01-03 | International Business Machines Corporation | Methods, computer systems, and physical computer storage media for managing resources of a storage server |
WO2013048143A2 (en) * | 2011-09-27 | 2013-04-04 | Samsung Electronics Co., Ltd. | A method and appratus for transmission power control for a sounding reference signal |
WO2013119167A1 (en) * | 2012-02-08 | 2013-08-15 | Telefonaktiebolaget L M Ericsson (Publ) | Closed loop power control commands for srs |
-
2012
- 2012-09-19 CN CN201280041878.9A patent/CN103765969B/zh active Active
- 2012-09-19 CN CN201810183838.7A patent/CN108282854B/zh active Active
- 2012-09-19 EP EP12838410.4A patent/EP2765816B1/en active Active
- 2012-09-19 WO PCT/JP2012/005950 patent/WO2013051206A1/ja active Application Filing
- 2012-09-19 EP EP19211743.0A patent/EP3634063B1/en active Active
- 2012-09-19 US US14/239,907 patent/US9497711B2/en active Active
- 2012-09-19 JP JP2013537390A patent/JP6048755B2/ja active Active
-
2016
- 2016-10-04 US US15/285,386 patent/US10257790B2/en active Active
- 2016-11-09 JP JP2016218919A patent/JP6358481B2/ja active Active
-
2018
- 2018-06-06 JP JP2018108708A patent/JP6569076B2/ja active Active
-
2019
- 2019-02-13 US US16/274,886 patent/US11019578B2/en active Active
-
2021
- 2021-04-28 US US17/243,367 patent/US11825424B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009019879A1 (ja) * | 2007-08-08 | 2009-02-12 | Panasonic Corporation | 無線通信基地局装置および関連付け設定方法 |
JP2010258831A (ja) * | 2009-04-24 | 2010-11-11 | Kyocera Corp | 無線基地局及び無線通信方法 |
Non-Patent Citations (7)
Title |
---|
"3GPP TSG RAN; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation", 3GPP TS36.211 V10.1.0 |
"Physical layer procedures (Release 10", 3GPP TS 36.213 V10.1.0, March 2011 (2011-03-01) |
"UL sounding RS Operation", RL-080994 LG ELECTRONICS, 11 February 2008 (2008-02-11) |
M. SAWAHASHI; Y KISHIYAMA; A. MORIMOTO; D. NISHIKAWA; M. TANNO: "Coordinated multipoint transmission/reception techniques for LTE-advanced", IEEE WIRELESS COMMUN., vol. 17, no. 3, June 2010 (2010-06-01), pages 26 - 34, XP011311805 |
NTT DOCOMO ET AL.: "Necessity of Multiple Bandwidths for Sounding Reference Signals", 3GPP TSG RAN WG1 MEETING #48 R1-070853, 16 February 2007 (2007-02-16), pages 1 - 10, XP050596283 * |
See also references of EP2765816A4 |
SHARP: "UL RS Proposed Enhancements in Rel-11", 3GPP TSG RAN WG1 MEETING #65 R1-111479, vol. RAN WG1, no. 65, 9 May 2011 (2011-05-09) - 13 May 2011 (2011-05-13), BARCELONA, SPAIN, pages 1 - 2, XP050491161 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014208141A1 (ja) * | 2013-06-28 | 2014-12-31 | 株式会社Nttドコモ | 無線基地局、ユーザ端末及び参照信号送信方法 |
JPWO2018230138A1 (ja) * | 2017-06-15 | 2020-04-16 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 端末及び通信方法 |
US11641628B2 (en) | 2017-06-15 | 2023-05-02 | Panasonic Intellectual Property Corporation Of America | Terminal and communication method |
CN109842473A (zh) * | 2017-11-27 | 2019-06-04 | 华为技术有限公司 | 一种发送信号的方法及设备 |
CN109842473B (zh) * | 2017-11-27 | 2021-05-11 | 华为技术有限公司 | 一种发送信号的方法及设备 |
WO2019127462A1 (zh) * | 2017-12-29 | 2019-07-04 | Oppo广东移动通信有限公司 | 无线通信方法、终端设备和网络设备 |
US11425663B2 (en) | 2017-12-29 | 2022-08-23 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Wireless communication method, terminal device, and network device |
Also Published As
Publication number | Publication date |
---|---|
US11825424B2 (en) | 2023-11-21 |
CN108282854B (zh) | 2021-06-15 |
US10257790B2 (en) | 2019-04-09 |
US20140211737A1 (en) | 2014-07-31 |
JP6358481B2 (ja) | 2018-07-18 |
US9497711B2 (en) | 2016-11-15 |
US11019578B2 (en) | 2021-05-25 |
JPWO2013051206A1 (ja) | 2015-03-30 |
CN103765969A (zh) | 2014-04-30 |
US20210250877A1 (en) | 2021-08-12 |
EP2765816A1 (en) | 2014-08-13 |
EP3634063B1 (en) | 2022-03-16 |
EP2765816B1 (en) | 2020-02-12 |
US20190182780A1 (en) | 2019-06-13 |
JP2018137825A (ja) | 2018-08-30 |
JP6048755B2 (ja) | 2016-12-21 |
US20170026919A1 (en) | 2017-01-26 |
CN108282854A (zh) | 2018-07-13 |
JP2017038406A (ja) | 2017-02-16 |
EP3634063A1 (en) | 2020-04-08 |
CN103765969B (zh) | 2018-04-10 |
EP2765816A4 (en) | 2015-05-13 |
JP6569076B2 (ja) | 2019-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6569076B2 (ja) | 基地局、通信方法および集積回路 | |
US10841882B2 (en) | Radio communication base station apparatus and method for controlling transmission power of sounding reference signal | |
JP6518825B2 (ja) | 無線通信端末、無線通信方法および集積回路 | |
US11509364B2 (en) | Techniques and apparatuses for uplink precoder determination using downlink reference signals or downlink precoder determination using uplink reference signals | |
RU2749350C2 (ru) | Способ измерения помех и сопутствующее устройство | |
CN109861802B (zh) | 无线网络中自适应传输的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12838410 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013537390 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14239907 Country of ref document: US Ref document number: 2012838410 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |