Nothing Special   »   [go: up one dir, main page]

WO2013045163A1 - A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution - Google Patents

A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution Download PDF

Info

Publication number
WO2013045163A1
WO2013045163A1 PCT/EP2012/065739 EP2012065739W WO2013045163A1 WO 2013045163 A1 WO2013045163 A1 WO 2013045163A1 EP 2012065739 W EP2012065739 W EP 2012065739W WO 2013045163 A1 WO2013045163 A1 WO 2013045163A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
polymer particles
acid
absorbent polymer
weight
Prior art date
Application number
PCT/EP2012/065739
Other languages
French (fr)
Inventor
Norbert Herfert
Thomas Daniel
Florian Becker
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2013045163A1 publication Critical patent/WO2013045163A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • B01J20/3282Crosslinked polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Definitions

  • the present invention relates to a process for producing water-absorbent polymer particles, comprising a water-absorbent polymer and a chelating agent, by polymerizing droplets of a monomer solution in a surrounding heated gas phase.
  • the preparation of water-absorbent polymer particles is described in the monograph "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, on pages 71 to 103.
  • water-absorbent polymer particles Being products which absorb aqueous solutions, water-absorbent polymer particles are used to produce diapers, tampons, sanitary napkins and other hygiene articles, but also as water- retaining agents in market gardening. Water-absorbent polymer particles are also referred to as "superabsorbent polymers" or “superabsorbents”.
  • mSPHT mean sphericity
  • WO 2006/109882 A1 discloses a process for producing water-absorbent polymer particles having improved color stability.
  • the object is achieved by water-absorbent polymer particles, obtainable by polymerizing droplets of a monomer solution in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the water-absorbent polymer particles comprise at least one chelating agent.
  • chelating agents include the following compounds: (1 ) Aminocarboxylic acids and their salts
  • Aminocarboxylic acids with two, three or more carboxyl groups are preferred. Specified examples thereof include iminodiacetic acid, hydroxyethyl iminodiacetic acid, nitriloacetic acid, nitrilotripropionic acid, ethylendiamine tetraacetic acid, diethylenetriamine pentaacetic acid, triethylenetetraamine hexaacetic acid, hexamethylenediamine tetraacetic acid, cyclohexane-1 ,2-diamine tetraacetic acid, N-hydroxyethyl ethylenediamine triacetic acid, bis(2-hydroxyethyl)glycine, diaminopropanol tetraacetic acid, ethylene glycol diethyl ether diamine tetraacetic acid, ethylenediamine tetrapropionic acid, bis(2- hydroxybenzyl)ethylenediamine diacetic acid, ethylenediamine disuccinic
  • Monoalkylcitramides, monoalkylencitramides, and their salts are, for example, obtained by dehydration condensation of alcohols with citric acid.
  • Monoalkylmalonamides, monoalkylenmalonamides, and their salts are, for example, obtained by adding a-olefins to methyl malonate and then hydrolyzing the resultant adducts.
  • monoalkylphosphoric esters examples include laurylphosphoric acid and stearylphosphoric acid.
  • ⁇ -Diketone derivatives examples include acetylacetone and benzoylacetone. (7) Tropolone derivatives
  • tropolone derivatives include tropolone, ⁇ -thujaplicin, and ⁇ -thujaplicin.
  • Organic phosphoric acid compounds include tropolone, ⁇ -thujaplicin, and ⁇ -thujaplicin.
  • the organic phosphoric acid compounds is, for example, 1 -hydroxyethylidene-1 ,1 - diphosphonic acid containing two phosphorous groups per molecule or 2-phosphonobutane- 1 ,2,4-tricarboxylic acid containing one phosphoric group and three carboxylic groups per molecule.
  • organic polyvalent phosphorous compounds containing three or more phosphorous groups per molecule and amino polyvalent organic phosphorous compounds include ethylenediamine-N,N'-di(methylene phosphonic acid), ethylenediamine
  • Hydroxycarboxylic acids and their salts Hydroxycarboxylic acid is carboxylic acid having a hydroxyl group in its molecule, and examples thereof include aliphatic hydroxyl acids such as lactic acid, glycolic acid, malic acid, glycerinic acid, tartaric acid, citric acid, isocitric acid, mevalonic acid, chinic acid, shikimic acid, ⁇ -hydroxypropionic acid, and salts thereof; and aromatic hydroxyl acids such as salicylic acid, creosote acid, vanillic acid, syringig acid, resolyc acid, pyrocatechuic acid, protocatechuic acid, genticic acid, orsellinic acid, mandelic acid, gallic acid, 2-hydroxy-2- sulfinato acetic acid, 2-hydroxy-2-sulfonato acetic acid, 2-hydroxy-2-phosphonato acetic acid, and salts thereof.
  • aliphatic hydroxyl acids such as lactic acid
  • Example of an inorganic phosphorous compound is sodium tripolyphosphate.
  • (1 1 ) Heterocyclic organic compounds examples of such nitrogen containing cyclic structures are phenanthroline and its derivatives, 2,2'-bipyridine and terpyridine and their derivatives, and porphyrins.
  • the amount of chelating agent is preferably from 0.05 to 2% by weight, more preferably from 0.1 to 1 .5% by weight, most preferably from 0.2 to 2% by weight, based in each case on the polymer.
  • the chelating agent can be added to the monomer solution and/or to the formed polymer particles. It is also possible adding the chelating agent prior, during and/of after the postcrosslinking.
  • the present invention is based on the finding that the at least one chelating agent improves the color stability of the water-absorbent polymer particles.
  • the water-absorbent polymer particles are prepared by polymerizing droplets of a monomer solution comprising a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,
  • the water-absorbent polymer particles are typically insoluble but swellable in water.
  • the monomers a) are preferably water-soluble, i.e. the solubility in water at 23°C is typically at least 1 g/100 g of water, preferably at least 5 g/100 g of water, more preferably at least 25 g/100 g of water, most preferably at least 35 g/100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids such as vinylsulfonic acid, styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), ethylenically unsaturated esters such as phosphate ester of polypropylene glycol monomethacrylate, phosphate ester of polypropylene glycol monoacrylate and amonium salt of poly(oxy-1 ,2-ethandiyl)-a-sulfo-co-[1 -(hydroxymethyl)-2-(2-propenyloxy)ethoxy]-Cio/Ci4 alkyl ester, and/or 1 -allyloxy-2-hydroxypropyl sulfonate.
  • ethylenically unsaturated sulfonic acids such as vinylsulfonic acid, styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic
  • Impurities may have a strong impact on the polymerization. Preference is given to especially purified monomers a).
  • Useful purification methods are disclosed in WO 2002/055469 A1 , WO 2003/078378 A1 and WO 2004/035514 A1.
  • a suitable monomer a) is according to WO 2004/035514 A1 purified acrylic acid having 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203 by weight of propionic acid, 0.0001 % by weight of furfurals, 0.0001 % by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.
  • the content of acrylic acid and/or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, more preferably at least 90 mol%, most preferably at least 95 mol%.
  • the acid groups of the monomers a) are typically partly neutralized, preferably to an extent of from 25 to 85 mol%, preferentially to an extent of from 50 to 80 mol%, more preferably from 60 to 75 mol%, for which the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates, and mixtures thereof.
  • the customary neutralizing agents preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates, and mixtures thereof.
  • alkali metal salts it is also possible to use ammonia or organic amines, for example, triethanolamine.
  • oxides, carbonates, hydrogencarbonates and hydroxides of magnesium, calcium, strontium, zinc or aluminum as powders, slurries or solutions and mixtures of any of the above neutralization agents.
  • a mixture is a solution of sodiumaluminate.
  • Sodium and potassium are particularly preferred as alkali metals, but very particular preference is given to sodium hydroxide, sodium carbonate or sodium hydrogen carbonate, and mixtures thereof.
  • the neutralization is achieved by mixing in the neutralizing agent as an aqueous solution, as a melt or preferably also as a solid.
  • sodium hydroxide with water content significantly below 50% by weight may be present as a waxy material having a melting point above 23°C. In this case, metered addition as piece material or melt at elevated temperature is possible.
  • Suitable chelating agents are, for example, alkali metal citrates, citric acid, alkali metal tatrates, alkali metal lactates and glycolates, pentasodium triphosphate,
  • Trilon® C penentasodium diethylenetriaminepentaacetate
  • Trilon® D trisodium (hydroxyethyl)-ethylenediaminetriacetate
  • Trilon® M methylglycinediacetic acid. All Trilon® grades are available from BASF SE, Ludwigshafen, Germany.
  • the monomers a) comprise typically polymerization inhibitors, preferably hydroquinone monoethers, as inhibitor for storage.
  • the monomer solution comprises preferably up to 250 ppm by weight, more preferably not more than 130 ppm by weight, most preferably not more than 70 ppm by weight, preferably not less than 10 ppm by weight, more preferably not less than 30 ppm by weight and especially about 50 ppm by weight of hydroquinone monoether, based in each case on acrylic acid, with acrylic acid salts being counted as acrylic acid.
  • the monomer solution can be prepared using acrylic acid having appropriate hydroquinone monoether content.
  • the hydroquinone monoethers may, however, also be removed from the monomer solution by absorption, for example on activated carbon.
  • hydroquinone monoethers are hydroquinone monomethyl ether (MEHQ) and/or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be polymerized by a free-radical mechanism into the polymer chain and functional groups which can form covalent bonds with the acid groups of monomer a). In addition, polyvalent metal ions which can form coordinate bond with at least two acid groups of monomer a) are also suitable crosslinkers b).
  • crosslinkers b) are preferably compounds having at least two free-radically
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate,
  • Suitable crosslinkers b) are in particular pentaerythritol triallyl ether, tetraallyloxyethane, ⁇ , ⁇ '-methylenebisacrylamide, 15-tuply ethoxylated trimethylolpropane, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and/or -propoxylated glycerols which have been esterified with acrylic acid or methacrylic acid to give di- or triacrylates, as described, for example in WO 2003/104301 A1 .
  • Di- and/or triacrylates of 3- to 10-tuply ethoxylated glycerol are particularly advantageous.
  • Very particular preference is given to di- or triacrylates of 1 - to 5-tuply ethoxylated and/or propoxylated glycerol.
  • Most preferred are the triacrylates of 3- to 5-tuply ethoxylated and/or propoxylated glycerol and especially the triacrylate of 3-tuply ethoxylated glycerol.
  • the amount of crosslinker b) is preferably from 0.001 to 1.0% by weight, more preferably from 0.005 to 0.5% by weight, most preferably from 0.01 to 0.2% by weight, based in each case on monomer a).
  • the centrifuge retention capacity (CRC) decreases and the absorption under a pressure of 21.0 g/cm 2 (AUL) passes through a maximum.
  • the initiators c) used may be all compounds which disintegrate into free radicals under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and redox initiators. Preference is given to the use of water- soluble initiators. In some cases, it is advantageous to use mixtures of various initiators, for example mixtures of hydrogen peroxide and sodium or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any proportion.
  • Particularly preferred initiators c) are azo initiators such as 2,2 ' -azobis[2-(2-imidazolin-2- yl)propane] dihydrochloride, 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] hydrate, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 2,2'-azobis(1 -imino-1 -pyrrolidino-2- ethylpropane) dihydrochloride, 4,4'-azobis(4-cyanvaleric acid) and 2,2 ' -azobis[2-(5-methyl-2- imidazolin-2-yl)propane] dihydrochloride, and photoinitiators such as 2-hydroxy-2- methylpropiophenone and 1 -[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1 -propan-1 - one, redox initiators such as sodium per
  • the reducing component used is, however, preferably the disodium salt of 2-hydroxy-2-sulfinatoacetic acid or a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2- sulfonatoacetic acid and sodium bisulfite.
  • Such mixtures are obtainable as Bruggolite® FF6 and Bruggolite® FF7 (Bruggemann Chemicals; Heilbronn; Germany).
  • the initiators are used in customary amounts, for example in amounts of from 0.001 to 5% by weight, preferably from 0.01 to 2% by weight, based on the monomers a).
  • Examples of ethylenically unsaturated monomers d) which are copolymerizable with the monomers a) are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate,
  • Useful water-soluble polymers e) include polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, polyesters and polyamides, polylactic acid, polyvinylamine, preferably starch, starch derivatives and modified cellulose.
  • the preferred polymerization inhibitors require dissolved oxygen.
  • the monomer solution can be freed of dissolved oxygen before the polymerization by inertization, i.e. flowing through with an inert gas, preferably nitrogen. It is also possible to reduce the concentration of dissolved oxygen by adding a reducing agent.
  • the oxygen content of the monomer solution is preferably lowered before the polymerization to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight.
  • the water content of the monomer solution is preferably less than 65% by weight, preferentially less than 62% by weight, more preferably less than 60% by weight, most preferably less than 58% by weight.
  • the monomer solution has, at 20°C, a dynamic viscosity of preferably from 0.002 to 0.02 Pa s, more preferably from 0.004 to 0.015 Pa s, most preferably from 0.005 to 0.01 Pa s.
  • the mean droplet diameter in the droplet generation rises with rising dynamic viscosity.
  • the monomer solution has, at 20°C, a density of preferably from 1 to 1 .3 g/cm 3 , more preferably from 1 .05 to 1 .25 g/cm 3 , most preferably from 1.1 to 1 .2 g/cm 3 .
  • the monomer solution has, at 20°C, a surface tension of from 0.02 to 0.06 N/m, more preferably from 0.03 to 0.05 N/m, most preferably from 0.035 to 0.045 N/m.
  • the mean droplet diameter in the droplet generation rises with rising surface tension.
  • the monomer solution is metered into the gas phase to form droplets, i.e. using a system described in WO 2008/069639 A1 and WO 2008/086976 A1.
  • the droplets are generated by means of a droplet plate.
  • a droplet plate is a plate having a multitude of bores, the liquid entering the bores from the top.
  • the droplet plate or the liquid can be oscillated, which generates a chain of ideally monodisperse droplets at each bore on the underside of the droplet plate.
  • the droplet plate is not agitated.
  • the number and size of the bores are selected according to the desired capacity and droplet size.
  • the droplet diameter is typically 1.9 times the diameter of the bore.
  • the Reynolds number based on the throughput per bore and the bore diameter is preferably less than 2000, preferentially less than 1600, more preferably less than 1400 and most preferably less than 1200.
  • the underside of the droplet plate has at least in part a contact angle preferably of at least 60°, more preferably at least 75° and most preferably at least 90° with regard to water.
  • the contact angle is a measure of the wetting behavior of a liquid, in particular water, with regard to a surface, and can be determined using conventional methods, for example in accordance with ASTM D 5725. A low contact angle denotes good wetting, and a high contact angle denotes poor wetting. It is also possible for the droplet plate to consist of a material having a lower contact angle with regard to water, for example a steel having the German construction material code number of 1 .4571 , and be coated with a material having a larger contact angle with regard to water.
  • Useful coatings include for example fluorous polymers, such as perfluoroalkoxyethylene, polytetrafluoroethylene, ethylene-chlorotrifluoroethylene copolymers, ethylene- tetrafluoroethylene copolymers and fluorinated polyethylene.
  • fluorous polymers such as perfluoroalkoxyethylene, polytetrafluoroethylene, ethylene-chlorotrifluoroethylene copolymers, ethylene- tetrafluoroethylene copolymers and fluorinated polyethylene.
  • the coatings can be applied to the substrate as a dispersion, in which case the solvent is subsequently evaporated off and the coating is heat treated.
  • solvent for polytetrafluoroethylene this is described for example in US-3,243,321 .
  • the coatings can further be incorporated in a nickel layer in the course of a chemical nickelization. It is the poor wettability of the droplet plate that leads to the production of monodisperse droplets of narrow droplet size distribution.
  • the droplet plate has preferably at least 5, more preferably at least 25, most preferably at least 50 and preferably up to 750, more preferably up to 500 bores, most preferably up to 250.
  • the diameter of the bores is adjusted to the desired droplet size.
  • the separation of the bores is usually from 5 to 40 mm, preferably from 8 to 30 mm, more preferably from 9 to 25 mm, most preferably from 10 to 20 mm. Smaller separations of the bores cause agglomeration of the polymerizing droplets.
  • the diameter of the bores is preferably from 50 to 500 ⁇ , more preferably from 100 to 300 ⁇ , most preferably from 150 to 250 ⁇ .
  • the temperature of the monomer solution as it passes through the bore is preferably from 0 to 50°C, more preferably from 3 to 40°C, most preferably from 5 to 30°C.
  • the carrier gas is conducted through the reaction chamber in cocurrent to the free-falling droplets of the monomer solution, i.e. from the top downward.
  • the gas is preferably recycled at least partly, preferably to an extent of at least 50%, more preferably to an extent of at least 75%, into the reaction chamber as cycle gas.
  • a portion of the carrier gas is discharged after each pass, preferably up to 10%, more preferably up to 3% and most preferably up to 1 %.
  • the oxygen content of the carrier gas is preferably from 0.2 to 15% by volume, more preferably from 0.5 to 10% by volume, most preferably from 1 to 5% by weight.
  • the carrier gas preferably comprises nitrogen.
  • the nitrogen content of the gas is preferably at least 80% by volume, more preferably at least 90% by volume, most preferably at least 95% by volume.
  • Other possible carrier gases may be selected from carbondioxide, argon, xenon, krypton, neon, helium. Any mixture of carrier gases may be used.
  • the carrier gas may also become loaded with water and/or acrylic acid vapors.
  • the gas velocity is preferably adjusted such that the flow in the reaction chamber is directed, for example no convection currents opposed to the general flow direction are present, and is from 0.1 to 2.5 m/s, preferably from 0.3 to 1 .5 m/s, more preferably from 0.5 to 1.2 m/s, even more preferably from 0.6 to 1.0 m/s, most preferably from 0.7 to 0.9 m/s.
  • the gas entrance temperature is controlled in such a way that the gas exit temperature, i.e. the temperature with which the gas leaves the reaction chamber, is from 90 to 150°C or less, preferably from 100 to 140°C, more preferably from 105 to 135°C, even more preferably from 1 10 to 130°C, most preferably from 1 15 to 125°C.
  • the water-absorbent polymer particles can be divided into three categories: water-absorbent polymer particles of Type 1 are particles with one cavity, water-absorbent polymer particles of Type 2 are particles with more than one cavity, and water-absorbent polymer particles of Type 3 are solid particles with no visible cavity.
  • the morphology of the water-absorbent polymer particles can be controlled by the reaction conditions during polymerization.
  • Water-absorbent polymer particles having a high amount of particles with one cavity (Type 1 ) can be prepared by using low gas velocities and high gas exit temperatures.
  • Water-absorbent polymer particles having a high amount of particles with more than one cavity (Type 2) can be prepared by using high gas velocities and low gas exit temperatures.
  • Water-absorbent polymer particles having more than one cavity (Type 2) or no cavity (type 3) show an improved mechanical stability.
  • the reaction can be carried out under elevated pressure or under reduced pressure;
  • the reaction off-gas i.e. the gas leaving the reaction chamber, may, for example, be cooled in a heat exchanger. This condenses water and unconverted monomer a).
  • the reaction off- gas can then be reheated at least partly and recycled into the reaction chamber as cycle gas. A portion of the reaction off-gas can be discharged and replaced by fresh gas, in which case water and unconverted monomers a) present in the reaction off-gas can be removed and recycled.
  • thermally integrated system i.e. a portion of the waste heat in the cooling of the off-gas is used to heat the cycle gas.
  • the reactors can be trace-heated.
  • the trace heating is adjusted such that the wall temperature is at least 5°C above the internal reactor temperature and condensation on the reactor walls is reliably prevented.
  • the residual monomers in the water-absorbent polymer particles obtained by dropletization polymerization can be removed by a thermal posttreatment in the presence of a gas stream.
  • the residual monomers can be removed better at relatively high temperatures and relatively long residence times. What is important here is that the water-absorbent polymer particles are not too dry. In the case of excessively dry particles, the residual monomers decrease only insignificantly. Too high a water content increases the caking tendency of the water- absorbent polymer particles.
  • the gas flowing in shall already comprise steam.
  • the thermal posttreatment can be done in an internal and/or an external fluidized bed.
  • An internal fluidized bed means that the product of the dropletization polymerization is accumulated in a fluidized bed at the bottom of the reaction chamber. In the fluidized state, the kinetic energy of the polymer particles is greater than the cohesion or adhesion potential between the polymer particles.
  • the fluidized state can be achieved by a fluidized bed.
  • a fluidized bed In this bed, there is upward flow toward the water-absorbing polymer particles, so that the particles form a fluidized bed.
  • the height of the fluidized bed is adjusted by gas rate and gas velocity, i.e. via the pressure drop of the fluidized bed (kinetic energy of the gas).
  • the velocity of the gas stream in the fluidized bed is preferably from 0.5 to 2.5 m/s, more preferably from 0.6 to 1 .5 m/s, most preferably from 0.7 to 1 .0 m/s.
  • the thermal posttreatment is done in an external mixer with moving mixing tools, preferably horizontal mixers, such as screw mixers, disk mixers, screw belt mixers and paddle mixers.
  • Suitable mixers are, for example, Becker shovel mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Nara paddle mixers (NARA Machinery Europe; Frechen; Germany), Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta
  • the moisture content of the water-absorbent polymer particles during the thermal posttreatment is preferably from 3 to 50% by weight, more preferably from 6 to 30% by weight, most preferably from 8 to 20% by weight.
  • the temperature of the water-absorbent polymer particles during the thermal posttreatment is preferably from 70 to 140°C, more preferably from 80 to 135°C, very particularly from 90 to 130°C.
  • the average residence time in the mixer used for the thermal posttreatment is preferably from 10 to 120 minutes, more preferably from 15 to 90 minutes, most preferably from 20 to 60 minutes.
  • the steam content of the gas is preferably from 0.01 to 1 kg per kg of dry gas, more preferably from 0.05 to 0.5 kg per kg of dry gas, most preferably from 0.1 to 0.25 kg per kg of dry gas.
  • the thermal posttreatment can be done in a discontinuous external mixer or a continuous external mixer.
  • the amount of gas to be used in the discontinuous external mixer is preferably from 0.01 to 5 Nm 3 /h, more preferably from 0.05 to 2 Nm 3 /h, most preferably from 0.1 to 0.5 Nm 3 /h, based in each case on kg water-absorbent polymer particles.
  • the amount of gas to be used in the continuous external mixer is preferably from 0.01 to 5 Nm 3 /h, more preferably from 0.05 to 2 Nm 3 /h, most preferably from 0.1 to 0.5 Nm 3 /h, based in each case on kg/h throughput of water-absorbent polymer particles.
  • the other constituents of the gas are preferably nitrogen, carbondioxide, argon, xenon, krypton, neon, helium, air or air/nitrogen mixtures, more preferably nitrogen or air/nitrogen mixtures comprising less than 10% by volume of oxygen. Oxygen may cause discoloration.
  • the polymer particles can be postcrosslinked for further improvement of the properties.
  • Postcrosslinkers are compounds which comprise groups which can form at least two covalent bonds with the carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols as described in DE 33 14 019 A1 , DE 35 23 617 A1 and
  • EP 0 450 922 A2 or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and
  • DE 40 20 780 C1 describes cyclic carbonates
  • DE 198 07 502 A1 describes 2-oxazolidone and its derivatives such as 2-hydroxyethyl-2-oxazolidone
  • DE 198 07 992 C1 describes bis- and poly-2-oxazolidinones
  • DE 198 54 573 A1 describes 2-oxotetrahydro-1 ,3- oxazine and its derivatives
  • DE 198 54 574 A1 describes N-acyl-2-oxazolidones
  • 102 04 937 A1 describes cyclic ureas
  • DE 103 34 584 A1 describes bicyclic amide acetals
  • EP 1 199 327 A2 describes oxetanes and cyclic ureas
  • WO 2003/31482 A1 describes morpholine-2,3-dione and its derivatives, as suitable postcrosslinkers.
  • Particularly preferred postcrosslinkers are ethylene carbonate, mixtures of propylene glycol, 1 ,3-propandiole, 1 ,4-butanediol, mixtures of 1 ,3-propandiole and 1 ,4-butanediole, ethylene glycol diglycidyl ether and reaction products of polyamides and epichlorohydrin.
  • Very particularly preferred postcrosslinkers are 2-hydroxyethyl-2-oxazolidone, 2-oxazolidone, propylene glycol and 1 ,3-propanediol.
  • postcrosslinkers which comprise additional polymerizable ethylenically unsaturated groups, as described in DE 37 13 601 A1.
  • the amount of postcrosslinker is preferably from 0.01 to 5% by weight, more preferably from 0.02 to 3% by weight, most preferably from 0.2 to 2% by weight, based in each case on the polymer.
  • polyvalent cations are applied to the particle surface in addition to the postcrosslinkers before, during or after the postcrosslinking.
  • the polyvalent cations usable in the process according to the invention are, for example, divalent cations such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations such as the cations of titanium and zirconium, and also mixtures thereof.
  • Possible counterions are chloride, bromide, sulfate, hydrogensulfate, carbonate,
  • dihydrogenphosphate and carboxylate such as acetate, glycolate, tartrate, formiate, propionate and lactate, and also mixtures thereof.
  • Aluminum sulfate, aluminum dihydroxy monoacetate, and aluminum lactate are preferred.
  • polyamines and/or polymeric amines as polyvalent cations.
  • a single metal salt can be used as well as any mixture of the metal salts and/or the polyamines above.
  • the amount of polyvalent cation used is, for example, from 0.001 to 1 .5% by weight, preferably from 0.005 to 1 % by weight, more preferably from 0.02 to 0.8% by weight, based in each case on the polymer.
  • the postcrosslinking is typically performed in such a way that a solution of the
  • postcrosslinker is sprayed onto the hydrogel or the dry polymer particles. After the spraying, the polymer particles coated with the postcrosslinker are dried thermally and cooled, and the postcrosslinking reaction can take place either before or during the drying.
  • the spraying of a solution of the postcrosslinker is preferably performed in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers.
  • Suitable mixers are, for example, horizontal Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated;
  • the postcrosslinker solution can also be sprayed into a fluidized bed. If an external mixer or an external fluidized bed is used for thermal posttreatment, the solution of the postcrosslinker can also be sprayed into the external mixer or the external fluidized bed.
  • the postcrosslinkers are typically used as an aqueous solution. The addition of nonaqueous solvent can be used to adjust the penetration depth of the postcrosslinker into the polymer particles.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, most preferably disk dryers.
  • Suitable driers are, for example, Hosokawa Bepex® horizontal paddle driers (Hosokawa Micron GmbH; Leingart; Germany), Hosokawa Bepex® disk driers (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; U.S.A.) and Nara paddle driers (NARA Machinery Europe; Frechen; Germany). Nara paddle driers and, in the case of using polyfunctional epoxides, Holo-Flite® dryers are preferred. Moreover, it is also possible to use fluidized bed dryers.
  • the drying can be effected in the mixer itself, by heating the jacket or blowing in warm air.
  • a downstream dryer for example a shelf dryer, a rotary tube oven or a heatable screw. It is particularly advantageous to mix and dry in a fluidized bed dryer.
  • Preferred drying temperatures are in the range from 50 to 220°C, preferably from 100 to 180°C, more preferably from 120 to 160°C, most preferably from 130 to 150°C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and typically at most 60 minutes.
  • the cooling is preferably carried out in contact coolers, more preferably paddle coolers, most preferably disk coolers.
  • Suitable coolers are, for example, Hosokawa Bepex® horizontal paddle coolers (Hosokawa Micron GmbH; Leingart; Germany), Hosokawa Bepex® disk coolers (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® coolers (Metso Minerals Industries Inc.; Danville; U.S.A.) and Nara paddle coolers (NARA Machinery Europe; Frechen; Germany).
  • 150°C preferably from 40 to 120°C, more preferably from 60 to 100°C, most preferably from 70 to 90°C. Cooling using warm water is preferred, especially when contact coolers are used.
  • the water-absorbent polymer particles can be coated and/or optionally moistened.
  • the internal fluidized bed, the external fluidized bed and/or the external mixer used for the thermal posttreatment and/or a separate coater (mixer) can be used for coating of the water-absorbent polymer particles.
  • the cooler and/or a separate coater (mixer) can be used for coating/moistening of the postcrosslinked water-absorbent polymer particles.
  • Suitable coatings for controlling the acquisition behavior and improving the permeability (SFC or GBP) are, for example, inorganic inert substances, such as water- insoluble metal salts, organic polymers, cationic polymers and polyvalent metal cations.
  • Suitable coatings for improving the color stability are, for example reducing agents and anti-oxidants.
  • Suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings against the undesired caking tendency of the polymer particles are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • Preferred coatings are aluminium dihydroxy monoacetate, aluminium sulfate, aluminium lactate, Bruggolite® FF7 and Span® 20.
  • Suitable inorganic inert substances are silicates such as montmorillonite, kaolinite and talc, zeolites, activated carbons, polysilicic acids, magnesium carbonate, calcium carbonate, calcium phosphate, barium sulfate, aluminum oxide, titanium dioxide and iron(ll) oxide. Preference is given to using polysilicic acids, which are divided between precipitated silicas and fumed silicas according to their mode of preparation. The two variants are commercially available under the names Silica FK, Sipernat®, Wessalon® (precipitated silicas) and Aerosil® (fumed silicas) respectively.
  • the inorganic inert substances may be used as dispersion in an aqueous or water-miscible dispersant or in substance.
  • the amount of inorganic inert substances used, based on the water-absorbent polymer particles is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 1 .5% by weight, most preferably from 0.3 to 1 % by weight.
  • Suitable organic polymers are polyalkyl methacrylates or thermoplastics such as polyvinyl chloride, waxes based on polyethylene, polypropylene, polyamides or polytetrafluoro- ethylene.
  • Other examples are styrene-isoprene-styrene block-copolymers or styrene- butadiene-styrene block-copolymers.
  • Suitable cationic polymers are polyalkylenepolyamines, cationic derivatives of
  • polyacrylamides polyethyleneimines and polyquaternary amines.
  • Polyquaternary amines are, for example, condensation products of hexamethylenediamine, dimethylamine and epichlorohydrin, condensation products of dimethylamine and
  • epichlorohydrin copolymers of hydroxyethylcellulose and diallyldimethylammonium chloride, copolymers of acrylamide and a-methacryloyloxyethyltrimethylammonium chloride, condensation products of hydroxyethylcellulose, epichlorohydrin and trimethylamine, homopolymers of diallyldimethylammonium chloride and addition products of epichlorohydrin to amidoamines.
  • polyquaternary amines can be obtained by reacting dimethyl sulfate with polymers such as polyethyleneimines, copolymers of vinylpyrrolidone and dimethylaminoethyl methacrylate or copolymers of ethyl methacrylate and diethylaminoethyl methacrylate.
  • polymers such as polyethyleneimines, copolymers of vinylpyrrolidone and dimethylaminoethyl methacrylate or copolymers of ethyl methacrylate and diethylaminoethyl methacrylate.
  • the polyquaternary amines are available within a wide molecular weight range.
  • cationic polymers on the particle surface, either through reagents which can form a network with themselves, such as addition products of epichlorohydrin to polyamidoamines, or through the application of cationic polymers which can react with an added crosslinker, such as polyamines or polyimines in combination with polyepoxides, polyfunctional esters, polyfunctional acids or polyfunctional (meth)acrylates.
  • the liquid sprayed by the process according to the invention preferably comprises at least one polyamine, for example polyvinylamine or a partially hydrolyzed polyvinylformamide.
  • the cationic polymers may be used as a solution in an aqueous or water-miscible solvent, as dispersion in an aqueous or water-miscible dispersant or in substance.
  • the use amount of cationic polymer based on the water-absorbent polymer particles is usually not less than 0.001 % by weight, typically not less than 0.01 % by weight, preferably from 0.1 to 15% by weight, more preferably from 0.5 to 10% by weight, most preferably from 1 to 5% by weight.
  • Suitable polyvalent metal cations are Mg 2+ , Ca 2+ , Al 3+ , Sc 3+ , Ti 4+ , Mn 2+ , Fe 2+/3+ , Co 2+ , Ni 2+ , Cu +/2+ , Zn 2+ , Y 3+ , Zi-4 + , Ag + , La 3+ , Ce 4+ , Hf 4+ and Au +/3+ ; preferred metal cations are Mg 2+ , Ca 2+ , Al 3+ , Ti 4+ , Zr 4 * and La 3+ ; particularly preferred metal cations are Al 3+ , Ti 4+ and Zr 4 *.
  • the metal cations may be used either alone or in a mixture with one another.
  • Suitable metal salts of the metal cations mentioned are all of those which have a sufficient solubility in the solvent to be used.
  • Particularly suitable metal salts have weakly complexing anions, such as chloride, hydroxide, carbonate, nitrate and sulfate.
  • the metal salts are preferably used as a solution or as a stable aqueous colloidal dispersion.
  • the solvents used for the metal salts may be water, alcohols, dimethylformamide, dimethyl sulfoxide and mixtures thereof.
  • water and water/alcohol mixtures such as water/methanol, water/isopropanol, water/1 ,3-propanediole, water/1 ,2-propandiole/1 ,4-butanediole or water/propylene glycol.
  • the amount of polyvalent metal cation used, based on the water-absorbent polymer particles, is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 1 .5% by weight, most preferably from 0.3 to 1 % by weight.
  • Suitable reducing agents are, for example, sodium sulfite, sodium hydrogensulfite (sodium bisulfite), sodium dithionite, sulfinic acids and salts thereof, ascorbic acid, sodium
  • hypophosphite sodium phosphite, and phosphinic acids and salts thereof.
  • salts of hypophosphorous acid for example sodium hypophosphite
  • salts of sulfinic acids for example the disodium salt of 2-hydroxy-2-sulfinatoacetic acid
  • addition products of aldehydes for example the disodium salt of 2-hydroxy-2-sulfonatoacetic acid.
  • the reducing agent used can be, however, a mixture of the sodium salt of 2-hydroxy-2- sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite.
  • Such mixtures are obtainable as Bruggolite® FF6 and Bruggolite® FF7
  • Suitable anti-oxidants are, for example, sterically hindered monohydric and/or polyhydric phenols such as 3,5-di-tert-butyl-4-hydroxytoluene, 2-tert-butylphenol, 2-tert-butyl-4- methylphenol, 2,5-di-tert-butylhydroquinone, 4,6-di-tert-butylresorcinol, 3,6-di-tert- butylpyrocatechol, 2-tert-butylresorcinol, and calcium bis[monoethyl(3,5-di-tert.-butyl-4- hydroxybenzyl] phosphonate.
  • sterically hindered monohydric and/or polyhydric phenols such as 3,5-di-tert-butyl-4-hydroxytoluene, 2-tert-butylphenol, 2-tert-butyl-4- methylphenol, 2,5-di-tert-butylhydro
  • the reducing agents and anti-oxidants are typically used in the form of a solution in a suitable solvent, preferably water.
  • the reducing agent may be used as a pure substance or any mixture of the above reducing agents may be used.
  • the amount of reducing agent used, based on the water-absorbent polymer particles is preferably from 0.01 to 5% by weight, more preferably from 0.05 to 2% by weight, most preferably from 0.1 to 1 % by weight.
  • Suitable polyols are polyethylene glycols having a molecular weight of from 400 to
  • polyglycerol polyglycerol
  • 3- to 100-tuply ethoxylated polyols such as trimethylolpropane, glycerol, sorbitol and neopentyl glycol.
  • Particularly suitable polyols are 7- to 20-tuply ethoxylated glycerol or trimethylolpropane, for example Polyol TP 70® (Perstorp AB,
  • the polyols are preferably used as a solution in aqueous or water-miscible solvents.
  • the use amount of polyol, based on the water-absorbent polymer particles is preferably from 0.005 to 2% by weight, more preferably from 0.01 to 1 % by weight, most preferably from 0.05 to 0.5% by weight.
  • the coating is preferably performed in mixers with moving mixing tools, such as screw mixers, disk mixers, paddle mixers and drum coater.
  • Suitable mixers are, for example, horizontal Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated; Cincinnati; U.S.A.) and Ruberg continuous flow mixers (Gebruder Ruberg GmbH & Co KG, Nieheim, Germany). Moreover, it is also possible to use a fluidized bed for mixing.
  • the water-absorbent polymer particles can further selectivily be agglomerated.
  • the agglomeration can take place after the polymerization, the thermal postreatment, the postcrosslinking or the coating.
  • Useful agglomeration assistants include water and water-miscible organic solvents, such as alcohols, tetrahydrofuran and acetone; water-soluble polymers can be used in addition.
  • a solution comprising the agglomeration assistant is sprayed onto the water-absorbing polymeric particles.
  • the spraying with the solution can, for example, be carried out in mixers having moving mixing implements, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and shovel mixers.
  • Useful mixers include for example Lodige® mixers, Bepex® mixers, Nauta® mixers, Processall® mixers and Schugi® mixers. Vertical mixers are preferred. Fluidized bed apparatuses are particularly preferred.
  • thermal posttreatment and postcrosslinking can be combined in one process step. Such combination allows the use of very reactive postcrosslinkers without having any risk of any residual postcrosslinker in the finished product. It also allows the use of low cost equipment and moreover the process can be run at low a temperature which is cost-efficient and avoids discoloration and loss of performance properties of the finished product by thermal degradation.
  • Postcrosslinkers in this particular preferred embodiment are selected from epoxides, aziridines, polyfuntional epoxides, and polyfunctional aziridines.
  • Examples are ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether.
  • Denacol® Nagase ChemteX Corporation, Osaka, Japan.
  • the mixer may be selected from any of the equipment options cited in the thermal posttreatment section. Ruberg continuous flow mixers, Becker shovel mixers and
  • Pflugschar® plowshare mixers are preferred.
  • the postcrosslinking solution is sprayed onto the water-absorbent polymer particles under agitation.
  • the temperature of the water-absorbent polymer particles inside the mixer is at least 60°C, preferably at least 80°C, more preferably at least 90°C, most preferably at least 100°C, and preferably not more than 160°C, more preferably not more than 140°C, most preferably not more than 1 15°C.
  • posttreatment and postcrosslinking are performed in the presence of a gas stream having a moisture content cited in the thermal posttreatment section.
  • the thermal posttreatment/postcrosslinking the water-absorbent polymer particles are dried to the desired moisture level and for this step any dryer cited in the postcrosslinking section may be selected.
  • any dryer cited in the postcrosslinking section may be selected.
  • simple and low cost heated contact dryers like a heated screw dryer, for example a Holo-Flite® dryer (Metso Minerals Industries Inc.;
  • torus disc dryers or paddle dryers for example a Nara paddle dryer (NARA Machinery Europe; Frechen; Germany), but designed for and operated with low pressure steam or heating liquid as the product temperature during drying does not need to exceed 160°C, preferably does not need to exceed 150°C, more preferably does not need to exceed 140°C, most preferably from 90 to 135°C.
  • postcrosslinking section are applied to the particle surface before, during or after addition of the postcrosslinker by using different addition points along the axis of a horizontal mixer.
  • the steps of thermal post- treatment, postcrosslinking, and coating are combined in one process step.
  • Suitable coatings are cationic polymers, surfactants, and inorganic inert substances that are cited in the coating section.
  • the coating agent can be applied to the particle surface before, during or after addition of the postcrosslinker also by using different addition points along the axis of a horizontal mixer.
  • the polyvalent cations and/or the cationic polymers can act as additional scavengers for residual postcrosslinkers.
  • the cationic polymers can act as additional scavengers for residual postcrosslinkers.
  • postcrosslinkers are added prior to the polyvalent cations and/or the cationic polymers to allow the postcrosslinker to react first.
  • the surfactants and/or the inorganic inert substances can be used to avoid sticking or caking during this process step under humid atmospheric conditions.
  • a preferred surfactant is
  • Span® 20 Preferred inorganic inert substances are precipitated silicas and fumed silcas in form of powder or dispersion.
  • the amount of total liquid used for preparing the solutions/dispersions is typically from 0.01 % to 25% by weight, preferably from 0.5% to 12% by weight, more preferably from 2% to 7% by weight, most preferably from 3% to 6% by weight, in respect to the weight amount of water- absorbent polymer particles to be processed.
  • FIG. 1 Process scheme (with external fluidized bed)
  • Fig. 2 Process scheme (without external fluidized bed)
  • Fig. 3 Arrangement of the T_outlet measurement
  • Fig. 4 Arrangement of the dropletizer units
  • Fig. 5 Dropletizer unit (longitudinal cut)
  • Fig. 6 Dropletizer unit (cross sectional view)
  • Fig. 7 Process scheme (external thermal posttreatment and postcrosslinking)
  • Fig. 8 Process scheme (external thermal posttreatment, postcrosslinking and coating)
  • Fine particle fraction outlet to rework T_outlet measurement average temperature out of 3 measurements around tower circumference
  • the drying gas is feed via a gas distributor (3) at the top of the spray dryer as shown in Fig. 1 .
  • the drying gas is partly recycled (drying gas loop) via a baghouse filter (9) and a condenser column (12).
  • the pressure inside the spray dryer is below ambient pressure.
  • the spray dryer outlet temperature is preferably measured at three points around the circumference at the end of the cylindrical part as shown in Fig. 3.
  • the single measurements (47) are used to calculate the average cylindrical spray dryer outlet temperature.
  • Conditioned internal fluidized bed gas is fed to the internal fluidized bed (27) via line (25).
  • the relative humidity of the internal fluidized bed gas is preferably controlled by adding steam via line (23).
  • the spray dryer offgas is filtered in baghouse filter (9) and sent to a condenser column (12) for quenching/cooling.
  • a recuperation heat exchanger system for preheating the gas after the condenser column (12) can be used.
  • Excess water is pumped out of the condenser column (12) by controlling the (constant) filling level inside the condenser column (12).
  • the water inside the condenser column (12) is cooled by a heat exchanger (13) and pumped counter-current to the gas via quench nozzles (1 1 ) so that the temperature inside the condenser column (12) is preferably from 20 to 100°C, more preferably from 30 to 80°C, most preferably from 40 to 75°C.
  • the water inside the condenser column (12) is set to an alkaline pH by dosing a neutralizing agent to wash out vapors of monomer a).
  • Aqueous solution from the condenser column (12) can be sent back for preparation of the monomer solution.
  • the condenser column offgas is split to the drying gas inlet pipe (1 ) and the conditioned internal fluidized bed gas (25).
  • the gas temperatures are controlled via heat exchangers (20) and (22).
  • the hot drying gas is fed to the cocurrent spray dryer via gas distributor (3).
  • the gas distributor (3) consists preferably of a set of plates providing a pressure drop of preferably 1 to l OOmbar, more preferably 2 to 30mbar, most preferably 4 to 20mbar, depending on the drying gas amount. Turbulences and/or a centrifugal velocity can also be introduced into the drying gas if desired by using gas nozzles or baffle plates.
  • the product is discharged from the internal fluidized bed (27) via rotary valve (28) into external fluidized bed (29).
  • Conditioned external fluidized bed gas is fed to the external fluidized bed (29) via line (40).
  • the relative humidity of the external fluidized bed gas is preferably controlled by adding steam via line (38).
  • the product holdup in the internal fluidized bed (27) can be controlled via weir height or rotational speed of the rotary valve (28).
  • the product is discharged from the external fluidized bed (29) via rotary valve (32) into sieve (33).
  • the product holdup in the external fluidized bed (28) can be controlled via weir height or rotational speed of the rotary valve (32).
  • the sieve (33) is used for sieving off overs/lumps.
  • the monomer solution is preferably prepared by mixing first monomer a) with a neutralization agent and secondly with crosslinker b).
  • the temperature during neutralization is controlled to preferably from 5 to 60°C, more preferably from 8 to 40°C, most preferably from 10 to 30°C, by using a heat exchanger and pumping in a loop.
  • a filter unit is preferably used in the loop after the pump.
  • the initiators are metered into the monomer solution upstream of the dropletizer by means of static mixers (41 ) and (42) via lines (43) and (44) as shown in Fig. 1.
  • a peroxide solution having a temperature of preferably from 5 to 60°C, more preferably from 10 to 50°C, most preferably from 15 to 40°C, is added via line (43) and preferably an azo initiator solution having a temperature of preferably from 2 to 30°C, more preferably from 3 to 15°C, most preferably from 4 to 8°C, is added via line (44).
  • Each initiator is preferably pumped in a loop and dosed via control valves to each dropletizer unit.
  • a second filter unit is preferably used after the static mixer (42).
  • the mean residence time of the monomer solution admixed with the full initiator package in the piping before the droplet plates (57) is preferably less than 60s, more preferably less than 30s, most preferably less than 10s.
  • a dropletizer unit For dosing the monomer solution into the top of the spray dryer preferably three dropletizer units are used as shown in Fig. 4.
  • a dropletizer unit consists of an outer pipe (51 ) having an opening for the dropletizer cassette (53) as shown in Fig. 5.
  • the dropletizer cassette (53) is connected with an inner pipe (52).
  • the inner pipe (53) having a PTFE block (54) at the end as sealing can be pushed in and out of the outer pipe (51 ) during operation of the process for maintenance purposes.
  • the temperature of the dropletizer cassette (61 ) is controlled to preferably 5 to 80°C, more preferably 10 to 70°C, most preferably 30 to 60°C, by water in flow channels (59) as shown in Fig. 6.
  • the dropletizer cassette has preferably from 10 to 1500, more preferably from 50 to 1000, most preferably from 100 to 500, bores having a diameter of preferably from 50 to 500 ⁇ , more preferably from 100 to 300 ⁇ , most preferably from 150 to 250 ⁇ .
  • the bores can be of circular, rectangular, triangular or any other shape. Circular bores are preferred.
  • the ratio of bore length to bore diameter is preferably from 0.5 to 10, more preferably from 0.8 to 5, most preferably from 1 to 3.
  • the droplet plate (57) can have a greater thickness than the bore length when using an inlet bore channel.
  • the droplet plate (57) is preferably long and narrow as disclosed in WO 2008/086976 A1 .
  • Multiple rows of bores per droplet plate can be used, preferably from 1 to 20 rows, more preferably from 2 to 5 rows.
  • the dropletizer cassette (61 ) consists of a flow channel (60) having essential no stagnant volume for homogeneous distribution of the premixed monomer and initiator solutions and two droplet plates (57).
  • the droplet plates (57) have an angled configuration with an angle of preferably from 1 to 90°, more preferably from 3 to 45°, most preferably from 5 to 20°.
  • Each droplet plate (57) is preferably made of stainless steel or fluorous polymers, such as perfluoroalkoxyethylene, polytetrafluoroethylene, ethylene-chlorotrifluoroethylene
  • Coated droplet plates as disclosed in WO 2007/031441 A1 can also be used.
  • the choice of material for the droplet plate is not limited except that droplet formation must work and it is preferable to use materials which do not catalyse the start of polymerization on its surface.
  • the throughput of monomer including initiator solutions per dropletizer unit is preferably from 150 to 2500kg/h, more preferably from 200 to 1000kg/h, most preferably from 300 to 600kg/h.
  • the throughput per bore is preferably from 0.5 to 10kg/h, more preferably from 0.8 to 5kg/h, most preferably from 1 to 3kg/h.
  • the present invention provides water-absorbent polymer particles having typically more than one cavity wherein the cavities have an inside diameter from preferably 1 to 50 ⁇ , more preferably 2 to 30 ⁇ , even more preferably 5 to 20 ⁇ , most preferably 7 to 15 ⁇ , while the remaining particles have no visible cavities inside. Cavities with less than 1 ⁇ diameter are considered as not visible cavities.
  • the inventive water-absorbent polymer particles have typically a mean sphericity of from 0.86 to 0.99, preferably from 0.87 to 0.97, more preferably from 0.88 to 0.95, most preferably from 0.89 to 0.93.
  • SPHT sphericity
  • U 2 where A is the cross-sectional area and U is the cross-sectional circumference of the polymer particles.
  • the mean sphericity is the volume-average sphericity.
  • the mean sphericity can be determined, for example, with the Camsizer® image analysis system (Retsch Technolgy GmbH; Haan; Germany):
  • the product is introduced through a funnel and conveyed to the falling shaft with a metering channel. While the particles fall past a light wall, they are recorded selectively by a camera. The images recorded are evaluated by the software in accordance with the parameters selected.
  • the parameters designated as sphericity in the program are employed.
  • the parameters reported are the mean volume-weighted sphericities, the volume of the particles being determined via the equivalent diameter xcmin.
  • the equivalent diameter xc m in the longest chord diameter for a total of 32 different spatial directions is measured in each case.
  • the equivalent diameter xc m in is the shortest of these 32 chord diameters.
  • CCD-zoom camera CAM-Z
  • a surface coverage fraction in the detection window of the camera (transmission) of 0.5% is predefined.
  • Water-absorbent polymer particles with relatively low sphericity are obtained by reverse suspension polymerization when the polymer beads are agglomerated during or after the polymerization.
  • the water-absorbent polymer particles prepared by customary solution polymerization (gel polymerization) are ground and classified after drying to obtain irregular polymer particles.
  • the mean sphericity of these polymer particles is between approx. 0.72 and approx. 0.78.
  • the inventive water-absorbent polymer particles have typically a content of hydrophobic solvent of preferably less than 0.005% by weight, more preferably less than 0.002% by weight and most preferably less than 0.001 % by weight.
  • the content of hydrophobic solvent can be determined by gas chromatography, for example by means of the headspace technique.
  • Water-absorbent polymer particles which have been obtained by reverse suspension polymerization still comprise typically approx. 0.01 % by weight of the hydrophobic solvent used as the reaction medium.
  • the inventive water-absorbent polymer particles have a dispersant content of typically less than 1 % by weight, preferably less than 0.5% by weight, more preferably less than 0.1 % by weight and most preferably less than 0.05% by weight.
  • Water-absorbent polymer particles which have been obtained by reverse suspension polymerization still comprise typically at least 1 % by weight of the dispersant, i.e.
  • inventive water-absorbent polymer particles have a bulk density of preferably at least 0.6 g/cm 3 , more preferably at least 0.65 g/cm 3 , most preferably at least 0.7 g/cm 3 , and typically less than 1 g/cm 3 .
  • the average particle diameter of the inventive water-absorbent particles is preferably from 320 to 500 ⁇ , more preferably from 370 to 470 ⁇ , most preferably from 400 to 450 ⁇ .
  • the particle diameter distribution is preferably less than 0.65, more preferably less than 0.62, more preferably less than 0.6.
  • Particle morphologies of the water-absorbent polymer particles are investigated in the swollen state by microscope analysis.
  • the water-absorbent polymer particles can be divided into three categories: Type 1 are particles with one cavity having diameters typically from 0.4 to 2.5 mm, Type 2 are particles with more than one cavity having diameters typically from 0.001 to 0.3 mm, and Type 3 are solid particles with no visible cavity.
  • the ratio of particles having one cavity (Type 1 ) to particles having more than one cavity (Type 2) is preferably less than 0.7, more preferably less than 0.5, most preferably less than 0.4. Lower ratios correlated with higher bulk densities.
  • the inventive water-absorbent polymer particles have a moisture content of preferably from 0.5 to 15% by weight, more preferably from 3 to 12% by weight, most preferably from 5 to 10% by weight.
  • the residual content of unreacted monomer in the water-absorbent polymer particles is reduced by thermal post- treatment with water vapor at elevated temperature.
  • This thermal post-treatment may take place after the water-absorbent polymer particles have left the reaction chamber.
  • the water absorbent particles may also be optionally stored in a buffer silo prior or after thermal post- treatment.
  • Particularly preferred water-absorbent polymer particles have residual monomer contents of not more than 2000 ppm, typically not more than 1000 ppm, preferably less than 700 ppm, more preferably between 0 to 500 ppm, most preferably between 50 to 400 ppm.
  • the inventive water-absorbent polymer particles have a centrifuge retention capacity (CRC) of typically at least 20 g/g, preferably at least 25 g/g, preferentially at least 28 g/g, more preferably at least 30 g/g, most preferably at least 32 g/g.
  • CRC centrifuge retention capacity
  • the centrifuge retention capacity (CRC) of the water-absorbent polymer particles is typically less than 60 g/g.
  • the inventive water-absorbent polymer particles have absorbency under a load of 49.2 g/cm 2 (AUHL) of typically at least 15 g/g, preferably at least 16 g/g, preferentially at least 20 g/g, more preferably at least 23 g/g, most preferably at least 25 g/g, and typically not more than 50 g/g.
  • AUHL 49.2 g/cm 2
  • inventive water-absorbent polymer particles have an improved mechanical stability and a small particle size distribution. Also, the inventive water-absorbent polymer particles have an improved processibility, a reduced tendency of segregation, a smaller particle size dependent performance deviation, and a reduced dust formation caused by abrasion.
  • inventive water-absorbent polymer particles can be mixed with other water-absorbent polymer particles prepared by other processes, i.e. solution polymerization.
  • the present invention further provides fluid-absorbent articles.
  • the fluid-absorbent articles comprise of
  • Fluid-absorbent articles are understood to mean, for example, incontinence pads and incontinence briefs for adults or diapers for babies.
  • Suitable fluid-absorbent articles including fluid-absorbent compositions comprising fibrous materials and optionally water-absorbent polymer particles to form fibrous webs or matrices for the substrates, layers, sheets and/or the fluid-absorbent core.
  • Suitable fluid-absorbent articles are composed of several layers whose individual elements must show preferably definite functional parameter such as dryness for the upper liquid- pervious layer, vapor permeability without wetting through for the lower liquid-impervious layer, a flexible, vapor permeable and thin fluid-absorbent core, showing fast absorption rates and being able to retain highest quantities of body fluids, and an acquisition-distribution layer between the upper layer and the core, acting as transport and distribution layer of the discharged body fluids.
  • These individual elements are combined such that the resultant fluid- absorbent article meets overall criteria such as flexibility, water vapor breathability, dryness, wearing comfort and protection on the one side, and concerning liquid retention, rewet and prevention of wet through on the other side.
  • the specific combination of these layers provides a fluid-absorbent article delivering both high protection levels as well as high comfort to the consumer.
  • the water-absorbent polymer particles and the fluid-absorbent articles are tested by means of the test methods described below.
  • the measurements should, unless stated otherwise, be carried out at an ambient temperature of 23 ⁇ 2°C and a relative atmospheric humidity of 50 ⁇ 10%.
  • the water- absorbent polymers are mixed thoroughly before the measurement.
  • the particle size distribution of the water-absorbent polymer particles is determined with the Camziser® image analysis sytem (Retsch Technology GmbH; Haan; Germany). For determination of the average particle diameter and the particle diameter distribution the proportions of the particle fractions by volume are plotted in cumulated form and the average particle diameter is determined graphically.
  • the average particle diameter (APD) here is the value of the mesh size which gives rise to a cumulative 50% by weight.
  • the particle diameter distribution (PDD) is calculated as follows:
  • APD wherein xi is the value of the mesh size which gives rise to a cumulative 90% by weight and X2 is the value of the mesh size which gives rise to a cumulative 10% by weight.
  • the mean sphericity is determined with the Camziser® image analysis system (Retsch Technology GmbH; Haan; Germany) using the particle diameter fraction from 100 to
  • Moisture Content The moisture content of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 230.2-05 "Mass Loss Upon Heating".
  • Centrifuge Retention Capacity The centrifuge retention capacity of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 241.2-05 "Fluid Retention Capacity in Saline, After Centrifugation", wherein for higher values of the centrifuge retention capacity lager tea bags have to be used.
  • the absorbency under high load of the water-absorbent polymer particles is determined analogously to the EDANA recommended test method No. WSP 242.2-05 "Absorption Under Pressure, Gravimetric Determination", except using a weight of 49.2 g/cm 2 instead of a weight of 21 .0 g/cm 2 .
  • the bulk density of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 260.2-05 "Density, Gravimetric Determination".
  • the values for a and b describe the position of the color on the color axis red/green resp. yellow/blue, whereby positive a values stand for red colors, negative a values for green colors, positive b values for yellow colors, and negative b values for blue colors.
  • Measurement 1 (Initial color): A plastic dish with an inner diameter of 9 cm is overfilled with superabsorbent polymer particles. The surface is flattened at the height of the petri dish lip by means of a knife and the CIE color values and the HC 60 value are determined.
  • Measurement 2 (after aging): A plastic dish with an inner diameter of 9 cm is overfilled with superabsorbent polymer particles. The surface is flattened at the height of the petri dish lip by means of a knife. The plastic dish (without a cover) is then placed in a humidity chamber at 60 °C and a relative humidity of 86%. The plastic dish is removed from the humidity chamber after 21 days, cooled down to room temperature and the CIE color values are determined.
  • the EDANA test methods are obtainable, for example, from the EDANA, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.
  • the process was performed in a cocurrent spray drying plant with an integrated fluidized bed (27) and an external fluidized bed (29) as shown in Fig. 1.
  • the cylindrical part of the spray dryer (5) had a height of 22m and a diameter of 3.4m.
  • the internal fluidized bed (IFB) had a diameter of 2.0m and a weir height of 0.3m.
  • the external fluidized bed (EFB) had a length of 3.0m, a width of 0.65m and a weir height of 0.5m.
  • the drying gas was feed via a gas distributor (3) at the top of the spray dryer.
  • the drying gas was partly recycled (drying gas loop) via a baghouse filter (9) and a condenser column (12).
  • the drying gas was nitrogen that comprises from 1 % to 5% by volume of residual oxygen.
  • the gas velocity of the drying gas in the cylindrical part of the spray dryer (5) was 0.73m/s.
  • the pressure inside the spray dryer was 4mbar below ambient pressure.
  • the spray dryer outlet temperature was measured at three points around the circumference at the end of the cylindrical part as shown in Fig. 3. Three single measurements (47) were used to calculate the average cylindrical spray dryer outlet temperature.
  • the drying gas loop was heated up and the dosage of monomer solution was started up. From this time the spray dryer outlet temperature was controlled to 120°C by adjusting the gas inlet temperature via the heat exchanger (20).
  • the product accumulated in the internal fluidized bed (27) until the weir height was reached.
  • Internal fluidized bed gas having a temperature of 123°C was added.
  • the gas velocity of the internal fluidized bed gas in the internal fluidized bed (27) was 0.8m/s.
  • the spray dryer offgas was filtered in baghouse filter (9) and sent to a condenser column (12) for quenching/cooling. Excess water was pumped out of the condenser column (12) by controlling the (constant) filling level inside the condenser column (12). The water inside the condenser column (12) was cooled by a heat exchanger (13) and pumped counter-current to the gas via quench nozzles (1 1 ) so that the temperature inside the condenser column (12) was 45°C. The water inside the condenser column (12) was set to an alkaline pH by dosing sodium hydroxide solution to wash out acrylic acid vapors.
  • the condenser column offgas was split to the drying gas inlet pipe (1 ) and the conditioned internal fluidized bed gas (25).
  • the gas temperatures were controlled via heat exchangers (20) and (22).
  • the hot drying gas was fed to the cocurrent spray dryer via gas distributor (3).
  • the gas distributor (3) consists of a set of plates providing a pressure drop of 5 to 10mbar depending on the drying gas amount.
  • the product was discharged from the internal fluidized bed (27) via rotary valve (28) into external fluidized bed (29).
  • Conditioned external fluidized bed gas having a temperature of 55°C was fed to the external fluidized bed (29) via line (40).
  • the external fluidized bed gas was air.
  • the gas velocity of the external fluidized bed gas in the external fluidized bed (29) was 0.8m/s.
  • the residence time of the product was 1 1 min.
  • the product was discharged from the external fluidized bed (29) via rotary valve (32) into sieve (33).
  • the sieve (33) was used for sieving off overs/lumps having a particle diameter of more than 850 ⁇ .
  • the monomer solution was prepared by mixing first acrylic acid with 3-tuply ethoxylated glycerol triacrylate (internal crosslinker) and secondly with 37.3% by weight sodium acrylate solution.
  • the temperature of the resulting monomer solution was controlled to 10°C by using a heat exchanger and pumping in a loop.
  • a filter unit having a mesh size of 250 ⁇ was used in the loop after the pump.
  • the initiators were metered into the monomer solution upstream of the dropletizer by means of static mixers (41 ) and (42) via lines (43) and (44) as shown in Fig. 1 .
  • a dropletizer unit consisted of an outer pipe (51 ) having an opening for the dropletizer cassette (53) as shown in Fig. 5.
  • the dropletizer cassette (53) was connected with an inner pipe (52).
  • the inner pipe (53) having a PTFE block (54) at the end as sealing can be pushed in and out of the outer pipe (51 ) during operation of the process for maintenance purposes.
  • the temperature of the dropletizer cassette (61 ) was controlled to 10°C by water in flow channels (59) as shown in Fig. 6.
  • the dropletizer cassette had 256 bores having a diameter of 170 ⁇ and a bore separation of 12.4mm.
  • the dropletizer cassette (61 ) consisted of a flow channel (60) having essential no stagnant volume for homogeneous distribution of the premixed monomer and initiator solutions and two droplet plates (57).
  • the droplet plates (57) had an angled configuration with an angle of 3°.
  • Each droplet plate (57) was made of stainless steel and had a length of 630mm, a width of 65mm, and a thickness of 8mm.
  • the feed to the spray dryer consisted of 10.06% by weight of acrylic acid 32.16% by weigh of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 1 .4% by weight of Bruggolite® FF7 solution (0.2% by weigh in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water.
  • the degree of neutralization was 71 %.
  • the feed per bore was 1.6kg/h.
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • the resulting polymer particles had a bulk density of 76.9g/100ml, an average particle diameter of 425 ⁇ , a particle diameter distribution of 0.57, and a mean sphericity of 0.91.
  • Example 2
  • the polymer particles exhibit the following color:
  • pH of solution has been adjusted to 6.0 by addition of diluted sulfuric acid prior to spraying onto superabsorbent polymer particles
  • Trilon® BX liquid 40 wt.-% aqueous solution of the tetrasodium salt of ethylenediamine tetra acetic acid
  • Trilon® C liquid 40 wt.-% aqueous solution of the pentasodium salt of diethylenetriamine penta acetic acid
  • Trilon® D liquid 40 wt.-% aqueous solution of the trisodium salt of hydroxyethyl
  • Trilon® M liquid 40 wt.-% aqueous solution of the trisodium salt of methylglycine diacetic acid
  • Trilon® P liquid 40 wt.-% aqueous solution of anionic modified polyamine
  • Trilon® grades are available from BASF SE, Ludwigshafen, Germany.
  • Cublen® K 2012 20 wt.-% aqueous solution of the disodium salt of 1 -hydroxy ethylidene-1 ,1 - diphosphonic acid
  • Cublen® AP 1 50 wt.-% aqueous solution of amino-tris(methylene phosphonic acid)
  • Cublen® DNC 450 45 wt.-% aqueous solution of diethylenetriamine penta(methylene phosphonic acid)
  • Cublen® E 31 15 31 wt.-% aqueous solution of the pentasodium salt of ethylenediamine tetra(methylene phosphonic acid)
  • Cublen® F 3016 30 wt.-% aqueous solution of the hexasodium salt of
  • Cublen® R 60 60 wt.-% aqueous solution of hydroxyethylamino bis(methylene phosphonic acid)
  • Example 1 was repeated but citric acid was additionally added to the monomer solution after mixing with the internal crosslinker and sodium acrylate solution.
  • the feed to the spray dryer consisted of 10.06% by weight of acrylic acid, 32.16% by weight of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 0.25% by weight of citric acid, 1 .4% by weight of Bruggolite® FF7 solution (0.2% by weight in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water.
  • the degree of neutralization was 71 %.
  • the feed per bore was 1 .6 kg/h.
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • the resulting polymer particles had a bulk density of 76.5g/100ml, an average particle diameter of 432 ⁇ , a particle diameter distribution of 0.58, and a mean sphericity of 0.92.
  • Example 1 was repeated but phytic acid was additionally added to the monomer solution after mixing with the internal crosslinker and sodium acrylate solution.
  • the feed to the spray dryer consisted of 10.06% by weight of acrylic acid, 32.16% by weight of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 0.15% by weight of phytic acid, 1.4% by weight of Bruggolite® FF7 solution (0.2% by weight in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water.
  • the degree of neutralization was 71 %.
  • the feed per bore was 1 .6 kg/h.
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • the resulting polymer particles had a bulk density of 77.1 g/100ml, an average particle diameter of 423 ⁇ , a particle diameter distribution of 0.56, and a mean sphericity of 0.90.
  • Example 1 was repeated but 1 -hydroxy ethylidene-1 ,1 -diphosphonic acid was additionally added to the monomer solution after mixing with the internal crosslinker and sodium acrylate solution.
  • the feed to the spray dryer consisted of 10.06% by weight of acrylic acid, 32.16% by weight of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 0.09% by weight of 1 -hydroxy ethylidene-1 , 1 -diphosphonic acid, 1.4% by weight of Bruggolite® FF7 solution (0.2% by weight in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water.
  • the degree of neutralization was 71 %.
  • the feed per bore was 1.6 kg/h.
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • the resulting polymer particles had a bulk density of 77.0g/100ml, an average particle diameter of 428 ⁇ , a particle diameter distribution of 0.58, and a mean sphericity of 0.89.
  • Example 6 Postcrosslinking of the base polymer
  • Example 6 1 .3 kg of the water-absorbent polymer particles of example 1 were put into a laboratory ploughshare mixer with a heated jacket (model M 5, manufactured by Gebruder Lodige Maschinenbau GmbH, Paderborn, Germany).
  • a surface crosslinker solution consisting of 2.0 wt.-% of water based on polymer
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • the temperature of the product was then raised to 180°C by heating the jacket of the mixer.
  • the product was kept at this temperature for 30 minutes at a mixer speed of 80 rpm.
  • the product was discharged and sifted at 150 to 850 ⁇ .
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • Example 9 1 .3 kg of the water-absorbent polymer particles of example 1 were put into a laboratory ploughshare mixer with a heated jacket (model M 5, manufactured by Gebruder Lodige Maschinenbau GmbH, Paderborn, Germany).
  • a surface crosslinker solution consisting of
  • the polymer particles exhibit the following features, absorption profile, and initial color:
  • Example 1 1 1200 g of the water-absorbent polymer particles prepared in example 5 were put into a laboratory ploughshare mixer (model M 5; manufactured by Gebruder Lodige Maschinenbau GmbH; Paderborn; Germany). At a mixer speed of 250 rpm, 1.5 wt.-% of an aqueous solution of sodium hypophosphite (20 wt.-% of strength) based on polymer were sprayed onto the polymer particles within 4 minutes by means of a spray nozzle. The rotation speed of the mixer was reduced to 80 rpm and mixing was continued for additional 15 minutes. The product was removed from the mixer and sifted at 150 to 850 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a process for producing water-absorbent polymer particles, comprising a water-absorbent polymer and a chelating agent, by polymerizing droplets of a monomer solution in a surrounding heated gas phase.

Description

A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
Description
The present invention relates to a process for producing water-absorbent polymer particles, comprising a water-absorbent polymer and a chelating agent, by polymerizing droplets of a monomer solution in a surrounding heated gas phase. The preparation of water-absorbent polymer particles is described in the monograph "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, on pages 71 to 103.
Being products which absorb aqueous solutions, water-absorbent polymer particles are used to produce diapers, tampons, sanitary napkins and other hygiene articles, but also as water- retaining agents in market gardening. Water-absorbent polymer particles are also referred to as "superabsorbent polymers" or "superabsorbents".
The preparation of water-absorbent polymer particles by polymerizing droplets of a monomer solution is described, for example, in EP 0 348 180 A1 , WO 96/40427 A1 , US 5,269,980, DE 103 14 466 A1 , DE 103 40 253 A1 , DE 10 2004 024 437 A1 , DE 10 2005 002 412 A1 , DE 10 2006 001 596 A1 , WO 2008/009580 A1 , WO 2008/009598 A1 , WO 2008/009599 A1 , WO 2008/009612 A1 , WO 2008/040715 A2, WO 2008/052971 , and WO 2008/086976 A1 . Polymerization of monomer solution droplets in a gas phase surrounding the droplets ("dropletization polymerization") affords round water-absorbent polymer particles of high mean sphericity (mSPHT). The mean sphericity is a measure of the roundness of the polymer particles and can be determined, for example, with the Camsizer® image analysis system (Retsch Technology GmbH; Haan; Germany).
WO 2006/109882 A1 discloses a process for producing water-absorbent polymer particles having improved color stability.
It was an object of the present invention to provide water-absorbent polymer particles having improved properties, i.e. comprising water-absorbent polymer particles having improved color stability.
The object is achieved by water-absorbent polymer particles, obtainable by polymerizing droplets of a monomer solution in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the water-absorbent polymer particles comprise at least one chelating agent. Examples of chelating agents, as used in the present invention, include the following compounds: (1 ) Aminocarboxylic acids and their salts
Aminocarboxylic acids with two, three or more carboxyl groups are preferred. Specified examples thereof include iminodiacetic acid, hydroxyethyl iminodiacetic acid, nitriloacetic acid, nitrilotripropionic acid, ethylendiamine tetraacetic acid, diethylenetriamine pentaacetic acid, triethylenetetraamine hexaacetic acid, hexamethylenediamine tetraacetic acid, cyclohexane-1 ,2-diamine tetraacetic acid, N-hydroxyethyl ethylenediamine triacetic acid, bis(2-hydroxyethyl)glycine, diaminopropanol tetraacetic acid, ethylene glycol diethyl ether diamine tetraacetic acid, ethylenediamine tetrapropionic acid, bis(2- hydroxybenzyl)ethylenediamine diacetic acid, ethylenediamine disuccinic acid, L-glutamic diacetic acid, 3-hydroxy-2,2'-imino disuccinic acid, methylglycine diacetic acid, N-alkyl-N'- carboxymethyl aspartic acid, N-alkenyl-N'-carboxymethyl aspartic acid, and their alkaline metal salts, alkaline earth metal salts, ammonium salts, and amine salts. Another example is the sodium salt of N-carboxymethylated polyamines like Trilon® P (BASF SE; Ludwigshafen; Germany.
(2) Monoalkylcitramides, monoalkylencitramides, and their salts
Monoalkylcitramides, monoalkylencitramides, and their salts are, for example, obtained by dehydration condensation of alcohols with citric acid.
(3) Monoalkylmalonamides, monoalkylenmalonamides, and their salts
Monoalkylmalonamides, monoalkylenmalonamides, and their salts are, for example, obtained by adding a-olefins to methyl malonate and then hydrolyzing the resultant adducts.
(4) Monoalkylphosphoric esters, monoalkylenylphosphoric esters, and their salts
Examples of monoalkylphosphoric esters, monoalkylenylphosphoric esters, and their salts include laurylphosphoric acid and stearylphosphoric acid.
(5) N-Acylated glutamic acids, N-acylated aspartic acids, and their salts
(6) β-Diketone derivatives Examples of β-diketone derivatives include acetylacetone and benzoylacetone. (7) Tropolone derivatives
Examples of tropolone derivatives include tropolone, β-thujaplicin, and γ-thujaplicin. (8) Organic phosphoric acid compounds
The organic phosphoric acid compounds is, for example, 1 -hydroxyethylidene-1 ,1 - diphosphonic acid containing two phosphorous groups per molecule or 2-phosphonobutane- 1 ,2,4-tricarboxylic acid containing one phosphoric group and three carboxylic groups per molecule. Examples of organic polyvalent phosphorous compounds containing three or more phosphorous groups per molecule and amino polyvalent organic phosphorous compounds include ethylenediamine-N,N'-di(methylene phosphonic acid), ethylenediamine
tetra(methylene phosphonic acid), nitriloacetic di(methylene phosphonic acid),
nitrilodiacetic(methylene phosphonic acid), nitriloacetic-p-propionic methylene phosphonic acid, nitrilotris(methylene phosphonic acid), cyclohexanediamine tetra(methylene phosphonic acid), ethylenediamine-N,N'-diacetic-N,N'-di(methylene phosphonic acid),
tetramethylenediamine tetra(methylene phosphonic acid), hexamethylenediamine
tetra(methylene phosphonic acid), polymethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid), hydroxyethylamino bis(methylene phosphonic acid), bishexamethylenetriamine penta(methylene phosphonic acid), phytic acid, and salts of these substances.
(9) Hydroxycarboxylic acids and their salts Hydroxycarboxylic acid is carboxylic acid having a hydroxyl group in its molecule, and examples thereof include aliphatic hydroxyl acids such as lactic acid, glycolic acid, malic acid, glycerinic acid, tartaric acid, citric acid, isocitric acid, mevalonic acid, chinic acid, shikimic acid, β-hydroxypropionic acid, and salts thereof; and aromatic hydroxyl acids such as salicylic acid, creosote acid, vanillic acid, syringig acid, resolyc acid, pyrocatechuic acid, protocatechuic acid, genticic acid, orsellinic acid, mandelic acid, gallic acid, 2-hydroxy-2- sulfinato acetic acid, 2-hydroxy-2-sulfonato acetic acid, 2-hydroxy-2-phosphonato acetic acid, and salts thereof.
(10) Inorganic phosphorous compounds
Example of an inorganic phosphorous compound is sodium tripolyphosphate.
(1 1 ) Heterocyclic organic compounds Examples of such nitrogen containing cyclic structures are phenanthroline and its derivatives, 2,2'-bipyridine and terpyridine and their derivatives, and porphyrins. The amount of chelating agent is preferably from 0.05 to 2% by weight, more preferably from 0.1 to 1 .5% by weight, most preferably from 0.2 to 2% by weight, based in each case on the polymer. The chelating agent can be added to the monomer solution and/or to the formed polymer particles. It is also possible adding the chelating agent prior, during and/of after the postcrosslinking.
The present invention is based on the finding that the at least one chelating agent improves the color stability of the water-absorbent polymer particles.
DETAILED DESCRIPTION OF THE INVENTION The water-absorbent polymer particles are prepared by polymerizing droplets of a monomer solution comprising a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,
b) at least one crosslinker,
c) at least one initiator,
d) optionally one or more ethylenically unsaturated monomers copolymerizable with the monomers mentioned under a),
e) optionally one or more water-soluble polymers, and
f) water, in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the temperature of the gas leaving the polymerization chamber is from 90 to 150°C and the gas velocity inside the polymerization chamber is from 0.1 to 2.5 m/s.
The water-absorbent polymer particles are typically insoluble but swellable in water.
The monomers a) are preferably water-soluble, i.e. the solubility in water at 23°C is typically at least 1 g/100 g of water, preferably at least 5 g/100 g of water, more preferably at least 25 g/100 g of water, most preferably at least 35 g/100 g of water.
Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
Further suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids such as vinylsulfonic acid, styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), ethylenically unsaturated esters such as phosphate ester of polypropylene glycol monomethacrylate, phosphate ester of polypropylene glycol monoacrylate and amonium salt of poly(oxy-1 ,2-ethandiyl)-a-sulfo-co-[1 -(hydroxymethyl)-2-(2-propenyloxy)ethoxy]-Cio/Ci4 alkyl ester, and/or 1 -allyloxy-2-hydroxypropyl sulfonate.
Impurities may have a strong impact on the polymerization. Preference is given to especially purified monomers a). Useful purification methods are disclosed in WO 2002/055469 A1 , WO 2003/078378 A1 and WO 2004/035514 A1. A suitable monomer a) is according to WO 2004/035514 A1 purified acrylic acid having 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203 by weight of propionic acid, 0.0001 % by weight of furfurals, 0.0001 % by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.
The content of acrylic acid and/or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, more preferably at least 90 mol%, most preferably at least 95 mol%.
The acid groups of the monomers a) are typically partly neutralized, preferably to an extent of from 25 to 85 mol%, preferentially to an extent of from 50 to 80 mol%, more preferably from 60 to 75 mol%, for which the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates, and mixtures thereof. Instead of alkali metal salts, it is also possible to use ammonia or organic amines, for example, triethanolamine. It is also possible to use oxides, carbonates, hydrogencarbonates and hydroxides of magnesium, calcium, strontium, zinc or aluminum as powders, slurries or solutions and mixtures of any of the above neutralization agents. An example for a mixture is a solution of sodiumaluminate. Sodium and potassium are particularly preferred as alkali metals, but very particular preference is given to sodium hydroxide, sodium carbonate or sodium hydrogen carbonate, and mixtures thereof. Typically, the neutralization is achieved by mixing in the neutralizing agent as an aqueous solution, as a melt or preferably also as a solid. For example, sodium hydroxide with water content significantly below 50% by weight may be present as a waxy material having a melting point above 23°C. In this case, metered addition as piece material or melt at elevated temperature is possible. Optionally, it is possible to add to the monomer solution, or to starting materials thereof, one or more chelating agents for masking metal ions, for example iron, for the purpose of stabilization. Suitable chelating agents are, for example, alkali metal citrates, citric acid, alkali metal tatrates, alkali metal lactates and glycolates, pentasodium triphosphate,
ethylenediamine tetraacetate, nitrilotriacetic acid, and all chelating agents known under the Trilon® name, for example Trilon® C (pentasodium diethylenetriaminepentaacetate), Trilon® D (trisodium (hydroxyethyl)-ethylenediaminetriacetate), and Trilon® M (methylglycinediacetic acid). All Trilon® grades are available from BASF SE, Ludwigshafen, Germany. The monomers a) comprise typically polymerization inhibitors, preferably hydroquinone monoethers, as inhibitor for storage. The monomer solution comprises preferably up to 250 ppm by weight, more preferably not more than 130 ppm by weight, most preferably not more than 70 ppm by weight, preferably not less than 10 ppm by weight, more preferably not less than 30 ppm by weight and especially about 50 ppm by weight of hydroquinone monoether, based in each case on acrylic acid, with acrylic acid salts being counted as acrylic acid. For example, the monomer solution can be prepared using acrylic acid having appropriate hydroquinone monoether content. The hydroquinone monoethers may, however, also be removed from the monomer solution by absorption, for example on activated carbon.
Preferred hydroquinone monoethers are hydroquinone monomethyl ether (MEHQ) and/or alpha-tocopherol (vitamin E).
Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be polymerized by a free-radical mechanism into the polymer chain and functional groups which can form covalent bonds with the acid groups of monomer a). In addition, polyvalent metal ions which can form coordinate bond with at least two acid groups of monomer a) are also suitable crosslinkers b).
The crosslinkers b) are preferably compounds having at least two free-radically
polymerizable groups which can be polymerized by a free-radical mechanism into the polymer network. Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate,
trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1 , di- and triacrylates, as described in EP 0 547 847 A1 , EP 0 559 476 A1 , EP 0 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 ,
WO 2003/104300 A1 , WO 2003/104301 A1 and in DE 103 31 450 A1 , mixed acrylates which, as well as acrylate groups, comprise further ethylenically unsaturated groups, as described in DE 103 314 56 A1 and DE 103 55 401 A1 , or crosslinker mixtures, as described, for example, in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 and WO 2002/32962 A2.
Suitable crosslinkers b) are in particular pentaerythritol triallyl ether, tetraallyloxyethane, Ν,Ν'-methylenebisacrylamide, 15-tuply ethoxylated trimethylolpropane, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
Very particularly preferred crosslinkers b) are the polyethoxylated and/or -propoxylated glycerols which have been esterified with acrylic acid or methacrylic acid to give di- or triacrylates, as described, for example in WO 2003/104301 A1 . Di- and/or triacrylates of 3- to 10-tuply ethoxylated glycerol are particularly advantageous. Very particular preference is given to di- or triacrylates of 1 - to 5-tuply ethoxylated and/or propoxylated glycerol. Most preferred are the triacrylates of 3- to 5-tuply ethoxylated and/or propoxylated glycerol and especially the triacrylate of 3-tuply ethoxylated glycerol.
The amount of crosslinker b) is preferably from 0.001 to 1.0% by weight, more preferably from 0.005 to 0.5% by weight, most preferably from 0.01 to 0.2% by weight, based in each case on monomer a). On increasing the amount of crosslinker b) the centrifuge retention capacity (CRC) decreases and the absorption under a pressure of 21.0 g/cm2 (AUL) passes through a maximum.
The initiators c) used may be all compounds which disintegrate into free radicals under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and redox initiators. Preference is given to the use of water- soluble initiators. In some cases, it is advantageous to use mixtures of various initiators, for example mixtures of hydrogen peroxide and sodium or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any proportion. Particularly preferred initiators c) are azo initiators such as 2,2'-azobis[2-(2-imidazolin-2- yl)propane] dihydrochloride, 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] hydrate, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide], 2,2'-azobis(1 -imino-1 -pyrrolidino-2- ethylpropane) dihydrochloride, 4,4'-azobis(4-cyanvaleric acid) and 2,2'-azobis[2-(5-methyl-2- imidazolin-2-yl)propane] dihydrochloride, and photoinitiators such as 2-hydroxy-2- methylpropiophenone and 1 -[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1 -propan-1 - one, redox initiators such as sodium persulfate/hydroxymethylsulfinic acid, ammonium peroxodisulfate/hydroxymethylsulfinic acid, hydrogen peroxide/hydroxymethylsulfinic acid, sodium persulfate/ascorbic acid, ammonium peroxodisulfate/ascorbic acid and hydrogen peroxide/ascorbic acid, photoinitiators such as 1 -[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2- methyl-1 -propan-1 -one, and mixtures thereof. The reducing component used is, however, preferably the disodium salt of 2-hydroxy-2-sulfinatoacetic acid or a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2- sulfonatoacetic acid and sodium bisulfite. Such mixtures are obtainable as Bruggolite® FF6 and Bruggolite® FF7 (Bruggemann Chemicals; Heilbronn; Germany).
The initiators are used in customary amounts, for example in amounts of from 0.001 to 5% by weight, preferably from 0.01 to 2% by weight, based on the monomers a).
Examples of ethylenically unsaturated monomers d) which are copolymerizable with the monomers a) are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate,
dimethylaminopropyl acrylate, and diethylaminopropyl methacrylate. Useful water-soluble polymers e) include polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, polyesters and polyamides, polylactic acid, polyvinylamine, preferably starch, starch derivatives and modified cellulose.
For optimal action, the preferred polymerization inhibitors require dissolved oxygen.
Therefore, the monomer solution can be freed of dissolved oxygen before the polymerization by inertization, i.e. flowing through with an inert gas, preferably nitrogen. It is also possible to reduce the concentration of dissolved oxygen by adding a reducing agent. The oxygen content of the monomer solution is preferably lowered before the polymerization to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight.
The water content of the monomer solution is preferably less than 65% by weight, preferentially less than 62% by weight, more preferably less than 60% by weight, most preferably less than 58% by weight.
The monomer solution has, at 20°C, a dynamic viscosity of preferably from 0.002 to 0.02 Pa s, more preferably from 0.004 to 0.015 Pa s, most preferably from 0.005 to 0.01 Pa s. The mean droplet diameter in the droplet generation rises with rising dynamic viscosity.
The monomer solution has, at 20°C, a density of preferably from 1 to 1 .3 g/cm3, more preferably from 1 .05 to 1 .25 g/cm3, most preferably from 1.1 to 1 .2 g/cm3. The monomer solution has, at 20°C, a surface tension of from 0.02 to 0.06 N/m, more preferably from 0.03 to 0.05 N/m, most preferably from 0.035 to 0.045 N/m. The mean droplet diameter in the droplet generation rises with rising surface tension.
Polymerization
The monomer solution is metered into the gas phase to form droplets, i.e. using a system described in WO 2008/069639 A1 and WO 2008/086976 A1. The droplets are generated by means of a droplet plate. A droplet plate is a plate having a multitude of bores, the liquid entering the bores from the top. The droplet plate or the liquid can be oscillated, which generates a chain of ideally monodisperse droplets at each bore on the underside of the droplet plate. In a preferred embodiment, the droplet plate is not agitated. The number and size of the bores are selected according to the desired capacity and droplet size. The droplet diameter is typically 1.9 times the diameter of the bore. What is important here is that the liquid to be dropletized does not pass through the bore too rapidly and the pressure drop over the bore is not too great. Otherwise, the liquid is not dropletized, but rather the liquid jet is broken up (sprayed) owing to the high kinetic energy. The Reynolds number based on the throughput per bore and the bore diameter is preferably less than 2000, preferentially less than 1600, more preferably less than 1400 and most preferably less than 1200.
The underside of the droplet plate has at least in part a contact angle preferably of at least 60°, more preferably at least 75° and most preferably at least 90° with regard to water. The contact angle is a measure of the wetting behavior of a liquid, in particular water, with regard to a surface, and can be determined using conventional methods, for example in accordance with ASTM D 5725. A low contact angle denotes good wetting, and a high contact angle denotes poor wetting. It is also possible for the droplet plate to consist of a material having a lower contact angle with regard to water, for example a steel having the German construction material code number of 1 .4571 , and be coated with a material having a larger contact angle with regard to water. Useful coatings include for example fluorous polymers, such as perfluoroalkoxyethylene, polytetrafluoroethylene, ethylene-chlorotrifluoroethylene copolymers, ethylene- tetrafluoroethylene copolymers and fluorinated polyethylene.
The coatings can be applied to the substrate as a dispersion, in which case the solvent is subsequently evaporated off and the coating is heat treated. For polytetrafluoroethylene this is described for example in US-3,243,321 .
Further coating processes are to found under the headword "Thin Films" in the electronic version of "Ullmann's Encyclopedia of Industrial Chemistry" (Updated Sixth Edition, 2000 Electronic Release).
The coatings can further be incorporated in a nickel layer in the course of a chemical nickelization. It is the poor wettability of the droplet plate that leads to the production of monodisperse droplets of narrow droplet size distribution.
The droplet plate has preferably at least 5, more preferably at least 25, most preferably at least 50 and preferably up to 750, more preferably up to 500 bores, most preferably up to 250. The diameter of the bores is adjusted to the desired droplet size. The separation of the bores is usually from 5 to 40 mm, preferably from 8 to 30 mm, more preferably from 9 to 25 mm, most preferably from 10 to 20 mm. Smaller separations of the bores cause agglomeration of the polymerizing droplets. The diameter of the bores is preferably from 50 to 500 μηη, more preferably from 100 to 300 μηη, most preferably from 150 to 250 μηη.
The temperature of the monomer solution as it passes through the bore is preferably from 0 to 50°C, more preferably from 3 to 40°C, most preferably from 5 to 30°C.
A gas flows through the reaction chamber. The carrier gas is conducted through the reaction chamber in cocurrent to the free-falling droplets of the monomer solution, i.e. from the top downward. After one pass, the gas is preferably recycled at least partly, preferably to an extent of at least 50%, more preferably to an extent of at least 75%, into the reaction chamber as cycle gas. Typically, a portion of the carrier gas is discharged after each pass, preferably up to 10%, more preferably up to 3% and most preferably up to 1 %.
The oxygen content of the carrier gas is preferably from 0.2 to 15% by volume, more preferably from 0.5 to 10% by volume, most preferably from 1 to 5% by weight.
As well as oxygen, the carrier gas preferably comprises nitrogen. The nitrogen content of the gas is preferably at least 80% by volume, more preferably at least 90% by volume, most preferably at least 95% by volume. Other possible carrier gases may be selected from carbondioxide, argon, xenon, krypton, neon, helium. Any mixture of carrier gases may be used. The carrier gas may also become loaded with water and/or acrylic acid vapors.
The gas velocity is preferably adjusted such that the flow in the reaction chamber is directed, for example no convection currents opposed to the general flow direction are present, and is from 0.1 to 2.5 m/s, preferably from 0.3 to 1 .5 m/s, more preferably from 0.5 to 1.2 m/s, even more preferably from 0.6 to 1.0 m/s, most preferably from 0.7 to 0.9 m/s.
The gas entrance temperature is controlled in such a way that the gas exit temperature, i.e. the temperature with which the gas leaves the reaction chamber, is from 90 to 150°C or less, preferably from 100 to 140°C, more preferably from 105 to 135°C, even more preferably from 1 10 to 130°C, most preferably from 1 15 to 125°C.
The water-absorbent polymer particles can be divided into three categories: water-absorbent polymer particles of Type 1 are particles with one cavity, water-absorbent polymer particles of Type 2 are particles with more than one cavity, and water-absorbent polymer particles of Type 3 are solid particles with no visible cavity. The morphology of the water-absorbent polymer particles can be controlled by the reaction conditions during polymerization. Water-absorbent polymer particles having a high amount of particles with one cavity (Type 1 ) can be prepared by using low gas velocities and high gas exit temperatures. Water-absorbent polymer particles having a high amount of particles with more than one cavity (Type 2) can be prepared by using high gas velocities and low gas exit temperatures.
Water-absorbent polymer particles having more than one cavity (Type 2) or no cavity (type 3) show an improved mechanical stability.
The reaction can be carried out under elevated pressure or under reduced pressure;
preference is given to a reduced pressure of up to 100 mbar relative to ambient pressure.
The reaction off-gas, i.e. the gas leaving the reaction chamber, may, for example, be cooled in a heat exchanger. This condenses water and unconverted monomer a). The reaction off- gas can then be reheated at least partly and recycled into the reaction chamber as cycle gas. A portion of the reaction off-gas can be discharged and replaced by fresh gas, in which case water and unconverted monomers a) present in the reaction off-gas can be removed and recycled.
Particular preference is given to a thermally integrated system, i.e. a portion of the waste heat in the cooling of the off-gas is used to heat the cycle gas.
The reactors can be trace-heated. In this case, the trace heating is adjusted such that the wall temperature is at least 5°C above the internal reactor temperature and condensation on the reactor walls is reliably prevented.
Thermal posttreatment The residual monomers in the water-absorbent polymer particles obtained by dropletization polymerization can be removed by a thermal posttreatment in the presence of a gas stream. The residual monomers can be removed better at relatively high temperatures and relatively long residence times. What is important here is that the water-absorbent polymer particles are not too dry. In the case of excessively dry particles, the residual monomers decrease only insignificantly. Too high a water content increases the caking tendency of the water- absorbent polymer particles. In order that the water-absorbent polymer particles do not dry too rapidly during the thermal posttreatment, the gas flowing in shall already comprise steam.
The thermal posttreatment can be done in an internal and/or an external fluidized bed. An internal fluidized bed means that the product of the dropletization polymerization is accumulated in a fluidized bed at the bottom of the reaction chamber. In the fluidized state, the kinetic energy of the polymer particles is greater than the cohesion or adhesion potential between the polymer particles.
The fluidized state can be achieved by a fluidized bed. In this bed, there is upward flow toward the water-absorbing polymer particles, so that the particles form a fluidized bed. The height of the fluidized bed is adjusted by gas rate and gas velocity, i.e. via the pressure drop of the fluidized bed (kinetic energy of the gas).
The velocity of the gas stream in the fluidized bed is preferably from 0.5 to 2.5 m/s, more preferably from 0.6 to 1 .5 m/s, most preferably from 0.7 to 1 .0 m/s.
In a more preferred embodiment of the present invention the thermal posttreatment is done in an external mixer with moving mixing tools, preferably horizontal mixers, such as screw mixers, disk mixers, screw belt mixers and paddle mixers. Suitable mixers are, for example, Becker shovel mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Nara paddle mixers (NARA Machinery Europe; Frechen; Germany), Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta
Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated; Cincinnati; U.S.A.) and Ruberg continuous flow mixers (Gebruder Ruberg GmbH & Co KG, Nieheim, Germany). Ruberg continuous flow mixers, Becker shovel mixers and Pflugschar® plowshare mixers are preferred.
The moisture content of the water-absorbent polymer particles during the thermal posttreatment is preferably from 3 to 50% by weight, more preferably from 6 to 30% by weight, most preferably from 8 to 20% by weight.
The temperature of the water-absorbent polymer particles during the thermal posttreatment is preferably from 70 to 140°C, more preferably from 80 to 135°C, very particularly from 90 to 130°C.
The average residence time in the mixer used for the thermal posttreatment is preferably from 10 to 120 minutes, more preferably from 15 to 90 minutes, most preferably from 20 to 60 minutes. The steam content of the gas is preferably from 0.01 to 1 kg per kg of dry gas, more preferably from 0.05 to 0.5 kg per kg of dry gas, most preferably from 0.1 to 0.25 kg per kg of dry gas.
The thermal posttreatment can be done in a discontinuous external mixer or a continuous external mixer. The amount of gas to be used in the discontinuous external mixer is preferably from 0.01 to 5 Nm3/h, more preferably from 0.05 to 2 Nm3/h, most preferably from 0.1 to 0.5 Nm3/h, based in each case on kg water-absorbent polymer particles. The amount of gas to be used in the continuous external mixer is preferably from 0.01 to 5 Nm3/h, more preferably from 0.05 to 2 Nm3/h, most preferably from 0.1 to 0.5 Nm3/h, based in each case on kg/h throughput of water-absorbent polymer particles.
The other constituents of the gas are preferably nitrogen, carbondioxide, argon, xenon, krypton, neon, helium, air or air/nitrogen mixtures, more preferably nitrogen or air/nitrogen mixtures comprising less than 10% by volume of oxygen. Oxygen may cause discoloration.
Postcrosslinking The polymer particles can be postcrosslinked for further improvement of the properties.
Postcrosslinkers are compounds which comprise groups which can form at least two covalent bonds with the carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols as described in DE 33 14 019 A1 , DE 35 23 617 A1 and
EP 0 450 922 A2, or β-hydroxyalkylamides, as described in DE 102 04 938 A1 and
US 6,239,230. Polyvinylamine, polyamidoamines and polyvinylalcohole are examples of multifunctional polymeric postcrosslinkers.
In addition, DE 40 20 780 C1 describes cyclic carbonates, DE 198 07 502 A1 describes 2-oxazolidone and its derivatives such as 2-hydroxyethyl-2-oxazolidone, DE 198 07 992 C1 describes bis- and poly-2-oxazolidinones, DE 198 54 573 A1 describes 2-oxotetrahydro-1 ,3- oxazine and its derivatives, DE 198 54 574 A1 describes N-acyl-2-oxazolidones, DE
102 04 937 A1 describes cyclic ureas, DE 103 34 584 A1 describes bicyclic amide acetals, EP 1 199 327 A2 describes oxetanes and cyclic ureas, and WO 2003/31482 A1 describes morpholine-2,3-dione and its derivatives, as suitable postcrosslinkers.
Particularly preferred postcrosslinkers are ethylene carbonate, mixtures of propylene glycol, 1 ,3-propandiole, 1 ,4-butanediol, mixtures of 1 ,3-propandiole and 1 ,4-butanediole, ethylene glycol diglycidyl ether and reaction products of polyamides and epichlorohydrin.
Very particularly preferred postcrosslinkers are 2-hydroxyethyl-2-oxazolidone, 2-oxazolidone, propylene glycol and 1 ,3-propanediol. In addition, it is also possible to use postcrosslinkers which comprise additional polymerizable ethylenically unsaturated groups, as described in DE 37 13 601 A1.
The amount of postcrosslinker is preferably from 0.01 to 5% by weight, more preferably from 0.02 to 3% by weight, most preferably from 0.2 to 2% by weight, based in each case on the polymer.
In a preferred embodiment of the present invention, polyvalent cations are applied to the particle surface in addition to the postcrosslinkers before, during or after the postcrosslinking.
The polyvalent cations usable in the process according to the invention are, for example, divalent cations such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations such as the cations of titanium and zirconium, and also mixtures thereof. Possible counterions are chloride, bromide, sulfate, hydrogensulfate, carbonate,
hydrogencarbonate, nitrate, hydroxide, phosphate, hydrogenphosphate,
dihydrogenphosphate and carboxylate, such as acetate, glycolate, tartrate, formiate, propionate and lactate, and also mixtures thereof. Aluminum sulfate, aluminum dihydroxy monoacetate, and aluminum lactate are preferred. Apart from metal salts, it is also possible to use polyamines and/or polymeric amines as polyvalent cations. A single metal salt can be used as well as any mixture of the metal salts and/or the polyamines above.
The amount of polyvalent cation used is, for example, from 0.001 to 1 .5% by weight, preferably from 0.005 to 1 % by weight, more preferably from 0.02 to 0.8% by weight, based in each case on the polymer.
The postcrosslinking is typically performed in such a way that a solution of the
postcrosslinker is sprayed onto the hydrogel or the dry polymer particles. After the spraying, the polymer particles coated with the postcrosslinker are dried thermally and cooled, and the postcrosslinking reaction can take place either before or during the drying.
The spraying of a solution of the postcrosslinker is preferably performed in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers. Suitable mixers are, for example, horizontal Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated;
Cincinnati; U.S.A.), Schugi® Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands) and Ruberg continuous flow mixers (Gebruder Ruberg GmbH & Co KG, Nieheim, Germany). Ruberg continuous flow mixers and horizontal Pflugschar® plowshare mixers are preferred. The postcrosslinker solution can also be sprayed into a fluidized bed. If an external mixer or an external fluidized bed is used for thermal posttreatment, the solution of the postcrosslinker can also be sprayed into the external mixer or the external fluidized bed. The postcrosslinkers are typically used as an aqueous solution. The addition of nonaqueous solvent can be used to adjust the penetration depth of the postcrosslinker into the polymer particles.
The thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, most preferably disk dryers. Suitable driers are, for example, Hosokawa Bepex® horizontal paddle driers (Hosokawa Micron GmbH; Leingarten; Germany), Hosokawa Bepex® disk driers (Hosokawa Micron GmbH; Leingarten; Germany), Holo-Flite® dryers (Metso Minerals Industries Inc.; Danville; U.S.A.) and Nara paddle driers (NARA Machinery Europe; Frechen; Germany). Nara paddle driers and, in the case of using polyfunctional epoxides, Holo-Flite® dryers are preferred. Moreover, it is also possible to use fluidized bed dryers.
The drying can be effected in the mixer itself, by heating the jacket or blowing in warm air. Equally suitable is a downstream dryer, for example a shelf dryer, a rotary tube oven or a heatable screw. It is particularly advantageous to mix and dry in a fluidized bed dryer.
Preferred drying temperatures are in the range from 50 to 220°C, preferably from 100 to 180°C, more preferably from 120 to 160°C, most preferably from 130 to 150°C. The preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and typically at most 60 minutes.
It is preferable to cool the polymer particles after thermal drying. The cooling is preferably carried out in contact coolers, more preferably paddle coolers, most preferably disk coolers. Suitable coolers are, for example, Hosokawa Bepex® horizontal paddle coolers (Hosokawa Micron GmbH; Leingarten; Germany), Hosokawa Bepex® disk coolers (Hosokawa Micron GmbH; Leingarten; Germany), Holo-Flite® coolers (Metso Minerals Industries Inc.; Danville; U.S.A.) and Nara paddle coolers (NARA Machinery Europe; Frechen; Germany). Moreover, it is also possible to use fluidized bed coolers. In the cooler the polymer particles are cooled to temperatures of in the range from 20 to
150°C, preferably from 40 to 120°C, more preferably from 60 to 100°C, most preferably from 70 to 90°C. Cooling using warm water is preferred, especially when contact coolers are used.
Coating
To improve the properties, the water-absorbent polymer particles can be coated and/or optionally moistened. The internal fluidized bed, the external fluidized bed and/or the external mixer used for the thermal posttreatment and/or a separate coater (mixer) can be used for coating of the water-absorbent polymer particles. Further, the cooler and/or a separate coater (mixer) can be used for coating/moistening of the postcrosslinked water-absorbent polymer particles. Suitable coatings for controlling the acquisition behavior and improving the permeability (SFC or GBP) are, for example, inorganic inert substances, such as water- insoluble metal salts, organic polymers, cationic polymers and polyvalent metal cations. Suitable coatings for improving the color stability (color stability enhancing agents) are, for example reducing agents and anti-oxidants. Suitable coatings for dust binding are, for example, polyols. Suitable coatings against the undesired caking tendency of the polymer particles are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20. Preferred coatings are aluminium dihydroxy monoacetate, aluminium sulfate, aluminium lactate, Bruggolite® FF7 and Span® 20.
Suitable inorganic inert substances are silicates such as montmorillonite, kaolinite and talc, zeolites, activated carbons, polysilicic acids, magnesium carbonate, calcium carbonate, calcium phosphate, barium sulfate, aluminum oxide, titanium dioxide and iron(ll) oxide. Preference is given to using polysilicic acids, which are divided between precipitated silicas and fumed silicas according to their mode of preparation. The two variants are commercially available under the names Silica FK, Sipernat®, Wessalon® (precipitated silicas) and Aerosil® (fumed silicas) respectively. The inorganic inert substances may be used as dispersion in an aqueous or water-miscible dispersant or in substance.
When the water-absorbent polymer particles are coated with inorganic inert substances, the amount of inorganic inert substances used, based on the water-absorbent polymer particles, is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 1 .5% by weight, most preferably from 0.3 to 1 % by weight.
Suitable organic polymers are polyalkyl methacrylates or thermoplastics such as polyvinyl chloride, waxes based on polyethylene, polypropylene, polyamides or polytetrafluoro- ethylene. Other examples are styrene-isoprene-styrene block-copolymers or styrene- butadiene-styrene block-copolymers.
Suitable cationic polymers are polyalkylenepolyamines, cationic derivatives of
polyacrylamides, polyethyleneimines and polyquaternary amines.
Polyquaternary amines are, for example, condensation products of hexamethylenediamine, dimethylamine and epichlorohydrin, condensation products of dimethylamine and
epichlorohydrin, copolymers of hydroxyethylcellulose and diallyldimethylammonium chloride, copolymers of acrylamide and a-methacryloyloxyethyltrimethylammonium chloride, condensation products of hydroxyethylcellulose, epichlorohydrin and trimethylamine, homopolymers of diallyldimethylammonium chloride and addition products of epichlorohydrin to amidoamines. In addition, polyquaternary amines can be obtained by reacting dimethyl sulfate with polymers such as polyethyleneimines, copolymers of vinylpyrrolidone and dimethylaminoethyl methacrylate or copolymers of ethyl methacrylate and diethylaminoethyl methacrylate. The polyquaternary amines are available within a wide molecular weight range.
However, it is also possible to generate the cationic polymers on the particle surface, either through reagents which can form a network with themselves, such as addition products of epichlorohydrin to polyamidoamines, or through the application of cationic polymers which can react with an added crosslinker, such as polyamines or polyimines in combination with polyepoxides, polyfunctional esters, polyfunctional acids or polyfunctional (meth)acrylates.
It is possible to use all polyfunctional amines having primary or secondary amino groups, such as polyethyleneimine, polyallylamine and polylysine. The liquid sprayed by the process according to the invention preferably comprises at least one polyamine, for example polyvinylamine or a partially hydrolyzed polyvinylformamide.
The cationic polymers may be used as a solution in an aqueous or water-miscible solvent, as dispersion in an aqueous or water-miscible dispersant or in substance. When the water-absorbent polymer particles are coated with a cationic polymer, the use amount of cationic polymer based on the water-absorbent polymer particles is usually not less than 0.001 % by weight, typically not less than 0.01 % by weight, preferably from 0.1 to 15% by weight, more preferably from 0.5 to 10% by weight, most preferably from 1 to 5% by weight.
Suitable polyvalent metal cations are Mg2+, Ca2+, Al3+, Sc3+, Ti4+, Mn2+, Fe2+/3+, Co2+, Ni2+, Cu+/2+, Zn2+, Y3+, Zi-4+, Ag+, La3+, Ce4+, Hf4+ and Au+/3+; preferred metal cations are Mg2+, Ca2+, Al3+, Ti4+, Zr4* and La3+; particularly preferred metal cations are Al3+, Ti4+ and Zr4*. The metal cations may be used either alone or in a mixture with one another. Suitable metal salts of the metal cations mentioned are all of those which have a sufficient solubility in the solvent to be used. Particularly suitable metal salts have weakly complexing anions, such as chloride, hydroxide, carbonate, nitrate and sulfate. The metal salts are preferably used as a solution or as a stable aqueous colloidal dispersion. The solvents used for the metal salts may be water, alcohols, dimethylformamide, dimethyl sulfoxide and mixtures thereof. Particular preference is given to water and water/alcohol mixtures, such as water/methanol, water/isopropanol, water/1 ,3-propanediole, water/1 ,2-propandiole/1 ,4-butanediole or water/propylene glycol.
When the water-absorbent polymer particles are coated with a polyvalent metal cation, the amount of polyvalent metal cation used, based on the water-absorbent polymer particles, is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 1 .5% by weight, most preferably from 0.3 to 1 % by weight. Suitable reducing agents are, for example, sodium sulfite, sodium hydrogensulfite (sodium bisulfite), sodium dithionite, sulfinic acids and salts thereof, ascorbic acid, sodium
hypophosphite, sodium phosphite, and phosphinic acids and salts thereof. Preference is given, however, to salts of hypophosphorous acid, for example sodium hypophosphite, salts of sulfinic acids, for example the disodium salt of 2-hydroxy-2-sulfinatoacetic acid, and addition products of aldehydes, for example the disodium salt of 2-hydroxy-2-sulfonatoacetic acid. The reducing agent used can be, however, a mixture of the sodium salt of 2-hydroxy-2- sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite. Such mixtures are obtainable as Bruggolite® FF6 and Bruggolite® FF7
(Bruggemann Chemicals; Heilbronn; Germany).
Suitable anti-oxidants are, for example, sterically hindered monohydric and/or polyhydric phenols such as 3,5-di-tert-butyl-4-hydroxytoluene, 2-tert-butylphenol, 2-tert-butyl-4- methylphenol, 2,5-di-tert-butylhydroquinone, 4,6-di-tert-butylresorcinol, 3,6-di-tert- butylpyrocatechol, 2-tert-butylresorcinol, and calcium bis[monoethyl(3,5-di-tert.-butyl-4- hydroxybenzyl] phosphonate.
The reducing agents and anti-oxidants are typically used in the form of a solution in a suitable solvent, preferably water. The reducing agent may be used as a pure substance or any mixture of the above reducing agents may be used.
When the water-absorbent polymer particles are coated with a reducing agent, the amount of reducing agent used, based on the water-absorbent polymer particles, is preferably from 0.01 to 5% by weight, more preferably from 0.05 to 2% by weight, most preferably from 0.1 to 1 % by weight.
Suitable polyols are polyethylene glycols having a molecular weight of from 400 to
20000 g/mol, polyglycerol, 3- to 100-tuply ethoxylated polyols, such as trimethylolpropane, glycerol, sorbitol and neopentyl glycol. Particularly suitable polyols are 7- to 20-tuply ethoxylated glycerol or trimethylolpropane, for example Polyol TP 70® (Perstorp AB,
Perstorp, Sweden). The latter have the advantage in particular that they lower the surface tension of an aqueous extract of the water-absorbent polymer particles only insignificantly. The polyols are preferably used as a solution in aqueous or water-miscible solvents. When the water-absorbent polymer particles are coated with a polyol, the use amount of polyol, based on the water-absorbent polymer particles, is preferably from 0.005 to 2% by weight, more preferably from 0.01 to 1 % by weight, most preferably from 0.05 to 0.5% by weight. The coating is preferably performed in mixers with moving mixing tools, such as screw mixers, disk mixers, paddle mixers and drum coater. Suitable mixers are, for example, horizontal Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated; Cincinnati; U.S.A.) and Ruberg continuous flow mixers (Gebruder Ruberg GmbH & Co KG, Nieheim, Germany). Moreover, it is also possible to use a fluidized bed for mixing.
Agglomeration
The water-absorbent polymer particles can further selectivily be agglomerated. The agglomeration can take place after the polymerization, the thermal postreatment, the postcrosslinking or the coating.
Useful agglomeration assistants include water and water-miscible organic solvents, such as alcohols, tetrahydrofuran and acetone; water-soluble polymers can be used in addition. For agglomeration a solution comprising the agglomeration assistant is sprayed onto the water-absorbing polymeric particles. The spraying with the solution can, for example, be carried out in mixers having moving mixing implements, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and shovel mixers. Useful mixers include for example Lodige® mixers, Bepex® mixers, Nauta® mixers, Processall® mixers and Schugi® mixers. Vertical mixers are preferred. Fluidized bed apparatuses are particularly preferred.
Combination of thermal posttreatment, postcrosslinking and optionally coating
The steps of thermal posttreatment and postcrosslinking can be combined in one process step. Such combination allows the use of very reactive postcrosslinkers without having any risk of any residual postcrosslinker in the finished product. It also allows the use of low cost equipment and moreover the process can be run at low a temperature which is cost-efficient and avoids discoloration and loss of performance properties of the finished product by thermal degradation.
Postcrosslinkers in this particular preferred embodiment are selected from epoxides, aziridines, polyfuntional epoxides, and polyfunctional aziridines. Examples are ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether. Such compounds are available for example under the trade name Denacol® (Nagase ChemteX Corporation, Osaka, Japan). These compounds react with the carboxylate groups of the water-absorbent polymers to form crosslinks already at product temperatures of less than 160°C. The mixer may be selected from any of the equipment options cited in the thermal posttreatment section. Ruberg continuous flow mixers, Becker shovel mixers and
Pflugschar® plowshare mixers are preferred. In this particular preferred embodiment the postcrosslinking solution is sprayed onto the water-absorbent polymer particles under agitation. The temperature of the water-absorbent polymer particles inside the mixer is at least 60°C, preferably at least 80°C, more preferably at least 90°C, most preferably at least 100°C, and preferably not more than 160°C, more preferably not more than 140°C, most preferably not more than 1 15°C. Thermal
posttreatment and postcrosslinking are performed in the presence of a gas stream having a moisture content cited in the thermal posttreatment section. Following the thermal posttreatment/postcrosslinking the water-absorbent polymer particles are dried to the desired moisture level and for this step any dryer cited in the postcrosslinking section may be selected. However, as only drying needs to be accomplished in this particular preferred embodiment it is possible to use simple and low cost heated contact dryers like a heated screw dryer, for example a Holo-Flite® dryer (Metso Minerals Industries Inc.;
Danville; U.S.A.). Alternatively a fluidized bed may be used. In cases where the product needs to be dried with a predetermined and narrow residence time it is possible to use torus disc dryers or paddle dryers, for example a Nara paddle dryer (NARA Machinery Europe; Frechen; Germany), but designed for and operated with low pressure steam or heating liquid as the product temperature during drying does not need to exceed 160°C, preferably does not need to exceed 150°C, more preferably does not need to exceed 140°C, most preferably from 90 to 135°C.
In a preferred embodiment of the present invention, polyvalent cations cited in the
postcrosslinking section are applied to the particle surface before, during or after addition of the postcrosslinker by using different addition points along the axis of a horizontal mixer.
In a very particular preferred embodiment of the present invention the steps of thermal post- treatment, postcrosslinking, and coating are combined in one process step. Suitable coatings are cationic polymers, surfactants, and inorganic inert substances that are cited in the coating section. The coating agent can be applied to the particle surface before, during or after addition of the postcrosslinker also by using different addition points along the axis of a horizontal mixer.
The polyvalent cations and/or the cationic polymers can act as additional scavengers for residual postcrosslinkers. In a preferred embodiment of the present invention the
postcrosslinkers are added prior to the polyvalent cations and/or the cationic polymers to allow the postcrosslinker to react first.
The surfactants and/or the inorganic inert substances can be used to avoid sticking or caking during this process step under humid atmospheric conditions. A preferred surfactant is
Span® 20. Preferred inorganic inert substances are precipitated silicas and fumed silcas in form of powder or dispersion. The amount of total liquid used for preparing the solutions/dispersions is typically from 0.01 % to 25% by weight, preferably from 0.5% to 12% by weight, more preferably from 2% to 7% by weight, most preferably from 3% to 6% by weight, in respect to the weight amount of water- absorbent polymer particles to be processed.
Preferred embodiments are depicted in figures 1 to 8. Fig. 1 : Process scheme (with external fluidized bed)
Fig. 2: Process scheme (without external fluidized bed)
Fig. 3: Arrangement of the T_outlet measurement
Fig. 4: Arrangement of the dropletizer units
Fig. 5: Dropletizer unit (longitudinal cut)
Fig. 6: Dropletizer unit (cross sectional view)
Fig. 7: Process scheme (external thermal posttreatment and postcrosslinking)
Fig. 8: Process scheme (external thermal posttreatment, postcrosslinking and coating)
The reference numerals have the following meanings:
1 Drying gas inlet pipe
2 Drying gas amount measurement
3 Gas distributor
4 Dropletizer units
5 Cocurrent spray dryer, cylindrical part
6 Cone
7 T_outlet measurement
8 Tower offgas pipe
9 Baghouse filter
10 Ventilator
1 1 Quench nozzles
12 Condenser column, counter current cooling
13 Heat exchanger
14 Pump
15 Pump
16 Water outlet
17 Ventilator
18 Offgas outlet
19 Nitrogen inlet
20 Heat exchanger
21 Ventilator
22 Heat exchanger Steam injection via nozzles
Water loading measurement
Conditioned internal fluidized bed gas
Internal fluidized bed product temperature measurement
Internal fluidized bed
Product discharge into external fluidized bed, rotary valve
External fluidized bed
Ventilator
External fluidized bed offgas outlet to baghouse filter
Rotary valve
Sieve
End product
Filtered air inlet
Ventilator
Heat exchanger
Steam injection via nozzles
Water loading measurement
Conditioned external fluidized bed gas
Static mixer
Static mixer
Initiator feed
Initiator feed
Monomer feed
Fine particle fraction outlet to rework T_outlet measurement (average temperature out of 3 measurements around tower circumference) Dropletizer unit Monomer premixed with initiator feed
Spray dryer tower wall
Dropletizer unit outer pipe
Dropletizer unit inner pipe
Dropletizer cassette
Teflon block
Valve Monomer premixed with initiator feed inlet pipe connector
Droplet plate
Counter plate
Flow channels for temperature control water 60 Dead volume free flow channel for monomer solution
61 Dropletizer cassette stainless steel block
62 External thermal posttreatment
63 Optional coating feed
64 Postcrosslinker feed
65 Thermal dryer (postcrosslinking)
66 Cooler
67 Optional coating/water feed
68 Coater
69 Coating/water feed
The drying gas is feed via a gas distributor (3) at the top of the spray dryer as shown in Fig. 1 . The drying gas is partly recycled (drying gas loop) via a baghouse filter (9) and a condenser column (12). The pressure inside the spray dryer is below ambient pressure.
The spray dryer outlet temperature is preferably measured at three points around the circumference at the end of the cylindrical part as shown in Fig. 3. The single measurements (47) are used to calculate the average cylindrical spray dryer outlet temperature.
The product accumulated in the internal fluidized bed (27). Conditioned internal fluidized bed gas is fed to the internal fluidized bed (27) via line (25). The relative humidity of the internal fluidized bed gas is preferably controlled by adding steam via line (23). The spray dryer offgas is filtered in baghouse filter (9) and sent to a condenser column (12) for quenching/cooling. After the baghouse filter (9) a recuperation heat exchanger system for preheating the gas after the condenser column (12) can be used. Excess water is pumped out of the condenser column (12) by controlling the (constant) filling level inside the condenser column (12). The water inside the condenser column (12) is cooled by a heat exchanger (13) and pumped counter-current to the gas via quench nozzles (1 1 ) so that the temperature inside the condenser column (12) is preferably from 20 to 100°C, more preferably from 30 to 80°C, most preferably from 40 to 75°C. The water inside the condenser column (12) is set to an alkaline pH by dosing a neutralizing agent to wash out vapors of monomer a). Aqueous solution from the condenser column (12) can be sent back for preparation of the monomer solution.
The condenser column offgas is split to the drying gas inlet pipe (1 ) and the conditioned internal fluidized bed gas (25). The gas temperatures are controlled via heat exchangers (20) and (22). The hot drying gas is fed to the cocurrent spray dryer via gas distributor (3). The gas distributor (3) consists preferably of a set of plates providing a pressure drop of preferably 1 to l OOmbar, more preferably 2 to 30mbar, most preferably 4 to 20mbar, depending on the drying gas amount. Turbulences and/or a centrifugal velocity can also be introduced into the drying gas if desired by using gas nozzles or baffle plates.
The product is discharged from the internal fluidized bed (27) via rotary valve (28) into external fluidized bed (29). Conditioned external fluidized bed gas is fed to the external fluidized bed (29) via line (40). The relative humidity of the external fluidized bed gas is preferably controlled by adding steam via line (38).The product holdup in the internal fluidized bed (27) can be controlled via weir height or rotational speed of the rotary valve (28).
The product is discharged from the external fluidized bed (29) via rotary valve (32) into sieve (33). The product holdup in the external fluidized bed (28) can be controlled via weir height or rotational speed of the rotary valve (32). The sieve (33) is used for sieving off overs/lumps. The monomer solution is preferably prepared by mixing first monomer a) with a neutralization agent and secondly with crosslinker b). The temperature during neutralization is controlled to preferably from 5 to 60°C, more preferably from 8 to 40°C, most preferably from 10 to 30°C, by using a heat exchanger and pumping in a loop. A filter unit is preferably used in the loop after the pump. The initiators are metered into the monomer solution upstream of the dropletizer by means of static mixers (41 ) and (42) via lines (43) and (44) as shown in Fig. 1. Preferably a peroxide solution having a temperature of preferably from 5 to 60°C, more preferably from 10 to 50°C, most preferably from 15 to 40°C, is added via line (43) and preferably an azo initiator solution having a temperature of preferably from 2 to 30°C, more preferably from 3 to 15°C, most preferably from 4 to 8°C, is added via line (44). Each initiator is preferably pumped in a loop and dosed via control valves to each dropletizer unit. A second filter unit is preferably used after the static mixer (42). The mean residence time of the monomer solution admixed with the full initiator package in the piping before the droplet plates (57) is preferably less than 60s, more preferably less than 30s, most preferably less than 10s.
For dosing the monomer solution into the top of the spray dryer preferably three dropletizer units are used as shown in Fig. 4.
A dropletizer unit consists of an outer pipe (51 ) having an opening for the dropletizer cassette (53) as shown in Fig. 5. The dropletizer cassette (53) is connected with an inner pipe (52). The inner pipe (53) having a PTFE block (54) at the end as sealing can be pushed in and out of the outer pipe (51 ) during operation of the process for maintenance purposes.
The temperature of the dropletizer cassette (61 ) is controlled to preferably 5 to 80°C, more preferably 10 to 70°C, most preferably 30 to 60°C, by water in flow channels (59) as shown in Fig. 6. The dropletizer cassette has preferably from 10 to 1500, more preferably from 50 to 1000, most preferably from 100 to 500, bores having a diameter of preferably from 50 to 500μηη, more preferably from 100 to 300μηη, most preferably from 150 to 250μηη. The bores can be of circular, rectangular, triangular or any other shape. Circular bores are preferred. The ratio of bore length to bore diameter is preferably from 0.5 to 10, more preferably from 0.8 to 5, most preferably from 1 to 3. The droplet plate (57) can have a greater thickness than the bore length when using an inlet bore channel. The droplet plate (57) is preferably long and narrow as disclosed in WO 2008/086976 A1 . Multiple rows of bores per droplet plate can be used, preferably from 1 to 20 rows, more preferably from 2 to 5 rows.
The dropletizer cassette (61 ) consists of a flow channel (60) having essential no stagnant volume for homogeneous distribution of the premixed monomer and initiator solutions and two droplet plates (57). The droplet plates (57) have an angled configuration with an angle of preferably from 1 to 90°, more preferably from 3 to 45°, most preferably from 5 to 20°. Each droplet plate (57) is preferably made of stainless steel or fluorous polymers, such as perfluoroalkoxyethylene, polytetrafluoroethylene, ethylene-chlorotrifluoroethylene
copolymers, ethylene-tetrafluoroethylene copolymers and fluorinated polyethylene. Coated droplet plates as disclosed in WO 2007/031441 A1 can also be used. The choice of material for the droplet plate is not limited except that droplet formation must work and it is preferable to use materials which do not catalyse the start of polymerization on its surface.
The throughput of monomer including initiator solutions per dropletizer unit is preferably from 150 to 2500kg/h, more preferably from 200 to 1000kg/h, most preferably from 300 to 600kg/h. The throughput per bore is preferably from 0.5 to 10kg/h, more preferably from 0.8 to 5kg/h, most preferably from 1 to 3kg/h.
Water-absorbent polymer particles
The present invention provides water-absorbent polymer particles having typically more than one cavity wherein the cavities have an inside diameter from preferably 1 to 50 μηη, more preferably 2 to 30 μηη, even more preferably 5 to 20 μηη, most preferably 7 to 15 μηη, while the remaining particles have no visible cavities inside. Cavities with less than 1 μηη diameter are considered as not visible cavities.
The inventive water-absorbent polymer particles have typically a mean sphericity of from 0.86 to 0.99, preferably from 0.87 to 0.97, more preferably from 0.88 to 0.95, most preferably from 0.89 to 0.93. The sphericity (SPHT) is defined as
U2 where A is the cross-sectional area and U is the cross-sectional circumference of the polymer particles. The mean sphericity is the volume-average sphericity.
The mean sphericity can be determined, for example, with the Camsizer® image analysis system (Retsch Technolgy GmbH; Haan; Germany):
For the measurement, the product is introduced through a funnel and conveyed to the falling shaft with a metering channel. While the particles fall past a light wall, they are recorded selectively by a camera. The images recorded are evaluated by the software in accordance with the parameters selected.
To characterize the roundness, the parameters designated as sphericity in the program are employed. The parameters reported are the mean volume-weighted sphericities, the volume of the particles being determined via the equivalent diameter xcmin. To determine the equivalent diameter xcmin, the longest chord diameter for a total of 32 different spatial directions is measured in each case. The equivalent diameter xcmin is the shortest of these 32 chord diameters. To record the particles, the so-called CCD-zoom camera (CAM-Z) is used. To control the metering channel, a surface coverage fraction in the detection window of the camera (transmission) of 0.5% is predefined.
Water-absorbent polymer particles with relatively low sphericity are obtained by reverse suspension polymerization when the polymer beads are agglomerated during or after the polymerization. The water-absorbent polymer particles prepared by customary solution polymerization (gel polymerization) are ground and classified after drying to obtain irregular polymer particles. The mean sphericity of these polymer particles is between approx. 0.72 and approx. 0.78.
The inventive water-absorbent polymer particles have typically a content of hydrophobic solvent of preferably less than 0.005% by weight, more preferably less than 0.002% by weight and most preferably less than 0.001 % by weight. The content of hydrophobic solvent can be determined by gas chromatography, for example by means of the headspace technique. Water-absorbent polymer particles which have been obtained by reverse suspension polymerization still comprise typically approx. 0.01 % by weight of the hydrophobic solvent used as the reaction medium.
The inventive water-absorbent polymer particles have a dispersant content of typically less than 1 % by weight, preferably less than 0.5% by weight, more preferably less than 0.1 % by weight and most preferably less than 0.05% by weight. Water-absorbent polymer particles which have been obtained by reverse suspension polymerization still comprise typically at least 1 % by weight of the dispersant, i.e.
ethylcellulose, used to stabilize the suspension. The inventive water-absorbent polymer particles have a bulk density of preferably at least 0.6 g/cm3, more preferably at least 0.65 g/cm3, most preferably at least 0.7 g/cm3, and typically less than 1 g/cm3.
The average particle diameter of the inventive water-absorbent particles is preferably from 320 to 500 μηη, more preferably from 370 to 470 μηη, most preferably from 400 to 450 μηη.
The particle diameter distribution is preferably less than 0.65, more preferably less than 0.62, more preferably less than 0.6. Particle morphologies of the water-absorbent polymer particles are investigated in the swollen state by microscope analysis. The water-absorbent polymer particles can be divided into three categories: Type 1 are particles with one cavity having diameters typically from 0.4 to 2.5 mm, Type 2 are particles with more than one cavity having diameters typically from 0.001 to 0.3 mm, and Type 3 are solid particles with no visible cavity.
The ratio of particles having one cavity (Type 1 ) to particles having more than one cavity (Type 2) is preferably less than 0.7, more preferably less than 0.5, most preferably less than 0.4. Lower ratios correlated with higher bulk densities. The inventive water-absorbent polymer particles have a moisture content of preferably from 0.5 to 15% by weight, more preferably from 3 to 12% by weight, most preferably from 5 to 10% by weight.
In a particular preferred embodiment of the present invention the residual content of unreacted monomer in the water-absorbent polymer particles is reduced by thermal post- treatment with water vapor at elevated temperature. This thermal post-treatment may take place after the water-absorbent polymer particles have left the reaction chamber. The water absorbent particles may also be optionally stored in a buffer silo prior or after thermal post- treatment. Particularly preferred water-absorbent polymer particles have residual monomer contents of not more than 2000 ppm, typically not more than 1000 ppm, preferably less than 700 ppm, more preferably between 0 to 500 ppm, most preferably between 50 to 400 ppm.
The inventive water-absorbent polymer particles have a centrifuge retention capacity (CRC) of typically at least 20 g/g, preferably at least 25 g/g, preferentially at least 28 g/g, more preferably at least 30 g/g, most preferably at least 32 g/g. The centrifuge retention capacity (CRC) of the water-absorbent polymer particles is typically less than 60 g/g. The inventive water-absorbent polymer particles have absorbency under a load of 49.2 g/cm2 (AUHL) of typically at least 15 g/g, preferably at least 16 g/g, preferentially at least 20 g/g, more preferably at least 23 g/g, most preferably at least 25 g/g, and typically not more than 50 g/g.
The inventive water-absorbent polymer particles have an improved mechanical stability and a small particle size distribution. Also, the inventive water-absorbent polymer particles have an improved processibility, a reduced tendency of segregation, a smaller particle size dependent performance deviation, and a reduced dust formation caused by abrasion.
The inventive water-absorbent polymer particles can be mixed with other water-absorbent polymer particles prepared by other processes, i.e. solution polymerization.
The present invention further provides fluid-absorbent articles. The fluid-absorbent articles comprise of
(A) an upper liquid-pervious layer
(B) a lower liquid-impervious layer
(C) a fluid-absorbent core between (A) and (B) comprising
from 5 to 90% by weight fibrous material and from 10 to 95% by weight water- absorbent polymer particles;
preferably from 20 to 80% by weight fibrous material and from 20 to 80% by weight water-absorbent polymer particles;
more preferably from 30 to 75% by weight fibrous material and from 25 to 70% by weight water-absorbent polymer particles;
most preferably from 40 to 70% by weight fibrous material and from 30 to 60% by weight water-absorbent polymer particles;
(D) an optional acquisition-distribution layer between (A) and (C), comprising
from 80 to 100% by weight fibrous material and from 0 to 20% by weight water- absorbent polymer particles;
preferably from 85 to 99.9% by weight fibrous material and from 0.01 to 15% by weight water-absorbent polymer particles;
more preferably from 90 to 99.5% by weight fibrous material and from 0.5 to 10% by weight water-absorbent polymer particles;
most preferably from 95 to 99% by weight fibrous material and from 1 to 5% by weight water-absorbent polymer particles;
(E) an optional tissue layer disposed immediately above and/or below (C); and
(F) other optional components.
Fluid-absorbent articles are understood to mean, for example, incontinence pads and incontinence briefs for adults or diapers for babies. Suitable fluid-absorbent articles including fluid-absorbent compositions comprising fibrous materials and optionally water-absorbent polymer particles to form fibrous webs or matrices for the substrates, layers, sheets and/or the fluid-absorbent core.
Suitable fluid-absorbent articles are composed of several layers whose individual elements must show preferably definite functional parameter such as dryness for the upper liquid- pervious layer, vapor permeability without wetting through for the lower liquid-impervious layer, a flexible, vapor permeable and thin fluid-absorbent core, showing fast absorption rates and being able to retain highest quantities of body fluids, and an acquisition-distribution layer between the upper layer and the core, acting as transport and distribution layer of the discharged body fluids. These individual elements are combined such that the resultant fluid- absorbent article meets overall criteria such as flexibility, water vapor breathability, dryness, wearing comfort and protection on the one side, and concerning liquid retention, rewet and prevention of wet through on the other side. The specific combination of these layers provides a fluid-absorbent article delivering both high protection levels as well as high comfort to the consumer.
The water-absorbent polymer particles and the fluid-absorbent articles are tested by means of the test methods described below.
Methods:
The measurements should, unless stated otherwise, be carried out at an ambient temperature of 23 ± 2°C and a relative atmospheric humidity of 50 ± 10%. The water- absorbent polymers are mixed thoroughly before the measurement.
Particle Size Distribution
The particle size distribution of the water-absorbent polymer particles is determined with the Camziser® image analysis sytem (Retsch Technology GmbH; Haan; Germany). For determination of the average particle diameter and the particle diameter distribution the proportions of the particle fractions by volume are plotted in cumulated form and the average particle diameter is determined graphically. The average particle diameter (APD) here is the value of the mesh size which gives rise to a cumulative 50% by weight.
The particle diameter distribution (PDD) is calculated as follows:
PDD = ½J^l i
APD wherein xi is the value of the mesh size which gives rise to a cumulative 90% by weight and X2 is the value of the mesh size which gives rise to a cumulative 10% by weight. Mean Sphericity
The mean sphericity is determined with the Camziser® image analysis system (Retsch Technology GmbH; Haan; Germany) using the particle diameter fraction from 100 to
1 ,000μηι.
Moisture Content The moisture content of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 230.2-05 "Mass Loss Upon Heating".
Centrifuge Retention Capacity (CRC) The centrifuge retention capacity of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 241.2-05 "Fluid Retention Capacity in Saline, After Centrifugation", wherein for higher values of the centrifuge retention capacity lager tea bags have to be used. Absorbency Under High Load (AUHL)
The absorbency under high load of the water-absorbent polymer particles is determined analogously to the EDANA recommended test method No. WSP 242.2-05 "Absorption Under Pressure, Gravimetric Determination", except using a weight of 49.2 g/cm2 instead of a weight of 21 .0 g/cm2.
Bulk Density
The bulk density of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 260.2-05 "Density, Gravimetric Determination".
Initial Color (CIE Color Numbers [L, a, b])
Measurement of initial color is done by means of a colorimeter model„LabScan XE S/N LX17309" (HunterLab; Reston; U.S.A.) according to the CIELAB procedure (Hunterlab,
Volume 8, 1996, Issue 7, pages 1 to 4). Colors are described by the coordinates L, a, and b of a three-dimensional system. L characterizes the brightness, whereby L = 0 is black and L = 100 is white. The values for a and b describe the position of the color on the color axis red/green resp. yellow/blue, whereby positive a values stand for red colors, negative a values for green colors, positive b values for yellow colors, and negative b values for blue colors. The HC60 value is calculated according to the formula HC60 = L-3b. The measurement of initial color is in agreement with the tristimulus method according to DIN 5033-6.
Accelerated Aging Test
Measurement 1 (Initial color): A plastic dish with an inner diameter of 9 cm is overfilled with superabsorbent polymer particles. The surface is flattened at the height of the petri dish lip by means of a knife and the CIE color values and the HC 60 value are determined. Measurement 2 (after aging): A plastic dish with an inner diameter of 9 cm is overfilled with superabsorbent polymer particles. The surface is flattened at the height of the petri dish lip by means of a knife. The plastic dish (without a cover) is then placed in a humidity chamber at 60 °C and a relative humidity of 86%. The plastic dish is removed from the humidity chamber after 21 days, cooled down to room temperature and the CIE color values are determined.
The EDANA test methods are obtainable, for example, from the EDANA, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.
Examples
Preparation of the base polymer
Example 1
The process was performed in a cocurrent spray drying plant with an integrated fluidized bed (27) and an external fluidized bed (29) as shown in Fig. 1. The cylindrical part of the spray dryer (5) had a height of 22m and a diameter of 3.4m. The internal fluidized bed (IFB) had a diameter of 2.0m and a weir height of 0.3m. The external fluidized bed (EFB) had a length of 3.0m, a width of 0.65m and a weir height of 0.5m.
The drying gas was feed via a gas distributor (3) at the top of the spray dryer. The drying gas was partly recycled (drying gas loop) via a baghouse filter (9) and a condenser column (12). The drying gas was nitrogen that comprises from 1 % to 5% by volume of residual oxygen. Before start of polymerization the drying gas loop was filled with nitrogen until the residual oxygen was below 5% by volume. The gas velocity of the drying gas in the cylindrical part of the spray dryer (5) was 0.73m/s. The pressure inside the spray dryer was 4mbar below ambient pressure. The spray dryer outlet temperature was measured at three points around the circumference at the end of the cylindrical part as shown in Fig. 3. Three single measurements (47) were used to calculate the average cylindrical spray dryer outlet temperature. The drying gas loop was heated up and the dosage of monomer solution was started up. From this time the spray dryer outlet temperature was controlled to 120°C by adjusting the gas inlet temperature via the heat exchanger (20).
The product accumulated in the internal fluidized bed (27) until the weir height was reached. Internal fluidized bed gas having a temperature of 123°C was added. The gas velocity of the internal fluidized bed gas in the internal fluidized bed (27) was 0.8m/s.
The spray dryer offgas was filtered in baghouse filter (9) and sent to a condenser column (12) for quenching/cooling. Excess water was pumped out of the condenser column (12) by controlling the (constant) filling level inside the condenser column (12). The water inside the condenser column (12) was cooled by a heat exchanger (13) and pumped counter-current to the gas via quench nozzles (1 1 ) so that the temperature inside the condenser column (12) was 45°C. The water inside the condenser column (12) was set to an alkaline pH by dosing sodium hydroxide solution to wash out acrylic acid vapors. The condenser column offgas was split to the drying gas inlet pipe (1 ) and the conditioned internal fluidized bed gas (25). The gas temperatures were controlled via heat exchangers (20) and (22). The hot drying gas was fed to the cocurrent spray dryer via gas distributor (3). The gas distributor (3) consists of a set of plates providing a pressure drop of 5 to 10mbar depending on the drying gas amount.
The product was discharged from the internal fluidized bed (27) via rotary valve (28) into external fluidized bed (29). Conditioned external fluidized bed gas having a temperature of 55°C was fed to the external fluidized bed (29) via line (40). The external fluidized bed gas was air. The gas velocity of the external fluidized bed gas in the external fluidized bed (29) was 0.8m/s. The residence time of the product was 1 1 min.
The product was discharged from the external fluidized bed (29) via rotary valve (32) into sieve (33). The sieve (33) was used for sieving off overs/lumps having a particle diameter of more than 850 μηη.
The monomer solution was prepared by mixing first acrylic acid with 3-tuply ethoxylated glycerol triacrylate (internal crosslinker) and secondly with 37.3% by weight sodium acrylate solution. The temperature of the resulting monomer solution was controlled to 10°C by using a heat exchanger and pumping in a loop. A filter unit having a mesh size of 250μηη was used in the loop after the pump. The initiators were metered into the monomer solution upstream of the dropletizer by means of static mixers (41 ) and (42) via lines (43) and (44) as shown in Fig. 1 . Sodium peroxodisulfate solution having a temperature of 20°C was added via line (43) and Bruggolite® FF7 solution (Bruggemann Chemicals; Heilbronn; Germany) having a temperature of 5°C was added via line (44). Each initiator was pumped in a loop and dosed via control valves to each dropletizer unit. A second filter unit having a mesh size of 100μηη was used after the static mixer (42). For dosing the monomer solution into the top of the spray dryer three dropletizer units were used as shown in Fig. 4.
A dropletizer unit consisted of an outer pipe (51 ) having an opening for the dropletizer cassette (53) as shown in Fig. 5. The dropletizer cassette (53) was connected with an inner pipe (52). The inner pipe (53) having a PTFE block (54) at the end as sealing can be pushed in and out of the outer pipe (51 ) during operation of the process for maintenance purposes.
The temperature of the dropletizer cassette (61 ) was controlled to 10°C by water in flow channels (59) as shown in Fig. 6. The dropletizer cassette had 256 bores having a diameter of 170μηη and a bore separation of 12.4mm. The dropletizer cassette (61 ) consisted of a flow channel (60) having essential no stagnant volume for homogeneous distribution of the premixed monomer and initiator solutions and two droplet plates (57). The droplet plates (57) had an angled configuration with an angle of 3°. Each droplet plate (57) was made of stainless steel and had a length of 630mm, a width of 65mm, and a thickness of 8mm. The feed to the spray dryer consisted of 10.06% by weight of acrylic acid 32.16% by weigh of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 1 .4% by weight of Bruggolite® FF7 solution (0.2% by weigh in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water. The degree of neutralization was 71 %. The feed per bore was 1.6kg/h.
The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 33.5 g/g
AUHL of 16.2 g/g
Moisture content of 5.8 wt.-%
L value of 94.4
a value of 0.7
b value of 4.5
HC 60 value of 80.9
The resulting polymer particles had a bulk density of 76.9g/100ml, an average particle diameter of 425μηη, a particle diameter distribution of 0.57, and a mean sphericity of 0.91. Example 2
1200 g of the water-absorbent polymer particles prepared in example 1 were put into a laboratory ploughshare mixer (model M 5; manufactured by Gebruder Lodige Maschinenbau GmbH; Paderborn; Germany). At a mixer speed of 250 rpm, an aqueous solution of a chelating agent as described in Table 1 was sprayed onto the polymer particles within 4 minutes by means of a spray nozzle. The rotation speed of the mixer was reduced to 80 rpm and mixing was continued for additional 15 minutes. The product was removed from the mixer and sifted at 150 to 850 μηη. Color stability of the coated polymer particles was evaluated by an accelerated aging test.
After aging, the polymer particles exhibit the following color:
Table 1 : Results of the accelerated aging test
Figure imgf000036_0001
*) pH of solution has been adjusted to 6.0 by addition of diluted sulfuric acid prior to spraying onto superabsorbent polymer particles
**) pH of solution has been adjusted to 6.0 by addition of diluted caustic prior to spraying onto superabsorbent polymer particles Trilon® A liquid: 40 wt.-% aqueous solution of trisodium nitrilotriacetate
Trilon® BX liquid: 40 wt.-% aqueous solution of the tetrasodium salt of ethylenediamine tetra acetic acid
Trilon® C liquid: 40 wt.-% aqueous solution of the pentasodium salt of diethylenetriamine penta acetic acid
Trilon® D liquid: 40 wt.-% aqueous solution of the trisodium salt of hydroxyethyl
ethylenediamine triacetic acid
Trilon® M liquid: 40 wt.-% aqueous solution of the trisodium salt of methylglycine diacetic acid
Trilon® P liquid: 40 wt.-% aqueous solution of anionic modified polyamine
All Trilon® grades are available from BASF SE, Ludwigshafen, Germany.
Cublen® K 2012: 20 wt.-% aqueous solution of the disodium salt of 1 -hydroxy ethylidene-1 ,1 - diphosphonic acid
Cublen® AP 1 : 50 wt.-% aqueous solution of amino-tris(methylene phosphonic acid)
Cublen® DNC 450: 45 wt.-% aqueous solution of diethylenetriamine penta(methylene phosphonic acid)
Cublen® E 31 15: 31 wt.-% aqueous solution of the pentasodium salt of ethylenediamine tetra(methylene phosphonic acid)
Cublen® F 3016: 30 wt.-% aqueous solution of the hexasodium salt of
hexamethylenediamine tetra(methylene phosphonic acid)
Cublen® R 60: 60 wt.-% aqueous solution of hydroxyethylamino bis(methylene phosphonic acid)
All Cublen® grades are available from Zschimmer & Schwarz Mohsdorf GmbH & Co KG, Burgstadt, Germany.
Example 3
Example 1 was repeated but citric acid was additionally added to the monomer solution after mixing with the internal crosslinker and sodium acrylate solution. The feed to the spray dryer consisted of 10.06% by weight of acrylic acid, 32.16% by weight of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 0.25% by weight of citric acid, 1 .4% by weight of Bruggolite® FF7 solution (0.2% by weight in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water. The degree of neutralization was 71 %. The feed per bore was 1 .6 kg/h. The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 34.2 g/g AUHL of 16.0 g/g
Moisture content of 5.5 wt.-%
L value of 94.0
a value of 0.6
b value of 3.9
HC 60 value of 82.3
The resulting polymer particles had a bulk density of 76.5g/100ml, an average particle diameter of 432μηη, a particle diameter distribution of 0.58, and a mean sphericity of 0.92.
Example 4
Example 1 was repeated but phytic acid was additionally added to the monomer solution after mixing with the internal crosslinker and sodium acrylate solution. The feed to the spray dryer consisted of 10.06% by weight of acrylic acid, 32.16% by weight of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 0.15% by weight of phytic acid, 1.4% by weight of Bruggolite® FF7 solution (0.2% by weight in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water. The degree of neutralization was 71 %. The feed per bore was 1 .6 kg/h.
The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 34.4 g/g
AUHL of 16.2 g/g
Moisture content of 5.7 wt.-%
L value of 94.1
a value of 0.7
b value of 4.2
HC 60 value of 81 .5
The resulting polymer particles had a bulk density of 77.1 g/100ml, an average particle diameter of 423μηη, a particle diameter distribution of 0.56, and a mean sphericity of 0.90.
Example 5
Example 1 was repeated but 1 -hydroxy ethylidene-1 ,1 -diphosphonic acid was additionally added to the monomer solution after mixing with the internal crosslinker and sodium acrylate solution. The feed to the spray dryer consisted of 10.06% by weight of acrylic acid, 32.16% by weight of sodium acrylate, 0.016% by weight of 3-tuply ethoxylated glycerol triacrylate (approx. 85% strength by weight), 0.09% by weight of 1 -hydroxy ethylidene-1 , 1 -diphosphonic acid, 1.4% by weight of Bruggolite® FF7 solution (0.2% by weight in water), 2.3% by weight of sodium peroxodisulfate solution (15% by weight in water) and water. The degree of neutralization was 71 %. The feed per bore was 1.6 kg/h. The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 34.3 g/g
AUHL of 16.1 g/g
Moisture content of 5.6 wt.-%
L value of 93.9
a value of 0.6
b value of 4.3
HC 60 value of 81 .0 The resulting polymer particles had a bulk density of 77.0g/100ml, an average particle diameter of 428μηι, a particle diameter distribution of 0.58, and a mean sphericity of 0.89.
Color stability of polymer particles of examples 3 to 5 was evaluated by an accelerated aging test. After aging, the polymer particles exhibit the following color:
Table 2: Results of the accelerated aging test
Figure imgf000039_0001
Postcrosslinking of the base polymer Example 6 1 .3 kg of the water-absorbent polymer particles of example 1 were put into a laboratory ploughshare mixer with a heated jacket (model M 5, manufactured by Gebruder Lodige Maschinenbau GmbH, Paderborn, Germany). A surface crosslinker solution consisting of 2.0 wt.-% of water based on polymer
1 .3 wt.-% of 1 ,2-propane diol based on polymer
0.1 wt.-% of 1 ,3-propane diol based on polymer
0.1 wt.-% of N-(2-hydroxy ethyl)-2-oxazolidinone based on polymer was sprayed at a mixer rotation speed of 250 rpm at room temperature by means of a spray nozzle onto the polymer particles over a time period of three minutes. The mixer was then stopped, product sticking to the wall of the mixing vessel was scraped off (and re-united with the bulk), and mixing was continued for two more minutes at 250 rpm. The temperature of the product was then raised to 180°C by heating the jacket of the mixer. The product was kept at this temperature for 30 minutes at a mixer speed of 80 rpm. After cooling down of the mixer, the product was discharged and sifted at 150 to 850 μηη.
The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 31.0 g/g
All HL of 25.1 g/g
L value of 92.4
a value of -0.5
b value of 7.8
HC 60 value of 69.0
Example 7
1 .3 kg of the water-absorbent polymer particles of example 1 were put into a laboratory ploughshare mixer with a heated jacket (model M 5, manufactured by Gebruder Lodige Maschinenbau GmbH, Paderborn, Germany). A surface crosslinker solution consisting of
1 .0 wt.-% of water based on polymer
1 .3 wt.-% of 1 ,2-propane diol based on polymer
0.1 wt.-% of 1 ,3-propane diol based on polymer
0.1 wt.-% of N-(2-hydroxy ethyl)-2-oxazolidinone based on polymer and 2.0 wt.-% of Cublen® K 2012 (20 wt.-% aqueous solution of the disodium salt of 1 - hydroxy ethylidene-1 ,1 -diphosphonic acid) based on polymer were sprayed separately at a mixer rotation speed of 250 rpm at room temperature by means of two spray nozzles onto the polymer particles over a time period of three minutes. The mixer was then stopped, product sticking to the wall of the mixing vessel was scraped off (and re-united with the bulk), and mixing was continued for two more minutes at 250 rpm. The temperature of the product was then raised to 180°C by heating the jacket of the mixer. The product was kept at this temperature for 30 minutes at a mixer speed of 80 rpm. After cooling down of the mixer, the product was discharged and sifted at 150 to 850 μηη.
The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 31 .2 g/g
All HL of 25.0 g/g
L value of 92.5
a value of -0.7
b value of 7.9
HC 60 value of 68.8
Example 8
1 .3 kg of the water-absorbent polymer particles of example 1 were put into a laboratory ploughshare mixer with a heated jacket (model M 5, manufactured by Gebruder Lodige Maschinenbau GmbH, Paderborn, Germany). A surface crosslinker solution consisting of 1 .0 wt.-% of water based on polymer
1 .3 wt.-% of 1 ,2-propane diol based on polymer
0.1 wt.-% of 1 ,3-propane diol based on polymer
0.1 wt.-% of N-(2-hydroxy ethyl)-2-oxazolidinone based on polymer and 2.0 wt.-% of an aqueous solution of sodium tripolyphosphate (25 wt.-% of strength) based on polymer were sprayed separately at a mixer rotation speed of 250 rpm at room temperature by means of two spray nozzles onto the polymer particles over a time period of three minutes. The mixer was then stopped, product sticking to the wall of the mixing vessel was scraped off (and re-united with the bulk), and mixing was continued for two more minutes at 250 rpm. The temperature of the product was then raised to 180°C by heating the jacket of the mixer. The product was kept at this temperature for 30 minutes at a mixer speed of 80 rpm. After cooling down of the mixer, the product was discharged and sifted at 150 to
The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 31 .3 g/g
AUHL of 24.8 g/g
L value of 92.7
a value of -0.6
b value of 7.6
HC 60 value of 69.9 Example 9 1 .3 kg of the water-absorbent polymer particles of example 1 were put into a laboratory ploughshare mixer with a heated jacket (model M 5, manufactured by Gebruder Lodige Maschinenbau GmbH, Paderborn, Germany). A surface crosslinker solution consisting of
1 .0 wt.-% of water based on polymer
1 .3 wt.-% of 1 ,2-propane diol based on polymer
0.1 wt.-% of 1 ,3-propane diol based on polymer
0.1 wt.-% of N-(2-hydroxy ethyl)-2-oxazolidinone based on polymer and 2.0 wt.-% of an aqueous solution of ethylenediamine tetra acetic acid (20 wt.-% of strength) based on polymer were sprayed separately at a mixer rotation speed of 250 rpm at room temperature by means of two spray nozzles onto the polymer particles over a time period of three minutes. The mixer was then stopped, product sticking to the wall of the mixing vessel was scraped off (and re-united with the bulk), and mixing was continued for two more minutes at 250 rpm. The temperature of the product was then raised to 180°C by heating the jacket of the mixer. The product was kept at this temperature for 30 minutes at a mixer speed of 80 rpm. After cooling down of the mixer, the product was discharged and sifted at 150 to 850
Figure imgf000042_0001
The polymer particles exhibit the following features, absorption profile, and initial color:
CRC of 31 .1 g/g
AUHL of 24.9 g/g
L value of 92.9
a value of - 0.8
b value of 7.8
HC 60 value of 69.5
Color stability of polymer particles of examples 6 to 9 was evaluated by an accelerated aging test. After aging, the polymer particles exhibit the following color: Table 3: Results of the accelerated aging test
Figure imgf000043_0001
Addition of a color stability enhancing agent Example 10
1200 g of the water-absorbent polymer particles prepared in example 5 were put into a laboratory ploughshare mixer (model M 5; manufactured by Gebruder Lodige Maschinenbau GmbH; Paderborn; Germany). At a mixer speed of 250 rpm, 2 wt.-% of an aqueous solution of the disodium salt of 2-hydroxy-2-sulfonato acetic acid (5 wt.-% of strength) based on polymer were sprayed onto the polymer particles within 4 minutes by means of a spray nozzle. The rotation speed of the mixer was reduced to 80 rpm and mixing was continued for additional 15 minutes. The product was removed from the mixer and sifted at 150 to 850 μηη.
Example 1 1 1200 g of the water-absorbent polymer particles prepared in example 5 were put into a laboratory ploughshare mixer (model M 5; manufactured by Gebruder Lodige Maschinenbau GmbH; Paderborn; Germany). At a mixer speed of 250 rpm, 1.5 wt.-% of an aqueous solution of sodium hypophosphite (20 wt.-% of strength) based on polymer were sprayed onto the polymer particles within 4 minutes by means of a spray nozzle. The rotation speed of the mixer was reduced to 80 rpm and mixing was continued for additional 15 minutes. The product was removed from the mixer and sifted at 150 to 850 μηη.
Example 12
1200 g of the water-absorbent polymer particles prepared in example 5 were put into a laboratory ploughshare mixer (model M 5; manufactured by Gebruder Lodige Maschinenbau GmbH; Paderborn; Germany). At a mixer speed of 250 rpm, 1 .75 wt.-% of an aqueous solution of sodium tripolyphosphate (20 wt.-% of strength) based on polymer were sprayed onto the polymer particles within 4 minutes by means of a spray nozzle. The rotation speed of the mixer was reduced to 80 rpm and mixing was continued for additional 15 minutes. The product was removed from the mixer and sifted at 150 to 850 μηη.
Example 13
1200 g of the water-absorbent polymer particles prepared in example 5 were put into a laboratory ploughshare mixer (model M 5; manufactured by Gebruder Lodige Maschinenbau GmbH; Paderborn; Germany). At a mixer speed of 250 rpm, 0.1 wt.-% of calcium
bis[monoethyl(3,5-di-tert.-butyl-4-hydroxybenzyl]phosphonate was added. The rotation speed of the mixer was reduced to 80 rpm and mixing was continued for additional 15 minutes. The product was removed from the mixer and sifted at 150 to 850 μηη.
Color stability of polymer particles of examples 10 to 13 was evaluated by an accelerated aging test. After aging, the polymer particles exhibit the following color:
Table 4: Results of the accelerated aging test
Additional color stability enhancing Example L value a value b value HC 60 agent after 21 after 21 after 21 value after days of days of days of 21 days of aging aging aging aging
- 5 79.5 1 .6 1 1 .8 44.1
Disodium salt of 2-hydroxy-2- 10 85.6 0.8 8.8 59.2 sulfonato acetic acid
Sodium hypophosphite 1 1 84.0 1 .3 9.0 57.0
Sodium tripolyphosphate 12 83.7 1 .0 9.2 56.1
Calcium bis[monoethyl(3,5-di-tert.- 13 82.8 1 .2 9.6 54.0 butyl-4-hydroxybenzyl]
phosphonate

Claims

Water-absorbent polymer particles, obtainable by polymerizing droplets of a monomer solution, comprising a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,
b) at least one crosslinker,
c) at least one initiator,
d) optionally one or more ethylenically unsaturated monomers
copolymerizable with the monomers mentioned under a), e) optionally one or more water-soluble polymers, and
f) water, in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the water-absorbent polymer particles comprise at least one chelating agent.
Water-absorbent polymer particles according to claim 1 , wherein the polymer particles were thermal postcrosslinked with postcrosslinkers which comprise groups which can form at least two covalent bonds with the acid groups of the polymer particles.
Water-absorbent polymer particles according to claim 1 or 2, wherein the at least one chelating agent was added to the monomer solution.
Water-absorbent polymer particles according to any of claims 1 to 3, wherein the at least one chelating agent was added to the formed polymer particles.
Water-absorbent polymer particles according to any of claims 2 to 4, wherein the at least one chelating agent was added prior, during and/of after the
postcrosslinking.
Water-absorbent polymer particles according to any of claims 1 to 5, wherein the monomer a) is acrylic acid to an extent of at least 50 mol%.
7. Water-absorbent polymer particles according to any of claims 1 to 6, wherein the acid groups of the monomer a) are neutralized to an extent of from 25 to 85 mol%.
8. Water-absorbent polymer particles according to any of claims 1 to 7, wherein the at least one chelating agent was selected from trisodium nitrilotriacetate, ethylenediamine tetra acetic acid, tetrasodium salt of ethylenediamine tetra acetic acid, pentasodium salt of diethylentriamine penta acetic acid, trisodium salt of hydroxyethyl ethylenediamine triacetic acid, trisodium salt of methylglycine diacetic acid, anionic modified polyamine, sodium tripolyphosphate, disodium salt of 1 - hydroxy ethylidene-1 ,1 -diphosphonic acid, amino-tris(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid), pentasodium salt of ethylenediamine tetra(methylene phosphonic acid), hexasodium salt of
hexamethylenediamine tetra(methylene phosphonic acid), hydroxyethylamino bis(methylene phosphonic acid), citric acid, phytic acid, 1 -hydroxy ethylidene-1 ,1 - diphosphonic acid, and disodium salt of 1 -hydroxy ethylidene-1 ,1 -diphosphonic acid.
9. Water-absorbent polymer particles according to any of claims 1 to 8, wherein the water-absorbent polymer particles further comprise at least one color stability enhancing agent.
10. Water-absorbent polymer particles according to claim 9, wherein the at least one color stability enhancing agent was selected from disodium salt of 2-hydroxy-2- sulfonato acetic acid, sodium hypophosphite, sodium tripolyphosphate, and calcium bis[monoethyl(3,5-di-tert.-butyl-4-hydroxybenzyl] phosphonate.
1 1 . Water-absorbent polymer particles according to any of claims 1 to 9, wherein the water-absorbent polymer particles have a centrifuge retention capacity (CRC) of at least 20g/g.
PCT/EP2012/065739 2011-08-12 2012-08-10 A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution WO2013045163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11177355.2 2011-08-12
EP11177355 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013045163A1 true WO2013045163A1 (en) 2013-04-04

Family

ID=46639545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/065739 WO2013045163A1 (en) 2011-08-12 2012-08-10 A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution

Country Status (1)

Country Link
WO (1) WO2013045163A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433000A (en) * 2013-08-21 2013-12-11 太仓碧奇新材料研发有限公司 Preparation method for zinc ion adsorption material
WO2014079710A1 (en) * 2012-11-21 2014-05-30 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
CN108348883A (en) * 2015-11-17 2018-07-31 巴斯夫欧洲公司 The equipment for being used to prepare poly- (methyl) acrylate of powder type
WO2019201669A1 (en) 2018-04-20 2019-10-24 Basf Se Process for producing superabsorbents
CN115210319A (en) * 2020-02-26 2022-10-18 巴斯夫欧洲公司 Heat-resistant polyamide moulding compositions
US11572455B2 (en) 2017-10-12 2023-02-07 Si Group, Inc. Antidegradant blend
CN115975123A (en) * 2023-03-17 2023-04-18 太原理工大学 Nonmetal wetting agent with moisturizing and dust suppression functions and preparation method thereof
US11879050B2 (en) 2018-05-03 2024-01-23 Si Group, Inc. Antidegradant blend

Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243321A (en) 1962-11-02 1966-03-29 Atlas Copco Ab Method of teflon coating of metals
EP0083022A2 (en) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same
DE3314019A1 (en) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka ABSORBENT OBJECT
DE3523617A1 (en) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka WATER ABSORBING AGENT
DE3713601A1 (en) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh METHOD FOR PRODUCING A STRONG WATER-ABSORBENT POLYMER
EP0348180A2 (en) 1988-06-22 1989-12-27 Mitsubishi Petrochemical Company Limited Process for the preparation of water absorptive resin
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
DE4020780C1 (en) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0450922A2 (en) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of fluid stable aggregate
EP0530438A1 (en) 1991-09-03 1993-03-10 Hoechst Celanese Corporation A superabsorbent polymer having improved absorbency properties
EP0543303A1 (en) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophilic hydrogels having a high swelling capacity
EP0547847A1 (en) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Process for producing water-absorbent resin
EP0559476A1 (en) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Method for the production of absorbent resin
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
US5269980A (en) 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
EP0632068A1 (en) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Process for preparing absorbent resin
WO1996040427A1 (en) 1995-06-07 1996-12-19 Freeman Clarence S A polymerization process, apparatus and polymer
DE19646484A1 (en) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Liquid-absorbing polymers, process for their preparation and their use
DE19543368A1 (en) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Water-absorbing polymers with improved properties, process for their preparation and their use
DE19807992C1 (en) 1998-02-26 1999-07-15 Clariant Gmbh Water absorbent polymers, surface crosslinked using bis-2-oxazolidinone and/or poly-2-oxazolidinones
EP0937736A2 (en) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Crosslinking a water-absorbing agent
DE19807502A1 (en) 1998-02-21 1999-09-16 Basf Ag Process for post-crosslinking hydrogels with 2-oxazolidinones
DE19854574A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with N-acyl-2-oxazolidinones
DE19854573A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with 2-oxo-tetrahydro-1,3-oxazines
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
EP1199327A2 (en) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
WO2002055469A1 (en) 2001-01-12 2002-07-18 Degussa Ag Continuous method for the production and purification of (meth)acrylic acid
WO2003031482A1 (en) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
DE10204937A1 (en) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials and liquid absorbing hygiene articles
DE10204938A1 (en) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials, liquid absorbing hygiene articles, packaging materials, and soil additives
WO2003078378A1 (en) 2002-03-15 2003-09-25 Stockhausen Gmbh (meth)acrylic acid crystal and method for the production and purification of aqueous (meth)acrylic acid
WO2003104301A1 (en) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated glycerine
WO2003104300A1 (en) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
WO2003104299A1 (en) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Method for the production of esters of polyalcohols
WO2004035514A1 (en) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Method for the production of acrylic acid
DE10314466A1 (en) 2003-03-28 2004-10-14 Basf Ag Process for the preparation of condensed resins in powder form
DE10331450A1 (en) 2003-07-10 2005-01-27 Basf Ag (Meth) acrylic esters of monoalkoxylated polyols and their preparation
DE10334584A1 (en) 2003-07-28 2005-02-24 Basf Ag Post crosslinking of water absorbing polymers, useful for hygiene articles and packaging, comprises treatment with a bicyclic amideacetal crosslinking agent with simultaneous or subsequent heating
DE10331456A1 (en) 2003-07-10 2005-02-24 Basf Ag (Meth) acrylic esters of alkoxylated unsaturated polyol ethers and their preparation
DE10340253A1 (en) 2003-08-29 2005-03-24 Basf Ag Spray polymerisation of radically-polymerisable monomer solution for production of absorbent polymer for use in hygiene articles, involves using monomer solution with a water content of at least 55 wt. percent
DE10355401A1 (en) 2003-11-25 2005-06-30 Basf Ag (Meth) acrylic esters of unsaturated amino alcohols and their preparation
DE102004024437A1 (en) 2004-05-14 2005-12-08 Basf Ag Process for the preparation of water-swellable, polymeric particles
DE102005002412A1 (en) 2005-01-18 2006-07-27 Basf Ag Process for the preparation of polymers by spray polymerization
WO2006109882A1 (en) 2005-04-12 2006-10-19 Nippon Shokubai Co., Ltd. Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used
WO2007031441A2 (en) 2005-09-14 2007-03-22 Basf Se Dropping method for liquids
WO2008009598A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
WO2008009599A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
WO2008009580A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing post-cured water-absorbent polymer particles with a higher absorption by polymerising droplets of a monomer solution
WO2008009612A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
WO2008040715A2 (en) 2006-10-05 2008-04-10 Basf Se Method for the production of water absorbent polymer particles by polymerizing drops of a monomer solution
WO2008052971A1 (en) 2006-10-31 2008-05-08 Basf Se Regulation of a process for producing water-absorbing polymer particles in a heated gas phase
WO2008069639A1 (en) 2006-12-07 2008-06-12 Friesland Brands B.V. Method and apparatus for spray drying and powder produced using said method
WO2008086976A1 (en) 2007-01-16 2008-07-24 Basf Se Method for producing polymer particles by the polymerization of fluid drops in a gas phase
US20110059329A1 (en) * 2009-09-04 2011-03-10 Basf Se Water-Absorbent Polymer Particles

Patent Citations (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243321A (en) 1962-11-02 1966-03-29 Atlas Copco Ab Method of teflon coating of metals
EP0083022A2 (en) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Water-absorbent resin having improved water-absorbency and improved water-dispersibility and process for producing same
DE3314019A1 (en) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka ABSORBENT OBJECT
DE3523617A1 (en) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka WATER ABSORBING AGENT
DE3713601A1 (en) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh METHOD FOR PRODUCING A STRONG WATER-ABSORBENT POLYMER
EP0348180A2 (en) 1988-06-22 1989-12-27 Mitsubishi Petrochemical Company Limited Process for the preparation of water absorptive resin
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
EP0450922A2 (en) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Method for production of fluid stable aggregate
DE4020780C1 (en) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
US5269980A (en) 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
EP0530438A1 (en) 1991-09-03 1993-03-10 Hoechst Celanese Corporation A superabsorbent polymer having improved absorbency properties
EP0543303A1 (en) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrophilic hydrogels having a high swelling capacity
EP0547847A1 (en) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Process for producing water-absorbent resin
EP0559476A1 (en) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Method for the production of absorbent resin
WO1993021237A1 (en) 1992-04-16 1993-10-28 The Dow Chemical Company Crosslinked hydrophilic resins and method of preparation
EP0632068A1 (en) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Process for preparing absorbent resin
WO1996040427A1 (en) 1995-06-07 1996-12-19 Freeman Clarence S A polymerization process, apparatus and polymer
DE19646484A1 (en) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Liquid-absorbing polymers, process for their preparation and their use
DE19543368A1 (en) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Water-absorbing polymers with improved properties, process for their preparation and their use
DE19807502A1 (en) 1998-02-21 1999-09-16 Basf Ag Process for post-crosslinking hydrogels with 2-oxazolidinones
EP0937736A2 (en) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Crosslinking a water-absorbing agent
DE19807992C1 (en) 1998-02-26 1999-07-15 Clariant Gmbh Water absorbent polymers, surface crosslinked using bis-2-oxazolidinone and/or poly-2-oxazolidinones
DE19854574A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with N-acyl-2-oxazolidinones
DE19854573A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with 2-oxo-tetrahydro-1,3-oxazines
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
WO2002032962A2 (en) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
EP1199327A2 (en) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
WO2002055469A1 (en) 2001-01-12 2002-07-18 Degussa Ag Continuous method for the production and purification of (meth)acrylic acid
WO2003031482A1 (en) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
DE10204937A1 (en) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials and liquid absorbing hygiene articles
DE10204938A1 (en) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials, liquid absorbing hygiene articles, packaging materials, and soil additives
WO2003078378A1 (en) 2002-03-15 2003-09-25 Stockhausen Gmbh (meth)acrylic acid crystal and method for the production and purification of aqueous (meth)acrylic acid
WO2003104300A1 (en) 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
WO2003104301A1 (en) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated glycerine
WO2003104299A1 (en) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Method for the production of esters of polyalcohols
WO2004035514A1 (en) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Method for the production of acrylic acid
DE10314466A1 (en) 2003-03-28 2004-10-14 Basf Ag Process for the preparation of condensed resins in powder form
DE10331450A1 (en) 2003-07-10 2005-01-27 Basf Ag (Meth) acrylic esters of monoalkoxylated polyols and their preparation
DE10331456A1 (en) 2003-07-10 2005-02-24 Basf Ag (Meth) acrylic esters of alkoxylated unsaturated polyol ethers and their preparation
DE10334584A1 (en) 2003-07-28 2005-02-24 Basf Ag Post crosslinking of water absorbing polymers, useful for hygiene articles and packaging, comprises treatment with a bicyclic amideacetal crosslinking agent with simultaneous or subsequent heating
DE10340253A1 (en) 2003-08-29 2005-03-24 Basf Ag Spray polymerisation of radically-polymerisable monomer solution for production of absorbent polymer for use in hygiene articles, involves using monomer solution with a water content of at least 55 wt. percent
DE10355401A1 (en) 2003-11-25 2005-06-30 Basf Ag (Meth) acrylic esters of unsaturated amino alcohols and their preparation
DE102004024437A1 (en) 2004-05-14 2005-12-08 Basf Ag Process for the preparation of water-swellable, polymeric particles
DE102005002412A1 (en) 2005-01-18 2006-07-27 Basf Ag Process for the preparation of polymers by spray polymerization
WO2006109882A1 (en) 2005-04-12 2006-10-19 Nippon Shokubai Co., Ltd. Particulate water absorbing agent including polyacrylic acid (polyacrylate) based water absorbing resin as a principal component, method for production thereof, water-absorbent core and absorbing article in which the particulate water absorbing agent is used
WO2007031441A2 (en) 2005-09-14 2007-03-22 Basf Se Dropping method for liquids
WO2008009598A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
WO2008009599A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
WO2008009580A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing post-cured water-absorbent polymer particles with a higher absorption by polymerising droplets of a monomer solution
WO2008009612A1 (en) 2006-07-19 2008-01-24 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution
WO2008040715A2 (en) 2006-10-05 2008-04-10 Basf Se Method for the production of water absorbent polymer particles by polymerizing drops of a monomer solution
WO2008052971A1 (en) 2006-10-31 2008-05-08 Basf Se Regulation of a process for producing water-absorbing polymer particles in a heated gas phase
WO2008069639A1 (en) 2006-12-07 2008-06-12 Friesland Brands B.V. Method and apparatus for spray drying and powder produced using said method
WO2008086976A1 (en) 2007-01-16 2008-07-24 Basf Se Method for producing polymer particles by the polymerization of fluid drops in a gas phase
US20110059329A1 (en) * 2009-09-04 2011-03-10 Basf Se Water-Absorbent Polymer Particles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", 2000
F.L. BUCHHOLZ; A.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103
HUNTERLAB, vol. 8, no. 7, 1996, pages 1 - 4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079710A1 (en) * 2012-11-21 2014-05-30 Basf Se A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US9790304B2 (en) 2012-11-21 2017-10-17 Basf Se Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
CN103433000A (en) * 2013-08-21 2013-12-11 太仓碧奇新材料研发有限公司 Preparation method for zinc ion adsorption material
CN108348883A (en) * 2015-11-17 2018-07-31 巴斯夫欧洲公司 The equipment for being used to prepare poly- (methyl) acrylate of powder type
US11572455B2 (en) 2017-10-12 2023-02-07 Si Group, Inc. Antidegradant blend
WO2019201669A1 (en) 2018-04-20 2019-10-24 Basf Se Process for producing superabsorbents
US12083496B2 (en) 2018-04-20 2024-09-10 Basf Se Process for producing superabsorbents
US11879050B2 (en) 2018-05-03 2024-01-23 Si Group, Inc. Antidegradant blend
CN115210319A (en) * 2020-02-26 2022-10-18 巴斯夫欧洲公司 Heat-resistant polyamide moulding compositions
CN115975123A (en) * 2023-03-17 2023-04-18 太原理工大学 Nonmetal wetting agent with moisturizing and dust suppression functions and preparation method thereof

Similar Documents

Publication Publication Date Title
US9944739B2 (en) Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US11142614B2 (en) Process for producing surface-postcrosslinked water-absorbent polymer particles
US9914112B2 (en) Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US8450428B2 (en) Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US8852742B2 (en) Water absorbent polymer particles formed by polymerizing droplets of a monomer solution and coated with sulfinic acid, sulfonic acid, and/or salts thereof
EP3262089B1 (en) A process for producing surface-postcrosslinked water-absorbent polymer particles by polymerizing droplets of a monomer solution
WO2013045163A1 (en) A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US9029485B2 (en) Method for producing water-absorbing polymer particles by polymerizing droplets of a monomer solution
WO2011113728A1 (en) A process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US20110224361A1 (en) Method for producing permeable water-absorbing polymer particles through polymerization of drops of a monomer solution
US20180043052A1 (en) A Process for Producing Surface-Postcrosslinked Water-Absorbent Polymer Particles by Polymerizing Droplets of a Monomer Solution
JP2021522365A (en) How to make a superabsorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744019

Country of ref document: EP

Kind code of ref document: A1