Nothing Special   »   [go: up one dir, main page]

WO2013042314A1 - 水素含有ガスの生成方法および燃料電池システムの運転方法 - Google Patents

水素含有ガスの生成方法および燃料電池システムの運転方法 Download PDF

Info

Publication number
WO2013042314A1
WO2013042314A1 PCT/JP2012/005305 JP2012005305W WO2013042314A1 WO 2013042314 A1 WO2013042314 A1 WO 2013042314A1 JP 2012005305 W JP2012005305 W JP 2012005305W WO 2013042314 A1 WO2013042314 A1 WO 2013042314A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming catalyst
catalyst
reforming
hydrogen
containing gas
Prior art date
Application number
PCT/JP2012/005305
Other languages
English (en)
French (fr)
Inventor
藤原 誠二
中嶋 知之
脇田 英延
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013042314A1 publication Critical patent/WO2013042314A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for generating a hydrogen-containing gas and a method for operating a fuel cell system.
  • the raw material contains at least an organic compound having carbon and hydrogen as constituent elements.
  • the raw material gas include city gas mainly composed of methane, natural gas, and LPG.
  • a CO reducer for reducing carbon monoxide in the hydrogen-containing gas produced by the reforming reaction may be provided.
  • the CO reducer includes at least one of a transformer that reduces carbon monoxide by a shift reaction and a CO remover that reduces carbon monoxide by at least one of an oxidation reaction and a methanation reaction.
  • the raw material when the raw material contains nitrogen-containing compounds such as nitrogen molecules and amines, it reacts with hydrogen produced by the reforming reaction to produce ammonia, which is used as a catalyst for CO removers, fuel cells, etc. It is known to become a poison (see, for example, Patent Document 1).
  • the present invention solves the above-described conventional problems, and an object of the present invention is to provide a method for producing a hydrogen-containing gas and a method for operating a fuel cell system, which suppress the production of ammonia as compared with the conventional art.
  • a method for producing a hydrogen-containing gas of one embodiment of the present invention includes a step of passing a raw material containing at least one of nitrogen molecules and a nitrogen-containing compound through a first reforming catalyst, And a step of passing a second reforming catalyst that is disposed downstream of the first reforming catalyst and has a lower catalytic ability per unit amount for the reforming reaction than the first reforming catalyst.
  • the method for producing a hydrogen-containing gas of one embodiment of the present invention it is possible to produce a hydrogen-containing gas while suppressing the production of ammonia as compared with the conventional method.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a reformer used in the method for generating a hydrogen-containing gas according to the first embodiment.
  • FIG. 2 is a diagram showing an example of an experimental result comparing the catalytic ability of the reforming catalyst.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of a fuel cell system used in the operation method of the fuel cell system according to the second embodiment.
  • the downstream catalyst having a relatively small amount of reforming reaction has a relatively higher temperature than the upstream catalyst. As the temperature increases, the amount of ammonia produced increases in terms of reaction rate.
  • the raw material containing at least one of nitrogen molecules and nitrogen-containing compounds is passed through the first reforming catalyst, and the first reforming catalyst is used. And a step of passing a second reforming catalyst which is disposed downstream and has a lower catalytic ability per unit amount for the reforming reaction than the first reforming catalyst.
  • the catalytic ability means the ability to catalyze the reforming reaction.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a reformer used in the method for producing a hydrogen-containing gas according to the first embodiment.
  • the reformer 100 generates a hydrogen-containing gas using a raw material containing at least one of nitrogen molecules and nitrogen-containing compounds.
  • the raw material gas undergoes a reforming reaction to generate a hydrogen-containing gas.
  • the reforming reaction may take any form, and examples thereof include a steam reforming reaction, an autothermal reaction, and a partial oxidation reaction.
  • equipment required for each reforming reaction is provided as appropriate.
  • the reforming reaction is a steam reforming reaction
  • a combustor that heats the reformer 100
  • an evaporator that generates steam
  • a water supplier that supplies water to the evaporator
  • the reformer 100 is further provided with an air supply device that supplies air to the reformer 100.
  • the raw material contains at least an organic compound containing carbon and hydrogen as constituent elements.
  • Examples of the raw material include city gas mainly composed of methane, natural gas, and LPG.
  • Examples of the nitrogen-containing compound include amines and isonitriles.
  • a CO reducer for reducing carbon monoxide in the hydrogen-containing gas produced by the reformer 100 may be provided downstream of the reformer 100.
  • the CO reducer includes at least one of a transformer that reduces carbon monoxide by a shift reaction and a CO remover that reduces carbon monoxide by at least one of an oxidation reaction and a methanation reaction.
  • the reformer 100 includes a first reforming catalyst 1 and a second reforming catalyst 2 disposed downstream of the first reforming catalyst 1.
  • Each of the first reforming catalyst 1 and the second reforming catalyst 2 includes a catalyst metal and a catalyst metal carrier.
  • the second reforming catalyst 2 has a lower catalytic ability per unit amount for the reforming reaction than the first reforming catalyst 1. If this is satisfied, the first reforming catalyst 1 and the second reforming catalyst 2 may be in any form, but specific examples will be described in the following examples.
  • the unit amount includes, for example, a unit weight, a unit volume, and a mole, but is not limited to these, and any unit amount may be used as long as it is a general unit amount.
  • a raw material containing at least one of nitrogen molecules and nitrogen-containing compounds is supplied to the reformer 100 to generate a hydrogen-containing gas.
  • the step of passing the source gas through the first reforming catalyst 1 having a relatively high catalytic ability per unit amount for the reforming reaction And a step of passing a second reforming catalyst 2 disposed downstream of the reforming catalyst 1 and having a relatively low catalytic ability per unit amount for the reforming reaction.
  • the second reforming catalyst 2 since the reforming reaction of the reforming catalyst is an endothermic reaction, the second reforming catalyst 2 having a smaller amount of reforming reaction than the first reforming catalyst 1 The temperature is likely to be higher than that of the reforming catalyst 1.
  • FIG. 1 it is comprised so that the 2nd reforming catalyst 2 and the 1st reforming catalyst 1 may be heated in order by the high-temperature combustion exhaust gas. 2 is higher in temperature than the first reforming catalyst 1.
  • the second reforming catalyst 2 is more likely to increase the amount of ammonia produced in terms of the reaction rate than the first reforming catalyst 1.
  • Example 1 In Example 1, the content of the catalyst metal per unit volume of the second reforming catalyst is less than that of the first reforming catalyst, so that the second reforming catalyst 2 The catalytic ability per unit amount for the reforming reaction is lower than that of the reforming catalyst 1.
  • the method for generating a hydrogen-containing gas of the present embodiment includes a step of passing a raw material containing at least one of nitrogen molecules and a nitrogen-containing compound through the first reforming catalyst, and more than the first reforming catalyst. And passing a second reforming catalyst disposed downstream and having a catalytic metal content per unit volume less than that of the first reforming catalyst.
  • FIG. 2 is a diagram showing an example of an experimental result comparing the catalytic performance of the reforming catalyst.
  • the reforming catalyst includes a catalyst metal containing Ru and an alumina support as a support for the catalyst metal.
  • FIG. 2 shows the experimental results of examining the difference in catalytic ability for the reforming reaction due to the difference in the content of the catalytic metal per unit volume of the reforming catalyst.
  • a reforming catalyst (hereinafter sometimes abbreviated as “2 wt% Ru / alumina catalyst”) having a Ru loading on the alumina support of 2 wt%, and a Ru loading on the alumina support of 0.5 wt%.
  • the reforming catalyst (hereinafter sometimes abbreviated as “0.5 wt% Ru / alumina catalyst”) was prepared.
  • FIG. 2 shows the relationship between the temperature (° C.) of the reforming catalyst and the methane (CH 4 ) conversion rate (%) representing the catalytic ability of the reforming catalyst.
  • the fixed bed flow type reactor was filled with 0.6 cc of 2 wt% Ru / alumina catalyst and 0.5 wt% Ru / alumina catalyst, respectively, so that the methane flow rate was 100 ml / min. Water is supplied so that the water flow rate is 0.201 g / min. In this case, SV is 10,000 / h. Further, the reforming catalyst is heated using an electric furnace to adjust the temperature of the reforming catalyst, and the methane conversion rate is derived by measuring the concentration of the outlet gas of the reforming catalyst by gas chromatography.
  • the 2 wt% Ru / alumina catalyst always has a higher methane conversion rate than the 0.5 wt% Ru / alumina catalyst. That is, a 2 wt% Ru / alumina catalyst having a relatively high content of catalytic metal per unit volume has a relatively high catalytic ability per unit amount for the reforming reaction. On the other hand, a 0.5 wt% Ru / alumina catalyst having a relatively small content of catalytic metal per unit volume has a relatively low catalytic ability per unit amount for the reforming reaction.
  • the temperature of the first reforming catalyst 1 is, for example, 400
  • the temperature of the second reforming catalyst 2 is adjusted to about 600 ° C.
  • the source gas contains at least one of nitrogen molecules and nitrogen-containing compounds
  • ammonia is generated as the reforming reaction of the source gas proceeds, and the amount of ammonia generated greatly depends on the temperature of the reforming catalyst.
  • a 2 wt% Ru / alumina catalyst has an ammonia production amount of 1 ppm or less under the condition that the temperature of the reforming catalyst is 400 ° C. At 600 ° C., it becomes about 10 ppm.
  • the amount of ammonia produced can be suppressed to about 1 ppm even at 600 ° C.
  • the 2 wt% Ru / alumina catalyst which has a relatively high catalytic capacity per unit amount for the reforming reaction, has a high ability to catalyze the reaction for generating ammonia. It is preferred to use the catalyst at a low temperature.
  • a 0.5 wt% Ru / alumina catalyst having a relatively low catalytic ability per unit amount for the reforming reaction can suppress an ammonia production amount even at a high temperature.
  • a 2 wt% Ru / alumina catalyst is used for the first reforming catalyst 1 and a 0.5 wt% Ru / alumina catalyst is used for the second reforming catalyst 2. Therefore, the method for producing the hydrogen-containing gas of the present embodiment can produce the hydrogen-containing gas while suppressing the production of ammonia as compared with the conventional method.
  • the above Ru as the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 is an example, and the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 is an example. Any catalyst metal can be used as long as it can cause the reforming reaction to proceed, and the present invention is not limited to this example.
  • the catalyst metals of the first reforming catalyst 1 and the second reforming catalyst 2 are generally selected from the group consisting of noble metal catalysts such as Pt, Ru, Rh, Pd, and Ni-based catalysts. At least one kind can be suitably used.
  • the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 may be the same metal species or different metal species.
  • the second catalytic metal has a catalytic ability for the reforming reaction equal to or lower than that of the first catalytic metal. It becomes.
  • the above-mentioned alumina carrier as the carrier of the first reforming catalyst 1 and the second reforming catalyst 2 is an example, and the carrier of the first reforming catalyst 1 and the second reforming catalyst 2 is However, the present invention is not limited to this example.
  • the catalyst metal carrier of the first reforming catalyst 1 and the second reforming catalyst 2 may be any carrier as long as it can carry the catalyst metal.
  • the above-mentioned Ru loadings of the first reforming catalyst 1 and the second reforming catalyst 2 are examples, and per unit volume of the first reforming catalyst 1 and the second reforming catalyst 2.
  • the content of the catalyst metal is not limited to this example.
  • first reforming catalyst 1 and the second reforming catalyst 2 are merely examples, and these are not limited to this example.
  • Ru-based reforming catalysts are generally poisoned with sulfur, if the source gas contains sulfur, an adsorptive desulfurizing agent or hydrodesulfurizing agent is provided in the front stage of the reforming catalyst to remove sulfur. Yes. However, it is difficult to completely remove sulfur, and about several ppb may be supplied to the reforming catalyst. Therefore, as described above, when the first reforming catalyst 1 is filled with a catalyst having a relatively high catalytic capacity for the reforming reaction, the performance of the reforming reaction is hardly lowered even if sulfur is supplied. This is advantageous in terms of catalyst durability.
  • Example 2 since sulfur is trapped by the first reforming catalyst 1, even if the second reforming catalyst 2 has a catalyst having a relatively low catalytic ability for the reforming reaction, the performance of the reforming reaction by sulfur. Reduction can be suppressed.
  • the specific surface area of the second reforming catalyst is made smaller than that of the first reforming catalyst, so that the second reforming catalyst 2 is modified more than the first reforming catalyst 1. The catalytic ability per unit amount for the quality reaction is low.
  • the method for generating a hydrogen-containing gas of the present embodiment includes a step of passing a raw material containing at least one of nitrogen molecules and a nitrogen-containing compound through the first reforming catalyst, and more than the first reforming catalyst. And passing a second reforming catalyst disposed downstream and having a specific surface area smaller than that of the first reforming catalyst.
  • both the first reforming catalyst and the second reforming catalyst include a catalyst metal containing Ru and an alumina support as a catalyst metal support.
  • a quality catalyst is disposed downstream of the first reforming catalyst.
  • the specific surface area of the second reforming catalyst is smaller than the specific surface area of the first reforming catalyst.
  • a reforming catalyst having a large specific surface area has a higher catalytic ability for the reforming reaction.
  • the second reforming catalyst 2 having a specific surface area smaller than that of the first reforming catalyst 1 is relatively lower in catalytic ability per unit amount for the reforming reaction than the first reforming catalyst 1. .
  • a raw material containing at least one of nitrogen molecules and a nitrogen-containing compound is passed through a reformer including the first reforming catalyst 1 and the second reforming catalyst 2 to advance the reforming reaction.
  • a reformer including the first reforming catalyst 1 and the second reforming catalyst 2 to advance the reforming reaction.
  • a hydrogen-containing gas is produced.
  • the method for producing a hydrogen-containing gas according to the present embodiment can produce a hydrogen-containing gas while suppressing the production of ammonia as compared with the conventional method.
  • the above Ru as the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 is an example, and the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 is an example. Any catalyst metal can be used as long as it can cause the reforming reaction to proceed, and the present invention is not limited to this example.
  • the catalyst metals of the first reforming catalyst 1 and the second reforming catalyst 2 are generally selected from the group consisting of noble metal catalysts such as Pt, Ru, Rh, Pd, and Ni-based catalysts. At least one kind can be suitably used.
  • the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 may be the same metal species or different metal species.
  • the second catalytic metal has a catalytic ability for the reforming reaction equal to or lower than that of the first catalytic metal. It becomes.
  • the above-mentioned alumina carrier as the carrier of the first reforming catalyst 1 and the second reforming catalyst 2 is an example, and the carrier of the first reforming catalyst 1 and the second reforming catalyst 2 is However, the present invention is not limited to this example.
  • the catalyst metal carrier of the first reforming catalyst 1 and the second reforming catalyst 2 may be any carrier as long as it can carry the catalyst metal.
  • the second carrier carrying the catalyst metal contained in the second reforming catalyst is more suitable for the reforming reaction than the first carrier carrying the catalyst metal contained in the first reforming catalyst. The effect is low. As a result, the second reforming catalyst 2 has a lower catalytic ability per unit amount for the reforming reaction than the first reforming catalyst 1.
  • the method for generating a hydrogen-containing gas of the present embodiment includes a step of passing a raw material containing at least one of nitrogen molecules and a nitrogen-containing compound through the first reforming catalyst, and more than the first reforming catalyst. And passing a second reforming catalyst disposed downstream and having a carrier effect smaller than that of the first reforming catalyst.
  • first reforming catalyst and the second reforming catalyst are provided with the same catalyst metal.
  • both the first reforming catalyst and the second reforming catalyst include a catalyst metal containing Ru.
  • the first carrier supporting the catalyst metal included in the first reforming catalyst and the second carrier supporting the catalyst metal included in the second reforming catalyst Different from the carrier.
  • the second carrier has a lower carrier effect on the reforming reaction than the first carrier.
  • a zirconia support rather than an alumina support has a lower support effect on the reforming reaction. Therefore, in this embodiment, an alumina carrier having a high carrier effect is used for the first reforming catalyst 1, and a zirconia carrier having a low carrier effect is used for the second reforming catalyst 2.
  • the second reforming catalyst including the second carrier having a smaller carrier effect than the first carrier has a lower catalytic ability per unit amount relative to the reforming reaction than the first reforming catalyst.
  • the first reforming catalyst 1 and the second reforming catalyst 2 each including the first carrier and the second carrier include a raw material containing at least one of a nitrogen molecule and a nitrogen-containing compound. And a reforming reaction proceeds to produce a hydrogen-containing gas.
  • the method for producing a hydrogen-containing gas according to the present embodiment can produce a hydrogen-containing gas while suppressing the production of ammonia as compared with the conventional method.
  • the above Ru as the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 is an example, and the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 is an example. Any catalyst metal can be used as long as it can cause the reforming reaction to proceed, and the present invention is not limited to this example.
  • the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 is generally at least one selected from the group consisting of noble metal catalysts such as Pt, Ru, Rh, Pd, and Ni-based catalysts. Species can be suitably used.
  • the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 may be the same metal species or different metal species.
  • the second catalytic metal has a catalytic ability for the reforming reaction equal to or lower than that of the first catalytic metal. It becomes.
  • the above-described alumina carrier and zirconia carrier as carriers for the first reforming catalyst 1 and the second reforming catalyst 2 are examples, and the first reforming catalyst 1 and the second reforming catalyst 2 are examples.
  • the carrier is not limited to this example.
  • the carrier of the catalyst metal of the first reforming catalyst 1 and the second reforming catalyst 2 may be any carrier as long as it satisfies the above-described level of the carrier effect and can carry the catalyst metal. .
  • the first reforming catalyst and the second reforming catalyst are catalysts containing Ni as a catalyst metal.
  • the content of the catalyst metal per unit volume of the second reforming catalyst is less than that of the first reforming catalyst 1, so that the second The reforming catalyst 2 has a lower catalytic ability per unit amount for the reforming reaction than the first reforming catalyst 1.
  • the first reforming catalyst and the second reforming catalyst both include a catalyst metal containing Ni and an alumina carrier as a carrier for the catalyst metal, and the second reforming catalyst is the first reforming catalyst. Is disposed downstream of the reforming catalyst.
  • the first reforming catalyst is configured so that the content of the catalytic metal per unit volume is relatively larger than that of the second reforming catalyst.
  • the first reforming catalyst 1 a reforming catalyst having a supported amount of catalytic metal containing Ni in an alumina carrier of 30 wt% is used, and as the second reforming catalyst 2, A reforming catalyst in which the supported amount of the catalyst metal containing Ni on the alumina support is 20 wt% is used.
  • the reforming catalyst having a higher content of catalytic metal containing Ni per unit volume has a higher methane conversion rate. That is, the catalytic ability for the reforming reaction is high.
  • the second reforming catalyst 2 having a lower catalyst metal content per unit volume than the first reforming catalyst 1 has a relatively low catalytic ability per unit amount for the reforming reaction.
  • the method for producing a hydrogen-containing gas according to the present embodiment can produce a hydrogen-containing gas while suppressing the production of ammonia as compared with the conventional method.
  • the above-mentioned alumina carrier as the carrier of the first reforming catalyst 1 and the second reforming catalyst 2 is an example, and the carrier of the first reforming catalyst 1 and the second reforming catalyst 2 is However, the present invention is not limited to this example.
  • the catalyst metal carrier of the first reforming catalyst 1 and the second reforming catalyst 2 may be any carrier as long as it can carry the catalyst metal.
  • the above-mentioned amount of Ni supported by the first reforming catalyst 1 and the second reforming catalyst 2 is an exemplification, and per unit volume of the first reforming catalyst 1 and the second reforming catalyst 2.
  • the content of the catalyst metal is not limited to this example.
  • the content of the catalyst metal per unit volume of the second reforming catalyst is less than that of the first reforming catalyst 1, so that the second The reforming catalyst 2 has lower catalytic ability per unit amount for the reforming reaction than the first reforming catalyst 1, but is not limited thereto.
  • Example 5 A method for producing the hydrogen-containing gas of Example 5 will be described.
  • the first reforming catalyst and the second reforming catalyst are divided.
  • the first reforming catalyst 1 can be filled upstream of the reformer 100. Further, the second reforming catalyst 2 can be filled on the downstream side of the reformer 100.
  • a partition member (not shown) for partitioning the first reforming catalyst 1 and the second reforming catalyst 2 may be provided. A plurality of holes that do not allow the reforming catalyst to pass through the gas may be formed in the partition member.
  • the above-described divided arrangement of the first reforming catalyst 1 and the second reforming catalyst 2 is an example, and the form of arrangement of the first reforming catalyst 1 and the second reforming catalyst 2 is as follows. It is not limited to this example. If the above-described high / low relation of the catalytic ability is satisfied between the first reforming catalyst 1 and the second reforming catalyst 2, how the first reforming catalyst 1 and the second reforming catalyst 2 are arranged. May be.
  • the first reforming catalyst 1 and the second reforming catalyst 2 are mixed, and the concentration of the first reforming catalyst decreases toward the downstream.
  • it may be in the form of an arrangement having a concentration gradient.
  • the amount of the second reforming catalyst is larger than that of the first reforming catalyst.
  • the method for generating a hydrogen-containing gas of the present embodiment includes a step of passing a raw material containing at least one of nitrogen molecules and a nitrogen-containing compound through the first reforming catalyst, and more than the first reforming catalyst.
  • a second reforming catalyst disposed downstream and passing a second reforming catalyst having a catalytic capacity for the reforming reaction that is smaller than that of the first reforming catalyst, wherein the second reforming catalyst is a first reforming catalyst. More catalyst than
  • the first reforming catalyst 1 and the second reforming catalyst 2 provided in the reformer 100 are converted into the second reforming catalyst 2 by any one of the methods in Embodiment 1-5.
  • the catalytic performance per unit amount for the reforming reaction is lower than that of the first reforming catalyst 1.
  • the second reforming catalyst has a larger amount of catalyst than the first reforming catalyst.
  • the methane conversion rate tends to be lower than the equilibrium, but the amount of the second reforming catalyst 2 is increased to increase SV. Is preferable because the methane conversion rate approaches equilibrium.
  • the first reforming catalyst 1 may be charged to a position close to the high temperature region on the downstream side of the reformer 100. In this case, there is a possibility that the first reforming catalyst 1 is used in a high temperature state, and ammonia is easily generated in the first reforming catalyst 1.
  • the second reforming catalyst 2 has a larger amount of catalyst than the first reforming catalyst 1.
  • the first reforming catalyst 1 and the second reforming catalyst are set so that the ratio between the catalyst amount of the first reforming catalyst 1 and the catalyst amount of the second reforming catalyst 2 is, for example, 1: 2. 2 may be charged into the reformer 100, or the amount of the second reforming catalyst 2 may be further increased. However, considering the cost reduction and compactness of the reformer, the above ratio is preferably about 1: 2 to 1: 5. [Example 7] In Example 7, the catalytic capacity for the reforming reaction of the catalyst metal included in the second reforming catalyst is made lower than that of the catalyst metal included in the first reforming catalyst, whereby the second reforming catalyst 2 Is lower in catalytic ability per unit amount than the first reforming catalyst 1 for the reforming reaction.
  • the method for generating a hydrogen-containing gas of the present embodiment includes a step of passing a raw material containing at least one of nitrogen molecules and a nitrogen-containing compound through the first reforming catalyst, and more than the first reforming catalyst. And a step of passing a second reforming catalyst disposed downstream and having a catalytic ability for the reforming reaction of the catalytic metal lower than that of the first reforming catalyst.
  • a specific example of the method for generating the hydrogen-containing gas of Example 7 will be described in detail.
  • the reforming catalyst has higher catalytic ability for the reforming reaction in the order of Ru catalyst, Ru—Pt composite catalyst, Ni catalyst, and Pt—Rh composite catalyst under the same use conditions.
  • the first reforming catalyst 1 is the second reforming catalyst 1 based on the relation of the catalytic ability to the reforming reaction of Ru catalyst> Ru—Pt composite catalyst> Ni catalyst> Pt—Rh composite catalyst.
  • the reforming catalyst is appropriately selected so that the catalytic ability for the reforming reaction is higher than that of the reforming catalyst 2.
  • a combination using a Ru catalyst as the first reforming catalyst 1 and a Pt—Rh composite catalyst as the second reforming catalyst 2 is excluded.
  • a Ru catalyst may be used as the first reforming catalyst 1, and a Ni catalyst may be used as the second reforming catalyst 2. Further, a Ru catalyst may be used as the first reforming catalyst 1, and a Pt catalyst may be used as the second reforming catalyst 2. Further, a Ru—Pt composite catalyst may be used as the first reforming catalyst 1, and a Pt—Rh composite catalyst may be used as the second reforming catalyst 2.
  • the combination of the above reforming catalysts is an example, and is not limited to this example.
  • the operation method of the fuel cell system according to the present embodiment includes a step in which the fuel cell generates power using the hydrogen-containing gas generated by the hydrogen-containing gas generation method according to any one of the first embodiment and Example 1-7. Prepare.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a fuel cell system used in the operation method of the fuel cell system of the second embodiment.
  • the fuel cell system 200 includes a reformer 100 and a fuel cell 101.
  • the fuel cell 101 is a fuel cell that generates power using the hydrogen-containing gas supplied from the reformer 100.
  • the fuel cell 101 may be any type of fuel cell.
  • a polymer electrolyte fuel cell (PEFC) a solid oxide fuel cell, or a phosphoric acid fuel cell may be used.
  • the fuel cell system 200 During the power generation operation, the fuel cell system 200 generates power using the hydrogen-containing gas supplied from the reformer 100.
  • the power generation operation of the fuel cell 101 is known. Therefore, detailed description is omitted.
  • One embodiment of the present invention can generate a hydrogen-containing gas while suppressing the generation of ammonia as compared with the conventional one.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒(1)を通過させるステップと、第1の改質触媒(1)よりも下流に配設され、第1の改質触媒(1)よりも改質反応に対する単位量当りの触媒能が低い第2の改質触媒(2)を通過させるステップと、を備える。

Description

水素含有ガスの生成方法および燃料電池システムの運転方法
 本発明は水素含有ガスの生成方法および燃料電池システムの運転方法に関する。
 従来より、改質反応を利用して原料から水素含有ガスを生成する方法がある。ここで、上記原料は、少なくとも炭素及び水素を構成元素とする有機化合物を含む。原料は、具体的には、原料ガスは、メタンを主成分とする都市ガス、天然ガス、LPG等が例示される。
 改質反応で生成された水素含有ガス中の一酸化炭素を低減するためのCO低減器を設けても構わない。CO低減器は、シフト反応により一酸化炭素を低減させる変成器と、酸化反応及びメタン化反応の少なくともいずれか一方により一酸化炭素を低減させるCO除去器との少なくともいずれか一方を備える。
 ここで、原料には、窒素分子、アミン等の窒素含有化合物が含まれると、改質反応により生成した水素と反応してアンモニアが生成され、このアンモニアが、CO除去器、燃料電池等の触媒毒になることが知られている(例えば、特許文献1参照)。
国際公開第2007/081016号パンフレット
 上記特許文献1記載の水素生成装置では、アンモニア被毒後に触媒を再生することについては検討されているが、アンモニアの生成を抑える水素含有ガスの生成方法については検討されていない。
 本発明は、上記従来の課題を解決するもので、従来よりもアンモニアの生成を抑える水素含有ガスの生成方法、及び燃料電池システムの運転方法を提供することを目的とする。
課題を解決する手段
 上記課題を解決するため、本発明の一態様の水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、前記第1の改質触媒よりも下流に配設され、前記第1の改質触媒よりも改質反応に対する単位量当りの触媒能が低い第2の改質触媒を通過させるステップとを備える。
 本発明の一態様の水素含有ガスの生成方法によれば、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。
図1は、実施の形態1の水素含有ガスの生成方法に用いる改質器の概略構成の一例を示す図である。 図2は、改質触媒の触媒能を比較した実験結果の一例を示す図である。 図3は、実施の形態2の燃料電池システムの運転方法に用いる燃料電池システムの概略構成の一例を示す図である。
(実施の形態1)
 本発明者は、上記課題について鋭意検討した結果、以下の点に気付いた。
 改質反応は吸熱反応であるため改質反応の反応量が相対的に少ない下流側の触媒は、上流側よりも相対的に温度が高くなる。温度が高くなると反応速度的にアンモニアの生成量が増加する。
 そこで、本実施の形態の水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、第1の改質触媒よりも下流に配設され、第1の改質触媒よりも改質反応に対する単位量当りの触媒能が低い第2の改質触媒を通過させるステップとを備える。
 改質反応に対して単位量当りの触媒能が相対的に低い改質触媒では、アンモニアの生成の反応性も相対的に低くなることが知られている。
 従って、上記水素含有ガスの生成方法により、第1の改質触媒よりも高温に維持される第2の改質触媒において、アンモニアの生成が抑制されるので、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。
 ここで、触媒能とは、改質反応を触媒する能力を意味する。
 図1は、実施の形態1の水素含有ガスの生成方法に用いる改質器の概略構成の一例を示す図である。
 図1に示すように、改質器100は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を用いて水素含有ガスを生成する。
 具体的には、改質器100内において、原料ガスが改質反応して、水素含有ガスが生成される。改質反応は、いずれの形態であってもよく、例えば、水蒸気改質反応、オートサーマル反応及び部分酸化反応等が挙げられる。図1には示されていないが、各改質反応において必要となる機器は適宜設けられる。例えば、改質反応が水蒸気改質反応であれば、改質器100を加熱する燃焼器、水蒸気を生成する蒸発器、及び蒸発器に水を供給する水供給器が設けられる。改質反応がオートサーマル反応であれば、改質器100には、さらに、改質器100に空気を供給する空気供給器が設けられる。
 原料は、少なくとも炭素及び水素を構成元素とする有機化合物を含む。原料は、メタンを主成分とする都市ガス、天然ガス、LPG等が例示される。窒素含有化合物は、アミン及びイソニトリル等が例示される。
 なお、改質器100の下流に改質器100で生成された水素含有ガス中の一酸化炭素を低減するためのCO低減器を設けても構わない。CO低減器は、シフト反応により一酸化炭素を低減させる変成器と、酸化反応及びメタン化反応の少なくともいずれか一方により一酸化炭素を低減させるCO除去器との少なくともいずれか一方を備える。
 図1に示すように、改質器100は、第1の改質触媒1と、第1の改質触媒1の下流に配設された第2の改質触媒2とを備える。第1の改質触媒1および第2の改質触媒2はそれぞれ、触媒金属と触媒金属の担体とを備える。
 第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低い。これを満たせば、第1の改質触媒1及び第2の改質触媒2は、いずれの形態であってもよいが、具体例については、以下の実施例で説明する。なお、単位量は、例えば、単位重量、単位体積、モル等が挙げられるが、これらに限定されるものではなく、一般的な単位量であればいずれの単位量であっても構わない。
 上記改質器100に、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料が供給され、水素含有ガスが生成される。
 すなわち、本実施の形態の水素含有ガスの生成方法は、原料ガスを、相対的に改質反応に対する単位量当りの触媒能が高い第1の改質触媒1を通過させるステップと、第1の改質触媒1よりも下流に配設され、相対的に改質反応に対する単位量当りの触媒能が低い第2の改質触媒2を通過させるステップと、を備える。
 ここで、上述の通り、改質触媒の改質反応は吸熱反応であるため、第1の改質触媒1よりも改質反応の反応量が少ない第2の改質触媒2は、第1の改質触媒1よりも温度が高くなりやすい。
 また、図1に示すように、高温の燃焼排ガスにより第2の改質触媒2及び第1の改質触媒1の順に加熱されるよう構成されており、これによっても、第2の改質触媒2の方が、第1の改質触媒1よりも温度が高くなる。
 従って、第2の改質触媒2の方が、第1の改質触媒1よりも反応速度的にアンモニアの生成量が増加しやすくなる。
 しかしながら、上述の本実施の形態の水素含有ガスの生成方法を用いることで、上述の通り、従来よりもアンモニア生成量を抑制し得る。
[実施例1]
 実施例1では、第2の改質触媒の単位体積当たりの触媒金属の含有量が、第1の改質触媒のそれよりも少なくすることで、第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低くなっている。
 つまり、本実施例の水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、第1の改質触媒よりも下流に配設され、単位体積当たりの触媒金属の含有量が、第1の改質触媒よりも少ない第2の改質触媒を通過させるステップとを備える。
 実施例1の水素含有ガスの生成方法の具体例について、詳細に説明する。
 図2は、改質触媒の触媒能を比較した実験結果の一例を示す図である。
 本実施例では、改質触媒が、Ruを含有する触媒金属と、触媒金属の担体としてアルミナ担体とを備える。図2には、この改質触媒の単位体積あたりの触媒金属の含有量の違いによる改質反応に対する触媒能の相違を検討した実験結果が示されている。
 具体的には、アルミナ担体におけるRuの担持量が2wt%の改質触媒(以下、「2wt%Ru/アルミナ触媒」と略す場合がある)と、アルミナ担体におけるRuの担持量が0.5wt%の改質触媒(以下、「0.5wt%Ru/アルミナ触媒」と略す場合がある)とを準備した。これらの改質触媒について、図2に、改質触媒の温度(℃)と、改質触媒の触媒能を表すメタン(CH)転化率(%)の関係が示されている。
 本実験では、固定床流通型反応装置に、2wt%Ru/アルミナ触媒および0.5wt%Ru/アルミナ触媒をそれぞれ、0.6cc充填させて、メタン流量が100ml/minになるように、メタンが供給され、水流量が0.201g/minとなるように、水が供給されている。この場合、SVは10000/hである。また、改質触媒の温度を調整するのに電気炉を用いて改質触媒が加熱され、改質触媒の出口ガスの濃度をガスクロマトグラフィーによって測定することによりメタン転化率が導かれている。
 図2に示すように、約350℃~650℃の改質触媒の温度範囲において、2wt%Ru/アルミナ触媒が常に、0.5wt%Ru/アルミナ触媒よりもメタン転化率が大きい。つまり、単位体積当りの触媒金属の含有量が相対的に多い2wt%Ru/アルミナ触媒は、相対的に改質反応に対する単位量当りの触媒能が高い。一方、単位体積当りの触媒金属の含有量が相対的に少ない0.5wt%Ru/アルミナ触媒は、相対的に改質反応に対する単位量当りの触媒能が低い。
 ところで、原料ガスの改質反応の進行において、第1の改質触媒1および第2の改質触媒2の触媒金属としてRuを用いる場合、第1の改質触媒1の温度は、例えば、400℃程度、第2の改質触媒2の温度は、例えば、600℃程度に調整される。
 この場合、原料ガスに、窒素分子及び窒素含有化合物の少なくともいずれか一方が含まれると、原料ガスの改質反応の進行とともに、アンモニアが生成し、アンモニア生成量は改質触媒の温度に大きく依存する。例えば、窒素を2%程度含む原料ガスの改質反応の進行の場合、2wt%Ru/アルミナ触媒では、改質触媒の温度が400℃の条件下において、アンモニアの生成量は1ppm以下であるが、600℃では、10ppm程度となる。一方、0.5wt%Ru/アルミナ触媒では、アンモニア生成量を、600℃でも1ppm程度に抑制できる。このため、相対的に改質反応に対する単位量当りの触媒能が高い2wt%Ru/アルミナ触媒は、アンモニアを生成反応を触媒する能力も高いので、アンモニア生成量を抑制するには、かかる改質触媒を低温で使用することが好ましい。一方、相対的に改質反応に対する単位量当りの触媒能が低い0.5wt%Ru/アルミナ触媒は、高温でもアンモニア生成量を抑制し得る。
 そこで、本実施例の改質器100では、第1の改質触媒1に2wt%Ru/アルミナ触媒を用い、第2の改質触媒2に0.5wt%Ru/アルミナ触媒を用いる。
よって、本実施例の水素含有ガスの生成方法は、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。
 なお、第1の改質触媒1および第2の改質触媒2の触媒金属としての上記のRuは、例示であって、第1の改質触媒1および第2の改質触媒2の触媒金属は、改質反応を進行させることが可能な触媒金属であれば、いずれであっても構わず、本例に限定されるものではない。なお、第1の改質触媒1および第2の改質触媒2の触媒金属は、一般的に、Pt、Ru、Rh、Pd等の貴金属系触媒及びNi系からなる群の中から選択される少なくとも1種を好適に用いることができる。
 また、第1の改質触媒1および第2の改質触媒2の触媒金属は、同一金属種でも異なる金属種でもよい。なお、第1の改質触媒1および第2の改質触媒2の触媒金属が、異なる金属種であるときは、第2の触媒金属は、改質反応に対する触媒能が第1の触媒金属以下となる。
 また、第1の改質触媒1および第2の改質触媒2の担体としての上記のアルミナ担体は、例示であって、第1の改質触媒1および第2の改質触媒2の担体は、本例に限定されるものではない。第1の改質触媒1および第2の改質触媒2の触媒金属の担体は、触媒金属を担持可能なものであれば、どのような担体でもよい。
 また、第1の改質触媒1および第2の改質触媒2の上記のRuの担持量は、例示であって、第1の改質触媒1および第2の改質触媒2の単位体積当たりの触媒金属の含有量は、本例に限定されるものではない。
 また、第1の改質触媒1および第2の改質触媒2の上記の温度およびSVは、例示であって、これらは、本例に限定されるものではない。
 なお、本実施例では、改質触媒に対するアンモニア生成を抑制する効果以外にも、以下の効果がある。
 Ru系の改質触媒は一般的に硫黄被毒されるため、原料ガス中に硫黄を含む場合は、吸着脱硫剤または水添脱硫剤を改質触媒の前段に設けて、硫黄を除去している。しかし、硫黄を完全に除去することは困難であり、数ppb程度は改質触媒へ供給されてしまう場合がある。そこで、上記のとおり、第1の改質触媒1に、相対的に改質反応に対する触媒能が高い触媒を充填すると、硫黄が供給されても改質反応の性能が低下しにくいので、改質触媒の耐久性において有利である。また、硫黄は第1の改質触媒1でトラップされるので、第2の改質触媒2が、相対的に改質反応に対する触媒能が低い触媒があっても、硫黄による改質反応の性能低下を抑制できる。
[実施例2]
 実施例2では、第2の改質触媒の比表面積は、第1の改質触媒のそれよりも小さくすることで、第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低くなっている。
 つまり、本実施例の水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、第1の改質触媒よりも下流に配設され、比表面積が第1の改質触媒よりも小さい第2の改質触媒を通過させるステップとを備える。 実施例2の水素含有ガスの生成方法の具体例について、詳細に説明する。
 本実施例も、実施例1と同様に、第1の改質触媒及び第2改質触媒は、共にRuを含有する触媒金属と、触媒金属の担体としてアルミナ担体とを備え、第2の改質触媒が第1の改質触媒の下流に配設されている。
 そして、第2の改質触媒の比表面積は、第1の改質触媒の比表面積よりも小さい。
 一般的に、比表面積が大きい改質触媒の方が、改質反応に対する触媒能が高い。
 よって、第1の改質触媒1よりも比表面積の小さい第2の改質触媒2は、第1の改質触媒1よりも、相対的に改質反応に対する単位量当りの触媒能が低くなる。
 本実施例では、上記第1の改質触媒1及び第2の改質触媒2を備える改質器に窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を通過させ、改質反応を進行させ、水素含有ガスを生成する。
 よって、本実施例の水素含有ガスの生成方法は、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。 なお、第1の改質触媒1および第2の改質触媒2の触媒金属としての上記のRuは、例示であって、第1の改質触媒1および第2の改質触媒2の触媒金属は、改質反応を進行させることが可能な触媒金属であれば、いずれであっても構わず、本例に限定されるものではない。なお、第1の改質触媒1および第2の改質触媒2の触媒金属は、一般的に、Pt、Ru、Rh、Pd等の貴金属系触媒及びNi系からなる群の中から選択される少なくとも1種を好適に用いることができる。
 また、第1の改質触媒1および第2の改質触媒2の触媒金属は、同一金属種でも異なる金属種でもよい。なお、第1の改質触媒1および第2の改質触媒2の触媒金属が、異なる金属種であるときは、第2の触媒金属は、改質反応に対する触媒能が第1の触媒金属以下となる。
 また、第1の改質触媒1および第2の改質触媒2の担体としての上記のアルミナ担体は、例示であって、第1の改質触媒1および第2の改質触媒2の担体は、本例に限定されるものではない。第1の改質触媒1および第2の改質触媒2の触媒金属の担体は、触媒金属を担持可能なものであれば、どのような担体でもよい。
[実施例3]
 実施例3では、第2の改質触媒に含まれる触媒金属を担持する第2の担体は、第1の改質触媒に含まれる触媒金属を担持する第1の担体よりも改質反応に対する担体効果が低くなっている。これにより、第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低くなっている。
 つまり、本実施例の水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、第1の改質触媒よりも下流に配設され、担体効果が第1の改質触媒よりも小さい第2の改質触媒を通過させるステップとを備える。
 なお、第1の改質触媒と第2の改質触媒とが、同一の触媒金属を備えている。
 実施例3の水素含有ガスの生成方法の具体例について、詳細に説明する。
 本実施例も、実施例1及び実施例2と同様に、第1の改質触媒及び第2改質触媒は、共にRuを含有する触媒金属を備える。
 ただし、実施例1及び実施例2と異なり本実施例では、第1の改質触媒が備える触媒金属を担持する第1の担体と、第2の改質触媒が備える触媒金属を担持する第2の担体とは異なる。
 具体的には、第2の担体が、第1の担体よりも改質反応に対する担体効果が低い。
 例えば、アルミナ担体よりもジルコニア担体を用いる方が、改質反応に対する担体効果が低くなる。そこで、本実施例では、第1の改質触媒1には担体効果が高いアルミナ担体を用い、第2の改質触媒2には担体効果が低いジルコニア担体を用いている。
 よって、第1の担体よりも担体効果の小さい第2の担体を備える第2の改質触媒は、第1の改質触媒よりも相対的に改質反応に対する単位量当りの触媒能が低くなる。
 そして、本実施例では、上記第1の担体及び第2の担体を備える第1の改質触媒1及び第2の改質触媒2に、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を通過させ、改質反応を進行させ、水素含有ガスを生成する。
 よって、本実施例の水素含有ガスの生成方法は、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。
 なお、第1の改質触媒1および第2の改質触媒2の触媒金属としての上記のRuは、例示であって、第1の改質触媒1および第2の改質触媒2の触媒金属は、改質反応を進行させることが可能な触媒金属であれば、いずれであっても構わず、本例に限定されるものではない。第1の改質触媒1および第2の改質触媒2の触媒金属は、一般的に、Pt、Ru、Rh、Pd等の貴金属系触媒及びNi系からなる群の中から選択される少なくとも1種を好適に用いることができる。
 また、第1の改質触媒1および第2の改質触媒2の触媒金属は、同一金属種でも異なる金属種でもよい。なお、第1の改質触媒1および第2の改質触媒2の触媒金属が、異なる金属種であるときは、第2の触媒金属は、改質反応に対する触媒能が第1の触媒金属以下となる。
 また、第1の改質触媒1および第2の改質触媒2の担体としての上記のアルミナ担体およびジルコニア担体は、例示であって、第1の改質触媒1および第2の改質触媒2の担体は、本例に限定されるものではない。第1の改質触媒1および第2の改質触媒2の触媒金属の担体は、上記の担体効果の高低関係を満たして、触媒金属を担持可能なものであれば、どのような担体でもよい。
[実施例4]
 実施例4では、第1の改質触媒と第2の改質触媒とが、触媒金属としてNiを含有する触媒である。
 また、本実施例では、実施例1と同様に、第2の改質触媒の単位体積当たりの触媒金属の含有量が、第1の改質触媒1のそれよりも少なくすることで、第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低くなっている。
 実施例4の水素含有ガスの生成方法の具体例について、詳細に説明する。
 本実施例では、第1の改質触媒と第2の改質触媒とが、共にNiを含有する触媒金属と、触媒金属の担体としてアルミナ担体とを備え、第2の改質触媒が第1の改質触媒の下流に配設されている。
 本例では、第1の改質触媒が、第2の改質触媒よりも単位体積当りの触媒金属の含有量が相対的に多くなるよう構成されている。
 具体的には、本実施例では、第1の改質触媒1として、アルミナ担体におけるNiを含有する触媒金属の担持量が30wt%の改質触媒を用い、第2の改質触媒2として、アルミナ担体におけるNiを含有する触媒金属の担持量が20wt%の改質触媒を用いている。
 そして、実施例1と同様に、単位体積当りのNiを含有する触媒金属の含有量が多い改質触媒の方が、メタン転化率が高い。つまり、改質反応に対する触媒能が高い。
 よって、第1の改質触媒1よりも単位体積当りの触媒金属の含有量の少ない第2の改質触媒2は、相対的に改質反応に対する単位量当りの触媒能が低くなる。
 よって、本実施例の水素含有ガスの生成方法は、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。
 また、第1の改質触媒1および第2の改質触媒2の担体としての上記のアルミナ担体は、例示であって、第1の改質触媒1および第2の改質触媒2の担体は、本例に限定されるものではない。第1の改質触媒1および第2の改質触媒2の触媒金属の担体は、触媒金属を担持可能なものであれば、どのような担体でもよい。
 また、第1の改質触媒1および第2の改質触媒2の上記のNiの担持量は、例示であって、第1の改質触媒1および第2の改質触媒2の単位体積当たりの触媒金属の含有量は、本例に限定されるものではない。
 なお、本実施例では、実施例1と同様に、第2の改質触媒の単位体積当たりの触媒金属の含有量が、第1の改質触媒1のそれよりも少なくすることで、第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低くしているが、これに限定されない。
 第2の改質触媒2の改質反応に対する単位量当りの触媒能を、第1の改質触媒1のそれよりも低くするために、実施例2または実施例3のような方法を採用しても構わない。
[実施例5]
 実施例5の水素含有ガスの生成方法について説明する。
 本実施例の水素含有ガスの生成方法は、第1の改質触媒と第2の改質触媒とが分割されていている。
 第1の改質触媒1と第2の改質触媒2とが分割された配置を取ると、改質器100の上流側に第1の改質触媒1を充填できる。また、改質器100の下流側に第2の改質触媒2を充填できる。なお、この場合、第1の改質触媒1と第2の改質触媒2とを仕切る仕切部材(図示せず)を設けてもよい。仕切部材には、ガスを通して改質触媒を通さない複数の孔を形成してもよい。
 なお、第1の改質触媒1および第2の改質触媒2の上記の分割配置は、例示であって、第1の改質触媒1および第2の改質触媒2の配置の形態は、本例に限定されるものではない。第1の改質触媒1および第2の改質触媒2の間で上記の触媒能の高低関係を満たせば、第1の改質触媒1および第2の改質触媒2をどのように配置してもよい。
 例えば、改質器100の少なくとも一部において、第1の改質触媒1及び第2の改質触媒2と、が混合されており、下流に向かうに従って第1の改質触媒の濃度が低くなるよう、濃度勾配を持たせる配置の形態であってもよい。
[実施例6]
 実施例6では、実施例1-実施例5の水素含有ガスの生成方法において、第2の改質触媒は、第1の改質触媒よりも触媒量を多くしている。
 つまり、本実施例の水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、第1の改質触媒よりも下流に配設され、改質反応に対する触媒能が第1の改質触媒よりも小さい第2の改質触媒を通過させるステップとを備え、第2の改質触媒は、第1の改質触媒よりも触媒量が多い。
 実施例6の水素含有ガスの生成方法の具体例について、詳細に説明する。
 本実施例では、改質器100に設けられた第1の改質触媒1及び第2の改質触媒2は、実施例1-5のいずれかの方法により、第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低くなっている。
 さらに、第2の改質触媒は、第1の改質触媒よりも触媒量が多い。
 第2の改質触媒2は、相対的に改質反応に対する単位量当りの触媒能が低いので、メタン転化率が平衡を下回りやすいが、第2の改質触媒2の触媒量を増やし、SVを低下させることでメタン転化率が平衡に近づくので好ましい。
 また、第1の改質触媒1の触媒量を増やすと、第1の改質触媒1が、改質器100の下流側の高温領域に近い位置まで充填される場合がある。この場合、第1の改質触媒1が、高温状態で使用される可能性が生じ、第1の改質触媒1において、アンモニアを生成しやすくなる。
 このため、第2の改質触媒2は、第1の改質触媒1よりも触媒量を多くする方が好ましい。
 第1の改質触媒1の触媒量と第2の改質触媒2の触媒量との比率が、例えば、1:2となるように、第1の改質触媒1および第2の改質触媒2を改質器100に充填してもよいし、また、第2の改質触媒2の触媒量を更に増やしてもよい。但し、改質器の低コスト化、および、コンパクト化の点から考慮すると、上記の比率は、1:2から1:5程度にする方が好ましい。
[実施例7]
 実施例7では、第2の改質触媒が備える触媒金属の改質反応に対する触媒能を、第1の改質触媒が備える触媒金属のそれよりも低くすることで、第2の改質触媒2は、第1の改質触媒1よりも改質反応に対する単位量当りの触媒能が低くなっている。
 つまり、本実施例の水素含有ガスの生成方法は、窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、第1の改質触媒よりも下流に配設され、触媒金属の改質反応に対する触媒能が第1の改質触媒よりも低い第2の改質触媒を通過させるステップとを備える。
実施例7の水素含有ガスの生成方法の具体例について、詳細に説明する。
 改質触媒は、同一の使用条件においては、Ru触媒、Ru-Pt複合触媒、Ni触媒、Pt-Rh複合触媒の順に、改質反応に対する触媒能が高くなる。
 よって、本実施例では、Ru触媒>Ru-Pt複合触媒>Ni触媒>Pt-Rh複合触媒という改質反応に対する触媒能の関係に基づいて、第1の改質触媒1の方が、第2の改質触媒2よりも改質反応に対する触媒能が高くなるよう、上記改質触媒を適宜選択する。但し、第1の改質触媒1として、Ru触媒を用い、第2の改質触媒2としてPt-Rh複合触媒を用いる組み合わせは除くものとする。
 具体的には、第1の改質触媒1として、Ru触媒を用い、第2の改質触媒2として、Ni触媒を用いてもよい。また、第1の改質触媒1として、Ru触媒を用い、第2の改質触媒2として、Pt触媒を用いてもよい。また、第1の改質触媒1として、Ru-Pt複合触媒を用い、第2の改質触媒2として、Pt-Rh複合触媒を用いてもよい。
 なお、上記の改質触媒の組合せは、例示であって、本例に限定されない。例えば、3種類以上の触媒金属を備える改質触媒を改質反応に対する触媒能の高い順に、改質器の上流側から順番に配設してもよい。
(実施の形態2)
 本実施の形態の燃料電池システムの運転方法は、実施の形態1および実施例1-7のいずれかの水素含有ガスの生成方法で生成された水素含有ガスを用いて燃料電池が発電するステップを備える。
 実施の形態1および実施例1-7のいずれかの水素含有ガスの生成方法により、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。
 従って、従来例よりも燃料電池の性能低下を抑制し得る。
 図3は、実施の形態2の燃料電池システムの運転方法に用いる燃料電池システムの概略構成の一例を示す図である。
 図3に示す例では、燃料電池システム200は、改質器100と、燃料電池101とを備える。燃料電池101は、改質器100より供給される水素含有ガスを用いて発電する燃料電池である。燃料電池101は、いずれの種類の燃料電池であってもよく、例えば、高分子電解質形燃料電池(PEFC)、固体酸化物形燃料電池またはりん酸形燃料電池等を用いることができる。
 発電運転時において、燃料電池システム200は、改質器100から供給される水素含有ガスを用いて発電する。なお、燃料電池101の発電の動作は公知である。よって、詳細な説明は省略する。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の一態様は、従来よりもアンモニアの生成を抑えて水素含有ガスを生成し得る。
 1 第1の改質触媒
 2 第2の改質触媒
 100 改質器
 101 燃料電池
 200 燃料電池システム

Claims (11)

  1. 窒素分子及び窒素含有化合物の少なくともいずれか一方を含む原料を、第1の改質触媒を通過させるステップと、
    第1の改質触媒よりも下流に配設され、前記第1の改質触媒よりも改質反応に対する単位量当りの触媒能が低い第2の改質触媒を通過させるステップと、を備える水素含有ガスの生成方法。
  2. 第1の改質触媒と第2の改質触媒とが、同一の触媒金属を備える請求項1に記載の水素含有ガスの生成方法。
  3. 第2の改質触媒の単位体積当たりの触媒金属の含有量が、第1の改質触媒のそれよりも少ない請求項2記載の水素含有ガスの生成方法。
  4. 第2の改質触媒の比表面積は、第1の改質触媒のそれよりも小さい請求項2記載の水素含有ガスの生成方法。
  5.  第2の改質触媒に含まれる触媒金属を担持する第2の担体は、第1の改質触媒に含まれる触媒金属を担持する第1の担体よりも改質反応に対する担体効果が低い、請求項1-4のいずれかに記載の水素含有ガスの生成方法。
  6. 第1の改質触媒と第2の改質触媒とが、触媒金属としてRuを含有する触媒である請求項2-5のいずれかに記載の水素含有ガスの生成方法。
  7. 第1の改質触媒と第2の改質触媒とが、触媒金属としてNiを含有する触媒である請求項2-5のいずれかに記載の水素含有ガスの生成方法。
  8. 第1の改質触媒と第2の改質触媒とが分割されている請求項1-7のいずれかに記載の水素含有ガスの生成方法。
  9. 第2の改質触媒は、第1の改質触媒よりも触媒量が多い請求項1-7のいずれかに記載の水素含有ガスの生成方法。
  10.  前記第2の改質触媒の温度は、前記第1の改質触媒の温度よりも高い、請求項1-9のいずれかに記載の水素含有ガスの生成方法。
  11.  請求項1-10のいずれかに記載の水素含有ガスの生成方法で生成された水素含有ガスを用いて燃料電池が発電するステップを備える燃料電池システムの運転方法。
PCT/JP2012/005305 2011-09-22 2012-08-24 水素含有ガスの生成方法および燃料電池システムの運転方法 WO2013042314A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-206965 2011-09-22
JP2011206965 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042314A1 true WO2013042314A1 (ja) 2013-03-28

Family

ID=47914108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005305 WO2013042314A1 (ja) 2011-09-22 2012-08-24 水素含有ガスの生成方法および燃料電池システムの運転方法

Country Status (1)

Country Link
WO (1) WO2013042314A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149250A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 燃料電池装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283028A (ja) * 1988-09-19 1990-03-23 Kobe Steel Ltd 炭化水素の改質装置
JPH07144902A (ja) * 1993-08-27 1995-06-06 Haldor Topsoee As 炭化水素の水蒸気改質方法
JP2002308604A (ja) * 2001-04-10 2002-10-23 Toyota Motor Corp 燃料改質装置
JP2004277214A (ja) * 2003-03-14 2004-10-07 Cosmo Oil Co Ltd 炭化水素の改質方法
WO2005115912A1 (ja) * 2004-05-25 2005-12-08 Matsushita Electric Industrial Co., Ltd. 水素生成装置及びそれを用いた燃料電池システム
JP2008018414A (ja) * 2005-08-11 2008-01-31 Toda Kogyo Corp 炭化水素を分解する触媒、該触媒を用いた炭化水素の分解方法及び水素の製造方法、並びに発電システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283028A (ja) * 1988-09-19 1990-03-23 Kobe Steel Ltd 炭化水素の改質装置
JPH07144902A (ja) * 1993-08-27 1995-06-06 Haldor Topsoee As 炭化水素の水蒸気改質方法
JP2002308604A (ja) * 2001-04-10 2002-10-23 Toyota Motor Corp 燃料改質装置
JP2004277214A (ja) * 2003-03-14 2004-10-07 Cosmo Oil Co Ltd 炭化水素の改質方法
WO2005115912A1 (ja) * 2004-05-25 2005-12-08 Matsushita Electric Industrial Co., Ltd. 水素生成装置及びそれを用いた燃料電池システム
JP2008018414A (ja) * 2005-08-11 2008-01-31 Toda Kogyo Corp 炭化水素を分解する触媒、該触媒を用いた炭化水素の分解方法及び水素の製造方法、並びに発電システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149250A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 燃料電池装置

Similar Documents

Publication Publication Date Title
Snytnikov et al. Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru-and Pd-supported catalysts
Epling et al. Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams
JP5737853B2 (ja) 貯蔵・輸送用水素の製造方法
Li et al. Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance between carbon deposition and elimination
Pistonesi et al. Theoretical and experimental study of methane steam reforming reactions over nickel catalyst
JP4330846B2 (ja) 燃料電池システムにおいて用いられるための低硫黄改質油ガスを調製するプロセス
US9527055B2 (en) Hydrogen generator and fuel cell system
JP3865479B2 (ja) 一酸化炭素除去システム及び一酸化炭素の除去方法
Yoon et al. A diesel fuel processor for stable operation of solid oxide fuel cells system: I. Introduction to post-reforming for the diesel fuel processor
JP5036969B2 (ja) エネルギーステーション
WO2013042314A1 (ja) 水素含有ガスの生成方法および燃料電池システムの運転方法
WO2012090832A1 (ja) 燃料電池用脱硫システム、燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱硫方法及び水素の製造方法
WO2005115912A1 (ja) 水素生成装置及びそれを用いた燃料電池システム
JP5809049B2 (ja) 燃料電池用水蒸気改質触媒の使用方法及び水素製造システム
Wang et al. Highly efficient conversion of gasoline into hydrogen on Al2O3-supported Ni-based catalysts: Catalyst stability enhancement by modification with W
JP2002316043A (ja) 有機硫黄化合物含有燃料油用脱硫剤及び燃料電池用水素の製造方法
JP2006167501A (ja) 改質触媒、水素生成装置および燃料電池システム
KR102123871B1 (ko) 스팀 개질을 위한 시스템 및 방법
JP2003081607A (ja) 水素生成装置、燃料電池システム
JP2010053003A (ja) 高純度水素製造方法
JP4216023B2 (ja) 直接熱供給型天然ガス改質方法
JP2006202564A (ja) 燃料電池用水素製造システム
JP2006082996A (ja) エタノール改質方法
JP5276300B2 (ja) 燃料電池用水素ガスの製造方法
JP2005082409A6 (ja) 水素生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP