WO2013042223A1 - Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery - Google Patents
Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery Download PDFInfo
- Publication number
- WO2013042223A1 WO2013042223A1 PCT/JP2011/071462 JP2011071462W WO2013042223A1 WO 2013042223 A1 WO2013042223 A1 WO 2013042223A1 JP 2011071462 W JP2011071462 W JP 2011071462W WO 2013042223 A1 WO2013042223 A1 WO 2013042223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- ion secondary
- secondary battery
- carbon material
- negative electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a carbon material for a lithium ion secondary battery, a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery.
- a carbon material has been used for the negative electrode of a lithium ion secondary battery. This is because even if the charge / discharge cycle proceeds, dendritic lithium is hardly deposited on the negative electrode using the carbon material, and safety is guaranteed.
- a carbon material includes a highly crystalline material such as graphite and an amorphous carbon material called hard carbon.
- a material with high crystallinity such as graphite has advantages that the irreversible capacity is small and the charge / discharge efficiency is high, but there is a limit to the charge capacity and the discharge capacity, and there is a problem that it is difficult to increase the capacity.
- the charge / discharge capacity refers to the respective electric capacities when charging and discharging are performed for the first time after the battery is created, and the charge / discharge efficiency refers to the efficiency expressed by the discharge capacity / charge capacity.
- the interplanar spacing is evaluated by a diffraction peak measured using a general-purpose wide-angle X-ray diffractometer, and furthermore, a laminated structure of carbon hexagonal mesh planes (that is, crystal parts) in a carbon material by a Raman spectrum. And the technique which evaluated the ratio of an amorphous carbon component etc. is disclosed.
- the crystal structure of graphite contained in an amorphous material cannot be found by wide-angle X-ray diffraction, and the high charge capacity, discharge capacity, and excellent charge / discharge efficiency of the present invention are not found.
- the technology for coexisting amorphous / crystalline is not disclosed.
- the present invention can solve the above-mentioned problems, and according to the present invention, a lithium ion battery having a high charge capacity and discharge capacity and excellent balance of charge capacity, discharge capacity and charge / discharge efficiency is provided. It is possible to provide a carbon material for a lithium ion secondary battery, a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery.
- the average interplanar spacing d of the (002) plane obtained by the wide-angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less
- the c-axis direction Lithium ions having an amorphous structure with a crystallite size Lc of 8 to 50 mm and a graphite structure with a (002) plane spacing d of 3.25 to 3.40 mm.
- Carbon material for secondary batteries is 3.40 mm or more and 3.90 mm or less.
- A Light source: Synchrotron radiation
- B Large Debye-Scherrer camera, camera radius: 286.48 mm
- C Beam size: Length 0.3mm x width 3.0mm
- E Incident X-ray: wavelength of 1.0 mm (12.4 keV)
- a diffraction pattern measured by a wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated using the Bragg equation.
- the (002) plane average plane distance d is 3.4 mm.
- the peak of the diffraction pattern in which the crystallite size Lc in the c-axis direction is not less than 8 and not more than 50 and not more than 3.9 and has an interplanar spacing d of 3.25 to 3
- A Light source: Synchrotron radiation
- B Large Debye-Scherrer camera, camera radius: 286.48 mm
- C Beam size: Length 0.3mm x width 3.0mm
- E Incident X-ray: wavelength of 1.0 mm (12.4 keV)
- a carbon material for a lithium ion secondary battery according to (1) or (2) above A carbon material for a lithium ion secondary battery having a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more by a BET three-point method in nitrogen adsorption.
- a carbon material for a lithium ion secondary battery containing 95 wt% or more of carbon atoms and containing 0.5 wt% or more and 5 wt% or less of nitrogen atoms as elements other than carbon atoms.
- a negative electrode material for a lithium ion secondary battery comprising the carbon material for a lithium ion secondary battery according to any one of (1) to (4) above.
- a method for producing a negative electrode material for a lithium ion secondary battery A method for producing a negative electrode material for a lithium ion secondary battery.
- a carbon material for a lithium ion secondary battery a negative electrode material for a lithium ion secondary battery, and lithium capable of providing a lithium ion battery having high charge / discharge efficiency and high charge capacity and discharge capacity.
- An ion secondary battery is provided.
- FIG. 2 is a diffraction pattern of synchrotron radiation in Example 1.
- FIG. It is a schematic diagram of a lithium ion secondary battery.
- the carbon material for a lithium ion secondary battery of the present invention is Under the following conditions (A) to (E), the average interplanar spacing d of the (002) plane obtained by the wide angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less, and the crystallites in the c-axis direction
- the average interplanar spacing d of the (002) plane obtained by the wide angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less
- the crystallites in the c-axis direction For a lithium ion secondary battery having an amorphous structure with a size Lc of 8 to 50 mm and a graphite structure with a (002) plane spacing d of 3.25 to 3.40 mm Carbon material.
- A Light source: Synchrotron radiation
- B Large Debye-Scherrer camera, camera radius: 286.48 mm
- C Beam size: Length 0.3mm x width 3.0mm
- E Incident X-ray: wavelength of 1.0 mm (12.4 keV)
- the raw materials or precursors used for the carbon material for lithium ion secondary batteries are not particularly limited, but the petroleum-based tars and pitches produced as a by-product during ethylene production, coal tars produced during coal dry distillation, and low coal tars are low. Heavy components obtained by distilling off boiling components and pitches, petroleum-based or coal-based tars or pitches such as tars and pitches obtained by liquefaction of coal, and those obtained by crosslinking the tars, pitches, etc., and thermosetting A resin obtained by carbonizing a resin or a resin composition such as an adhesive resin or a thermoplastic resin is preferable, and a resin or a resin composition described below is particularly preferable.
- the resin composition contains the above resin as a main component and can contain a curing agent, an additive and the like.
- thermosetting resin is not particularly limited.
- a phenol resin such as a novolac type phenol resin or a resol type phenol resin
- an epoxy resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bisphenol type epoxy resin or a novolac type epoxy resin
- a melamine resin such as a bis
- thermoplastic resin is not particularly limited.
- polyethylene polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, Polyamide, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, polyimide, polyphthalamide, and the like can be given.
- thermosetting resin is preferable as the resin as the main component used in the carbon material of the present invention. Thereby, the remaining carbon rate of a carbon material can be raised more.
- thermosetting resins it is preferably selected from novolac type phenol resins, resol type phenol resins, melamine resins, furan resins, aniline resins, and modified products thereof. Thereby, the freedom degree of design of a carbon material spreads and it can manufacture at low cost.
- curing agent when using a thermosetting resin, can be used together.
- curing agent used here for example, in the case of a novolak-type phenol resin, a hexamethylene tetramine, a resol type phenol resin, a polyacetal, paraform etc. can be used.
- epoxy resins known as epoxy resins such as polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac-type phenol resins, bisphenol-type phenol resins, and resol-type phenol resins. Can be used. Even if it is a thermosetting resin that usually uses a predetermined amount of a curing agent, the resin composition used in the present invention may use a smaller amount than usual or may be used without using a curing agent. You can also.
- an additive can be mix
- the additive used here is not particularly limited.
- a carbon material precursor carbonized at 200 to 800 ° C., an organic acid, an inorganic acid, a nitrogen-containing compound, an oxygen-containing compound, an aromatic compound, and a non-ferrous metal A metal element etc. can be mentioned.
- the above additives may be used alone or in combination of two or more depending on the type and properties of the resin used.
- the resin used for the carbon material of the present invention may contain nitrogen-containing resins described later as the main component resin. Moreover, when the nitrogen-containing resin is not contained in the main component resin, at least one kind of nitrogen-containing compound may be included as a component other than the main component resin, or the nitrogen-containing resin is included as the main component resin. In addition, a nitrogen-containing compound may be included as a component other than the main component resin. By carbonizing such a resin, a carbon material containing nitrogen can be obtained.
- thermosetting resins include melamine resins, urea resins, aniline resins, cyanate resins, urethane resins, phenol resins modified with nitrogen-containing components such as amines, and epoxy resins.
- thermoplastic resin include polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide, polyetherimide, polyamideimide, polyimide, polyphthalamide, and the like.
- thermosetting resin examples include phenol resin, epoxy resin, furan resin, and unsaturated polyester resin.
- thermoplastic resin examples include polyethylene, polystyrene, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, and polyetheretherketone. .
- a nitrogen-containing compound when used as a component other than the main component resin, the type thereof is not particularly limited.
- hexamethylenetetramine which is a curing agent for a novolac type phenol resin
- aliphatic polyamine which is a curing agent for an epoxy resin.
- a compound containing nitrogen such as an amine compound, ammonium salt, nitrate, nitro compound which does not function as a curing agent can be used.
- the nitrogen-containing compound one type may be used or two or more types may be used in combination, whether or not the main component resin contains nitrogen-containing resins.
- the resin composition used for the carbon material of the present invention or the nitrogen content in the resin is not particularly limited, but is preferably 5 to 65% by weight. More preferably, it is 10 to 20% by weight.
- the carbon atom content in the carbon material finally obtained is 95 wt% or more, and the nitrogen atom content is 0.5 to 5 wt%. Is preferred.
- the carbon atom content is more preferably 96 wt% or more.
- the nitrogen atom by setting the nitrogen atom to 5 wt% or less, particularly 3 wt% or less, the electrical characteristics imparted to the carbon material are suppressed from becoming excessively strong, and the occluded lithium ions are electrically connected to the nitrogen atoms. Adsorption is prevented. Thereby, an increase in irreversible capacity can be suppressed and high charge / discharge characteristics can be obtained.
- the nitrogen content in the carbon material of the present invention is not limited to the nitrogen content in the resin composition or the resin, but is subjected to a condition for carbonizing the resin composition or the resin, or a curing treatment or a pre-carbonization treatment before the carbonization treatment. In some cases, these conditions can also be adjusted by appropriately setting. For example, as a method of obtaining the carbon material having the nitrogen content as described above, the nitrogen content in the resin composition or the resin is set as a predetermined value, and conditions for carbonizing the resin composition, particularly the final temperature are adjusted. There are methods.
- the method for preparing the resin composition used for the carbon material of the present invention is not particularly limited.
- the above main component resin and other components are blended in a predetermined ratio, and these are melt mixed.
- These components can be prepared by dissolving them in a solvent and mixing them, or by pulverizing and mixing these components.
- the nitrogen content was measured by a thermal conductivity method.
- a measurement sample is converted into a simple gas (CO 2 , H 2 O, and N 2 ) using a combustion method, and then the gasified sample is homogenized and then passed through a column. Thereby, these gas is isolate
- PE2400 Perkin-Elmer company-made elemental-analysis measuring apparatus
- the carbon material of the present invention is obtained by a wide angle X-ray diffraction method under the following conditions (A) to (E) (a diffraction pattern measured by a wide angle X-ray diffraction method is (Calculated using the Bragg equation) (002)
- the average interplanar spacing d is 3.40 mm or more and 3.90 mm or less
- the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less.
- A Light source: Synchrotron radiation
- B Large Debye-Scherrer camera, camera radius: 286.48 mm
- C Beam size: Length 0.3mm x width 3.0mm
- E Incident X-ray: wavelength of 1.0 mm (12.4 keV)
- the surface spacing d of the (002) plane is derived from the diffraction angle (spectral reflection angle) ⁇ by a parabolic approximation method, that is, a parabola passing through any number of points near the peak top by the least square method, and the peak is peaked.
- the carbon material of the present invention has an average interplanar spacing d of (002) plane of 3.40 mm or more and 3.90 mm or less, and the crystallite size in the c-axis direction It has an amorphous structure in which Lc is not less than 8% and not more than 50%, and also has a graphite structure in which the (002) plane spacing d is not less than 3.25 and less than 3.40%.
- the average interplanar spacing d of the (002) plane in the amorphous structure is more preferably 3.45 mm or more and less than 3.85 mm. Furthermore, since the amorphous structure has a graphite structure, lithium ions can be smoothly occluded / desorbed, so that charge / discharge efficiency can be increased while having a high charge capacity and discharge capacity.
- the wide-angle X-ray diffraction method is well known as a technique for analyzing the structure of carbon materials.
- the wide-angle X-ray diffraction method using synchrotron radiation by SPring-8 of the High Brightness Optical Science Research Center is extremely By using a measurement method having high resolution, it was possible to identify a graphite structure present in amorphous carbon, which was not known conventionally. Based on this technology, the present inventors have been able to reach the development of a material that can achieve high charge capacity and high discharge capacity, which is the main feature of the present invention.
- the carbon material of the present invention may have an average interplanar spacing d of the (002) plane of 3.40 mm or more and 3.90 mm or less, and particularly when it is 3.60 mm or more, occlusion of lithium ions. It is preferable that the shrinkage / expansion between the layers is less likely to occur, and the decrease in charge / discharge cycleability can be further suppressed. On the other hand, when the average interplanar spacing d of the (002) plane is 3.80 mm or less, it is preferable because occlusion / desorption of lithium ions is performed smoothly and a decrease in charge / discharge efficiency can be further suppressed.
- the crystallite size Lc in the c-axis direction is preferably 8 to 50 mm.
- Lc is calculated as follows.
- the carbon material of the present invention preferably has a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more according to the BET three-point method in nitrogen adsorption. More preferably, the specific surface area according to the BET three-point method in nitrogen adsorption is 10 m 2 / g or less and 1 m 2 / g or more. Reaction with a carbon material and electrolyte solution can be suppressed because the specific surface area by BET 3 point method in nitrogen adsorption is 15 m ⁇ 2 > / g or less.
- the carbon material as described above can be manufactured as follows. First, a resin or resin composition to be carbonized is manufactured.
- the apparatus for preparing the resin composition is not particularly limited. For example, when melt mixing is performed, a kneading apparatus such as a kneading roll, a single screw or a twin screw kneader can be used. Moreover, when performing melt
- the resin composition thus obtained may be one obtained by physically mixing a plurality of types of components, or is applied during mixing (stirring, kneading, etc.) during preparation of the resin composition.
- a part of the material may be chemically reacted with mechanical energy and thermal energy converted from the mechanical energy. Specifically, a mechanochemical reaction using mechanical energy or a chemical reaction using thermal energy may be performed.
- the carbon material of the present invention is obtained by carbonizing the above resin composition or resin.
- Carbonization refers to a step of heating the resin composition to increase the carbon atom content ratio.
- the conditions for the carbonization treatment are not particularly limited.
- the carbonization treatment can be performed at a temperature of 1 to 200 ° C./hour and a temperature increase of 0.1 to 50 hours, preferably 0.5 to 10 hours.
- the atmosphere during the carbonization treatment is an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere where a trace amount of oxygen is present in the inert gas, or a reducing gas atmosphere. Is preferred.
- thermal decomposition (oxidative decomposition) of resin can be suppressed and a desired carbon material can be obtained.
- Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.
- a pre-carbonization treatment Prior to performing the carbonization treatment, a pre-carbonization treatment can be performed.
- the pre-carbonization treatment refers to a process in which a heat treatment is performed at a temperature lower than that of the carbonization treatment to make the resin infusible.
- the conditions for the pre-carbonization treatment are not particularly limited.
- the pre-carbonization treatment can be performed at 200 to 600 ° C. for 1 to 10 hours.
- the amorphous structure in which the average face spacing d of the (002) plane of the present invention is 3.40 mm or more and 3.90 mm or less and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less.
- a reducing gas As an example of a method for obtaining a carbon material for a lithium ion secondary battery having a graphite structure having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm, a reducing gas, The pre-carbonization treatment can be performed in the absence of an inert gas.
- thermosetting resin or a polymerizable polymer compound when used as the resin constituting the carbon material, the resin composition or the resin can be cured before the pre-carbonization treatment.
- a hardening processing method For example, it can carry out by the method of giving the heat quantity which can perform a hardening reaction to a resin composition, the method of thermosetting, or the method of using resin and a hardening
- the pre-carbonization treatment can be performed substantially in the solid phase, the carbonization treatment or the pre-carbonization treatment can be performed in a state in which the resin structure is maintained to some extent, and the structure and characteristics of the carbon material can be controlled. become.
- metals, pigments, lubricants, antistatic agents, antioxidants, and the like can be added to the resin composition to impart desired properties to the carbon material. .
- the present invention has an amorphous structure in which the average spacing d of (002) planes is 3.40 mm or more and 3.90 mm or less and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less.
- a carbon material for a lithium ion secondary battery having a graphite structure having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm in the presence of a reducing gas or an inert gas Then, it is naturally cooled (cooled) to 800 to 500 ° C., and then cooled to 200 ° C. or lower, preferably 100 ° C. or lower, at 20 ° C./hour or more and 500 ° C./hour or less. If cooling is performed under conditions within the above range, the cooling rate is faster than that of natural cooling, and a unique structure that appropriately includes a graphite structure in an amorphous structure can be obtained, whereby the carbon material of the present invention can be obtained. Guessed.
- FIG. 2 is a schematic diagram showing the configuration of the embodiment of the secondary battery.
- the secondary battery 10 includes a negative electrode 13 composed of a negative electrode material 12 and a negative electrode current collector 14, a positive electrode 21 composed of a positive electrode material 20 and a positive electrode current collector 22, an electrolyte solution 16, and a separator 18. Including.
- the negative electrode 13 as the negative electrode current collector 14, for example, a copper foil or a nickel foil can be used.
- the negative electrode material 12 uses the carbon material of the present invention.
- the negative electrode material of the present invention is manufactured, for example, as follows. 1 to 30 parts by weight of a binder (fluorine polymer including polyethylene, polypropylene, etc., acrylic resin, polyimide, or rubbery polymer such as butyl rubber or butadiene rubber) with respect to 100 parts by weight of the carbon material, A viscosity adjusting solvent (N-methyl-2-pyrrolidone, dimethylformamide, water, etc.) 10 to 400 parts by weight and an appropriate amount of additives (dispersant, conductive material, etc.) were added and kneaded to form a paste.
- the negative electrode material 12 can be obtained by molding the mixture into a sheet shape, a pellet shape, or the like by compression molding, roll molding, or the like. By laminating with the negative electrode current collector 14, the negative electrode 13 can be manufactured.
- a binder fluorine polymer including polyethylene, polypropylene, etc., rubbery polymer such as acrylic resin, polyimide, butyl rubber, butadiene rubber, etc.
- a suitable amount of a viscosity adjusting solvent N-methyl-2-pyrrolidone, dimethylformamide, water, etc. was added and kneaded, and the resulting slurry was used as the negative electrode material 12, and this was used as the negative electrode current collector 14.
- the negative electrode 13 can also be produced by coating or molding.
- the electrolytic solution 16 a solution obtained by dissolving a lithium salt serving as an electrolyte in a non-aqueous solvent is used.
- a non-aqueous solvent a mixture of cyclic esters such as propylene carbonate, ethylene carbonate and ⁇ -butyrolactone, chain esters such as dimethyl carbonate and diethyl carbonate, chain ethers such as dimethoxyethane, and the like can be used. it can.
- the electrolyte lithium metal salts such as LiClO 4 and LiPF 6 , tetraalkylammonium salts, and the like can be used. Further, the above salts can be mixed with polyethylene oxide, polyacrylonitrile, etc. and used as a solid electrolyte.
- the separator 18 is not particularly limited.
- a porous film such as polyethylene or polypropylene, a nonwoven fabric, or the like can be used.
- cathode material 20 such as lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), composite oxides such as lithium manganese oxide (LiMn 2 O 4), Conductive polymers such as polyaniline and polypyrrole can be used.
- the positive electrode current collector 22 for example, an aluminum foil can be used.
- the positive electrode 21 in the present embodiment can be manufactured by a known positive electrode manufacturing method.
- the present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.
- the carbon material for a lithium ion secondary battery of the present invention is A diffraction pattern measured by the wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated by using the Bragg equation, and the average spacing d of (002) planes is 3.4 mm or more, 3 .9 ⁇ or less, having a diffraction pattern peak in which the crystallite size Lc in the c-axis direction is 8 ⁇ or more and 50 ⁇ or less, and the interplanar spacing d is 3.25 ⁇ or more and 3.45 ⁇ or less in the peak.
- This is a carbon material for a lithium ion secondary battery having a (002) plane peak of a graphite structure.
- A Light source: Synchrotron radiation
- B Large Debye-Scherrer camera, camera radius: 286.48 mm
- C Beam size: Length 0.3mm x width 3.0mm
- E Incident X-ray: wavelength of 1.0 mm (12.4 keV)
- the diffraction pattern measured by the wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated using the Bragg equation.
- the (002) plane has an average interplanar spacing d of 3.4 mm or more and 3.9 mm or less, a crystallite size Lc in the c-axis direction of 8 mm or more and 50 mm or less, and a peak of the diffraction pattern,
- This is a carbon material for a lithium ion secondary battery having a (002) plane peak with a graphite structure in which the interplanar spacing d is not less than 3.25 and not more than 3.45.
- A Light source: Synchrotron radiation
- B Large Debye-Scherrer camera, camera radius: 286.48 mm
- C Beam size: Length 0.3mm x width 3.0mm
- E Incident X-ray: wavelength of 1.0 mm (12.4 keV)
- the carbon material of the present invention has an average interplanar spacing d of 3.4 to 3.9 mm and a crystal structure size Lc in the c-axis direction of 8 to 50 and diffraction based on an amorphous structure.
- Lithium is a material having a pattern peak and having a (002) plane peak of a graphite structure in which the interplanar spacing d is 3.25 to 3.45 mm. Since it has an amorphous structure with an average plane spacing of a size that allows easy entry and exit, the charge capacity and discharge capacity can be increased.
- the surface spacing d of the (002) plane in the amorphous structure is more preferably 3.45 mm or more and 3.85 mm or less.
- the amorphous structure has a graphite structure, lithium ions can be smoothly occluded / desorbed, so that charge / discharge efficiency can be increased while having a high charge capacity and discharge capacity.
- Wide-angle X-ray diffraction is well known as a technique for analyzing the structure of carbon materials.
- a measurement method with extremely high resolution is used. It was possible to identify a graphite structure present in amorphous carbon, which was not known in the past. Based on this technology, the present inventors have been able to reach the development of a material that can achieve high charge capacity and high discharge capacity, which is the main feature of the present invention.
- synchrotron radiation is used.
- the electron energy a radiation facility (apparatus) capable of obtaining 1 GeV or more, more preferably 7 GeV or more can be used.
- Such facilities include the PF of the High Energy Accelerator Research Organization in Japan, SPring-8 of the High Brightness Optical Science Research Center, the APS of Argonne National Laboratory in the United States, the USRLS in the European Union (EU), etc.
- SPring-8, APS, and USRLS are preferable.
- the carbon material of the present invention may have an average interplanar spacing d of the (002) plane of 3.4 mm or more and 3.9 mm or less, but particularly when it is 3.6 mm or more, occlusion of lithium ions. It is preferable that the shrinkage / expansion between the layers is less likely to occur, and the decrease in charge / discharge cycleability can be further suppressed. On the other hand, when the average interplanar spacing d of the (002) plane is 3.8 mm or less, it is preferable because lithium ions can be smoothly occluded and desorbed, and a decrease in charge / discharge efficiency can be further suppressed.
- the crystallite size Lc in the c-axis direction is preferably 8 to 50 mm.
- Lc is calculated as follows.
- the carbon material of the present invention is obtained by carbonizing the above resin composition or resin.
- the conditions for the carbonization treatment are not particularly limited. For example, the temperature is raised from room temperature at 1 to 200 ° C./hour, and kept at 800 to 3000 ° C. for 0.1 to 50 hours, preferably 0.5 to 10 hours. Can be done.
- the atmosphere during the carbonization treatment is an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere where a trace amount of oxygen is present in the inert gas, or a reducing gas atmosphere. Is preferred. By doing in this way, thermal decomposition (oxidative decomposition) of resin can be suppressed and a desired carbon material can be obtained. Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.
- a pre-carbonization treatment Prior to performing the carbonization treatment, a pre-carbonization treatment can be performed.
- the conditions for the pre-carbonization treatment are not particularly limited.
- the pre-carbonization treatment can be performed at 200 to 600 ° C. for 1 to 10 hours.
- the resin composition after the pulverization is performed. It is possible to prevent the object or resin from being re-fused during the carbonization treatment, and to obtain a desired carbon material efficiently.
- the average spacing d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less.
- a carbon material for a lithium ion secondary battery having a peak of the (002) plane of a graphite structure having a peak of the diffraction pattern and having an interplanar spacing d of 3.25 to 3.45 mm in the peak is obtained.
- An example of a method for this is to perform pre-carbonization in the absence of a reducing gas or an inert gas.
- the said hardening process and / or pre carbonization process are performed, you may grind
- variation in the thermal history during the carbonization treatment can be reduced, and the uniformity of the surface state of the carbon material can be improved.
- the handleability of a processed material can be made favorable.
- the average plane distance d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less.
- a carbon material for a lithium ion secondary battery having a diffraction pattern peak and having a (002) plane peak of a graphite structure in which the interplanar spacing d is 3.25 to 3.45 mm.
- the conditions may be appropriately selected according to the raw material to be used. For example, after carbonization, if necessary, it is naturally cooled to 800 to 500 ° C. in the presence of a reducing gas or an inert gas, and then 100 You may cool at 100 degrees C / hour until it becomes below ° C. By doing so, it is presumed that the cooling rate is in an appropriate state, a unique structure appropriately including a graphite structure is formed in the amorphous structure, and the carbon material of the present invention can be obtained.
- a diffraction pattern measured by a wide-angle X-ray diffraction method is calculated using the Bragg equation without using graphite or graphitization catalyst as a raw material or precursor to be used.
- Carbon content, nitrogen content The measurement was performed using an elemental analysis measuring device “PE2400” manufactured by PerkinElmer. The measurement sample is converted into CO 2 , H 2 O, and N 2 using a combustion method, and then the gasified sample is homogenized and then passed through the column. Thereby, these gases were separated stepwise, and the contents of carbon, hydrogen, and nitrogen were measured from the respective thermal conductivities.
- the positive electrode was evaluated with a bipolar coin cell using lithium metal.
- the electrolytic solution a solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solution of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used.
- Example 1 As a resin composition, phenol resin PR-217 (manufactured by Sumitomo Bakelite Co., Ltd.) was treated in the order of the following steps (a) to (f) to obtain a carbon material.
- (b) Reducing gas replacement and inert gas replacement Then, after degreasing treatment at 500 ° C.
- Example 2 In Example 1, an aniline resin (synthesized by the following method) was used instead of the phenol resin. 100 parts of aniline, 697 parts of 37% aqueous formaldehyde, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin. The obtained aniline resin had a weight average molecular weight of about 800.
- the resin composition obtained by pulverizing and mixing 100 parts of the aniline resin and 10 parts of hexamethylenetetramine obtained as described above was treated in the same process as in Example 1 to obtain a carbon material.
- Example 2 In Example 1, instead of phenol resin, in place of coal tar pitch (manufactured by JFE Shoji Co., Ltd.), the steps of (d), (e), and (f) were changed as follows.
- the carbon material was obtained by performing the same process.
- f No Natural cooling to 100 ° C under active gas (nitrogen) flow
- Example 3 In Example 1, the process of (d), (e), (f) was changed as follows, and it processed in the process similar to Example 1, and obtained the carbon material.
- D Inactive gas (nitrogen) substitution and flow from room temperature to 1000 ° C. at 100 ° C./hour
- e Carbonization treatment at 1000 ° C. for 8 hours under inert gas (nitrogen) flow
- f Natural cooling to 100 ° C under active gas (nitrogen) flow
- Table 1 shows the evaluation results of the carbon materials obtained in the above Examples and Comparative Examples, and the measurement results of the charge capacity, discharge capacity, and charge / discharge efficiency when the carbon material is used as a negative electrode.
- Examples 1 and 2 which are carbon materials for lithium ion secondary batteries having a graphite structure in which the (002) plane spacing d is 3.25 mm or more and less than 3.40 mm, both the charge capacity and the discharge capacity are High charge and discharge efficiency.
- Comparative Example 1 having no amorphous halo pattern based on the amorphous structure, the efficiency was high, but both the charge capacity and the discharge capacity were low.
- the charge capacity and discharge capacity are high.
- the efficiency is lowered, and in Comparative Example 3, the discharge capacity and the efficiency are lower than in the example.
- the interplanar spacing d of the graphite structure that is 3.25 mm or more and less than 3.40 mm in the example was not detected.
- Example 3 As a resin composition, phenol resin PR-217 (manufactured by Sumitomo Bakelite Co., Ltd.) was treated in the order of the following steps (a) to (f) to obtain a carbon material.
- Example 4 In Example 3, an aniline resin (synthesized by the following method) was used instead of the phenol resin. 100 parts of aniline, 697 parts of 37% aqueous formaldehyde, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin. The obtained aniline resin had a weight average molecular weight of about 800.
- the resin composition obtained by pulverizing and mixing 100 parts of the aniline resin and 10 parts of hexamethylenetetramine obtained as described above was treated in the same process as in Example 3 to obtain a carbon material.
- Example 5 Inert gas (nitrogen) replacement and flow, from room temperature to 1100 ° C., heated at 100 ° C./hour (e) Inactive gas (nitrogen) flow, 1100 ° C. for 4 hours carbonization (f) No Natural cooling to 100 ° C or lower under active gas (nitrogen) flow
- Table 2 shows the evaluation results of the carbon materials obtained in the above Examples and Comparative Examples and the measurement results of the charge capacity, discharge capacity, and charge / discharge efficiency when the carbon material is used as a negative electrode.
- the average spacing d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystal in the c-axis direction A (002) plane peak of a graphite structure having a diffraction pattern peak with a child size Lc of 8 to 50 mm and a face spacing d of 3.25 to 3.45 mm in the peak.
- both the charge capacity and discharge capacity were high, and the charge / discharge efficiency was also high.
- Comparative Example 4 having no amorphous halo pattern based on the amorphous structure, the efficiency was high, but both the charge capacity and the discharge capacity were low. Further, in Comparative Example 5 having only the amorphous halo pattern based on the amorphous structure and not having the (002) plane peak of the graphite structure in the wide-angle X-ray diffraction method using synchrotron radiation of the present invention, the charge capacity and discharge capacity are high. Efficiency became low. In addition, in wide-angle X-ray diffraction using a conventional lab-scale apparatus, a peak on the (002) plane of the graphite structure in which the interplanar spacing d in the example was 3.25 mm or more and 3.45 mm or less was not detected.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
This carbon material for lithium ion secondary batteries has an amorphous structure wherein the average interplanar spacing (d) of the (002) plane as determined by wide-angle X-ray diffraction is from 3.40 Å to 3.90 Å (inclusive) and the crystallite size (Lc) in the c-axis direction is from 8 Å to 50 Å (inclusive) and a graphite structure wherein the interplanar spacing (d) of the (002) plane is 3.25 Å or more but less than 3.40 Å.
Description
本発明は、リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池に関する。
The present invention relates to a carbon material for a lithium ion secondary battery, a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery.
従来、リチウムイオン二次電池の負極には、炭素材料が使用されている。充放電サイクルが進行しても、炭素材料を使用した負極上にはデンドライト状リチウムが析出されにくく、安全性が保証されるためである。
このような炭素材料には黒鉛などの結晶性の高い材料と、ハードカーボンと呼ばれる非晶質炭素材料がある。黒鉛などの結晶性の高い材料は、不可逆容量が小さく、充放電効率が高いという長所がある反面、充電容量、放電容量に限界があり、高容量化が困難であるという課題がある。一方、非晶質炭素材料では、充電容量、放電容量が高いものの、不可逆容量が大きく、充放電効率が低いという課題がある。そのため、これまで、結晶性と非晶性の両方の性質を具備する材料が検討されてきた。なお、充電・放電容量とは電池を作成して初回に行われる充電および放電の際のそれぞれの電気容量をいい、充放電効率とは放電容量/充電容量で表わされる効率をいう。
たとえば、特許文献1では、汎用の広角X線回折装置を使用して測定した回折ピークで面間隔を評価し、さらにはラマンスペクトルで炭素材料における炭素の六角網面(すなわち結晶部分)の積層構造と、非晶質炭素成分等の比率を評価した技術が開示されている。しかしながら、特許文献1に開示された技術では、広角X線回折により非晶質材料に含まれる黒鉛の結晶構造は見出せず、また、本発明の高い充電容量、放電容量と、優れた充放電効率を並立し得る、非晶質/結晶質が並存するための技術は開示されていない。 Conventionally, a carbon material has been used for the negative electrode of a lithium ion secondary battery. This is because even if the charge / discharge cycle proceeds, dendritic lithium is hardly deposited on the negative electrode using the carbon material, and safety is guaranteed.
Such a carbon material includes a highly crystalline material such as graphite and an amorphous carbon material called hard carbon. A material with high crystallinity such as graphite has advantages that the irreversible capacity is small and the charge / discharge efficiency is high, but there is a limit to the charge capacity and the discharge capacity, and there is a problem that it is difficult to increase the capacity. On the other hand, although the amorphous carbon material has a high charge capacity and discharge capacity, there is a problem that the irreversible capacity is large and the charge / discharge efficiency is low. For this reason, materials having both crystalline and amorphous properties have been studied so far. The charge / discharge capacity refers to the respective electric capacities when charging and discharging are performed for the first time after the battery is created, and the charge / discharge efficiency refers to the efficiency expressed by the discharge capacity / charge capacity.
For example, in Patent Document 1, the interplanar spacing is evaluated by a diffraction peak measured using a general-purpose wide-angle X-ray diffractometer, and furthermore, a laminated structure of carbon hexagonal mesh planes (that is, crystal parts) in a carbon material by a Raman spectrum. And the technique which evaluated the ratio of an amorphous carbon component etc. is disclosed. However, in the technique disclosed in Patent Document 1, the crystal structure of graphite contained in an amorphous material cannot be found by wide-angle X-ray diffraction, and the high charge capacity, discharge capacity, and excellent charge / discharge efficiency of the present invention are not found. The technology for coexisting amorphous / crystalline is not disclosed.
このような炭素材料には黒鉛などの結晶性の高い材料と、ハードカーボンと呼ばれる非晶質炭素材料がある。黒鉛などの結晶性の高い材料は、不可逆容量が小さく、充放電効率が高いという長所がある反面、充電容量、放電容量に限界があり、高容量化が困難であるという課題がある。一方、非晶質炭素材料では、充電容量、放電容量が高いものの、不可逆容量が大きく、充放電効率が低いという課題がある。そのため、これまで、結晶性と非晶性の両方の性質を具備する材料が検討されてきた。なお、充電・放電容量とは電池を作成して初回に行われる充電および放電の際のそれぞれの電気容量をいい、充放電効率とは放電容量/充電容量で表わされる効率をいう。
たとえば、特許文献1では、汎用の広角X線回折装置を使用して測定した回折ピークで面間隔を評価し、さらにはラマンスペクトルで炭素材料における炭素の六角網面(すなわち結晶部分)の積層構造と、非晶質炭素成分等の比率を評価した技術が開示されている。しかしながら、特許文献1に開示された技術では、広角X線回折により非晶質材料に含まれる黒鉛の結晶構造は見出せず、また、本発明の高い充電容量、放電容量と、優れた充放電効率を並立し得る、非晶質/結晶質が並存するための技術は開示されていない。 Conventionally, a carbon material has been used for the negative electrode of a lithium ion secondary battery. This is because even if the charge / discharge cycle proceeds, dendritic lithium is hardly deposited on the negative electrode using the carbon material, and safety is guaranteed.
Such a carbon material includes a highly crystalline material such as graphite and an amorphous carbon material called hard carbon. A material with high crystallinity such as graphite has advantages that the irreversible capacity is small and the charge / discharge efficiency is high, but there is a limit to the charge capacity and the discharge capacity, and there is a problem that it is difficult to increase the capacity. On the other hand, although the amorphous carbon material has a high charge capacity and discharge capacity, there is a problem that the irreversible capacity is large and the charge / discharge efficiency is low. For this reason, materials having both crystalline and amorphous properties have been studied so far. The charge / discharge capacity refers to the respective electric capacities when charging and discharging are performed for the first time after the battery is created, and the charge / discharge efficiency refers to the efficiency expressed by the discharge capacity / charge capacity.
For example, in Patent Document 1, the interplanar spacing is evaluated by a diffraction peak measured using a general-purpose wide-angle X-ray diffractometer, and furthermore, a laminated structure of carbon hexagonal mesh planes (that is, crystal parts) in a carbon material by a Raman spectrum. And the technique which evaluated the ratio of an amorphous carbon component etc. is disclosed. However, in the technique disclosed in Patent Document 1, the crystal structure of graphite contained in an amorphous material cannot be found by wide-angle X-ray diffraction, and the high charge capacity, discharge capacity, and excellent charge / discharge efficiency of the present invention are not found. The technology for coexisting amorphous / crystalline is not disclosed.
本発明は、上記の課題を解決し得るものであり、本発明によれば、充電容量、放電容量が高く、充電容量、放電容量および充放電効率のバランスに優れたリチウムイオン電池を提供することができるリチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池を提供できる。
The present invention can solve the above-mentioned problems, and according to the present invention, a lithium ion battery having a high charge capacity and discharge capacity and excellent balance of charge capacity, discharge capacity and charge / discharge efficiency is provided. It is possible to provide a carbon material for a lithium ion secondary battery, a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery.
上述の目的は、以下の第(1)項~第(6)項によって達成される。
The above object is achieved by the following items (1) to (6).
(1)以下の条件(A)~(E)のもと、広角X線回折法により求まる(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) (1) Under the following conditions (A) to (E), the average interplanar spacing d of the (002) plane obtained by the wide-angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less, and the c-axis direction Lithium ions having an amorphous structure with a crystallite size Lc of 8 to 50 mm and a graphite structure with a (002) plane spacing d of 3.25 to 3.40 mm. Carbon material for secondary batteries.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) (1) Under the following conditions (A) to (E), the average interplanar spacing d of the (002) plane obtained by the wide-angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less, and the c-axis direction Lithium ions having an amorphous structure with a crystallite size Lc of 8 to 50 mm and a graphite structure with a (002) plane spacing d of 3.25 to 3.40 mm. Carbon material for secondary batteries.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
(2)以下の条件(A)~(E)のもと、広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) (2) A diffraction pattern measured by a wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated using the Bragg equation. The (002) plane average plane distance d is 3.4 mm. The peak of the diffraction pattern in which the crystallite size Lc in the c-axis direction is not less than 8 and not more than 50 and not more than 3.9 and has an interplanar spacing d of 3.25 to 3 A carbon material for a lithium ion secondary battery having a (002) plane peak with a graphite structure of .45% or less.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) (2) A diffraction pattern measured by a wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated using the Bragg equation. The (002) plane average plane distance d is 3.4 mm. The peak of the diffraction pattern in which the crystallite size Lc in the c-axis direction is not less than 8 and not more than 50 and not more than 3.9 and has an interplanar spacing d of 3.25 to 3 A carbon material for a lithium ion secondary battery having a (002) plane peak with a graphite structure of .45% or less.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
(3)上記(1)または(2)に記載のリチウムイオン二次電池用炭素材において、
窒素吸着におけるBET3点法による比表面積が15m2/g以下、1m2/g以上であるリチウムイオン二次電池用炭素材。 (3) In the carbon material for a lithium ion secondary battery according to (1) or (2) above,
A carbon material for a lithium ion secondary battery having a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more by a BET three-point method in nitrogen adsorption.
窒素吸着におけるBET3点法による比表面積が15m2/g以下、1m2/g以上であるリチウムイオン二次電池用炭素材。 (3) In the carbon material for a lithium ion secondary battery according to (1) or (2) above,
A carbon material for a lithium ion secondary battery having a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more by a BET three-point method in nitrogen adsorption.
(4)上記(1)乃至(3)のいずれかに記載のリチウムイオン二次電池用炭素材において、
炭素原子を95wt%以上含み、かつ、炭素原子以外の元素として、窒素原子を0.5wt%以上、5wt%以下含むリチウムイオン二次電池用炭素材。 (4) In the carbon material for a lithium ion secondary battery according to any one of (1) to (3) above,
A carbon material for a lithium ion secondary battery containing 95 wt% or more of carbon atoms and containing 0.5 wt% or more and 5 wt% or less of nitrogen atoms as elements other than carbon atoms.
炭素原子を95wt%以上含み、かつ、炭素原子以外の元素として、窒素原子を0.5wt%以上、5wt%以下含むリチウムイオン二次電池用炭素材。 (4) In the carbon material for a lithium ion secondary battery according to any one of (1) to (3) above,
A carbon material for a lithium ion secondary battery containing 95 wt% or more of carbon atoms and containing 0.5 wt% or more and 5 wt% or less of nitrogen atoms as elements other than carbon atoms.
(5)上記(1)乃至(4)のいずれかに記載のリチウムイオン二次電池用炭素材を含むリチウムイオン二次電池用負極材。
(5) A negative electrode material for a lithium ion secondary battery comprising the carbon material for a lithium ion secondary battery according to any one of (1) to (4) above.
(6)上記(5)に記載のリチウムイオン二次電池用負極材を含むリチウムイオン二次電池。
(7)上記(1)または(2)に記載のリチウムイオン二次電池用炭素材100重量部、結着剤1~30重量部、および粘度調整用溶剤10~400重量部を混練して、スラリー状またはペースト状にした混合物を得る工程を含む、
リチウムイオン二次電池用負極材の製造方法。
(8)前記混合物にさらに添加剤が含まれる、上記(7)に記載のリチウムイオン二次電池用負極材の製造方法。
(9)上記(7)の製造方法で製造される混合物を成形し、得られた成形体を負極集電体と積層して負極を得る工程、または
前記混合物を、負極材として負極集電体に塗布して負極を得る工程
を含む、リチウムイオン二次電池用負極の製造方法。 (6) A lithium ion secondary battery including the negative electrode material for a lithium ion secondary battery according to (5) above.
(7) Kneading 100 parts by weight of the carbon material for a lithium ion secondary battery according to (1) or (2), 1 to 30 parts by weight of a binder, and 10 to 400 parts by weight of a viscosity adjusting solvent, Including obtaining a slurry or paste mixture,
A method for producing a negative electrode material for a lithium ion secondary battery.
(8) The method for producing a negative electrode material for a lithium ion secondary battery according to (7), wherein the mixture further contains an additive.
(9) A step of molding the mixture produced by the production method of (7) above and laminating the obtained molded body with a negative electrode current collector to obtain a negative electrode, or a negative electrode current collector using the mixture as a negative electrode material The manufacturing method of the negative electrode for lithium ion secondary batteries including the process of apply | coating to and obtaining a negative electrode.
(7)上記(1)または(2)に記載のリチウムイオン二次電池用炭素材100重量部、結着剤1~30重量部、および粘度調整用溶剤10~400重量部を混練して、スラリー状またはペースト状にした混合物を得る工程を含む、
リチウムイオン二次電池用負極材の製造方法。
(8)前記混合物にさらに添加剤が含まれる、上記(7)に記載のリチウムイオン二次電池用負極材の製造方法。
(9)上記(7)の製造方法で製造される混合物を成形し、得られた成形体を負極集電体と積層して負極を得る工程、または
前記混合物を、負極材として負極集電体に塗布して負極を得る工程
を含む、リチウムイオン二次電池用負極の製造方法。 (6) A lithium ion secondary battery including the negative electrode material for a lithium ion secondary battery according to (5) above.
(7) Kneading 100 parts by weight of the carbon material for a lithium ion secondary battery according to (1) or (2), 1 to 30 parts by weight of a binder, and 10 to 400 parts by weight of a viscosity adjusting solvent, Including obtaining a slurry or paste mixture,
A method for producing a negative electrode material for a lithium ion secondary battery.
(8) The method for producing a negative electrode material for a lithium ion secondary battery according to (7), wherein the mixture further contains an additive.
(9) A step of molding the mixture produced by the production method of (7) above and laminating the obtained molded body with a negative electrode current collector to obtain a negative electrode, or a negative electrode current collector using the mixture as a negative electrode material The manufacturing method of the negative electrode for lithium ion secondary batteries including the process of apply | coating to and obtaining a negative electrode.
本発明によれば、充放電効率が高く、かつ、高い充電容量、放電容量を有するリチウムイオン電池を提供することができるリチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池が提供される。
According to the present invention, a carbon material for a lithium ion secondary battery, a negative electrode material for a lithium ion secondary battery, and lithium capable of providing a lithium ion battery having high charge / discharge efficiency and high charge capacity and discharge capacity. An ion secondary battery is provided.
以下、本発明の好ましい例を説明するが、本発明はこれらの例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。
以下、本発明の実施形態1について図面に基づいて説明する。
(リチウムイオン二次電池用炭素材)
はじめに、本発明のリチウムイオン二次電池用炭素材(以下、炭素材という場合もある)の概要について説明する。
本発明のリチウムイオン二次電池用炭素材は、
以下の条件(A)~(E)のもと、広角X線回折法により求まる(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) Hereinafter, although the preferable example of this invention is demonstrated, this invention is not limited to these examples. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Embodiment 1 of the present invention will be described below with reference to the drawings.
(Carbon material for lithium ion secondary battery)
First, the outline | summary of the carbon material for lithium ion secondary batteries of this invention (henceforth a carbon material may be demonstrated).
The carbon material for a lithium ion secondary battery of the present invention is
Under the following conditions (A) to (E), the average interplanar spacing d of the (002) plane obtained by the wide angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less, and the crystallites in the c-axis direction For a lithium ion secondary battery having an amorphous structure with a size Lc of 8 to 50 mm and a graphite structure with a (002) plane spacing d of 3.25 to 3.40 mm Carbon material.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
以下、本発明の実施形態1について図面に基づいて説明する。
(リチウムイオン二次電池用炭素材)
はじめに、本発明のリチウムイオン二次電池用炭素材(以下、炭素材という場合もある)の概要について説明する。
本発明のリチウムイオン二次電池用炭素材は、
以下の条件(A)~(E)のもと、広角X線回折法により求まる(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) Hereinafter, although the preferable example of this invention is demonstrated, this invention is not limited to these examples. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention.
Embodiment 1 of the present invention will be described below with reference to the drawings.
(Carbon material for lithium ion secondary battery)
First, the outline | summary of the carbon material for lithium ion secondary batteries of this invention (henceforth a carbon material may be demonstrated).
The carbon material for a lithium ion secondary battery of the present invention is
Under the following conditions (A) to (E), the average interplanar spacing d of the (002) plane obtained by the wide angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less, and the crystallites in the c-axis direction For a lithium ion secondary battery having an amorphous structure with a size Lc of 8 to 50 mm and a graphite structure with a (002) plane spacing d of 3.25 to 3.40 mm Carbon material.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
次に、リチウムイオン二次電池用炭素材について詳細に説明する。
リチウムイオン二次電池用炭素材に用いられる原料あるいは前駆体は特に限定されるものではないが、エチレン製造時に副生する石油系のタールおよびピッチ、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分やピッチ、石炭の液化により得られるタール及びピッチのような石油系又は石炭系のタール若しくはピッチ、さらには前記タール、ピッチ等を架橋処理したものや、熱硬化性樹脂、熱可塑性樹脂等の樹脂または樹脂組成物を炭化処理することにより得られるものが好適であり、特に後述する樹脂あるいは、樹脂組成物が好ましい。ただし、前記石油、石炭等から得られるタール、ピッチ、あるいはそれらの架橋処理を行ったものも、本発明では広義の樹脂あるいは樹脂組成物に含まれ、これらは単独あるいは二種類以上を併用することができる。
また、後述するように、樹脂組成物は、上記樹脂を主成分とするとともに、硬化剤、添加剤などを併せて含有することができる。 Next, the carbon material for a lithium ion secondary battery will be described in detail.
The raw materials or precursors used for the carbon material for lithium ion secondary batteries are not particularly limited, but the petroleum-based tars and pitches produced as a by-product during ethylene production, coal tars produced during coal dry distillation, and low coal tars are low. Heavy components obtained by distilling off boiling components and pitches, petroleum-based or coal-based tars or pitches such as tars and pitches obtained by liquefaction of coal, and those obtained by crosslinking the tars, pitches, etc., and thermosetting A resin obtained by carbonizing a resin or a resin composition such as an adhesive resin or a thermoplastic resin is preferable, and a resin or a resin composition described below is particularly preferable. However, tar, pitch obtained from the above-mentioned petroleum, coal, etc., or those subjected to a crosslinking treatment thereof are also included in the broadly defined resin or resin composition in the present invention, and these may be used alone or in combination of two or more. Can do.
Further, as will be described later, the resin composition contains the above resin as a main component and can contain a curing agent, an additive and the like.
リチウムイオン二次電池用炭素材に用いられる原料あるいは前駆体は特に限定されるものではないが、エチレン製造時に副生する石油系のタールおよびピッチ、石炭乾留時に生成するコールタール、コールタールの低沸点成分を蒸留除去した重質成分やピッチ、石炭の液化により得られるタール及びピッチのような石油系又は石炭系のタール若しくはピッチ、さらには前記タール、ピッチ等を架橋処理したものや、熱硬化性樹脂、熱可塑性樹脂等の樹脂または樹脂組成物を炭化処理することにより得られるものが好適であり、特に後述する樹脂あるいは、樹脂組成物が好ましい。ただし、前記石油、石炭等から得られるタール、ピッチ、あるいはそれらの架橋処理を行ったものも、本発明では広義の樹脂あるいは樹脂組成物に含まれ、これらは単独あるいは二種類以上を併用することができる。
また、後述するように、樹脂組成物は、上記樹脂を主成分とするとともに、硬化剤、添加剤などを併せて含有することができる。 Next, the carbon material for a lithium ion secondary battery will be described in detail.
The raw materials or precursors used for the carbon material for lithium ion secondary batteries are not particularly limited, but the petroleum-based tars and pitches produced as a by-product during ethylene production, coal tars produced during coal dry distillation, and low coal tars are low. Heavy components obtained by distilling off boiling components and pitches, petroleum-based or coal-based tars or pitches such as tars and pitches obtained by liquefaction of coal, and those obtained by crosslinking the tars, pitches, etc., and thermosetting A resin obtained by carbonizing a resin or a resin composition such as an adhesive resin or a thermoplastic resin is preferable, and a resin or a resin composition described below is particularly preferable. However, tar, pitch obtained from the above-mentioned petroleum, coal, etc., or those subjected to a crosslinking treatment thereof are also included in the broadly defined resin or resin composition in the present invention, and these may be used alone or in combination of two or more. Can do.
Further, as will be described later, the resin composition contains the above resin as a main component and can contain a curing agent, an additive and the like.
ここで熱硬化性樹脂としては特に限定されないが、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などのエポキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、フラン樹脂、ケトン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂などが挙げられる。また、これらが種々の成分で変性された変性物を用いることもできる。
Here, the thermosetting resin is not particularly limited. For example, a phenol resin such as a novolac type phenol resin or a resol type phenol resin, an epoxy resin such as a bisphenol type epoxy resin or a novolac type epoxy resin, a melamine resin, a urea resin, or aniline. Examples thereof include resins, cyanate resins, furan resins, ketone resins, unsaturated polyester resins, and urethane resins. In addition, modified products obtained by modifying these with various components can also be used.
また、熱可塑性樹脂としては特に限定されないが、例えば、ポリエチレン、ポリスチレン、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミド、などが挙げられる。
The thermoplastic resin is not particularly limited. For example, polyethylene, polystyrene, polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, Polyamide, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polyamideimide, polyimide, polyphthalamide, and the like can be given.
本発明の炭素材に用いられる主成分となる樹脂としては、熱硬化性樹脂が好ましい。これにより、炭素材の残炭率をより高めることができる。
熱硬化性樹脂の中でも、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、メラミン樹脂、フラン樹脂、及び、アニリン樹脂、およびこれらの変性物から選ばれることが好ましい。これにより、炭素材の設計の自由度が広がり、低価格で製造することができる。 A thermosetting resin is preferable as the resin as the main component used in the carbon material of the present invention. Thereby, the remaining carbon rate of a carbon material can be raised more.
Among thermosetting resins, it is preferably selected from novolac type phenol resins, resol type phenol resins, melamine resins, furan resins, aniline resins, and modified products thereof. Thereby, the freedom degree of design of a carbon material spreads and it can manufacture at low cost.
熱硬化性樹脂の中でも、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、メラミン樹脂、フラン樹脂、及び、アニリン樹脂、およびこれらの変性物から選ばれることが好ましい。これにより、炭素材の設計の自由度が広がり、低価格で製造することができる。 A thermosetting resin is preferable as the resin as the main component used in the carbon material of the present invention. Thereby, the remaining carbon rate of a carbon material can be raised more.
Among thermosetting resins, it is preferably selected from novolac type phenol resins, resol type phenol resins, melamine resins, furan resins, aniline resins, and modified products thereof. Thereby, the freedom degree of design of a carbon material spreads and it can manufacture at low cost.
また、熱硬化性樹脂を用いる場合には、その硬化剤を併用することができる。
ここで用いられる硬化剤としては特に限定されないが、例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、レゾール型フェノール樹脂、ポリアセタール、パラホルムなどを用いることができる。また、エポキシ樹脂の場合は、脂肪族ポリアミン、芳香族ポリアミンなどのポリアミン化合物、酸無水物、イミダゾール化合物、ジシアンジアミド、ノボラック型フェノール樹脂、ビスフェノール型フェノール樹脂、レゾール型フェノール樹脂など、エポキシ樹脂にて公知の硬化剤を用いることができる。
通常は所定量の硬化剤を併用する熱硬化性樹脂であっても、本発明で用いられる樹脂組成物においては、通常よりも少ない量を用いたり、あるいは硬化剤を併用しないで用いたりすることもできる。 Moreover, when using a thermosetting resin, the hardening | curing agent can be used together.
Although it does not specifically limit as a hardening | curing agent used here, For example, in the case of a novolak-type phenol resin, a hexamethylene tetramine, a resol type phenol resin, a polyacetal, paraform etc. can be used. In the case of epoxy resins, known as epoxy resins such as polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac-type phenol resins, bisphenol-type phenol resins, and resol-type phenol resins. Can be used.
Even if it is a thermosetting resin that usually uses a predetermined amount of a curing agent, the resin composition used in the present invention may use a smaller amount than usual or may be used without using a curing agent. You can also.
ここで用いられる硬化剤としては特に限定されないが、例えば、ノボラック型フェノール樹脂の場合はヘキサメチレンテトラミン、レゾール型フェノール樹脂、ポリアセタール、パラホルムなどを用いることができる。また、エポキシ樹脂の場合は、脂肪族ポリアミン、芳香族ポリアミンなどのポリアミン化合物、酸無水物、イミダゾール化合物、ジシアンジアミド、ノボラック型フェノール樹脂、ビスフェノール型フェノール樹脂、レゾール型フェノール樹脂など、エポキシ樹脂にて公知の硬化剤を用いることができる。
通常は所定量の硬化剤を併用する熱硬化性樹脂であっても、本発明で用いられる樹脂組成物においては、通常よりも少ない量を用いたり、あるいは硬化剤を併用しないで用いたりすることもできる。 Moreover, when using a thermosetting resin, the hardening | curing agent can be used together.
Although it does not specifically limit as a hardening | curing agent used here, For example, in the case of a novolak-type phenol resin, a hexamethylene tetramine, a resol type phenol resin, a polyacetal, paraform etc. can be used. In the case of epoxy resins, known as epoxy resins such as polyamine compounds such as aliphatic polyamines and aromatic polyamines, acid anhydrides, imidazole compounds, dicyandiamide, novolac-type phenol resins, bisphenol-type phenol resins, and resol-type phenol resins. Can be used.
Even if it is a thermosetting resin that usually uses a predetermined amount of a curing agent, the resin composition used in the present invention may use a smaller amount than usual or may be used without using a curing agent. You can also.
また、本発明で用いる樹脂組成物においては、このほか、添加剤を配合することができる。
ここで用いられる添加剤としては特に限定されないが、例えば、200~800℃にて炭化処理した炭素材前駆体、有機酸、無機酸、含窒素化合物、含酸素化合物、芳香族化合物、及び、非鉄金属元素などを挙げることができる。
上記添加剤は、用いる樹脂の種類や性状などにより、単独あるいは二種類以上を併用することができる。 Moreover, in the resin composition used by this invention, an additive can be mix | blended besides this.
The additive used here is not particularly limited. For example, a carbon material precursor carbonized at 200 to 800 ° C., an organic acid, an inorganic acid, a nitrogen-containing compound, an oxygen-containing compound, an aromatic compound, and a non-ferrous metal A metal element etc. can be mentioned.
The above additives may be used alone or in combination of two or more depending on the type and properties of the resin used.
ここで用いられる添加剤としては特に限定されないが、例えば、200~800℃にて炭化処理した炭素材前駆体、有機酸、無機酸、含窒素化合物、含酸素化合物、芳香族化合物、及び、非鉄金属元素などを挙げることができる。
上記添加剤は、用いる樹脂の種類や性状などにより、単独あるいは二種類以上を併用することができる。 Moreover, in the resin composition used by this invention, an additive can be mix | blended besides this.
The additive used here is not particularly limited. For example, a carbon material precursor carbonized at 200 to 800 ° C., an organic acid, an inorganic acid, a nitrogen-containing compound, an oxygen-containing compound, an aromatic compound, and a non-ferrous metal A metal element etc. can be mentioned.
The above additives may be used alone or in combination of two or more depending on the type and properties of the resin used.
本発明の炭素材に用いられる樹脂としては、後述する含窒素樹脂類を主成分樹脂として含んでいてもよい。また、主成分樹脂に含窒素樹脂類が含まれていないときには主成分樹脂以外の成分として、少なくとも1種以上の含窒素化合物を含んでいてもよいし、含窒素樹脂類を主成分樹脂として含むとともに含窒素化合物を主成分樹脂以外の成分として含んでいてもよい。このような樹脂を炭化処理することにより、窒素を含有する炭素材を得ることができる。
The resin used for the carbon material of the present invention may contain nitrogen-containing resins described later as the main component resin. Moreover, when the nitrogen-containing resin is not contained in the main component resin, at least one kind of nitrogen-containing compound may be included as a component other than the main component resin, or the nitrogen-containing resin is included as the main component resin. In addition, a nitrogen-containing compound may be included as a component other than the main component resin. By carbonizing such a resin, a carbon material containing nitrogen can be obtained.
ここで、含窒素樹脂類としては、以下のものを例示することができる。
熱硬化性樹脂としては、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、ウレタン樹脂のほか、アミンなどの含窒素成分で変性されたフェノール樹脂、エポキシ樹脂などが挙げられる。
熱可塑性樹脂としては、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミドなどが挙げられる。 Here, the following can be illustrated as nitrogen-containing resin.
Examples of thermosetting resins include melamine resins, urea resins, aniline resins, cyanate resins, urethane resins, phenol resins modified with nitrogen-containing components such as amines, and epoxy resins.
Examples of the thermoplastic resin include polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide, polyetherimide, polyamideimide, polyimide, polyphthalamide, and the like.
熱硬化性樹脂としては、メラミン樹脂、尿素樹脂、アニリン樹脂、シアネート樹脂、ウレタン樹脂のほか、アミンなどの含窒素成分で変性されたフェノール樹脂、エポキシ樹脂などが挙げられる。
熱可塑性樹脂としては、ポリアクリロニトリル、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリフタルアミドなどが挙げられる。 Here, the following can be illustrated as nitrogen-containing resin.
Examples of thermosetting resins include melamine resins, urea resins, aniline resins, cyanate resins, urethane resins, phenol resins modified with nitrogen-containing components such as amines, and epoxy resins.
Examples of the thermoplastic resin include polyacrylonitrile, acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, polyamide, polyetherimide, polyamideimide, polyimide, polyphthalamide, and the like.
また、含窒素樹脂類以外の樹脂としては、以下のものを例示することができる。
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂、不飽和ポリエステル樹脂などが挙げられる。 Moreover, the following can be illustrated as resin other than nitrogen-containing resin.
Examples of the thermosetting resin include phenol resin, epoxy resin, furan resin, and unsaturated polyester resin.
熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂、不飽和ポリエステル樹脂などが挙げられる。 Moreover, the following can be illustrated as resin other than nitrogen-containing resin.
Examples of the thermosetting resin include phenol resin, epoxy resin, furan resin, and unsaturated polyester resin.
熱可塑性樹脂としては、ポリエチレン、ポリスチレン、ポリプロピレン、塩化ビニル、メタクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンなどが挙げられる。
Examples of the thermoplastic resin include polyethylene, polystyrene, polypropylene, vinyl chloride, methacrylic resin, polyethylene terephthalate, polycarbonate, polyacetal, polyphenylene ether, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, and polyetheretherketone. .
また、主成分樹脂以外の成分として含窒素化合物を用いる場合、その種類としては特に限定されないが、例えば、ノボラック型フェノール樹脂の硬化剤であるヘキサメチレンテトラミン、エポキシ樹脂の硬化剤である脂肪族ポリアミン、芳香族ポリアミン、ジシアンジアミドなどのほか、硬化剤成分以外にも、硬化剤として機能しないアミン化合物、アンモニウム塩、硝酸塩、ニトロ化合物など窒素を含有する化合物を用いることができる。
上記含窒素化合物としては、主成分樹脂に含窒素樹脂類を含む場合であっても含まない場合であっても、1種類を用いてもよいし、2種類以上を併用してもよい。 In addition, when a nitrogen-containing compound is used as a component other than the main component resin, the type thereof is not particularly limited. For example, hexamethylenetetramine, which is a curing agent for a novolac type phenol resin, and aliphatic polyamine, which is a curing agent for an epoxy resin. In addition to the aromatic polyamine, dicyandiamide and the like, besides the curing agent component, a compound containing nitrogen such as an amine compound, ammonium salt, nitrate, nitro compound which does not function as a curing agent can be used.
As the nitrogen-containing compound, one type may be used or two or more types may be used in combination, whether or not the main component resin contains nitrogen-containing resins.
上記含窒素化合物としては、主成分樹脂に含窒素樹脂類を含む場合であっても含まない場合であっても、1種類を用いてもよいし、2種類以上を併用してもよい。 In addition, when a nitrogen-containing compound is used as a component other than the main component resin, the type thereof is not particularly limited. For example, hexamethylenetetramine, which is a curing agent for a novolac type phenol resin, and aliphatic polyamine, which is a curing agent for an epoxy resin. In addition to the aromatic polyamine, dicyandiamide and the like, besides the curing agent component, a compound containing nitrogen such as an amine compound, ammonium salt, nitrate, nitro compound which does not function as a curing agent can be used.
As the nitrogen-containing compound, one type may be used or two or more types may be used in combination, whether or not the main component resin contains nitrogen-containing resins.
本発明の炭素材に用いられる樹脂組成物、あるいは樹脂中の窒素含有量としては特に限定されないが、5~65重量%であることが好ましい。さらに好ましくは10~20重量%である。
このような樹脂組成物あるいは樹脂の炭化処理を行うことにより、最終的に得られる炭素材中の炭素原子含有量が95wt%以上であり、窒素原子含有量が0.5~5wt%であることが好ましい。炭素原子含有量はより好ましくは96wt%以上である。
このように窒素原子を0.5wt%以上、特に1.0wt%以上含有することで、窒素の有する電気陰性度により、炭素材に好適な電気的特性を付与することができる。これにより、リチウムイオンの吸蔵・放出を促進させ、高い充放電特性を付与することができる。 The resin composition used for the carbon material of the present invention or the nitrogen content in the resin is not particularly limited, but is preferably 5 to 65% by weight. More preferably, it is 10 to 20% by weight.
By performing such a carbonization treatment of the resin composition or resin, the carbon atom content in the carbon material finally obtained is 95 wt% or more, and the nitrogen atom content is 0.5 to 5 wt%. Is preferred. The carbon atom content is more preferably 96 wt% or more.
Thus, by containing 0.5 wt% or more, particularly 1.0 wt% or more of nitrogen atoms, it is possible to impart electrical characteristics suitable for the carbon material due to the electronegativity of nitrogen. Thereby, occlusion and discharge | release of lithium ion can be accelerated | stimulated and a high charging / discharging characteristic can be provided.
このような樹脂組成物あるいは樹脂の炭化処理を行うことにより、最終的に得られる炭素材中の炭素原子含有量が95wt%以上であり、窒素原子含有量が0.5~5wt%であることが好ましい。炭素原子含有量はより好ましくは96wt%以上である。
このように窒素原子を0.5wt%以上、特に1.0wt%以上含有することで、窒素の有する電気陰性度により、炭素材に好適な電気的特性を付与することができる。これにより、リチウムイオンの吸蔵・放出を促進させ、高い充放電特性を付与することができる。 The resin composition used for the carbon material of the present invention or the nitrogen content in the resin is not particularly limited, but is preferably 5 to 65% by weight. More preferably, it is 10 to 20% by weight.
By performing such a carbonization treatment of the resin composition or resin, the carbon atom content in the carbon material finally obtained is 95 wt% or more, and the nitrogen atom content is 0.5 to 5 wt%. Is preferred. The carbon atom content is more preferably 96 wt% or more.
Thus, by containing 0.5 wt% or more, particularly 1.0 wt% or more of nitrogen atoms, it is possible to impart electrical characteristics suitable for the carbon material due to the electronegativity of nitrogen. Thereby, occlusion and discharge | release of lithium ion can be accelerated | stimulated and a high charging / discharging characteristic can be provided.
また、窒素原子を5wt%以下、特に3wt%以下とすることで、炭素材に付与される電気的特性が過剰に強くなってしまうことが抑制され、吸蔵されたリチウムイオンが窒素原子と電気的吸着を起こすことが防止される。これにより、不可逆容量の増加を抑制し、高い充放電特性を得ることができる。
Further, by setting the nitrogen atom to 5 wt% or less, particularly 3 wt% or less, the electrical characteristics imparted to the carbon material are suppressed from becoming excessively strong, and the occluded lithium ions are electrically connected to the nitrogen atoms. Adsorption is prevented. Thereby, an increase in irreversible capacity can be suppressed and high charge / discharge characteristics can be obtained.
本発明の炭素材中の窒素含有量は、上記樹脂組成物あるいは樹脂中の窒素含有量のほか、樹脂組成物あるいは樹脂を炭化する条件や、炭化処理の前に硬化処理やプレ炭化処理を行う場合には、それらの条件についても適宜設定することによって、調整することができる。
たとえば、上述したような窒素含有量である炭素材を得る方法としては、樹脂組成物あるいは樹脂中の窒素含有量を所定値として、これを炭化処理する際の条件、特に、最終温度を調整する方法があげられる。 The nitrogen content in the carbon material of the present invention is not limited to the nitrogen content in the resin composition or the resin, but is subjected to a condition for carbonizing the resin composition or the resin, or a curing treatment or a pre-carbonization treatment before the carbonization treatment. In some cases, these conditions can also be adjusted by appropriately setting.
For example, as a method of obtaining the carbon material having the nitrogen content as described above, the nitrogen content in the resin composition or the resin is set as a predetermined value, and conditions for carbonizing the resin composition, particularly the final temperature are adjusted. There are methods.
たとえば、上述したような窒素含有量である炭素材を得る方法としては、樹脂組成物あるいは樹脂中の窒素含有量を所定値として、これを炭化処理する際の条件、特に、最終温度を調整する方法があげられる。 The nitrogen content in the carbon material of the present invention is not limited to the nitrogen content in the resin composition or the resin, but is subjected to a condition for carbonizing the resin composition or the resin, or a curing treatment or a pre-carbonization treatment before the carbonization treatment. In some cases, these conditions can also be adjusted by appropriately setting.
For example, as a method of obtaining the carbon material having the nitrogen content as described above, the nitrogen content in the resin composition or the resin is set as a predetermined value, and conditions for carbonizing the resin composition, particularly the final temperature are adjusted. There are methods.
本発明の炭素材に用いられる樹脂組成物の調製方法としては特に限定されないが、例えば、上記主成分樹脂と、これ以外の成分とを所定の比率で配合し、これらを溶融混合する方法、これらの成分を溶媒に溶解して混合する方法、あるいは、これらの成分を粉砕して混合する方法などにより調製することができる。
The method for preparing the resin composition used for the carbon material of the present invention is not particularly limited. For example, the above main component resin and other components are blended in a predetermined ratio, and these are melt mixed. These components can be prepared by dissolving them in a solvent and mixing them, or by pulverizing and mixing these components.
炭素材において、上記窒素含有量は熱伝導度法により測定した。
本方法は、測定試料を、燃焼法を用いて単純なガス(CO2、H2O、及びN2)に変換した後に、ガス化した試料を均質化した上でカラムを通過させる。これにより、これらのガスが段階的に分離され、それぞれの熱伝導率から、炭素、水素、及び窒素の含有量を測定することができる。
本発明では、パーキンエルマー社製・元素分析測定装置「PE2400」を用いて実施した。 In the carbon material, the nitrogen content was measured by a thermal conductivity method.
In this method, a measurement sample is converted into a simple gas (CO 2 , H 2 O, and N 2 ) using a combustion method, and then the gasified sample is homogenized and then passed through a column. Thereby, these gas is isolate | separated in steps and content of carbon, hydrogen, and nitrogen can be measured from each thermal conductivity.
In this invention, it implemented using the Perkin-Elmer company-made elemental-analysis measuring apparatus "PE2400".
本方法は、測定試料を、燃焼法を用いて単純なガス(CO2、H2O、及びN2)に変換した後に、ガス化した試料を均質化した上でカラムを通過させる。これにより、これらのガスが段階的に分離され、それぞれの熱伝導率から、炭素、水素、及び窒素の含有量を測定することができる。
本発明では、パーキンエルマー社製・元素分析測定装置「PE2400」を用いて実施した。 In the carbon material, the nitrogen content was measured by a thermal conductivity method.
In this method, a measurement sample is converted into a simple gas (CO 2 , H 2 O, and N 2 ) using a combustion method, and then the gasified sample is homogenized and then passed through a column. Thereby, these gas is isolate | separated in steps and content of carbon, hydrogen, and nitrogen can be measured from each thermal conductivity.
In this invention, it implemented using the Perkin-Elmer company-made elemental-analysis measuring apparatus "PE2400".
また、本発明の炭素材は、図1に示すように、以下の条件(A)~(E)のもと、広角X線回折法により求まる(広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される)(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造(回折パターンのピーク)を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造(の(002)面のピーク)を有するリチウムイオン二次電池用炭素材である。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV)
(002)面の面間隔dは、回折角(スペクトルの反射角度)θを、放物線近似法、すなわちピークトップ近傍の任意の数点を通る放物線を最小二乗法にて導出し、その頂点をピークトップとする方法にて決定し、下記Bragg式を用いて算出する。
λ=2dhklsinθ Bragg式 (dhkl=d002)
λ:入射X線波長
θ:スペクトルの反射角度
本発明の炭素材は、(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる、となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有する、という特徴を有する材料であることで、リチウムが出入りしやすいサイズの平均面間隔を有する非晶質構造をしているため、充電容量および放電容量を高めることができる。非晶質構造における(002)面の平均面間隔dはより好ましくは3.45Å以上、3.85Å未満である。さらに非晶質構造中に黒鉛構造を持つことで、リチウムイオンの吸蔵・脱離が円滑に行われるため、高い充電容量および放電容量を持ちながら充放電効率を高めることができる。
広角X線回折法は炭素材料の構造を解析する技術として周知であるが、本発明における、高輝度光科学研究センターのSPring-8によるシンクロトロン放射光を使用した広角X線回折法では、極めて高い分解能を有する測定方法を使用することで、従来わからなかった、非晶質炭素中に存在する、黒鉛構造を特定することができた。本発明者らはこの技術に基づき、本発明の主眼である、充放電効率が高く、かつ、高い充電容量、放電容量を実現し得る材料の開発に到達し得た。 Further, as shown in FIG. 1, the carbon material of the present invention is obtained by a wide angle X-ray diffraction method under the following conditions (A) to (E) (a diffraction pattern measured by a wide angle X-ray diffraction method is (Calculated using the Bragg equation) (002) The average interplanar spacing d is 3.40 mm or more and 3.90 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. Lithium ions having a crystalline structure (peak of diffraction pattern) and a graphite structure (peak of (002) plane) having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm. It is a carbon material for secondary batteries.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
The surface spacing d of the (002) plane is derived from the diffraction angle (spectral reflection angle) θ by a parabolic approximation method, that is, a parabola passing through any number of points near the peak top by the least square method, and the peak is peaked. It decides by the method of making it the top, and calculates using the following Bragg formula.
λ = 2d hkl sinθ Bragg equation (d hkl = d 002 )
λ: incident X-ray wavelength θ: reflection angle of spectrum The carbon material of the present invention has an average interplanar spacing d of (002) plane of 3.40 mm or more and 3.90 mm or less, and the crystallite size in the c-axis direction It has an amorphous structure in which Lc is not less than 8% and not more than 50%, and also has a graphite structure in which the (002) plane spacing d is not less than 3.25 and less than 3.40%. Since it is a material, it has an amorphous structure with an average interplanar spacing that allows lithium to easily enter and exit, so that charge capacity and discharge capacity can be increased. The average interplanar spacing d of the (002) plane in the amorphous structure is more preferably 3.45 mm or more and less than 3.85 mm. Furthermore, since the amorphous structure has a graphite structure, lithium ions can be smoothly occluded / desorbed, so that charge / discharge efficiency can be increased while having a high charge capacity and discharge capacity.
The wide-angle X-ray diffraction method is well known as a technique for analyzing the structure of carbon materials. However, in the present invention, the wide-angle X-ray diffraction method using synchrotron radiation by SPring-8 of the High Brightness Optical Science Research Center is extremely By using a measurement method having high resolution, it was possible to identify a graphite structure present in amorphous carbon, which was not known conventionally. Based on this technology, the present inventors have been able to reach the development of a material that can achieve high charge capacity and high discharge capacity, which is the main feature of the present invention.
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV)
(002)面の面間隔dは、回折角(スペクトルの反射角度)θを、放物線近似法、すなわちピークトップ近傍の任意の数点を通る放物線を最小二乗法にて導出し、その頂点をピークトップとする方法にて決定し、下記Bragg式を用いて算出する。
λ=2dhklsinθ Bragg式 (dhkl=d002)
λ:入射X線波長
θ:スペクトルの反射角度
本発明の炭素材は、(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる、となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有する、という特徴を有する材料であることで、リチウムが出入りしやすいサイズの平均面間隔を有する非晶質構造をしているため、充電容量および放電容量を高めることができる。非晶質構造における(002)面の平均面間隔dはより好ましくは3.45Å以上、3.85Å未満である。さらに非晶質構造中に黒鉛構造を持つことで、リチウムイオンの吸蔵・脱離が円滑に行われるため、高い充電容量および放電容量を持ちながら充放電効率を高めることができる。
広角X線回折法は炭素材料の構造を解析する技術として周知であるが、本発明における、高輝度光科学研究センターのSPring-8によるシンクロトロン放射光を使用した広角X線回折法では、極めて高い分解能を有する測定方法を使用することで、従来わからなかった、非晶質炭素中に存在する、黒鉛構造を特定することができた。本発明者らはこの技術に基づき、本発明の主眼である、充放電効率が高く、かつ、高い充電容量、放電容量を実現し得る材料の開発に到達し得た。 Further, as shown in FIG. 1, the carbon material of the present invention is obtained by a wide angle X-ray diffraction method under the following conditions (A) to (E) (a diffraction pattern measured by a wide angle X-ray diffraction method is (Calculated using the Bragg equation) (002) The average interplanar spacing d is 3.40 mm or more and 3.90 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. Lithium ions having a crystalline structure (peak of diffraction pattern) and a graphite structure (peak of (002) plane) having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm. It is a carbon material for secondary batteries.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
The surface spacing d of the (002) plane is derived from the diffraction angle (spectral reflection angle) θ by a parabolic approximation method, that is, a parabola passing through any number of points near the peak top by the least square method, and the peak is peaked. It decides by the method of making it the top, and calculates using the following Bragg formula.
λ = 2d hkl sinθ Bragg equation (d hkl = d 002 )
λ: incident X-ray wavelength θ: reflection angle of spectrum The carbon material of the present invention has an average interplanar spacing d of (002) plane of 3.40 mm or more and 3.90 mm or less, and the crystallite size in the c-axis direction It has an amorphous structure in which Lc is not less than 8% and not more than 50%, and also has a graphite structure in which the (002) plane spacing d is not less than 3.25 and less than 3.40%. Since it is a material, it has an amorphous structure with an average interplanar spacing that allows lithium to easily enter and exit, so that charge capacity and discharge capacity can be increased. The average interplanar spacing d of the (002) plane in the amorphous structure is more preferably 3.45 mm or more and less than 3.85 mm. Furthermore, since the amorphous structure has a graphite structure, lithium ions can be smoothly occluded / desorbed, so that charge / discharge efficiency can be increased while having a high charge capacity and discharge capacity.
The wide-angle X-ray diffraction method is well known as a technique for analyzing the structure of carbon materials. However, in the present invention, the wide-angle X-ray diffraction method using synchrotron radiation by SPring-8 of the High Brightness Optical Science Research Center is extremely By using a measurement method having high resolution, it was possible to identify a graphite structure present in amorphous carbon, which was not known conventionally. Based on this technology, the present inventors have been able to reach the development of a material that can achieve high charge capacity and high discharge capacity, which is the main feature of the present invention.
また、本発明の炭素材は、前記(002)面の平均面間隔dが3.40Å以上、3.90Å以下であればよいが、特に3.60Å以上である場合には、リチウムイオンの吸蔵に伴う層間の収縮・膨張が起こり難くなるため、充放電サイクル性の低下をより抑制できるので好ましい。
一方で、前記(002)面の平均面間隔dが、特に3.80Å以下である場合にはリチウムイオンの吸蔵・脱離が円滑に行われ、充放電効率の低下をより抑制できるので好ましい。
さらに、本発明の炭素材は、c軸方向((002)面直交方向)の結晶子の大きさLcが8Å以上、50Å以下であることが好ましい。
Lcを8Å以上、特に9Å以上とすることでリチウムイオンを吸蔵・脱離することができる炭素層間スペースが形成され、十分な充放電容量が得られるという効果がある。また、50Å以下、特に15Å以下とすることでリチウムイオンの吸蔵・脱離による炭素積層構造の崩壊や、電解液の還元分解を抑制し、充放電効率と充放電サイクル性の低下を抑制できるという効果がある。
Lcは以下のようにして算出される。
広角X線回折測定から求められるスペクトルにおける非晶質構造の(002)面ピークの半値幅と回折角(スペクトルの反射角度)から次のScherrerの式を用いて決定した。
Lc=0.94 λ /(βcosθ) ( Scherrerの式)
Lc:結晶子の大きさ
λ:入射X線波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度 Further, the carbon material of the present invention may have an average interplanar spacing d of the (002) plane of 3.40 mm or more and 3.90 mm or less, and particularly when it is 3.60 mm or more, occlusion of lithium ions. It is preferable that the shrinkage / expansion between the layers is less likely to occur, and the decrease in charge / discharge cycleability can be further suppressed.
On the other hand, when the average interplanar spacing d of the (002) plane is 3.80 mm or less, it is preferable because occlusion / desorption of lithium ions is performed smoothly and a decrease in charge / discharge efficiency can be further suppressed.
Furthermore, in the carbon material of the present invention, the crystallite size Lc in the c-axis direction (the (002) plane orthogonal direction) is preferably 8 to 50 mm.
By setting Lc to 8% or more, particularly 9% or more, there is an effect that a space between carbon layers capable of inserting and extracting lithium ions is formed, and a sufficient charge / discharge capacity can be obtained. In addition, by setting it to 50 mm or less, particularly 15 mm or less, it is possible to suppress the collapse of the carbon laminate structure due to occlusion / desorption of lithium ions and the reductive decomposition of the electrolytic solution, and to suppress the decrease in charge / discharge efficiency and charge / discharge cycleability. effective.
Lc is calculated as follows.
It was determined using the following Scherrer equation from the half-value width of the (002) plane peak of the amorphous structure and the diffraction angle (spectral reflection angle) of the amorphous structure obtained from the wide-angle X-ray diffraction measurement.
Lc = 0.94λ / (βcosθ) (Scherrer equation)
Lc: crystallite size λ: incident X-ray wavelength β: half width of peak (radian)
θ: Reflection angle of spectrum
一方で、前記(002)面の平均面間隔dが、特に3.80Å以下である場合にはリチウムイオンの吸蔵・脱離が円滑に行われ、充放電効率の低下をより抑制できるので好ましい。
さらに、本発明の炭素材は、c軸方向((002)面直交方向)の結晶子の大きさLcが8Å以上、50Å以下であることが好ましい。
Lcを8Å以上、特に9Å以上とすることでリチウムイオンを吸蔵・脱離することができる炭素層間スペースが形成され、十分な充放電容量が得られるという効果がある。また、50Å以下、特に15Å以下とすることでリチウムイオンの吸蔵・脱離による炭素積層構造の崩壊や、電解液の還元分解を抑制し、充放電効率と充放電サイクル性の低下を抑制できるという効果がある。
Lcは以下のようにして算出される。
広角X線回折測定から求められるスペクトルにおける非晶質構造の(002)面ピークの半値幅と回折角(スペクトルの反射角度)から次のScherrerの式を用いて決定した。
Lc=0.94 λ /(βcosθ) ( Scherrerの式)
Lc:結晶子の大きさ
λ:入射X線波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度 Further, the carbon material of the present invention may have an average interplanar spacing d of the (002) plane of 3.40 mm or more and 3.90 mm or less, and particularly when it is 3.60 mm or more, occlusion of lithium ions. It is preferable that the shrinkage / expansion between the layers is less likely to occur, and the decrease in charge / discharge cycleability can be further suppressed.
On the other hand, when the average interplanar spacing d of the (002) plane is 3.80 mm or less, it is preferable because occlusion / desorption of lithium ions is performed smoothly and a decrease in charge / discharge efficiency can be further suppressed.
Furthermore, in the carbon material of the present invention, the crystallite size Lc in the c-axis direction (the (002) plane orthogonal direction) is preferably 8 to 50 mm.
By setting Lc to 8% or more, particularly 9% or more, there is an effect that a space between carbon layers capable of inserting and extracting lithium ions is formed, and a sufficient charge / discharge capacity can be obtained. In addition, by setting it to 50 mm or less, particularly 15 mm or less, it is possible to suppress the collapse of the carbon laminate structure due to occlusion / desorption of lithium ions and the reductive decomposition of the electrolytic solution, and to suppress the decrease in charge / discharge efficiency and charge / discharge cycleability. effective.
Lc is calculated as follows.
It was determined using the following Scherrer equation from the half-value width of the (002) plane peak of the amorphous structure and the diffraction angle (spectral reflection angle) of the amorphous structure obtained from the wide-angle X-ray diffraction measurement.
Lc = 0.94λ / (βcosθ) (Scherrer equation)
Lc: crystallite size λ: incident X-ray wavelength β: half width of peak (radian)
θ: Reflection angle of spectrum
さらに、本発明の炭素材は、窒素吸着におけるBET3点法による比表面積が15m2/g以下、1m2/g以上であることが好ましい。窒素吸着におけるBET3点法による比表面積はより好ましくは、10m2/g以下、1m2/g以上である。
窒素吸着におけるBET3点法による比表面積が15m2/g以下であることで、炭素材と電解液との反応を抑制できる。
また、窒素吸着におけるBET3点法による比表面積を1m2/g以上とすることで電解液の炭素材への適切な浸透性が得られるという効果がある。
比表面積の算出方法は以下の通りである。
下記(1)式より単分子吸着量Wmを算出し、下記(2)式より総表面積Stotalを算出し、下記(3)式より比表面積Sを求めた。
1/[W(Po/P-1)=(C-1)/WmC(P/Po)/WmC・・(1)
式(1)中、P:吸着平衡にある吸着質の気体の圧力、Po:吸着温度における吸着質の飽和蒸気圧、W:吸着平衡圧Pにおける吸着量、Wm:単分子層吸着量、C:固体表面と吸着質との相互作用の大きさに関する定数(C=exp{(E1-E2)RT})[E1:第一層の吸着熱(kJ/mol)、E2:吸着質の測定温度における液化熱(kJ/mol)]
Stotal=(WmNAcs)M・・・・・・・・・(2)
式(2)中、N:アボガドロ数、M:分子量、Acs:吸着断面積
S=Stotal/w・・・・・・(3)
式(3)中、w:サンプル重量(g) Furthermore, the carbon material of the present invention preferably has a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more according to the BET three-point method in nitrogen adsorption. More preferably, the specific surface area according to the BET three-point method in nitrogen adsorption is 10 m 2 / g or less and 1 m 2 / g or more.
Reaction with a carbon material and electrolyte solution can be suppressed because the specific surface area by BET 3 point method in nitrogen adsorption is 15 m < 2 > / g or less.
Moreover, there exists an effect that appropriate permeability to the carbon material of electrolyte solution is acquired by making the specific surface area by BET 3 point method in nitrogen adsorption into 1 m < 2 > / g or more.
The calculation method of the specific surface area is as follows.
The monomolecular adsorption amount Wm was calculated from the following formula (1), the total surface area Total was calculated from the following formula (2), and the specific surface area S was calculated from the following formula (3).
1 / [W (Po / P-1) = (C-1) / WmC (P / Po) / WmC (1)
In the formula (1), P: pressure of the adsorbate gas in the adsorption equilibrium, Po: saturated vapor pressure of the adsorbate at the adsorption temperature, W: adsorption amount at the adsorption equilibrium pressure P, Wm: monomolecular layer adsorption amount, C : Constant on the magnitude of interaction between solid surface and adsorbate (C = exp {(E1-E2) RT}) [E1: heat of adsorption of first layer (kJ / mol), E2: measurement temperature of adsorbate Liquefaction heat (kJ / mol)]
Total = (WmNAcs) M (2)
In formula (2), N: Avogadro number, M: molecular weight, Acs: adsorption cross section S = Total / w (3)
In formula (3), w: sample weight (g)
窒素吸着におけるBET3点法による比表面積が15m2/g以下であることで、炭素材と電解液との反応を抑制できる。
また、窒素吸着におけるBET3点法による比表面積を1m2/g以上とすることで電解液の炭素材への適切な浸透性が得られるという効果がある。
比表面積の算出方法は以下の通りである。
下記(1)式より単分子吸着量Wmを算出し、下記(2)式より総表面積Stotalを算出し、下記(3)式より比表面積Sを求めた。
1/[W(Po/P-1)=(C-1)/WmC(P/Po)/WmC・・(1)
式(1)中、P:吸着平衡にある吸着質の気体の圧力、Po:吸着温度における吸着質の飽和蒸気圧、W:吸着平衡圧Pにおける吸着量、Wm:単分子層吸着量、C:固体表面と吸着質との相互作用の大きさに関する定数(C=exp{(E1-E2)RT})[E1:第一層の吸着熱(kJ/mol)、E2:吸着質の測定温度における液化熱(kJ/mol)]
Stotal=(WmNAcs)M・・・・・・・・・(2)
式(2)中、N:アボガドロ数、M:分子量、Acs:吸着断面積
S=Stotal/w・・・・・・(3)
式(3)中、w:サンプル重量(g) Furthermore, the carbon material of the present invention preferably has a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more according to the BET three-point method in nitrogen adsorption. More preferably, the specific surface area according to the BET three-point method in nitrogen adsorption is 10 m 2 / g or less and 1 m 2 / g or more.
Reaction with a carbon material and electrolyte solution can be suppressed because the specific surface area by BET 3 point method in nitrogen adsorption is 15 m < 2 > / g or less.
Moreover, there exists an effect that appropriate permeability to the carbon material of electrolyte solution is acquired by making the specific surface area by BET 3 point method in nitrogen adsorption into 1 m < 2 > / g or more.
The calculation method of the specific surface area is as follows.
The monomolecular adsorption amount Wm was calculated from the following formula (1), the total surface area Total was calculated from the following formula (2), and the specific surface area S was calculated from the following formula (3).
1 / [W (Po / P-1) = (C-1) / WmC (P / Po) / WmC (1)
In the formula (1), P: pressure of the adsorbate gas in the adsorption equilibrium, Po: saturated vapor pressure of the adsorbate at the adsorption temperature, W: adsorption amount at the adsorption equilibrium pressure P, Wm: monomolecular layer adsorption amount, C : Constant on the magnitude of interaction between solid surface and adsorbate (C = exp {(E1-E2) RT}) [E1: heat of adsorption of first layer (kJ / mol), E2: measurement temperature of adsorbate Liquefaction heat (kJ / mol)]
Total = (WmNAcs) M (2)
In formula (2), N: Avogadro number, M: molecular weight, Acs: adsorption cross section S = Total / w (3)
In formula (3), w: sample weight (g)
以上のような炭素材は、以下のようにして製造することができる。
はじめに、炭化処理すべき、樹脂あるいは、樹脂組成物を製造する。
樹脂組成物の調製のための装置としては特に限定されないが、例えば、溶融混合を行う場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。また、溶解混合を行う場合は、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができる。粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
このようにして得られた樹脂組成物は、複数種類の成分を物理的に混合しただけのものであってもよいし、樹脂組成物の調製時、混合(攪拌、混練など)に際して付与される機械的エネルギーおよびこれが変換された熱エネルギーにより、その一部を化学的に反応させたものであってもよい。具体的には、機械的エネルギーによるメカノケミカル的反応、熱エネルギーによる化学反応をさせてもよい。 The carbon material as described above can be manufactured as follows.
First, a resin or resin composition to be carbonized is manufactured.
The apparatus for preparing the resin composition is not particularly limited. For example, when melt mixing is performed, a kneading apparatus such as a kneading roll, a single screw or a twin screw kneader can be used. Moreover, when performing melt | dissolution mixing, mixing apparatuses, such as a Henschel mixer and a disperser, can be used. When performing pulverization and mixing, for example, an apparatus such as a hammer mill or a jet mill can be used.
The resin composition thus obtained may be one obtained by physically mixing a plurality of types of components, or is applied during mixing (stirring, kneading, etc.) during preparation of the resin composition. A part of the material may be chemically reacted with mechanical energy and thermal energy converted from the mechanical energy. Specifically, a mechanochemical reaction using mechanical energy or a chemical reaction using thermal energy may be performed.
はじめに、炭化処理すべき、樹脂あるいは、樹脂組成物を製造する。
樹脂組成物の調製のための装置としては特に限定されないが、例えば、溶融混合を行う場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。また、溶解混合を行う場合は、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができる。粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
このようにして得られた樹脂組成物は、複数種類の成分を物理的に混合しただけのものであってもよいし、樹脂組成物の調製時、混合(攪拌、混練など)に際して付与される機械的エネルギーおよびこれが変換された熱エネルギーにより、その一部を化学的に反応させたものであってもよい。具体的には、機械的エネルギーによるメカノケミカル的反応、熱エネルギーによる化学反応をさせてもよい。 The carbon material as described above can be manufactured as follows.
First, a resin or resin composition to be carbonized is manufactured.
The apparatus for preparing the resin composition is not particularly limited. For example, when melt mixing is performed, a kneading apparatus such as a kneading roll, a single screw or a twin screw kneader can be used. Moreover, when performing melt | dissolution mixing, mixing apparatuses, such as a Henschel mixer and a disperser, can be used. When performing pulverization and mixing, for example, an apparatus such as a hammer mill or a jet mill can be used.
The resin composition thus obtained may be one obtained by physically mixing a plurality of types of components, or is applied during mixing (stirring, kneading, etc.) during preparation of the resin composition. A part of the material may be chemically reacted with mechanical energy and thermal energy converted from the mechanical energy. Specifically, a mechanochemical reaction using mechanical energy or a chemical reaction using thermal energy may be performed.
本発明の炭素材は、上記の樹脂組成物あるいは、樹脂を炭化処理してなる。なお、炭化処理とは樹脂組成物を加熱して炭素原子含有比率を上昇させる工程をいう。
ここで炭化処理の条件としては特に限定されないが、例えば、常温から1~200℃/時間で昇温で0.1~50時間、好ましくは0.5~10時間保持して行うことができる。炭化処理時の雰囲気としては窒素、ヘリウムガスなどの不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下、または還元ガス雰囲気下で行うことが好ましい。このようにすることで、樹脂の熱分解(酸化分解)を抑制し、所望の炭素材を得ることができる。
このような炭化処理時の温度、時間等の条件は、炭素材の特性を最適なものにするため適宜調整することができる。 The carbon material of the present invention is obtained by carbonizing the above resin composition or resin. Carbonization refers to a step of heating the resin composition to increase the carbon atom content ratio.
Here, the conditions for the carbonization treatment are not particularly limited. For example, the carbonization treatment can be performed at a temperature of 1 to 200 ° C./hour and a temperature increase of 0.1 to 50 hours, preferably 0.5 to 10 hours. The atmosphere during the carbonization treatment is an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere where a trace amount of oxygen is present in the inert gas, or a reducing gas atmosphere. Is preferred. By doing in this way, thermal decomposition (oxidative decomposition) of resin can be suppressed and a desired carbon material can be obtained.
Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.
ここで炭化処理の条件としては特に限定されないが、例えば、常温から1~200℃/時間で昇温で0.1~50時間、好ましくは0.5~10時間保持して行うことができる。炭化処理時の雰囲気としては窒素、ヘリウムガスなどの不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下、または還元ガス雰囲気下で行うことが好ましい。このようにすることで、樹脂の熱分解(酸化分解)を抑制し、所望の炭素材を得ることができる。
このような炭化処理時の温度、時間等の条件は、炭素材の特性を最適なものにするため適宜調整することができる。 The carbon material of the present invention is obtained by carbonizing the above resin composition or resin. Carbonization refers to a step of heating the resin composition to increase the carbon atom content ratio.
Here, the conditions for the carbonization treatment are not particularly limited. For example, the carbonization treatment can be performed at a temperature of 1 to 200 ° C./hour and a temperature increase of 0.1 to 50 hours, preferably 0.5 to 10 hours. The atmosphere during the carbonization treatment is an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere where a trace amount of oxygen is present in the inert gas, or a reducing gas atmosphere. Is preferred. By doing in this way, thermal decomposition (oxidative decomposition) of resin can be suppressed and a desired carbon material can be obtained.
Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.
上記炭化処理を行う前に、プレ炭化処理を行うことができる。プレ炭化処理とは炭化処理よりも低い温度で熱処理を行い樹脂を不融化させる工程をいう。
ここでプレ炭化処理の条件としては特に限定されないが、例えば、200~600℃で1~10時間行うことができる。このように、炭化処理前にプレ炭化処理を行うことで、樹脂組成物あるいは樹脂を不融化させ、炭化処理工程前に樹脂組成物あるいは樹脂の粉砕処理を行った場合でも、粉砕後の樹脂組成物あるいは樹脂が炭化処理時に再融着するのを防ぎ、所望とする炭素材を効率的に得ることができる。
このとき、本発明の(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材を得るための方法の一例としては、還元ガス、不活性ガスが存在しない状態で、プレ炭化処理を行うことがあげられる。 Prior to performing the carbonization treatment, a pre-carbonization treatment can be performed. The pre-carbonization treatment refers to a process in which a heat treatment is performed at a temperature lower than that of the carbonization treatment to make the resin infusible.
Here, the conditions for the pre-carbonization treatment are not particularly limited. For example, the pre-carbonization treatment can be performed at 200 to 600 ° C. for 1 to 10 hours. Thus, even if the resin composition or the resin is infusibilized by performing the pre-carbonization treatment before the carbonization treatment, and the resin composition or the resin is pulverized before the carbonization treatment step, the resin composition after the pulverization is performed. It is possible to prevent a product or resin from being re-fused during carbonization, and to efficiently obtain a desired carbon material.
At this time, the amorphous structure in which the average face spacing d of the (002) plane of the present invention is 3.40 mm or more and 3.90 mm or less and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. As an example of a method for obtaining a carbon material for a lithium ion secondary battery having a graphite structure having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm, a reducing gas, The pre-carbonization treatment can be performed in the absence of an inert gas.
ここでプレ炭化処理の条件としては特に限定されないが、例えば、200~600℃で1~10時間行うことができる。このように、炭化処理前にプレ炭化処理を行うことで、樹脂組成物あるいは樹脂を不融化させ、炭化処理工程前に樹脂組成物あるいは樹脂の粉砕処理を行った場合でも、粉砕後の樹脂組成物あるいは樹脂が炭化処理時に再融着するのを防ぎ、所望とする炭素材を効率的に得ることができる。
このとき、本発明の(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材を得るための方法の一例としては、還元ガス、不活性ガスが存在しない状態で、プレ炭化処理を行うことがあげられる。 Prior to performing the carbonization treatment, a pre-carbonization treatment can be performed. The pre-carbonization treatment refers to a process in which a heat treatment is performed at a temperature lower than that of the carbonization treatment to make the resin infusible.
Here, the conditions for the pre-carbonization treatment are not particularly limited. For example, the pre-carbonization treatment can be performed at 200 to 600 ° C. for 1 to 10 hours. Thus, even if the resin composition or the resin is infusibilized by performing the pre-carbonization treatment before the carbonization treatment, and the resin composition or the resin is pulverized before the carbonization treatment step, the resin composition after the pulverization is performed. It is possible to prevent a product or resin from being re-fused during carbonization, and to efficiently obtain a desired carbon material.
At this time, the amorphous structure in which the average face spacing d of the (002) plane of the present invention is 3.40 mm or more and 3.90 mm or less and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. As an example of a method for obtaining a carbon material for a lithium ion secondary battery having a graphite structure having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm, a reducing gas, The pre-carbonization treatment can be performed in the absence of an inert gas.
また、炭素材を構成する樹脂として熱硬化性樹脂や重合性高分子化合物を用いた場合には、このプレ炭化処理の前に、樹脂組成物あるいは樹脂の硬化処理を行うこともできる。
硬化処理方法としては特に限定されないが、例えば、樹脂組成物に硬化反応が可能な熱量を与えて熱硬化する方法、あるいは、樹脂と硬化剤とを併用する方法などにより行うことができる。これにより、プレ炭化処理を実質的に固相でできるため、樹脂の構造をある程度維持した状態で炭化処理またはプレ炭化処理を行うことができ、炭素材の構造や特性を制御することができるようになる。 Further, when a thermosetting resin or a polymerizable polymer compound is used as the resin constituting the carbon material, the resin composition or the resin can be cured before the pre-carbonization treatment.
Although it does not specifically limit as a hardening processing method, For example, it can carry out by the method of giving the heat quantity which can perform a hardening reaction to a resin composition, the method of thermosetting, or the method of using resin and a hardening | curing agent together. Thereby, since the pre-carbonization treatment can be performed substantially in the solid phase, the carbonization treatment or the pre-carbonization treatment can be performed in a state in which the resin structure is maintained to some extent, and the structure and characteristics of the carbon material can be controlled. become.
硬化処理方法としては特に限定されないが、例えば、樹脂組成物に硬化反応が可能な熱量を与えて熱硬化する方法、あるいは、樹脂と硬化剤とを併用する方法などにより行うことができる。これにより、プレ炭化処理を実質的に固相でできるため、樹脂の構造をある程度維持した状態で炭化処理またはプレ炭化処理を行うことができ、炭素材の構造や特性を制御することができるようになる。 Further, when a thermosetting resin or a polymerizable polymer compound is used as the resin constituting the carbon material, the resin composition or the resin can be cured before the pre-carbonization treatment.
Although it does not specifically limit as a hardening processing method, For example, it can carry out by the method of giving the heat quantity which can perform a hardening reaction to a resin composition, the method of thermosetting, or the method of using resin and a hardening | curing agent together. Thereby, since the pre-carbonization treatment can be performed substantially in the solid phase, the carbonization treatment or the pre-carbonization treatment can be performed in a state in which the resin structure is maintained to some extent, and the structure and characteristics of the carbon material can be controlled. become.
上記炭化処理あるいはプレ炭化処理を行う場合には、上記樹脂組成物に、金属、顔料、滑剤、帯電防止剤、酸化防止剤などを添加して、所望する特性を炭素材に付与することもできる。
In the case of performing the carbonization treatment or the pre-carbonization treatment, metals, pigments, lubricants, antistatic agents, antioxidants, and the like can be added to the resin composition to impart desired properties to the carbon material. .
上記硬化処理及び/又はプレ炭化処理を行った場合は、その後、上記炭化処理の前に、処理物を粉砕しておいてもよい。こうした場合には、炭化処理時の熱履歴のバラツキを低減させ、炭素材の表面状態の均一性を高めることができる。そして、処理物の取り扱い性を良好なものにすることができる。
さらに、本発明の(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材を得るために、還元ガスまたは不活性ガスの存在下で、800~500℃まで自然放冷(冷却)し、その後、200℃以下、好ましくは100℃以下となるまで20℃/時間以上、500℃/時間以下で冷却する。
前記範囲内の条件で冷却すれば、自然放冷よりも冷却速度が速くなり、非晶質構造に黒鉛構造を適切に含む特異な構造を形成し、本発明の炭素材を得ることができると推測される。 When the said hardening process and / or pre carbonization process are performed, you may grind | pulverize a processed material after the said carbonization process after that. In such a case, variation in the thermal history during the carbonization treatment can be reduced, and the uniformity of the surface state of the carbon material can be improved. And the handleability of a processed material can be made favorable.
Furthermore, the present invention has an amorphous structure in which the average spacing d of (002) planes is 3.40 mm or more and 3.90 mm or less and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. In order to obtain a carbon material for a lithium ion secondary battery having a graphite structure having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm, in the presence of a reducing gas or an inert gas Then, it is naturally cooled (cooled) to 800 to 500 ° C., and then cooled to 200 ° C. or lower, preferably 100 ° C. or lower, at 20 ° C./hour or more and 500 ° C./hour or less.
If cooling is performed under conditions within the above range, the cooling rate is faster than that of natural cooling, and a unique structure that appropriately includes a graphite structure in an amorphous structure can be obtained, whereby the carbon material of the present invention can be obtained. Guessed.
さらに、本発明の(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材を得るために、還元ガスまたは不活性ガスの存在下で、800~500℃まで自然放冷(冷却)し、その後、200℃以下、好ましくは100℃以下となるまで20℃/時間以上、500℃/時間以下で冷却する。
前記範囲内の条件で冷却すれば、自然放冷よりも冷却速度が速くなり、非晶質構造に黒鉛構造を適切に含む特異な構造を形成し、本発明の炭素材を得ることができると推測される。 When the said hardening process and / or pre carbonization process are performed, you may grind | pulverize a processed material after the said carbonization process after that. In such a case, variation in the thermal history during the carbonization treatment can be reduced, and the uniformity of the surface state of the carbon material can be improved. And the handleability of a processed material can be made favorable.
Furthermore, the present invention has an amorphous structure in which the average spacing d of (002) planes is 3.40 mm or more and 3.90 mm or less and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. In order to obtain a carbon material for a lithium ion secondary battery having a graphite structure having a (002) plane spacing d of 3.25 mm or more and less than 3.40 mm, in the presence of a reducing gas or an inert gas Then, it is naturally cooled (cooled) to 800 to 500 ° C., and then cooled to 200 ° C. or lower, preferably 100 ° C. or lower, at 20 ° C./hour or more and 500 ° C./hour or less.
If cooling is performed under conditions within the above range, the cooling rate is faster than that of natural cooling, and a unique structure that appropriately includes a graphite structure in an amorphous structure can be obtained, whereby the carbon material of the present invention can be obtained. Guessed.
(リチウム二次電池)
次に、本発明の二次電池用負極材(以下、単に「負極材」という)の実施形態およびこれを用いた実施形態であるリチウム二次電池(以下、単に「二次電池」という)について説明する。 (Lithium secondary battery)
Next, an embodiment of a negative electrode material for a secondary battery (hereinafter simply referred to as “negative electrode material”) of the present invention and a lithium secondary battery (hereinafter simply referred to as “secondary battery”) which is an embodiment using the same. explain.
次に、本発明の二次電池用負極材(以下、単に「負極材」という)の実施形態およびこれを用いた実施形態であるリチウム二次電池(以下、単に「二次電池」という)について説明する。 (Lithium secondary battery)
Next, an embodiment of a negative electrode material for a secondary battery (hereinafter simply referred to as “negative electrode material”) of the present invention and a lithium secondary battery (hereinafter simply referred to as “secondary battery”) which is an embodiment using the same. explain.
図2は、二次電池の実施形態の構成を示す概略図である。
二次電池10は、負極材12および負極集電体14により構成される負極13と、正極材20および正極集電体22により構成される正極21と、ならびに電解液16と、セパレータ18とを含む。 FIG. 2 is a schematic diagram showing the configuration of the embodiment of the secondary battery.
Thesecondary battery 10 includes a negative electrode 13 composed of a negative electrode material 12 and a negative electrode current collector 14, a positive electrode 21 composed of a positive electrode material 20 and a positive electrode current collector 22, an electrolyte solution 16, and a separator 18. Including.
二次電池10は、負極材12および負極集電体14により構成される負極13と、正極材20および正極集電体22により構成される正極21と、ならびに電解液16と、セパレータ18とを含む。 FIG. 2 is a schematic diagram showing the configuration of the embodiment of the secondary battery.
The
負極13において、負極集電体14としては、例えば銅箔またはニッケル箔を用いることができる。負極材12は、本発明の炭素材を用いる。
In the negative electrode 13, as the negative electrode current collector 14, for example, a copper foil or a nickel foil can be used. The negative electrode material 12 uses the carbon material of the present invention.
本発明の負極材は、例えば、以下のようにして製造される。
上記炭素材100重量部に対して、結着剤(ポリエチレン、ポリプロピレンなどを含むフッ素系高分子、アクリル樹脂、ポリイミド、または、ブチルゴム、ブタジエンゴムなどのゴム状高分子など)1~30重量部、粘度調整用溶剤(N-メチル-2-ピロリドン、ジメチルホルムアミド、水など)10~400重量部、および適量の添加剤(分散剤、導電材など)を添加して混練して、ペースト状にした混合物を圧縮成形、ロール成形などによりシート状、ペレット状などに成形して、負極材12を得ることができる。
負極集電体14と積層することにより、負極13を製造することができる。 The negative electrode material of the present invention is manufactured, for example, as follows.
1 to 30 parts by weight of a binder (fluorine polymer including polyethylene, polypropylene, etc., acrylic resin, polyimide, or rubbery polymer such as butyl rubber or butadiene rubber) with respect to 100 parts by weight of the carbon material, A viscosity adjusting solvent (N-methyl-2-pyrrolidone, dimethylformamide, water, etc.) 10 to 400 parts by weight and an appropriate amount of additives (dispersant, conductive material, etc.) were added and kneaded to form a paste. Thenegative electrode material 12 can be obtained by molding the mixture into a sheet shape, a pellet shape, or the like by compression molding, roll molding, or the like.
By laminating with the negative electrode current collector 14, the negative electrode 13 can be manufactured.
上記炭素材100重量部に対して、結着剤(ポリエチレン、ポリプロピレンなどを含むフッ素系高分子、アクリル樹脂、ポリイミド、または、ブチルゴム、ブタジエンゴムなどのゴム状高分子など)1~30重量部、粘度調整用溶剤(N-メチル-2-ピロリドン、ジメチルホルムアミド、水など)10~400重量部、および適量の添加剤(分散剤、導電材など)を添加して混練して、ペースト状にした混合物を圧縮成形、ロール成形などによりシート状、ペレット状などに成形して、負極材12を得ることができる。
負極集電体14と積層することにより、負極13を製造することができる。 The negative electrode material of the present invention is manufactured, for example, as follows.
1 to 30 parts by weight of a binder (fluorine polymer including polyethylene, polypropylene, etc., acrylic resin, polyimide, or rubbery polymer such as butyl rubber or butadiene rubber) with respect to 100 parts by weight of the carbon material, A viscosity adjusting solvent (N-methyl-2-pyrrolidone, dimethylformamide, water, etc.) 10 to 400 parts by weight and an appropriate amount of additives (dispersant, conductive material, etc.) were added and kneaded to form a paste. The
By laminating with the negative electrode current collector 14, the negative electrode 13 can be manufactured.
また、上記炭素材100重量部に対して、結着剤(ポリエチレン、ポリプロピレンなどを含むフッ素系高分子、アクリル樹脂、ポリイミド、ブチルゴム、ブタジエンゴムなどのゴム状高分子など)1~30重量部、および適量の粘度調整用溶剤(N-メチル-2-ピロリドン、ジメチルホルムアミド、水など)を添加して混練して、スラリー状にした混合物を負極材12として用い、これを負極集電体14に塗布または成形することにより、負極13を製造することもできる。
Also, 1 to 30 parts by weight of a binder (fluorine polymer including polyethylene, polypropylene, etc., rubbery polymer such as acrylic resin, polyimide, butyl rubber, butadiene rubber, etc.) with respect to 100 parts by weight of the carbon material, A suitable amount of a viscosity adjusting solvent (N-methyl-2-pyrrolidone, dimethylformamide, water, etc.) was added and kneaded, and the resulting slurry was used as the negative electrode material 12, and this was used as the negative electrode current collector 14. The negative electrode 13 can also be produced by coating or molding.
電解液16としては、非水系溶媒に電解質となるリチウム塩を溶解したものが用いられる。
この非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトンなどの環状エステル類、ジメチルカーボネートやジエチルカーボネートなどの鎖状エステル類、ジメトキシエタンなどの鎖状エーテル類などの混合物などを用いることができる。
電解質としては、LiClO4、LiPF6などのリチウム金属塩、テトラアルキルアンモニウム塩などを用いることができる。また、上記塩類をポリエチレンオキサイド、ポリアクリロニトリルなどに混合し、固体電解質として用いることもできる。 As theelectrolytic solution 16, a solution obtained by dissolving a lithium salt serving as an electrolyte in a non-aqueous solvent is used.
As this non-aqueous solvent, a mixture of cyclic esters such as propylene carbonate, ethylene carbonate and γ-butyrolactone, chain esters such as dimethyl carbonate and diethyl carbonate, chain ethers such as dimethoxyethane, and the like can be used. it can.
As the electrolyte, lithium metal salts such as LiClO 4 and LiPF 6 , tetraalkylammonium salts, and the like can be used. Further, the above salts can be mixed with polyethylene oxide, polyacrylonitrile, etc. and used as a solid electrolyte.
この非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、γ-ブチロラクトンなどの環状エステル類、ジメチルカーボネートやジエチルカーボネートなどの鎖状エステル類、ジメトキシエタンなどの鎖状エーテル類などの混合物などを用いることができる。
電解質としては、LiClO4、LiPF6などのリチウム金属塩、テトラアルキルアンモニウム塩などを用いることができる。また、上記塩類をポリエチレンオキサイド、ポリアクリロニトリルなどに混合し、固体電解質として用いることもできる。 As the
As this non-aqueous solvent, a mixture of cyclic esters such as propylene carbonate, ethylene carbonate and γ-butyrolactone, chain esters such as dimethyl carbonate and diethyl carbonate, chain ethers such as dimethoxyethane, and the like can be used. it can.
As the electrolyte, lithium metal salts such as LiClO 4 and LiPF 6 , tetraalkylammonium salts, and the like can be used. Further, the above salts can be mixed with polyethylene oxide, polyacrylonitrile, etc. and used as a solid electrolyte.
セパレータ18としては、特に限定されないが、例えばポリエチレン、ポリプロピレンなどの多孔質フィルム、不織布などを用いることができる。
The separator 18 is not particularly limited. For example, a porous film such as polyethylene or polypropylene, a nonwoven fabric, or the like can be used.
正極21において、正極材20としては特に限定されないが、例えばリチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn2O4)などの複合酸化物や、ポリアニリン、ポリピロールなどの導電性高分子などを用いることができる。
正極集電体22としては、例えばアルミニウム箔を用いることができる。
本実施形態における正極21は、既知の正極の製造方法により製造することができる。 In thecathode 21, and is not particularly limited as cathode material 20, such as lithium cobalt oxide (LiCoO 2), lithium nickel oxide (LiNiO 2), composite oxides such as lithium manganese oxide (LiMn 2 O 4), Conductive polymers such as polyaniline and polypyrrole can be used.
As the positive electrodecurrent collector 22, for example, an aluminum foil can be used.
Thepositive electrode 21 in the present embodiment can be manufactured by a known positive electrode manufacturing method.
正極集電体22としては、例えばアルミニウム箔を用いることができる。
本実施形態における正極21は、既知の正極の製造方法により製造することができる。 In the
As the positive electrode
The
本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
The present invention is not limited to the above-described embodiment, but includes modifications and improvements as long as the object of the present invention can be achieved.
次に、本発明の実施形態2について図面に基づいて説明する。なお、本発明の実施形態2に関し、説明のない点については上記実施形態1と同様である。
(リチウムイオン二次電池用炭素材)
はじめに、本発明のリチウムイオン二次電池用炭素材(以下、炭素材という場合もある)の概要について説明する。
本発明のリチウムイオン二次電池用炭素材は、
以下の条件(A)~(E)のもと、広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材である。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) Next, Embodiment 2 of the present invention will be described with reference to the drawings. Regarding the second embodiment of the present invention, the points not described are the same as in the first embodiment.
(Carbon material for lithium ion secondary battery)
First, the outline | summary of the carbon material for lithium ion secondary batteries of this invention (henceforth a carbon material may be demonstrated).
The carbon material for a lithium ion secondary battery of the present invention is
A diffraction pattern measured by the wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated by using the Bragg equation, and the average spacing d of (002) planes is 3.4 mm or more, 3 .9 Å or less, having a diffraction pattern peak in which the crystallite size Lc in the c-axis direction is 8 Å or more and 50 Å or less, and the interplanar spacing d is 3.25 Å or more and 3.45 Å or less in the peak. This is a carbon material for a lithium ion secondary battery having a (002) plane peak of a graphite structure.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
(リチウムイオン二次電池用炭素材)
はじめに、本発明のリチウムイオン二次電池用炭素材(以下、炭素材という場合もある)の概要について説明する。
本発明のリチウムイオン二次電池用炭素材は、
以下の条件(A)~(E)のもと、広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材である。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) Next, Embodiment 2 of the present invention will be described with reference to the drawings. Regarding the second embodiment of the present invention, the points not described are the same as in the first embodiment.
(Carbon material for lithium ion secondary battery)
First, the outline | summary of the carbon material for lithium ion secondary batteries of this invention (henceforth a carbon material may be demonstrated).
The carbon material for a lithium ion secondary battery of the present invention is
A diffraction pattern measured by the wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated by using the Bragg equation, and the average spacing d of (002) planes is 3.4 mm or more, 3 .9 Å or less, having a diffraction pattern peak in which the crystallite size Lc in the c-axis direction is 8 Å or more and 50 Å or less, and the interplanar spacing d is 3.25 Å or more and 3.45 Å or less in the peak. This is a carbon material for a lithium ion secondary battery having a (002) plane peak of a graphite structure.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
また、本発明の炭素材は、図1に示すように、以下の条件(A)~(E)のもと、広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材である。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV)
本発明の炭素材は、平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる、非晶質構造に基づく回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有する、という特徴を有する材料であることで、リチウムが出入りしやすいサイズの平均面間隔を有する非晶質構造をしているため、充電容量および放電容量を高めることができる。非晶質構造における(002)面の面間隔dはより好ましくは3.45Å以上、3.85Å以下である。さらに非晶質構造中に黒鉛構造を持つことで、リチウムイオンの吸蔵・脱離が円滑に行われるため、高い充電容量および放電容量を持ちながら充放電効率を高めることができる。
広角X線回折法は炭素材料の構造を解析する技術として周知であるが、本発明における、シンクロトロン放射光を使用した広角X線回折法では、極めて高い分解能を有する測定方法を使用することで、従来わからなかった、非晶質炭素中に存在する、黒鉛構造を特定することができた。本発明者らはこの技術に基づき、本発明の主眼である、充放電効率が高く、かつ、高い充電容量、放電容量を実現し得る材料の開発に到達し得た。
本発明の広角X線回折法では、シンクロトロン放射光を使用するが、その電子エネルギーとしては、1GeV以上、より好ましくは、7GeV以上が得られる放射光施設(装置)を用いることができる。このような施設(装置)としては、日本における、高エネルギー加速器研究機構のPF、高輝度光科学研究センターのSPring-8、アメリカにおける、Argonne National LaboratoryのAPS、ヨーロッパ連合(EU)における、USRLSなどが例示されるが、特にSPring-8、APS、USRLSが好ましい。 In the carbon material of the present invention, as shown in FIG. 1, the diffraction pattern measured by the wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated using the Bragg equation. The (002) plane has an average interplanar spacing d of 3.4 mm or more and 3.9 mm or less, a crystallite size Lc in the c-axis direction of 8 mm or more and 50 mm or less, and a peak of the diffraction pattern, This is a carbon material for a lithium ion secondary battery having a (002) plane peak with a graphite structure in which the interplanar spacing d is not less than 3.25 and not more than 3.45.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
The carbon material of the present invention has an average interplanar spacing d of 3.4 to 3.9 mm and a crystal structure size Lc in the c-axis direction of 8 to 50 and diffraction based on an amorphous structure. Lithium is a material having a pattern peak and having a (002) plane peak of a graphite structure in which the interplanar spacing d is 3.25 to 3.45 mm. Since it has an amorphous structure with an average plane spacing of a size that allows easy entry and exit, the charge capacity and discharge capacity can be increased. The surface spacing d of the (002) plane in the amorphous structure is more preferably 3.45 mm or more and 3.85 mm or less. Furthermore, since the amorphous structure has a graphite structure, lithium ions can be smoothly occluded / desorbed, so that charge / discharge efficiency can be increased while having a high charge capacity and discharge capacity.
Wide-angle X-ray diffraction is well known as a technique for analyzing the structure of carbon materials. In wide-angle X-ray diffraction using synchrotron radiation in the present invention, a measurement method with extremely high resolution is used. It was possible to identify a graphite structure present in amorphous carbon, which was not known in the past. Based on this technology, the present inventors have been able to reach the development of a material that can achieve high charge capacity and high discharge capacity, which is the main feature of the present invention.
In the wide-angle X-ray diffraction method of the present invention, synchrotron radiation is used. As the electron energy, a radiation facility (apparatus) capable of obtaining 1 GeV or more, more preferably 7 GeV or more can be used. Examples of such facilities (equipment) include the PF of the High Energy Accelerator Research Organization in Japan, SPring-8 of the High Brightness Optical Science Research Center, the APS of Argonne National Laboratory in the United States, the USRLS in the European Union (EU), etc. In particular, SPring-8, APS, and USRLS are preferable.
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV)
本発明の炭素材は、平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる、非晶質構造に基づく回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有する、という特徴を有する材料であることで、リチウムが出入りしやすいサイズの平均面間隔を有する非晶質構造をしているため、充電容量および放電容量を高めることができる。非晶質構造における(002)面の面間隔dはより好ましくは3.45Å以上、3.85Å以下である。さらに非晶質構造中に黒鉛構造を持つことで、リチウムイオンの吸蔵・脱離が円滑に行われるため、高い充電容量および放電容量を持ちながら充放電効率を高めることができる。
広角X線回折法は炭素材料の構造を解析する技術として周知であるが、本発明における、シンクロトロン放射光を使用した広角X線回折法では、極めて高い分解能を有する測定方法を使用することで、従来わからなかった、非晶質炭素中に存在する、黒鉛構造を特定することができた。本発明者らはこの技術に基づき、本発明の主眼である、充放電効率が高く、かつ、高い充電容量、放電容量を実現し得る材料の開発に到達し得た。
本発明の広角X線回折法では、シンクロトロン放射光を使用するが、その電子エネルギーとしては、1GeV以上、より好ましくは、7GeV以上が得られる放射光施設(装置)を用いることができる。このような施設(装置)としては、日本における、高エネルギー加速器研究機構のPF、高輝度光科学研究センターのSPring-8、アメリカにおける、Argonne National LaboratoryのAPS、ヨーロッパ連合(EU)における、USRLSなどが例示されるが、特にSPring-8、APS、USRLSが好ましい。 In the carbon material of the present invention, as shown in FIG. 1, the diffraction pattern measured by the wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated using the Bragg equation. The (002) plane has an average interplanar spacing d of 3.4 mm or more and 3.9 mm or less, a crystallite size Lc in the c-axis direction of 8 mm or more and 50 mm or less, and a peak of the diffraction pattern, This is a carbon material for a lithium ion secondary battery having a (002) plane peak with a graphite structure in which the interplanar spacing d is not less than 3.25 and not more than 3.45.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
The carbon material of the present invention has an average interplanar spacing d of 3.4 to 3.9 mm and a crystal structure size Lc in the c-axis direction of 8 to 50 and diffraction based on an amorphous structure. Lithium is a material having a pattern peak and having a (002) plane peak of a graphite structure in which the interplanar spacing d is 3.25 to 3.45 mm. Since it has an amorphous structure with an average plane spacing of a size that allows easy entry and exit, the charge capacity and discharge capacity can be increased. The surface spacing d of the (002) plane in the amorphous structure is more preferably 3.45 mm or more and 3.85 mm or less. Furthermore, since the amorphous structure has a graphite structure, lithium ions can be smoothly occluded / desorbed, so that charge / discharge efficiency can be increased while having a high charge capacity and discharge capacity.
Wide-angle X-ray diffraction is well known as a technique for analyzing the structure of carbon materials. In wide-angle X-ray diffraction using synchrotron radiation in the present invention, a measurement method with extremely high resolution is used. It was possible to identify a graphite structure present in amorphous carbon, which was not known in the past. Based on this technology, the present inventors have been able to reach the development of a material that can achieve high charge capacity and high discharge capacity, which is the main feature of the present invention.
In the wide-angle X-ray diffraction method of the present invention, synchrotron radiation is used. As the electron energy, a radiation facility (apparatus) capable of obtaining 1 GeV or more, more preferably 7 GeV or more can be used. Examples of such facilities (equipment) include the PF of the High Energy Accelerator Research Organization in Japan, SPring-8 of the High Brightness Optical Science Research Center, the APS of Argonne National Laboratory in the United States, the USRLS in the European Union (EU), etc. In particular, SPring-8, APS, and USRLS are preferable.
また、本発明の炭素材は、前記(002)面の平均面間隔dが3.4Å以上、3.9Å以下であればよいが、特に3.6Å以上である場合には、リチウムイオンの吸蔵に伴う層間の収縮・膨張が起こり難くなるため、充放電サイクル性の低下をより抑制できるので好ましい。
一方で、前記(002)面の平均面間隔dが、特に3.8Å以下である場合にはリチウムイオンの吸蔵・脱離が円滑に行われ、充放電効率の低下をより抑制できるので好ましい。
さらに、本発明の炭素材は、c軸方向((002)面直交方向)の結晶子の大きさLcが8Å以上、50Å以下であることが好ましい。
Lcを8Å以上、特に9Å以上とすることでリチウムイオンを吸蔵・脱離することができる炭素層間スペースが形成され、十分な充放電容量が得られるという効果がある。また、50Å以下、特に15Å以下とすることでリチウムイオンの吸蔵・脱離による炭素積層構造の崩壊や、電解液の還元分解を抑制し、充放電効率と充放電サイクル性の低下を抑制できるという効果がある。
Lcは以下のようにして算出される。
広角X線回折測定から求められるスペクトルにおける非晶質構造の(002)面ピークの半値幅と回折角から次のScherrerの式を用いて決定した。
Lc=0.94 λ /(βcosθ) ( Scherrerの式)
Lc:結晶子の大きさ
λ:入射X線波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度 The carbon material of the present invention may have an average interplanar spacing d of the (002) plane of 3.4 mm or more and 3.9 mm or less, but particularly when it is 3.6 mm or more, occlusion of lithium ions. It is preferable that the shrinkage / expansion between the layers is less likely to occur, and the decrease in charge / discharge cycleability can be further suppressed.
On the other hand, when the average interplanar spacing d of the (002) plane is 3.8 mm or less, it is preferable because lithium ions can be smoothly occluded and desorbed, and a decrease in charge / discharge efficiency can be further suppressed.
Furthermore, in the carbon material of the present invention, the crystallite size Lc in the c-axis direction (the (002) plane orthogonal direction) is preferably 8 to 50 mm.
By setting Lc to 8% or more, particularly 9% or more, there is an effect that a space between carbon layers capable of inserting and extracting lithium ions is formed, and a sufficient charge / discharge capacity can be obtained. In addition, by setting it to 50 mm or less, particularly 15 mm or less, it is possible to suppress the collapse of the carbon laminate structure due to occlusion / desorption of lithium ions and the reductive decomposition of the electrolytic solution, and to suppress the decrease in charge / discharge efficiency and charge / discharge cycleability. effective.
Lc is calculated as follows.
It was determined using the following Scherrer equation from the half-value width and diffraction angle of the (002) plane peak of the amorphous structure in the spectrum obtained from wide-angle X-ray diffraction measurement.
Lc = 0.94λ / (βcosθ) (Scherrer equation)
Lc: crystallite size λ: incident X-ray wavelength β: half width of peak (radian)
θ: Reflection angle of spectrum
一方で、前記(002)面の平均面間隔dが、特に3.8Å以下である場合にはリチウムイオンの吸蔵・脱離が円滑に行われ、充放電効率の低下をより抑制できるので好ましい。
さらに、本発明の炭素材は、c軸方向((002)面直交方向)の結晶子の大きさLcが8Å以上、50Å以下であることが好ましい。
Lcを8Å以上、特に9Å以上とすることでリチウムイオンを吸蔵・脱離することができる炭素層間スペースが形成され、十分な充放電容量が得られるという効果がある。また、50Å以下、特に15Å以下とすることでリチウムイオンの吸蔵・脱離による炭素積層構造の崩壊や、電解液の還元分解を抑制し、充放電効率と充放電サイクル性の低下を抑制できるという効果がある。
Lcは以下のようにして算出される。
広角X線回折測定から求められるスペクトルにおける非晶質構造の(002)面ピークの半値幅と回折角から次のScherrerの式を用いて決定した。
Lc=0.94 λ /(βcosθ) ( Scherrerの式)
Lc:結晶子の大きさ
λ:入射X線波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度 The carbon material of the present invention may have an average interplanar spacing d of the (002) plane of 3.4 mm or more and 3.9 mm or less, but particularly when it is 3.6 mm or more, occlusion of lithium ions. It is preferable that the shrinkage / expansion between the layers is less likely to occur, and the decrease in charge / discharge cycleability can be further suppressed.
On the other hand, when the average interplanar spacing d of the (002) plane is 3.8 mm or less, it is preferable because lithium ions can be smoothly occluded and desorbed, and a decrease in charge / discharge efficiency can be further suppressed.
Furthermore, in the carbon material of the present invention, the crystallite size Lc in the c-axis direction (the (002) plane orthogonal direction) is preferably 8 to 50 mm.
By setting Lc to 8% or more, particularly 9% or more, there is an effect that a space between carbon layers capable of inserting and extracting lithium ions is formed, and a sufficient charge / discharge capacity can be obtained. In addition, by setting it to 50 mm or less, particularly 15 mm or less, it is possible to suppress the collapse of the carbon laminate structure due to occlusion / desorption of lithium ions and the reductive decomposition of the electrolytic solution, and to suppress the decrease in charge / discharge efficiency and charge / discharge cycleability. effective.
Lc is calculated as follows.
It was determined using the following Scherrer equation from the half-value width and diffraction angle of the (002) plane peak of the amorphous structure in the spectrum obtained from wide-angle X-ray diffraction measurement.
Lc = 0.94λ / (βcosθ) (Scherrer equation)
Lc: crystallite size λ: incident X-ray wavelength β: half width of peak (radian)
θ: Reflection angle of spectrum
本発明の炭素材は、上記の樹脂組成物あるいは、樹脂を炭化処理してなる。
ここで炭化処理の条件としては特に限定されないが、例えば、常温から1~200℃/時間で昇温して、800~3000℃で0.1~50時間、好ましくは0.5~10時間保持して行うことができる。炭化処理時の雰囲気としては窒素、ヘリウムガスなどの不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下、または還元ガス雰囲気下で行うことが好ましい。このようにすることで、樹脂の熱分解(酸化分解)を抑制し、所望の炭素材を得ることができる。
このような炭化処理時の温度、時間等の条件は、炭素材の特性を最適なものにするため適宜調整することができる。 The carbon material of the present invention is obtained by carbonizing the above resin composition or resin.
The conditions for the carbonization treatment are not particularly limited. For example, the temperature is raised from room temperature at 1 to 200 ° C./hour, and kept at 800 to 3000 ° C. for 0.1 to 50 hours, preferably 0.5 to 10 hours. Can be done. The atmosphere during the carbonization treatment is an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere where a trace amount of oxygen is present in the inert gas, or a reducing gas atmosphere. Is preferred. By doing in this way, thermal decomposition (oxidative decomposition) of resin can be suppressed and a desired carbon material can be obtained.
Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.
ここで炭化処理の条件としては特に限定されないが、例えば、常温から1~200℃/時間で昇温して、800~3000℃で0.1~50時間、好ましくは0.5~10時間保持して行うことができる。炭化処理時の雰囲気としては窒素、ヘリウムガスなどの不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下、または還元ガス雰囲気下で行うことが好ましい。このようにすることで、樹脂の熱分解(酸化分解)を抑制し、所望の炭素材を得ることができる。
このような炭化処理時の温度、時間等の条件は、炭素材の特性を最適なものにするため適宜調整することができる。 The carbon material of the present invention is obtained by carbonizing the above resin composition or resin.
The conditions for the carbonization treatment are not particularly limited. For example, the temperature is raised from room temperature at 1 to 200 ° C./hour, and kept at 800 to 3000 ° C. for 0.1 to 50 hours, preferably 0.5 to 10 hours. Can be done. The atmosphere during the carbonization treatment is an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere where a trace amount of oxygen is present in the inert gas, or a reducing gas atmosphere. Is preferred. By doing in this way, thermal decomposition (oxidative decomposition) of resin can be suppressed and a desired carbon material can be obtained.
Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.
上記炭化処理を行う前に、プレ炭化処理を行うことができる。
ここでプレ炭化処理の条件としては特に限定されないが、例えば、200~600℃で1~10時間行うことができる。このように、炭化処理前にプレ炭化処理を行うことで、樹脂組成物あるいは樹脂を不融化させ、炭化処理工程前に樹脂組成物あるいは樹脂の粉砕処理を行った場合でも、粉砕後の樹脂組成物あるいは樹脂が炭化処理時に再融着するのを防ぎ、所望とする炭素材を効率的に得ることができるようになる。
このとき、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材を得るための方法の一例としては、還元ガス、不活性ガスが存在しない状態で、プレ炭化処理を行うことがあげられる。 Prior to performing the carbonization treatment, a pre-carbonization treatment can be performed.
Here, the conditions for the pre-carbonization treatment are not particularly limited. For example, the pre-carbonization treatment can be performed at 200 to 600 ° C. for 1 to 10 hours. Thus, even if the resin composition or the resin is infusibilized by performing the pre-carbonization treatment before the carbonization treatment, and the resin composition or the resin is pulverized before the carbonization treatment step, the resin composition after the pulverization is performed. It is possible to prevent the object or resin from being re-fused during the carbonization treatment, and to obtain a desired carbon material efficiently.
At this time, the average spacing d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. A carbon material for a lithium ion secondary battery having a peak of the (002) plane of a graphite structure having a peak of the diffraction pattern and having an interplanar spacing d of 3.25 to 3.45 mm in the peak is obtained. An example of a method for this is to perform pre-carbonization in the absence of a reducing gas or an inert gas.
ここでプレ炭化処理の条件としては特に限定されないが、例えば、200~600℃で1~10時間行うことができる。このように、炭化処理前にプレ炭化処理を行うことで、樹脂組成物あるいは樹脂を不融化させ、炭化処理工程前に樹脂組成物あるいは樹脂の粉砕処理を行った場合でも、粉砕後の樹脂組成物あるいは樹脂が炭化処理時に再融着するのを防ぎ、所望とする炭素材を効率的に得ることができるようになる。
このとき、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材を得るための方法の一例としては、還元ガス、不活性ガスが存在しない状態で、プレ炭化処理を行うことがあげられる。 Prior to performing the carbonization treatment, a pre-carbonization treatment can be performed.
Here, the conditions for the pre-carbonization treatment are not particularly limited. For example, the pre-carbonization treatment can be performed at 200 to 600 ° C. for 1 to 10 hours. Thus, even if the resin composition or the resin is infusibilized by performing the pre-carbonization treatment before the carbonization treatment, and the resin composition or the resin is pulverized before the carbonization treatment step, the resin composition after the pulverization is performed. It is possible to prevent the object or resin from being re-fused during the carbonization treatment, and to obtain a desired carbon material efficiently.
At this time, the average spacing d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. A carbon material for a lithium ion secondary battery having a peak of the (002) plane of a graphite structure having a peak of the diffraction pattern and having an interplanar spacing d of 3.25 to 3.45 mm in the peak is obtained. An example of a method for this is to perform pre-carbonization in the absence of a reducing gas or an inert gas.
上記硬化処理及び/又はプレ炭化処理を行った場合は、その後、上記炭化処理の前に、処理物を粉砕しておいてもよい。こうした場合には、炭化処理時の熱履歴のバラツキを低減させ、炭素材の表面状態の均一性を高めることができる。そして、処理物の取り扱い性を良好なものにすることができる。
さらに、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材を得るために、使用する原料に応じて適宜条件を選べばよいが、たとえば、必要に応じて炭化処理後において、還元ガスまたは不活性ガスの存在下で、800~500℃まで自然冷却し、その後、100℃以下となるまで100℃/時間で冷却してもよい。
このようにすることで、冷却速度が適切な状態となり、非晶質構造に黒鉛構造を適切に含む特異な構造を形成し、本発明の炭素材を得ることができると推測される。
ただし、本発明では、用いる原料あるいは前駆体に黒鉛や黒鉛化触媒を使用せずとも、広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材、が得られることが特徴である。この特徴を発現する原料あるいは前駆体、工程等を適宜選択し、本発明を実施し得る態様を備えた上で、黒鉛等を必要に応じて添加物とすることは、何ら差し支えない。 When the said hardening process and / or pre carbonization process are performed, you may grind | pulverize a processed material after the said carbonization process after that. In such a case, variation in the thermal history during the carbonization treatment can be reduced, and the uniformity of the surface state of the carbon material can be improved. And the handleability of a processed material can be made favorable.
Furthermore, the average plane distance d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. To obtain a carbon material for a lithium ion secondary battery having a diffraction pattern peak and having a (002) plane peak of a graphite structure in which the interplanar spacing d is 3.25 to 3.45 mm. In addition, the conditions may be appropriately selected according to the raw material to be used. For example, after carbonization, if necessary, it is naturally cooled to 800 to 500 ° C. in the presence of a reducing gas or an inert gas, and then 100 You may cool at 100 degrees C / hour until it becomes below ° C.
By doing so, it is presumed that the cooling rate is in an appropriate state, a unique structure appropriately including a graphite structure is formed in the amorphous structure, and the carbon material of the present invention can be obtained.
However, in the present invention, a diffraction pattern measured by a wide-angle X-ray diffraction method is calculated using the Bragg equation without using graphite or graphitization catalyst as a raw material or precursor to be used. There is a diffraction pattern peak in which the distance d is 3.4 mm or more and 3.9 mm or less, the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less, and the interplanar distance d is in the peak. It is characterized in that a carbon material for a lithium ion secondary battery having a (002) plane peak with a graphite structure of 3.25 to 3.45 mm is obtained. There may be no problem if graphite or the like is used as an additive as needed, after appropriately selecting a raw material or a precursor, a process, or the like that expresses this characteristic, and having an embodiment in which the present invention can be carried out.
さらに、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材を得るために、使用する原料に応じて適宜条件を選べばよいが、たとえば、必要に応じて炭化処理後において、還元ガスまたは不活性ガスの存在下で、800~500℃まで自然冷却し、その後、100℃以下となるまで100℃/時間で冷却してもよい。
このようにすることで、冷却速度が適切な状態となり、非晶質構造に黒鉛構造を適切に含む特異な構造を形成し、本発明の炭素材を得ることができると推測される。
ただし、本発明では、用いる原料あるいは前駆体に黒鉛や黒鉛化触媒を使用せずとも、広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材、が得られることが特徴である。この特徴を発現する原料あるいは前駆体、工程等を適宜選択し、本発明を実施し得る態様を備えた上で、黒鉛等を必要に応じて添加物とすることは、何ら差し支えない。 When the said hardening process and / or pre carbonization process are performed, you may grind | pulverize a processed material after the said carbonization process after that. In such a case, variation in the thermal history during the carbonization treatment can be reduced, and the uniformity of the surface state of the carbon material can be improved. And the handleability of a processed material can be made favorable.
Furthermore, the average plane distance d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. To obtain a carbon material for a lithium ion secondary battery having a diffraction pattern peak and having a (002) plane peak of a graphite structure in which the interplanar spacing d is 3.25 to 3.45 mm. In addition, the conditions may be appropriately selected according to the raw material to be used. For example, after carbonization, if necessary, it is naturally cooled to 800 to 500 ° C. in the presence of a reducing gas or an inert gas, and then 100 You may cool at 100 degrees C / hour until it becomes below ° C.
By doing so, it is presumed that the cooling rate is in an appropriate state, a unique structure appropriately including a graphite structure is formed in the amorphous structure, and the carbon material of the present invention can be obtained.
However, in the present invention, a diffraction pattern measured by a wide-angle X-ray diffraction method is calculated using the Bragg equation without using graphite or graphitization catalyst as a raw material or precursor to be used. There is a diffraction pattern peak in which the distance d is 3.4 mm or more and 3.9 mm or less, the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less, and the interplanar distance d is in the peak. It is characterized in that a carbon material for a lithium ion secondary battery having a (002) plane peak with a graphite structure of 3.25 to 3.45 mm is obtained. There may be no problem if graphite or the like is used as an additive as needed, after appropriately selecting a raw material or a precursor, a process, or the like that expresses this characteristic, and having an embodiment in which the present invention can be carried out.
以下、本発明を実施例により説明する。しかし、本発明は実施例に限定されるものではない。又、各実施例、比較例で示される「部」は「重量部」、「%」は「重量%」を示す。
はじめに、以下の実施例、比較例における測定方法を説明する。 Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “parts” represents “parts by weight” and “%” represents “% by weight”.
First, measurement methods in the following examples and comparative examples will be described.
はじめに、以下の実施例、比較例における測定方法を説明する。 Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “parts” represents “parts by weight” and “%” represents “% by weight”.
First, measurement methods in the following examples and comparative examples will be described.
(1.シンクロトロン放射光による(002)面の面間隔d、c軸方向の結晶子の大きさLcの測定)
(財)高輝度光科学研究センター(JASRI)大型放射光施設SPring-8、BL19B2にて、以下の(A)~(E)の条件で広角X線回折を行い、求められるスペクトルから以下の手順で面間隔d(002)、およびc軸方向の結晶子の大きさ(Lc)を評価した。回折角(スペクトルの反射角度)θは、放物線近似法、すなわちスペクトルのピークトップ近傍の任意の数点を通る放物線を最小二乗法にて導出し、その頂点をピークトップとする方法にて決定した。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV)
○(002)面の面間隔d
λ=2dhklsinθ Bragg式 (dhkl=d002)
λ:入射X線波長
θ:スペクトルの反射角度
○c軸方向の結晶子の大きさLc
広角X線回折測定から求められるスペクトルにおける非晶質構造の(002)面ピークの半値幅と回折角(スペクトルの反射角度)θから次のScherrerの式を用いて決定した。
Lc=0.94λ /(βcosθ) ( Scherrerの式)
Lc:結晶子の大きさ
λ:入射X線波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度 (1. Measurement of (002) plane spacing d by synchrotron radiation and measurement of crystallite size Lc in the c-axis direction)
Wide-angle X-ray diffraction under the following conditions (A) to (E) at the Large Synchrotron Radiation Research Center (JASRI) Synchrotron Radiation Facility SPring-8, BL19B2 The surface spacing d (002) and the crystallite size (Lc) in the c-axis direction were evaluated. The diffraction angle (spectral reflection angle) θ is determined by a parabolic approximation method, that is, a method in which a parabola passing through any number of points near the peak top of the spectrum is derived by the least square method, and the peak is the peak top. .
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
○ (002) plane spacing d
λ = 2d hkl sinθ Bragg equation (d hkl = d 002 )
λ: incident X-ray wavelength θ: spectral reflection angle ○ crystallite size Lc in the c-axis direction
It was determined from the half width of the (002) plane peak of the amorphous structure and the diffraction angle (spectral reflection angle) θ of the amorphous structure obtained from the wide-angle X-ray diffraction measurement using the following Scherrer equation.
Lc = 0.94λ / (βcos θ) (Scherrer equation)
Lc: crystallite size λ: incident X-ray wavelength β: half-width of peak (radian)
θ: Reflection angle of spectrum
(財)高輝度光科学研究センター(JASRI)大型放射光施設SPring-8、BL19B2にて、以下の(A)~(E)の条件で広角X線回折を行い、求められるスペクトルから以下の手順で面間隔d(002)、およびc軸方向の結晶子の大きさ(Lc)を評価した。回折角(スペクトルの反射角度)θは、放物線近似法、すなわちスペクトルのピークトップ近傍の任意の数点を通る放物線を最小二乗法にて導出し、その頂点をピークトップとする方法にて決定した。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV)
○(002)面の面間隔d
λ=2dhklsinθ Bragg式 (dhkl=d002)
λ:入射X線波長
θ:スペクトルの反射角度
○c軸方向の結晶子の大きさLc
広角X線回折測定から求められるスペクトルにおける非晶質構造の(002)面ピークの半値幅と回折角(スペクトルの反射角度)θから次のScherrerの式を用いて決定した。
Lc=0.94λ /(βcosθ) ( Scherrerの式)
Lc:結晶子の大きさ
λ:入射X線波長
β:ピークの半値幅(ラジアン)
θ:スペクトルの反射角度 (1. Measurement of (002) plane spacing d by synchrotron radiation and measurement of crystallite size Lc in the c-axis direction)
Wide-angle X-ray diffraction under the following conditions (A) to (E) at the Large Synchrotron Radiation Research Center (JASRI) Synchrotron Radiation Facility SPring-8, BL19B2 The surface spacing d (002) and the crystallite size (Lc) in the c-axis direction were evaluated. The diffraction angle (spectral reflection angle) θ is determined by a parabolic approximation method, that is, a method in which a parabola passing through any number of points near the peak top of the spectrum is derived by the least square method, and the peak is the peak top. .
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV)
○ (002) plane spacing d
λ = 2d hkl sinθ Bragg equation (d hkl = d 002 )
λ: incident X-ray wavelength θ: spectral reflection angle ○ crystallite size Lc in the c-axis direction
It was determined from the half width of the (002) plane peak of the amorphous structure and the diffraction angle (spectral reflection angle) θ of the amorphous structure obtained from the wide-angle X-ray diffraction measurement using the following Scherrer equation.
Lc = 0.94λ / (βcos θ) (Scherrer equation)
Lc: crystallite size λ: incident X-ray wavelength β: half-width of peak (radian)
θ: Reflection angle of spectrum
(2.従来のラボスケールのX線回折装置を使用した(002)面の平均面間隔dの測定)
島津製作所製・X線回折装置「XRD-7000」(入射X線波長CuKα1.54Å)を使用して(002)面の面間隔dを測定した。 (2. Measurement of the average spacing d of (002) planes using a conventional lab-scale X-ray diffractometer)
Using a Shimadzu X-ray diffractometer “XRD-7000” (incident X-ray wavelength CuKα1.54 mm), the (002) plane spacing d was measured.
島津製作所製・X線回折装置「XRD-7000」(入射X線波長CuKα1.54Å)を使用して(002)面の面間隔dを測定した。 (2. Measurement of the average spacing d of (002) planes using a conventional lab-scale X-ray diffractometer)
Using a Shimadzu X-ray diffractometer “XRD-7000” (incident X-ray wavelength CuKα1.54 mm), the (002) plane spacing d was measured.
(3.ラマンスペクトルの測定)
RENISHAW製InViaReflexラマンマイクロスコープを用い、試料を20倍の対物レンズで拡大し、波長532nm、2.5mWのYAGレーザー光を試料に照射し、ラマン散乱光を積算回数5回、測定範囲100~2000cm-1、露光時間100秒で測定した。得られたスペクトルに1本のベースラインを引き、このベースラインからラマン分光スペクトルの1300~1400cm-1の範囲にあるDバンドの強度IDと1560~1650cm-1の範囲にあるGバンドの強度IGの強度比であるR値(ID/IG)を求めた。 (3. Measurement of Raman spectrum)
Using an InViaReflex Raman microscope manufactured by RENISHAW, magnifying the sample with a 20x objective lens, irradiating the sample with a YAG laser beam having a wavelength of 532 nm and 2.5 mW, measuring Raman scattering light 5 times, and measuring range 100 to 2000 cm −1 , measured at an exposure time of 100 seconds. Pull the one baseline to the obtained spectrum intensity IG of G band from the base line in the range of the intensity ID and 1560 ~ 1650 cm -1 of D band in the range of 1300 ~ 1400 cm -1 of the Raman spectrum The R value (ID / IG), which is the intensity ratio, was determined.
RENISHAW製InViaReflexラマンマイクロスコープを用い、試料を20倍の対物レンズで拡大し、波長532nm、2.5mWのYAGレーザー光を試料に照射し、ラマン散乱光を積算回数5回、測定範囲100~2000cm-1、露光時間100秒で測定した。得られたスペクトルに1本のベースラインを引き、このベースラインからラマン分光スペクトルの1300~1400cm-1の範囲にあるDバンドの強度IDと1560~1650cm-1の範囲にあるGバンドの強度IGの強度比であるR値(ID/IG)を求めた。 (3. Measurement of Raman spectrum)
Using an InViaReflex Raman microscope manufactured by RENISHAW, magnifying the sample with a 20x objective lens, irradiating the sample with a YAG laser beam having a wavelength of 532 nm and 2.5 mW, measuring Raman scattering light 5 times, and measuring range 100 to 2000 cm −1 , measured at an exposure time of 100 seconds. Pull the one baseline to the obtained spectrum intensity IG of G band from the base line in the range of the intensity ID and 1560 ~ 1650 cm -1 of D band in the range of 1300 ~ 1400 cm -1 of the Raman spectrum The R value (ID / IG), which is the intensity ratio, was determined.
(4.比表面積)
ユアサ社製のNova-1200装置を使用して窒素吸着におけるBET3点法により測定した。具体的な算出方法は、前記実施形態で述べた通りである。 (4. Specific surface area)
Measurement was performed by the BET three-point method in nitrogen adsorption using a Nova-1200 device manufactured by Yuasa. A specific calculation method is as described in the above embodiment.
ユアサ社製のNova-1200装置を使用して窒素吸着におけるBET3点法により測定した。具体的な算出方法は、前記実施形態で述べた通りである。 (4. Specific surface area)
Measurement was performed by the BET three-point method in nitrogen adsorption using a Nova-1200 device manufactured by Yuasa. A specific calculation method is as described in the above embodiment.
(5.炭素含有率、窒素含有率)
パーキンエルマー社製・元素分析測定装置「PE2400」を用いて測定した。測定試料を、燃焼法を用いてCO2、H2O、及びN2に変換した後に、ガス化した試料を均質化した上でカラムを通過させる。これにより、これらのガスが段階的に分離され、それぞれの熱伝導率から、炭素、水素、及び窒素の含有量を測定した。
ア)炭素含有率
得られた炭素材を、110℃/真空中、3時間乾燥処理後、元素分析測定装置を用いて炭素組成比を測定した。
イ)窒素含有率
得られた炭素材を、110℃/真空中、3時間乾燥処理後、元素分析測定装置を用いて窒素組成比を測定した。 (5. Carbon content, nitrogen content)
The measurement was performed using an elemental analysis measuring device “PE2400” manufactured by PerkinElmer. The measurement sample is converted into CO 2 , H 2 O, and N 2 using a combustion method, and then the gasified sample is homogenized and then passed through the column. Thereby, these gases were separated stepwise, and the contents of carbon, hydrogen, and nitrogen were measured from the respective thermal conductivities.
A) Carbon content rate After carbonizing the obtained carbon material in 110 degreeC / vacuum for 3 hours, the carbon composition ratio was measured using the elemental analysis measuring device.
B) Nitrogen content The obtained carbon material was dried at 110 ° C./vacuum for 3 hours, and then the nitrogen composition ratio was measured using an elemental analyzer.
パーキンエルマー社製・元素分析測定装置「PE2400」を用いて測定した。測定試料を、燃焼法を用いてCO2、H2O、及びN2に変換した後に、ガス化した試料を均質化した上でカラムを通過させる。これにより、これらのガスが段階的に分離され、それぞれの熱伝導率から、炭素、水素、及び窒素の含有量を測定した。
ア)炭素含有率
得られた炭素材を、110℃/真空中、3時間乾燥処理後、元素分析測定装置を用いて炭素組成比を測定した。
イ)窒素含有率
得られた炭素材を、110℃/真空中、3時間乾燥処理後、元素分析測定装置を用いて窒素組成比を測定した。 (5. Carbon content, nitrogen content)
The measurement was performed using an elemental analysis measuring device “PE2400” manufactured by PerkinElmer. The measurement sample is converted into CO 2 , H 2 O, and N 2 using a combustion method, and then the gasified sample is homogenized and then passed through the column. Thereby, these gases were separated stepwise, and the contents of carbon, hydrogen, and nitrogen were measured from the respective thermal conductivities.
A) Carbon content rate After carbonizing the obtained carbon material in 110 degreeC / vacuum for 3 hours, the carbon composition ratio was measured using the elemental analysis measuring device.
B) Nitrogen content The obtained carbon material was dried at 110 ° C./vacuum for 3 hours, and then the nitrogen composition ratio was measured using an elemental analyzer.
(6.充電容量、放電容量、充放電効率)
(1)二次電池評価用二極式コインセルの製造
各実施例、比較例で得られた炭素材100部に対して、結合剤としてポリフッ化ビニリデン10部、希釈溶媒としてN-メチル-2-ピロリドンを適量加え混合し、スラリー状の負極混合物を調製した。調製した負極スラリー状混合物を18μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径16.156mmの円形として切り出し負極を作製した。
正極はリチウム金属を用いて二極式コインセルにて評価を行った。電解液として体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合液に過塩素酸リチウムを1モル/リットル溶解させたものを用いた。 (6. Charge capacity, discharge capacity, charge / discharge efficiency)
(1) Manufacture of a bipolar coin cell forsecondary battery evaluation 10 parts of polyvinylidene fluoride as a binder and N-methyl-2-as a diluting solvent with respect to 100 parts of the carbon material obtained in each example and comparative example A suitable amount of pyrrolidone was added and mixed to prepare a slurry-like negative electrode mixture. The prepared negative electrode slurry-like mixture was applied to both sides of 18 μm copper foil, and then vacuum-dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut out as a circle having a diameter of 16.156 mm to produce a negative electrode.
The positive electrode was evaluated with a bipolar coin cell using lithium metal. As the electrolytic solution, a solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solution of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used.
(1)二次電池評価用二極式コインセルの製造
各実施例、比較例で得られた炭素材100部に対して、結合剤としてポリフッ化ビニリデン10部、希釈溶媒としてN-メチル-2-ピロリドンを適量加え混合し、スラリー状の負極混合物を調製した。調製した負極スラリー状混合物を18μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径16.156mmの円形として切り出し負極を作製した。
正極はリチウム金属を用いて二極式コインセルにて評価を行った。電解液として体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合液に過塩素酸リチウムを1モル/リットル溶解させたものを用いた。 (6. Charge capacity, discharge capacity, charge / discharge efficiency)
(1) Manufacture of a bipolar coin cell for
The positive electrode was evaluated with a bipolar coin cell using lithium metal. As the electrolytic solution, a solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solution of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used.
(2)充電容量、放電容量の評価
充電条件は電流25mA/gの定電流で1mVになるまで充電した後、1mV保持で1.25mA/gまで電流が減衰したところを充電終止とした。また、放電条件のカットオフ電位は 1.5Vとした。 (2) Evaluation of Charging Capacity and Discharging Capacity The charging condition was that charging was stopped at a constant current of 25 mA / g until it reached 1 mV, and then the charging was terminated when the current attenuated to 1.25 mA / g with 1 mV holding. The cut-off potential under discharge conditions was 1.5V.
充電条件は電流25mA/gの定電流で1mVになるまで充電した後、1mV保持で1.25mA/gまで電流が減衰したところを充電終止とした。また、放電条件のカットオフ電位は 1.5Vとした。 (2) Evaluation of Charging Capacity and Discharging Capacity The charging condition was that charging was stopped at a constant current of 25 mA / g until it reached 1 mV, and then the charging was terminated when the current attenuated to 1.25 mA / g with 1 mV holding. The cut-off potential under discharge conditions was 1.5V.
(3)充放電効率の評価
上記(2)で得られた値をもとに、下記式により算出した。
充放電効率(%)=[放電容量/充電容量]×100 (3) Evaluation of charge / discharge efficiency Based on the value obtained in the above (2), the charge / discharge efficiency was calculated by the following formula.
Charge / discharge efficiency (%) = [discharge capacity / charge capacity] × 100
上記(2)で得られた値をもとに、下記式により算出した。
充放電効率(%)=[放電容量/充電容量]×100 (3) Evaluation of charge / discharge efficiency Based on the value obtained in the above (2), the charge / discharge efficiency was calculated by the following formula.
Charge / discharge efficiency (%) = [discharge capacity / charge capacity] × 100
(実施例1)
樹脂組成物として、フェノール樹脂PR-217(住友ベークライト(株)製)を以下の工程(a)~(f)の順で処理を行い、炭素材を得た。
(a)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温
(b)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理後、冷却
(c)振動ボールミルで微粉砕
(d)不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1200℃で8時間炭化処理
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃まで、100℃/時間で冷却 Example 1
As a resin composition, phenol resin PR-217 (manufactured by Sumitomo Bakelite Co., Ltd.) was treated in the order of the following steps (a) to (f) to obtain a carbon material.
(A) Temperature reduction from room temperature to 500 ° C. at 100 ° C./hour without any of reducing gas replacement, inert gas replacement, reducing gas flow and inert gas flow (b) Reducing gas replacement and inert gas replacement Then, after degreasing treatment at 500 ° C. for 2 hours without cooling gas flow and inert gas flow, cooling (c) fine pulverization with a vibrating ball mill (d) from room temperature to 1200 under substitution and flow of inert gas (nitrogen) (E) Carbonization for 8 hours at 1200 ° C. under an inert gas (nitrogen) flow (f) After natural cooling to 600 ° C. under an inert gas (nitrogen) flow, 600 ℃ to 100 ℃, cooling at 100 ℃ / hour
樹脂組成物として、フェノール樹脂PR-217(住友ベークライト(株)製)を以下の工程(a)~(f)の順で処理を行い、炭素材を得た。
(a)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温
(b)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理後、冷却
(c)振動ボールミルで微粉砕
(d)不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1200℃で8時間炭化処理
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃まで、100℃/時間で冷却 Example 1
As a resin composition, phenol resin PR-217 (manufactured by Sumitomo Bakelite Co., Ltd.) was treated in the order of the following steps (a) to (f) to obtain a carbon material.
(A) Temperature reduction from room temperature to 500 ° C. at 100 ° C./hour without any of reducing gas replacement, inert gas replacement, reducing gas flow and inert gas flow (b) Reducing gas replacement and inert gas replacement Then, after degreasing treatment at 500 ° C. for 2 hours without cooling gas flow and inert gas flow, cooling (c) fine pulverization with a vibrating ball mill (d) from room temperature to 1200 under substitution and flow of inert gas (nitrogen) (E) Carbonization for 8 hours at 1200 ° C. under an inert gas (nitrogen) flow (f) After natural cooling to 600 ° C. under an inert gas (nitrogen) flow, 600 ℃ to 100 ℃, cooling at 100 ℃ / hour
(実施例2)
実施例1においてフェノール樹脂にかえて、アニリン樹脂(以下の方法で合成したもの)を用いた。
アニリン100部と37% ホルムアルデヒド水溶液697部、蓚酸2部を攪拌装置及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、脱水し、アニリン樹脂110部を得た。得られたアニリン樹脂の重量平均分子量は約800であった。
以上のようにして得られたアニリン樹脂100部とヘキサメチレンテトラミン10部を粉砕混合し得られた樹脂組成物を、実施例1と同様の工程で処理を行い、炭素材を得た。 (Example 2)
In Example 1, an aniline resin (synthesized by the following method) was used instead of the phenol resin.
100 parts of aniline, 697 parts of 37% aqueous formaldehyde, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin. The obtained aniline resin had a weight average molecular weight of about 800.
The resin composition obtained by pulverizing and mixing 100 parts of the aniline resin and 10 parts of hexamethylenetetramine obtained as described above was treated in the same process as in Example 1 to obtain a carbon material.
実施例1においてフェノール樹脂にかえて、アニリン樹脂(以下の方法で合成したもの)を用いた。
アニリン100部と37% ホルムアルデヒド水溶液697部、蓚酸2部を攪拌装置及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、脱水し、アニリン樹脂110部を得た。得られたアニリン樹脂の重量平均分子量は約800であった。
以上のようにして得られたアニリン樹脂100部とヘキサメチレンテトラミン10部を粉砕混合し得られた樹脂組成物を、実施例1と同様の工程で処理を行い、炭素材を得た。 (Example 2)
In Example 1, an aniline resin (synthesized by the following method) was used instead of the phenol resin.
100 parts of aniline, 697 parts of 37% aqueous formaldehyde, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin. The obtained aniline resin had a weight average molecular weight of about 800.
The resin composition obtained by pulverizing and mixing 100 parts of the aniline resin and 10 parts of hexamethylenetetramine obtained as described above was treated in the same process as in Example 1 to obtain a carbon material.
(比較例1)
黒鉛(メソフェーズカーボンマイクロビーズ)から構成される炭素材を用意した。 (Comparative Example 1)
A carbon material composed of graphite (mesophase carbon microbeads) was prepared.
黒鉛(メソフェーズカーボンマイクロビーズ)から構成される炭素材を用意した。 (Comparative Example 1)
A carbon material composed of graphite (mesophase carbon microbeads) was prepared.
(比較例2)
実施例1においてフェノール樹脂にかえて、コールタールピッチ(JFE商事(株)製)にかえ、(d)、(e)、(f)の工程を以下のように変更した以外は実施例1と同様な工程で処理を行い、炭素材を得た。
(d)不活性ガス(窒素)置換および流通下、室温から1100℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1100℃で4時間炭化処理
(f)不活性ガス(窒素)流通下、100℃まで自然放冷 (Comparative Example 2)
In Example 1, instead of phenol resin, in place of coal tar pitch (manufactured by JFE Shoji Co., Ltd.), the steps of (d), (e), and (f) were changed as follows. The carbon material was obtained by performing the same process.
(D) Inert gas (nitrogen) replacement and flow, from room temperature to 1100 ° C., heated at 100 ° C./hour (e) Inactive gas (nitrogen) flow, 1100 ° C. for 4 hours carbonization (f) No Natural cooling to 100 ° C under active gas (nitrogen) flow
実施例1においてフェノール樹脂にかえて、コールタールピッチ(JFE商事(株)製)にかえ、(d)、(e)、(f)の工程を以下のように変更した以外は実施例1と同様な工程で処理を行い、炭素材を得た。
(d)不活性ガス(窒素)置換および流通下、室温から1100℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1100℃で4時間炭化処理
(f)不活性ガス(窒素)流通下、100℃まで自然放冷 (Comparative Example 2)
In Example 1, instead of phenol resin, in place of coal tar pitch (manufactured by JFE Shoji Co., Ltd.), the steps of (d), (e), and (f) were changed as follows. The carbon material was obtained by performing the same process.
(D) Inert gas (nitrogen) replacement and flow, from room temperature to 1100 ° C., heated at 100 ° C./hour (e) Inactive gas (nitrogen) flow, 1100 ° C. for 4 hours carbonization (f) No Natural cooling to 100 ° C under active gas (nitrogen) flow
(比較例3)
実施例1において、(d)、(e)、(f)の工程を以下のように変更した以外は実施例1と同様な工程で処理を行い、炭素材を得た。
(d)不活性ガス(窒素)置換および流通下、室温から1000℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1000℃で8時間炭化処理
(f)不活性ガス(窒素)流通下、100℃まで自然放冷 (Comparative Example 3)
In Example 1, the process of (d), (e), (f) was changed as follows, and it processed in the process similar to Example 1, and obtained the carbon material.
(D) Inactive gas (nitrogen) substitution and flow from room temperature to 1000 ° C. at 100 ° C./hour (e) Carbonization treatment at 1000 ° C. for 8 hours under inert gas (nitrogen) flow (f) Natural cooling to 100 ° C under active gas (nitrogen) flow
実施例1において、(d)、(e)、(f)の工程を以下のように変更した以外は実施例1と同様な工程で処理を行い、炭素材を得た。
(d)不活性ガス(窒素)置換および流通下、室温から1000℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1000℃で8時間炭化処理
(f)不活性ガス(窒素)流通下、100℃まで自然放冷 (Comparative Example 3)
In Example 1, the process of (d), (e), (f) was changed as follows, and it processed in the process similar to Example 1, and obtained the carbon material.
(D) Inactive gas (nitrogen) substitution and flow from room temperature to 1000 ° C. at 100 ° C./hour (e) Carbonization treatment at 1000 ° C. for 8 hours under inert gas (nitrogen) flow (f) Natural cooling to 100 ° C under active gas (nitrogen) flow
上記実施例、比較例で得られた炭素材の評価結果および前記炭素材を負極として使用した場合の充電容量、放電容量、充放電効率の測定結果を表1に示す。
Table 1 shows the evaluation results of the carbon materials obtained in the above Examples and Comparative Examples, and the measurement results of the charge capacity, discharge capacity, and charge / discharge efficiency when the carbon material is used as a negative electrode.
本発明の(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材である実施例1および2ではいずれも充電容量、放電容量が高く、かつ充放電効率も高くなった。
非晶質構造に基づくアモルファスハロパターンを持たない比較例1では効率が高いものの、充電容量、放電容量ともに低い値となった。また、本発明のシンクロトロン放射光による広角X線回折法において非晶質構造に基づくアモルファスハロパターンのみで黒鉛構造の(002)面ピークを持たない比較例2では充電容量、放電容量は高いが効率が低くなり、比較例3では、放電容量、効率が実施例に比べ低下している。
また、従来のラボスケールの装置を使用した広角X線回折では、実施例における3.25Å以上、3.40Å未満となる黒鉛構造の面間隔dは検出されなかった。
さらに非晶質構造を基本とする実施例1、2、比較例2、3のラマンスペクトルはいずれも大差のない結果であり、ラマンスペクトルでは、本発明の材料の特徴である、非晶質炭素中に存在する、黒鉛由来の結晶構造を特定することはできなかった。 It has an amorphous structure in which the average interplanar spacing d of the (002) plane of the present invention is 3.40 mm or more and 3.90 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. In addition, in Examples 1 and 2 which are carbon materials for lithium ion secondary batteries having a graphite structure in which the (002) plane spacing d is 3.25 mm or more and less than 3.40 mm, both the charge capacity and the discharge capacity are High charge and discharge efficiency.
In Comparative Example 1 having no amorphous halo pattern based on the amorphous structure, the efficiency was high, but both the charge capacity and the discharge capacity were low. Further, in the comparative example 2 which has only the amorphous halo pattern based on the amorphous structure and does not have the (002) plane peak of the graphite structure in the wide-angle X-ray diffraction method using synchrotron radiation of the present invention, the charge capacity and discharge capacity are high. The efficiency is lowered, and in Comparative Example 3, the discharge capacity and the efficiency are lower than in the example.
Further, in wide-angle X-ray diffraction using a conventional lab scale apparatus, the interplanar spacing d of the graphite structure that is 3.25 mm or more and less than 3.40 mm in the example was not detected.
Further, the Raman spectra of Examples 1 and 2 and Comparative Examples 2 and 3 based on an amorphous structure are all results that are not significantly different. In the Raman spectrum, amorphous carbon, which is a feature of the material of the present invention, is obtained. It was not possible to identify the crystal structure derived from graphite.
非晶質構造に基づくアモルファスハロパターンを持たない比較例1では効率が高いものの、充電容量、放電容量ともに低い値となった。また、本発明のシンクロトロン放射光による広角X線回折法において非晶質構造に基づくアモルファスハロパターンのみで黒鉛構造の(002)面ピークを持たない比較例2では充電容量、放電容量は高いが効率が低くなり、比較例3では、放電容量、効率が実施例に比べ低下している。
また、従来のラボスケールの装置を使用した広角X線回折では、実施例における3.25Å以上、3.40Å未満となる黒鉛構造の面間隔dは検出されなかった。
さらに非晶質構造を基本とする実施例1、2、比較例2、3のラマンスペクトルはいずれも大差のない結果であり、ラマンスペクトルでは、本発明の材料の特徴である、非晶質炭素中に存在する、黒鉛由来の結晶構造を特定することはできなかった。 It has an amorphous structure in which the average interplanar spacing d of the (002) plane of the present invention is 3.40 mm or more and 3.90 mm or less, and the crystallite size Lc in the c-axis direction is 8 mm or more and 50 mm or less. In addition, in Examples 1 and 2 which are carbon materials for lithium ion secondary batteries having a graphite structure in which the (002) plane spacing d is 3.25 mm or more and less than 3.40 mm, both the charge capacity and the discharge capacity are High charge and discharge efficiency.
In Comparative Example 1 having no amorphous halo pattern based on the amorphous structure, the efficiency was high, but both the charge capacity and the discharge capacity were low. Further, in the comparative example 2 which has only the amorphous halo pattern based on the amorphous structure and does not have the (002) plane peak of the graphite structure in the wide-angle X-ray diffraction method using synchrotron radiation of the present invention, the charge capacity and discharge capacity are high. The efficiency is lowered, and in Comparative Example 3, the discharge capacity and the efficiency are lower than in the example.
Further, in wide-angle X-ray diffraction using a conventional lab scale apparatus, the interplanar spacing d of the graphite structure that is 3.25 mm or more and less than 3.40 mm in the example was not detected.
Further, the Raman spectra of Examples 1 and 2 and Comparative Examples 2 and 3 based on an amorphous structure are all results that are not significantly different. In the Raman spectrum, amorphous carbon, which is a feature of the material of the present invention, is obtained. It was not possible to identify the crystal structure derived from graphite.
(実施例3)
樹脂組成物として、フェノール樹脂PR-217(住友ベークライト(株)製)を以下の工程(a)~(f)の順で処理を行い、炭素材を得た。
(a)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温
(b)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理後、冷却
(c)振動ボールミルで微粉砕
(d)不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1200℃で8時間炭化処理
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃以下まで、100℃/時間で冷却 (Example 3)
As a resin composition, phenol resin PR-217 (manufactured by Sumitomo Bakelite Co., Ltd.) was treated in the order of the following steps (a) to (f) to obtain a carbon material.
(A) Temperature reduction from room temperature to 500 ° C. at 100 ° C./hour without any of reducing gas replacement, inert gas replacement, reducing gas flow and inert gas flow (b) Reducing gas replacement and inert gas replacement Then, after degreasing treatment at 500 ° C. for 2 hours without cooling gas flow and inert gas flow, cooling (c) fine pulverization with a vibrating ball mill (d) from room temperature to 1200 under substitution and flow of inert gas (nitrogen) (E) Carbonization for 8 hours at 1200 ° C. under an inert gas (nitrogen) flow (f) After natural cooling to 600 ° C. under an inert gas (nitrogen) flow, 600 Cooling from 100 ° C to 100 ° C or less at 100 ° C / hour
樹脂組成物として、フェノール樹脂PR-217(住友ベークライト(株)製)を以下の工程(a)~(f)の順で処理を行い、炭素材を得た。
(a)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、室温から500℃まで、100℃/時間で昇温
(b)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも無しで、500℃で2時間脱脂処理後、冷却
(c)振動ボールミルで微粉砕
(d)不活性ガス(窒素)置換および流通下、室温から1200℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1200℃で8時間炭化処理
(f)不活性ガス(窒素)流通下、600℃まで自然放冷後、600℃から100℃以下まで、100℃/時間で冷却 (Example 3)
As a resin composition, phenol resin PR-217 (manufactured by Sumitomo Bakelite Co., Ltd.) was treated in the order of the following steps (a) to (f) to obtain a carbon material.
(A) Temperature reduction from room temperature to 500 ° C. at 100 ° C./hour without any of reducing gas replacement, inert gas replacement, reducing gas flow and inert gas flow (b) Reducing gas replacement and inert gas replacement Then, after degreasing treatment at 500 ° C. for 2 hours without cooling gas flow and inert gas flow, cooling (c) fine pulverization with a vibrating ball mill (d) from room temperature to 1200 under substitution and flow of inert gas (nitrogen) (E) Carbonization for 8 hours at 1200 ° C. under an inert gas (nitrogen) flow (f) After natural cooling to 600 ° C. under an inert gas (nitrogen) flow, 600 Cooling from 100 ° C to 100 ° C or less at 100 ° C / hour
(実施例4)
実施例3においてフェノール樹脂にかえて、アニリン樹脂(以下の方法で合成したもの)を用いた。
アニリン100部と37% ホルムアルデヒド水溶液697部、蓚酸2部を攪拌装置及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、脱水し、アニリン樹脂110部を得た。得られたアニリン樹脂の重量平均分子量は約800であった。
以上のようにして得られたアニリン樹脂100部とヘキサメチレンテトラミン10部を粉砕混合し得られた樹脂組成物を、実施例3と同様の工程で処理を行い、炭素材を得た。 (Example 4)
In Example 3, an aniline resin (synthesized by the following method) was used instead of the phenol resin.
100 parts of aniline, 697 parts of 37% aqueous formaldehyde, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin. The obtained aniline resin had a weight average molecular weight of about 800.
The resin composition obtained by pulverizing and mixing 100 parts of the aniline resin and 10 parts of hexamethylenetetramine obtained as described above was treated in the same process as in Example 3 to obtain a carbon material.
実施例3においてフェノール樹脂にかえて、アニリン樹脂(以下の方法で合成したもの)を用いた。
アニリン100部と37% ホルムアルデヒド水溶液697部、蓚酸2部を攪拌装置及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、脱水し、アニリン樹脂110部を得た。得られたアニリン樹脂の重量平均分子量は約800であった。
以上のようにして得られたアニリン樹脂100部とヘキサメチレンテトラミン10部を粉砕混合し得られた樹脂組成物を、実施例3と同様の工程で処理を行い、炭素材を得た。 (Example 4)
In Example 3, an aniline resin (synthesized by the following method) was used instead of the phenol resin.
100 parts of aniline, 697 parts of 37% aqueous formaldehyde, and 2 parts of oxalic acid were placed in a three-necked flask equipped with a stirrer and a condenser, reacted at 100 ° C. for 3 hours, and dehydrated to obtain 110 parts of aniline resin. The obtained aniline resin had a weight average molecular weight of about 800.
The resin composition obtained by pulverizing and mixing 100 parts of the aniline resin and 10 parts of hexamethylenetetramine obtained as described above was treated in the same process as in Example 3 to obtain a carbon material.
(比較例4)
黒鉛(メソフェーズカーボンマイクロビーズ)から構成される炭素材を用意した。 (Comparative Example 4)
A carbon material composed of graphite (mesophase carbon microbeads) was prepared.
黒鉛(メソフェーズカーボンマイクロビーズ)から構成される炭素材を用意した。 (Comparative Example 4)
A carbon material composed of graphite (mesophase carbon microbeads) was prepared.
(比較例5)
実施例3においてフェノール樹脂にかえて、コールタールピッチ(JFE商事(株)製)にかえ、(d)、(e)、(f)の工程を以下のように変更した以外は実施例1と同様な工程で処理を行い、炭素材を得た。
(d)不活性ガス(窒素)置換および流通下、室温から1100℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1100℃で4時間炭化処理
(f)不活性ガス(窒素)流通下、100℃以下まで自然放冷 (Comparative Example 5)
In Example 3, instead of phenol resin, instead of coal tar pitch (manufactured by JFE Shoji Co., Ltd.), the steps of (d), (e), and (f) were changed as in Example 1 as described below. The carbon material was obtained by performing the same process.
(D) Inert gas (nitrogen) replacement and flow, from room temperature to 1100 ° C., heated at 100 ° C./hour (e) Inactive gas (nitrogen) flow, 1100 ° C. for 4 hours carbonization (f) No Natural cooling to 100 ° C or lower under active gas (nitrogen) flow
実施例3においてフェノール樹脂にかえて、コールタールピッチ(JFE商事(株)製)にかえ、(d)、(e)、(f)の工程を以下のように変更した以外は実施例1と同様な工程で処理を行い、炭素材を得た。
(d)不活性ガス(窒素)置換および流通下、室温から1100℃まで、100℃/時間で昇温
(e)不活性ガス(窒素)流通下、1100℃で4時間炭化処理
(f)不活性ガス(窒素)流通下、100℃以下まで自然放冷 (Comparative Example 5)
In Example 3, instead of phenol resin, instead of coal tar pitch (manufactured by JFE Shoji Co., Ltd.), the steps of (d), (e), and (f) were changed as in Example 1 as described below. The carbon material was obtained by performing the same process.
(D) Inert gas (nitrogen) replacement and flow, from room temperature to 1100 ° C., heated at 100 ° C./hour (e) Inactive gas (nitrogen) flow, 1100 ° C. for 4 hours carbonization (f) No Natural cooling to 100 ° C or lower under active gas (nitrogen) flow
上記実施例、比較例で得られた炭素材の評価結果および前記炭素材を負極として使用した場合の充電容量、放電容量、充放電効率の測定結果を表2に示す。
Table 2 shows the evaluation results of the carbon materials obtained in the above Examples and Comparative Examples and the measurement results of the charge capacity, discharge capacity, and charge / discharge efficiency when the carbon material is used as a negative electrode.
本発明の広角X線回折法により測定した回折パターンにおいて、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有する実施例3および4ではいずれも充電容量、放電容量が高く、かつ充放電効率も高くなった。
非晶質構造に基づくアモルファスハロパターンを持たない比較例4では効率が高いものの、充電容量、放電容量ともに低い値となった。また、本発明のシンクロトロン放射光による広角X線回折法において非晶質構造に基づくアモルファスハロパターンのみで黒鉛構造の(002)面ピークを持たない比較例5では充電容量、放電容量は高いが効率が低くなった。
また、従来のラボスケールの装置を使用した広角X線回折では、実施例における面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークは検出されなかった。
さらに非晶質構造を基本とする実施例3、4、比較例5のラマンスペクトルはいずれも大差のない結果であり、ラマンスペクトルでは、本発明の材料の特徴である、非晶質炭素中に存在する、黒鉛由来の結晶構造を特定することはできなかった。 In the diffraction pattern measured by the wide-angle X-ray diffraction method of the present invention, the average spacing d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystal in the c-axis direction A (002) plane peak of a graphite structure having a diffraction pattern peak with a child size Lc of 8 to 50 mm and a face spacing d of 3.25 to 3.45 mm in the peak. In Examples 3 and 4 having the above, both the charge capacity and discharge capacity were high, and the charge / discharge efficiency was also high.
In Comparative Example 4 having no amorphous halo pattern based on the amorphous structure, the efficiency was high, but both the charge capacity and the discharge capacity were low. Further, in Comparative Example 5 having only the amorphous halo pattern based on the amorphous structure and not having the (002) plane peak of the graphite structure in the wide-angle X-ray diffraction method using synchrotron radiation of the present invention, the charge capacity and discharge capacity are high. Efficiency became low.
In addition, in wide-angle X-ray diffraction using a conventional lab-scale apparatus, a peak on the (002) plane of the graphite structure in which the interplanar spacing d in the example was 3.25 mm or more and 3.45 mm or less was not detected.
Further, the Raman spectra of Examples 3 and 4 and Comparative Example 5 based on the amorphous structure are all the same results. In the Raman spectrum, the amorphous carbon, which is a feature of the material of the present invention, is not observed. The existing crystal structure derived from graphite could not be specified.
非晶質構造に基づくアモルファスハロパターンを持たない比較例4では効率が高いものの、充電容量、放電容量ともに低い値となった。また、本発明のシンクロトロン放射光による広角X線回折法において非晶質構造に基づくアモルファスハロパターンのみで黒鉛構造の(002)面ピークを持たない比較例5では充電容量、放電容量は高いが効率が低くなった。
また、従来のラボスケールの装置を使用した広角X線回折では、実施例における面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークは検出されなかった。
さらに非晶質構造を基本とする実施例3、4、比較例5のラマンスペクトルはいずれも大差のない結果であり、ラマンスペクトルでは、本発明の材料の特徴である、非晶質炭素中に存在する、黒鉛由来の結晶構造を特定することはできなかった。 In the diffraction pattern measured by the wide-angle X-ray diffraction method of the present invention, the average spacing d of (002) planes calculated using the Bragg equation is 3.4 mm or more and 3.9 mm or less, and the crystal in the c-axis direction A (002) plane peak of a graphite structure having a diffraction pattern peak with a child size Lc of 8 to 50 mm and a face spacing d of 3.25 to 3.45 mm in the peak. In Examples 3 and 4 having the above, both the charge capacity and discharge capacity were high, and the charge / discharge efficiency was also high.
In Comparative Example 4 having no amorphous halo pattern based on the amorphous structure, the efficiency was high, but both the charge capacity and the discharge capacity were low. Further, in Comparative Example 5 having only the amorphous halo pattern based on the amorphous structure and not having the (002) plane peak of the graphite structure in the wide-angle X-ray diffraction method using synchrotron radiation of the present invention, the charge capacity and discharge capacity are high. Efficiency became low.
In addition, in wide-angle X-ray diffraction using a conventional lab-scale apparatus, a peak on the (002) plane of the graphite structure in which the interplanar spacing d in the example was 3.25 mm or more and 3.45 mm or less was not detected.
Further, the Raman spectra of Examples 3 and 4 and Comparative Example 5 based on the amorphous structure are all the same results. In the Raman spectrum, the amorphous carbon, which is a feature of the material of the present invention, is not observed. The existing crystal structure derived from graphite could not be specified.
充電容量、放電容量の高いリチウムイオン電池を提供できる炭素材を提供することができる。
It is possible to provide a carbon material that can provide a lithium ion battery having a high charge capacity and discharge capacity.
10 二次電池
12 負極材
14 負極集電体
13 負極
20 正極材
22 正極集電体
21 正極
16 電解液
18 セパレータ DESCRIPTION OFSYMBOLS 10 Secondary battery 12 Negative electrode material 14 Negative electrode collector 13 Negative electrode 20 Positive electrode material 22 Positive electrode collector 21 Positive electrode 16 Electrolytic solution 18 Separator
12 負極材
14 負極集電体
13 負極
20 正極材
22 正極集電体
21 正極
16 電解液
18 セパレータ DESCRIPTION OF
Claims (9)
- 以下の条件(A)~(E)のもと、広角X線回折法により求まる(002)面の平均面間隔dが3.40Å以上、3.90Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる非晶質構造を有し、かつ(002)面の面間隔dが3.25Å以上、3.40Å未満となる黒鉛構造を有するリチウムイオン二次電池用炭素材。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) Under the following conditions (A) to (E), the average interplanar spacing d of the (002) plane obtained by the wide angle X-ray diffraction method is 3.40 mm or more and 3.90 mm or less, and the crystallites in the c-axis direction For a lithium ion secondary battery having an amorphous structure with a size Lc of 8 to 50 mm and a graphite structure with a (002) plane spacing d of 3.25 to 3.40 mm Carbon material.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV) - 以下の条件(A)~(E)のもと、広角X線回折法により測定した回折パターンが、Bragg式を用いて算出される(002)面の平均面間隔dが3.4Å以上、3.9Å以下であり、c軸方向の結晶子の大きさLcが8Å以上、50Å以下となる回折パターンのピークを有し、かつ前記ピーク中に面間隔dが3.25Å以上、3.45Å以下となる黒鉛構造の(002)面のピークを有するリチウムイオン二次電池用炭素材。
(A)光源:シンクロトロン放射光
(B)大型デバイシェラーカメラ、カメラ半径:286.48mm
(C)ビームサイズ:縦0.3mm×横3.0mm
(D)検出器:イメージングプレート(50μm=0.01°)
(E)入射X線:波長1.0Å(12.4keV) A diffraction pattern measured by the wide-angle X-ray diffraction method under the following conditions (A) to (E) is calculated by using the Bragg equation, and the average spacing d of (002) planes is 3.4 mm or more, 3 .9 Å or less, having a diffraction pattern peak in which the crystallite size Lc in the c-axis direction is 8 Å or more and 50 Å or less, and the interplanar spacing d is 3.25 Å or more and 3.45 Å or less in the peak. A carbon material for a lithium ion secondary battery having a (002) plane peak of a graphite structure.
(A) Light source: Synchrotron radiation (B) Large Debye-Scherrer camera, camera radius: 286.48 mm
(C) Beam size: Length 0.3mm x width 3.0mm
(D) Detector: Imaging plate (50 μm = 0.01 °)
(E) Incident X-ray: wavelength of 1.0 mm (12.4 keV) - 請求項1または2に記載のリチウムイオン二次電池用炭素材において、
窒素吸着におけるBET3点法による比表面積が15m2/g以下、1m2/g以上であるリチウムイオン二次電池用炭素材。 The carbon material for a lithium ion secondary battery according to claim 1 or 2,
A carbon material for a lithium ion secondary battery having a specific surface area of 15 m 2 / g or less and 1 m 2 / g or more by a BET three-point method in nitrogen adsorption. - 請求項1乃至3のいずれかに記載のリチウムイオン二次電池用炭素材において、
炭素原子を95wt%以上含み、かつ、炭素原子以外の元素として、窒素原子を0.5wt%以上、5wt%以下含むリチウムイオン二次電池用炭素材。 The carbon material for a lithium ion secondary battery according to any one of claims 1 to 3,
A carbon material for a lithium ion secondary battery containing 95 wt% or more of carbon atoms and containing 0.5 wt% or more and 5 wt% or less of nitrogen atoms as elements other than carbon atoms. - 請求項1乃至4のいずれかに記載のリチウムイオン二次電池用炭素材を含むリチウムイオン二次電池用負極材。 A negative electrode material for a lithium ion secondary battery comprising the carbon material for a lithium ion secondary battery according to any one of claims 1 to 4.
- 請求項5に記載のリチウムイオン二次電池用負極材を含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to claim 5.
- 請求項1または2に記載のリチウムイオン二次電池用炭素材100重量部、結着剤1~30重量部、および粘度調整用溶剤10~400重量部を混練して、スラリー状またはペースト状にした混合物を得る工程を含む、
リチウムイオン二次電池用負極材の製造方法。 100 parts by weight of the carbon material for a lithium ion secondary battery according to claim 1 or 2; 1 to 30 parts by weight of a binder; and 10 to 400 parts by weight of a viscosity adjusting solvent are kneaded to form a slurry or paste. Obtaining a prepared mixture,
A method for producing a negative electrode material for a lithium ion secondary battery. - 前記混合物にさらに添加剤が含まれる、請求項7に記載のリチウムイオン二次電池用負極材の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to claim 7, wherein the mixture further contains an additive.
- 請求項7の製造方法で製造される混合物を成形し、得られた成形体を負極集電体と積層して負極を得る工程、または
前記混合物を、負極材として負極集電体に塗布して負極を得る工程
を含む、リチウムイオン二次電池用負極の製造方法。 A step of forming a mixture produced by the production method of claim 7 and laminating the obtained molded body with a negative electrode current collector to obtain a negative electrode, or applying the mixture as a negative electrode material to a negative electrode current collector The manufacturing method of the negative electrode for lithium ion secondary batteries including the process of obtaining a negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/071462 WO2013042223A1 (en) | 2011-09-21 | 2011-09-21 | Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/071462 WO2013042223A1 (en) | 2011-09-21 | 2011-09-21 | Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013042223A1 true WO2013042223A1 (en) | 2013-03-28 |
Family
ID=47914035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/071462 WO2013042223A1 (en) | 2011-09-21 | 2011-09-21 | Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013042223A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116789921A (en) * | 2023-05-23 | 2023-09-22 | 利津荣达新材料有限公司 | Preparation method of prebaked anode binder |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07315822A (en) * | 1994-05-03 | 1995-12-05 | Moli Energy 1990 Ltd | Negative electrode for carbonaceous insertion compound and rechargeable battery |
JPH1040914A (en) * | 1996-05-23 | 1998-02-13 | Sharp Corp | Manufacture of nonaqueous secondary battery and negative pole active substance |
JP2009200014A (en) * | 2008-02-25 | 2009-09-03 | Sumitomo Bakelite Co Ltd | Secondary battery, and carbon material and electrode therefor |
WO2011064936A1 (en) * | 2009-11-25 | 2011-06-03 | 住友ベークライト株式会社 | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
JP2011222472A (en) * | 2010-03-25 | 2011-11-04 | Sumitomo Bakelite Co Ltd | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery |
-
2011
- 2011-09-21 WO PCT/JP2011/071462 patent/WO2013042223A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07315822A (en) * | 1994-05-03 | 1995-12-05 | Moli Energy 1990 Ltd | Negative electrode for carbonaceous insertion compound and rechargeable battery |
JPH1040914A (en) * | 1996-05-23 | 1998-02-13 | Sharp Corp | Manufacture of nonaqueous secondary battery and negative pole active substance |
JP2009200014A (en) * | 2008-02-25 | 2009-09-03 | Sumitomo Bakelite Co Ltd | Secondary battery, and carbon material and electrode therefor |
WO2011064936A1 (en) * | 2009-11-25 | 2011-06-03 | 住友ベークライト株式会社 | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery |
JP2011222472A (en) * | 2010-03-25 | 2011-11-04 | Sumitomo Bakelite Co Ltd | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and lithium ion secondary battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116789921A (en) * | 2023-05-23 | 2023-09-22 | 利津荣达新材料有限公司 | Preparation method of prebaked anode binder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5477391B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
WO2013035859A1 (en) | Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery | |
WO2013136747A1 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5454272B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5440308B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
KR101589842B1 (en) | Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JP2013222550A (en) | Negative electrode material, negative electrode and lithium ion secondary battery | |
JP2006083012A (en) | Carbon material, negative-electrode material for secondary battery, and nonaqueous electrolyte secondary battery | |
JP5831110B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5365598B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5561225B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5447287B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
WO2013042223A1 (en) | Carbon material for lithium ion secondary batteries, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery | |
JP2016136452A (en) | Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode | |
JP5961956B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5838673B2 (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP5862175B2 (en) | Method for producing negative electrode for lithium ion secondary battery | |
JP5561188B2 (en) | Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
TW201315006A (en) | Carbon material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery | |
JP2013218855A (en) | Negative electrode carbon material, negative electrode active material, negative electrode and lithium ion secondary battery | |
JP2013222551A (en) | Negative electrode material, negative electrode, and lithium ion secondary battery | |
JP2013218856A (en) | Negative electrode material, negative electrode and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11872758 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11872758 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |