Nothing Special   »   [go: up one dir, main page]

WO2013040912A1 - 一种相变换热装置 - Google Patents

一种相变换热装置 Download PDF

Info

Publication number
WO2013040912A1
WO2013040912A1 PCT/CN2012/076424 CN2012076424W WO2013040912A1 WO 2013040912 A1 WO2013040912 A1 WO 2013040912A1 CN 2012076424 W CN2012076424 W CN 2012076424W WO 2013040912 A1 WO2013040912 A1 WO 2013040912A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
phase change
zone
exchange medium
tube
Prior art date
Application number
PCT/CN2012/076424
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳能源技术有限公司 filed Critical 北京兆阳能源技术有限公司
Priority to EP12833719.3A priority Critical patent/EP2767789B1/en
Priority to AU2012313217A priority patent/AU2012313217B2/en
Priority to ES12833719.3T priority patent/ES2659776T3/es
Publication of WO2013040912A1 publication Critical patent/WO2013040912A1/zh
Priority to US14/222,554 priority patent/US9897391B2/en
Priority to ZA2014/02934A priority patent/ZA201402934B/en
Priority to HK15101551.2A priority patent/HK1201317A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/25Solar heat collectors using working fluids having two or more passages for the same working fluid layered in direction of solar-rays, e.g. having upper circulation channels connected with lower circulation channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • F24S2080/05Flow guiding means; Inserts inside conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention relates to a heat exchange device applied to various fields, and more particularly to a phase change heat device in the field of solar heat utilization.
  • CSP CSP
  • the endothermic heat transfer part has a very important position.
  • the heat transfer oil is mainly used as the heat transfer medium, and the conventional steam turbine is driven by the heat transfer oil to drive the generator set to generate electricity. Since the current operating temperature of the heat transfer oil must be controlled within 400 °C, exceeding this temperature will cause problems such as cracking of the heat transfer oil, increase in viscosity, and reduction in heat transfer efficiency, thus limiting the operating temperature of the solar thermal power generation.
  • the use of heat transfer oil is very expensive, so there is an urgent need for new heat transfer fluids to replace the heat transfer oil to increase the operating temperature and reduce the cost of the device and operating costs.
  • the alternatives to the heat exchange medium of the international solar collector technology are molten salt materials, but the crystallization points are relatively high, mostly around 230 to 260 °C, so there are still many difficulties in direct replacement.
  • the current molten salt is mainly used for heat. Energy storage.
  • the direct steam generation (DSG) technology which directly uses water as a heat exchange medium, has been tested for many years.
  • This technology is similar to the operation principle of a steam boiler heated pipe. With water as the working medium, the low temperature water is injected from one end of the heat absorption pipe, and the water is along the pipe. During the axial travel of the road, the heat absorption gradually increases, and after reaching the boiling point, it becomes saturated steam, and then the heat absorption continues to become superheated steam.
  • Embodiments of the present invention provide a phase change heat device including an inner tube, an outer tube, and a heat exchange medium; a space between the inner tube and the outer tube forms all or part of a liquid phase region; All or part of the space inside the inner tube forms a vaporization zone; the relatively high-pressure heat exchange medium inside the liquid phase zone is heated in the flow into the relatively low-pressure vaporization zone, and flows out of the phase change heat device after vaporization.
  • a spiral flow guiding device such as a spiral rotating fin or a spiral tube ring, is disposed inside the liquid phase region, so that the liquid medium heat exchange medium performs a vortex flow inside the liquid phase region, and the wall surface of the heat exchange medium is in good contact with each other. Average temperature performance.
  • the liquid phase region comprises an inner space of a third tube disposed inside the inner tube, providing a circulating flow path in the liquid phase region, homogenizing the temperature, and reducing the degree of warpage of the liquid phase region and the vaporization zone tube wall At the same time, the heat exchange area between the liquid phase region and the vaporization zone is increased, and the heat exchange effect of the vaporization zone is improved.
  • liquid phase heat exchange medium in the liquid phase region performs a circulating vortex flow, and the radial uniform temperature performance of the contact wall surface of the liquid phase region and the vaporization region is more optimized.
  • the contact wall surface of the liquid phase zone and the vaporization zone is arranged with a medium passage, for example, the medium passage is a capillary through hole, a capillary tube, a nozzle or a permeate material port, and the medium passage is on the inner wall of the contact wall surface.
  • the medium passage is a capillary through hole, a capillary tube, a nozzle or a permeate material port, and the medium passage is on the inner wall of the contact wall surface.
  • the medium passages are arranged along the axial direction on the inner wall of the contact wall surface, and under the action of the circulation pump and the third tube, the liquid medium heat exchange medium circulates in the liquid phase region, and the temperature is further lowered.
  • the degree of warpage of the structure, and the replenishment of the heat exchange medium to the vaporization zone is completed at the same time.
  • the medium passages are arranged along the axial direction on the third pipe wall; the liquid-phase heat exchange medium spirally flows through the liquid region region between the outer pipe and the inner pipe, and then enters the inside of the third pipe, the liquid phase
  • the flow of the heat exchange medium in the pipeline greatly reduces the circumferential temperature difference of the outer tube wall, reduces the degree of warpage of the structure, and simultaneously completes the supply of energy to the vaporization zone.
  • a spiral flow guiding device is arranged in the liquid phase region, and the liquid medium heat exchange medium advances spirally under the action of the spiral flow guiding device in the process of flowing through the liquid phase region, and reduces the circumferential wall surface temperature of the liquid phase region. Poor, reduce the warpage of the pipeline.
  • the liquid-phase heat exchange medium circulates inside the liquid phase region, thereby more effectively reducing the temperature difference of the circumferential wall surface of the liquid phase region, and maximally reducing the warpage degree of the liquid phase region and the vaporization region material.
  • the inner tube and/or the third tube is a spiral corrugated tube or a spiral corrugated tube, so that the liquid phase heat exchange medium in the liquid phase region and the gas phase heat exchange medium in the vaporization region spirally advance and enter a turbulent state. The heat exchange between the heat exchange medium and the pipe wall is enhanced, so that the circumferential direction of the pipe wall has good uniform temperature performance.
  • phase change heat device further includes a superheating zone, and the heat exchange medium that receives the gas phase or the vapor-liquid mixed phase flowing out of the vaporization zone is subjected to superheating to obtain a better steam parameter.
  • At least one of the liquid phase zone, the vaporization zone and the superheat zone is arranged with a spiral flow guiding device.
  • the spiral advances and reduces the circumference.
  • the difference in wall temperature reduces the warpage of the pipe.
  • the spiral flow guiding device is a spiral rotating fin, and a plurality of blocking pieces are arranged on a vertical surface of the spiral rotating fin, thereby increasing the self-interference and temperature uniformity of the liquid medium heat exchange medium, and reducing the metal outer tube and the metal The thermal resistance between the inner tubes provides sufficient temperature difference for the liquid phase heat exchange medium vaporization process.
  • the superheat zone is a fourth pipe inner space, and the fourth pipe extends along the longitudinal direction of the outer pipe axis or is arranged in parallel with the outer pipe to receive heat in the axial direction, and the gas phase heat exchange medium becomes a high parameter. Superheated steam.
  • the superheating zone is an independent fourth pipe inner space arranged in parallel with the outer pipe, and the manner is more conveniently utilized in the linear concentrating system, and the fourth pipe and the outer pipe can be received in a certain ratio through a reasonable optical design. Converging light energy, the fourth tube receives a small amount of heat to turn saturated steam or wet steam into the outside of the superheated steam delivery system.
  • liquid phase zone is provided with a check valve at the inlet of the liquid phase heat exchange medium to control the amount of continuous feed water and the pressure of the liquid phase zone.
  • the outer tube is arranged in sections, and the inlets of the liquid heat exchange mediums of the independent outer tubes are respectively arranged with one-way valves, and independent pressure control and heat exchange medium input control are implemented to avoid the outer tube axially Partially heated unevenly, but the same amount of water is obtained, achieving high-temperature multi-spraying and low-temperature spraying.
  • the heat exchange medium is injected into the vaporization zone from the liquid phase region by a pulsed pressurized liquid spray method.
  • the pulsed liquid is injected into the liquid phase region to more efficiently replenish the liquid phase region with the flow rate of the liquid phase heat exchange medium.
  • the liquid phase zone has a venting zone, which mainly collects steam generated by sudden and intense heat of the liquid phase in the liquid phase heat exchange device, and passes through an exhaust valve disposed at a high end position in the liquid phase region. Drain the outside of the system.
  • liquid phase region is obliquely arranged, and an exhaust region is disposed therein. Further, the liquid phase region is gradually tapered by flowing in a direction along the liquid phase heat exchange medium, and the high end position thereof is an exhaust region.
  • an exhaust valve is disposed at a high end position of the exhaust zone, and the exhaust outlet is connected to the superheat zone and/or the vaporization zone.
  • the heat exchange medium is water, heat transfer oil or heat conduction.
  • phase change heat device provided by the embodiment of the invention can be applied to the field of solar heat utilization such as trough type photothermal, Fresnel array photothermal or tower type photothermal collector; and applied to boiler heating and heat storage system. Heat input and output applications.
  • the phase change heat device of the embodiment of the invention can simultaneously inject a heat exchange medium into the inner tube vaporization zone at a plurality of position points distributed along the axial direction of the pipeline, so that the quality of the injected heat exchange medium at each position is relatively small, A substantially similar temperature rise phase change is obtained in the axial length of most of the phase change heat devices; due to the spiral circulation of the liquid phase heat exchange medium in the system, the temperature unevenness on the circumferential interface caused by uneven heating is reduced.
  • FIG. 1 is a schematic view showing a first embodiment of a phase change heat device structure of the present invention
  • FIG. 2 is a schematic view showing the arrangement of the capillary inner through holes of the metal inner tube of the phase change heat device structure according to the embodiment of the present invention
  • phase change heat device of the present invention is a schematic view showing a second embodiment of the overall structure of the phase change heat device of the present invention applied to the field of solar Fresnel array;
  • 4-1 is a schematic view showing a third embodiment of the overall structure of the phase change heat device of the present invention applied to the field of solar Fresnel array;
  • 4-2 is a schematic structural view of a phase change heat device of a third embodiment
  • 4-3 is a schematic view showing the heat transfer of the phase change heat device of the third embodiment
  • 4-4 is a schematic structural view of a fourth tube of the phase change heat device of the third embodiment
  • Figure 5 is a schematic view showing a fourth embodiment of the overall structure of the phase change heat device of the present invention.
  • Figure 6 is a schematic view showing a fifth embodiment of the overall structure of the phase change heat device of the present invention.
  • FIG. ⁇ is a schematic view showing a sixth embodiment of the overall structure of the phase change heat device of the present invention.
  • FIG. 1 is a schematic view showing a first embodiment of a phase change heat device structure of the present invention.
  • the phase change heat device 1 comprises a metal inner tube 2, a metal outer tube 3 and a heat exchange medium 4.
  • the metal inner tube 2 and the metal outer tube 3 are arranged coaxially inside and outside.
  • the annular space formed between the metal inner tube 2 and the metal outer tube 3 is a liquid phase region, and the inner space of the metal inner tube 2 is a vaporization region.
  • a medium passage is formed in the inner wall of the metal inner tube 2 along the axial length direction of the inner metal tube 2, and the medium passage is a capillary through hole 7, a capillary tube, a nozzle or a permeate material port.
  • the outer wall of the metal outer tube 3 is a heated surface; the liquid medium heat exchange medium is heated inside the liquid phase region, and due to liquid convection and forced circulation, the circumferential temperature is substantially uniform, and the tube due to uneven heating of the outer metal tube 3 can be avoided. Serious warpage caused by large wall temperature difference.
  • the liquid phase temperature is higher than the saturated steam temperature corresponding to the pressure of the vaporization zone formed by the inner metal pipe 2, so as to continuously supply the heat required for vaporization of the heat exchange medium in the vaporization zone, and complete the phase change heat of the heat exchange medium. process.
  • the specific heat exchange process is as follows.
  • the heat exchange medium 4 is arranged at the inlet of the metal outer tube 3 to control the continuous supply of the heat exchange medium 4 and maintain the internal pressure of the liquid phase; the heat exchange medium 4 flows through the liquid phase inside the liquid phase to receive the metal outer tube 3
  • the heat from the outer wall is heated, and the temperature of the liquid-phase heat exchange medium 4 is increased, and the pressure is increased; when the pressure formed by the liquid-phase heat exchange medium 4 and the heat exchange medium 4 inside the vaporization zone are greater than a certain pressure difference
  • the liquid-phase heat exchange medium 4 enters the vaporization zone (low pressure) from the capillary passage of the inner wall of the metal inner tube 2 from the liquid phase (high pressure); the pressure is ejected by the capillary through hole.
  • the saturation temperature of the two differs by about 20 ⁇ 25 °C
  • the liquid phase high pressure heat exchange medium reaches the metal inner tube 2 and then partially flashes, and the other part is received through the liquid phase to the inner wall of the metal inner tube 2.
  • the heat of the inner wall of the metal inner tube 2 is maintained at least 20 °C higher than the internal pressure of the inner metal tube 2, and the liquid medium heat exchange medium 4 can conveniently obtain the energy into the gas phase heat exchange medium 4 , conveying To the external system; because each capillary through hole 7 has a small orifice, under the pressure difference or temperature, the flow from the orifice is small, and a substantially uniform boiling heat exchange occurs inside the inner metal tube 2, thereby avoiding At the bottom of a large amount of liquid phase deposition, an unstable state such as partial sudden boiling occurs.
  • the orifice flow rate is directly related to the inlet and outlet pressures, but inversely proportional to the liquidus viscosity.
  • the viscosity of the liquid becomes smaller, and the orifice flow rate becomes larger, that is, when the liquid phase heat exchange The medium 4 receives more heat.
  • the pressure or temperature rises the orifice flow rate will increase, thus releasing the pressure and temperature to achieve a relatively stable internal pressure and temperature.
  • the phase change heat device can automatically control the internal flow according to the external heat condition, continuously ensure the relative stability of the inner wall temperature of the metal inner tube 2, and provide a good heat exchange medium for the heat exchange medium; more importantly, because the metal outer tube 3 and the liquid medium heat exchange medium formed inside the annular liquid phase zone formed by the metal inner tube 2 can well ensure the temperature stability of the metal outer tube 3, and the metal outer tube 3 in contact with the surface is heated unevenly, but in the liquid phase water Under the action, the wall temperature is basically uniform; and the problem of uneven temperature of the annular wall caused by the vaporization phase change process inside the metal inner tube 2 is solved. If the liquid medium heat exchange medium 4 is water, the conventional DSG system may be well solved. The occurrence of uneven temperature of the ring wall causes serious warpage of the pipe and damage to the stability of the system.
  • the heat exchange medium 4 of the phase change heat device is a gas-liquid two-phase change material in a suitable application range, such as water, ketones, ethers, alcohols, various organic substances, and heat pipes such as liquid or low-boiling metals. medium.
  • the heat exchange medium 4 is water, heat transfer oil, and heat conduction.
  • FIG. 2 is a schematic view showing the arrangement of the capillary inner through holes of the metal inner tube of the phase change heat device structure according to the embodiment of the present invention. It can be seen from the partial cross-sectional view that, preferably, the direction of the capillary through-hole 7 of the metal inner tube 2 forms an angle with the radial direction of the tube cross-section, thereby increasing the flow path of the heat exchange medium and forming a rotation in the circumferential direction, improving the change The temperature of the outer tube of the heat device is uniform on the circumference and the heat exchange effect is enhanced, and the bending phenomenon of the pipeline due to uneven heating of the outer tube can be avoided.
  • the direction of the capillary through-hole 7 of the inner metal tube is opposite to the radial direction on the circumference, and is opposite to the direction in which the steam travels in the axial direction of the pipeline, so that the liquid-phase heat exchange medium passes through the capillary passage.
  • the capillary through hole 7 having a reverse angle also achieves spiral advancement of the whole steam, increases the contact area with the high temperature wall surface, enhances heat exchange and homogenizes the temperature distribution in the circumferential direction of the pipe wall, and reduces the effect of pipe bending.
  • the capillary through holes 7 of the metal inner tube are arranged at intervals in the axial direction to improve the uneven distribution of parameters due to the output of steam from the end of the pipe, so that the suction in the axial direction
  • the thermal capacity is relatively uniform, so that the wall temperature is relatively uniform in the axial direction, the heat absorption capacity is enhanced, the heat loss is reduced, local over-temperature damage is avoided, and the steam heat exchange medium maintains stable and safe parameters during operation.
  • the pitch of the capillary through holes 7 on the inner tube is larger, and the distance of the distal capillary through holes 7 at the outlet end is smaller, which is non-uniform depending on the position at which heat is received.
  • the capillary through hole 7 is arranged to obtain a relatively stable steam heat exchange performance.
  • the liquid phase heat exchange medium is injected into the vaporization zone from the liquid phase zone by means of a pulsed pressurized liquid spray.
  • the liquid spray is pressurized to the inner and outer tube spaces at regular intervals, and the amount of liquid spray is controlled in this manner to reduce the difficulty of the small diameter capillary through hole 7.
  • the metal inner tube 2 is arranged with a small number of capillary through-holes in the steam outlet direction to reduce the amount of steam injected therein. After the steam passes through, it is heated to become superheated steam, that is, the steam has a certain heat-heating space in the direction of the steam outlet, so that no liquid-phase heat exchange medium is injected at the output end of the steam heat exchange medium, so that the steam is directly heated to complete further overheating. process.
  • the phase change heat device of the embodiment of the invention adopts a heat exchange medium having a phase change capability in a certain temperature, for example, water is a working medium, and in a linear (such as a tubular) heated space, the injected water is relatively uniformly distributed along the axial direction.
  • a phase-converting thermal structure and application in which the injected water mainly undergoes an endothermic phase transition on a path moving in the radial direction.
  • the inner tube distribution water path is arranged in the axial direction of the heat receiving pipeline, and the distributed positions of the low temperature water of the inlet in the axial direction of the pipeline are relatively uniformly sprayed, and the water spray amount at each point is small, and the speed can be rapidly increased at a similar speed.
  • Vaporization occurs, which can obtain a relatively uniform two-phase transformation in the axial direction of the entire phase change heat device, thereby overcoming various problems caused by the two-phase flow transformation which occurs gradually during the axial flow process, for example.
  • Water hammer, vibration phenomena and pipeline fatigue damage of the water heat exchange medium in addition, it is possible to control the steam at a higher temperature and a lower pressure to obtain completely dry superheated steam.
  • FIG. 3 is a schematic view showing a second embodiment of the overall structure of the phase change heat device of the present invention applied to the field of solar Fresnel array.
  • the heat exchange medium is water
  • the light reflected by the solar mirror field 10 of the solar Fresnel array is received, and after the steam output is completed, since the obtained steam parameters are not easily controlled, Therefore, it is further provided that after the steam heat exchange medium flows out from the metal inner tube 2, it enters the superheating zone in the fourth metal tube 5, and the metal fourth tube 5 is along the first embodiment.
  • the wet steam heat exchange medium obtains the higher parameters required to be heated inside the superheated zone of the metal fourth pipe 5, and flows out from the end; the steam is substantially single phase inside the superheated zone, and there is no liquid phase heat exchange medium
  • a series of problems such as water hammer, vibration and severe warpage caused by phase change.
  • FIG. 4-1 is a schematic view showing a third embodiment of the overall structure of the phase change heat device of the present invention applied to the field of solar Fresnel array. Since the steam output is completed after the first embodiment (the heat exchange medium is water), the obtained steam parameters are not easily controlled, and even in accordance with the second embodiment of the present invention, the metal is arranged in the extension line of the first embodiment. Tube, there may also be cases where the heat received in the liquid phase is not uniform (for example, the phase change heat device is applied to the solar thermal fresnel array field or the solar thermal hot trough field), and the internal temperature difference of the fourth metal tube is still It is possible that the warpage is still high, and the warp is still present.
  • the phase change heat device receives the light reflected by the solar mirror field 10 of the solar Fresnel array, in the compound parabola.
  • the concentrator (CPC) 9 is again concentrated and incident on the phase change heat device.
  • Fig. 4-2 is a schematic structural view of a phase change heat device of the third embodiment.
  • the superheating zone of the fourth metal pipe 5 is arranged in parallel on the upper part of the axis of the outer metal pipe 3, and the two are arranged under the compound parabolic concentrator (CPC) (see Figure 4-1 for the specific position);
  • CPC compound parabolic concentrator
  • the inner tube 2 and the outer metal tube 3 are arranged concentrically inside and outside, the capillary through hole 7 is axially arranged on the wall of the metal inner tube 2, and the annular cross-sectional space between the metal inner tube 2 and the metal outer tube 3 forms all or part of the liquid phase region.
  • the inside is a liquid-phase heat exchange medium 4-1; the inside of the metal inner tube 2 is a gasification zone, and the inside of the fourth metal pipe 5 is a superheated zone, the inside of which is a gas phase heat exchange medium 4-2; the fourth metal pipe 5 is arranged In the upper part of the metal outer tube 3, under the action of the compound parabolic concentrator (CPC) 9, the ratio of the reflected light of the solar mirror field 10 obtained by the metal fourth tube 5 and the metal outer tube 3 is different.
  • CPC compound parabolic concentrator
  • Fig. 4-3 is a schematic view showing the heat transfer of the phase change heat device of the third embodiment.
  • the ratio of the heat of the metal fourth tube 5 to the metal outer tube 3 receiving the solar mirror field is related to the different tube diameters and the different times of the sun rays at different times, the phase conversion heat device, the design metal number
  • the fourth tube 5 tube diameter is smaller than the metal outer tube 3, and the ratio of the heat of the fourth tube 5 and the metal outer tube 3 receiving the solar mirror field at different times is about 1: 2 ⁇ 5; for example, the lower metal outer tube 3 receives the total heat 75%, the upper metal fourth tube 5 receives 25% of the total heat, which is equivalent to the ratio of the heat of vaporization of the water heat exchange medium to the heat of the superheated steam, that is, the heat received by the lower metal outer tube 3 is substantially satisfied.
  • the liquid-phase heat exchange medium is converted into a saturated steam heat exchange medium, and then enters the metal fourth tube 5 to receive another part of the total heat, so that the saturated steam heat exchange medium is further superheated, and after leaving the system to achieve the required parameters, the heat exchange is completed. .
  • the metal fourth tube 5 of the structure of the embodiment is arranged on the upper part of the metal outer tube 3, and the received heat density is small, and the tube diameter is small, and the internal heat exchange is more easily completed, and the tube wall temperature has a more uniform temperature difference, further Decreasing the tube wall warping temperature; and in the third embodiment, even if there is a partial heat unevenness or no heat in a certain length region in the axial direction of the phase change heat device (for example, cloud shielding sunlight is incident on the mirror field)
  • the phase change heat device for example, cloud shielding sunlight is incident on the mirror field
  • the mass ratio relationship of the heat medium avoids the unfavorable condition of the conventional system due to a certain partial heat unevenness, which makes the phase change process of the heat exchange medium difficult to control, and causes the system to operate unstable.
  • the metal fourth tube 5 and the metal outer tube 3 can be fixed to each other by welding or the like, and the stability of the structure and the dimensional dimensions of the system is not damaged even if the tube is warped.
  • FIG. 4-4 is a schematic structural view of a fourth tube of the phase change heat device of the third embodiment; as shown in FIG. 4-4, a spiral flow guiding device is disposed inside the metal fourth tube 5 in order to obtain a more uniform wall temperature difference of the tube wall.
  • the spiral rotating fin 12 such a gas-phase heat exchange medium in the process of flowing through the hot zone, under the action of the spiral rotating fin 12, spiral advances, reducing the temperature difference of the circumferential wall surface of the superheated zone, further reducing the warpage of the pipeline degree.
  • Figure 5 is a schematic view showing a fourth embodiment of the overall structure of the phase change heat device of the present invention.
  • the metal outer tube 3 is arranged in series outside the metal inner tube 2, for example, one unit per 8 m, and along
  • the water supply pipe 8 is arranged in parallel in the axial direction of the metal inner pipe 2, and the metal outer pipes such as 3-1 and 3-2 are independently connected to the water supply pipe 8 through the check valve 11 to perform independent pressure control and heat exchange medium input. Control, when a local metal outer tube 3 is under external influence (such as cloud occlusion), the surface is not heated, the corresponding water supply pipe is not replenished under the control of the check valve, and the heat balance of the whole system is well controlled, and the system is maintained.
  • a local metal outer tube 3 is under external influence (such as cloud occlusion)
  • the surface is not heated
  • the corresponding water supply pipe is not replenished under the control of the check valve, and the heat balance of the whole system is well controlled, and the system is maintained.
  • the liquid phase heat exchange medium 4-1 controls the corresponding metal outer tube from the water supply pipe 8 through each check valve 11, for example, the metal outer tube 3-1 or the metal outer tube 3-2; each metal outer tube is The parameter change of the internal heat exchange medium enters the metal inner tube through the capillary through hole on the wall surface of the metal inner tube 2, vaporizes into the gas phase heat exchange medium 4-2, and then flows out of the system from the other end of the metal inner tube.
  • the liquid phase heat exchange medium is injected into the liquid zone by pulsed liquid filling, and the liquid medium heat exchange medium can be replenished more efficiently.
  • phase change heat device of the first embodiment Overcoming the application of the phase change heat device of the first embodiment to the field of solar linear thermal field, only a single one-way valve (for example, 300 m long) is disposed at the total end of the heat exchange device, which is caused by the phase change heat device A series of problems caused by local heat unevenness on the total length; for example, the liquid phase heat exchange medium sprayed inside the metal inner tube 2 cannot become steam in time, and the water is excessive at the bottom, when the cloud After the position changes, the collective vaporization of the liquid-phase heat exchange medium causes thermal stability problems such as vibration.
  • FIG. 6 is a schematic view showing a fifth embodiment of the overall structure of the phase change heat device of the present invention; in order to obtain a better temperature uniformity of the pipe ring wall, further, a liquid phase region formed by the metal inner tube 2 and the metal outer tube 3 is formed.
  • the liquid phase heat exchange medium is circulated in the circulation pipe set inside the system; as shown in Fig.
  • the liquid phase region includes a metal third tube 6 disposed inside the metal inner tube 2, the metal third tube 6 is connected to the liquid phase region formed by the metal inner tube 2 and the metal outer tube 3, and the metal inner tube 2
  • a capillary through hole ⁇ is arranged in the axial direction, a capillary through hole ⁇ of the heat exchange medium is arranged on the wall surface of the metal third tube 6, and a liquid medium heat exchange medium flows in a liquid phase region formed by the metal outer tube 3 and the metal inner tube 2.
  • flowing into the metal third tube 6 passes through the capillary through hole 7 of the wall surface of the metal third tube 6, and enters the vaporization zone.
  • the wall temperature of the pipe can also obtain a good temperature uniformity; preferably, the inner wall of the annular inner space formed by the inner metal pipe 2 and the metal third pipe 6 is arranged in the axial direction of the inner metal pipe 2, such as a spiral.
  • the wall surface of the spiral flow guiding device is vertically arranged with a plurality of baffles, one of which increases the circumference of the phase change heat pipe
  • the uniform temperature performance of the pipe wall increases the convection in the radial direction of the liquid medium heat exchange medium, increases the temperature uniformity of the liquid medium heat exchange medium, and reduces the liquid medium heat exchange medium as the metal outer tube 3 and the metal inner tube 2
  • the thermal resistance connects the thermal resistance, reduces the temperature difference between the two, and provides sufficient heat exchange temperature difference for the vaporization zone.
  • Figure 7 is a schematic view showing a sixth embodiment of the overall structure of the phase change heat device of the present invention; as shown in Figure 7 (the solid flow direction indicates the flow direction of the liquid heat exchange medium, and the direction of the dotted line indicates the gas phase heat transfer The medium flows through the direction), the internal circulation of the liquid-phase heat exchange medium is performed inside the liquid phase region, the circulation pump 13 is arranged at the end of the liquid phase region; the circulation pump of the liquid-phase heat exchange medium at the output port of the metal third tube 6 Under the action of 13 , the circulating flow path formed by the annular cross-section space formed by the metal inner tube 2 and the metal outer tube 3 and the inner space of the metal third tube 6 is circulated, so that the temperature of the liquid-phase heat exchange medium is substantially uniform, and the heat exchange tube is reached.
  • the wall temperature is consistently good, and the instability of the system caused by the sudden or no intense heat or sudden intense heat of the phase change heat device is well overcome.
  • the liquid phase may suddenly increase due to heat, causing part of the vapor inside the liquid phase.
  • This part of the steam occupies the capillary through hole 7 and passes through the capillary through hole 7 to enter the vaporization zone, reducing
  • the liquid-phase heat exchange medium enters the vaporization zone to absorb heat, so that the heat inside the system is not carried out to the outside of the system through vaporization of the liquid-phase heat exchange medium, further causing more boiling of the liquid-phase heat exchange medium in the liquid phase.
  • the liquid phase zone has a venting zone for storing and removing gas generated in the liquid phase zone; preferably, the venting zone is located in the liquid phase zone of the liquid phase heat exchange medium
  • the input end is inclined by a small angle through the liquid phase region as a whole, for example, at 2° with the horizontal plane, or by gradually increasing the diameter along the running direction of the liquid phase heat exchange medium;
  • the exhaust zone is arranged at a specific position a gas valve 14 that discharges a gas phase heat exchange medium generated by heat instability in a liquid phase region into a liquid phase region; preferably, an outlet of the exhaust valve 14 is connected to the superheat region, and further completion is performed in the metal fourth tube 5
  • the superheat, or the outlet of the exhaust valve 14 is connected to the vaporization zone and then to the superheat zone.
  • the wall surface further reduces the gas phase inside the liquid phase zone into the vaporization zone, and avoids the replenishment of the flow rate entering the vaporization zone, resulting in overheating of the pipe wall.
  • the liquid-phase heat exchange medium circulates in the liquid phase, and the uniform temperature effect of the pipe wall during the operation of the system can be obtained.
  • the uniform temperature effect of the pipe wall can also be obtained by the following methods: 1.
  • the circulating pipe arranged in the liquid region is a circular spiral
  • the pipeline includes two inlet and outlet pipes formed by two parallel spiral pipes, and the two are alternately arranged, and the liquid phase is refluxed through the high temperature region and the low temperature region of the annular pipe wall to increase the heat exchange performance inside the liquid phase heat exchange medium.
  • the inner tube and the outer tube form an independent basic uniform temperature wall surface; 2.
  • the metal inner tube 2 and the metal portion may be disposed.
  • the three tubes 6 are spiral corrugated tubes or spiral corrugated tubes.
  • a specific example of application to a solar Fresnel array is: a phase change heat device comprising a metal outer tube, a metal inner tube, a metal third tube located inside the metal inner tube; and a metal arranged parallel to the upper portion of the metal outer tube
  • the fourth tube under the action of the compound parabolic concentrator, the ratio of the heat received by the fourth metal tube to the outer metal tube is 1:3; the total length of the mirror field is assumed to be 300 m, the opening diameter is 6 m, and the ⁇ I is 900 W/m. 2 , the receiving efficiency of the phase change heat system is 0. 54 , the total receiving power is 972KW, the metal outer tube size is 64mm X 3mm; the metal inner tube is 48mm ⁇ 1.
  • phase change heat device can also be applied to a tower system in the field of solar thermal field.
  • the phase change heat device array is arranged on the tower type photothermal central receiving tower to receive the sunlight concentrated by the mirror field.
  • the sun is tropically separated by the superheated steam after the phase change of the vaporization phase inside the heat medium Collecting heat system;
  • the phase change heat device can also be applied to the input and output field of the heat storage system, the heat storage medium liquid region heats the heat exchange medium, and the heat inside the heat storage system is transformed into the phase change of the heat exchange medium
  • the gas phase heat exchange medium leaves the heat storage system.
  • the phase change heat device of the present invention can also be applied to the field of boiler heating.
  • the metal outer tube 3 is a heated surface, and the liquid medium heat exchange medium flowing from the metal inner tube 2 or the metal fourth tube 5 is heated to a vapor state to complete the heat exchange; except that the absorption coating and the optical structure are not required, Other specific structural details are the same as described above.
  • This application also has the advantages of the above-described phase change heat devices.
  • the tubular structure of the apparatus of the present invention is preferably a metal material, but is not limited to a metal material; the structural shape of the liquid phase region, the vaporization region, and the superheating region is preferably tubular, but is not limited to a tubular shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种相变换热装置(1)包括内外布置的管状体(2,3)和换热介质(4),内外两管(2,3)之间的空间形成全部或部分液相区;内管(2)内部的全部或部分空间形成汽化区;液相区内部的相对高压换热介质(4)在漩涡流动中受热进入相对低压的汽化区,发生汽化后流出相变换热装置(1)外部完成换热。该装置能应用于太阳能的光热领域当中的DSG系统,也能应用于储热系统的输入输出系统或锅炉加热领域,运行安全,成本低廉,具有良好的适用范围。

Description

说 明 书
一种相变换热装置
技术领域
本发明涉及一种应用于多领域的换热装置,尤其涉及太阳能热利用领域 的相变换热装置。
背景技术 随着太阳能等可再生能源利用在全世界蓬勃发展, 太阳能聚热发电
( CSP )逐步为人们所认识, 在 CSP体系中, 吸热传热部分具有非常重要的 地位。 太阳能的集热技术中, 目前主要采用导热油为传热工质, 经导热油换 热后驱动常规蒸汽轮机带动发电机组发电。 由于目前的导热油工作温度必须 控制在 400 °C以内, 超出这一温度将会导致导热油裂解、 粘度提高以及传热 效率降低等问题, 因此限制了太阳能聚热发电的工作温度。 同时, 导热油使 用成本很高, 因此迫切需要有新的传热工质取代导热油, 以提高工作温度, 并降低装置造价和运行成本。 目前国际太阳能集热技术的换热介质的替代品 有熔融盐类材料, 但其结晶点较高, 大多在 230至 260 °C左右, 因此直接替 换仍有诸多困难, 当前熔融盐主要用于热储能。
用水直接作为换热介质的直接蒸汽发生 (DSG )技术已经试验多年, 该 技术与蒸汽锅炉受热管道运行原理相似, 以水为工质, 将低温水自吸热管路 一端注入, 水在沿管路轴向行进过程中吸热逐渐升温, 达到沸点后变为饱和 蒸汽,再继续吸热变为过热蒸汽。由于水在受热管内发生沸腾时状态不稳定, 存在两相流传输和汽化压力在集热管内不均勾等问题,发生例如水锤、振动、 管路材料疲劳破坏现象; 另外在饱和蒸汽变为过热蒸汽段, 由于蒸汽导热能 力差,热吸收能力较弱,容易发生管路过温损毁; 并且当管路受热不均匀时, 管壁温差较大, 会发生严重弯曲, 带来其他损失(如真空密封破坏); 再者 现有技术仍然没有解决 DSG管道在局部无受热(例如镜场因云朵遮挡引起的 局部出现阴影), 带来的一系列问题, 例如水输入及汽输出流量控制, 参数 变化的影响。因此该技术仍停留在试验阶段,但只要这些问题能够得以解决, DSG技术就成为成本最低、 效率最高的环保安全型太阳能热发电关键技术。 发明内容
多领域的相变换热装置。
本发明实施例提供了一种相变换热装置, 该相变换热装置包括内管、 外 管和换热介质; 所述内管和外管之间的空间形成全部或部分液相区; 所述内 管内部的全部或部分空间形成汽化区; 所述液相区内部的相对高压换热介质 在流动中受热进入相对低压的汽化区, 发生汽化后流出相变换热装置外部。
进一步地, 所述液相区内部布置螺旋导流装置, 例如螺旋旋转翅片或螺 旋管圈, 使液相换热介质在液相区内部实施漩涡流动, 获得与换热介质相互 接触壁面良好的均温性能。
进一步的实施方式中,所述液相区包括布置于内管内部的第三管的内部 空间, 提供液相区循环流动路径, 均化温度, 降低液相区和汽化区管壁的翘 曲程度,同时增大液相区与汽化区之间的换热面积,提高汽化区的换热效果。
进一步地, 所述液相区内部液相换热介质实施循环漩涡流动, 更加优化 液相区和汽化区接触壁面的径向均温性能。
进一步地, 所述液相区与汽化区的接触壁面布置有介质通道, 例如介质 通道为毛细通孔、 毛细管、 喷嘴或渗透材料通口, 且所述介质通道在所述接 触壁面的内壁上沿轴向分步布置。
进一步地, 所述介质通道在所述接触壁面的内壁上沿轴向分布布置, 在 循环泵和第三管的作用下, 液相换热介质在液相区整体循环, 均化温度, 进 一步降低结构的翘曲程度, 同时完成向汽化区的换热介质补给。
进一步地, 所述介质通道在第三管壁上沿轴向分布布置; 液相换热介质 螺旋前进流经外管与内管之间的液相区区域后, 进入第三管内部, 液相换热 介质在管道中的流动大大降低了外管壁的周向温差, 减少结构的翘曲程度; 同时完成向汽化区能量的补给。
进一步地, 所述液相区内布置有螺旋导流装置, 液相换热介质在流经液 相区的过程中, 在螺旋导流装置的作用下, 螺旋前进, 降低液相区圓周壁面 温度差, 降低管路的翘曲程度。
进一步地, 所述液相换热介质在液相区内部循环流动, 更加高效地降低 液相区圓周壁面温度差, 最大程度地降低液相区和汽化区材料的翘曲程度。 进一步地, 所述内管和 /或第三管为螺旋波纹管或螺旋波纹节管, 使液 相区的液相换热介质和汽化区的气相换热介质螺旋流动前进, 进入紊流状 态, 增强换热介质与管壁之间的换热, 使管壁圓周向具有良好的均温性能。
进一步地, 所述相变换热装置还包括过热区, 接收汽化区流出的气相或 汽液混合相的换热介质进行过热加热, 以获得更好的蒸汽参数。
优选地, 所述液相区、 汽化区和过热区中的至少一个区内布置有螺旋导 流装置, 换热介质在流经的过程中, 在导流装置的作用下, 螺旋前进, 降低 圓周壁面温度差, 降低管路的翘曲程度。
进一步地, 所述螺旋导流装置为螺旋旋转翅片, 且螺旋旋转翅片的垂直 面上布置有多个挡片, 增加液相换热介质自身扰动和温度一致性, 降低金属 外管与金属内管之间的热阻, 提供足够的液相换热介质汽化过程所需温度 差。
进一步地, 所述过热区为第四管管内空间, 所述第四管沿外管轴线长度 方向上延伸布置或者并列外管布置, 接收轴向上的热量, 将气相换热介质变 成高参数的过热蒸汽。
进一步地, 所述过热区为并列外管布置的独立第四管内部空间, 方式更 加便利地利用于线形聚光系统, 通过合理的光学设计, 可实现该第四管与外 管按一定比例接收会聚光能量, 第四管接收小量的热量将饱和蒸汽或湿蒸汽 变成过热蒸汽输送系统外部。
进一步地, 所述液相区在液相换热介质入口布置单向阀, 控制持续补给 水量及液相区压力。
进一步地, 所述外管分段布置, 且各独立外管液相换热介质的入口各自 布置单向阀, 实施各自独立的压力控制和换热介质输入控制, 避免外管轴向 上某个部分受热不均但获得相同进水量的情况, 实现高温多喷和低温少喷。
进一步地, 所述换热介质采用脉冲式加压喷液方式由所述液相区注入所 述汽化区。 脉冲充液注入所述液相区, 更加高效地向液相区补给液相换热介 质的流量。
进一步地, 所述液相区具有排气区, 该排气区主要将液相换热装置内部 因液相区突然剧烈受热产生的蒸汽收集, 并通过在液相区高端位置布置的排 气阀排出系统外部。
进一步地, 所述液相区角度倾斜布置, 并且其中设置有排气区。 进一步地, 所述液相区通过沿液相换热介质流经方向逐步变径布置, 其 高端位置为排气区。
进一步地, 所述排气区的高端位置布置有排气阀, 且该排气出口连接于 过热区和 /或汽化区。
优选地, 所述换热介质为水、 导热油或导热姆。
本发明实施例提供的相变换热装置可以应用于槽式光热、 菲涅尔阵列光 热或塔式光热集热器等太阳能热利用领域; 以及应用于锅炉加热及对储热系 统的热量输入及输出应用领域。
本发明实施例的相变换热装置可以在沿管路轴向分布的多个位置点同 时向内管汽化区内注入换热介质, 使每个位置的注入换热介质质量相对很 少, 能够在大部分相变换热装置的轴向长度上获得基本相似的升温相变; 由 于液相换热介质在系统中的螺旋循环, 降低了管道因受热不均引起的圓周界 面上的温度不均匀性, 避免管路翘曲; 并且克服传统的换热介质直接在受热 管一端注入, 在受热管内沿轴向运动过程中逐渐受热升温, 发生饱和流动沸 腾区域中的塞状流动状态、 分层流动引起的热不稳定状态、 受热管轴向上吸 热能力不均匀、 汽化后的受热管段圓周上的温度不均匀等现象, 以及由此引 起在轴向上发生的两相流变换和汽化压力的轴向非均勾分布带来的水锤、振 动现象和管路疲劳损坏, 以及局部管温过高烧坏、 管路弯曲等问题。 并且, 由于在吸收管路轴向长度上的大部分位置, 外管温度相对平均, 相差不大, 本发明实施例的装置整体热吸收效率较传统单端输入方式更高。 附图说明 图 1是本发明的相变换热装置结构第一实施例示意图;
图 2是本发明实施例的相变换热装置结构的金属内管毛细通孔布置示意 图;
图 3是本发明的相变换热装置应用于太阳能菲涅尔阵列领域的整体结构 第二实施例示意图;
图 4-1是本发明的相变换热装置应用于太阳能菲涅尔阵列领域的整体结 构第三实施例示意图;
图 4-2是第三实施例的相变换热装置的结构示意图; 图 4-3是第三实施例的相变换热装置受热示意图;
图 4-4是第三实施例的相变换热装置第四管结构示意图;
图 5是本发明的相变换热装置整体结构第四实施例示意图;
图 6是本发明的相变换热装置整体结构第五实施例示意图;
图 Ί是本发明的相变换热装置整体结构第六实施例示意图。 具体实施方式 下面参照附图对本发明的具体实施方案进行详细的说明。
图 1是本发明的相变换热装置结构第一实施例示意图。从图 1的局部剖 视部分可见, 相变换热装置 1包括金属内管 2、 金属外管 3和换热介质 4。 金属内管 2和金属外管 3同轴内外布置。金属内管 2与金属外管 3之间所形 成的环形空间为液相区, 金属内管 2的内部空间为汽化区。
金属内管 2的管壁内上沿金属内管 2的轴向长度方向上布置贯通的介质 通道, 该介质通道为毛细通孔 7、 毛细管、 喷嘴或渗透材料通口。
金属外管 3的外壁为受热面; 液相换热介质在液相区内部受热, 且由于 液态对流及强制循环, 圓周温度基本均温, 可避免因为金属外管 3外部受热 不均匀引起的管壁温差较大造成的严重翘曲问题。 该液相区温度, 比金属内 管 2所形成的汽化区的压力所对应的饱和蒸汽温度要高, 以便持续提供汽化 区内换热介质汽化所需热量, 完成换热介质的相变换热过程。
具体的换热过程如下。
换热介质 4在金属外管 3的入口布置单向阀, 控制持续补给换热介质 4 并保持液相区内部压力; 换热介质 4以液相形式流经液相区内部, 接收金属 外管 3外壁传导来的热量, 受热后液相换热介质 4温度升高, 压力增大; 当 液相换热介质 4所形成的压力与汽化区内部的换热介质 4所形成的压力差大 于一定值时, 液相换热介质 4从液相区内 (高压力 )穿过金属内管 2的管壁 毛细通孔 Ί进入汽化区 (低压力); 因毛细通孔 Ί喷出有一定的压力降, 例 如 l-2MPa , 二者的饱和温度相差大约 20〜25 °C , 液相高压换热介质到达金属 内管 2后部分闪蒸, 另一部分接收通过液相区传导至金属内管 2内壁的热量 (此时金属内管 2内壁温度持续保持至少大于金属内管 2内部压力对应饱和 温度 20 °C ), 液相换热介质 4可方便地获得能量变成气相换热介质 4 , 输送 至外部系统; 因每个毛细通孔 7孔口较小, 在压力差或温度的驱动下, 从孔 口流出的流量很小, 在金属内管 2内部发生基本均匀的沸腾换热, 从而避免 大量液相沉积底部, 发生局部突然沸腾等不稳定状态。
当金属外管 3外壁持续接收外部热量增多时, 外壁传导至金属外管 3的 内壁和液相区内部液相换热介质的热量增多 ,使液相换热介质的压力和温度 增加, 根据孔口流动理论, 孔口流量与孔口进、 出口压力有直接关系, 而与 液相粘度成反比关系, 温度升高, 液体粘度变小, 孔口流量将会变大, 即当 液相换热介质 4接收热量增多, 压力或温度升高后, 孔口流量将会增加, 如 此将压力和温度释放, 达到内部压力和温度的相对稳定。
当金属外管 3外壁持续接收外部热量不足时,孔口的流量因液相区的液 相换热介质内部温度和压力降低, 喷入汽化区的流量自动减小, 达到自动根 据系统接收的热流量, 控制液相换热介质和气相换热介质流量的目的。
该相变换热装置能根据外部受热情况, 自动控制内部的流量, 持续保证 金属内管 2内壁温度的相对稳定, 提供良好的换热介质换热环境; 更为重要 的是, 因为金属外管 3和金属内管 2所形成环形液相区内部的液相换热介质 能良好地保证自身温度稳定,使与之接触的金属外管 3管壁周向上虽然受热 不均, 但在液相水作用下, 管壁温度基本均匀; 而且金属内管 2内部的水汽 化相变过程引起的环壁温度不均问题得到解决, 如果液相换热介质 4为水, 即可能良好地解决传统 DSG系统出现的因环壁温度的不均勾造成管道严重翘 曲及破坏系统稳定性等问题。
该相变换热装置的换热介质 4是在合适的应用范围内具有气液两相变化 的物质, 如水、 酮类、 醚类、 醇类、 各种有机物及液相或低沸点金属等热管 介质。 优选地, 换热介质 4为水、 导热油、 导热姆。
图 2是本发明实施例的相变换热装置结构的金属内管毛细通孔布置示意 图。 从局部剖视部分可见, 优选地, 金属内管 2的毛细通孔 7方向与管截面 半径方向形成一定角度夹角,从而加大换热介质的流经行程并形成沿圓周方 向旋转, 改善换热装置外管在圓周上的温度均勾性及增强换热效果, 并能够 避免由于外管受热不均造成的管路弯曲现象。 优选地, 金属内管的毛细通孔 7方向除了在圓周上与径向形成夹角外, 在管路轴向方向上与蒸汽运行的方 向成一定逆向角度,使得液相换热介质从毛细通孔 Ί喷射后与蒸汽充分碰撞 接触、 液相颗粒进一步被分割微化, 减少液相换热介质两相变化的冲击。 此 外, 所述成逆向角度的毛细通孔 7还达到使蒸汽整体螺旋前进, 加大与高温 壁面的接触面积, 增强换热并匀化管壁圓周方向的温度分布, 减少管路弯曲 的效果。 进一步优选地, 将金属内管的毛细通孔 7在轴向上变间距地布置, 改善由于蒸汽从管路端部输出带来的参数分布不均勾性,使沿轴向上各处的 吸热能力相对均勾, 从而使管壁温度在轴向上相对一致, 增强吸热能力, 减 少热损失, 避免局部过温损坏, 使蒸汽换热介质在运行中保持稳定安全的参 数。 更优选地, 在蒸汽的出口端的近侧, 内管上的毛细通孔 7的间距较大, 而在出口端的远侧毛细通孔 7的间距较小, 按照接收热量的位置的不同, 非 均匀地布置毛细通孔 7可获得较为稳定的蒸汽换热性能。 优选地, 液相换热 介质采用脉冲式加压喷液方式由所述液相区注入所述汽化区。一定时间间隔 地向内外管空间加压喷液, 以此方式控制喷液量, 降低小直径毛细通孔 7的 力口工难度。
在一个实施例中, 为了提高相变换热装置的工作效率, 优选地, 金属内 管 2在蒸汽出口方向, 布置很少的毛细通孔的孔口, 减少蒸汽在此处的喷入 量, 蒸汽经过此处后, 受热变成过热蒸汽, 即蒸汽在蒸汽出口方向有一定过 热空间, 使得在蒸汽换热介质的输出端无液相换热介质的喷入, 使蒸汽直接 受热完成进一步的过热过程。
本发明实施例的相变换热装置采用一定温度内具有相变能力的换热介 质, 例如水为工质, 在线性(如管状)受热空间内, 沿轴向相对均勾地分布 注入水,使注入水主要在沿径向运动的路径上发生吸热相变的相变换热结构 及应用。 在受热管路轴向上布置内管分布水路, 将入口的低温水在管路轴向 上的各分布位置相对均勾的喷出, 由于各点喷水量微少, 都能以相似的速度 迅速发生汽化,此方式可以在整个相变换热装置的轴向上获得相对均勾的两 相变换 ,从而克服发生在轴向流动过程中逐渐发生的两相流变换带来的各种 问题, 例如水换热介质的水锤、 振动现象和管路疲劳损坏等; 此外, 还可以 通过控制蒸汽以更高温度和较低压力的输出, 以获得完全干燥过热蒸汽。
图 3是本发明的相变换热装置应用于太阳能菲涅尔阵列领域的整体结构 第二实施例示意图。 如图 3所示, 第一实施例 (换热介质为水), 接收太阳 能菲涅尔阵列的太阳能镜场 10反射来的光, 完成蒸汽的输出后, 由于获得 的蒸汽参数并不容易控制, 所以进一步设置, 蒸汽换热介质从金属内管 2流 出后, 进入到金属第四管 5内的过热区, 且该金属第四管 5沿第一实施例的 延长轴线布置; 湿蒸汽换热介质在金属第四管 5的过热区内部完成受热后获 得所需更高参数, 从端头流出; 蒸汽在过热区内部基本为单相, 没有液相换 热介质相变带来的水锤、 振动和严重翘曲等一系列问题。
图 4-1是本发明的相变换热装置应用于太阳能菲涅尔阵列领域的整体结 构第三实施例示意图。 由于第一实施例(换热介质为水)完成蒸汽的输出后, 获得的蒸汽参数并不容易控制, 且即使按照本发明的第二实施例, 在第一实 施例的延长线布置金属第四管,也可能出现液相区接收的热量不均匀的情况 (例如该相变换热装置应用于太阳能光热菲涅尔阵列领域或太阳能光热槽式 领域), 金属第四管内部温度差仍然有可能偏高, 仍然会出现翘曲; 本发明 的第三实施例, 如图 4-1所示, 相变换热装置接收太阳能菲涅尔阵列的太阳 能镜场 10反射的光, 在复合抛物聚光器 (CPC ) 9的再次聚光下入射相变换 热装置。
图 4-2是第三实施例的相变换热装置的结构示意图。 见图 4-2 , 金属第 四管 5的过热区平行布置于金属外管 3轴线的上部,二者布置于复合抛物聚 光器(CPC ) (具体位置参见图 4-1 )之下; 金属内管 2与金属外管 3同心内 外布置, 毛细通孔 7轴向布置于金属内管 2管壁上, 金属内管 2和金属外管 3之间的环形截面空间形成全部或部分液相区, 内部为液相换热介质 4-1 ; 金属内管 2内部为气化区, 金属第四管 5内部为过热区, 二者内部为气相换 热介质 4-2 ;金属第四管 5布置于金属外管 3上部,在复合抛物聚光器(CPC ) 9的作用下, 金属第四管 5、 金属外管 3二者获得的太阳能镜场 10反射光的 比例有所不同。
图 4-3是第三实施例的相变换热装置受热示意图。 如图 4-3 , 金属第四 管 5与金属外管 3接收太阳能镜场的热量的比, 与不同的管径和不同时刻太 阳光线不完全一致有关, 本相变换热装置, 设计金属第四管 5管径小于金属 外管 3 , 且满足不同时刻的金属第四管 5与金属外管 3接收太阳能镜场的热 量比大约 1 : 2〜5; 例如下部的金属外管 3接收总热量的 75% , 上部的金属第 四管 5接收总热量的 25% , 该比例与水换热介质的汽化热与过热蒸汽热的比 值相当, 即下部的金属外管 3接收的热量基本满足将内部的液相换热介质转 化成饱和蒸汽换热介质, 然后进入金属第四管 5内部接收总热量的另外一部 分热量, 使饱和蒸汽换热介质进一步过热, 达到所需参数后离开系统, 完成 换热。 该实施例结构的金属第四管 5布置于金属外管 3上部, 接收的热量密度 较小, 且管径较小, 更加容易完成内部的换热, 其管壁温度具有更加一致的 温差, 进一步降低管壁翘曲温度; 而且该第三实施例中, 即使出现相变换热 装置轴向上的一定长度区域内的某个局部受热不均或者无受热情况(例如云 朵遮蔽太阳光入射镜场的情况), 因金属外管 3与金属第四管 5并行布置, 金属外管 3与金属第四管 5对应的接收太阳光线的比值仍然相当,依然能良 好地处理饱和换热介质和过热换热介质的质量比例关系,避免常规系统因某 个局部受热不均, 造成换热介质相变过程难以控制, 引发系统运行不稳定等 不良情况。 进一步优化地, 金属第四管 5和金属外管 3可以通过焊接等方式 相互上下固定, 即使管道有翘曲也不会破坏系统的结构及外形尺寸的稳定 性。
图 4_4是第三实施例的相变换热装置第四管结构示意图;如图 4_4所示, 为了获得管壁更均匀的管壁温度差,在金属第四管 5的内部设置螺旋导流装 置, 例如螺旋旋转翅片 12 ; 如此气相换热介质在流经过热区的过程中, 在螺 旋旋转翅片 12 的作用下, 螺旋前进, 降低过热区圓周壁面温度差, 进一步 降低管路的翘曲程度。
图 5是本发明的相变换热装置整体结构第四实施例示意图;如图 5所示, 金属外管 3分段串联布置于金属内管 2的外部, 例如每 8m为一个单元, 且 沿着金属内管 2轴向方向上平行布置给水管 8 , 各金属外管例如 3-1和 3-2 独立通过单向阀 11连接于给水管 8 ,实施各自独立的压力控制和换热介质输 入控制, 当某个局部金属外管 3在外部影响下 (例如云朵遮挡), 表面没有 受热, 对应给水管在单向阀的控制下不进行补水, 良好地控制整个系统的热 量平衡, 维持系统的热稳定性; 液相换热介质 4-1从给水管 8分别通过各单 向阀 11控制对应的金属外管,例如金属外管 3-1或金属外管 3-2 ; 各金属外 管根据内部的换热介质的参数变化,通过金属内管 2壁面上的毛细通孔 Ί进 入金属内管, 汽化成气相换热介质 4-2后, 从金属内管的另一端流出系统外 部。 优化地, 液相换热介质采用脉冲式充液注入所述液区, 能更加高效地补 给液相换热介质。克服当第一实施例的相变换热装置应用于太阳能线性光热 领域, 在换热装置的总端头仅布置单个单向阀 (例如 300m长), 引起的无法 根据相变换热装置的总长度上的局部受热不均引起的一系列问题; 例如金属 内管 2内喷射的液相换热介质不能及时变成蒸汽, 在底部於水过多, 当云朵 位置发生变化后, 液相换热介质集体汽化引起震动等热稳定性问题。
图 6是本发明的相变换热装置整体结构第五实施例示意图; 为了获得更 好的管道环壁均温性, 进一步地, 设置金属内管 2和金属外管 3所形成液相 区内的液相换热介质在系统内部设置的循环管道内整体循环;如图 6所示(图 中实线流经方向表示液相换热介质流经方向,虚线流经向表示气相换热介质 流经方向),液相区包括布置于金属内管 2内部的金属第三管 6 ,该金属第三 管 6连接于金属内管 2与金属外管 3所形成液相区,且金属内管 2轴线方向 上布置毛细通孔 Ί , 换热介质的毛细通孔 Ί布置于金属第三管 6的壁面上, 液相换热介质在金属外管 3和金属内管 2所形成的液相区流动, 流至金属第 三管 6内, 经过金属第三管 6壁面的毛细通孔 7 , 进入汽化区。 因太阳能镜 场的面积可以设置较大, 液相换热介质的在液相区的流速并不慢, 如此可以 在无额外循环泵的驱动下, 完成液相换热介质在液相区的流动, 管道壁面温 度同样可以获得良好的均温性; 优选地, 所述金属内管 2与金属第三管 6形 成的环形空间内壁沿金属内管 2轴向方向上布置螺旋导流装置,例如螺旋旋 转翅片, 使得内部运行的蒸汽换热介质产生涡旋, 增强换热能力; 优选地, 所述螺旋导流装置的壁面垂直布置多个挡片,一者增加相变换热管道圓周上 的管壁均温性能, 二者增加液相换热介质径向上的对流, 增加液相换热介质 本身的均温性能, 降低液相换热介质作为金属外管 3与金属内管 2之间的导 热连接热阻, 降低二者之间的温度差, 为汽化区提供足够的热交换温度差。
图 7是本发明的相变换热装置整体结构第六实施例示意图; 如图 7所示 (图中实线流经方向表示液相换热介质流经方向,虚线流经方向表示气相换 热介质流经方向), 在液相区内部实施液相换热介质内部循环, 在液相区的 端部布置循环泵 13;液相换热介质在位于金属第三管 6的输出端口的循环泵 13作用下,在由金属内管 2与金属外管 3形成的环形截面空间及金属第三管 6内部空间组成的循环通道内循环流动, 使得液相换热介质温度基本一致, 达到换热管壁温度一致的良好效果,且良好地克服了相变换热装置局部或整 体突然不受热或者突然剧烈受热引起系统的不稳定性。 实际的运行过程中, 液相区可能会出现因受热突然加剧, 造成液相区内部产生部分的蒸汽, 该部 分的蒸汽占据毛细通孔 7 , 且穿过毛细通孔 7进入汽化区, 减少了液相换热 介质进入汽化区吸收热量 ,使系统内部的热量无从通过液相换热介质的汽化 带出至系统外部,进一步造成液相区内的液相换热介质更多量的沸腾变成蒸 汽,造成管道系统输出瘫痪,严重至管道损毁; 优选地, 液相区具有排气区, 存放和排除液相区产生的气体; 优选地, 排气区位于液相区液相换热介质的 输入末端, 通过液相区整体倾斜一个小角度, 例如与水平面成 2° 布置, 或 者通过沿液相换热介质运行方向逐步增大直径获得排气区; 进一步地, 排气 区特定位置布置排气阀 14 , 该排气阀 14将液相区受热不稳定产生的气相换 热介质排出液相区; 优选地, 排气阀 14 的出口连接于过热区, 在金属第 4 管 5 内完成进一步的过热, 或者排气阀 14的出口连接于汽化区, 然后再进 入过热区。 为进一步地减少液相区内部产生的气体占据毛细通孔 7 , 进入汽 化区, 优化地, 在金属第三管 6的非排气区布置, 最优布置于金属第三管 6 背部 (重力方向的壁面), 进一步减少液相区内部的气相进入汽化区, 避免 进入汽化区的流量的补给量偏少, 造成管壁过热现象。
液相换热介质在液相区循环流动, 可获得系统运行过程中的管壁均温效 果; 也可以通过以下方式获得管壁均温效果: 1、 液相区内布置的循环管道 为环形螺旋管道, 包括两平行螺旋管道所形成的进水和出水管, 且二者交替 布置, 液相来回流经环形管壁的高温度区域和低温度区域, 增加液相换热介 质内部的换热性能, 且使内管与外管形成独立基本均温壁面; 2、 为了获得 良好的液相区和汽化区内部的液相换热介质及气相换热介质参数, 可以设置 金属内管 2和金属第三管 6为螺旋波纹管或螺旋波纹节管。
一个具体的应用于太阳能菲涅尔阵列的实施例子为: 相变换热装置包括 金属外管、 金属内管、 位于金属内管内部的金属第三管; 平行并列于金属外 管上部布置的金属第四管; 在复合抛物聚光器的作用下, 金属第四管与金属 外管接收到热量比值为 1 : 3 ; 假定镜场总长度为 300m, 开口口径为 6m, 匪 I 为 900W/m2,到达相变换热系统的接收效率为 0. 54 , 总接收功率为 972KW, 金 属外管尺寸 64mm X 3mm;金属内管 48mm χ 1. 2 mm (承压较小),金属第三管 38匪 X 1. 2mm (承压较小), 第四管 38mm χ 2. 5mm, 液相换热介质水以 5MPa , 220 °C , 输入系统, 输出高压的 435 °C参数蒸汽; 系统总流量为 0. 41kg/ s,进入 金属外管与金属内管所形成的液相区的最大流速为 0. 59m/ s ,第三管内部的 液相换热介质水的流速为 0. 49m/ s ,汽化区的蒸汽最大速度为 41. 2m/ s。
毋庸置疑地, 该相变换热装置同样可以应用于太阳能光热领域的塔式系 统当中, 该相变换热装置阵列布置于塔式光热中央接收塔上, 接收镜场会聚 的太阳光,通过相变换热介质内部的汽化相变后的过热蒸汽将太阳光热带离 集热系统; 该相变换热装置也可应用于储热系统的输入输出领域, 储热介质 液相区对换热介质进行加热 ,将储热系统内部的热量通过换热介质的相变转 化成气相换热介质离开储热系统。
本发明的相变换热装置还可以应用于锅炉加热领域。 其中, 金属外管 3 为受热面,将从金属内管 2或金属第四管 5流入的液相换热介质加热至蒸汽 态, 完成热能换出; 除不需要吸收涂层和光学结构外, 其它具体结构细节与 上文描述相同。 此应用也同样具备上述各项相变换热装置的优点。 另外需要 说明的是, 该发明装置的管式结构优选金属材料, 但并不仅限于金属材料; 液相区、 汽化区、 过热区的结构形状优选为管状, 但并不限于管状。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的本 都应包括在本权利要求书所涵盖的范围之内。本发明所要求保护的范围由所 述的权利要求书进行限定。

Claims

权 利 要 求 书
1、 一种相变换热装置, 包括内管、 外管和换热介质; 其特征在于, 所 述内管和外管之间的空间形成全部或部分液相区; 所述内管内部的全部或部 分空间形成汽化区; 所述液相区内部的相对高压换热介质在流动中受热进入 相对低压的汽化区, 发生汽化后流出相变换热装置外部。
2、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述液相 区包括布置于内管内部的第三管的内部空间。
3、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述液相 区内部液相换热介质实施循环漩涡流动。
4、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述液相 区与汽化区的接触壁面布置有介质通道。
5、 根据权利要求 4所述的一种相变换热装置, 其特征在于, 所述介质 通道为毛细通孔、 毛细管、 喷嘴或渗透材料通口。
6、 根据权利要求 4所述的一种相变换热装置, 其特征在于, 所述介质 通道在所述接触壁面的内壁上沿轴向分布布置。
7、 根据权利要求 4所述的一种相变换热装置, 其特征在于, 所述介质 通道在第三管壁上沿轴向分布布置。
8、 根据权利要求 1或 2所述的一种相变换热装置, 其特征在于, 所述 内管和 /或第三管为螺旋波纹管或螺旋波纹节管。
9、 根据权利要求 1 所述的一种相变换热装置, 其特征在于, 所述相变 换热装置还包括过热区,接收汽化区流出的气相或气液混合相的换热介质进 行过热。
10、 根据权利要求 1或 9所述的一种相变换热装置, 其特征在于, 所述 液相区、 汽化区和过热区中的至少一个区内布置有螺旋导流装置。
11、 根据权利要求 10所述的一种相变换热装置, 其特征在于, 所述螺 旋导流装置的壁面垂直布置多个挡片。
12、 根据权利要求 9所述的一种相变换热装置, 其特征在于, 所述过热 区为第四管管内空间,所述第四管沿外管轴线长度方向上延伸布置或者并列 外管布置。
1 3、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述液相 区在液相换热介质的入口布置单向阀。
14、 根据权利要求 1所述一种相变换热装置, 其特征在于, 所述外管分 段布置。
15、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述换热 介质采用脉冲式加压喷液方式由所述液相区注入所述汽化区。
16、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述液相 区具有排气区。
17、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述液相 区角度倾斜布置, 并且其中设置有排气区。
18、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述液相 区通过沿液相换热介质流经方向逐步变径布置。
19、 根据权利要求 17所述一种相变换热装置, 其特征在于, 所述排气 区的高端位置布置有排气阀, 且该排气出口连接于过热区和 /或汽化区。
20、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述换热 介质为水、 导热油或导热姆。
21、 根据权利要求 1所述的一种相变换热装置, 其特征在于, 所述相变 换热装置应用于太阳能热利用、 锅炉加热或储热系统的输入输出领域。
PCT/CN2012/076424 2011-09-23 2012-06-04 一种相变换热装置 WO2013040912A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12833719.3A EP2767789B1 (en) 2011-09-23 2012-06-04 Phase transformation heat exchange device
AU2012313217A AU2012313217B2 (en) 2011-09-23 2012-06-04 Phase transformation heat exchange device
ES12833719.3T ES2659776T3 (es) 2011-09-23 2012-06-04 Dispositivo de intercambio de calor de transformación de fase
US14/222,554 US9897391B2 (en) 2011-09-23 2014-03-21 Phase transformation heat exchange device
ZA2014/02934A ZA201402934B (en) 2011-09-23 2014-04-23 Phase Transformation Heat Exchange Device
HK15101551.2A HK1201317A1 (zh) 2011-09-23 2015-02-12 種相變換熱裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110285859.8A CN103017585B (zh) 2011-09-23 2011-09-23 一种相变换热装置
CN201110285859.8 2011-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/222,554 Continuation US9897391B2 (en) 2011-09-23 2014-03-21 Phase transformation heat exchange device

Publications (1)

Publication Number Publication Date
WO2013040912A1 true WO2013040912A1 (zh) 2013-03-28

Family

ID=47913832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076424 WO2013040912A1 (zh) 2011-09-23 2012-06-04 一种相变换热装置

Country Status (8)

Country Link
US (1) US9897391B2 (zh)
EP (1) EP2767789B1 (zh)
CN (1) CN103017585B (zh)
AU (1) AU2012313217B2 (zh)
ES (1) ES2659776T3 (zh)
HK (1) HK1201317A1 (zh)
WO (1) WO2013040912A1 (zh)
ZA (1) ZA201402934B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776532A (zh) * 2016-05-04 2016-07-20 东华大学 一种高效稳定型厌氧反应器增温系统
CN114345917A (zh) * 2022-01-06 2022-04-15 中国科学院武汉岩土力学研究所 一种新型原位注入蒸气热脱棒

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017585B (zh) 2011-09-23 2015-01-28 北京兆阳光热技术有限公司 一种相变换热装置
CN107182188B (zh) * 2017-06-21 2023-06-09 广东西江数据科技有限公司 户外密闭柜及其散热装置
CN107702358B (zh) * 2017-09-11 2020-03-31 北京兆阳光热技术有限公司 一种耐高温固态储热系统蒸水冲洗方法
CN111111586B (zh) * 2020-01-10 2021-07-13 西安交通大学 一种均匀传热的太阳能甲烷重整反应装置和方法
CN111504096B (zh) * 2020-04-27 2024-09-10 哈尔滨工大金涛科技股份有限公司 一种直通式相变换热装置
CN115091738B (zh) * 2022-06-16 2023-07-21 浙江启德新材料有限公司 一种透明pvc装饰膜加工装置及生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284193A (ja) * 1986-02-27 1987-12-10 Furukawa Electric Co Ltd:The 伝熱管
JPH0914876A (ja) * 1995-06-26 1997-01-17 Hazama Gumi Ltd 蓄熱用パイプ
JPH1137682A (ja) * 1997-07-18 1999-02-12 Toyo Netsu Kogyo Kk 温度成層型蓄熱槽
JP2001132988A (ja) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd 氷濃度調整装置およびこれを備えた氷水搬送冷却システム
CN200947001Y (zh) * 2006-04-30 2007-09-12 华南理工大学 一种套管式换热器
DE102007015080A1 (de) * 2007-03-29 2008-10-02 Leithner, Reinhard, Prof. Dr. techn. Wärmespeicher mit intrinsischer Schichtung
JP2008261584A (ja) * 2007-04-13 2008-10-30 Matsushita Electric Ind Co Ltd 蓄熱器
KR20090102944A (ko) * 2008-03-27 2009-10-01 주식회사 케너텍 급속 축열 및 방열이 가능한 축열콘테이너
CN101706223A (zh) * 2008-10-21 2010-05-12 顺德职业技术学院 有机相变纳米流体蓄热元件
CN202018022U (zh) * 2011-04-18 2011-10-26 北京实力源科技开发有限责任公司 一种相变换热装置
CN202350604U (zh) * 2011-09-23 2012-07-25 北京兆阳能源技术有限公司 一种相变换热装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT294148B (de) * 1967-09-06 1971-11-10 Danfoss As Zwangsdurchlauf-Verdampfer für eine Kompressionskälteanlage
SU485296A1 (ru) * 1974-01-02 1975-09-25 Уральский ордена Трудового Красного Знамени политехнический институт им.С.М.Кирова Теплова труба
DE3431240A1 (de) * 1984-08-24 1986-03-06 Michael 4150 Krefeld Laumen Kaeltemaschine bzw. waermepumpe sowie strahlpumpe hierfuer
DE3526574C1 (de) * 1985-07-25 1987-03-26 Dornier System Gmbh Kapillarunterstuetzter Verdampfer
US4825661A (en) * 1988-03-28 1989-05-02 The United States Of America As Represented By The Secretary Of The Army High efficiency, orientation-insensitive evaporator
US5816313A (en) * 1994-02-25 1998-10-06 Lockheed Martin Corporation Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves
RU2098733C1 (ru) * 1995-03-07 1997-12-10 Институт теплофизики Уральского отделения РАН Испарительная камера контурной тепловой трубы
US6397936B1 (en) * 1999-05-14 2002-06-04 Creare Inc. Freeze-tolerant condenser for a closed-loop heat-transfer system
US20070056715A1 (en) * 2002-02-25 2007-03-15 Frank Mucciardi Method of heat extraction using a heat pipe
US8011421B2 (en) * 2006-12-12 2011-09-06 Honeywell International Inc. System and method that dissipate heat from an electronic device
KR100897472B1 (ko) * 2007-09-09 2009-05-14 손봉운 내부에 작동유체 순환회로를 가진 히트 파이프
US8061413B2 (en) * 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
CN101576356A (zh) * 2008-05-07 2009-11-11 中国科学院工程热物理研究所 一种利用微孔疏水膜强化换热的换热器
TWI333539B (en) * 2008-06-26 2010-11-21 Inventec Corp Loop heat pipe
US20110120451A1 (en) * 2009-11-20 2011-05-26 Miles Mark W Device for harnessing solar energy with vapor insulating heat transfer core
US9057538B2 (en) * 2009-11-20 2015-06-16 Mark W Miles Solar flux conversion module
CN201561413U (zh) * 2009-12-12 2010-08-25 时扬 一种太阳能集热管式蒸汽盒
CN103017585B (zh) 2011-09-23 2015-01-28 北京兆阳光热技术有限公司 一种相变换热装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284193A (ja) * 1986-02-27 1987-12-10 Furukawa Electric Co Ltd:The 伝熱管
JPH0914876A (ja) * 1995-06-26 1997-01-17 Hazama Gumi Ltd 蓄熱用パイプ
JPH1137682A (ja) * 1997-07-18 1999-02-12 Toyo Netsu Kogyo Kk 温度成層型蓄熱槽
JP2001132988A (ja) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd 氷濃度調整装置およびこれを備えた氷水搬送冷却システム
CN200947001Y (zh) * 2006-04-30 2007-09-12 华南理工大学 一种套管式换热器
DE102007015080A1 (de) * 2007-03-29 2008-10-02 Leithner, Reinhard, Prof. Dr. techn. Wärmespeicher mit intrinsischer Schichtung
JP2008261584A (ja) * 2007-04-13 2008-10-30 Matsushita Electric Ind Co Ltd 蓄熱器
KR20090102944A (ko) * 2008-03-27 2009-10-01 주식회사 케너텍 급속 축열 및 방열이 가능한 축열콘테이너
CN101706223A (zh) * 2008-10-21 2010-05-12 顺德职业技术学院 有机相变纳米流体蓄热元件
CN202018022U (zh) * 2011-04-18 2011-10-26 北京实力源科技开发有限责任公司 一种相变换热装置
CN202350604U (zh) * 2011-09-23 2012-07-25 北京兆阳能源技术有限公司 一种相变换热装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776532A (zh) * 2016-05-04 2016-07-20 东华大学 一种高效稳定型厌氧反应器增温系统
CN114345917A (zh) * 2022-01-06 2022-04-15 中国科学院武汉岩土力学研究所 一种新型原位注入蒸气热脱棒
CN114345917B (zh) * 2022-01-06 2022-10-25 中国科学院武汉岩土力学研究所 一种新型原位注入蒸气热脱棒

Also Published As

Publication number Publication date
AU2012313217B2 (en) 2015-06-18
EP2767789B1 (en) 2017-11-22
CN103017585B (zh) 2015-01-28
CN103017585A (zh) 2013-04-03
ZA201402934B (en) 2015-11-25
HK1201317A1 (zh) 2015-08-28
ES2659776T3 (es) 2018-03-19
EP2767789A4 (en) 2015-09-02
EP2767789A1 (en) 2014-08-20
US9897391B2 (en) 2018-02-20
US20140202667A1 (en) 2014-07-24
AU2012313217A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2013040912A1 (zh) 一种相变换热装置
Bellos et al. A review of concentrating solar thermal collectors with and without nanofluids
CN108592419B (zh) 一种太阳能热发电用延缓下落式固体颗粒吸热器
CN101363664B (zh) 一种单侧多纵向涡强化换热的聚焦槽式太阳能吸热器
CN101275785A (zh) 塔式太阳能热发电用高温热管中心接收器
CN103216952B (zh) 太阳能热发电用内循环式固体颗粒空气吸热器
WO2013152681A1 (zh) 一种热容换热装置
CN102135334A (zh) 一种太阳能热发电站用石英玻璃管束式空气吸热器
CN104236132B (zh) 一种基于高效储放热单元的中高温太阳能储能装置
CN202018022U (zh) 一种相变换热装置
WO2013071848A1 (zh) 一种太阳能集热器
CN102425867A (zh) 一种带单侧内翅片的槽式太阳能真空集热管
CN202350604U (zh) 一种相变换热装置
WO2024021296A1 (zh) 一种超超临界太阳能塔式水工质吸热器
CN111829197A (zh) 一种塔式太阳能电站发电用逆流式高温粒子吸热器
CN103148602A (zh) 太阳能热发电站用固体颗粒堆积床式空气吸热器
WO2012142932A1 (zh) 一种相变换热装置
CN107166753B (zh) 一种带内插棒的槽式太阳能真空集热管
CN202350351U (zh) 一种新型太阳能集热器
CN115751737B (zh) 一种用于太阳能热发电系统的碟式集热加热器及设计方法
CN205895512U (zh) 基于特征吸收光谱的气体体吸热太阳能发电装置
CN110375442A (zh) 一种高温太阳能腔式热管中心接收器
CN216203251U (zh) 一种生物质蒸汽发生器余热回收装置
CN109404160A (zh) 热源互补型的分隔式斯特林发动机加热器
CN215002318U (zh) 一种颗粒吸热器及太阳能发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012833719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012833719

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012313217

Country of ref document: AU

Date of ref document: 20120604

Kind code of ref document: A