Nothing Special   »   [go: up one dir, main page]

WO2012133623A1 - 走査型顕微鏡 - Google Patents

走査型顕微鏡 Download PDF

Info

Publication number
WO2012133623A1
WO2012133623A1 PCT/JP2012/058321 JP2012058321W WO2012133623A1 WO 2012133623 A1 WO2012133623 A1 WO 2012133623A1 JP 2012058321 W JP2012058321 W JP 2012058321W WO 2012133623 A1 WO2012133623 A1 WO 2012133623A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflection element
deflection
illumination light
deflecting
optical system
Prior art date
Application number
PCT/JP2012/058321
Other languages
English (en)
French (fr)
Inventor
正宏 水田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2013507712A priority Critical patent/JP5733539B2/ja
Publication of WO2012133623A1 publication Critical patent/WO2012133623A1/ja
Priority to US14/040,081 priority patent/US9551862B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • the present invention relates to a scanning microscope.
  • a scanning confocal microscope (hereinafter referred to as a scanning microscope) irradiates an observation sample with a laser beam through an objective lens, thereby irradiating reflected light from the observation sample or the observation sample.
  • the fluorescence generated from the sample by the laser beam is imaged again in a point shape via the objective lens and the optical system, and this is detected by a detector to obtain a point image.
  • a two-dimensional image can be obtained by scanning the entire two-dimensional XY plane of the observation sample using a galvanometer mirror that is a deflection element.
  • FIG. 17 shows a specific path of the laser beam in such a scanning microscope.
  • the laser beam incident from the A direction passes through the beam splitter 132 and passes through the two deflecting elements 133a and 133b to be two-dimensional. Scanned. Thereafter, the light enters the pupil projection lens 134 and passes through the pupil projection lens 134 to form a spot on the image plane of an objective lens (not shown).
  • two-dimensional scanning is performed on the image surface of the objective lens by the rotation (swing angle) of the two deflecting elements 133a and 133b, so that the reflected light or fluorescence from the sample surface on the image surface is as described above.
  • the converted two-dimensional image is displayed on each pixel of the monitor (not shown) in correspondence with the scanning positions in the X and Y directions of the two deflection elements 133a and 133b.
  • the exit pupil of the objective lens is always used regardless of the rotation angle (swing angle) of the two deflection elements.
  • the center of rotation of the laser beam passing through the objective lens need to coincide with each other.
  • the rotation center of the deflecting element and the exit pupil position of the objective lens should be in a conjugate relationship.
  • two deflection elements are used for two-dimensional scanning of the laser beam, it is always possible to set both of these two deflection elements so as to be conjugate with the exit pupil position of the objective lens. Can not.
  • Patent Document 1 a first deflecting element that deflects a light beam along one direction, a second deflecting element that further deflects the light beam deflected by the first deflecting element along the direction, And a driving unit that rotates the second deflecting element in synchronization with each other, and the center position of the deflection caused by the rotation of the light beam deflected by the second deflecting element is between the first and second deflecting elements.
  • the first and second deflecting elements are arranged so as to coincide with a position conjugate with the exit pupil position of the objective lens.
  • the exit pupil of the objective lens is theoretically the rear focal position of the objective lens, but is determined by a person skilled in the art in consideration of the design requirements such as aberration and vignetting of the objective lens. It is a concept that includes the position.
  • the exit pupil position of the imaging optical system composed of the objective lens and the second objective lens or the position conjugate with the exit pupil is not necessarily at a fixed position.
  • the exit pupil position changes depending on the type of the objective lens, or when the zoom optical system is included in the imaging optical system, the exit pupil position and the exit pupil conjugate position change.
  • the present invention has been made in view of such problems, and when the exit pupil position and the exit pupil conjugate position of the imaging optical system change, rotation of the light beam for scanning following the exit pupil position is performed. It is an object of the present invention to provide a scanning microscope configured to move the center position.
  • a scanning microscope is arranged between an objective lens that collects illumination light emitted from a light source and irradiates a sample surface, and the light source and the objective lens.
  • a scanning unit that scans the sample surface with light.
  • the scanning unit scans the illumination light in a first direction on the sample surface, the first deflection element and the second deflection element, and the illumination light
  • a third deflection element and a fourth deflection element that scan in a second direction orthogonal to the first direction, the rotation center of the illumination light by the first deflection element and the second deflection element, and a third The first deflection element and the second deflection element so that the rotation center of the illumination light by the deflection element and the fourth deflection element substantially coincide with the exit pupil of the objective lens or a position conjugate with the exit pupil.
  • the third deflecting element and the fourth deflecting element Characterized in that the angle is controlled.
  • the deflection angle is an angle formed with a predetermined reference.
  • the optical axis of the optical system including the objective lens, the reflecting surface of the deflecting element, and the normal line of the reflecting surface of the deflecting element are used. Can be mentioned.
  • Such a scanning microscope has a variable magnification optical system that is formed by changing the magnification of an image of a sample surface, and a position conjugate with the exit pupil of the objective lens is moved along with the magnification change. With the movement of the position conjugate with the exit pupil, the rotation center of the illumination light by the first deflection element and the second deflection element and the rotation center of the illumination light by the third deflection element and the fourth deflection element are obtained.
  • the deflection angle of the illumination light by each of the first deflection element, the second deflection element, the third deflection element, and the fourth deflection element is controlled so as to substantially coincide with the position conjugate with the moved exit pupil. It is preferable.
  • the rotation center of the illumination light by the first deflection element and the second deflection element is from a predetermined position closer to the light source than the first deflection element than the second deflection element.
  • the first deflecting element and the second deflecting element are arranged so as to be located anywhere between the predetermined position on the surface side, and the rotation center of the illumination light by the third deflecting element and the fourth deflecting element is The third deflection element and the fourth deflection element are positioned so as to be located between a predetermined position on the light source side with respect to the third deflection element and a predetermined position on the sample surface side with respect to the fourth deflection element. Is preferably arranged.
  • each of the first deflection element and the second deflection element has a reflecting surface that is rotated about a rotation axis that is substantially orthogonal to the first direction.
  • Each of the third deflection element and the fourth deflection element has a reflecting surface that is rotated about a rotation axis that is substantially orthogonal to the second direction, and the illumination light incident from the light source is reflected by the first deflection element.
  • the illumination light reflected and reflected by the first deflecting element is reflected by the second deflecting element, the illumination light is reflected by the third deflecting element, and further reflected by the third deflecting element. It is preferable that reflected illumination light is reflected by the fourth deflection element.
  • the first deflecting element and the second deflecting element, and the third deflecting element and the fourth deflecting element satisfy the following conditions:
  • the amount of change from the predetermined state of the deflection angle of the illumination light by the deflection element and the second deflection element, and the amount of change from the predetermined state of the deflection angle of the illumination light by the third deflection element and the fourth deflection element are controlled. It is preferable.
  • Amount of change from the predetermined state of the deflection angle of the illumination light by the first deflection element or the third deflection element
  • Change in the deflection angle of the illumination light by the second deflection element or the fourth deflection element from the predetermined state
  • Change amount L Distance between the rotation center of the first deflection element and the rotation center of the second deflection element, or distance between the rotation center of the third deflection element and the rotation center of the fourth deflection element
  • M The distance between the rotation center of the second deflection element and the rotation center of the first deflection element and the second deflection element, or the rotation center of the fourth deflection element and the rotation of the third deflection element and the fourth deflection element.
  • the incident angle of the illumination light on the reflection surface of the first deflection element and the reflection surface of the second deflection element is 45. It is preferable that they are arranged to be smaller than °.
  • the incident angle of the illumination light on the reflection surface of the third deflection element and the reflection surface of the fourth deflection element is 45. It is preferable that they are arranged to be smaller than °.
  • the first deflecting element and the second deflecting element reflect the illumination light incident on the reflecting surface of the first deflecting element on the reflecting surface of the second deflecting element. It is preferable that the illumination lights emitted in this way are arranged to intersect.
  • the illumination light that is reflected by the reflecting surface of the second deflecting element and emitted is emitted with respect to the illumination light incident on the reflecting surface of the first deflecting element. It is preferable that they are arranged so as to be substantially orthogonal.
  • the third deflecting element and the fourth deflecting element reflect the illumination light incident on the reflecting surface of the third deflecting element on the reflecting surface of the fourth deflecting element. It is preferable that the illumination lights emitted in this way are arranged to intersect.
  • the illumination light that is reflected by the reflection surface of the fourth deflection element and emitted is emitted with respect to the illumination light incident on the reflection surface of the third deflection element. It is preferable that they are arranged so as to be substantially orthogonal.
  • the scanning microscope according to the present invention when the exit pupil position and the exit pupil conjugate position of the imaging optical system change, scanning is performed following the exit pupil position or the exit pupil conjugate position.
  • the rotational center position of the luminous flux can be moved.
  • (B) shows the upper ray in (a)
  • (c) shows the ray on the optical axis in (a)
  • (d) shows the lower ray in (a).
  • It is explanatory drawing which shows the light beam when arrange
  • (a) shows the state of an axial light beam
  • (b) shows the state of an off-axis light beam.
  • It is explanatory drawing which shows a state when the focal distance of the variable magnification 2nd objective optical system is changed into 450 mm from the state of FIG. 13, Comprising: (a) shows the state of an axial light beam, (b) is off-axis. Indicates the state of the luminous flux.
  • the scanning microscope 10 detects a laser beam (illumination light) emitted from the light source 20 by irradiating the sample surface 50 of the observation sample to scan, and reflected light or fluorescence from the sample surface 50. And a detection optical system 40.
  • the scanning optical system 30 includes a beam expander 31, a beam splitter 32, a scanning unit 33, a pupil projection lens 34, a second objective lens 35, and an objective lens 36 in order from the light source 20 side.
  • the detection optical system 40 is disposed on the side of the scanning optical system 30 and includes an imaging lens 41, a light shielding plate 42, and a photodetector 43 in order from the beam splitter 32 side.
  • the scanning microscope 10 is provided with a processing unit 70 that processes the position (coordinates on the sample surface 50) scanned by the scanning unit 33 and the value detected by the photodetector 43.
  • the laser beam emitted from the light source 20 becomes a substantially parallel light beam having a beam diameter required by the beam expander 31, passes through the beam splitter 32, and enters the scanning unit 33.
  • the scanning unit 33 scans the laser beam two-dimensionally in a direction orthogonal to the optical axis as will be described later.
  • the scanning unit 33 deflects the laser beam by reflecting the laser beam as shown in FIG.
  • the first deflection element 33a, the second deflection element 33b, the third deflection element 33c, and the fourth deflection element 33d are composed of four deflection elements.
  • the first to fourth deflection elements 33a to 33d are configured to be rotated (swinged) by the motor of the drive unit 60.
  • the laser beam (substantially parallel light beam) emitted from the scanning unit 33 is focused on the primary image plane I by the pupil projection lens 34 and then passes through the second objective lens 35 to become a substantially parallel light beam again.
  • the lens 36 forms an image on the sample surface (focal plane of the objective lens 36) 50.
  • the image of the laser beam formed on the sample surface 50 is a point image, and the diameter of the point image is determined by the numerical aperture (NA) of the objective lens 36.
  • NA numerical aperture
  • the reflected light or fluorescence from the point image (irradiation area) on the sample surface 50 is condensed again by the objective lens 36 to become a substantially parallel light beam, and is imaged on the primary image plane I by the second objective lens 35. Further, it is made into a substantially parallel light beam by the pupil projection lens 34 and enters the scanning unit 33.
  • the reflected light or fluorescence (substantially parallel light beam) descanned and emitted by the scanning unit 33 is reflected by the beam splitter 32 and enters the detection optical system 40, and is formed on the opening 42 a of the light shielding plate 42 by the imaging lens 41. It is focused on. Only the light that has passed through the opening 42a of the light shielding plate 42 reaches the photodetector 43 and is detected.
  • the opening 42 a of the light shielding plate 42 is conjugate with the point image of the laser beam imaged on the sample surface 50, and light (reflected light or fluorescence) emitted from the irradiation region on the sample surface 50 is It can pass through this opening 42a.
  • the processing unit 70 processes the optical signal detected by the photodetector 43 in synchronization with the scanning of the scanning unit 33, thereby obtaining the coordinates and the optical signal irradiated with the laser beam on the sample surface 50.
  • a two-dimensional image of the sample surface 50 can be obtained using the luminance.
  • the scanning microscope 10 can obtain an image of the sample surface 50 with high resolution.
  • the first to fourth deflection elements 33a constituting the scanning unit 33 are obtained.
  • the rotational center of the laser beam by .about.33d (the center of the swing angle when the laser beam is swung to scan the sample surface 50) and the position of the exit pupil P of the objective lens (imaging optical system) 36 are conjugated.
  • the pupil projection lens 34 is configured to form an image of the exit pupil P of the objective lens 36 on or near the scanning unit 33.
  • FIG. 2 described above shows the configuration of the scanning unit 33 according to the first embodiment.
  • the sample surface 50 perpendicular to the optical axis has a predetermined direction (the vertical direction in FIG. 2). ) Is the x-axis direction, and the direction perpendicular to the x-axis direction (the left-right direction in FIG. 2) is the y-axis direction, the two images that scan the point image of the laser beam in the x-axis direction on the sample surface 50 It comprises a deflection element (first and second deflection elements 33a, 33b) and two deflection elements (third and fourth deflection elements 33c, 33d) that are scanned in the y-axis direction.
  • the first and second deflection elements 33a and 33b have a scanning rotation axis extending in the y-axis direction, and the third and fourth deflection elements 33c and 33d are in the x-axis direction.
  • the scanning rotation shaft extends, and these rotation shafts are rotated by the motor of the drive unit 60 described above, whereby the reflection surfaces of the first and second deflection elements 33a and 33b rotate in the x-axis direction. (Oscillates), and the reflecting surfaces of the third and fourth deflecting elements 33c and 33d rotate (oscillate) in the y-axis direction. Also, as shown in FIG.
  • the first and second deflections are performed.
  • the reflecting surfaces of the elements 33a and 33b are substantially parallel and are inclined by 45 ° with respect to the optical axis (the incident angle of the laser beam is 45 °).
  • the third and fourth deflection elements 33c and 33d with respect to the y-axis direction.
  • the first and second deflecting elements 33a and 33b that scan the laser beam in the x-axis direction will be described.
  • the third and fourth deflecting elements 33c and 33d that scan in the y-axis direction have the same configuration. is doing.
  • the exit pupil position of the imaging optical system composed of the objective lens 36 and the second objective lens 35 changes, for example, a plurality of objective lenses 36 having different exit pupil positions.
  • the imaging optical system includes a variable magnification optical system (consisting of an objective lens, a variable magnification optical system, and a second objective lens), and the exit pupil conjugate position changes depending on the magnification.
  • both rotation centers of the two-dimensional scanning light beam overlap if the position is not conjugate with the exit pupil, or if it does not coincide with the exit pupil conjugate position, both the on-axis and off-axis light amount loss Degradation of optical performance occurs. In order to prevent this, both rotation centers are moved together in accordance with the exit pupil position change or the exit pupil conjugate position change.
  • the first and second deflecting elements 33a and 33b cause the laser light incident on the optical axis to scan in the x-axis direction on the sample surface 50 (hereinafter referred to as “one-dimensional scanning”).
  • the first and second deflecting elements 33a and 33b have scanning rotation axes extending substantially parallel to each other in the y-axis direction.
  • FIG. 3 shows that by adjusting the rotation angle (oscillation angle) of the first and second deflecting elements 33a and 33b, the point P ′ closer to the sample surface 50 than the second deflecting element 33b is used as the center of rotation.
  • the case where a laser beam is scanned is shown. Also, FIG.
  • FIG. 4 shows the rotation angle (so that the rotation center P ′ of the laser beam scanning by the first and second deflecting elements 33a and 33b is located closer to the light source 20 than the first deflecting element 33a).
  • FIG. 5 shows the rotation angle (rotation angle) of the rotation center P ′ of the laser beam scanning by the first and second deflection elements 33a and 33b so as to overlap the rotation center of the second deflection element 33b. ) Is controlled. In this case, the first deflection element 33a does not rotate. Further, FIG.
  • FIG. 6 shows that the rotation center P ′ of the scanning of the laser beam by the first and second deflecting elements 33a and 33b is positioned approximately in the middle between the first deflecting element 33a and the second deflecting element 33b.
  • Fig. 6 shows a case where these rotation angles (rotation swing angles) are controlled. In this case, since the first deflecting element 33a and the second deflecting element 33b have a substantially symmetrical positional relationship, the rotational swing angles are substantially the same.
  • FIG. 7 shows the rotation angle (rotation angle) of the rotation center P ′ of the laser beam scanning by the first and second deflection elements 33a and 33b so as to overlap the rotation center of the first deflection element 33a. ) Is controlled. In this case, the second deflection element 33b does not rotate.
  • the rotation center P ′ when the sample surface 50 is scanned in the x-axis direction with the laser beam is set. It can be moved in a range from the image side of the first deflection element 33a to the object side of the second deflection element 33b. That is, with the above configuration, I.
  • the rotation center P ′ in the one-dimensional scanning is located on the incident side with respect to the first deflection element 33a (in the case of FIG. 4).
  • the rotation center P ′ in the one-dimensional scan overlaps with the rotation center of the first deflection element 33a (in the case of FIG. 7).
  • a first one-dimensional scanning optical system (hereinafter referred to as an X scanning optical system 33x) composed of first and second deflecting elements 33a and 33b in order from the light source 20 side (in the order of incidence of the laser beam).
  • a second one-dimensional scanning optical system (hereinafter referred to as Y-scanning optical system 33y) comprising the third and fourth deflecting elements 33c and 33d (scanning unit 33). If the exit pupil conjugate position of the imaging optical system is on the incident side with respect to the first deflection element 33a of the X scanning optical system 33x, the X scanning optical system 33x and the Y scanning optical system Both 33y must be type I one-dimensional scanning optical systems.
  • the X scanning optical system 33x When the exit pupil conjugate position of the imaging optical system coincides with the rotation center of the first deflection element 33a of the X scanning optical system 33x, the X scanning optical system 33x is type II and the Y scanning optical system 33y. Is type I. When the exit pupil conjugate position of the imaging optical system is between the first and second deflecting elements 33a and 33b of the X scanning optical system 33x, the X scanning optical system is type III and the Y scanning optical system 33y. Is type I. When the exit pupil conjugate position of the imaging optical system is coincident with the rotation center of the second deflection element 33b of the X scanning optical system 33x, the X scanning optical system 33x is type IV and the Y scanning optical system 33y. Is type I.
  • the X scanning optical system is type V and the Y scanning optical system 33y is type I. It is. Further, when the exit pupil conjugate position of the imaging optical system coincides with the rotation center of the third deflection element 33c of the Y scanning optical system 33y, the X scanning optical system 33x is type V, and the Y scanning optical system 33y. Is type II. When the exit pupil conjugate position of the imaging optical system is between the third and fourth deflection elements 33c and 33d of the Y scanning optical system 33y, the X scanning optical system 33x is type V, and the Y scanning optical system 33y is type III.
  • the X scanning optical system 33x is type V and the Y scanning optical system 33y. Is type IV.
  • both the X scanning optical system 33x and the Y scanning optical system 33y are of type V 1 It must be a dimensional scanning optical system.
  • the exit pupil conjugate position of the imaging optical system is, if the two-dimensional scanning optical system (scanning unit 33) according to this embodiment having the same configuration is used, the exit pupil is used. Conjugation can be maintained.
  • the above deflection elements 33a to 33d can be constituted by, for example, a polygon mirror (rotating polygon mirror), an acoustooptic element, or the like.
  • the first and second deflecting elements 33a and 33b are configured to scan the laser beam in the y-axis direction on the sample surface 50
  • the third and fourth deflecting elements 33c and 33d are configured to scan in the x-axis direction. It is also possible to do.
  • the X scanning optical system 33x and the Y scanning optical system 33y may have a nested structure. Specifically, in order from the light source 20 side, the first deflection element 33a of the X scanning optical system 33x, the third deflection element 33c of the Y scanning optical system 33y, the second deflection element 33b of the X scanning optical system 33x, and Y scanning.
  • the fourth deflection element 33d of the optical system 33y may be arranged in this order, or the first deflection element 33a of the X scanning optical system 33x and the third deflection element 33c of the Y scanning optical system 33y in this order from the light source 20 side.
  • the fourth deflection element 33d of the Y scanning optical system 33y and the second deflection element 33b of the X scanning optical system 33x may be arranged in this order. It is important that two deflection elements are provided for each scanning direction.
  • the light beam incident on the first deflecting element 33a and the light beam emitted from the second deflecting element 33b are crossed, so that the reflecting surface of the second deflecting element 33b is changed. It can be downsized. This is because the incident angle of the laser beam with respect to the first and second deflecting elements 33a and 33b (incident angle when emitted from the scanning unit 33 onto the optical axis) can be made smaller than 45 °. This is because the amount of movement of the light beam incident on the second deflection element 33b in the x-axis direction is reduced by the rotation of the first deflection element 33a. Also, with this arrangement, the first deflection element 33a can be reduced in size as compared with the case of FIG. The same applies to the third and fourth deflection elements 33c and 33d.
  • the scanning optical system 30 scans the center (on the optical axis) of the image plane as shown in FIG. 8A
  • the light beam incident on the first deflection element 33a and the second deflection element 33b are emitted.
  • the first deflection element 33a and the second deflection element 33b are also parallel.
  • the second deflecting element 33b blocks the incident light flux.
  • FIG. 8B in the configuration in which the light beam incident on the first deflection element 33a and the light beam emitted from the second deflection element 33b can be folded, the light beam can be folded. It can be made smaller.
  • Table 1 below shows that the incident beam diameter ⁇ is 5.5 mm, the maximum scanning angle ⁇ is 6.89 °, and the surface interval L1 on the optical axis of the reflection surfaces of the first and second deflecting elements 33a and 33b is 10.
  • the distance L2 on the optical axis from 0 mm and the reflecting surface of the second deflecting element 33b to the plane P ′ conjugate with the entrance pupil of the objective lens 36 is 15.0 mm
  • the effective diameters ⁇ 1 and ⁇ 2 of the reflecting surfaces of the first and second deflecting elements 33a and 33b when the outgoing light beams are parallel and when the incoming and outgoing light beams shown in FIG.
  • the intersection angle of the light beam incident on the first deflection element 33a and the light beam emitted from the second deflection element 33b is 90 °, and the third deflection element 33c.
  • the crossing angle of the light beam incident on the light beam and the light beam emitted from the fourth deflecting element 33d is 90 °, the incident light beam direction and the emitted light beam direction of the normal two-dimensional scanning optical system shown in FIG. Therefore, the scanning optical system 30 according to the second embodiment can be introduced without changing any other elements of the optical system.
  • the deflection element When there is a deflection element at the rotation center position of the scanned light beam, the deflection element cannot be disposed at the exit pupil position of the objective lens 36. Therefore, the second objective lens 35, between the objective lens 36 and the deflection element, By providing a pupil projection lens 36 (relay optical system) and forming an exit pupil conjugate position in the vicinity of the deflecting element, the vicinity of the rotational center position of the scanned light beam and the exit pupil of the objective lens 36 are in a conjugate relationship. By providing the relay optical system, there is a problem that the apparatus is enlarged and the influence of the aberration of the relay optical system cannot be avoided. In types I and V (FIGS.
  • the scanning optical system 30 includes a variable magnification optical system 37 and an objective lens 36 and a pupil projection lens 34 in order from the object side.
  • the second objective lens 35 is included.
  • the variable magnification optical system 37 and the second objective lens 35 are collectively referred to as a variable magnification second objective optical system 38.
  • FIG. 10 shows the configuration of the optical system from the exit pupil P of the objective lens 36 to the exit pupil image P ′′ relayed by the pupil projection lens 34. That is, this FIG. An optical path diagram from the entrance pupil P on the object side of the optical system 38 to the exit pupil conjugate position P ′′ of the variable magnification second objective optical system 38 in which the pupil P is relayed by the pupil projection lens 34 is shown.
  • FIG. 10A shows a state where the focal length f of the variable magnification second objective optical system 38 is 60 mm
  • FIG. 10B shows a state where the focal length f is 450 mm.
  • the relayed exit pupil conjugate position P ′′ differs depending on the focal length f of the variable magnification second objective optical system 38.
  • a variable magnification optical system 37 constituting the variable magnification second objective optical system 38 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, It has a third lens group G3 having negative refractive power and a fourth lens group G4 having positive refractive power.
  • the first lens group G1 is composed of, in order from the object side, a cemented lens in which a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are cemented, and a positive meniscus lens L13 having a convex surface facing the object side.
  • the second lens group G2 includes, in order from the object side, a biconcave lens L21, a cemented lens obtained by cementing the biconvex lens L22 and the biconcave lens L23, and a biconcave lens L24, and the third lens group G3 includes an object.
  • the lens includes a biconvex lens L31 and a cemented lens in which a biconvex lens 32 and a negative meniscus lens L33 having a concave surface facing the object side are cemented.
  • the fourth lens group G4 is arranged in order from the object side to the object side.
  • the zoom optical system 37 has the second lens group G2 and the third lens group G3 imaged along the optical axis when zooming from the high magnification end state to the low magnification end state. Configured to move sideways. At this time, the first lens group G1 and the fourth lens group G4 are fixed on the optical axis in zooming.
  • the second objective lens 35 includes, in order from the object side, a cemented lens in which a biconvex lens L51 and a negative meniscus lens L52 having a concave surface facing the object side are cemented, and a cemented lens in which the biconvex lens L53 and the biconcave lens L54 are cemented. It consists of a lens.
  • Table 1 below shows values of specifications of the variable magnification second objective optical system 38.
  • f in the overall specifications indicates the focal length of the entire variable magnification second objective optical system 38 when the object distance is infinite
  • Fno indicates the F number
  • d0 indicates the objective lens 36.
  • the distance on the optical axis from the exit pupil P to the most object side lens surface (first surface) of the variable magnification second objective optical system 38 is shown.
  • the first column m is the surface number of each optical surface along the direction in which the light beam travels from the object side
  • the second column r is the radius of curvature of each optical surface
  • the third column d is each optical surface.
  • surface numbers 1 to 26 shown in Table 1 the most object side surface of the variable magnification optical system 37 in FIG. 10 is set to 1, and the most image side surface of the second objective lens 35 is set to 26.
  • a minus ( ⁇ ) in the radius of curvature indicates that the lens surface is concave toward the object side.
  • the refractive index of air of 1.0000 is omitted.
  • the distance d between the twenty-sixth surfaces is the lens surface (the twenty-sixth surface) closest to the image side of the variable magnification second objective optical system 38 (second objective lens 35) to the lens surface closest to the object side of the pupil projection lens 34 ( The distance on the optical axis to the (27th surface) is shown.
  • variable magnification optical system 37 moves the second lens group G2 and the third lens group G3 along the optical axis when changing the magnification from the high magnification end state to the low magnification end state.
  • the interval d3 changes.
  • the lens group spacing in Table 1 below includes the effective diameter ⁇ of the lens surface (first surface) closest to the object side in the high magnification end state, intermediate focal length state, and low magnification end state, and the variable magnification second objective optical system 38.
  • the values of the focal length f and the lens group intervals d1, d2, and d3 are shown.
  • the effective diameter ⁇ of the first surface changes with zooming, and plays the role of an object-side entrance pupil that determines the diameter of the light beam incident on the zooming optical system 37 at each focal length.
  • the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specifications are generally “mm”, but the optical system is proportionally enlarged or reduced. However, since the same optical performance can be obtained, it is not limited to this.
  • the description of the above specification table is the same in the specification table shown below.
  • the pupil projection lens 34 is composed of, in order from the object side, a cemented lens of a biconcave lens L61 and a biconvex lens L62, and a positive meniscus lens L63 having a convex surface facing the object side.
  • Table 2 shows values of specifications of the pupil projection lens 34.
  • the pupil projection lens 34 is located in a direction farther from the object side than the image I formed by the variable magnification second objective optical system 38 and relays the exit pupil of the variable magnification second objective optical system 38.
  • the surface numbers 27 to 31 shown in Table 2 the most object-side surface of the pupil projection lens 24 in FIG.
  • the second deflecting element 33b which is a single reflecting mirror, with respect to the scanning optical system 30 having the above-described configuration
  • the second deflection element 33b has its rotation center at a relayed exit pupil conjugate position P ′′ when the focal length f of the variable magnification second objective optical system 38 is 60 mm.
  • the incident light beam and the reflected light beam to the second deflecting element 33b are perpendicular to each other, and the reflected light beam is arranged to be the axial light beam of the variable magnification second objective optical system 38.
  • the reflected light beam is inclined by 5 ° with respect to the optical axis of the variable magnification second objective optical system 38, as shown in FIG.
  • the off-axis light beam enters the pupil projection lens 38.
  • the rotation center of the second deflection element 33b and the exit pupil conjugate position P ′′ of the variable magnification second objective optical system 38 coincide with each other. Approximately all of the light beam passes through the entrance pupil P on the object side of the variable magnification second objective optical system 38 in both off-axis directions. can do.
  • the reflected light beam becomes an axial light beam of the variable magnification second objective optical system 38 and passes through the entrance pupil P of the variable magnification second objective optical system 38.
  • the exit pupil conjugate position P ′′ of the variable magnification second objective optical system 38 deviates from the rotation center of the second deflection element 33b.
  • the off-axis light beam deviates from the effective diameter in the middle of the variable magnification second objective optical system 38.
  • a first deflection element 33a is added as shown in FIG. 13, and a one-dimensional scanning optical system (X scanning optical system 33x) is constituted by two reflecting mirrors.
  • X scanning optical system 33x a one-dimensional scanning optical system
  • the line segment (20 mm) connecting the rotation centers of the first deflection element 33a and the second deflection element 33b is orthogonal to the optical axis of the variable magnification second objective optical system 38.
  • the light beam incident on the first deflecting element 33 a is parallel to the optical axis of the variable magnification second objective optical system 38.
  • the exit pupil conjugate position P ′′ at this time is the rotation center of the second deflection element 33b and the rotation of the laser beam (illumination light) by the first deflection element 33a and the second deflection element 33b.
  • the second deflecting element 33b is rotated by 2.5 °, the off-axis light beam incident on the pupil projection lens 34 is changed in magnification.
  • the second deflecting element 33b is rotated by 2.5 °
  • the off-axis light beam incident on the pupil projection lens 34 is changed in magnification.
  • approximately all the luminous fluxes are varied both on and off the axis. It is possible to pass through the entrance pupil P on the object side of 38.
  • the exit pupil conjugate position P ′′ coincides with the rotation center of the second deflecting element 33b, the first deflecting element 33a and the second deflecting element 33b. Does not coincide with the rotation center of the laser beam (illumination light) by the deflection element 33b In this case, the off-axis light beam deviates from the effective diameter in the middle of the variable magnification second objective optical system 38.
  • the incident light beam and the reflected light beam to the second deflection element 33b are perpendicular to each other, and the line segment connecting the rotation centers of the first deflection element 33a and the second deflection element 33b is orthogonal to the optical axis of the variable magnification second objective optical system 38, the reflected light flux is variable. It becomes an on-axis light beam of the second objective optical system 38 and can pass through the entrance pupil P of the variable magnification second objective optical system 38.
  • the first deflection element 33a and the second deflection element are set so that the rotation center of the laser beam (illumination light) by the first deflection element 33a and the second deflection element 33b coincides with the exit pupil conjugate position P ′′.
  • the rotation angle (rotation swing angle) of each of 33b is adjusted and the off-axis light beam incident on the pupil projection lens 34 is inclined by 5 ° with respect to the optical axis of the variable magnification second objective optical system 38, FIG. As shown in b), it is possible to pass the entrance pupil P on the object side of the variable magnification second objective optical system 38 without being vignetted in the middle of the variable magnification second objective optical system 38. In this way, the first magnification is obtained.
  • the deflection element 33a and the second deflection element 33b are arranged, and the rotation center of the laser beam (illumination light) by these two deflection elements 33a and 33b is made to coincide with the exit pupil conjugate position P ′′, so that 2
  • the focal length f of the objective optical system 38 is 60 m. Even, even 450 mm, the axis can be off-axis in both approximately the total luminous flux passes through the entrance pupil P of the object side of the variable magnification second objective optical system 38.
  • the first deflection element 33a and the second deflection element 33b whose rotation centers of the laser beams (illumination light) by the first deflection element 33a and the second deflection element 33b coincide with the exit pupil conjugate position P ′′.
  • the rotation angle (rotation swing angle) of each that is, the rotation swing angle of the two deflection elements 33a and 33b and the position of the rotation center of the laser beam (illumination light) by these deflection elements 33a and 33b
  • incident light to the X scanning optical system 33x composed of two deflection elements 33a and 33b is rotated by these deflection elements 33a and 33b.
  • a case where the light passing through the center and the light emitted from the X scanning optical system 33x passes through the optical axis of the variable magnification second objective optical system 38 will be described as an initial state, where the rotation of the first deflection element 33a is described.
  • the center is A
  • the center of rotation of the second deflecting element 33b is C
  • the center of rotation of the laser beam by these deflecting elements 33a and 33b is P '.
  • the distance between the rotation center A of the first deflection element 33a and the rotation center C of the second deflection element 33b is L, and the rotation center C of the second deflection element 33b and the rotation center P ′ of the X scanning optical system 33x are The distance is assumed to be M. Further, in FIG.
  • the first deflection element 33a is rotated by ⁇ / 2 [°] and the second deflection element 33b is rotated by ⁇ / 2 [°] from the initial state described above.
  • a position where incident light reflected by the first deflecting element 33a enters the second deflecting element 33b is denoted by B, and a mirror image of the rotation center A of the first deflecting element 33a is denoted by A '.
  • the length of the line segment A′C is L and the angle BA′C is ⁇ . Accordingly, as shown in FIG. 16, if a circle whose center is the rotation center C of the second deflection element 33 b and whose radius is M and a light beam having a slope of tan ⁇ and a Y intercept of L ⁇ tan ⁇ are obtained.
  • the rotation center P ′ of the X scanning optical system 33x is determined.
  • the straight line CA is the y axis
  • the optical axis of the variable magnification second objective optical system 38 is the x axis.
  • X and Y are obtained by solving the above two equations simultaneously.
  • the mirror image A ′ is formed on the optical axis, and therefore the angle ACA ′ is 90 °.
  • the second deflection element 33b Is rotated by ⁇ / 2 [°]
  • the angle (acute angle) formed by the line A′C and the optical axis becomes ⁇ [°].
  • the angle ⁇ is an angle (acute angle) formed by the line P′C and the x axis (the optical axis of the variable magnification second objective optical system 38), and is obtained from the following equation.
  • the specific deflection element arrangement that is, the rotation center P ′ of the laser beam (illumination light) emitted from the X scanning optical system 33x is changed more than that of the second deflection element 33b.
  • the rotation center P ′ is closer to the first polarizing element 33a than the second polarizing element 33b, as shown in FIG. Become. Therefore, the following expression is generally established regardless of the arrangement of the deflection elements.
  • ⁇ / 2 and ⁇ / 2 which are the rotation angles (rotational swing angles) of the first and second deflecting elements 33a and 33b, satisfy the relationship of the above formula (1).
  • the deflection angle of the illumination light by these deflection elements 33a and 33b is controlled, and the laser beam (illumination light) can be rotated at a desired rotation center P ′.
  • the positions of the two points P ′ are obtained from the above equations (b) and (c), and accordingly, ⁇ and ⁇ in equation (1) are also 2
  • the rotation center can be arranged at a desired position by properly using these values.
  • the first and second deflecting elements 33a and 33b are formed with respect to the axial light beam, and the angle formed by these reflecting surfaces and the optical axis.
  • the first deflection element 33a is rotated by 5.1 ° (the angle between the reflecting surface and the optical axis is set to 50.1)
  • the second deflecting element 33b is rotated by 2.6 ° (the angle between the reflecting surface and the optical axis).
  • the angle formed is 47.6 °).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

 結像光学系の射出瞳位置及び射出瞳共役位置が変化した場合に、この瞳位置に追随して走査のための光束の回転中心位置を移動させるように構成された走査型顕微鏡を提供する。 走査型顕微鏡10は、光源20と、対物レンズ36と、走査ユニット33と、を有する。この走査ユニット33は、第1~第4の偏向素子33a~33dを含み、第1及び第2の偏向素子33a,33bによる照明光の回転中心と、第3及び第4の偏向素子33c,33dによる照明光の回転中心とが、対物レンズ36の射出瞳若しくはこの射出瞳と共役な位置に略一致するように、第1~第4の偏向素子33a~33dのそれぞれによる照明光の偏向角が制御される。

Description

走査型顕微鏡
 本発明は、走査型顕微鏡に関する。
 周知のように、走査型の共焦点顕微鏡(以下、走査型顕微鏡と称する)は、レーザビームを対物レンズを介して観察試料に照射し、これにより観察試料からの反射光もしくは観察試料に照射されたレーザビームにより試料から発生した蛍光を、再び対物レンズ及び光学系を介して点状に結像し、これを検出器で検出して点像を取得する。このとき、観察試料の2次元XY面全体を偏向素子であるガルバノミラーを用いてスキャンすることで、2次元画像を得ることができる。
 図17は、このような走査型顕微鏡におけるレーザビームの具体的経路を示すものであり、A方向から入射したレーザビームは、ビームスプリッター132を透過し、2つの偏向素子133a,133bを経て2次元に走査される。その後瞳投影レンズ134に入射し、この瞳投影レンズ134を通過して不図示の対物レンズの像面にスポットを結ぶ。この時、2つの偏向素子133a,133bの回転(振り角)により、対物レンズの像面上を2次元スキャンすることで、この像面上にある試料面からの反射光または蛍光が上述したものと同じ経路をたどってビームスプリッター132まで戻され、このビームスプリッター132で反射した後、さらに検出光学系を通り、不図示のフォトマルチプライア等からなる光検出器に入射され、ここで電気信号に変換され、図示しないモニターの各画素に、上述の2つの偏向素子133a,133bのXY方向の走査位置に対応させて2次元画像を表示する。
 ところで、このような走査型顕微鏡において、レーザビームの2次元スキャンによりムラのない2次元画像を得るためには、2つの偏向素子の回転角(振り角)にかかわらず、常に対物レンズの射出瞳の中心と対物レンズを通過するレーザビームの回転中心を一致させることが必要であり、このためには偏向素子の回転中心と対物レンズの射出瞳位置を共役関係とすればよいことになる。ところが、レーザビームを2次元スキャンするのに、2つの偏向素子を使用しているため、常に、これら2つの偏向素子の両方を対物レンズの射出瞳位置と共役関係になるように設定することはできない。そこで特許文献1では、光束を一方向に沿って偏向する第1の偏向素子と、この第1の偏向素子が偏向した光束を前記方向に沿ってさらに偏向する第2の偏向素子と、第1及び第2の偏向素子の向きを同期させて回転させる駆動部とを備え、第2の偏向素子で偏向された光束の回転に伴う偏向の中心位置が、第1及び第2の偏向素子の間に有り、対物レンズの射出瞳位置と共役な位置に一致するように第1及び第2の偏向素子が配置されている。
 ここで、対物レンズの射出瞳とは、理論的には、対物レンズの後側焦点位置であるが、当業者が対物レンズの収差、ビネッティング等の設計上必要な事項を考慮して決定した位置をも含む概念である。
特開2001-091848号公報
 しかしながら、対物レンズと第2対物レンズからなる結像光学系の射出瞳位置又は射出瞳と共役な位置(射出瞳共役位置)は、必ずしも一定の位置にあるわけではない。対物レンズの種類によって射出瞳位置が変化してしまう、若しくは変倍光学系が結像光学系に含まれる場合には、射出瞳位置及び射出瞳共役位置が変化してしまうという課題があった。
 本発明はこのような課題に鑑みてなされたものであり、結像光学系の射出瞳位置及び射出瞳共役位置が変化した場合に、この射出瞳位置に追随して走査のための光束の回転中心位置を移動させるように構成された走査型顕微鏡を提供することを目的とする。
 前記課題を解決するために、本発明に係る走査型顕微鏡は、光源から射出された照明光を集光して試料面に照射する対物レンズと、光源と対物レンズとの間に配置され、照明光により試料面を走査する走査ユニットと、を有し、走査ユニットは、照明光を試料面上の第1の方向に走査する第1の偏向素子及び第2の偏向素子と、照明光を第1の方向に直交する第2の方向に走査する第3の偏向素子及び第4の偏向素子と、を含み、第1の偏向素子及び第2の偏向素子による照明光の回転中心と、第3の偏向素子及び第4の偏向素子による照明光の回転中心とが、対物レンズの射出瞳、若しくは当該射出瞳と共役な位置と略一致するように、第1の偏向素子、第2の偏向素子、第3の偏向素子及び第4の偏向素子のそれぞれによる照明光の偏向角が制御されることを特徴とする。なお、偏向角とは、所定の基準とのなす角度であり、例えば、所定の基準として、前記対物レンズを含む光学系の光軸、偏向素子の反射面、偏向素子の反射面の法線が挙げられる。
 このような走査型顕微鏡は、試料面の像を変倍して形成し、当該変倍に伴って、対物レンズの射出瞳と共役な位置が移動する変倍光学系を有し、対物レンズの射出瞳と共役な位置の移動に伴って、第1の偏向素子及び第2の偏向素子による照明光の回転中心と、第3の偏向素子及び第4の偏向素子による照明光の回転中心とが、移動した射出瞳と共役な位置と略一致するように、第1の偏向素子、第2の偏向素子、第3の偏向素子及び第4の偏向素子のそれぞれによる照明光の偏向角が制御されることが好ましい。
 また、このような走査型顕微鏡は、第1の偏向素子及び第2の偏向素子による照明光の回転中心が、第1の偏向素子よりも光源側の所定位置から第2の偏向素子よりも試料面側の所定位置までの間のいずれかに位置するように、第1の偏向素子及び第2の偏向素子が配置され、第3の偏向素子及び第4の偏向素子による照明光の回転中心が、第3の偏向素子よりも光源側の所定位置から第4の偏向素子よりも試料面側の所定位置までの間のいずれかに位置するように、第3の偏向素子及び第4の偏向素子が配置されることが好ましい。
 また、このような走査型顕微鏡において、第1の偏向素子及び第2の偏向素子は、ぞれぞれが第1の方向に略直交する回転軸を中心に回転される反射面を有し、第3の偏向素子及び第4の偏向素子は、それぞれが第2の方向に略直交する回転軸を中心に回転される反射面を有し、光源から入射した照明光を第1の偏向素子で反射し、さらに、この第1の偏向素子で反射された照明光を前記第2の偏向素子で反射し、照明光を第3の偏向素子で反射し、さらに、この第3の偏向素子で反射された照明光を第4の偏向素子で反射することが好ましい。
 また、このような走査型顕微鏡において、第1の偏向素子及び第2の偏向素子、並びに、第3の偏向素子及び第4の偏向素子は、次式の条件を満足するように、第1の偏向素子及び第2の偏向素子による照明光の偏向角の所定状態からの変化量、第3の偏向素子及び第4の偏向素子による照明光の偏向角の所定状態からの変化量が制御されることが好ましい。
Figure JPOXMLDOC01-appb-M000002
 但し、
 α:第1の偏向素子又は第3の偏向素子による照明光の偏向角の所定状態からの変化量
 β:第2の偏向素子又は第4の偏向素子による照明光の偏向角の所定状態からの変化量
 L:第1の偏向素子の回転中心と第2の偏向素子の回転中心との距離、又は、第3の偏向素子の回転中心と第4の偏向素子の回転中心との距離
 M:第2の偏向素子の回転中心と第1の偏向素子及び第2の偏向素子による回転中心との距離、又は、第4の偏向素子の回転中心と第3の偏向素子及び第4の偏向素子による回転中心との距離
 また、このような走査型顕微鏡において、照明光が対物レンズの光軸中心を通過する際の第1の偏向素子の反射面及び第2の偏向素子の反射面への照明光の入射角度が45°より小さくなるように配置されていることが好ましい。
 また、このような走査型顕微鏡において、照明光が対物レンズの光軸中心を通過する際の第3の偏向素子の反射面及び第4の偏向素子の反射面への照明光の入射角度が45°より小さくなるように配置されていることが好ましい。
 また、このような走査型顕微鏡において、第1の偏向素子及び第2の偏向素子は、第1の偏向素子の反射面に入射する照明光に対して、第2の偏向素子の反射面で反射されて射出する照明光が交差するように配置されていることが好ましい。
 このとき、第1の偏向素子及び第2の偏向素子は、第1の偏向素子の反射面に入射する照明光に対して、第2の偏向素子の反射面で反射されて射出する照明光が略直交するように配置されていることが好ましい。
 また、このような走査型顕微鏡において、第3の偏向素子及び第4の偏向素子は、第3の偏向素子の反射面に入射する照明光に対して、第4の偏向素子の反射面で反射されて射出する照明光が交差するように配置されていることが好ましい。
 このとき、第3の偏向素子及び第4の偏向素子は、第3の偏向素子の反射面に入射する照明光に対して、第4の偏向素子の反射面で反射されて射出する照明光が略直交するように配置されていることが好ましい。
 本発明に係る走査型顕微鏡を以上のように構成すると、結像光学系の射出瞳位置及び射出瞳共役位置が変化した場合に、この射出瞳位置又は射出瞳共役位置に追随して走査のための光束の回転中心位置を移動させることができる。
本実施形態に係る走査型顕微鏡の構成を示す説明図である。 第1の実施形態に係る走査ユニットの構成を示す説明図である。 第1及び第2の偏向素子による回転中心を試料面側に配置して試料面上を走査するときの光線を示す説明図であって、(a)は走査時の光線の軌跡を示し、(b)は(a)における上方の光線を示し、(c)は(a)における光軸上の光線を示し、(d)は(a)おける下方の光線を示す。 第1及び第2の偏向素子による回転中心を光源側に配置して試料面上を走査するときの光線を示す説明図であって、(a)は走査時の光線の軌跡を示し、(b)は(a)における上方の光線を示し、(c)は(a)における光軸上の光線を示し、(d)は(a)おける下方の光線を示す。 第1及び第2の偏向素子による回転中心を第2の偏向素子の回転中心に配置して試料面上を走査するときの光線を示す説明図であって、(a)は走査時の光線の軌跡を示し、(b)は(a)における上方の光線を示し、(c)は(a)における光軸上の光線を示し、(d)は(a)おける下方の光線を示す。 第1及び第2の偏向素子による回転中心を第1及び第2の偏向素子の略中間に配置して試料面上を走査するときの光線を示す説明図であって、(a)は走査時の光線の軌跡を示し、(b)は(a)における上方の光線を示し、(c)は(a)における光軸上の光線を示し、(d)は(a)おける下方の光線を示す。 第1及び第2の偏向素子による回転中心を第1の偏向素子の回転中心に配置して試料面上を走査するときの光線を示す説明図であって、(a)は走査時の光線の軌跡を示し、(b)は(a)における上方の光線を示し、(c)は(a)における光軸上の光線を示し、(d)は(a)おける下方の光線を示す。 本実施形態に係る走査ユニットの構成を比較する説明図であって、(a)は第1の実施形態に係る走査ユニットを示し、(b)は第2の実施形態に係る走査ユニットの構成を示す。 走査ユニットにおける偏向素子の配置を説明するための説明図であって、(a)は従来の走査型顕微鏡を示し、(b)は第2の実施形態に係る走査型顕微鏡を示す。 射出瞳の位置が変化する走査光学系の構成を示す説明図であって、(a)はこの走査光学系を構成する変倍第2対物光学系の焦点距離が60mmの場合を示し、(b)は変倍第2対物光学系の焦点距離が450mmの場合を示す。 上記変倍第2対物光学系の焦点距離が60mmの場合であって、射出瞳共役位置に第2の偏向素子を配置した場合の状態を示す説明図であって、(a)は軸上光束の状態を示し、(b)は軸外光束の状態を示す。 図11の状態から変倍第2対物光学系の焦点距離を450mmに変倍したときの状態を示す説明図であって、(a)は軸上光束の状態を示し、(b)は軸外光束の状態を示す。 上記変倍第2対物光学系の焦点距離が60mmの場合であって、射出瞳共役位置に第2の偏向素子を配置し、その像側に第1の偏向素子を配置した場合の状態を示す説明図であって、(a)は軸上光束の状態を示し、(b)は軸外光束の状態を示す。 図13の状態から変倍第2対物光学系の焦点距離を450mmに変倍したときの状態を示す説明図であって、(a)は軸上光束の状態を示し、(b)は軸外光束の状態を示す。 第1及び第2の偏向素子の回転角度とこれらの偏向素子による照明光の偏向角との関係を示す説明図であって、(a)は初期状態を示し、(b)は第1及び第2の偏向素子を回転させた状態を示す。 第1及び第2の偏向素子の回転中心とこれらの偏向素子による照明光の回転中心との関係を示す説明図である。 従来の走査型顕微鏡における偏向素子の配置を説明するための説明図である。
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて本実施形態に係る走査型顕微鏡の構成を説明する。この走査型顕微鏡10は、光源20から放射されたレーザビーム(照明光)を観察試料の試料面50に照射して走査する走査光学系30と、試料面50からの反射光または蛍光を検出する検出光学系40と、を有して構成される。
 走査光学系30は、光源20側から順に、ビームエキスパンダ31、ビームスプリッター32、走査ユニット33、瞳投影レンズ34、第2対物レンズ35、及び、対物レンズ36を有する。また、検出光学系40は、走査光学系30の側方に配置され、ビームスプリッター32側から順に、結像レンズ41、遮光板42、及び、光検出器43を有する。また、この走査型顕微鏡10には、走査ユニット33で走査する位置(試料面50上の座標)及び光検出器43で検出された値を処理する処理部70が設けられている。
 この走査型顕微鏡10において、光源20から放射されたレーザビームは、ビームエキスパンダ31で必要なビーム径の略平行光束となり、ビームスプリッター32を透過し、走査ユニット33に入射する。この走査ユニット33は、後述するように光軸に直交する方向にレーザビームを2次元的に走査するものであり、例えば、図2に示すようにレーザビームを反射することによりこのレーザビームを偏向させる第1の偏向素子33a、第2の偏向素子33b、第3の偏向素子33c及び第4の偏向素子33dからなる4つの偏向素子で構成されている。また、これらの第1~第4の偏向素子33a~33dは、駆動部60のモータで回転(揺動)されるように構成されている。そして、この走査ユニット33を出射したレーザビーム(略平行光束)は瞳投影レンズ34により一次像面Iに結像された後、第2対物レンズ35を通過することにより再び略平行光束となり、対物レンズ36によって試料面(対物レンズ36の焦点面)50上に結像される。
 試料面50上に結像されたレーザビームの像は点像となっており、その点像の径は対物レンズ36の開口数(NA)で決まる大きさである。試料面50上の点像(照射領域)からの反射光または蛍光は、再び対物レンズ36で集光されて略平行光束となり、第2対物レンズ35により一次像面Iに結像された後、さらに瞳投影レンズ34で略平行光束にされて走査ユニット33に入射する。そして、この走査ユニット33でデスキャンされて出射した反射光または蛍光(略平行光束)はビームスプリッター32で反射されて検出光学系40内に入り、結像レンズ41により遮光板42の開口部42a上に集光される。この遮光板42の開口部42aを通過した光のみが光検出器43に到達し検出される。
 上述のように、遮光板42の開口部42aは試料面50上に結像されたレーザビームの点像と共役であり、試料面50上の照射領域から出た光(反射光または蛍光)はこの開口部42aを通過することができる。一方、試料面50上の他の領域から出た光のほとんどはこの開口部42a上には結像されず、通過することができない。以上より、処理部70が走査ユニット33の走査に同期させて光検出器43で検出された光信号を処理することにより、試料面50上のレーザビームが照射された座標と光信号から求められる輝度を用いて、試料面50の二次元的な画像を得ることができる。これによりこの走査型顕微鏡10は、高い分解能で試料面50の像を得ることができる。
 ところで、上述したように、このような走査型顕微鏡10において、レーザビームの2次元スキャンによりムラのない2次元画像を得るためには、走査ユニット33を構成する第1~第4の偏向素子33a~33dによるレーザビームの回転中心(試料面50を走査するためにレーザビームを振るときの振り角の中心)と対物レンズ(結像光学系)36の射出瞳Pの位置を共役関係とすることが必要である。ここで、瞳投影レンズ34は、対物レンズ36の射出瞳Pの像を走査ユニット33上若しくはその近傍に形成するように構成されている。以下に、この走査ユニット33の構成について説明する。
[第1の実施形態]
 上述の図2は、第1の実施形態に係る走査ユニット33の構成を示しており、この図2に示すように、光軸に直交する試料面50において所定の方向(図2においては上下方向)をx軸方向とし、このx軸方向に直交する方向(図2においては左右方向)をy軸方向とすると、レーザビームの点像をこの試料面50においてx軸方向に走査させる2枚の偏向素子(第1及び第2の偏向素子33a,33b)と、y軸方向に走査させる2枚の偏向素子(第3及び第4の偏向素子33c,33d)とから構成される。なお、図2の構成において、第1及び第2の偏向素子33a,33bは、y軸方向に延びる走査回転軸を有し、第3及び第4の偏向素子33c,33dは、x軸方向に延びる走査回転軸を有しており、これらの回転軸が、上述の駆動部60のモータで回転されることにより、第1及び第2の偏向素子33a,33bの反射面がx軸方向に回転(揺動)し、第3及び第4の偏向素子33c,33dの反射面がy軸方向に回転(揺動)する。また、図3(c)に示すように、この走査ユニット33を射出して、試料面50のx軸方向における光軸上の領域にレーザビームを照射するときは、第1及び第2の偏向素子33a,33bの反射面は略平行で光軸に対して45°傾いて配置されている(レーザビームの入射角が45°となる)。y軸方向に対する第3及び第4の偏向素子33c,33dも同様である。以下、レーザビームをx軸方向に走査する第1及び第2の偏向素子33a,33bについて説明するが、y軸方向に走査する第3及び第4の偏向素子33c,33dも同様の構成を有している。
 本実施形態では対物レンズ36と第2対物レンズ35からなる結像光学系の射出瞳位置(対物レンズ36の射出瞳の位置)が変化する場合、例えば異なる射出瞳位置を持つ複数の対物レンズ36を使用する場合や、結像光学系に変倍光学系が含まれて(対物レンズ、変倍光学系、第2対物レンズからなる)、射出瞳共役位置が倍率によって変化する場合を想定している。この場合2次元走査光束の両回転中心が重なっていたとしても、その位置が射出瞳と共役でない場合、射出瞳共役位置と一致しない場合は、両次元ともに軸上と軸外での光量ロスと光学性能の劣化が発生する。それを防ぐために射出瞳位置変化又は射出瞳共役位置変化に合わせて両回転中心を共に移動させる。
 図3~図7は、第1及び第2の偏向素子33a,33bにより、光軸上を通って入射したレーザ光を、試料面50においてx軸方向に走査させる(以下、「1次元走査」と呼ぶ)場合を示している。ここで、第1及び第2の偏向素子33a,33bはその走査回転軸がy軸方向に互いに略平行に延びている。図3は、第1及び第2の偏向素子33a,33bの回転角度(揺動角度)を調整することにより、第2の偏向素子33bよりも試料面50側の点P′を回転中心としてこのレーザビームを走査させる場合を示している。また、図4は、第1及び第2の偏向素子33a,33bによるレーザビームの走査の回転中心P′が、第1の偏向素子33aよりも光源20側に位置するようにこれらの回転角度(回転振り角)を制御した場合を示している。また、図5は、第1及び第2の偏向素子33a,33bによるレーザビームの走査の回転中心P′が、第2の偏向素子33bの回転中心と重なるようにこれらの回転角度(回転振り角)を制御した場合を示している。なお、この場合、第1の偏向素子33aは回転しない。また、図6は、第1及び第2の偏向素子33a,33bによるレーザビームの走査の回転中心P′が、第1の偏向素子33aと第2の偏向素子33bとの略中間に位置するようにこれらの回転角度(回転振り角)を制御した場合を示している。なお、この場合、第1の偏向素子33aと第2の偏向素子33bとはおよそ対称な位置関係になるために、回転振り角はほぼ同じとなる。また、図7は、第1及び第2の偏向素子33a,33bによるレーザビームの走査の回転中心P′が、第1の偏向素子33aの回転中心と重なるようにこれらの回転角度(回転振り角)を制御した場合を示している。なお、この場合、第2の偏向素子33bは回転しない。
 以上のように、第1及び第2の偏向素子33a,33bの回転角度(回転振り角)を制御することにより、レーザビームで試料面50をx軸方向に走査するときの回転中心P′を第1の偏向素子33aの像側から第2の偏向素子33bの物体側までの範囲で移動させることができる。すなわち、以上のような構成により、
 I.1次元走査における回転中心P′が第1の偏向素子33aよりも入射側に位置する場合(図4の場合)
 II.1次元走査における回転中心P′が第1の偏向素子33aの回転中心と重なっている場合(図7の場合)
 III.1次元走査における回転中心P′が第1の偏向素子33aと第2の偏向素子33bとの間に位置する場合(図6の場合)
 IV.1次元走査における回転中心P′が第2の偏向素子33bの回転中心と重なっている場合(図5の場合)
 V.1次元走査における回転中心P′が第2の偏向素子33bよりも射出側に位置する場合(図3の場合)
の計5種類の1次元走査光学系が2つの偏向素子33a,33bを含む同一の構成で可能であることが示された。この構成は、第3の偏向素子33c及び第4の偏向素子33dにおいても同様である。
 図2に示すように、光源20側から順(レーザビームの入射順)に、第1及び第2の偏向素子33a,33bからなる第1の1次元走査光学系(以後、X走査光学系33xとする)と第3及び第4の偏向素子33c,33dからなる第2の1次元走査光学系(以後、Y走査光学系33yとする)とから構成される2次元走査光学系(走査ユニット33)を備えた走査型顕微鏡10において、結像光学系の射出瞳共役位置がX走査光学系33xの第1の偏向素子33aよりも入射側にある場合、X走査光学系33x及びY走査光学系33yは共に、タイプIの1次元走査光学系でなくてはならない。また、結像光学系の射出瞳共役位置がX走査光学系33xの第1の偏向素子33aの回転中心と一致している場合、X走査光学系33xはタイプIIであり、Y走査光学系33yは、タイプIである。また、結像光学系の射出瞳共役位置がX走査光学系33xの第1及び第2の偏向素子33a,33bの間にある場合、X走査光学系はタイプIIIであり、Y走査光学系33yは、タイプIである。また、結像光学系の射出瞳共役位置がX走査光学系33xの第2の偏向素子33bの回転中心と一致している場合、X走査光学系33xはタイプIVであり、Y走査光学系33yは、タイプIである。また、結像光学系の瞳共役位置がX走査光学系33xの第2の偏向素子33bよりも射出側にある場合、X走査光学系はタイプVであり、Y走査光学系33yは、タイプIである。また、結像光学系の射出瞳共役位置がY走査光学系33yの第3の偏向素子33cの回転中心と一致している場合、X走査光学系33xはタイプVであり、Y走査光学系33yは、タイプIIである。また、結像光学系の射出瞳共役位置がY走査光学系33yの第3及び第4の偏向素子33c,33dの間にある場合、X走査光学系33xはタイプVであり、Y走査光学系33yはタイプIIIである。また、結像光学系の射出瞳共役位置がY走査光学系33yの第4の偏向素子33dの回転中心と一致している場合、X走査光学系33xはタイプVであり、Y走査光学系33yはタイプIVである。また、結像光学系の射出瞳共役位置がY走査光学系33yの第4の偏向素子33dよりも射出側にある場合、X走査光学系33x及びY走査光学系33yは共に、タイプVの1次元走査光学系でなくてはならない。
 以上のように結像光学系の射出瞳共役位置がいずれの場所にあったとしても、同一の構成を持つ本実施形態に係る2次元走査光学系(走査ユニット33)を使用すれば、射出瞳共役を保つことができる。
 また、以上の偏向素子33a~33dは、例えばポリゴンミラー(回転多面鏡)、音響光学素子等で構成することも可能である。また、第1及び第2の偏向素子33a,33bにより、試料面50においてレーザ光をy軸方向に走査させ、第3及び第4の偏向素子33c,33dによりx軸方向に走査させるように構成することも可能である。
 また、X走査光学系33xとY走査光学系33yは入れ子構造になっていても良い。具体的には光源20側から順にX走査光学系33xの第1の偏向素子33a、Y走査光学系33yの第3の偏向素子33c、X走査光学系33xの第2の偏向素子33b、Y走査光学系33yの第4の偏向素子33dという順に配置されていてもよいし、光源20側から順にX走査光学系33xの第1の偏向素子33a、Y走査光学系33yの第3の偏向素子33c、Y走査光学系33yの第4の偏向素子33d、X走査光学系33xの第2の偏向素子33bという順に配置されていてもよい。各走査方向に対して偏向素子が2つ備えられていることが重要である。
[第2の実施形態]
 第1の実施形態に係る走査ユニット33に示すように、この走査ユニット33から光軸上にレーザビームが射出されるときの、第1及び第2の偏向素子33a,33bの反射面に入射するレーザビームの入射角度をそれぞれ45°に設定すると、図8(a)に示すように、第1の偏向素子33aの回転(揺動)により第2の偏向素子33bに入射する光束がx軸方向に移動するため、この第2の偏向素子33bの反射面が大きくなってしまう。そこで、図8(b)に示すように、第1の偏向素子33aに入射する光束と第2の偏向素子33bから射出する光束とを交差させることで、第2の偏向素子33bの反射面を小型化することができる。これは、第1及び第2の偏向素子33a,33bに対するレーザビームの入射角(この走査ユニット33から光軸上に射出されるときの入射角)を45°より小さくすることができるため、これにより、第1の偏向素子33aの回転により第2の偏向素子33bに入射する光束のx軸方向の移動量が小さくなるからである。また、このように配置すると、図8(a)の場合に比べて第1の偏向素子33aも小型化することができる。これは、第3及び第4の偏向素子33c,33dも同様である。
 さらに、図8(a)に示すように走査光学系30が像面の中心(光軸上)を走査する状態において、第1の偏向素子33aに入射する光束と第2の偏向素子33bから出射する光束が略平行光束である場合は、第1の偏向素子33aと第2の偏向素子33bも平行である。この状態で第1の偏向素子33aと第2の偏向素子33bとを一定以上近づけると第2の偏向素子33bが入射光束を妨げてしまう。一方、図8(b)のように第1の偏向素子33aに入射する光束と第2の偏向素子33bから出射する光束を交差させる構成では光束を折り畳むことができるために、走査光学系30をより小型化することができる。
 以下の表1に、入射ビーム径φが5.5mm、走査最大角θが6.89°、第1及び第2の偏向素子33a,33bの反射面の光軸上の面間隔L1が10.0mm、及び、第2の偏向素子33bの反射面から対物レンズ36の入射瞳と共役な面P′までの光軸上の距離L2が15.0mmのときの、図8(a)に示す入出射光束が平行な場合と、図8(b)に示す入出射光束が交差する場合における第1及び第2の偏向素子33a,33bの反射面の有効径φ1,φ2を示す。
Figure JPOXMLDOC01-appb-T000003
 また、図9(b)に示すように、第1の偏向素子33aに入射する光束と第2の偏向素子33bから射出する光束の交差角が90°であり、かつ、第3の偏向素子33cに入射する光束と第4の偏向素子33dから射出する光束の交差角が90°である場合は、図9(a)に示す通常の2次元走査光学系の入射光束方向及び、射出光束方向が変わらないために光学系の他要素を一切変更せずに、第2の実施形態に係る走査光学系30を導入することができる。
 走査される光束の回転中心位置に偏向素子が存在する場合は、対物レンズ36の射出瞳位置には偏向素子を配置できないので、対物レンズ36と偏向素子との間に、第2対物レンズ35、瞳投影レンズ36(リレー光学系)を設けて偏向素子近傍に射出瞳共役位置を形成することにより、走査される光束の回転中心位置近傍と対物レンズ36の射出瞳とを共役関係にしている。リレー光学系を設けることによって、装置の大型化、リレー光学系が持つ収差の影響が避けられないという問題がある。第1の実施形態のタイプI、V(図4、図3)では、走査される光束の回転中心位置に偏向素子が存在しないために、対物レンズ36の射出瞳位置に走査される光束の回転中心位置を配置することができるので、リレー光学系は必ずしも必要なく、収差の影響を避けることができる。
[第3の実施形態]
 次に第3の実施形態として、射出瞳Pの共役位置が変化する走査光学系30に対して、上述した構成の2次元走査光学系である走査ユニット33を適用した場合について説明する。具体的には、この第3の実施形態に係る走査光学系30は、図10に示すように、対物レンズ36と瞳投影レンズ34との間に、物体側から順に、変倍光学系37と、第2対物レンズ35とを有して構成されている。なお、以降の説明においては、変倍光学系37と第2対物レンズ35とをまとめて変倍第2対物光学系38と呼ぶこととする。また、図10は対物レンズ36の射出瞳Pから瞳投影レンズ34でリレーされた射出瞳の像P″までの光学系の構成を示している。すなわち、この図10は、変倍第2対物光学系38の物体側の入射瞳Pから、その瞳Pを瞳投影レンズ34によってリレーした変倍第2対物光学系38の射出瞳共役位置P″までの光路図を示している。また、図10(a)は、変倍第2対物光学系38の焦点距離fが60mmの状態を示し、図10(b)は焦点距離fが450mmの状態を示している。この図10(a)及び(b)から明らかなように、変倍第2対物光学系38の焦点距離fにより、リレーされた射出瞳共役位置P″が異なっていることがわかる。
 この変倍第2対物光学系38を構成する変倍光学系37は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、を有して構成されている。また、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12とを接合した接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13で構成され、第2レンズ群G2は、物体側から順に、両凹レンズL21、両凸レンズL22と両凹レンズL23とを接合した接合レンズ、及び、両凹レンズL24で構成され、第3レンズ群G3は、物体側から順に、両凸レンズL31、及び、両凸レンズ32と物体側に凹面を向けた負メニスカスレンズL33とを接合した接合レンズで構成され、第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と物体側に凹面を向けた負メニスカスレンズL42とを接合した接合レンズで構成されている。なお、この変倍光学系37は、図10に示すように、高倍端状態から低倍端状態に変倍する際に、第2レンズ群G2及び第3レンズ群G3が光軸に沿って像側に移動するように構成されている。このとき、第1レンズ群G1及び第4レンズ群G4は変倍においては光軸上に固定されている。
 また、第2対物レンズ35は、物体側から順に、両凸レンズL51と物体側に凹面を向けた負メニスカスレンズL52とを接合した接合レンズ、及び、両凸レンズL53と両凹レンズL54とを接合した接合レンズから構成されている。
 以下の表1に、この変倍第2対物光学系38の諸元の値を示す。この表1において、全体諸元におけるfは物体距離を無限遠としたときの変倍第2対物光学系38の全系の焦点距離を示し、FnoはFナンバーを示し、d0は対物レンズ36の射出瞳Pから変倍第2対物光学系38の最も物体側のレンズ面(第1面)までの光軸上の距離を示す。また、レンズデータにおける第1欄mは物体側から光線の進行する方向に沿った各光学面の面番号を、第2欄rは各光学面の曲率半径を、第3欄dは各光学面から次の光学面までの光軸上の距離(面間隔であって、光軸上でのレンズ厚または空気間隔)を、第4欄νd及び第5欄ndはd線(λ=587.6nm)に対するアッベ数及び屈折率を、それぞれ表している。ここで、表1に示す面番号1~26は、図10における変倍光学系37の最も物体側の面を1とし、第2対物レンズ35の最も像側の面を26としている。また、曲率半径におけるマイナス(-)は、レンズ面が物側に向けて凹状であることを表す。また、空気の屈折率1.0000は省略してある。また、第26面の面間隔dは変倍第2対物光学系38(第2対物レンズ35)の最も像側のレンズ面(第26面)から瞳投影レンズ34の最も物体側のレンズ面(第27面)までの光軸上の距離を示している。
 また、上述したように変倍光学系37は、高倍端状態から低倍端状態に変倍するときに、第2レンズ群G2及び第3レンズ群G3が光軸に沿って移動するため、変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔d1、第2レンズ群G2と第3レンズ群G3との間隔d2、及び、第3レンズ群G3と第4レンズ群G4との間隔d3が変化する。以下の表1のレンズ群間隔には、高倍端状態、中間焦点距離状態及び低倍端状態における、最も物体側のレンズ面(第1面)の有効径Φ、変倍第2対物光学系38の全系の焦点距離f及びレンズ群間隔d1,d2,d3の値を示している。なお、第1面の有効径Φは、変倍に伴い変化し、各焦点距離においてこの変倍光学系37に入射する光束径を決定する物側入射瞳の役割を果たしている。
 なお、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔dその他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、以上の諸元表の説明は、以降に示す諸元表においても同様である。
(表1)
全体諸元
f  = 60  ~ 450
Fno= 10.0 ~  22.5
d0 = 15.0 ~  15.0

レンズデータ
m   r     d   νd   nd
 1  120.1967  2.0000  39.57  1.804400
 2   48.7980  3.0000  82.56  1.497820
 3  -509.0866  0.5000
 4   50.4610  3.0000  82.56  1.497820
 5  3179.8129   d1
 6  -108.0082  1.5000  35.71  1.902650
 7   25.8194  2.0000
 8   32.8474  3.5000  23.78  1.846660
 9  -19.0003  1.0000  60.29  1.620410
10   31.8448  1.5000
11  -25.9839  1.5000  35.71  1.902650
12  228.2515   d2
13  838.2380  6.0000  82.56  1.497820
14  -31.9728  0.2000
15  136.9685  6.0000  82.56  1.497820
16  -39.2120  2.0000  28.55  1.795040
17  -92.0449   d3
18  -339.8016  5.5000  36.24  1.620040
19  -40.8020  1.5000  39.57  1.804400
20  -124.4210  5.5017
21  327.0571  6.0000  71.34  1.569076
22  -73.5845  3.0000  41.96  1.667551
23  -186.9698  0.5000
24  140.9037  5.5000  71.34  1.569076
25  -82.7373  2.5000  56.34  1.568832
26  418.3780 195.1762

レンズ群間隔
    高倍端   中間焦点距離    低倍端
Φ    6.0000    12.0000    20.0000
f   60.0000    150.0000    450.0000
d1   2.6024    42.4730    60.3676
d2  22.8372    18.1594     2.5051
d3  43.3588     8.1659     5.9257
 また、瞳投影レンズ34は、物体側から順に、両凹レンズL61と両凸レンズL62との接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL63から構成されている。以下の表2に、この瞳投影レンズ34の諸元の値を示す。この瞳投影レンズ34は変倍第2対物光学系38が形成する像Iよりも、物体側からみて離れた方向に位置し変倍第2対物光学系38の射出瞳をリレーしている。ここで、表2に示す面番号27~31は、図10における瞳投影レンズ24の最も物体側の面を27とし、最も像側の面を31としている。
(表2)
m   r     d   νd   nd
27  -104.4668  2.0000  28.23  1.754521
28  128.4039  5.0000  70.33  1.487605
29  -34.6546  1.0000
30   44.4201  3.0000  70.20  1.487825
31   ∞
 まず、上述した構成の走査光学系30に対し、1枚の反射ミラーである第2の偏向素子33bで1次元走査光学系を構成した場合について説明する(ここでは、X走査光学系33xとして説明するが、Y走査光学系33yも同様である)。この第2の偏向素子33bは、図11(a)に示すように、その回転中心を変倍第2対物光学系38の焦点距離fが60mmのときのリレーされた射出瞳共役位置P″に一致し、さらに、この第2の偏向素子33bへの入射光束と反射光束が垂直をなし、その反射光束が変倍第2対物光学系38の軸上光束となるように配置されている。そして、その状態から第2の偏向素子33bを2.5°回転させると、図11(b)に示すように、反射光束は変倍第2対物光学系38の光軸に対して5°傾斜した軸外光束として瞳投影レンズ38に入射する。このとき、第2の偏向素子33bの回転中心と変倍第2対物光学系38の射出瞳共役位置P″は一致しているので、軸上、軸外共に凡そ全光束が変倍第2対物光学系38の物体側の入射瞳Pを通過することができる。
 一方、第2の偏向素子33bの位置を変えずに、変倍第2対物光学系38の焦点距離fを450mmに変倍した状態でも、図12(a)に示すように、第2の偏向素子33bへの入射光束と反射光束が垂直をなす場合は、その反射光束が変倍第2対物光学系38の軸上光束となり、変倍第2対物光学系38の入射瞳Pを通過することができるが、第2の偏向素子33bを2.5°回転させると、この第2の偏向素子33bの回転中心から変倍第2対物光学系38の射出瞳共役位置P″がはずれているため、図12(b)に示すように、軸外光束は変倍第2対物光学系38の途中で有効径を外れてしまう。
 そこで、図13に示す通り第1の偏向素子33aを追加し、2枚の反射ミラーで1次元走査光学系(X走査光学系33x)を構成する。ここで、図13(a)に示すように、第1の偏向素子33aと第2の偏向素子33bの回転中心を結ぶ線分(20mm)と変倍第2対物光学系38の光軸は直交し、第1の偏向素子33aへの入射光束は変倍第2対物光学系38の光軸と平行である。なお、上述したように、このときの射出瞳共役位置P″は第2の偏向素子33bの回転中心、及び第1の偏向素子33aと第2の偏向素子33bによるレーザビーム(照明光)の回転中心と一致しているものとする。そのため、図13(b)に示すように、第2の偏向素子33bを2.5°回転させると、瞳投影レンズ34に入射する軸外光束は変倍第2対物光学系38の光軸に対して5°傾斜するが、図11(a),(b)の場合と同様に、軸上、軸外共に凡そ全光束が変倍第2対物光学系38の物体側の入射瞳Pを通過することができる。もっとも、射出瞳共役位置P″が第2の偏向素子33bの回転中心と一致していたとしても、第1の偏向素子33aと第2の偏向素子33bによるレーザビーム(照明光)の回転中心と一致していない場合は、軸外光束は変倍第2対物光学系38の途中で有効径を外れてしまう。
 一方、この状態で、変倍第2対物光学系38の焦点距離fを450mmに変倍した状態でも、図14(a)に示すように、第2の偏向素子33bへの入射光束と反射光束が直交し、さらに、第1の偏向素子33aと第2の偏向素子33bの回転中心を結ぶ線分と変倍第2対物光学系38の光軸が直交する場合は、その反射光束が変倍第2対物光学系38の軸上光束となり、変倍第2対物光学系38の入射瞳Pを通過することができる。そして、第1の偏向素子33aと第2の偏向素子33bによるレーザビーム(照明光)の回転中心が、射出瞳共役位置P″に一致するように第1の偏向素子33a及び第2の偏向素子33bの各々の回転角度(回転振り角)を調整して、瞳投影レンズ34に入射する軸外光束を変倍第2対物光学系38の光軸に対して5°傾斜させると、図14(b)に示すように、変倍第2対物光学系38の途中でケラれることなく、変倍第2対物光学系38の物体側の入射瞳Pを通過させることができる。このように第1の偏向素子33a及び第2の偏向素子33bを配置し、これらの2つの偏向素子33a,33bによるレーザビーム(照明光)の回転中心を射出瞳共役位置P″に一致させることにより、変倍第2対物光学系38の焦点距離fが60mmであっても,450mmであっても、軸上、軸外共に凡そ全光束が変倍第2対物光学系38の物体側の入射瞳Pを通過することができる。
 それでは、第1の偏向素子33aと第2の偏向素子33bによるレーザビーム(照明光)の回転中心が射出瞳共役位置P″に一致するような第1の偏向素子33a及び第2の偏向素子33bの各々の回転角度(回転振り角)の決め方の一例、すなわち、2枚の偏向素子33a,33bの回転振り角と、これらの偏向素子33a,33bによるレーザビーム(照明光)の回転中心の位置との関係について説明する。まず、図15(a)に示すように、2枚の偏向素子33a,33bから構成されるX走査光学系33xへの入射光がこれらの偏向素子33a,33bの回転中心を通過し、このX走査光学系33xからの射出光が、変倍第2対物光学系38の光軸を通過する場合を初期状態として説明する。ここで、第1の偏向素子33aの回転中心をAとし、第2の偏向素子33bの回転中心をCとし、これらの偏向素子33a,33bによるレーザビームの回転中心(X走査光学系33xの回転中心)をP′とする。また、第1の偏向素子33aの回転中心Aと第2の偏向素子33bの回転中心Cとの距離をLとし、第2の偏向素子33bの回転中心CとX走査光学系33xの回転中心P′との距離をMとする。また、図15において時計回りを正の値として説明する。
 図15(b)に示すように、上述の初期状態から第1の偏向素子33aをα/2[°]回転させ、第2の偏向素子33bをβ/2[°]回転させたとする。また、第1の偏向素子33aで反射された入射光が第2の偏向素子33bに入射する位置をBとし、第1の偏向素子33aの回転中心Aの鏡像をA′とする。
 上述したように、点A′は点Aの鏡像であるため、三角形A′CP′において、線分A′Cの長さはLであり、角BA′Cはαである。従って、図16に示すように、中心が第2の偏向素子33bの回転中心Cであって半径がMの円と、傾きがtanαでY切片がL・tanαの直線との光線とを求めれば、X走査光学系33xの回転中心P′が確定する。なお、直線CAをy軸とし、変倍第2対物光学系38の光軸をx軸とする。
2+Y2=M2
Y = tanα・X + L・tanα
 上述した2式を連立させて解くことによりXとYが求まる。また、図15(b)において、上述の初期状態の場合、鏡像A′は、光軸上に形成されるので、角ACA′は90[°]であり、この状態から第2の偏向素子33bがβ/2[°]回転すると、線A′Cと光軸とのなす角(鋭角)は、β[°]となる。この角βは、図16(a)においては、線P′Cとx軸(変倍第2対物光学系38の光軸)とのなす角(鋭角)となるので、次式より求められる。
Figure JPOXMLDOC01-appb-M000004
 図16(a)に示した上述の説明は、特定の偏向素子配置、すなわち、X走査光学系33xを射出するレーザビーム(照明光)の回転中心P′が第2の偏向素子33bよりも変倍第2対物光学系38側にある場合におけるものであるが、回転中心P′が第2の偏光素子33bよりも第1の偏光素子33a側にある場合は、図16(b)のようになる。そのため、偏向素子の配置に関わらず一般的に以下の式が成立する。
Figure JPOXMLDOC01-appb-M000005
 上述の式(1)において、X走査光学系33xを射出するレーザビーム(照明光)の回転中心P′が第2の偏向素子33bよりも変倍第2対物光学系38側にある場合は、式中の±において+を採用し、第2の偏向素子33bよりも第1の偏向素子33a側にある場合は式中の±において-を採用する。
 以上のように、第1及び第2の偏向素子33a,33bの回転角度(回転振り角)であるα/2及びβ/2が上述の式(1)の関係を満たすようにこれらの偏向素子33a,33bを制御することにより、これらの偏向素子33a,33bによる照明光の偏向角が制御され、所望の回転中心P′でレーザービーム(照明光)を回転させることができる。なお、図16に示すように、上述の式(b)及び式(c)からは2つの点P′の位置が求められ、これに応じて式(1)におけるα,βに対しても2つの関係が求められるが、第1の実施形態で説明した5つのタイプ(タイプI~タイプV)に応じて、これらの値を使い分けることにより、所望の位置に回転中心を配置することができる。
 例えば、上述した図14の例では、図14(a)に示すように、軸上光束に対して第1及び第2の偏向素子33a,33bを、これらの反射面と光軸とのなす角度が45°になるように配置されているときに、図14(b)に示すように、軸外光束を変倍第2対物光学系38の光軸に対して5°傾斜させるために、第1の偏向素子33aを5.1°回転させ(反射面と光軸とのなす角度を50.1にし)、第2の偏向素子33bを2.6°回転させる(反射面と光軸とのなす角度を47.6°とする)。
10 走査型顕微鏡  20 光源  33 走査ユニット
33a 第1の偏向素子  33b 第2の偏向素子
33c 第3の偏向素子  33d 第4の偏向素子
36 対物レンズ

Claims (11)

  1.  光源から射出された照明光を集光して試料面に照射する対物レンズと、
     前記光源と前記対物レンズとの間に配置され、前記照明光により前記試料面を走査する走査ユニットと、を有し、
     前記走査ユニットは、
     前記照明光を前記試料面上の第1の方向に走査する第1の偏向素子及び第2の偏向素子と、前記照明光を前記第1の方向に直交する第2の方向に走査する第3の偏向素子及び第4の偏向素子と、を含み、
     前記第1の偏向素子及び前記第2の偏向素子による前記照明光の回転中心と、前記第3の偏向素子及び前記第4の偏向素子による前記照明光の回転中心とが、前記対物レンズの射出瞳、若しくは当該射出瞳と共役な位置と略一致するように、前記第1の偏向素子、前記第2の偏向素子、前記第3の偏向素子及び前記第4の偏向素子のそれぞれによる前記照明光の偏向角が制御されることを特徴とする走査型顕微鏡。
  2.  前記試料面の像を変倍して形成し、当該変倍に伴って、前記対物レンズの射出瞳と共役な位置が移動する変倍光学系を有し、
     前記対物レンズの射出瞳と共役な位置の移動に伴って、前記第1の偏向素子及び前記第2の偏向素子による前記照明光の前記回転中心と、前記第3の偏向素子及び前記第4の偏向素子による前記照明光の前記回転中心とが、移動した前記射出瞳と共役な位置と略一致するように、前記第1の偏向素子、前記第2の偏向素子、前記第3の偏向素子及び前記第4の偏向素子のそれぞれによる前記照明光の偏向角が制御されることを特徴とする請求項1記載の走査型顕微鏡。
  3.  前記第1の偏向素子及び前記第2の偏向素子による前記照明光の前記回転中心が、前記第1の偏向素子よりも前記光源側の所定位置から前記第2の偏向素子よりも前記試料面側の所定位置までの間のいずれかに位置するように、前記第1の偏向素子及び前記第2の偏向素子が配置され、
     前記第3の偏向素子及び前記第4の偏向素子による前記照明光の前記回転中心が、前記第3の偏向素子よりも前記光源側の所定位置から前記第4の偏向素子よりも前記試料面側の所定位置までの間のいずれかに位置するように、前記第3の偏向素子及び前記第4の偏向素子が配置されることを特徴とする請求項1または2に記載の走査型顕微鏡。
  4.  前記第1の偏向素子及び前記第2の偏向素子は、ぞれぞれが前記第1の方向に略直交する回転軸を中心に回転される反射面を有し、
     前記第3の偏向素子及び前記第4の偏向素子は、それぞれが前記第2の方向に略直交する回転軸を中心に回転される反射面を有し、
     前記光源から入射した前記照明光を前記第1の偏向素子で反射し、さらに、前記第1の偏向素子で反射された前記照明光を前記第2の偏向素子で反射し、
     前記照明光を前記第3の偏向素子で反射し、さらに、前記第3の偏向素子で反射された前記照明光を前記第4の偏向素子で反射する
     ことを特徴とする請求項1~3のいずれか一項に記載の走査型顕微鏡。
  5.  前記第1の偏向素子及び前記第2の偏向素子、並びに、前記第3の偏向素子及び前記第4の偏向素子は、次式の条件を満足するように、前記第1の偏向素子及び前記第2の偏向素子による前記照明光の前記偏向角の所定状態からの変化量、前記第3の偏向素子及び前記第4の偏向素子による前記照明光の前記偏向角の所定状態からの変化量が制御されることを特徴とする請求項4に記載の走査型顕微鏡。
    Figure JPOXMLDOC01-appb-M000001
     但し、
     α:前記第1の偏向素子又は前記第3の偏向素子による前記照明光の前記偏向角の所定状態からの変化量
     β:前記第2の偏向素子又は前記第4の偏向素子による前記照明光の前記偏向角の所定状態からの変化量
     L:前記第1の偏向素子の回転中心と前記第2の偏向素子の回転中心との距離、又は、前記第3の偏向素子の回転中心と前記第4の偏向素子の回転中心との距離
     M:前記第2の偏向素子の回転中心と前記第1の偏向素子及び前記第2の偏向素子による回転中心との距離、又は、前記第4の偏向素子の回転中心と前記第3の偏向素子及び前記第4の偏向素子による回転中心との距離
  6.  前記照明光が前記対物レンズの光軸中心を通過する際の前記第1の偏向素子の前記反射面及び前記第2の偏向素子の前記反射面への前記照明光の入射角度が45°より小さくなるように配置されていることを特徴とする請求項4に記載の走査型顕微鏡。
  7.  前記照明光が前記対物レンズの光軸中心を通過する際の前記第3の偏向素子の前記反射面及び前記第4の偏向素子の前記反射面への前記照明光の入射角度が45°より小さくなるように配置されていることを特徴とする請求項4に記載の走査型顕微鏡。
  8.  前記第1の偏向素子及び前記第2の偏向素子は、前記第1の偏向素子の前記反射面に入射する前記照明光に対して、前記第2の偏向素子の前記反射面で反射されて射出する前記照明光が交差するように配置されていることを特徴とする請求項4~7のいずれか一項に記載の走査型顕微鏡。
  9.  前記第1の偏向素子及び前記第2の偏向素子は、前記第1の偏向素子の前記反射面に入射する前記照明光に対して、前記第2の偏向素子の前記反射面で反射されて射出する前記照明光が略直交するように配置されていることを特徴とする請求項8に記載の走査型顕微鏡。
  10.  前記第3の偏向素子及び前記第4の偏向素子は、前記第3の偏向素子の前記反射面に入射する前記照明光に対して、前記第4の偏向素子の前記反射面で反射されて射出する前記照明光が交差するように配置されていることを特徴とする請求項4~7のいずれか一項に記載の走査型顕微鏡。
  11.  前記第3の偏向素子及び前記第4の偏向素子は、前記第3の偏向素子の前記反射面に入射する前記照明光に対して、前記第4の偏向素子の前記反射面で反射されて射出する前記照明光が略直交するように配置されていることを特徴とする請求項10に記載の走査型顕微鏡。
PCT/JP2012/058321 2011-03-31 2012-03-29 走査型顕微鏡 WO2012133623A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013507712A JP5733539B2 (ja) 2011-03-31 2012-03-29 走査型顕微鏡
US14/040,081 US9551862B2 (en) 2011-03-31 2013-09-27 Scanning microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011077527 2011-03-31
JP2011-077527 2011-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/040,081 Continuation US9551862B2 (en) 2011-03-31 2013-09-27 Scanning microscope

Publications (1)

Publication Number Publication Date
WO2012133623A1 true WO2012133623A1 (ja) 2012-10-04

Family

ID=46931325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058321 WO2012133623A1 (ja) 2011-03-31 2012-03-29 走査型顕微鏡

Country Status (3)

Country Link
US (1) US9551862B2 (ja)
JP (1) JP5733539B2 (ja)
WO (1) WO2012133623A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519235A (ja) * 2014-04-17 2017-07-13 ホリバ ジョヴァン イボン エスアーエス 光学ビーム走査検鏡のための装置及び方法
WO2020044410A1 (ja) * 2018-08-27 2020-03-05 株式会社ニコン 走査光学系および走査型共焦点顕微鏡

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230222B2 (ja) * 2012-10-12 2017-11-15 キヤノン株式会社 レンズアレイ光学系及びレンズアレイの製造方法
US10295811B2 (en) * 2015-11-01 2019-05-21 Howard Hughes Medical Institute Large field of view, high resolution microscope
DE102015121403A1 (de) * 2015-12-09 2017-06-14 Carl Zeiss Microscopy Gmbh Lichtfeld-bildgebung mit scanoptik
EP3312656B1 (de) * 2016-10-19 2019-12-18 Abberior Instruments GmbH Vorrichtung zum verlagern eines auf einer optischen achse einfallenden lichtstrahls
EP3538941A4 (en) 2016-11-10 2020-06-17 The Trustees of Columbia University in the City of New York METHODS FOR FAST IMAGING OF HIGH RESOLUTION LARGE SAMPLES
CA3069723C (en) 2017-07-17 2024-01-16 Thorlabs,Inc. Mid-infrared vertical cavity laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643369A (ja) * 1992-07-24 1994-02-18 Hamamatsu Photonics Kk レーザ走査顕微鏡における2次元スキャナ
JPH09304700A (ja) * 1996-05-14 1997-11-28 Nikon Corp 光走査型顕微鏡
JP2001255463A (ja) * 2000-03-10 2001-09-21 Olympus Optical Co Ltd 走査型光学装置
JP2006106337A (ja) * 2004-10-05 2006-04-20 Olympus Corp 走査型光学顕微鏡

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654210C2 (de) * 1996-12-24 1999-12-09 Leica Microsystems Optische Anordnung zum Scannen eines Strahls in zwei im wesentlichen senkrecht zueinander liegenden Achsen
JP2001091848A (ja) 1999-09-27 2001-04-06 Nikon Corp 走査型光学顕微鏡
US6459484B1 (en) 1999-10-21 2002-10-01 Olympus Optical Co., Ltd. Scanning optical apparatus
JP4850495B2 (ja) * 2005-10-12 2012-01-11 株式会社トプコン 眼底観察装置及び眼底観察プログラム
JP5203063B2 (ja) * 2008-06-24 2013-06-05 オリンパス株式会社 多光子励起測定装置
WO2010069987A1 (de) 2008-12-19 2010-06-24 Deutsches Krebsforschungszentrum Verfahren und vorrichtung zur dynamischen verlagerung eines lichtstrahls gegenüber einer den lichtstrahl fokussierenden optik

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643369A (ja) * 1992-07-24 1994-02-18 Hamamatsu Photonics Kk レーザ走査顕微鏡における2次元スキャナ
JPH09304700A (ja) * 1996-05-14 1997-11-28 Nikon Corp 光走査型顕微鏡
JP2001255463A (ja) * 2000-03-10 2001-09-21 Olympus Optical Co Ltd 走査型光学装置
JP2006106337A (ja) * 2004-10-05 2006-04-20 Olympus Corp 走査型光学顕微鏡

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519235A (ja) * 2014-04-17 2017-07-13 ホリバ ジョヴァン イボン エスアーエス 光学ビーム走査検鏡のための装置及び方法
WO2020044410A1 (ja) * 2018-08-27 2020-03-05 株式会社ニコン 走査光学系および走査型共焦点顕微鏡

Also Published As

Publication number Publication date
JPWO2012133623A1 (ja) 2014-07-28
JP5733539B2 (ja) 2015-06-10
US20140092459A1 (en) 2014-04-03
US9551862B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
JP5733539B2 (ja) 走査型顕微鏡
JP4762593B2 (ja) 外部レーザ導入装置
JP7130625B2 (ja) マイクロレンズアレイを有する、個々に照明される斜面を観察するための顕微鏡
JPH08190056A (ja) 観察光学装置
CN107003506B (zh) 具有低畸变像差的显微镜
KR101056484B1 (ko) 사각 광경로를 형성하는 광학 시스템 및 그 방법
JPH11326860A (ja) 波面変換素子及びそれを用いたレーザ走査装置
US6917468B2 (en) Confocal microscope
US7463394B2 (en) Linear optical scanner
JP4171787B2 (ja) 試料または観察対象物の情報取得のための光学装置
JP5929204B2 (ja) 走査型顕微鏡
JP4997834B2 (ja) 顕微鏡
US6243189B1 (en) Inexpensive, high quality scanning system
US9389402B2 (en) Laser scanning microscope
JPH06160757A (ja) 小視野角走査を得る為の方法及び小視野角スキャナ
JPH063587A (ja) 走査対物レンズ
JP2009008701A (ja) 照明装置及びこの照明装置を備えたズーム顕微鏡
JP6829527B2 (ja) 試料を結像する装置、及びその方法
JP4246981B2 (ja) レーザ加工装置
JP2530014B2 (ja) 実体顕微鏡
JP2512876B2 (ja) 実体顕微鏡の照明光学装置
JP3033857B2 (ja) 実体顕微鏡
WO2024209543A1 (ja) 走査光学系、走査型顕微鏡、および走査光学装置
JPWO2011068185A1 (ja) 結像光学系及び顕微鏡装置
JP6332327B2 (ja) 走査型顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763463

Country of ref document: EP

Kind code of ref document: A1