Nothing Special   »   [go: up one dir, main page]

WO2012133553A1 - Radiography system and radiography method - Google Patents

Radiography system and radiography method Download PDF

Info

Publication number
WO2012133553A1
WO2012133553A1 PCT/JP2012/058184 JP2012058184W WO2012133553A1 WO 2012133553 A1 WO2012133553 A1 WO 2012133553A1 JP 2012058184 W JP2012058184 W JP 2012058184W WO 2012133553 A1 WO2012133553 A1 WO 2012133553A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
image
ray
radiation
subject
Prior art date
Application number
PCT/JP2012/058184
Other languages
French (fr)
Japanese (ja)
Inventor
温之 橋本
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012133553A1 publication Critical patent/WO2012133553A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a radiation imaging system and a radiation imaging method.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • X-ray image detector there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
  • FPD Flat Panel Detector
  • the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
  • Imaging research is actively conducted.
  • a first diffraction grating phase type grating or absorption type grating
  • a specific distance Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
  • the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray. Then, the phase information of the subject is obtained by superimposing the second diffraction grating on the modulated self-image and analyzing the modulation of the self-image.
  • a fringe scanning method is known as a method for analyzing the modulation of the self-image of the first diffraction grating.
  • the second diffraction grating superimposed on the self-image is photographed a plurality of times while being translated at a scanning pitch obtained by equally dividing the grating pitch, and each pixel between the obtained images is obtained.
  • An X-ray refraction angle distribution with respect to the periodic direction of the first diffraction grating is obtained from the change in signal value. This refraction angle distribution corresponds to the differentiation of the phase shift distribution of the subject, and a phase contrast image of the subject can be obtained based on this refraction angle distribution.
  • the superposition of the self-image of the first diffraction grating and the second diffraction grating is Usually, moire fringes.
  • the influence may remain in the differential phase image (the distribution image of the refraction angle or the differential image of the phase shift distribution) and appear as unevenness.
  • image unevenness is typically removed or reduced using a filter (see, for example, Patent Document 2).
  • the above-described X-ray Talbot interferometer has sensitivity to the X-ray phase change in the periodic direction of the first diffraction grating. If a filter for removing or reducing unevenness is applied to the phase contrast image without considering the sensitivity direction, the phase information may be affected.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to obtain a phase contrast image in which unevenness is removed or reduced while suppressing the influence on phase information.
  • a radiation image detector that detects the masked radiation image; and an arithmetic processing unit that generates a differential phase image of the subject based on the radiation image acquired by the radiation image detector.
  • the second grating and the second grating are arranged in a relative positional relationship in which a moire fringe having a period in a direction intersecting with a period direction of the first grating is generated in the radiation image, and the arithmetic processing unit includes: A radiation imaging system that performs a filtering process for removing or reducing unevenness of the differential phase image using a filter that affects a change in image contrast in the periodic direction of the moire fringes. (2) Radiation that generates a differential phase image of the subject by detecting a radiation image that has passed through the first grating and that has been modulated by passing through the subject and is masked by the second grating.
  • An imaging method wherein the relative positional relationship between the first grating and the second grating is adjusted, and moire fringes having a period in a direction intersecting with a period direction of the first grating are generated in the radiation image.
  • the periodic direction of the moire fringes is set in a direction intersecting with the periodic direction of the first grating, and unevenness appearing in the differential phase image due to the moire fringes is also the period of the first grating. It occurs in a direction that intersects the direction. Then, by using a filter that affects the image contrast change in the periodic direction of the moire fringes, that is, the direction intersecting the periodic direction of the first grating, unevenness is removed or reduced without affecting the phase information. Can do.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11.
  • An imaging unit 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator.
  • it is roughly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the photographing unit 12.
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
  • the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H.
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging.
  • the absorption type grating 32 is provided.
  • the FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
  • the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
  • the imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction).
  • a scanning mechanism 33 is provided.
  • the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
  • FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
  • the FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41.
  • a scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13.
  • the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
  • Each pixel 40 is a direct conversion type in which X-rays are directly converted into electric charges by a conversion layer (not shown) such as amorphous selenium and the converted electric charges are stored in a capacitor (not shown) connected to the lower electrode. It can be configured as an X-ray detection element.
  • Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46.
  • TFT thin film transistor
  • Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it.
  • the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
  • the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory.
  • the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
  • the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
  • the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
  • correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
  • 4 and 5 show an imaging unit of the radiation imaging system of FIG.
  • the first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a.
  • the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a.
  • the substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
  • Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended
  • a material of each X-ray shielding part 31b, 32b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
  • These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
  • X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, at a predetermined period p 1 in a direction (x-direction) orthogonal to the one direction, are arranged at a predetermined interval d 1 from each other ing.
  • X-ray shielding portion 32b in the plane orthogonal to the optical axis A of the X-ray, at a predetermined period p 2 in a direction (x-direction) orthogonal to the one direction, at a predetermined interval d 2 from each other Are arranged.
  • the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings.
  • the slit portions may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
  • the first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays are slit at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 ⁇ m, most of the X-rays are geometrically projected without being diffracted at the slit portion.
  • the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image).
  • the projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
  • the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32.
  • the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
  • the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
  • the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (peak wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
  • Formula (3) is a formula that represents the Talbot interference distance when the X-rays emitted from the X-ray source 11 are cone beams. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”.
  • Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
  • the X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 ⁇ m or more in terms of gold (Au). It is preferable that
  • the X-rays irradiated from the X-ray source 11 are cone beams
  • the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion.
  • vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2.
  • the effective visual field length V in the x direction is 10 cm.
  • the thickness h 1 may be 100 ⁇ m or less and the thickness h 2 may be 120 ⁇ m or less.
  • an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. .
  • the pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
  • the period T of the moire fringes is expressed by the following equation (8).
  • the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
  • the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 ⁇ m) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
  • FIG. 6 shows a method of changing the moire cycle T.
  • the moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
  • a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
  • the substantial grating pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ / cos ⁇ ”.
  • the moire cycle T changes (FIG. 6A).
  • the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining.
  • a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
  • the second absorption type grating 32 is inclined by the angle ⁇ by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ ⁇ cos ⁇ ”.
  • the moire cycle T changes (FIG. 6B).
  • the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
  • the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
  • a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
  • the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32.
  • the pattern period of “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
  • imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed.
  • the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
  • the moire fringes detected by the FPD 30 are modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
  • FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. become.
  • This amount of displacement ⁇ x is approximately expressed by the following equation (12) based on the small X-ray refraction angle ⁇ .
  • the refraction angle ⁇ is expressed by Expression (13) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • This displacement amount ⁇ x is the signal of each pixel of the image data output from the FPD 30, that is, the phase shift amount ⁇ of the signal of each pixel 40 (the signal of each pixel 40 with and without the subject H) (Phase shift amount) is related to the following equation (14).
  • phase shift amount ⁇ of the signal of each pixel 40 the refraction angle ⁇ is obtained from the equation (14), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (13).
  • a phase shift distribution ⁇ (x) of the subject H that is, a phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method described below.
  • the fringe scanning method imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner in the x direction relative to the other (that is, the phase of both grating periods is changed). Shoot while changing).
  • the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved.
  • the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2 ⁇ ), the moire fringes return to their original positions.
  • a fringe image is photographed by the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2 , and signals of each pixel 40 are acquired from the photographed plural fringe images.
  • the phase shift amount ⁇ of the signal of each pixel 40 is obtained.
  • FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
  • the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present.
  • x is a coordinate in the x direction of the pixel 40
  • a 0 is the intensity of the incident X-ray
  • An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
  • arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Accordingly, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
  • FIG. 9 shows a change in the signal value of the pixel 40 due to the fringe scanning.
  • the M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32.
  • a broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists.
  • the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
  • the refraction angle ⁇ (x) is obtained from the phase shift amount ⁇ of the signal of each pixel 40 based on the equation (17), and the refraction angle ⁇ (x) is a phase shift as shown in the equation (13). Since the value corresponds to the differential amount of the distribution ⁇ (x), the phase shift distribution ⁇ (x) can be obtained by integrating the refraction angle ⁇ (x) along the x-axis.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the phase shift distribution ⁇ (x, y) has been described as a phase contrast image.
  • the differential amount of the phase shift distribution ⁇ and the refraction angle ⁇ corresponding to the phase shift distribution ⁇ are also the X-ray phase of the subject.
  • the differential amount of the phase shift distribution ⁇ and the two-dimensional distribution of the refraction angle ⁇ may be used as the phase contrast image.
  • an image obtained by using a differential amount of the phase shift distribution ⁇ and a two-dimensional distribution of the refraction angle ⁇ as an image is referred to as a differential phase image.
  • FIG. 10 shows an example of moire fringes and unevenness appearing in the differential phase image due to the moire fringes.
  • unevenness may occur due to the influence of moire fringes generated by the superposition of the G1 image of the first absorption type grating 31 and the second absorption type grating 32.
  • the uneven gradient almost coincides with the periodic direction of the moire fringes.
  • the present X-ray imaging system 10 has sensitivity to the phase change of X-rays in the periodic direction (x direction) of the first absorption type grating 31 so that the periodic direction of moire fringes intersects the x direction.
  • the relative positional relationship between the first and second absorption type gratings is adjusted.
  • the periodic direction of the moire fringes is set to a substantially y direction that is substantially orthogonal to the x direction (FIG. 10A), and a nonuniformity gradient also occurs in the substantially y direction (FIG. 10B).
  • the periodic direction of the moire fringe is rotated with respect to the first absorption type grating 31 around the optical axis A by using, for example, the relative rotation mechanism 50 (see FIG. 6) described above. Can be changed as appropriate.
  • FIG. 11 shows a spatial frequency spectrum of the differential phase image of FIG.
  • the spatial frequency spectrum is acquired by performing Fourier transform on the differential phase image.
  • the spatial frequency spectrum of the differential phase image includes a frequency component 60 derived from phase information (phase shift distribution of the subject H) and a frequency component 61 derived from unevenness.
  • the frequency component 60 of the phase information and the nonuniformity frequency component 61 can be separated in the frequency space.
  • the frequency filter F that masks the separated uneven frequency component 61 is applied to the spatial frequency spectrum of the differential phase image to remove or reduce the uneven frequency component 61.
  • Such a frequency filter also acts on a change in image contrast in the periodic direction of moire fringes, but since the frequency component 60 of phase information and the frequency component 61 of unevenness are separated, the frequency filter described above is The influence on the frequency component 60 is suppressed.
  • the periodic direction of the moire fringes is set to a substantially y direction that is substantially orthogonal to the x direction, and the uneven gradient is also generated in the substantially y direction.
  • the periodic change in the y direction occurs.
  • the uneven frequency component 61 is located on or near the corresponding v-axis.
  • the frequency component 60 of the phase information is located off the v-axis.
  • the frequency component 60 of the phase information and the frequency component 61 of the unevenness can be reliably separated, and the phase information
  • the uneven frequency component 61 can be removed or reduced without affecting the frequency component 60.
  • the above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 causes the storage unit 23 to store the phase contrast image from which unevenness has been removed or reduced.
  • the above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20.
  • the phase contrast image of the subject H is displayed on the monitor 24.
  • the periodic direction of the moire fringes is set in a direction intersecting with the periodic direction of the first absorption type grating 31, and unevenness appearing in the differential phase image due to the moire fringes is also the first. This occurs in a direction crossing the periodic direction of the absorption type grating 31. Then, by using a filter that affects the image contrast change in the periodic direction of the moire fringes, that is, in the direction intersecting with the periodic direction of the first absorption type grating 31, unevenness can be removed without affecting the phase information. Can be reduced.
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned).
  • the frequency filter is applied to the spatial frequency spectrum of the differential phase image in the frequency space to eliminate or reduce unevenness appearing in the differential phase image. You may make it remove or reduce the nonuniformity which appears in a differential phase image in real space using the convolution filter corresponding to a filter.
  • the X-ray imaging system 10 described above calculates the refraction angle ⁇ by performing fringe scanning on the projection image of the first grating, and therefore the first and second gratings absorb both.
  • the present invention is not limited to this.
  • the present invention is also useful when the refraction angle ⁇ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
  • a differential phase image may be created from a radiographic image acquired by imaging (pre-imaging) in the absence of a subject.
  • This differential phase image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, etc.).
  • a differential phase image is created from a radiographic image acquired by imaging (main imaging) in the presence of a subject, and the differential phase image obtained by pre-imaging is subtracted from this, thereby correcting the phase unevenness of the detection system.
  • a differential phase image can be obtained.
  • FIG. 12 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a mammography apparatus 80 shown in FIG. 12 is an apparatus that captures an X-ray image (phase contrast image) of the breast B as a subject.
  • the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • FIG. 13 shows a modification of the radiation imaging system of FIG.
  • a mammography apparatus 90 shown in FIG. 13 is different from the mammography apparatus 80 described above in that the first absorption grating 31 is disposed between the X-ray source 11 and the compression plate 84.
  • the first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81.
  • the imaging unit 92 includes an FPD 30, a second absorption type grating 32, and a scanning mechanism 33.
  • the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
  • the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
  • FIG. 14 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system 100 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the focal point of the X-ray focal point 18b when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b.
  • the blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction).
  • the extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
  • the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
  • the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
  • Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
  • the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
  • the G1 images based on the plurality of small focus light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity.
  • the multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
  • FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the first and second absorption gratings 31 and 32 of the above-described X-ray imaging system 10 are configured such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar).
  • first and second absorption type gratings 110 and 111 in which the grating surface is concaved into a curved surface may be used.
  • the FPD 112 having a cylindrical detection surface
  • the detection surface of the FPD 112 is a cylindrical surface having a straight line passing through the X-ray focal point 18b and extending in the y direction as a central axis.
  • the first absorption grating 110, the X-ray permeable and curved surfaces of the substrate 110a, a plurality of X-ray shielding section 110b is periodically arranged at a predetermined pitch p 1.
  • Each X-ray shielding part 110b extends linearly in the y direction, and the lattice plane of the first absorption grating 110 is centered on a straight line passing through the X-ray focal point 18b and extending in the extending direction of the X-ray shielding part 110b. It has a shape along a cylindrical surface as an axis.
  • the second absorption grating 111, the X-ray permeable and curved surfaces of the substrate 111a, a plurality of X-ray shielding section 111b is periodically arranged at a predetermined pitch p 2.
  • Each X-ray shielding part 111b extends linearly in the y direction, and the lattice plane of the second absorption grating 111 is centered on a straight line passing through the X-ray focal point 18b and extending in the extending direction of the X-ray shielding part 111b. It has a shape along a cylindrical surface as an axis.
  • the distance from the X-ray focal point 18b to the first absorption grating 110 L 1, the distance from the first absorption grating 110 to the second absorption grating 111 when the L 2, the first absorption type the grating pitch p 2 of the grating pitch p 1 and the second absorption grating 111 of the grating 110 is determined to satisfy equation (1).
  • the X-rays irradiated from the X-ray focal point 18b are all perpendicular to the grating surface when the subject H is not present. since made incident, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 111b of the X-ray shielding section 110b is reduced, it is not necessary to consider the equation (6) and (7).
  • one of the first and second absorption type gratings 110 and 111 is arranged with the X-ray focal point 18b as the center.
  • the above-described fringe scanning is performed by moving in the direction along the surface (cylindrical surface), the refraction angle ⁇ is calculated, and the phase shift distribution ⁇ can be obtained based on the refraction angle ⁇ .
  • the radiation used in the present invention is not limited to X-rays, but other than X-rays such as ⁇ -rays and ⁇ -rays. It is also possible to use other radiation.
  • a radiation image detector that detects the masked radiation image; and an arithmetic processing unit that generates a differential phase image of the subject based on the radiation image acquired by the radiation image detector.
  • the second grating and the second grating are arranged in a relative positional relationship in which a moire fringe having a period in a direction intersecting with a period direction of the first grating is generated in the radiation image, and the arithmetic processing unit includes: A radiation imaging system that performs a filtering process for removing or reducing unevenness of the differential phase image using a filter that affects a change in image contrast in the periodic direction of the moire fringes. (2) The radiation imaging system according to (1), wherein the arithmetic processing unit performs the filtering process in a frequency space.
  • the arithmetic processing unit acquires a spatial frequency spectrum of the differential phase image using Fourier transform, and uses the frequency filter to calculate the unevenness from the spatial frequency spectrum.
  • the radiography system which removes or reduces the frequency component corresponding to.
  • (6) The radiographic system according to any one of (1) to (5), wherein a periodic direction of the moire fringes is substantially orthogonal to a periodic direction of the first grating.
  • An imaging method wherein the relative positional relationship between the first grating and the second grating is adjusted, and moire fringes having a period in a direction intersecting with a period direction of the first grating are generated in the radiation image.
  • the periodic direction of the moire fringes is set in a direction intersecting with the periodic direction of the first grating, and unevenness appearing in the differential phase image due to the moire fringes is also the period of the first grating. It occurs in a direction that intersects the direction. Then, by using a filter that affects the image contrast change in the periodic direction of the moire fringes, that is, the direction intersecting the periodic direction of the first grating, unevenness is removed or reduced without affecting the phase information. Can do.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The radiography system (10) generates a differential phase image of a subject by detecting a radiological image, which is formed by radiation that has passed through a first grating (31) and been modulated by passing through the subject, and is masked by a second grating (32). The relative positions of the first grating and the second grating are adjusted to generate, in the radiological image, a moire pattern with a period in a direction that intersects with the direction of the period of the first grating, and using a filter that acts on image contrast changes in the direction of the period of the moire pattern, nonuniformities in the phase differential image are removed or reduced.

Description

放射線撮影システム及び放射線撮影方法Radiographic system and radiographic method
 本発明は、放射線撮影システム及び放射線撮影方法に関する。 The present invention relates to a radiation imaging system and a radiation imaging method.
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。 X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance. X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
 一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。 In a general X-ray imaging system, a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured. In this case, each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ), The light is incident on the X-ray image detector. As a result, an X-ray transmission image of the subject is detected and imaged by the X-ray image detector. As an X-ray image detector, there is a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit in addition to a combination of an X-ray intensifying screen and a film, a stimulable phosphor (accumulating phosphor), and so on. Widely used.
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。 However, the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。 Against the background of such problems, in recent years, an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object. Imaging research is actively conducted. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability. As a kind of such X-ray phase imaging, in recent years, an X-ray imaging system using an X-ray Talbot interferometer comprising two transmission diffraction gratings (phase grating and absorption grating) and an X-ray image detector has been proposed. It has been devised (for example, see Patent Document 1).
 X線タルボ干渉計は、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。そして、変調を受けた自己像に第2の回折格子を重ね合わせて自己像の変調を解析することによって被写体の位相情報を取得する。 In the X-ray Talbot interferometer, a first diffraction grating (phase type grating or absorption type grating) is arranged behind a subject, and a specific distance (Talbot interference distance) determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating. The Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray. Then, the phase information of the subject is obtained by superimposing the second diffraction grating on the modulated self-image and analyzing the modulation of the self-image.
 第1の回折格子の自己像の変調を解析する方法としては、例えば縞走査法が知られている。縞走査法は、自己像に重ね合わされる第2の回折格子を、その格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、得られる複数の画像間での画素毎の信号値の変化から、第1の回折格子の周期方向に関するX線の屈折角分布を取得する。この屈折角分布は、被写体の位相シフト分布の微分に対応しており、この屈折角分布に基づいて被写体の位相コントラスト画像を得ることができる。 For example, a fringe scanning method is known as a method for analyzing the modulation of the self-image of the first diffraction grating. In the fringe scanning method, the second diffraction grating superimposed on the self-image is photographed a plurality of times while being translated at a scanning pitch obtained by equally dividing the grating pitch, and each pixel between the obtained images is obtained. An X-ray refraction angle distribution with respect to the periodic direction of the first diffraction grating is obtained from the change in signal value. This refraction angle distribution corresponds to the differentiation of the phase shift distribution of the subject, and a phase contrast image of the subject can be obtained based on this refraction angle distribution.
 ところで、第1及び第2の回折格子の格子ピッチの誤差や所定の相対位置関係からのずれ等に起因して、第1の回折格子の自己像と第2の回折格子との重ね合わせは、通常、モアレ縞となる。そして、モアレ縞の周期によっては、その影響が微分位相像(屈折角の分布像又は位相シフト分布の微分像)に残ってしまい、ムラとして表れる場合がある。このような画像のムラは、典型的にはフィルタを用いて除去又は低減される(例えば、特許文献2参照)。 By the way, due to an error in the grating pitch of the first and second diffraction gratings, a deviation from a predetermined relative positional relationship, and the like, the superposition of the self-image of the first diffraction grating and the second diffraction grating is Usually, moire fringes. Depending on the period of the moire fringes, the influence may remain in the differential phase image (the distribution image of the refraction angle or the differential image of the phase shift distribution) and appear as unevenness. Such image unevenness is typically removed or reduced using a filter (see, for example, Patent Document 2).
国際公開2004/058070号International Publication No. 2004/058070 日本国特開平3-12785号公報Japanese Patent Laid-Open No. 3-12785
 上述したX線タルボ干渉計においては、X線の位相変化に対する感度を第1の回折格子の周期方向に有することになる。この感度方向を考慮せずに、ムラを除去又は低減するためのフィルタを位相コントラスト画像に対して適用すると、位相情報にまで影響を及ぼす虞がある。 The above-described X-ray Talbot interferometer has sensitivity to the X-ray phase change in the periodic direction of the first diffraction grating. If a filter for removing or reducing unevenness is applied to the phase contrast image without considering the sensitivity direction, the phase information may be affected.
 本発明は、上述した事情に鑑みなされたものであり、位相情報に及ぼす影響を抑制しつつ、ムラが除去ないし低減された位相コントラスト画像を取得することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to obtain a phase contrast image in which unevenness is removed or reduced while suppressing the influence on phase information.
 (1) 第1の格子と、前記第1の格子を通過し、かつ被写体を透過して変調を受けた放射線によって形成される放射線像をマスキングする第2の格子と、前記第2の格子によってマスキングされた前記放射線像を検出する放射線画像検出器と、前記放射線画像検出器によって取得された放射線画像に基づいて、前記被写体の微分位相画像を生成する演算処理部と、を備え、前記第1の格子及び前記第2の格子は、前記第1の格子の周期方向と交差する方向に周期を有するモアレ縞を前記放射線像に生じさせる相対位置関係に配置されており、前記演算処理部は、前記モアレ縞の周期方向の画像コントラスト変化に作用するフィルタを用いて前記微分位相画像のムラを除去又は低減するフィルタリング処理を行う放射線撮影システム。
 (2) 第1の格子を通過し、かつ被写体を透過して変調を受けた放射線によって形成され、第2の格子によってマスキングされた放射線像を検出して前記被写体の微分位相画像を生成する放射線撮影方法であって、前記第1の格子及び前記第2の格子の相対位置関係を調整し、前記第1の格子の周期方向と交差する方向に周期を有するモアレ縞を前記放射線像に生じさせ、前記モアレ縞の周期方向の画像コントラスト変化に作用するフィルタを用いて前記位相微分画像のムラを除去又は低減する放射線撮影方法。
(1) a first grating, a second grating that masks a radiation image that is formed by the radiation that has passed through the first grating and that has been transmitted through the subject and is modulated, and the second grating. A radiation image detector that detects the masked radiation image; and an arithmetic processing unit that generates a differential phase image of the subject based on the radiation image acquired by the radiation image detector. The second grating and the second grating are arranged in a relative positional relationship in which a moire fringe having a period in a direction intersecting with a period direction of the first grating is generated in the radiation image, and the arithmetic processing unit includes: A radiation imaging system that performs a filtering process for removing or reducing unevenness of the differential phase image using a filter that affects a change in image contrast in the periodic direction of the moire fringes.
(2) Radiation that generates a differential phase image of the subject by detecting a radiation image that has passed through the first grating and that has been modulated by passing through the subject and is masked by the second grating. An imaging method, wherein the relative positional relationship between the first grating and the second grating is adjusted, and moire fringes having a period in a direction intersecting with a period direction of the first grating are generated in the radiation image. A radiation imaging method for removing or reducing unevenness of the phase differential image using a filter that acts on a change in image contrast in the period direction of the moire fringes.
 本発明によれば、モアレ縞の周期方向を第1の格子の周期方向と交差する方向に設定しており、モアレ縞に起因して微分位相画像に表れるムラもまた、第1の格子の周期方向と交差する方向に生じることとなる。そして、モアレ縞の周期方向、つまりは、第1の格子の周期方向と交差する方向の画像コントラスト変化に作用するフィルタを用いることによって、位相情報に影響を及ぼすことなくムラを除去ないし低減することができる。 According to the present invention, the periodic direction of the moire fringes is set in a direction intersecting with the periodic direction of the first grating, and unevenness appearing in the differential phase image due to the moire fringes is also the period of the first grating. It occurs in a direction that intersects the direction. Then, by using a filter that affects the image contrast change in the periodic direction of the moire fringes, that is, the direction intersecting the periodic direction of the first grating, unevenness is removed or reduced without affecting the phase information. Can do.
本発明の実施形態を説明するための放射線撮影システムの一例の構成を示す模式図である。It is a schematic diagram which shows the structure of an example of the radiography system for describing embodiment of this invention. 図1の放射線撮影システムの制御ブロック図である。It is a control block diagram of the radiography system of FIG. 図1の放射線撮影システムの放射線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of the radiographic image detector of the radiography system of FIG. 図1の放射線撮影システムの撮影部の斜視図である。It is a perspective view of the imaging part of the radiography system of FIG. 図1の放射線撮影システムの撮影部の側面図である。It is a side view of the imaging part of the radiography system of FIG. 第1及び第2の格子の重ね合わせによるモアレ縞の周期を変更するための機構を示す模式図である。It is a schematic diagram which shows the mechanism for changing the period of the moire fringe by superimposition of the 1st and 2nd grating | lattice. 被写体による放射線の屈折を説明するための模式図である。It is a schematic diagram for demonstrating the refraction | bending of the radiation by a to-be-photographed object. 縞走査法を説明するための模式図である。It is a schematic diagram for demonstrating the fringe scanning method. 縞走査に伴う放射線画像検出器の画素の信号値の変化を示すグラフである。It is a graph which shows the change of the signal value of the pixel of the radiographic image detector accompanying a fringe scanning. モアレ縞、及びこのモアレ縞によって微分位相画像に表れるムラの一例を示す。An example of the nonuniformity which appears in a differential phase image by a moire fringe and this moire fringe is shown. 微分位相画像の空間周波数スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the spatial frequency spectrum of a differential phase image. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 図12の放射線撮影システムの変形例の構成を示す模式図である。It is a schematic diagram which shows the structure of the modification of the radiography system of FIG. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention. 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。It is a schematic diagram which shows the structure of the other example of the radiography system for describing embodiment of this invention.
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。 FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention, and FIG. 2 shows a control block of the radiation imaging system of FIG.
 X線撮影システム10は、被写体(患者)Hを立位状態で撮影するX線診断装置であって、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。 The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11. An imaging unit 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator. At the same time, it is roughly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the photographing unit 12.
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。 The X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling. The photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
 X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。 Based on the control of the X-ray source control unit 17, the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18. The X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H. The X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。 The X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of. A motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。 The standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction. The holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c. The driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
 また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。 Further, the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. . The detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like. The X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。 The console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like. The control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。 As the input device 21, for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used. By operating the input device 21, X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered. The monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
 撮影部12には、半導体回路からなるフラットパネル検出器(FPD)30、被写体HによるX線の位相変化(角度変化)を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32が設けられている。 The imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging. The absorption type grating 32 is provided.
 FPD30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。詳しくは後述するが、第1及び第2の吸収型格子31,32は、FPD30とX線源11との間に配置されている。 The FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11. Although described in detail later, the first and second absorption gratings 31 and 32 are disposed between the FPD 30 and the X-ray source 11.
 また、撮影部12には、第2の吸収型格子32を上下方向(x方向)に並進移動させることにより、第1の吸収型格子31に対する第2の吸収型格子32の相対位置関係を変化させる走査機構33が設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。 The imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction). A scanning mechanism 33 is provided. The scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
 図3は、図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す。 FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
 放射線画像検出器としてのFPD30は、X線を電荷に変換して蓄積する複数の画素40がアクティブマトリクス基板上にxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。 The FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41. A scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13. And a data transmission circuit 44 for transmission to the unit 22. The scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
 各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型のX線検出素子として構成することができる。各画素40には、薄膜トランジスタ(TFT:Thin Film Transistor)スイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。 Each pixel 40 is a direct conversion type in which X-rays are directly converted into electric charges by a conversion layer (not shown) such as amorphous selenium and the converted electric charges are stored in a capacitor (not shown) connected to the lower electrode. It can be configured as an X-ray detection element. Each pixel 40 is connected to a thin film transistor (TFT) switch (not shown), and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
 なお、各画素40は、テルビウム賦活酸化ガドリニウム(Gd2S:Tb)やタリウム賦活ヨウ化セシウム(CsI:Tl)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。 Each pixel 40 once converts X-rays into visible light by a scintillator (not shown) made of terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like. It is also possible to configure as an indirect conversion type X-ray detection element that converts the converted visible light into a charge by a photodiode (not shown) and accumulates it. The X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
 読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリにより構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、FPD30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。 The readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory. The integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter. The A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit. The correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory. As correction processing by the correction circuit, correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
 図4及び図5は、図1の放射線撮影システムの撮影部を示す。 4 and 5 show an imaging unit of the radiation imaging system of FIG.
 第1の吸収型格子31は、基板31aと、この基板31aに配置された複数のX線遮蔽部31bとから構成されている。同様に、第2の吸収型格子32は、基板32aと、この基板32aに配置された複数のX線遮蔽部32bとから構成されている。基板31a,32aは、いずれもX線を透過させるガラス等のX線透過性部材により形成されている。 The first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a. Similarly, the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a. The substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
 X線遮蔽部31b,32bは、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、x方向及びz方向に直交するy方向)に延伸した線状の部材で構成される。各X線遮蔽部31b,32bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31b,32bは、金属メッキ法や蒸着法によって形成することが可能である。 Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended | stretched. As a material of each X-ray shielding part 31b, 32b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
 X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。同様に、X線遮蔽部32bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。このような第1及び第2の吸収型格子31,32は、入射X線に位相差を与えるものでなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d,dの領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。 X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, at a predetermined period p 1 in a direction (x-direction) orthogonal to the one direction, are arranged at a predetermined interval d 1 from each other ing. Similarly, X-ray shielding portion 32b, in the plane orthogonal to the optical axis A of the X-ray, at a predetermined period p 2 in a direction (x-direction) orthogonal to the one direction, at a predetermined interval d 2 from each other Are arranged. Since the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings. Note that the slit portions (regions having the distances d 1 and d 2 ) may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
 第1及び第2の吸収型格子31,32は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔d,dを、X線源11から照射されるX線のピーク波長より十分大きな値とすることで、照射X線に含まれる大部分のX線をスリット部で回折させずに、直進性を保ったまま通過するように構成する。例えば、前述の回転陽極18aとしてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は、約0.4Åである。この場合には、間隔d,dを、1~10μm程度とすれば、スリット部で大部分のX線が回折されずに幾何学的に投影される。 The first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays are slit at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 μm, most of the X-rays are geometrically projected without being diffracted at the slit portion.
 X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、第1の吸収型格子31を通過して射影される投影像(以下、この投影像をG1像と称する)は、X線焦点18bからの距離に比例して拡大される。第2の吸収型格子32の格子ピッチpは、そのスリット部が、第2の吸収型格子32の位置におけるG1像の明部の周期パターンとほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL、第1の吸収型格子31から第2の吸収型格子32までの距離をLとした場合に、格子ピッチpは、次式(1)の関係を満たすように決定される。 The X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image). The projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b. The grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32. That is, when the distance from the X-ray focal point 18b to the first absorption grating 31 is L 1 and the distance from the first absorption grating 31 to the second absorption grating 32 is L 2 , the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1の吸収型格子31から第2の吸収型格子32までの距離Lは、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31のG1像が、第1の吸収型格子31の後方のすべての位置で相似的に得られるため、該距離Lを、タルボ干渉距離と無関係に設定することができる。 In the Talbot interferometer, the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength. The imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
 上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチp、X線波長(ピーク波長)λ、及び正の整数mを用いて、次式(2)で表される。 As described above, the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating. the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (peak wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(3)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」により知られている。 Formula (3) is a formula that represents the Talbot interference distance when the X-rays emitted from the X-ray source 11 are cone beams. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”.
 本X線撮影システム10では、上記距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定することで、撮影部12の薄型化を図っている。すなわち、上記距離Lは、次式(3)を満たす範囲の値に設定される。 In the present X-ray imaging system 10, the imaging unit 12 is thinned by setting the distance L 2 to a value shorter than the minimum Talbot interference distance Z when m = 1. That is, the distance L 2 is set to a value in the range satisfying the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合のタルボ干渉距離Zは次式(4)となり、上記距離Lを、次式(5)を満たす範囲の値に設定する。 Incidentally, Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ただし、必ずしも上記距離Lは、式(3)ないし式(5)を満たす必要はなく、例えば撮影部12の薄型化の要請がない場合などには、式(3)ないし式(5)から外れる範囲の値も採り得る。 However, not always the distance L 2 need not satisfy equation (3) through (5), for example, when there is no demand for thinning of the imaging unit 12, from the equation (3) to (5) Values outside the range can also be taken.
 X線遮蔽部31b,32bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31b,32bのそれぞれの厚みh,hを、可能な限り厚くすることが好ましい。例えば、X線管18の管電圧が50kVの場合に、照射X線の90%以上を遮蔽することが好ましく、この場合には、厚みh,hは、金(Au)換算で30μm以上であることが好ましい。 The X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 μm or more in terms of gold (Au). It is preferable that
 しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部31b,32bの厚みh,hを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31b,32bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh,hの上限を規定する。FPD30の検出面におけるx方向の有効視野の長さVを確保するには、X線焦点18bからFPD30の検出面までの距離をLとすると、厚みh,hは、図5に示す幾何学的関係から、次式(6)及び(7)を満たすように設定する必要がある。 However, when the X-rays irradiated from the X-ray source 11 are cone beams, if the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are too thick, the X-rays incident obliquely enter the slit portion. There is a problem that it becomes difficult to pass, so-called vignetting occurs, and the effective visual field in the direction (x direction) perpendicular to the extending direction (strand direction) of the X-ray shielding portions 31b and 32b becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2. In order to secure the effective field length V in the x direction on the detection surface of the FPD 30, assuming that the distance from the X-ray focal point 18 b to the detection surface of the FPD 30 is L, the thicknesses h 1 and h 2 are shown in FIG. From the scientific relationship, it is necessary to set so as to satisfy the following expressions (6) and (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 例えば、d=2.5μm、d=3.0μmであり、通常の病院での撮影を想定して、L=2mとした場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下、厚みhは120μm以下とすればよい。 For example, when d 1 = 2.5 μm and d 2 = 3.0 μm, and assuming L = 2 m assuming normal hospital imaging, the effective visual field length V in the x direction is 10 cm. In order to ensure the length, the thickness h 1 may be 100 μm or less and the thickness h 2 may be 120 μm or less.
 以上のように構成された撮影部12では、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより、強度変調された像が形成され、FPD30によって撮像される。第2の吸収型格子32の位置におけるG1像のパターン周期p’と、第2の吸収型格子32の実質的な格子ピッチp’(製造後の実質的なピッチ)とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。 In the imaging unit 12 configured as described above, an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30. . The pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
 G1像のパターン周期p’と格子ピッチp’との微小な差異により、画像コントラストはモアレ縞となる。このモアレ縞の周期Tは、次式(8)で表される。 Due to the minute difference between the pattern period p 1 ′ of the G1 image and the grating pitch p 2 ′, the image contrast becomes moire fringes. The period T of the moire fringes is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このモアレ縞をFPD30で検出するため、画素40のx方向に関する配列ピッチPは、少なくともモアレ周期Tの整数倍でないことが必要であり、次式(9)を満たす必要がある(ここで、nは正の整数である)。 In order to detect the moire fringes by the FPD 30, the arrangement pitch P in the x direction of the pixels 40 needs to be at least not an integral multiple of the moire period T, and it is necessary to satisfy the following equation (9) (where n Is a positive integer).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、式(9)を満たす範囲において、配列ピッチPがモアレ周期Tより大きくてもモアレ縞を検出することは可能であるが、配列ピッチPはモアレ周期Tより小さいことが好ましく、次式(10)を満たすことが好ましい。これは、良質な位相コントラスト画像を得るためには、後述する位相コントラスト画像の生成過程において、モアレ縞が高いコントラストで検出されていることが好ましいためである。 In addition, it is possible to detect moire fringes even if the arrangement pitch P is larger than the moire period T within a range satisfying the expression (9), but the arrangement pitch P is preferably smaller than the moire period T. 10) is preferably satisfied. This is because, in order to obtain a high-quality phase contrast image, moire fringes are preferably detected with high contrast in the phase contrast image generation process described later.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 FPD30の画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、配列ピッチPとモアレ周期Tとの大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、G1像のパターン周期p’と格子ピッチp’との少なくともいずれか一方を変更することによりモアレ周期Tを変更することが好ましい。 Since the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 μm) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
 図6に、モアレ周期Tを変更する方法を示す。 FIG. 6 shows a method of changing the moire cycle T.
 モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、x方向に関する実質的な格子ピッチは、「p’」→「p’/cosθ」と変化し、この結果、モアレ周期Tが変化する(FIG.6A)。 The moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A. For example, a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided. When the second absorption type grating 32 is rotated by the angle θ by the relative rotation mechanism 50, the substantial grating pitch in the x direction changes from “p 2 ′” → “p 2 ′ / cos θ”. As a result, the moire cycle T changes (FIG. 6A).
 別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、x方向に関する実質的な格子ピッチは、「p’」→「p’×cosα」と変化し、この結果、モアレ周期Tが変化する(FIG.6B)。 As another example, the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining. For example, a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided. Provide. When the second absorption type grating 32 is inclined by the angle α by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” → “p 2 ′ × cos α”. As a result, the moire cycle T changes (FIG. 6B).
 更に別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離Lを変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31のG1像のパターン周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化し、この結果、モアレ周期Tが変化する(FIG.6C)。 As another example, the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A. For example, with respect to the first absorption type grating 31, the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32. A relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided. When the second absorption type grating 32 is moved to the optical axis A by the movement amount δ by the relative movement mechanism 52, the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32. The pattern period of “p 1 ′” → “p 1 ′ × (L 1 + L 2 + δ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
 本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更によりモアレ周期Tを変更する機構を、好適に採用することができる。モアレ周期Tを変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。 In the X-ray imaging system 10, imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed. The change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
 X線源11と第1の吸収型格子31との間に被写体Hを配置した場合には、FPD30により検出されるモアレ縞は、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、FPD30で検出されたモアレ縞を解析することによって、被写体Hの位相コントラスト画像を生成することができる。 When the subject H is disposed between the X-ray source 11 and the first absorption type grating 31, the moire fringes detected by the FPD 30 are modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
 次に、モアレ縞の解析方法について説明する。 Next, a method for analyzing moire fringes will be described.
 図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。 FIG. 7 shows one X-ray refracted according to the phase shift distribution Φ (x) of the subject H in the x direction.
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してFPD30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。 Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do. Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(11)で表される。 The phase shift distribution Φ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 第1の吸収型格子31から第2の吸収型格子32の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(12)で表される。 The G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. become. This amount of displacement Δx is approximately expressed by the following equation (12) based on the small X-ray refraction angle φ.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(13)で表される。 Here, the refraction angle φ is expressed by Expression (13) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD30から出力される画像データの各画素の信号、つまりは各画素40の信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの各画素40の信号の位相のズレ量)に、次式(14)のように関連している。 Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x) of the subject H. This displacement amount Δx is the signal of each pixel of the image data output from the FPD 30, that is, the phase shift amount ψ of the signal of each pixel 40 (the signal of each pixel 40 with and without the subject H) (Phase shift amount) is related to the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(14)から屈折角φが求まり、式(13)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム10では、上記位相ズレ量ψを、以下に説明する縞走査法を用いて算出する。 Therefore, by obtaining the phase shift amount ψ of the signal of each pixel 40, the refraction angle φ is obtained from the equation (14), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (13). Is integrated with respect to x, a phase shift distribution Φ (x) of the subject H, that is, a phase contrast image of the subject H can be generated. In the present X-ray imaging system 10, the phase shift amount ψ is calculated using a fringe scanning method described below.
 縞走査法では、第1及び第2の吸収型格子31,32の一方を他方に対して相対的にx方向にステップ的に並進移動させながら撮影を行う(すなわち、両者の格子周期の位相を変化させながら撮影を行う)。本X線撮影システム10では、前述の走査機構33により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。 In the fringe scanning method, imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner in the x direction relative to the other (that is, the phase of both grating periods is changed). Shoot while changing). In the X-ray imaging system 10, the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved.
 第2の吸収型格子32の移動に伴って、モアレ縞が移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、モアレ縞は元の位置に戻る。格子ピッチpの整数分の1ずつ第2の吸収型格子32を移動させながらFPD30で縞画像を撮影し、撮影した複数の縞画像から各画素40の信号を取得し、演算処理部22で演算処理することにより、各画素40の信号の位相ズレ量ψを得る。 As the second absorption type grating 32 moves, the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2π), the moire fringes return to their original positions. A fringe image is photographed by the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2 , and signals of each pixel 40 are acquired from the photographed plural fringe images. By performing arithmetic processing, the phase shift amount ψ of the signal of each pixel 40 is obtained.
 図8は、格子ピッチpをM(2以上の整数)個に分割した走査ピッチ(p/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。 FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
 走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置でのG1像の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。 The scanning mechanism 33 translates the second absorption type grating 32 in order to M scanning positions of k = 0, 1, 2,..., M−1. In the same figure, the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present. The initial position is k = 0, 1, 2,..., M−1.
 まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。 First, at the position of k = 0, X-rays that are not refracted by the subject H mainly pass through the second absorption type grating 32. Next, when the second absorption grating 32 is moved in order of k = 1, 2,..., The X-rays passing through the second absorption grating 32 are not refracted by the subject H. While the line component decreases, the X-ray component refracted by the subject H increases. In particular, at k = M / 2, mainly only the X-rays refracted by the subject H pass through the second absorption type grating 32. When k = M / 2 is exceeded, on the contrary, the X-ray component that is refracted by the subject H decreases in the X-rays that pass through the second absorption grating 32, while the X-ray that is not refracted by the subject H. The line component increases.
 k=0,1,2,・・・,M-1の各位置で、FPD30により撮影を行うと、各画素40について、M個の信号値が得られる。以下に、このM個の信号値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。第2の吸収型格子32の位置kにおける各画素40の信号値をI(x)と標記すると、I(x)は、次式(15)で表される。 When shooting is performed by the FPD 30 at each position of k = 0, 1, 2,..., M−1, M signal values are obtained for each pixel 40. Hereinafter, a method of calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values will be described. When the signal value of each pixel 40 at the position k of the second absorption type grating 32 is denoted as I k (x), I k (x) is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 ここで、xは、画素40のx方向に関する座標であり、Aは入射X線の強度であり、Aは画素40の信号値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。 Here, x is a coordinate in the x direction of the pixel 40, A 0 is the intensity of the incident X-ray, and An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer). Φ (x) represents the refraction angle φ as a function of the coordinate x of the pixel 40.
 次いで、次式(16)の関係式を用いると、上記屈折角φ(x)は、次式(17)のように表される。 Next, using the relational expression of the following expression (16), the refraction angle φ (x) is expressed as the following expression (17).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、各画素40で得られたM個の信号値から、式(17)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。 Here, arg [] means the extraction of the declination, and corresponds to the phase shift amount ψ of the signal of each pixel 40. Accordingly, the refraction angle φ (x) is obtained by calculating the phase shift amount ψ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
 図9は、縞走査に伴う画素40の信号値の変化を示す。 FIG. 9 shows a change in the signal value of the pixel 40 due to the fringe scanning.
 各画素40で得られたM個の信号値は、第2の吸収型格子32の位置kに対して、格子ピッチpの周期で周期的に変化する。図9中の破線は、被写体Hが存在しない場合の信号値の変化を示しており、図9中の実線は、被写体Hが存在する場合の信号値の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。 The M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32. A broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists. The phase difference between the two waveforms corresponds to the phase shift amount ψ of the signal of each pixel 40.
 各画素40の信号の位相ズレ量ψから、式(17)に基づいて屈折角φ(x)が求められ、そして、屈折角φ(x)は、式(13)で示したように位相シフト分布Φ(x)の微分量に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。 The refraction angle φ (x) is obtained from the phase shift amount ψ of the signal of each pixel 40 based on the equation (17), and the refraction angle φ (x) is a phase shift as shown in the equation (13). Since the value corresponds to the differential amount of the distribution Φ (x), the phase shift distribution Φ (x) can be obtained by integrating the refraction angle φ (x) along the x-axis. In the above description, the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution Φ (x , Y).
 なお、位相シフト分布Φ(x,y)を位相コントラスト画像とするものとして説明したが、位相シフト分布Φの微分量や、これに対応する値である屈折角φもまた被写体によるX線の位相変化に関連している。よって、位相シフト分布Φの微分量や屈折角φの2次元的な分布を位相コントラスト画像としてもよい。以下、位相シフト分布Φの微分量や屈折角φの2次元的な分布を画像としたものを微分位相画像と称する。 The phase shift distribution Φ (x, y) has been described as a phase contrast image. However, the differential amount of the phase shift distribution Φ and the refraction angle φ corresponding to the phase shift distribution Φ are also the X-ray phase of the subject. Related to change. Therefore, the differential amount of the phase shift distribution Φ and the two-dimensional distribution of the refraction angle φ may be used as the phase contrast image. Hereinafter, an image obtained by using a differential amount of the phase shift distribution Φ and a two-dimensional distribution of the refraction angle φ as an image is referred to as a differential phase image.
 図10は、モアレ縞、及びこのモアレ縞によって微分位相画像に表れるムラの一例を示す。 FIG. 10 shows an example of moire fringes and unevenness appearing in the differential phase image due to the moire fringes.
 微分位相画像には、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより生じるモアレ縞の影響によってムラが生じる場合がある。このムラの勾配は、モアレ縞の周期方向とほぼ一致する。 In the differential phase image, unevenness may occur due to the influence of moire fringes generated by the superposition of the G1 image of the first absorption type grating 31 and the second absorption type grating 32. The uneven gradient almost coincides with the periodic direction of the moire fringes.
 本X線撮影システム10は、X線の位相変化に対する感度を第1の吸収型格子31の周期方向(x方向)に有しており、モアレ縞の周期方向がx方向と交差するように、第1及び第2の吸収型格子の相対位置関係が調整されている。モアレ縞の周期方向をx方向と交差する方向に設定することによって、微分位相画像に表れるムラの勾配もまた、x方向と交差する方向に生じる。 The present X-ray imaging system 10 has sensitivity to the phase change of X-rays in the periodic direction (x direction) of the first absorption type grating 31 so that the periodic direction of moire fringes intersects the x direction. The relative positional relationship between the first and second absorption type gratings is adjusted. By setting the periodic direction of the moire fringes in a direction that intersects the x direction, a gradient of unevenness that appears in the differential phase image also occurs in the direction that intersects the x direction.
 図示の例においては、モアレ縞の周期方向がx方向と略直交する略y方向に設定され(FIG.10A)、ムラの勾配もまた略y方向に生じている(FIG.10B)。モアレ縞の周期方向は、例えば、上述した相対回転機構50(図6参照)を用いて、第2の吸収型格子32を、光軸Aを中心として第1の吸収型格子31に対して回転させることによって適宜変更することができる。 In the example shown in the figure, the periodic direction of the moire fringes is set to a substantially y direction that is substantially orthogonal to the x direction (FIG. 10A), and a nonuniformity gradient also occurs in the substantially y direction (FIG. 10B). The periodic direction of the moire fringe is rotated with respect to the first absorption type grating 31 around the optical axis A by using, for example, the relative rotation mechanism 50 (see FIG. 6) described above. Can be changed as appropriate.
 図11は、図10の微分位相画像の空間周波数スペクトルを示す。 FIG. 11 shows a spatial frequency spectrum of the differential phase image of FIG.
 本X線撮影システム10では、微分位相画像に表れるムラを、周波数フィルタを用いて除去又は低減する。まず、微分位相画像に対してフーリエ変換を行うことにより、その空間周波数スペクトルを取得する。微分位相画像の空間周波数スペクトルには、位相情報(被写体Hの位相シフト分布)に由来する周波数成分60と、ムラに由来する周波数成分61とが含まれる。上述の通り、ムラの勾配を、x方向と交差する方向に生じさせることにより、周波数空間において、位相情報の周波数成分60とムラの周波数成分61とを分離することができる。 In the present X-ray imaging system 10, unevenness appearing in the differential phase image is removed or reduced using a frequency filter. First, the spatial frequency spectrum is acquired by performing Fourier transform on the differential phase image. The spatial frequency spectrum of the differential phase image includes a frequency component 60 derived from phase information (phase shift distribution of the subject H) and a frequency component 61 derived from unevenness. As described above, by generating a nonuniformity gradient in a direction crossing the x direction, the frequency component 60 of the phase information and the nonuniformity frequency component 61 can be separated in the frequency space.
 微分位相画像の空間周波数スペクトルに対して、分離されたムラの周波数成分61をマスクする周波数フィルタFを適用し、ムラの周波数成分61を除去又は低減する。そのような周波数フィルタは、モアレ縞の周期方向の画像コントラスト変化にも作用するが、位相情報の周波数成分60とムラの周波数成分61とが分離されているので、上記の周波数フィルタが位相情報の周波数成分60に与える影響は抑制される。 The frequency filter F that masks the separated uneven frequency component 61 is applied to the spatial frequency spectrum of the differential phase image to remove or reduce the uneven frequency component 61. Such a frequency filter also acts on a change in image contrast in the periodic direction of moire fringes, but since the frequency component 60 of phase information and the frequency component 61 of unevenness are separated, the frequency filter described above is The influence on the frequency component 60 is suppressed.
 図示の例においては、モアレ縞の周期方向がx方向と略直交する略y方向に設定され、ムラの勾配もまた略y方向に生じており、周波数空間においては、y方向の周期的変化に対応するv軸上ないしv軸の近傍にムラの周波数成分61が位置する。一方で、X線の位相変化に対する感度をy方向には有していないため、位相情報の周波数成分60はv軸から外れて位置する。このように、モアレ縞の周期方向を位相感度方向と直交する方向に設定しておくことによって、位相情報の周波数成分60とムラの周波数成分61とを確実に分離することができ、位相情報の周波数成分60に影響を与えることなくムラの周波数成分61を除去又は低減することができる。 In the illustrated example, the periodic direction of the moire fringes is set to a substantially y direction that is substantially orthogonal to the x direction, and the uneven gradient is also generated in the substantially y direction. In the frequency space, the periodic change in the y direction occurs. The uneven frequency component 61 is located on or near the corresponding v-axis. On the other hand, since it does not have sensitivity to the X-ray phase change in the y direction, the frequency component 60 of the phase information is located off the v-axis. Thus, by setting the periodic direction of the moire fringes in a direction orthogonal to the phase sensitivity direction, the frequency component 60 of the phase information and the frequency component 61 of the unevenness can be reliably separated, and the phase information The uneven frequency component 61 can be removed or reduced without affecting the frequency component 60.
 そして、ムラの周波数成分60が除去又は低減された空間周波数スペクトルに対して逆フーリエ変換を行い、微分位相画像に復元する。それにより、ムラが除去又は低減された微分位相画像が得られる。 Then, an inverse Fourier transform is performed on the spatial frequency spectrum from which the uneven frequency component 60 has been removed or reduced to restore the differential phase image. Thereby, a differential phase image from which unevenness is removed or reduced is obtained.
 以上の演算は、演算処理部22により行われ、演算処理部22は、ムラが除去又は低減された位相コントラスト画像を記憶部23に記憶させる。上記の縞走査、及び位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作し、自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。 The above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 causes the storage unit 23 to store the phase contrast image from which unevenness has been removed or reduced. The above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20. The phase contrast image of the subject H is displayed on the monitor 24.
 以上、説明したように、モアレ縞の周期方向を第1の吸収型格子31の周期方向と交差する方向に設定しており、モアレ縞に起因して微分位相画像に表れるムラもまた、第1の吸収型格子31の周期方向と交差する方向に生じることとなる。そして、モアレ縞の周期方向、つまりは、第1の吸収型格子31の周期方向と交差する方向の画像コントラスト変化に作用するフィルタを用いることによって、位相情報に影響を及ぼすことなくムラを除去ないし低減することができる。 As described above, the periodic direction of the moire fringes is set in a direction intersecting with the periodic direction of the first absorption type grating 31, and unevenness appearing in the differential phase image due to the moire fringes is also the first. This occurs in a direction crossing the periodic direction of the absorption type grating 31. Then, by using a filter that affects the image contrast change in the periodic direction of the moire fringes, that is, in the direction intersecting with the periodic direction of the first absorption type grating 31, unevenness can be removed without affecting the phase information. Can be reduced.
 また、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、第1の吸収型格子31からの投影像(G1像)には、照射X線のほぼすべての波長成分が寄与し、モアレ縞のコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。 Further, since most of the X-rays are not diffracted by the first absorption type grating 31 and geometrically projected onto the second absorption type grating 32, high spatial coherence is required for the irradiated X-rays. Instead, a general X-ray source used in the medical field can be used as the X-ray source 11. The distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned). Furthermore, in this X-ray imaging system, almost all wavelength components of irradiated X-rays contribute to the projection image (G1 image) from the first absorption type grating 31 and the contrast of moire fringes is improved. Contrast image detection sensitivity can be improved.
 なお、上述したX線撮影システム10では、周波数空間において、微分位相画像の空間周波数スペクトルに対して周波数フィルタを適用し、微分位相画像に表れるムラを除去又は低減するものとして説明したが、この周波数フィルタに対応するコンボリューションフィルタを用いて、実空間において、微分位相画像に表れるムラを除去又は低減するようにしてもよい。 In the X-ray imaging system 10 described above, the frequency filter is applied to the spatial frequency spectrum of the differential phase image in the frequency space to eliminate or reduce unevenness appearing in the differential phase image. You may make it remove or reduce the nonuniformity which appears in a differential phase image in real space using the convolution filter corresponding to a filter.
 また、上述したX線撮影システム10は、第1の格子の投影像に対して縞走査を行って屈折角φを演算するものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して縞走査を行って屈折角φを演算する場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。 The X-ray imaging system 10 described above calculates the refraction angle φ by performing fringe scanning on the projection image of the first grating, and therefore the first and second gratings absorb both. Although described as a mold lattice, the present invention is not limited to this. As described above, the present invention is also useful when the refraction angle φ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
 また、被写体がない状態で撮影(プレ撮影)して取得される放射線画像から微分位相画像を作成するようにしてもよい。この微分位相画像は、検出系の位相ムラを反映している(モアレによる位相ズレ、グリッドの不均一性、等が含まれている)。そして、被写体がある状態で撮影(メイン撮影)して取得される放射線画像から微分位相画像を作成し、これからプレ撮影で得られた微分位相画像を引くことで、検出系の位相ムラを補正した微分位相画像を得ることが出来る。 Also, a differential phase image may be created from a radiographic image acquired by imaging (pre-imaging) in the absence of a subject. This differential phase image reflects the phase unevenness of the detection system (including phase shift due to moire, grid nonuniformity, etc.). Then, a differential phase image is created from a radiographic image acquired by imaging (main imaging) in the presence of a subject, and the differential phase image obtained by pre-imaging is subtracted from this, thereby correcting the phase unevenness of the detection system. A differential phase image can be obtained.
 図12は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 12 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 図12に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。 A mammography apparatus 80 shown in FIG. 12 is an apparatus that captures an X-ray image (phase contrast image) of the breast B as a subject. The mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81. An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。 The X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12. The X-ray source 11 and the imaging unit 12 are arranged to face each other. The compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、前述したX線撮影システム10と同様であるため説明は省略する。 Since the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 図13は、図12の放射線撮影システムの変形例を示す。 FIG. 13 shows a modification of the radiation imaging system of FIG.
 図13に示すマンモグラフィ装置90は、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。第1の吸収型格子31は、アーム部材81に接続された格子収納部91に収納されている。撮影部92は、FPD30、第2の吸収型格子32、走査機構33により構成されている。 A mammography apparatus 90 shown in FIG. 13 is different from the mammography apparatus 80 described above in that the first absorption grating 31 is disposed between the X-ray source 11 and the compression plate 84. The first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81. The imaging unit 92 includes an FPD 30, a second absorption type grating 32, and a scanning mechanism 33.
 このように、被検体(乳房)Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の投影像(G1像)が被検体Bにより変形する。したがって、この場合でも、被検体Bに起因して変調されたモアレ縞をFPD30により検出することができる。すなわち、本マンモグラフィ装置90でも前述した原理で被検体Bの位相コントラスト画像を得ることができる。 Thus, even when the subject (breast) B is located between the first absorption type grating 31 and the second absorption type grating 32, it is formed at the position of the second absorption type grating 32. The projection image (G1 image) of the first absorption type grating 31 is deformed by the subject B. Therefore, even in this case, the moiré fringes modulated due to the subject B can be detected by the FPD 30. That is, the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
 そして、本マンモグラフィ装置90では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置することは、前述したX線撮影システム10にも適用することが可能である。 In the present mammography apparatus 90, the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
 図14は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 14 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 X線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上記第1実施形態のX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。 The X-ray imaging system 100 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
 前述したX線撮影システム10では、X線源11からFPD30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。 In the X-ray imaging system 10 described above, when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b. The blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall. In the present X-ray imaging system 100, in order to solve this problem, the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
 マルチスリット103は、撮影部12に設けられた第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。 The multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction). The extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32. The multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
 このマルチスリット103の格子ピッチpは、マルチスリット103から第1の吸収型格子31までの距離をLとして、次式(18)を満たすように設定する必要がある。 The lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 式(18)は、マルチスリット103により分散形成された各小焦点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。 Expression (18) indicates that the projection image (G1 image) of the X-rays emitted from the small-focus light sources dispersedly formed by the multi-slit 103 by the first absorption-type grating 31 is the position of the second absorption-type grating 32. This is a geometric condition for matching (overlapping).
 また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の格子ピッチpは、次式(19)の関係を満たすように決定される。 In addition, since the position of the multi slit 103 is substantially the X-ray focal position, the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 このように、本X線撮影システムでは、マルチスリット103により形成される複数の小焦点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、前述したいずれのX線撮影システムにおいても適用可能である。 As described above, in the present X-ray imaging system, the G1 images based on the plurality of small focus light sources formed by the multi-slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity. Can be made. The multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
 図15は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。 FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
 上述のX線撮影システム10の第1及び第2の吸収型格子31,32は、X線遮蔽部31b,32bの周期配列方向が直線状(すなわち、格子面が平面状)となるように構成されているが、これに代えて、図15に示すように、格子面を曲面状に凹面化した第1及び第2の吸収型格子110,111を用いることもできる。この場合に、検出面が円筒面状のFPD112を用いることが好ましく、FPD112の検出面は、X線焦点18bを通りy方向に延びる直線を中心軸とする円筒面状とする。 The first and second absorption gratings 31 and 32 of the above-described X-ray imaging system 10 are configured such that the periodic arrangement direction of the X-ray shielding portions 31b and 32b is linear (that is, the grating surface is planar). However, instead of this, as shown in FIG. 15, first and second absorption type gratings 110 and 111 in which the grating surface is concaved into a curved surface may be used. In this case, it is preferable to use the FPD 112 having a cylindrical detection surface, and the detection surface of the FPD 112 is a cylindrical surface having a straight line passing through the X-ray focal point 18b and extending in the y direction as a central axis.
 第1の吸収型格子110は、X線透過性でかつ湾曲した基板110aの表面に、複数のX線遮蔽部110bが所定のピッチpで周期的に配列されている。各X線遮蔽部110bは、y方向に直線状に延伸しており、第1の吸収型格子110の格子面は、X線焦点18bを通りX線遮蔽部110bの延伸方向に延びる直線を中心軸とする円筒面に沿った形状となっている。同様に、第2の吸収型格子111は、X線透過性でかつ湾曲した基板111aの表面に、複数のX線遮蔽部111bが所定のピッチpで周期的に配列されている。各X線遮蔽部111bは、y方向に直線状に延伸しており、第2の吸収型格子111の格子面は、X線焦点18bを通りX線遮蔽部111bの延伸方向に延びる直線を中心軸とする円筒面に沿った形状となっている。 The first absorption grating 110, the X-ray permeable and curved surfaces of the substrate 110a, a plurality of X-ray shielding section 110b is periodically arranged at a predetermined pitch p 1. Each X-ray shielding part 110b extends linearly in the y direction, and the lattice plane of the first absorption grating 110 is centered on a straight line passing through the X-ray focal point 18b and extending in the extending direction of the X-ray shielding part 110b. It has a shape along a cylindrical surface as an axis. Similarly, the second absorption grating 111, the X-ray permeable and curved surfaces of the substrate 111a, a plurality of X-ray shielding section 111b is periodically arranged at a predetermined pitch p 2. Each X-ray shielding part 111b extends linearly in the y direction, and the lattice plane of the second absorption grating 111 is centered on a straight line passing through the X-ray focal point 18b and extending in the extending direction of the X-ray shielding part 111b. It has a shape along a cylindrical surface as an axis.
 X線焦点18bから第1の吸収型格子110までの距離をL、第1の吸収型格子110から第2の吸収型格子111までの距離をLとした場合に、第1の吸収型格子110の格子ピッチp及び第2の吸収型格子111の格子ピッチpは、式(1)の関係を満たすように決定される。 The distance from the X-ray focal point 18b to the first absorption grating 110 L 1, the distance from the first absorption grating 110 to the second absorption grating 111 when the L 2, the first absorption type the grating pitch p 2 of the grating pitch p 1 and the second absorption grating 111 of the grating 110 is determined to satisfy equation (1).
 第1及び第2の吸収型格子110,111の格子面を円筒面状とすることにより、X線焦点18bから照射されるX線は、被検体Hが存在しない場合、すべて格子面に垂直に入射することになるため、X線遮蔽部110bの厚みhとX線遮蔽部111bの厚みhとの上限の制約が緩和され、式(6)及び(7)を考慮する必要がなくなる。 By making the grating surfaces of the first and second absorption gratings 110 and 111 cylindrical, the X-rays irradiated from the X-ray focal point 18b are all perpendicular to the grating surface when the subject H is not present. since made incident, the upper limit of the limitation of the thickness h 2 of the thickness h 1 and the X-ray shielding portion 111b of the X-ray shielding section 110b is reduced, it is not necessary to consider the equation (6) and (7).
 上記の第1及び第2の吸収型格子110,111を用いたX線撮影システムでは、第1及び第2の吸収型格子110,111のいずれか一方を、X線焦点18bを中心として、格子面(円筒面)に沿った方向に移動させることにより上述の縞走査を行い、屈折角φを演算し、この屈折角φに基づいて位相シフト分布Φを得ることができる。 In the X-ray imaging system using the first and second absorption type gratings 110 and 111, one of the first and second absorption type gratings 110 and 111 is arranged with the X-ray focal point 18b as the center. The above-described fringe scanning is performed by moving in the direction along the surface (cylindrical surface), the refraction angle φ is calculated, and the phase shift distribution Φ can be obtained based on the refraction angle φ.
 前述の各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。 In each of the above-described X-ray imaging systems, the case where general X-rays are used as radiation has been described. However, the radiation used in the present invention is not limited to X-rays, but other than X-rays such as α-rays and γ-rays. It is also possible to use other radiation.
 以上、説明したように、本明細書には、下記(1)から(8)の放射線撮影システム、及び下記(9)の放射線撮影方法が開示されている。 As described above, the following (1) to (8) radiation imaging systems and the following (9) radiation imaging methods are disclosed in the present specification.
 (1) 第1の格子と、前記第1の格子を通過し、かつ被写体を透過して変調を受けた放射線によって形成される放射線像をマスキングする第2の格子と、前記第2の格子によってマスキングされた前記放射線像を検出する放射線画像検出器と、前記放射線画像検出器によって取得された放射線画像に基づいて、前記被写体の微分位相画像を生成する演算処理部と、を備え、前記第1の格子及び前記第2の格子は、前記第1の格子の周期方向と交差する方向に周期を有するモアレ縞を前記放射線像に生じさせる相対位置関係に配置されており、前記演算処理部は、前記モアレ縞の周期方向の画像コントラスト変化に作用するフィルタを用いて前記微分位相画像のムラを除去又は低減するフィルタリング処理を行う放射線撮影システム。
 (2) 上記(1)の放射線撮影システムであって、前記演算処理部は、周波数空間において前記フィルタリング処理を行う放射線撮影システム。
 (3) 上記(2)の放射線撮影システムであって、前記演算処理部は、フーリエ変換を用いて前記微分位相画像の空間周波数スペクトルを取得し、周波数フィルタを用いて前記空間周波数スペクトルから前記ムラに対応する周波数成分を除去又は低減する放射線撮影システム。
 (4) 上記(1)のの放射線撮影システムであって、前記演算処理部は、実空間において前記フィルタリング処理を行う放射線撮影システム。
 (5) 上記(4)の放射線撮影システムであって、前記演算処理部は、コンボリューションフィルタを用いて前記微分位相画像のムラを除去又は低減する放射線撮影システム。
 (6) 上記(1)から(5)のいずれか一つの放射線撮影システムであって、前記モアレ縞の周期方向は、前記第1の格子の周期方向と略直交している放射線撮影システム。
 (7) 上記(1)から(6)のいずれか一つの放射線撮影システムであって、前記第1の格子及び前記第2の格子は、互いに周期方向が90°未満の角度で交差するように配置されている放射線撮影システム。
 (8) 上記(7)の放射線撮影システムであって、前記第1の格子及び前記第2の格子は、両格子を通過する放射線の光軸まわりに相対回転可能である放射線撮影システム。
 (9) 第1の格子を通過し、かつ被写体を透過して変調を受けた放射線によって形成され、第2の格子によってマスキングされた放射線像を検出して前記被写体の微分位相画像を生成する放射線撮影方法であって、前記第1の格子及び前記第2の格子の相対位置関係を調整し、前記第1の格子の周期方向と交差する方向に周期を有するモアレ縞を前記放射線像に生じさせ、前記モアレ縞の周期方向の画像コントラスト変化に作用するフィルタを用いて前記位相微分画像のムラを除去又は低減する放射線撮影方法。
(1) a first grating, a second grating that masks a radiation image that is formed by the radiation that has passed through the first grating and that has been transmitted through the subject and is modulated, and the second grating. A radiation image detector that detects the masked radiation image; and an arithmetic processing unit that generates a differential phase image of the subject based on the radiation image acquired by the radiation image detector. The second grating and the second grating are arranged in a relative positional relationship in which a moire fringe having a period in a direction intersecting with a period direction of the first grating is generated in the radiation image, and the arithmetic processing unit includes: A radiation imaging system that performs a filtering process for removing or reducing unevenness of the differential phase image using a filter that affects a change in image contrast in the periodic direction of the moire fringes.
(2) The radiation imaging system according to (1), wherein the arithmetic processing unit performs the filtering process in a frequency space.
(3) In the radiographic system according to (2), the arithmetic processing unit acquires a spatial frequency spectrum of the differential phase image using Fourier transform, and uses the frequency filter to calculate the unevenness from the spatial frequency spectrum. The radiography system which removes or reduces the frequency component corresponding to.
(4) The radiation imaging system according to (1), wherein the arithmetic processing unit performs the filtering process in a real space.
(5) The radiation imaging system according to (4), wherein the arithmetic processing unit removes or reduces unevenness of the differential phase image using a convolution filter.
(6) The radiographic system according to any one of (1) to (5), wherein a periodic direction of the moire fringes is substantially orthogonal to a periodic direction of the first grating.
(7) The radiation imaging system according to any one of (1) to (6), wherein the first grating and the second grating intersect with each other at an angle of less than 90 ° in the periodic direction. The radiography system that is in place.
(8) The radiation imaging system according to (7), wherein the first grating and the second grating are relatively rotatable around an optical axis of radiation passing through both gratings.
(9) Radiation that generates a differential phase image of the subject by detecting a radiation image that has passed through the first grating and that has been modulated by passing through the subject and masked by the second grating. An imaging method, wherein the relative positional relationship between the first grating and the second grating is adjusted, and moire fringes having a period in a direction intersecting with a period direction of the first grating are generated in the radiation image. A radiation imaging method for removing or reducing unevenness of the phase differential image using a filter that acts on a change in image contrast in the period direction of the moire fringes.
 本発明によれば、モアレ縞の周期方向を第1の格子の周期方向と交差する方向に設定しており、モアレ縞に起因して微分位相画像に表れるムラもまた、第1の格子の周期方向と交差する方向に生じることとなる。そして、モアレ縞の周期方向、つまりは、第1の格子の周期方向と交差する方向の画像コントラスト変化に作用するフィルタを用いることによって、位相情報に影響を及ぼすことなくムラを除去ないし低減することができる。 According to the present invention, the periodic direction of the moire fringes is set in a direction intersecting with the periodic direction of the first grating, and unevenness appearing in the differential phase image due to the moire fringes is also the period of the first grating. It occurs in a direction that intersects the direction. Then, by using a filter that affects the image contrast change in the periodic direction of the moire fringes, that is, the direction intersecting the periodic direction of the first grating, unevenness is removed or reduced without affecting the phase information. Can do.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年03月29日出願の日本特許出願(特願2011-072409)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Mar. 29, 2011 (Japanese Patent Application No. 2011-072409), the contents of which are incorporated herein by reference.
10   X線撮影システム
11   X線源
12   撮影部
13   コンソール
30   FPD
31   第1の吸収型格子
32   第2の吸収型格子
33   走査機構
40   画素
41   受像部
43   読み出し回路
10 X-ray imaging system 11 X-ray source 12 Imaging unit 13 Console 30 FPD
31 First Absorption Type Grating 32 Second Absorption Type Grating 33 Scanning Mechanism 40 Pixel 41 Image Receiver 43 Reading Circuit

Claims (9)

  1.  第1の格子と、
     前記第1の格子を通過し、かつ被写体を透過して変調を受けた放射線によって形成される放射線像をマスキングする第2の格子と、
     前記第2の格子によってマスキングされた前記放射線像を検出する放射線画像検出器と、
     前記放射線画像検出器によって取得された放射線画像に基づいて、前記被写体の微分位相画像を生成する演算処理部と、
     を備え、
     前記第1の格子及び前記第2の格子は、前記第1の格子の周期方向と交差する方向に周期を有するモアレ縞を前記放射線像に生じさせる相対位置関係に配置されており、
     前記演算処理部は、前記モアレ縞の周期方向の画像コントラスト変化に作用するフィルタを用いて前記微分位相画像のムラを除去又は低減するフィルタリング処理を行う放射線撮影システム。
    A first lattice;
    A second grating that masks a radiation image formed by the radiation that has passed through the first grating and is transmitted through the subject and modulated;
    A radiation image detector for detecting the radiation image masked by the second grating;
    An arithmetic processing unit that generates a differential phase image of the subject based on the radiographic image acquired by the radiological image detector;
    With
    The first grating and the second grating are arranged in a relative positional relationship that causes a moire fringe having a period in a direction intersecting a period direction of the first grating in the radiation image,
    The radiation processing system, wherein the arithmetic processing unit performs a filtering process for removing or reducing unevenness of the differential phase image using a filter that affects a change in image contrast in the periodic direction of the moire fringes.
  2.  請求項1に記載の放射線撮影システムであって、
     前記演算処理部は、周波数空間において前記フィルタリング処理を行う放射線撮影システム。
    The radiation imaging system according to claim 1,
    The said arithmetic processing part is a radiography system which performs the said filtering process in frequency space.
  3.  請求項2に記載の放射線撮影システムであって、
     前記演算処理部は、フーリエ変換を用いて前記微分位相画像の空間周波数スペクトルを取得し、周波数フィルタを用いて前記空間周波数スペクトルから前記ムラに対応する周波数成分を除去又は低減する放射線撮影システム。
    The radiographic system according to claim 2,
    The said arithmetic processing part acquires the spatial frequency spectrum of the said differential phase image using a Fourier transformation, and removes or reduces the frequency component corresponding to the said nonuniformity from the said spatial frequency spectrum using a frequency filter.
  4.  請求項1に記載の放射線撮影システムであって、
     前記演算処理部は、実空間において前記フィルタリング処理を行う放射線撮影システム。
    The radiation imaging system according to claim 1,
    The said arithmetic processing part is a radiography system which performs the said filtering process in real space.
  5.  請求項4に記載の放射線撮影システムであって、
     前記演算処理部は、コンボリューションフィルタを用いて前記微分位相画像のムラを除去又は低減する放射線撮影システム。
    The radiation imaging system according to claim 4,
    The said arithmetic processing part is a radiography system which removes or reduces the nonuniformity of the said differential phase image using a convolution filter.
  6.  請求項1から5のいずれか一項に記載の放射線撮影システムであって、
     前記モアレ縞の周期方向は、前記第1の格子の周期方向と略直交している放射線撮影システム。
    The radiographic system according to any one of claims 1 to 5,
    The radiography system in which the periodic direction of the moire fringes is substantially orthogonal to the periodic direction of the first grating.
  7.  請求項1から6のいずれか一項に記載の放射線撮影システムであって、
     前記第1の格子及び前記第2の格子は、互いに周期方向が90°未満の角度で交差するように配置されている放射線撮影システム。
    The radiographic system according to any one of claims 1 to 6,
    The radiation imaging system in which the first grating and the second grating are arranged so that their periodic directions intersect each other at an angle of less than 90 °.
  8.  請求項7に記載の放射線撮影システムであって、
     前記第1の格子及び前記第2の格子は、両格子を通過する放射線の光軸まわりに相対回転可能である放射線撮影システム。
    The radiation imaging system according to claim 7,
    The radiation imaging system in which the first grating and the second grating are relatively rotatable around an optical axis of radiation passing through both gratings.
  9.  第1の格子を通過し、かつ被写体を透過して変調を受けた放射線によって形成され、第2の格子によってマスキングされた放射線像を検出して前記被写体の微分位相画像を生成する放射線撮影方法であって、
     前記第1の格子及び前記第2の格子の相対位置関係を調整し、前記第1の格子の周期方向と交差する方向に周期を有するモアレ縞を前記放射線像に生じさせ、
     前記モアレ縞の周期方向の画像コントラスト変化に作用するフィルタを用いて前記位相微分画像のムラを除去又は低減する放射線撮影方法。
    A radiographic method for generating a differential phase image of a subject by detecting a radiation image formed by radiation that has passed through a first grating and transmitted through a subject and is modulated and masked by a second grating. There,
    Adjusting the relative positional relationship between the first grating and the second grating, and generating a moiré fringe having a period in a direction intersecting with a period direction of the first grating in the radiation image;
    A radiation imaging method for removing or reducing unevenness of the phase differential image using a filter that affects a change in image contrast in the periodic direction of the moire fringes.
PCT/JP2012/058184 2011-03-29 2012-03-28 Radiography system and radiography method WO2012133553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011072409A JP2014113168A (en) 2011-03-29 2011-03-29 Radiographic system and radiographic method
JP2011-072409 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012133553A1 true WO2012133553A1 (en) 2012-10-04

Family

ID=46931261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058184 WO2012133553A1 (en) 2011-03-29 2012-03-28 Radiography system and radiography method

Country Status (2)

Country Link
JP (1) JP2014113168A (en)
WO (1) WO2012133553A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106721A (en) * 2014-12-03 2016-06-20 キヤノン株式会社 Image processing device and image processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312785A (en) * 1989-06-09 1991-01-21 Fuji Photo Film Co Ltd Image processing method
WO2009130829A1 (en) * 2008-04-22 2009-10-29 株式会社島津製作所 Method for removing moire in x-ray radiographic images and x-ray imaging device using the same
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
JP2010253157A (en) * 2009-04-28 2010-11-11 Konica Minolta Medical & Graphic Inc X-ray interferometer imaging apparatus and x-ray interferometer imaging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312785A (en) * 1989-06-09 1991-01-21 Fuji Photo Film Co Ltd Image processing method
WO2009130829A1 (en) * 2008-04-22 2009-10-29 株式会社島津製作所 Method for removing moire in x-ray radiographic images and x-ray imaging device using the same
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
JP2010253157A (en) * 2009-04-28 2010-11-11 Konica Minolta Medical & Graphic Inc X-ray interferometer imaging apparatus and x-ray interferometer imaging method

Also Published As

Publication number Publication date
JP2014113168A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5331940B2 (en) Radiation imaging system and radiation image generation method
JP5150713B2 (en) Radiation image detection device, radiation imaging device, radiation imaging system
JP5238786B2 (en) Radiography apparatus and radiation imaging system
JP5343065B2 (en) Radiography system
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2012090944A (en) Radiographic system and radiographic method
JP5783987B2 (en) Radiography equipment
JP2011218147A (en) Radiographic system
JP2012200567A (en) Radiographic system and radiographic method
JP2012095865A (en) Radiographic apparatus and radiographic system
JP2012115576A (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
WO2012169426A1 (en) Radiography system
JP2011206490A (en) Radiographic system and radiographic method
JP2012115577A (en) Radiographic system
WO2012057047A1 (en) Radiation imaging system
JP2012125423A (en) Radiation image detection apparatus, radiographic imaging apparatus, and radiographic imaging system
WO2012057278A1 (en) Radiation imaging system and radiation imaging method
WO2012169427A1 (en) Radiography system
WO2012070661A1 (en) Radiographic image detection apparatus, radiography apparatus, and radiography system
JP2012115621A (en) Radiological image detection apparatus, radiographic apparatus and radiographic system
WO2012056992A1 (en) Radiograph detection device, radiography device, radiography system
JP2012120650A (en) Radiographic system and method for generating radiation phase contrast image
WO2012147749A1 (en) Radiography system and radiography method
WO2012057046A1 (en) Radiography device and radiography system
JP2011206280A (en) Radiographic imaging method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP