Nothing Special   »   [go: up one dir, main page]

WO2012132064A1 - Photovoltaic element - Google Patents

Photovoltaic element Download PDF

Info

Publication number
WO2012132064A1
WO2012132064A1 PCT/JP2011/072452 JP2011072452W WO2012132064A1 WO 2012132064 A1 WO2012132064 A1 WO 2012132064A1 JP 2011072452 W JP2011072452 W JP 2011072452W WO 2012132064 A1 WO2012132064 A1 WO 2012132064A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
amorphous silicon
type amorphous
transparent conductive
silicon layer
Prior art date
Application number
PCT/JP2011/072452
Other languages
French (fr)
Japanese (ja)
Inventor
豊 桐畑
藤田 和範
嶋田 聡
三島 孝博
仁 坂田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012132064A1 publication Critical patent/WO2012132064A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic device.
  • Patent Document 1 discloses a semiconductor substrate having a light receiving surface and a back surface provided on the opposite side of the light receiving surface, a first semiconductor layer formed along a predetermined direction on the back surface, and a back surface.
  • a pair of second semiconductor layers formed along a predetermined direction and disposed on both sides of the first semiconductor layer, and from one second semiconductor layer to the first semiconductor layer of the pair of second semiconductor layers
  • a photovoltaic device comprising a transparent electrode layer covering a second semiconductor layer and a collecting electrode layer formed on the transparent electrode layer is disclosed.
  • an insulating layer or the like may be stacked on a semiconductor layer formed on a semiconductor substrate.
  • residues such as the insulating layer may adhere to the semiconductor layer.
  • the residue of the insulating layer may increase the series resistance between the semiconductor layer and the collecting electrode portion.
  • a photovoltaic element includes a crystalline semiconductor substrate and a first conductivity type layer, and is laminated on the surface in a first region of one surface of the crystalline semiconductor substrate.
  • a second amorphous semiconductor layer that includes a semiconductor layer portion and a second conductivity type layer and is stacked over the second region on one surface and a part of the first amorphous semiconductor layer portion And a conductive layer disposed between a part of the first amorphous semiconductor layer portion and the second amorphous semiconductor layer portion.
  • the power generation characteristics of the photovoltaic element can be improved.
  • 1st Embodiment of this invention it is sectional drawing of a photovoltaic device.
  • 1st Embodiment of this invention it is a flowchart which shows the procedure of the manufacturing method of a photovoltaic device.
  • 1st Embodiment of this invention it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device.
  • 1st Embodiment of this invention it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device.
  • 1st Embodiment of this invention it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device.
  • 2nd Embodiment of this invention it is sectional drawing of a photovoltaic device.
  • 2nd Embodiment of this invention it is a flowchart which shows the procedure of the manufacturing method of a photovoltaic device.
  • 2nd Embodiment of this invention it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device.
  • 2nd Embodiment of this invention it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device.
  • 2nd Embodiment of this invention it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device.
  • FIG. 1 is a cross-sectional view of the photovoltaic element 10.
  • the photovoltaic device 10 includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an in-layer stack portion 21, An ip laminated portion 31, a transparent conductive layer 20, an n-side electrode portion 25, and a p-side electrode portion 35 are provided.
  • an arrow A shown in FIG. 1 indicates a direction in which light such as sunlight is incident on the photovoltaic element 10.
  • the “light receiving surface” means a surface on which light such as sunlight is mainly incident.
  • the “back surface” means a surface opposite to the light receiving surface.
  • the n-type single crystal silicon substrate 18 is a power generation layer that receives light incident from the light receiving surface side and generates carriers.
  • the n-type single crystal silicon substrate 18 is used.
  • the present invention is not limited to this, and a wafer-like semiconductor substrate made of a crystalline semiconductor material of n-type or p-type conductivity is used. be able to.
  • a polycrystalline silicon substrate, a gallium arsenide substrate (GaAs), an indium phosphorus substrate (InP), or the like can be used.
  • the i-type amorphous silicon layer 16 is formed on the light-receiving surface of the n-type single crystal silicon substrate 18.
  • the i-type amorphous silicon layer 16 is a passivation layer containing hydrogen.
  • the n-type amorphous silicon layer 14 is formed on the i-type amorphous silicon layer 16.
  • the i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 constitute an amorphous semiconductor layer portion formed on the light receiving surface.
  • the i-type amorphous silicon layer 16 is a layer made of an intrinsic amorphous semiconductor film.
  • the i-type amorphous silicon layer 16 has a lower dopant concentration in the film than the n-type amorphous silicon layer 14.
  • the i-type amorphous silicon layer 16 preferably has a low n-type or p-type dopant concentration and a dark conductivity of 10 ⁇ 9 S / cm or less.
  • the n-type amorphous silicon layer 14 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant.
  • the n-type amorphous silicon layer 14 has a higher n-type dopant concentration in the film than the i-type amorphous silicon layer 16.
  • the n-type amorphous silicon layer 14 preferably has a dark conductivity of 10 ⁇ 5 S / cm or more.
  • the amorphous silicon layer may include a microcrystalline structure.
  • the microcrystalline structure is a structure in which crystal grains are precipitated in an amorphous semiconductor.
  • the average grain size of the crystal grains is not limited to this, but is estimated to be about 1 nm to 80 nm.
  • the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 and reduces reflection of light incident from the light receiving surface side of the photovoltaic element 10.
  • the antireflection layer 12 also functions as a protective layer that protects the surface of the n-type amorphous silicon layer 14.
  • the antireflection layer 12 is made of a material having translucency for light in a wavelength range that can be absorbed by the n-type single crystal silicon substrate 18. Further, it is preferable to use a material having a refractive index and a film thickness that reduce reflection of light incident from the light receiving surface of the photovoltaic element 10 in relation to the refractive index of the layer covered by the antireflection layer 12. .
  • the antireflection layer 12 includes, for example, aluminum nitride, silicon nitride, silicon oxide, silicon oxynitride, and the like.
  • the photovoltaic element 10 can receive light over substantially the entire light receiving surface of the n-type single crystal silicon substrate 18.
  • the i-n laminated portion 21 is formed on the back surface of the n-type single crystal silicon substrate 18. It is preferable that the i-n laminated portion 21 is arranged so that current can be collected evenly from the surface of the photovoltaic element 10 in an n-side electrode portion 25 described later.
  • the i-n stacked portion 21 preferably has a comb-teeth shape in which a plurality of finger portions extend in parallel.
  • the i-n stacked unit 21 includes an i-type amorphous silicon layer 22 and an n-type amorphous silicon layer 23.
  • the i-type amorphous silicon layer 22 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18.
  • the n-type amorphous silicon layer 23 is formed on the i-type amorphous silicon layer 22.
  • the i-n stacked portion 21 constitutes a first amorphous semiconductor layer portion formed on the back surface.
  • the i-type amorphous silicon layer 22 is a layer made of an intrinsic amorphous semiconductor film.
  • the i-type amorphous silicon layer 22 has a lower dopant concentration in the film than the n-type amorphous silicon layer 23.
  • the i-type amorphous silicon layer 22 preferably has a low n-type or p-type dopant concentration and a dark conductivity of 10 ⁇ 9 S / cm or less.
  • the n-type amorphous silicon layer 23 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant.
  • the n-type amorphous silicon layer 23 has a higher n-type dopant concentration in the film than the i-type amorphous silicon layer 22.
  • the n-type amorphous silicon layer 23 preferably has a dark conductivity of 10 ⁇ 5 S / cm or more.
  • the transparent conductive layer 20 is formed on the n-type amorphous silicon layer 23.
  • the transparent conductive layer 20 includes at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ).
  • ITO indium tin oxide
  • the n-side electrode part 25 is an electrode part provided for collecting and taking out the electricity generated in the photovoltaic element 10.
  • the n-side electrode unit 25 includes a transparent conductive layer 26, a metal layer 27, a first electrode unit 28, and a second electrode unit 29.
  • the transparent conductive layer 26 is formed on the transparent conductive layer 20.
  • the transparent conductive layer 26 includes at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ).
  • ITO indium tin oxide
  • the metal layer 27 is formed on the transparent conductive layer 26.
  • the metal layer 27 is a seed layer including a metal such as copper (Cu) or an alloy, for example.
  • the “seed layer” refers to a layer that is a starting point for plating growth.
  • the first electrode portion 28 is an electrode formed on the metal layer 27 by plating growth.
  • the first electrode unit 28 includes, for example, copper (Cu).
  • the second electrode part 29 is an electrode formed on the first electrode part 28 by plating growth.
  • the second electrode unit 29 includes tin (Sn).
  • the i-p stacked portion 31 is formed on the back surface of the n-type single crystal silicon substrate 18 so as to be inserted into the i-n stacked portion 21.
  • the ip laminated portion 31 is formed from the back surface of the n-type single crystal silicon substrate 18 to the edge of the i-n laminated portion 21. That is, in the photovoltaic element 10, a part of the laminated structure of the ip laminated part 31 and the in laminated part 21 exists.
  • the ip stacked portion 31 is arranged so that current can be collected evenly from within the surface of the photovoltaic element 10.
  • the ip laminated portion 31 is preferably, for example, in a comb-teeth shape in which a plurality of finger portions extend in parallel.
  • the ip laminated portion 31 includes an i-type amorphous silicon layer 32 and a p-type amorphous silicon layer 33.
  • the i-type amorphous silicon layer 32 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18.
  • the p-type amorphous silicon layer 33 is formed on the i-type amorphous silicon layer 32.
  • the ip stacked portion 31 constitutes a second amorphous semiconductor layer portion formed on the back surface.
  • the i-type amorphous silicon layer 32 is a layer made of an intrinsic amorphous semiconductor film.
  • the i-type amorphous silicon layer 32 has a lower dopant concentration in the film than the p-type amorphous silicon layer 33.
  • the i-type amorphous silicon layer 32 preferably has a low n-type or p-type dopant concentration and a dark conductivity of 10 ⁇ 9 S / cm or less.
  • the p-type amorphous silicon layer 33 is a layer made of an amorphous semiconductor film containing a p-type conductive dopant.
  • the p-type amorphous silicon layer 33 has a higher p-type dopant concentration in the film than the i-type amorphous silicon layer 32.
  • the p-type amorphous silicon layer 33 preferably has a dark conductivity of 10 ⁇ 8 s / cm or more.
  • the p-side electrode part 35 is an electrode part provided for collecting and taking out the electricity generated in the photovoltaic element 10.
  • the p-side electrode part 35 includes a transparent conductive layer 36, a metal layer 37, a first electrode part 38, and a second electrode part 39.
  • the transparent conductive layer 36 is formed on the p-type amorphous silicon layer 33.
  • the metal layer 37 is formed on the transparent conductive layer 36.
  • the first electrode portion 38 is formed on the metal layer 37 by plating growth.
  • the second electrode portion 39 is formed on the first electrode portion 38 by plating growth.
  • the material and the like of the second electrode portion 39 are the same as those of the second electrode portion 29, detailed description thereof is omitted.
  • FIG. 2 is a flowchart showing the procedure of the method for manufacturing the photovoltaic element 10.
  • the manufacturing method of the photovoltaic element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, or a plating method can be appropriately used for forming each layer.
  • an n-type single crystal silicon substrate 18 is prepared, and the light receiving surface and the back surface of the n-type single crystal silicon substrate 18 are cleaned (S2).
  • the n-type single crystal silicon substrate 18 can be cleaned using, for example, an HF aqueous solution.
  • a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 (S4).
  • the texture structure can be performed using anisotropic etching or isotropic etching.
  • an i-type amorphous silicon layer 22a and an n-type amorphous silicon layer 23a are formed on the back surface of the n-type single crystal silicon substrate 18, and thereafter, an n-type single crystal silicon layer 23a is formed.
  • the i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 are formed on the light receiving surface of the crystalline silicon substrate 18 (S6).
  • a transparent conductive layer 20a is formed on the n-type amorphous silicon layer 23a (S8).
  • the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S10).
  • a part of the transparent conductive layer 20a is etched (S12). Specifically, the transparent conductive layer 20 is formed by removing a portion of the transparent conductive layer 20a located on a region where the ip stacked portion 31 is bonded to the n-type single crystal silicon substrate 18 in a later step.
  • the etching of the transparent conductive layer 20a uses, for example, an acidic etching solution such as hydrochloric acid (HCl).
  • the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are etched (S14). Specifically, portions of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a other than the portion covered with the transparent conductive layer 20 are removed. As a result, the portion of the back surface of the n-type single crystal silicon substrate 18 where the transparent conductive layer 20 is not located is exposed, and the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 are formed. Form.
  • an alkaline etching solution such as an aqueous solution containing sodium hydroxide (NaOH) is used.
  • the transparent conductive layer 20, the i-type amorphous silicon layer 22, the n-type amorphous silicon layer 23 and the exposed back surface of the n-type single crystal silicon substrate 18 are covered.
  • the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a are formed (S16).
  • a portion of the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a located on the transparent conductive layer 20 is etched (S18). . Thereby, the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are formed.
  • the transparent conductive layer 26a and the metal layer 27a are formed (S20).
  • the transparent conductive layers 26 and 36 and the metal layers 27 and 37 are separated by dividing a portion of the transparent conductive layer 26 a and the metal layer 27 a located on the transparent conductive layer 20. Is formed (S22).
  • the transparent conductive layer 26a and the metal layer 27a are divided by, for example, a lithography method.
  • the first electrode portion 28 and the second electrode portion 29 are sequentially formed on the metal layer 27 by electrolytic plating, and the first electrode portion 38 and the second electrode portion 29 are formed on the metal layer 37.
  • the electrode portions 39 are sequentially formed (S24). Thereby, the n-side electrode part 25 and the p-side electrode part 35 are formed.
  • the carrier mobility is low in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23.
  • the carrier mobility is higher in the transparent conductive layer 20 than in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23.
  • carriers are preferably discharged from the n-side electrode portion 25 by compensating for the low carrier mobility in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. It can be taken out.
  • the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23, and the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are electrically connected via the transparent conductive layer 20.
  • the n-side electrode since the carrier mobility is low in the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33, the n-side electrode has a high carrier mobility. Since the carrier can be suitably taken out from the portion 25, the electrical connection as described above does not cause a significant problem.
  • an insulating layer is not formed on the in laminated portion 21 on the back surface side. Therefore, there is no step of etching the insulating layer, and the residue of the insulating layer does not adhere to the transparent conductive layer 20, the i-type amorphous silicon layer 22, or the n-type amorphous silicon layer 23. Thereby, it is possible to prevent the series resistance between the in-stacked portion 21 and the n-side electrode portion 25 of the photovoltaic element 10 from increasing due to the presence of the insulating layer residue. Therefore, the power generation characteristics of the photovoltaic element 10 can be improved.
  • FIG. 11 is a cross-sectional view of a photovoltaic element 11 according to the second embodiment of the present invention.
  • the photovoltaic device 11 includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an in-layer stack portion 21, It includes an ip laminated portion 31, a transparent conductive layer 20, an insulating layer 24, an n-side electrode portion 25, and a p-side electrode portion 35.
  • an arrow A shown in FIG. 11 indicates a direction in which light such as sunlight is incident on the photovoltaic element 11.
  • the insulating layer 24 is formed to electrically insulate the i-n laminated portion 21 and the ip laminated portion 31.
  • the insulating layer 24 also functions as a protective layer formed on the transparent conductive layer 20.
  • the insulating layer 24 may be any material having electrical insulation properties, and preferably includes, for example, aluminum nitride, silicon nitride, silicon oxide, silicon oxynitride, and the like.
  • FIG. 12 is a flowchart showing the procedure of the method for manufacturing the photovoltaic element 11.
  • the manufacturing method of the photovoltaic element 11 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
  • the manufacturing method of the photovoltaic element 11 and the manufacturing method of the photovoltaic element 10 are the same in the steps S2 to S8. And since the difference between the manufacturing method of the photovoltaic element 11 and the manufacturing method of the photovoltaic element 10 is a process after S8, it demonstrates centering on the difference.
  • steps S2 to S8 are performed.
  • the insulating layer 24a is formed on the transparent conductive layer 20a, and the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S30).
  • the insulating layer 24a is etched to remove a part of the insulating layer 24a (S32). Specifically, the insulating layer 24b is formed by removing a portion of the insulating layer 24a located above a region for bonding the ip stacked portion 31 to the n-type single crystal silicon substrate 18 in a later step.
  • an acidic etching solution such as an HF aqueous solution is used for the etching of the insulating layer 24a.
  • the transparent conductive layer 20a is etched using the insulating layer 24b patterned in S32 as a mask (S34). Thereby, the patterned transparent conductive layer 20 is formed.
  • the same steps as S14, S16, and S18 of the first embodiment are performed except that the insulating layer 24b is present on the transparent conductive layer 20.
  • the transparent conductive layer 20 patterned in S34 as a mask
  • the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are used. Is etched (S36).
  • An i-type amorphous silicon layer 32a and a p-type amorphous silicon layer 33a are formed so as to cover the back surface of the silicon substrate 18 (S38). Thereafter, as shown in FIG. 18, as in S18, a part of the portion of the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a located on the insulating layer 24b is etched. (S40).
  • a part of the insulating layer 24b is further removed by etching the insulating layer 24b (S42).
  • the insulating layer 24 is formed by removing the exposed portion of the insulating layer 24b by etching using the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 as a mask.
  • the exposed surface of the transparent conductive layer 20 is cleaned (S44). Thereby, even if it is a case where the residue of the insulating layer 24a has adhered to the transparent conductive layer 20, in S42, it can remove suitably.
  • the cleaning of the exposed surface of the transparent conductive layer 20 can be performed using, for example, an HF aqueous solution.
  • the transparent conductive layer 26a and the metal layer 27a are formed (S46). Subsequently, as shown in FIG. 20, similarly to S22, the transparent conductive layers 26 and 36 and the metal layer 27a and the metal layer 27a are separated from each other by dividing a part located on the insulating layer 24. Layers 27 and 37 are formed (S48). After that, as shown in FIG. 21, the first electrode portion 28 and the second electrode portion 29 are sequentially formed on the metal layer 27 by electrolytic plating as in S24, and the first electrode is formed on the metal layer 37. The part 38 and the second electrode part 39 are formed (S50). Thereby, the n-side electrode part 25 and the p-side electrode part 35 are formed.
  • the carrier mobility is low in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23.
  • the carrier mobility is higher in the transparent conductive layer 20 than in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23.
  • carriers are preferably discharged from the n-side electrode portion 25 by compensating for the low carrier mobility in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. It can be taken out.
  • the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23, and the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are electrically connected via the transparent conductive layer 20.
  • the n-side electrode since the carrier mobility is low in the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33, the n-side electrode has a high carrier mobility. Since the carrier can be suitably taken out from the portion 25, the electrical connection as described above is not particularly problematic.
  • an insulating layer 24 is formed on the transparent conductive layer 20 on the back side of the photovoltaic element 11. That is, the transparent conductive layer 20 is interposed between the n-type amorphous silicon layer 23 and the insulating layer 24.
  • the transparent conductive layer 20 has higher HF resistance than the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. For this reason, even if the residue of the insulating layer 24 remains on the transparent conductive layer 20 by etching the insulating layer 24, the residue is removed by the process of S44. Further, even when the transparent conductive layer 20 is washed using an HF aqueous solution, the transparent conductive layer 20 is hardly damaged by the HF aqueous solution.
  • the residue can be eliminated by appropriately selecting a cleaning solution that can remove the residue of the insulating layer 24.
  • a cleaning solution that can remove the residue of the insulating layer 24.
  • the insulating layer 24 is formed on the transparent conductive layer 20 on the back surface side of the photovoltaic element 11, the insulating performance between the in laminated portion 21 and the ip laminated portion 31 is improved. be able to.
  • FIG. 22 is a cross-sectional view of a photovoltaic element 11a according to the third embodiment of the present invention.
  • the photovoltaic element 11a includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an i-n stacked portion 21, It includes an ip laminated portion 31, a transparent conductive layer 20, an insulating layer 40, an n-side electrode portion 25 and a p-side electrode portion 35.
  • an arrow A shown in FIG. 22 indicates a direction in which light such as sunlight is incident on the photovoltaic element 11a.
  • the insulating layer 40 is formed to electrically insulate the i-n laminated portion 21 and the i-p laminated portion 31.
  • the insulating layer 40 also functions as a protective layer formed on the transparent conductive layer 20.
  • the insulating layer 40 is formed so that the back surface and side surface of the transparent conductive layer 20 may be covered so that the back surface and side surface of the transparent conductive layer 20 may not be exposed, as FIG. 22 shows.
  • the “side surface” means a surface along the thickness direction of the transparent conductive layer 20.
  • the insulating layer 40 may be any material having electrical insulating properties, but preferably includes, for example, aluminum nitride, silicon nitride, silicon oxide, silicon oxynitride, and the like.
  • FIG. 23 is a flowchart showing a procedure of a manufacturing method of the photovoltaic element 11a.
  • the manufacturing method of the photovoltaic element 11a is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, or a plating method can be appropriately used for forming each layer.
  • the manufacturing method of the photovoltaic element 11a and the manufacturing method of the photovoltaic element 11 are the same in the steps S2 to S8. And since the difference between the manufacturing method of the photovoltaic element 11a and the manufacturing method of the photovoltaic element 11 is the process after S8, it demonstrates centering on the difference.
  • steps S2 to S8 are performed.
  • the transparent conductive layer 20a is etched using a patterning mask as shown in FIG. 24 (S30a).
  • the insulating layer 40a is formed on the transparent conductive layer 20, and the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S32a).
  • the insulating layer 40a is etched by using a patterning mask designed in advance so as to leave a portion where the side surface of the transparent conductive layer 20 is covered with the insulating layer 40a. Is removed (S34a).
  • the insulating layer 40b is formed by removing a portion of the insulating layer 40a located on a region where the ip stacked portion 31 is bonded to the n-type single crystal silicon substrate 18 in a later step.
  • step S34a since the mask used in step S34a is designed in advance so that the width of the insulating layer 40b is larger than the width of the transparent conductive layer 20, the insulating layer 40b is transparent conductive as shown in FIG. The back surface and side surface of the transparent conductive layer 20 are covered so that the back surface and side surface of the layer 20 are not exposed.
  • an acidic etching solution such as an HF aqueous solution is used for the etching of the insulating layer 40a.
  • the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are etched (S36a). Specifically, portions of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a other than the portions covered by the transparent conductive layer 20 and the insulating layer 40b are removed. As a result, the portion of the back surface of the n-type single crystal silicon substrate 18 where the transparent conductive layer 20 and the insulating layer 40b are not located is exposed, so that the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer are exposed. A silicon layer 23 is formed.
  • steps S38 to S40 are performed in the same manner as in the method of manufacturing the photovoltaic element 11.
  • the insulating layer 40b is etched to further remove a part of the insulating layer 40b (S42a).
  • steps S44 to S50 are performed in the same manner as in the method of manufacturing the photovoltaic element 11.
  • the photovoltaic element 11a shown in FIG. 27 is formed.
  • the photovoltaic element 11a has the transparent conductive layer 20 with high carrier mobility, it is possible to suitably take out carriers from the n-side electrode portion 25 as in the photovoltaic elements 10 and 11.
  • the residue of the insulating layer 40 can be removed using an HF aqueous solution in the same manner as the photovoltaic element 11. Thereby, it is possible to prevent an increase in series resistance between the i-n stacked portion 21 and the n-side electrode portion 25 of the photovoltaic element 11a.
  • the photovoltaic element 11a not only the back surface of the transparent conductive layer 20 but also the side surfaces thereof are covered with the insulating layer 40, so that the insulating performance between the in laminated portion 21 and the ip laminated portion 31 is improved. Further improvement can be achieved.
  • the ip stack part 31 is stacked on a part of the in stack part 21, but the present invention is not limited to this.
  • the i-n laminated part 21 may be laminated on a part of the ip laminated part 31 by forming the ip laminated part 31 first and then forming the i-n laminated part 21.
  • the i-n laminated portion 21 may be formed of only an n-type amorphous layer. May be composed of only a p-type amorphous layer.
  • the transparent conductive layer 20 instead of the transparent conductive layer 20, using a metal layer with high electroconductivity and high HF resistance, for example, copper (Cu), silver (Ag), etc. Also good.
  • a metal layer with high electroconductivity and high HF resistance for example, copper (Cu), silver (Ag), etc. Also good.
  • n-type amorphous silicon layer 16 i-type amorphous silicon layer, 18 n-type single crystal silicon substrate, 20, 20a transparent conductive layer, 21 i -N stacked portion, 22, 22a i-type amorphous silicon layer, 23, 23a n-type amorphous silicon layer, 24, 24a, 24b insulating layer, 25 n-side electrode portion, 26, 26a, 36 transparent conductive layer, 27, 27a, 37 metal layer, 28, 38 first electrode part, 29, 39 second electrode part, 31 ip stacked part, 32, 32a i-type amorphous silicon layer, 33, 33a p-type amorphous Silicon layer, 35 p-side electrode part, 40a, 40b insulating layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photovoltaic element (10) is provided with: an i-n laminate (21) laminated on the surface at a first region of one surface of an n-type monocrystalline silicon substrate (18); an i-p laminate (31) laminated straddling a second region of the one surface and a portion of the i-n laminate (21); and a transparent conductive layer (20) disposed between a portion of the i-n laminate (21) and the in-n laminate (21).

Description

光起電力素子Photovoltaic element
 本発明は、光起電力素子に関する。 The present invention relates to a photovoltaic device.
 単結晶シリコン、多結晶シリコンまたはアモルファスシリコンを用いた様々な光起電力素子が開発されている。その一例として、特許文献1には、受光面と、受光面の反対側に設けられる裏面とを有する半導体基板と、裏面上において所定の方向に沿って形成される第1半導体層と、裏面上において所定の方向に沿って形成され、第1半導体層の両隣に配設される一対の第2半導体層と、一対の第2半導体層のうち一方の第2半導体層上から第1半導体層上まで跨って形成される第1絶縁層と、一対の第2半導体層のうち他方の第2半導体層上から第1半導体層上まで跨って形成される第2絶縁層と、第1半導体層及び第2半導体層を覆う透明電極層と、透明電極層上に形成される収集電極層と、を備える光起電力素子が開示されている。 Various photovoltaic devices using single crystal silicon, polycrystalline silicon, or amorphous silicon have been developed. As an example, Patent Document 1 discloses a semiconductor substrate having a light receiving surface and a back surface provided on the opposite side of the light receiving surface, a first semiconductor layer formed along a predetermined direction on the back surface, and a back surface. A pair of second semiconductor layers formed along a predetermined direction and disposed on both sides of the first semiconductor layer, and from one second semiconductor layer to the first semiconductor layer of the pair of second semiconductor layers A first insulating layer formed over the first semiconductor layer, a second insulating layer formed over the first semiconductor layer from the other second semiconductor layer of the pair of second semiconductor layers, a first semiconductor layer, A photovoltaic device comprising a transparent electrode layer covering a second semiconductor layer and a collecting electrode layer formed on the transparent electrode layer is disclosed.
特開2009-200267号公報JP 2009-200277 A
 ところで、半導体基板上に形成される半導体層上に絶縁層等が積層されることがある。当該絶縁層等のパターンニング処理を行う際に、半導体層上に当該絶縁層等の残渣が付着することがある。この絶縁層の残渣により、半導体層と集電電極部との間のシリーズ抵抗が増大する可能性がある。 By the way, an insulating layer or the like may be stacked on a semiconductor layer formed on a semiconductor substrate. When patterning the insulating layer or the like, residues such as the insulating layer may adhere to the semiconductor layer. The residue of the insulating layer may increase the series resistance between the semiconductor layer and the collecting electrode portion.
 本発明に係る光起電力素子は、結晶系半導体基板と、第1導電型の層を含み、結晶系半導体基板の一方の表面の第1領域において表面上に積層された第1非晶質系半導体層部と、第2導電型の層を含み、一方の表面の第2領域上及び第1非晶質系半導体層部の一部上に跨って積層された第2非晶質系半導体層部と、第1非晶質系半導体層部の一部と第2非晶質系半導体層部との間に配された導電層と、を備えることを特徴とする。 A photovoltaic element according to the present invention includes a crystalline semiconductor substrate and a first conductivity type layer, and is laminated on the surface in a first region of one surface of the crystalline semiconductor substrate. A second amorphous semiconductor layer that includes a semiconductor layer portion and a second conductivity type layer and is stacked over the second region on one surface and a part of the first amorphous semiconductor layer portion And a conductive layer disposed between a part of the first amorphous semiconductor layer portion and the second amorphous semiconductor layer portion.
 本発明によれば、光起電力素子の発電特性を向上させることができる。 According to the present invention, the power generation characteristics of the photovoltaic element can be improved.
本発明の第1実施形態において、光起電力素子の断面図である。In 1st Embodiment of this invention, it is sectional drawing of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を示すフローチャートである。In 1st Embodiment of this invention, it is a flowchart which shows the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第1実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 1st Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の断面図である。In 2nd Embodiment of this invention, it is sectional drawing of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を示すフローチャートである。In 2nd Embodiment of this invention, it is a flowchart which shows the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第2実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 2nd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第3実施形態において、光起電力素子の断面図である。In 3rd Embodiment of this invention, it is sectional drawing of a photovoltaic device. 本発明の第3実施形態において、光起電力素子の製造方法の手順を示すフローチャートである。In 3rd Embodiment of this invention, it is a flowchart which shows the procedure of the manufacturing method of a photovoltaic device. 本発明の第3実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 3rd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第3実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 3rd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第3実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 3rd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device. 本発明の第3実施形態において、光起電力素子の製造方法の手順を説明するための断面図である。In 3rd Embodiment of this invention, it is sectional drawing for demonstrating the procedure of the manufacturing method of a photovoltaic device.
 以下に図面を用いて、本発明に係る実施の形態を詳細に説明する。また、以下では、全ての図面において、同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 Embodiments according to the present invention will be described below in detail with reference to the drawings. Also, in the following, in all the drawings, the same symbols are attached to the same elements, and the duplicate description is omitted. In the description in the text, the symbols described before are used as necessary.
(第1実施形態)
 図1は、光起電力素子10の断面図である。光起電力素子10は、反射防止層12と、n型非晶質シリコン層14と、i型非晶質シリコン層16と、n型単結晶シリコン基板18と、i-n積層部21と、i-p積層部31と、透明導電層20と、n側電極部25と、p側電極部35とを備える。ここで、図1に示される矢印Aは、光起電力素子10に対して太陽光等の光が入射される方向を示している。なお、本明細書では、「受光面」とは、太陽光等の光が主に入射される面を意味する。また、「裏面」とは、受光面と反対側の面を意味する。
(First embodiment)
FIG. 1 is a cross-sectional view of the photovoltaic element 10. The photovoltaic device 10 includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an in-layer stack portion 21, An ip laminated portion 31, a transparent conductive layer 20, an n-side electrode portion 25, and a p-side electrode portion 35 are provided. Here, an arrow A shown in FIG. 1 indicates a direction in which light such as sunlight is incident on the photovoltaic element 10. In the present specification, the “light receiving surface” means a surface on which light such as sunlight is mainly incident. The “back surface” means a surface opposite to the light receiving surface.
 n型単結晶シリコン基板18は、受光面側から入射された光を受けてキャリアを生成する発電層である。なお、本実施の形態では、n型単結晶シリコン基板18としたが、これに限定されるものではなく、n型又はp型の導電型の結晶系半導体材料からなるウエハ状の半導体基板とすることができる。単結晶シリコン基板の他にも、例えば、多結晶シリコン基板、砒化ガリウム基板(GaAs)、インジウム燐基板(InP)等を適用することができる。 The n-type single crystal silicon substrate 18 is a power generation layer that receives light incident from the light receiving surface side and generates carriers. In the present embodiment, the n-type single crystal silicon substrate 18 is used. However, the present invention is not limited to this, and a wafer-like semiconductor substrate made of a crystalline semiconductor material of n-type or p-type conductivity is used. be able to. In addition to the single crystal silicon substrate, for example, a polycrystalline silicon substrate, a gallium arsenide substrate (GaAs), an indium phosphorus substrate (InP), or the like can be used.
 i型非晶質シリコン層16は、n型単結晶シリコン基板18の受光面上に形成される。i型非晶質シリコン層16は、水素を含むパッシベーション層である。n型非晶質シリコン層14は、i型非晶質シリコン層16上に形成される。i型非晶質シリコン層16及びn型非晶質シリコン層14は、受光面に形成される非晶質系半導体層部を構成する。i型非晶質シリコン層16は、真性な非晶質半導体膜からなる層である。i型非晶質シリコン層16は、n型非晶質シリコン層14よりも膜中のドーパント濃度が低くされる。例えば、i型非晶質シリコン層16は、n型又はp型のドーパント濃度を低くし、暗導電率を10-9S/cm以下とすることが好適である。n型非晶質シリコン層14は、n型の導電型のドーパントを含む非晶質半導体膜からなる層である。n型非晶質シリコン層14は、i型非晶質シリコン層16よりも膜中のn型ドーパント濃度が高くされる。例えば、n型非晶質シリコン層14は、暗導電率を10-5S/cm以上とすることが好適である。 The i-type amorphous silicon layer 16 is formed on the light-receiving surface of the n-type single crystal silicon substrate 18. The i-type amorphous silicon layer 16 is a passivation layer containing hydrogen. The n-type amorphous silicon layer 14 is formed on the i-type amorphous silicon layer 16. The i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 constitute an amorphous semiconductor layer portion formed on the light receiving surface. The i-type amorphous silicon layer 16 is a layer made of an intrinsic amorphous semiconductor film. The i-type amorphous silicon layer 16 has a lower dopant concentration in the film than the n-type amorphous silicon layer 14. For example, the i-type amorphous silicon layer 16 preferably has a low n-type or p-type dopant concentration and a dark conductivity of 10 −9 S / cm or less. The n-type amorphous silicon layer 14 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant. The n-type amorphous silicon layer 14 has a higher n-type dopant concentration in the film than the i-type amorphous silicon layer 16. For example, the n-type amorphous silicon layer 14 preferably has a dark conductivity of 10 −5 S / cm or more.
 なお、本実施の形態において非晶質シリコン層は、微結晶構造を含んでも良い。微結晶構造は、非晶質半導体中に結晶粒が析出している構造である。結晶粒の平均粒径は、これに限定されるものではないが、1nm以上80nm以下程度であると推定されている。 Note that in this embodiment mode, the amorphous silicon layer may include a microcrystalline structure. The microcrystalline structure is a structure in which crystal grains are precipitated in an amorphous semiconductor. The average grain size of the crystal grains is not limited to this, but is estimated to be about 1 nm to 80 nm.
 反射防止層12は、n型非晶質シリコン層14上に形成され、光起電力素子10の受光面側から入射される光の反射を低減させる。また、反射防止層12は、n型非晶質シリコン層14の表面を保護する保護層としても機能する。反射防止層12は、n型単結晶シリコン基板18により吸収可能な波長範囲の光に対し、透光性を有する材料で構成される。また、反射防止層12によって覆われる層の屈折率との関係で光起電力素子10の受光面から入射される光の反射を低減させる屈折率を有する材料及び膜厚とすることが好適である。反射防止層12は、例えば、窒化アルミニウム、窒化ケイ素及び酸化ケイ素、酸窒化ケイ素等を含んで構成される。 The antireflection layer 12 is formed on the n-type amorphous silicon layer 14 and reduces reflection of light incident from the light receiving surface side of the photovoltaic element 10. The antireflection layer 12 also functions as a protective layer that protects the surface of the n-type amorphous silicon layer 14. The antireflection layer 12 is made of a material having translucency for light in a wavelength range that can be absorbed by the n-type single crystal silicon substrate 18. Further, it is preferable to use a material having a refractive index and a film thickness that reduce reflection of light incident from the light receiving surface of the photovoltaic element 10 in relation to the refractive index of the layer covered by the antireflection layer 12. . The antireflection layer 12 includes, for example, aluminum nitride, silicon nitride, silicon oxide, silicon oxynitride, and the like.
 上述の通り、n型単結晶シリコン基板18の受光面上には、厚い金属層等の、n型単結晶シリコン基板18により吸収可能な波長範囲の光に対し遮光性を有する構造が設けられていない。従って、光起電力素子10は、n型単結晶シリコン基板18の受光面の略全面で受光することができる。 As described above, on the light-receiving surface of the n-type single crystal silicon substrate 18, a structure having a light shielding property against light in a wavelength range that can be absorbed by the n-type single crystal silicon substrate 18, such as a thick metal layer, is provided. Absent. Therefore, the photovoltaic element 10 can receive light over substantially the entire light receiving surface of the n-type single crystal silicon substrate 18.
 i-n積層部21は、n型単結晶シリコン基板18の裏面上に形成される。i-n積層部21は、後述するn側電極部25において、光起電力素子10の面内からまんべんなく集電可能なように配置することが好適である。i-n積層部21は、例えば、複数のフィンガー部が平行に延伸する櫛歯形状とすることが好適である。i-n積層部21は、i型非晶質シリコン層22と、n型非晶質シリコン層23と、を備える。 The i-n laminated portion 21 is formed on the back surface of the n-type single crystal silicon substrate 18. It is preferable that the i-n laminated portion 21 is arranged so that current can be collected evenly from the surface of the photovoltaic element 10 in an n-side electrode portion 25 described later. For example, the i-n stacked portion 21 preferably has a comb-teeth shape in which a plurality of finger portions extend in parallel. The i-n stacked unit 21 includes an i-type amorphous silicon layer 22 and an n-type amorphous silicon layer 23.
 i型非晶質シリコン層22は、n型単結晶シリコン基板18の裏面上に形成されるパッシベーション層である。n型非晶質シリコン層23は、i型非晶質シリコン層22上に形成される。i-n積層部21は、裏面に形成される第1の非晶質系半導体層部を構成する。i型非晶質シリコン層22は、真性な非晶質半導体膜からなる層である。i型非晶質シリコン層22は、n型非晶質シリコン層23よりも膜中のドーパント濃度が低くされる。例えば、i型非晶質シリコン層22は、n型又はp型のドーパント濃度を低くし、暗導電率を10-9S/cm以下とすることが好適である。n型非晶質シリコン層23は、n型の導電型のドーパントを含む非晶質半導体膜からなる層である。n型非晶質シリコン層23は、i型非晶質シリコン層22よりも膜中のn型のドーパント濃度が高くされる。例えば、n型非晶質シリコン層23は、暗導電率を10-5S/cm以上とすることが好適である。 The i-type amorphous silicon layer 22 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18. The n-type amorphous silicon layer 23 is formed on the i-type amorphous silicon layer 22. The i-n stacked portion 21 constitutes a first amorphous semiconductor layer portion formed on the back surface. The i-type amorphous silicon layer 22 is a layer made of an intrinsic amorphous semiconductor film. The i-type amorphous silicon layer 22 has a lower dopant concentration in the film than the n-type amorphous silicon layer 23. For example, the i-type amorphous silicon layer 22 preferably has a low n-type or p-type dopant concentration and a dark conductivity of 10 −9 S / cm or less. The n-type amorphous silicon layer 23 is a layer made of an amorphous semiconductor film containing an n-type conductive dopant. The n-type amorphous silicon layer 23 has a higher n-type dopant concentration in the film than the i-type amorphous silicon layer 22. For example, the n-type amorphous silicon layer 23 preferably has a dark conductivity of 10 −5 S / cm or more.
 透明導電層20は、n型非晶質シリコン層23上に形成される。透明導電層20は、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)及び酸化チタン(TiO2)等の金属酸化物のうちの少なくとも1つを含んで構成される。ここでは、透明導電層20はインジウム錫酸化物(ITO)を用いて形成されているものとして説明する。 The transparent conductive layer 20 is formed on the n-type amorphous silicon layer 23. The transparent conductive layer 20 includes at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ). The Here, the transparent conductive layer 20 is described as being formed using indium tin oxide (ITO).
 n側電極部25は、光起電力素子10において発電された電気を集電して取り出すために設けられる電極部である。n側電極部25は、透明導電層26と、金属層27と、第1電極部28と、第2電極部29とを備える。 The n-side electrode part 25 is an electrode part provided for collecting and taking out the electricity generated in the photovoltaic element 10. The n-side electrode unit 25 includes a transparent conductive layer 26, a metal layer 27, a first electrode unit 28, and a second electrode unit 29.
 透明導電層26は、透明導電層20上に形成される。透明導電層26は、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)及び酸化チタン(TiO2)等の金属酸化物のうちの少なくとも1つを含んで構成される。ここでは、透明導電層26はインジウム錫酸化物(ITO)を用いて形成されているものとして説明する。 The transparent conductive layer 26 is formed on the transparent conductive layer 20. The transparent conductive layer 26 includes at least one of metal oxides such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ). The Here, the transparent conductive layer 26 is described as being formed using indium tin oxide (ITO).
 金属層27は、透明導電層26上に形成される。金属層27は、例えば、銅(Cu)等の金属や合金を含んで構成されるシード層である。ここで、「シード層」とは、めっき成長の起点となる層のことをいう。第1電極部28は、めっき成長によって金属層27上に形成される電極である。第1電極部28は、例えば、銅(Cu)を含んで構成される。第2電極部29は、めっき成長によって第1電極部28上に形成される電極である。第2電極部29は、例えば、錫(Sn)を含んで構成される。 The metal layer 27 is formed on the transparent conductive layer 26. The metal layer 27 is a seed layer including a metal such as copper (Cu) or an alloy, for example. Here, the “seed layer” refers to a layer that is a starting point for plating growth. The first electrode portion 28 is an electrode formed on the metal layer 27 by plating growth. The first electrode unit 28 includes, for example, copper (Cu). The second electrode part 29 is an electrode formed on the first electrode part 28 by plating growth. For example, the second electrode unit 29 includes tin (Sn).
 i-p積層部31は、n型単結晶シリコン基板18の裏面上にi-n積層部21と間挿し合うように形成される。i-p積層部31は、n型単結晶シリコン基板18の裏面上からi-n積層部21の縁部上に跨って形成される。即ち、光起電力素子10においては、i-p積層部31とi-n積層部21との積層構造が一部に存在する。 The i-p stacked portion 31 is formed on the back surface of the n-type single crystal silicon substrate 18 so as to be inserted into the i-n stacked portion 21. The ip laminated portion 31 is formed from the back surface of the n-type single crystal silicon substrate 18 to the edge of the i-n laminated portion 21. That is, in the photovoltaic element 10, a part of the laminated structure of the ip laminated part 31 and the in laminated part 21 exists.
 i-p積層部31は、光起電力素子10の面内からまんべんなく集電可能なように配置することが好適である。i-p積層部31は、例えば、複数のフィンガー部が平行に延伸する櫛歯形状とすることが好適である。i-p積層部31は、i型非晶質シリコン層32と、p型非晶質シリコン層33と、を備える。 It is preferable that the ip stacked portion 31 is arranged so that current can be collected evenly from within the surface of the photovoltaic element 10. The ip laminated portion 31 is preferably, for example, in a comb-teeth shape in which a plurality of finger portions extend in parallel. The ip laminated portion 31 includes an i-type amorphous silicon layer 32 and a p-type amorphous silicon layer 33.
 i型非晶質シリコン層32は、n型単結晶シリコン基板18の裏面上に形成されるパッシベーション層である。p型非晶質シリコン層33は、i型非晶質シリコン層32上に形成される。i-p積層部31は、裏面に形成される第2の非晶質系半導体層部を構成する。i型非晶質シリコン層32は、真性な非晶質半導体膜からなる層である。i型非晶質シリコン層32は、p型非晶質シリコン層33よりも膜中のドーパント濃度が低くされる。例えば、i型非晶質シリコン層32は、n型又はp型のドーパント濃度を低くし、暗導電率を10-9S/cm以下とすることが好適である。p型非晶質シリコン層33は、p型の導電型のドーパントを含む非晶質半導体膜からなる層である。p型非晶質シリコン層33は、i型非晶質シリコン層32よりも膜中のp型のドーパント濃度が高くされる。例えば、p型非晶質シリコン層33は、暗導電率を10-8s/cm以上とすることが好適である。 The i-type amorphous silicon layer 32 is a passivation layer formed on the back surface of the n-type single crystal silicon substrate 18. The p-type amorphous silicon layer 33 is formed on the i-type amorphous silicon layer 32. The ip stacked portion 31 constitutes a second amorphous semiconductor layer portion formed on the back surface. The i-type amorphous silicon layer 32 is a layer made of an intrinsic amorphous semiconductor film. The i-type amorphous silicon layer 32 has a lower dopant concentration in the film than the p-type amorphous silicon layer 33. For example, the i-type amorphous silicon layer 32 preferably has a low n-type or p-type dopant concentration and a dark conductivity of 10 −9 S / cm or less. The p-type amorphous silicon layer 33 is a layer made of an amorphous semiconductor film containing a p-type conductive dopant. The p-type amorphous silicon layer 33 has a higher p-type dopant concentration in the film than the i-type amorphous silicon layer 32. For example, the p-type amorphous silicon layer 33 preferably has a dark conductivity of 10 −8 s / cm or more.
 p側電極部35は、光起電力素子10において発電された電気を集電して取り出すために設けられる電極部である。p側電極部35は、透明導電層36と、金属層37と、第1電極部38と、第2電極部39とを備える。透明導電層36は、p型非晶質シリコン層33上に形成される。ここで、透明導電層36の材料等は、透明導電層26と同じであるため、詳細な説明は省略する。金属層37は、透明導電層36上に形成される。ここで、金属層37の材料等は、金属層27と同じであるため、詳細な説明は省略する。第1電極部38は、めっき成長によって金属層37上に形成される。ここで、第1電極部38の材料等は、第1電極部28と同じであるため、詳細な説明は省略する。第2電極部39は、めっき成長によって第1電極部38上に形成される。ここで、第2電極部39の材料等は、第2電極部29と同じであるため、詳細な説明は省略する。 The p-side electrode part 35 is an electrode part provided for collecting and taking out the electricity generated in the photovoltaic element 10. The p-side electrode part 35 includes a transparent conductive layer 36, a metal layer 37, a first electrode part 38, and a second electrode part 39. The transparent conductive layer 36 is formed on the p-type amorphous silicon layer 33. Here, since the material and the like of the transparent conductive layer 36 are the same as those of the transparent conductive layer 26, detailed description thereof is omitted. The metal layer 37 is formed on the transparent conductive layer 36. Here, since the material and the like of the metal layer 37 are the same as those of the metal layer 27, detailed description thereof is omitted. The first electrode portion 38 is formed on the metal layer 37 by plating growth. Here, since the material and the like of the first electrode portion 38 are the same as those of the first electrode portion 28, detailed description thereof is omitted. The second electrode portion 39 is formed on the first electrode portion 38 by plating growth. Here, since the material and the like of the second electrode portion 39 are the same as those of the second electrode portion 29, detailed description thereof is omitted.
 次に、光起電力素子10の製造方法の一例を説明する。図2は、光起電力素子10の製造方法の手順を示すフローチャートである。なお、光起電力素子10の製造方法は、各工程において示す製造方法に限定されない。各工程において、各層の形成は、例えば、スパッタリング法、プラズマCVD法、スクリーン印刷法或いはめっき法等を適宜用いることができる。 Next, an example of a method for manufacturing the photovoltaic element 10 will be described. FIG. 2 is a flowchart showing the procedure of the method for manufacturing the photovoltaic element 10. In addition, the manufacturing method of the photovoltaic element 10 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, or a plating method can be appropriately used for forming each layer.
 まず、n型単結晶シリコン基板18を用意して、n型単結晶シリコン基板18の受光面及び裏面の洗浄を行う(S2)。ここで、n型単結晶シリコン基板18の洗浄は、例えば、HF水溶液等を用いて行うことができる。 First, an n-type single crystal silicon substrate 18 is prepared, and the light receiving surface and the back surface of the n-type single crystal silicon substrate 18 are cleaned (S2). Here, the n-type single crystal silicon substrate 18 can be cleaned using, for example, an HF aqueous solution.
 次に、n型単結晶シリコン基板18の受光面上にテクスチャ構造を形成する(S4)。テクスチャ構造は、異方性エッチングまたは等方性エッチングを用いて行うことができる。そして、図3に示されるように、n型単結晶シリコン基板18の裏面上に、i型非晶質シリコン層22aとn型非晶質シリコン層23aを形成して、その後に、n型単結晶シリコン基板18の受光面上に、i型非晶質シリコン層16とn型非晶質シリコン層14を形成する(S6)。 Next, a texture structure is formed on the light receiving surface of the n-type single crystal silicon substrate 18 (S4). The texture structure can be performed using anisotropic etching or isotropic etching. Then, as shown in FIG. 3, an i-type amorphous silicon layer 22a and an n-type amorphous silicon layer 23a are formed on the back surface of the n-type single crystal silicon substrate 18, and thereafter, an n-type single crystal silicon layer 23a is formed. The i-type amorphous silicon layer 16 and the n-type amorphous silicon layer 14 are formed on the light receiving surface of the crystalline silicon substrate 18 (S6).
 続いて、図4に示されるように、n型非晶質シリコン層23a上に透明導電層20aを形成する(S8)。 Subsequently, as shown in FIG. 4, a transparent conductive layer 20a is formed on the n-type amorphous silicon layer 23a (S8).
 その後、n型非晶質シリコン層14上に反射防止層12を形成する(S10)。 Thereafter, the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S10).
 次に、図5に示されるように、透明導電層20aの一部分をエッチングする(S12)。具体的には、透明導電層20aのうち、後工程でn型単結晶シリコン基板18にi-p積層部31を接合させる領域の上に位置する部分を除去して透明導電層20を形成する。ここで、透明導電層20aのエッチングは、例えば、塩酸(HCl)等の酸性のエッチング液を用いる。 Next, as shown in FIG. 5, a part of the transparent conductive layer 20a is etched (S12). Specifically, the transparent conductive layer 20 is formed by removing a portion of the transparent conductive layer 20a located on a region where the ip stacked portion 31 is bonded to the n-type single crystal silicon substrate 18 in a later step. . Here, the etching of the transparent conductive layer 20a uses, for example, an acidic etching solution such as hydrochloric acid (HCl).
 そして、図6に示されるように、S12においてパターンニングされた透明導電層20をマスクとして用い、i型非晶質シリコン層22aとn型非晶質シリコン層23aをエッチングする(S14)。具体的には、i型非晶質シリコン層22aとn型非晶質シリコン層23aのうち、透明導電層20によって覆われている部分以外の部分を除去する。これにより、n型単結晶シリコン基板18の裏面のうち、上方に透明導電層20が位置していない部分を露出させて、i型非晶質シリコン層22とn型非晶質シリコン層23を形成する。ここで、i型非晶質シリコン層22aとn型非晶質シリコン層23aのエッチングは、例えば、水酸化ナトリウム(NaOH)を含む水溶液等のアルカリ性のエッチング液を用いる。 Then, as shown in FIG. 6, using the transparent conductive layer 20 patterned in S12 as a mask, the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are etched (S14). Specifically, portions of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a other than the portion covered with the transparent conductive layer 20 are removed. As a result, the portion of the back surface of the n-type single crystal silicon substrate 18 where the transparent conductive layer 20 is not located is exposed, and the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23 are formed. Form. Here, for etching the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a, for example, an alkaline etching solution such as an aqueous solution containing sodium hydroxide (NaOH) is used.
 続いて、図7に示されるように、透明導電層20、i型非晶質シリコン層22、n型非晶質シリコン層23及び露出されたn型単結晶シリコン基板18の裏面を覆うように、i型非晶質シリコン層32aとp型非晶質シリコン層33aを形成する(S16)。 Subsequently, as shown in FIG. 7, the transparent conductive layer 20, the i-type amorphous silicon layer 22, the n-type amorphous silicon layer 23 and the exposed back surface of the n-type single crystal silicon substrate 18 are covered. Then, the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a are formed (S16).
 その後、図8に示されるように、i型非晶質シリコン層32a及びp型非晶質シリコン層33aのうち、透明導電層20の上に位置している部分の一部分をエッチングする(S18)。これにより、i型非晶質シリコン層32及びp型非晶質シリコン層33を形成する。 Thereafter, as shown in FIG. 8, a portion of the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a located on the transparent conductive layer 20 is etched (S18). . Thereby, the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are formed.
 次に、透明導電層26a、金属層27aを形成する(S20)。 Next, the transparent conductive layer 26a and the metal layer 27a are formed (S20).
 続いて、図9に示されるように、透明導電層26a及び金属層27aのうち、透明導電層20の上に位置する一部分を分断することにより、透明導電層26,36及び金属層27,37を形成する(S22)。ここで、透明導電層26a及び金属層27aは、例えば、リソグラフィー法等によって分断する。 Subsequently, as shown in FIG. 9, the transparent conductive layers 26 and 36 and the metal layers 27 and 37 are separated by dividing a portion of the transparent conductive layer 26 a and the metal layer 27 a located on the transparent conductive layer 20. Is formed (S22). Here, the transparent conductive layer 26a and the metal layer 27a are divided by, for example, a lithography method.
 その後、図10に示されるように、電解めっきにより、金属層27の上に第1電極部28と第2電極部29を順次形成し、金属層37の上に第1電極部38と第2電極部39を順次形成する(S24)。これにより、n側電極部25とp側電極部35とが形成がされる。 Thereafter, as shown in FIG. 10, the first electrode portion 28 and the second electrode portion 29 are sequentially formed on the metal layer 27 by electrolytic plating, and the first electrode portion 38 and the second electrode portion 29 are formed on the metal layer 37. The electrode portions 39 are sequentially formed (S24). Thereby, the n-side electrode part 25 and the p-side electrode part 35 are formed.
 一般的に、光起電力素子10において、i型非晶質シリコン層22、n型非晶質シリコン層23内では、キャリアの移動度が低い。一方、透明導電層20内では、キャリアの移動度がi型非晶質シリコン層22、n型非晶質シリコン層23内に比べて高い。これにより、透明導電層20内において、i型非晶質シリコン層22、n型非晶質シリコン層23でのキャリアの移動度の低さを補うことでn側電極部25から好適にキャリアを取り出すことができる。なお、透明導電層20を介して、i型非晶質シリコン層22及びn型非晶質シリコン層23と、i型非晶質シリコン層32及びp型非晶質シリコン層33とが電気的に接続されることとなるが、一般的に、i型非晶質シリコン層32、p型非晶質シリコン層33においてもキャリアの移動度が低いことから、キャリアの移動度が高いn側電極部25からキャリアを好適に取り出すことができるため、上記のように電気的に接続されていることは特に大きな問題とならない。 Generally, in the photovoltaic device 10, the carrier mobility is low in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. On the other hand, the carrier mobility is higher in the transparent conductive layer 20 than in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. As a result, in the transparent conductive layer 20, carriers are preferably discharged from the n-side electrode portion 25 by compensating for the low carrier mobility in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. It can be taken out. Note that the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23, and the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are electrically connected via the transparent conductive layer 20. In general, since the carrier mobility is low in the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33, the n-side electrode has a high carrier mobility. Since the carrier can be suitably taken out from the portion 25, the electrical connection as described above does not cause a significant problem.
 また、光起電力素子10において、裏面側には、i-n積層部21上に絶縁層が形成されない。このため、絶縁層をエッチングする工程も存在せず、絶縁層の残渣が透明導電層20、i型非晶質シリコン層22又はn型非晶質シリコン層23に付着することがない。これにより、絶縁層の残渣が存在することによって光起電力素子10のi-n積層部21とn側電極部25との間のシリーズ抵抗が増大してしまうことを防止することができる。したがって、光起電力素子10の発電特性を向上させることができる。 Further, in the photovoltaic element 10, an insulating layer is not formed on the in laminated portion 21 on the back surface side. Therefore, there is no step of etching the insulating layer, and the residue of the insulating layer does not adhere to the transparent conductive layer 20, the i-type amorphous silicon layer 22, or the n-type amorphous silicon layer 23. Thereby, it is possible to prevent the series resistance between the in-stacked portion 21 and the n-side electrode portion 25 of the photovoltaic element 10 from increasing due to the presence of the insulating layer residue. Therefore, the power generation characteristics of the photovoltaic element 10 can be improved.
(第2実施形態)
 図11は、本発明の第2実施形態である光起電力素子11の断面図である。光起電力素子11は、反射防止層12と、n型非晶質シリコン層14と、i型非晶質シリコン層16と、n型単結晶シリコン基板18と、i-n積層部21と、i-p積層部31と、透明導電層20と、絶縁層24と、n側電極部25と、p側電極部35とを含む。ここで、光起電力素子11と、上記第1実施形態である光起電力素子10の相違点は、絶縁層24のみであるため、その相違点を中心に説明する。ここで、図11に示される矢印Aは、光起電力素子11に対して太陽光等の光が入射される方向を示している。
(Second Embodiment)
FIG. 11 is a cross-sectional view of a photovoltaic element 11 according to the second embodiment of the present invention. The photovoltaic device 11 includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an in-layer stack portion 21, It includes an ip laminated portion 31, a transparent conductive layer 20, an insulating layer 24, an n-side electrode portion 25, and a p-side electrode portion 35. Here, since the difference between the photovoltaic element 11 and the photovoltaic element 10 according to the first embodiment is only the insulating layer 24, the difference will be mainly described. Here, an arrow A shown in FIG. 11 indicates a direction in which light such as sunlight is incident on the photovoltaic element 11.
 絶縁層24は、i-n積層部21とi-p積層部31とを電気的に絶縁するために形成される。また、絶縁層24は、透明導電層20上に形成される保護層としても機能する。絶縁層24は、電気的な絶縁性を有する材料であればよく、例えば、窒化アルミニウム、窒化ケイ素、酸化ケイ素及び酸窒化ケイ素等を含んで構成することが好適である。 The insulating layer 24 is formed to electrically insulate the i-n laminated portion 21 and the ip laminated portion 31. The insulating layer 24 also functions as a protective layer formed on the transparent conductive layer 20. The insulating layer 24 may be any material having electrical insulation properties, and preferably includes, for example, aluminum nitride, silicon nitride, silicon oxide, silicon oxynitride, and the like.
 次に、光起電力素子11の製造方法の一例を説明する。図12は、光起電力素子11の製造方法の手順を示すフローチャートである。なお、光起電力素子11の製造方法は、各工程において示す製造方法に限定されない。各工程において、例えば、スパッタリング法、プラズマCVD法、スクリーン印刷法或いはめっき法等を適宜用いることができる。 Next, an example of a method for manufacturing the photovoltaic element 11 will be described. FIG. 12 is a flowchart showing the procedure of the method for manufacturing the photovoltaic element 11. In addition, the manufacturing method of the photovoltaic element 11 is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, a plating method, or the like can be used as appropriate.
 光起電力素子11の製造方法と光起電力素子10の製造方法は、S2~S8の各工程において同じである。そして、光起電力素子11の製造方法と光起電力素子10の製造方法の相違は、S8以降の工程であるため、その相違点を中心に説明する。 The manufacturing method of the photovoltaic element 11 and the manufacturing method of the photovoltaic element 10 are the same in the steps S2 to S8. And since the difference between the manufacturing method of the photovoltaic element 11 and the manufacturing method of the photovoltaic element 10 is a process after S8, it demonstrates centering on the difference.
 まず、S2~S8の工程を行う。S8の後は、図13に示されるように、透明導電層20a上に絶縁層24aを形成するとともに、n型非晶質シリコン層14上に反射防止層12を形成する(S30)。 First, steps S2 to S8 are performed. After S8, as shown in FIG. 13, the insulating layer 24a is formed on the transparent conductive layer 20a, and the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S30).
 次に、図14に示されるように、絶縁層24aをエッチングすることにより、絶縁層24aの一部分を除去する(S32)。具体的には、絶縁層24aのうち、後工程でn型単結晶シリコン基板18にi-p積層部31を接合させるための領域の上に位置する部分を除去して絶縁層24bを形成する。ここで、絶縁層24aのエッチングには、例えば、HF水溶液等の酸性のエッチング液を用いる。 Next, as shown in FIG. 14, the insulating layer 24a is etched to remove a part of the insulating layer 24a (S32). Specifically, the insulating layer 24b is formed by removing a portion of the insulating layer 24a located above a region for bonding the ip stacked portion 31 to the n-type single crystal silicon substrate 18 in a later step. . Here, for the etching of the insulating layer 24a, for example, an acidic etching solution such as an HF aqueous solution is used.
 そして、図15に示されるように、S32においてパターンニングされた絶縁層24bをマスクとして用い、透明導電層20aをエッチングする(S34)。これにより、パターンニングされた透明導電層20が形成される。 Then, as shown in FIG. 15, the transparent conductive layer 20a is etched using the insulating layer 24b patterned in S32 as a mask (S34). Thereby, the patterned transparent conductive layer 20 is formed.
 以下、透明導電層20上に絶縁層24bがあることを除けば、第1実施形態のS14,S16,S18と同様の工程を行う。具体的には、図16に示されるように、S14と同様に、S34においてパターンニングされた透明導電層20をマスクとして用い、i型非晶質シリコン層22aとn型非晶質シリコン層23aをエッチングする(S36)。続いて、図17に示されるように、S16と同様に、絶縁層24b、透明導電層20、i型非晶質シリコン層22、n型非晶質シリコン層23及び露出されたn型単結晶シリコン基板18の裏面を覆うように、i型非晶質シリコン層32aとp型非晶質シリコン層33aを形成する(S38)。その後、図18に示されるように、S18と同様に、i型非晶質シリコン層32a及びp型非晶質シリコン層33aのうち、絶縁層24bの上に位置している部分の一部分をエッチングする(S40)。 Hereinafter, the same steps as S14, S16, and S18 of the first embodiment are performed except that the insulating layer 24b is present on the transparent conductive layer 20. Specifically, as shown in FIG. 16, similarly to S14, using the transparent conductive layer 20 patterned in S34 as a mask, the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are used. Is etched (S36). Subsequently, as shown in FIG. 17, as in S16, the insulating layer 24b, the transparent conductive layer 20, the i-type amorphous silicon layer 22, the n-type amorphous silicon layer 23, and the exposed n-type single crystal. An i-type amorphous silicon layer 32a and a p-type amorphous silicon layer 33a are formed so as to cover the back surface of the silicon substrate 18 (S38). Thereafter, as shown in FIG. 18, as in S18, a part of the portion of the i-type amorphous silicon layer 32a and the p-type amorphous silicon layer 33a located on the insulating layer 24b is etched. (S40).
 次に、図19に示されるように、絶縁層24bをエッチングすることにより、絶縁層24bの一部分をさらに除去する(S42)。具体的には、i型非晶質シリコン層32及びp型非晶質シリコン層33をマスクとして用い、絶縁層24bの露出部分をエッチングにより除去することで絶縁層24を形成する。 Next, as shown in FIG. 19, a part of the insulating layer 24b is further removed by etching the insulating layer 24b (S42). Specifically, the insulating layer 24 is formed by removing the exposed portion of the insulating layer 24b by etching using the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 as a mask.
 その後、露出した透明導電層20の表面の洗浄を行う(S44)。これにより、S42において、仮に絶縁層24aの残渣が透明導電層20に付着している場合であっても好適に取り除くことができる。ここで、露出した透明導電層20の表面の洗浄は、例えば、HF水溶液等を用いて行うことができる。 Thereafter, the exposed surface of the transparent conductive layer 20 is cleaned (S44). Thereby, even if it is a case where the residue of the insulating layer 24a has adhered to the transparent conductive layer 20, in S42, it can remove suitably. Here, the cleaning of the exposed surface of the transparent conductive layer 20 can be performed using, for example, an HF aqueous solution.
 そして、透明導電層26a、金属層27aを形成する(S46)。続いて、図20に示されるように、S22と同様に、透明導電層26a及び金属層27aのうち、絶縁層24の上に位置する一部分を分断することにより、透明導電層26,36及び金属層27,37を形成する(S48)。その後、図21に示されるように、S24と同様に、電解めっきにより、金属層27の上に第1電極部28と第2電極部29を順次形成し、金属層37の上に第1電極部38と第2電極部39を形成する(S50)。これにより、n側電極部25とp側電極部35とが形成がされる。 Then, the transparent conductive layer 26a and the metal layer 27a are formed (S46). Subsequently, as shown in FIG. 20, similarly to S22, the transparent conductive layers 26 and 36 and the metal layer 27a and the metal layer 27a are separated from each other by dividing a part located on the insulating layer 24. Layers 27 and 37 are formed (S48). After that, as shown in FIG. 21, the first electrode portion 28 and the second electrode portion 29 are sequentially formed on the metal layer 27 by electrolytic plating as in S24, and the first electrode is formed on the metal layer 37. The part 38 and the second electrode part 39 are formed (S50). Thereby, the n-side electrode part 25 and the p-side electrode part 35 are formed.
 一般的に、光起電力素子11において、i型非晶質シリコン層22、n型非晶質シリコン層23内では、キャリアの移動度が低い。一方、透明導電層20内では、キャリアの移動度がi型非晶質シリコン層22、n型非晶質シリコン層23内に比べて高い。これにより、透明導電層20内において、i型非晶質シリコン層22、n型非晶質シリコン層23でのキャリアの移動度の低さを補うことでn側電極部25から好適にキャリアを取り出すことができる。なお、透明導電層20を介して、i型非晶質シリコン層22及びn型非晶質シリコン層23と、i型非晶質シリコン層32及びp型非晶質シリコン層33とが電気的に接続されることとなるが、一般的に、i型非晶質シリコン層32、p型非晶質シリコン層33においてもキャリアの移動度が低いことから、キャリアの移動度が高いn側電極部25からキャリアを好適に取り出すことができるため、上記のように電気的に接続されていることは特に問題とならない。 Generally, in the photovoltaic element 11, the carrier mobility is low in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. On the other hand, the carrier mobility is higher in the transparent conductive layer 20 than in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. As a result, in the transparent conductive layer 20, carriers are preferably discharged from the n-side electrode portion 25 by compensating for the low carrier mobility in the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. It can be taken out. Note that the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23, and the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33 are electrically connected via the transparent conductive layer 20. In general, since the carrier mobility is low in the i-type amorphous silicon layer 32 and the p-type amorphous silicon layer 33, the n-side electrode has a high carrier mobility. Since the carrier can be suitably taken out from the portion 25, the electrical connection as described above is not particularly problematic.
 また、光起電力素子11の裏面側において、透明導電層20上に絶縁層24が形成されている。すなわち、n型非晶質シリコン層23と絶縁層24との間には、透明導電層20が介在している。ここで、一般的に、透明導電層20は、i型非晶質シリコン層22及びn型非晶質シリコン層23に比べて耐HF性が高い。このため、絶縁層24をエッチングすることで、仮に絶縁層24の残渣が透明導電層20上に残った場合であっても、S44の工程によって当該残渣は除去される。また、HF水溶液を用いて透明導電層20を洗浄した場合であってもHF水溶液による透明導電層20の損傷は極めて小さい。このように、透明導電層20の洗浄の際に、絶縁層24の残渣を除去できる洗浄液を適宜選択することで残渣を無くすことができる。これにより、絶縁層24の残渣が存在することによって光起電力素子11のi-n積層部21とn側電極部25との間のシリーズ抵抗が増大してしまうことを防止することができる。したがって、光起電力素子11の発電特性を向上させることができる。 Further, an insulating layer 24 is formed on the transparent conductive layer 20 on the back side of the photovoltaic element 11. That is, the transparent conductive layer 20 is interposed between the n-type amorphous silicon layer 23 and the insulating layer 24. In general, the transparent conductive layer 20 has higher HF resistance than the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer 23. For this reason, even if the residue of the insulating layer 24 remains on the transparent conductive layer 20 by etching the insulating layer 24, the residue is removed by the process of S44. Further, even when the transparent conductive layer 20 is washed using an HF aqueous solution, the transparent conductive layer 20 is hardly damaged by the HF aqueous solution. As described above, when the transparent conductive layer 20 is cleaned, the residue can be eliminated by appropriately selecting a cleaning solution that can remove the residue of the insulating layer 24. Thereby, it is possible to prevent the series resistance between the in-stacked portion 21 and the n-side electrode portion 25 of the photovoltaic element 11 from increasing due to the presence of the residue of the insulating layer 24. Therefore, the power generation characteristics of the photovoltaic element 11 can be improved.
 さらに、光起電力素子11の裏面側において、透明導電層20上に絶縁層24が形成されているため、i-n積層部21とi-p積層部31との間おける絶縁性能を向上させることができる。 Further, since the insulating layer 24 is formed on the transparent conductive layer 20 on the back surface side of the photovoltaic element 11, the insulating performance between the in laminated portion 21 and the ip laminated portion 31 is improved. be able to.
(第3実施形態)
 図22は、本発明の第3実施形態である光起電力素子11aの断面図である。光起電力素子11aは、反射防止層12と、n型非晶質シリコン層14と、i型非晶質シリコン層16と、n型単結晶シリコン基板18と、i-n積層部21と、i-p積層部31と、透明導電層20と、絶縁層40と、n側電極部25と、p側電極部35とを含む。ここで、光起電力素子11aと、上記第2実施形態である光起電力素子11の相違点は、絶縁層40のみであるため、その相違点を中心に説明する。ここで、図22に示される矢印Aは、光起電力素子11aに対して太陽光等の光が入射される方向を示している。
(Third embodiment)
FIG. 22 is a cross-sectional view of a photovoltaic element 11a according to the third embodiment of the present invention. The photovoltaic element 11a includes an antireflection layer 12, an n-type amorphous silicon layer 14, an i-type amorphous silicon layer 16, an n-type single crystal silicon substrate 18, an i-n stacked portion 21, It includes an ip laminated portion 31, a transparent conductive layer 20, an insulating layer 40, an n-side electrode portion 25 and a p-side electrode portion 35. Here, since the difference between the photovoltaic element 11a and the photovoltaic element 11 according to the second embodiment is only the insulating layer 40, the difference will be mainly described. Here, an arrow A shown in FIG. 22 indicates a direction in which light such as sunlight is incident on the photovoltaic element 11a.
 絶縁層40は、i-n積層部21とi-p積層部31とを電気的に絶縁するために形成される。また、絶縁層40は、透明導電層20上に形成される保護層としても機能する。そして、絶縁層40は、図22に示されるように、透明導電層20の裏面及び側面が露出することがないように、透明導電層20の裏面及び側面を覆うように形成されている。「側面」とは、透明導電層20の厚み方向に沿った面を意味する。また、絶縁層40は、電気的な絶縁性を有する材料であればよいが、例えば、窒化アルミニウム、窒化ケイ素、酸化ケイ素及び酸窒化ケイ素等を含んで構成することが好適である。 The insulating layer 40 is formed to electrically insulate the i-n laminated portion 21 and the i-p laminated portion 31. The insulating layer 40 also functions as a protective layer formed on the transparent conductive layer 20. And the insulating layer 40 is formed so that the back surface and side surface of the transparent conductive layer 20 may be covered so that the back surface and side surface of the transparent conductive layer 20 may not be exposed, as FIG. 22 shows. The “side surface” means a surface along the thickness direction of the transparent conductive layer 20. The insulating layer 40 may be any material having electrical insulating properties, but preferably includes, for example, aluminum nitride, silicon nitride, silicon oxide, silicon oxynitride, and the like.
 次に、光起電力素子11aの製造方法の一例を説明する。図23は、光起電力素子11aの製造方法の手順を示すフローチャートである。なお、光起電力素子11aの製造方法は、各工程において示す製造方法に限定されない。各工程において、各層の形成は、例えば、スパッタリング法、プラズマCVD法、スクリーン印刷法或いはめっき法等を適宜用いることができる。 Next, an example of a method for manufacturing the photovoltaic element 11a will be described. FIG. 23 is a flowchart showing a procedure of a manufacturing method of the photovoltaic element 11a. In addition, the manufacturing method of the photovoltaic element 11a is not limited to the manufacturing method shown in each process. In each step, for example, a sputtering method, a plasma CVD method, a screen printing method, or a plating method can be appropriately used for forming each layer.
 光起電力素子11aの製造方法と光起電力素子11の製造方法は、S2~S8の各工程において同じである。そして、光起電力素子11aの製造方法と光起電力素子11の製造方法の相違は、S8以降の工程であるため、その相違点を中心に説明する。 The manufacturing method of the photovoltaic element 11a and the manufacturing method of the photovoltaic element 11 are the same in the steps S2 to S8. And since the difference between the manufacturing method of the photovoltaic element 11a and the manufacturing method of the photovoltaic element 11 is the process after S8, it demonstrates centering on the difference.
 まず、S2~S8の工程を行う。S8の後は、パターンニング用のマスクを用い、図24に示されるように、透明導電層20aをエッチングする(S30a)。 First, steps S2 to S8 are performed. After S8, the transparent conductive layer 20a is etched using a patterning mask as shown in FIG. 24 (S30a).
 そして、図25に示されるように、透明導電層20上に絶縁層40aを形成するとともに、n型非晶質シリコン層14上に反射防止層12を形成する(S32a)。次に、絶縁層40aによって透明導電層20の側面が覆われた部分が残るように予め設計されたパターンニング用のマスクを用い、エッチングすることにより、図26に示されるように、絶縁層40aの一部分を除去する(S34a)。具体的には、絶縁層40aのうち、後工程でn型単結晶シリコン基板18にi-p積層部31を接合させる領域の上に位置する部分を除去して絶縁層40bを形成する。また、S34aの工程において用いられるマスクは、透明導電層20の幅よりも絶縁層40bの幅が大きくなるように予め設計されているため、図26に示されるように、絶縁層40bが透明導電層20の裏面及び側面が露出することがないように、透明導電層20の裏面及び側面を覆っている。ここで、絶縁層40aのエッチングには、例えば、HF水溶液等の酸性のエッチング液を用いる。 Then, as shown in FIG. 25, the insulating layer 40a is formed on the transparent conductive layer 20, and the antireflection layer 12 is formed on the n-type amorphous silicon layer 14 (S32a). Next, as shown in FIG. 26, the insulating layer 40a is etched by using a patterning mask designed in advance so as to leave a portion where the side surface of the transparent conductive layer 20 is covered with the insulating layer 40a. Is removed (S34a). Specifically, the insulating layer 40b is formed by removing a portion of the insulating layer 40a located on a region where the ip stacked portion 31 is bonded to the n-type single crystal silicon substrate 18 in a later step. In addition, since the mask used in step S34a is designed in advance so that the width of the insulating layer 40b is larger than the width of the transparent conductive layer 20, the insulating layer 40b is transparent conductive as shown in FIG. The back surface and side surface of the transparent conductive layer 20 are covered so that the back surface and side surface of the layer 20 are not exposed. Here, for the etching of the insulating layer 40a, for example, an acidic etching solution such as an HF aqueous solution is used.
 そして、S34aにおいてパターンニングされた絶縁層40bをマスクとして用い、i型非晶質シリコン層22aとn型非晶質シリコン層23aをエッチングする(S36a)。具体的には、i型非晶質シリコン層22aとn型非晶質シリコン層23aのうち、透明導電層20及び絶縁層40bによって覆われている部分以外の部分を除去する。これにより、n型単結晶シリコン基板18の裏面のうち、上方に透明導電層20及び絶縁層40bが位置していない部分を露出させて、i型非晶質シリコン層22とn型非晶質シリコン層23を形成する。 Then, using the insulating layer 40b patterned in S34a as a mask, the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a are etched (S36a). Specifically, portions of the i-type amorphous silicon layer 22a and the n-type amorphous silicon layer 23a other than the portions covered by the transparent conductive layer 20 and the insulating layer 40b are removed. As a result, the portion of the back surface of the n-type single crystal silicon substrate 18 where the transparent conductive layer 20 and the insulating layer 40b are not located is exposed, so that the i-type amorphous silicon layer 22 and the n-type amorphous silicon layer are exposed. A silicon layer 23 is formed.
 続いて、光起電力素子11の製造方法と同様にS38~S40の工程を行う。そして、S42と同様に、絶縁層40bをエッチングすることにより、絶縁層40bの一部分をさらに除去する(S42a)。その後、光起電力素子11の製造方法と同様にS44~S50の工程を行う。これにより、図27に示される光起電力素子11aが形成される。 Subsequently, steps S38 to S40 are performed in the same manner as in the method of manufacturing the photovoltaic element 11. Then, as in S42, the insulating layer 40b is etched to further remove a part of the insulating layer 40b (S42a). Thereafter, steps S44 to S50 are performed in the same manner as in the method of manufacturing the photovoltaic element 11. Thereby, the photovoltaic element 11a shown in FIG. 27 is formed.
 ここで、光起電力素子11aは、キャリアの移動度の高い透明導電層20を有する限りにおいて、光起電力素子10,11と同様にn側電極部25から好適にキャリアを取り出すことができる。 Here, as long as the photovoltaic element 11a has the transparent conductive layer 20 with high carrier mobility, it is possible to suitably take out carriers from the n-side electrode portion 25 as in the photovoltaic elements 10 and 11.
 また、光起電力素子11aは、耐HF性の高い透明導電層20を有する限りにおいて、光起電力素子11と同様にHF水溶液を用いて絶縁層40の残渣を除去することができる。これにより、光起電力素子11aのi-n積層部21とn側電極部25との間のシリーズ抵抗が増大してしまうことを防止することができる。 Further, as long as the photovoltaic element 11a has the transparent conductive layer 20 with high HF resistance, the residue of the insulating layer 40 can be removed using an HF aqueous solution in the same manner as the photovoltaic element 11. Thereby, it is possible to prevent an increase in series resistance between the i-n stacked portion 21 and the n-side electrode portion 25 of the photovoltaic element 11a.
 さらに、光起電力素子11aでは、透明導電層20の裏面だけでなく側面も絶縁層40によって覆われているため、i-n積層部21とi-p積層部31との間における絶縁性能をさらに向上させることができる。 Further, in the photovoltaic element 11a, not only the back surface of the transparent conductive layer 20 but also the side surfaces thereof are covered with the insulating layer 40, so that the insulating performance between the in laminated portion 21 and the ip laminated portion 31 is improved. Further improvement can be achieved.
 なお、上記第1~3実施形態において、i-n積層部21上の一部にi-p積層部31が積層されているが、これに限らない。i-p積層部31を先に形成し、その後i-n積層部21を形成することにより、i-p積層部31上の一部にi-n積層部21が積層されていても良い。 In the first to third embodiments, the ip stack part 31 is stacked on a part of the in stack part 21, but the present invention is not limited to this. The i-n laminated part 21 may be laminated on a part of the ip laminated part 31 by forming the ip laminated part 31 first and then forming the i-n laminated part 21.
 また、i-n積層部21とi-p積層部31を有するものとして説明したが、i-n積層部21をn型非晶質層のみで構成してもよく、i-p積層部31をp型非晶質層のみで構成してもよい。 Further, although the description has been made on the assumption that the i-n laminated portion 21 and the i-p laminated portion 31 are provided, the i-n laminated portion 21 may be formed of only an n-type amorphous layer. May be composed of only a p-type amorphous layer.
 また、透明導電層20を有するものとして説明したが、透明導電層20の代わりに、導電性が高く、耐HF性の高い金属層、例えば、銅(Cu)、銀(Ag)等を用いてもよい。 Moreover, although demonstrated as what has the transparent conductive layer 20, instead of the transparent conductive layer 20, using a metal layer with high electroconductivity and high HF resistance, for example, copper (Cu), silver (Ag), etc. Also good.
 10,11,11a 光起電力素子、12 反射防止層、14 n型非晶質シリコン層、16 i型非晶質シリコン層、18 n型単結晶シリコン基板、20,20a 透明導電層、21 i-n積層部、22,22a i型非晶質シリコン層、23,23a n型非晶質シリコン層、24,24a,24b 絶縁層、25 n側電極部、26,26a,36 透明導電層、27,27a,37 金属層、28,38 第1電極部、29,39 第2電極部、31 i-p積層部、32,32a i型非晶質シリコン層、33,33a p型非晶質シリコン層、35 p側電極部、40a,40b 絶縁層。 10, 11, 11a Photovoltaic element, 12 Antireflection layer, 14 n-type amorphous silicon layer, 16 i-type amorphous silicon layer, 18 n-type single crystal silicon substrate, 20, 20a transparent conductive layer, 21 i -N stacked portion, 22, 22a i-type amorphous silicon layer, 23, 23a n-type amorphous silicon layer, 24, 24a, 24b insulating layer, 25 n-side electrode portion, 26, 26a, 36 transparent conductive layer, 27, 27a, 37 metal layer, 28, 38 first electrode part, 29, 39 second electrode part, 31 ip stacked part, 32, 32a i-type amorphous silicon layer, 33, 33a p-type amorphous Silicon layer, 35 p-side electrode part, 40a, 40b insulating layer.

Claims (11)

  1.  結晶系半導体基板と、
     第1導電型の層を含み、前記結晶系半導体基板の一方の表面の第1領域において前記表面上に積層された第1非晶質系半導体層部と、
     第2導電型の層を含み、前記一方の表面の第2領域上及び前記第1非晶質系半導体層部の一部上に跨って積層された第2非晶質系半導体層部と、
     前記第1非晶質系半導体層部の一部と前記第2非晶質系半導体層部との間に配された導電層と、
     を備える、光起電力素子。
    A crystalline semiconductor substrate;
    A first amorphous semiconductor layer portion including a layer of a first conductivity type and stacked on the surface in a first region of one surface of the crystalline semiconductor substrate;
    A second amorphous semiconductor layer portion including a layer of a second conductivity type and stacked over the second region of the one surface and a part of the first amorphous semiconductor layer portion;
    A conductive layer disposed between a part of the first amorphous semiconductor layer portion and the second amorphous semiconductor layer portion;
    A photovoltaic device comprising:
  2.  請求項1に記載の光起電力素子において、
     前記導電層と前記第2非晶質系半導体層部との間に配された絶縁層をさらに備える。
    The photovoltaic device according to claim 1, wherein
    The semiconductor device further includes an insulating layer disposed between the conductive layer and the second amorphous semiconductor layer portion.
  3.  請求項2に記載の光起電力素子において、
     前記絶縁層は、前記導電層の前記第2領域側の側面を覆うように設けられる。
    The photovoltaic device according to claim 2, wherein
    The insulating layer is provided so as to cover a side surface of the conductive layer on the second region side.
  4.  請求項1から請求項3のいずれか1項に記載の光起電力素子において、
     前記導電層は、酸化インジウム、酸化亜鉛、酸化錫及び酸化チタンのいずれか1つを含む。
    In the photovoltaic device according to any one of claims 1 to 3,
    The conductive layer includes any one of indium oxide, zinc oxide, tin oxide, and titanium oxide.
  5.  請求項2から請求項4のいずれか1項に記載の光起電力素子において、
     前記絶縁層は、窒化アルミニウム、窒化ケイ素、酸化ケイ素及び酸窒化ケイ素のいずれか1つを含む。
    In the photovoltaic device according to any one of claims 2 to 4,
    The insulating layer includes any one of aluminum nitride, silicon nitride, silicon oxide, and silicon oxynitride.
  6.  請求項1から請求項5のいずれか1項に記載の光起電力素子において、
     第1非晶質系半導体層部の表面上に、前記導電層に電気的に接続された電極を有する。
    In the photovoltaic device according to any one of claims 1 to 5,
    An electrode electrically connected to the conductive layer is provided on the surface of the first amorphous semiconductor layer portion.
  7.  請求項1から請求項6のいずれか1項に記載の光起電力素子において、
     前記結晶系半導体基板は、前記第1導電型を有する。
    In the photovoltaic device according to any one of claims 1 to 6,
    The crystalline semiconductor substrate has the first conductivity type.
  8.  請求項1から請求項7のいずれか1項に記載の光起電力素子において、
     前記結晶系半導体基板の他方の表面上に積層された、非晶質系半導体層部を備える。
    In the photovoltaic device according to any one of claims 1 to 7,
    An amorphous semiconductor layer portion is provided on the other surface of the crystalline semiconductor substrate.
  9.  請求項1から請求項8のいずれか1項に記載の光起電力素子において、
     前記非晶質系半導体層部は、前記結晶系半導体基板と同導電型の層を含む。
    In the photovoltaic device according to any one of claims 1 to 8,
    The amorphous semiconductor layer portion includes a layer having the same conductivity type as that of the crystalline semiconductor substrate.
  10.  請求項1から9のいずれか1項に記載の光起電力素子において、
     前記非晶質系半導体層部の表面上に積層された、反射防止層を備える。
    In the photovoltaic device according to any one of claims 1 to 9,
    An antireflection layer is provided on the surface of the amorphous semiconductor layer.
  11.  請求項1から10のいずれか1項に記載の光起電力素子において、
     前記結晶系半導体基板の他方の主面の全面に、光が入射する。
    In the photovoltaic device according to any one of claims 1 to 10,
    Light is incident on the entire other main surface of the crystalline semiconductor substrate.
PCT/JP2011/072452 2011-03-25 2011-09-29 Photovoltaic element WO2012132064A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-067832 2011-03-25
JP2011067832 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012132064A1 true WO2012132064A1 (en) 2012-10-04

Family

ID=46929871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072452 WO2012132064A1 (en) 2011-03-25 2011-09-29 Photovoltaic element

Country Status (1)

Country Link
WO (1) WO2012132064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168180A1 (en) * 2017-03-17 2018-09-20 株式会社カネカ Solar cell and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
JP2009200267A (en) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd Solar cell
WO2010113750A1 (en) * 2009-03-30 2010-10-07 三洋電機株式会社 Solar cell
JP2010258043A (en) * 2009-04-21 2010-11-11 Sanyo Electric Co Ltd Solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009096539A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Solar battery element and solar battery element manufacturing method
JP2009200267A (en) * 2008-02-21 2009-09-03 Sanyo Electric Co Ltd Solar cell
WO2010113750A1 (en) * 2009-03-30 2010-10-07 三洋電機株式会社 Solar cell
JP2010258043A (en) * 2009-04-21 2010-11-11 Sanyo Electric Co Ltd Solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168180A1 (en) * 2017-03-17 2018-09-20 株式会社カネカ Solar cell and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5891382B2 (en) Method for manufacturing photoelectric conversion element
JP5705968B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5879538B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5820988B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2012132655A1 (en) Back-junction photoelectric conversion element and method for manufacturing back-junction photoelectric conversion element
WO2015040780A1 (en) Solar cell and solar cell module
TWI603494B (en) Solar cell
JP6564874B2 (en) Method for manufacturing crystalline silicon-based solar cell and method for manufacturing crystalline silicon-based solar cell module
WO2013094233A1 (en) Solar cell, method for producing same, and solar cell module
US20140024168A1 (en) Method for producing photoelectric conversion device
JP2013131586A (en) Manufacturing method for back electrode type solar cell
JP5820989B2 (en) Method for manufacturing photoelectric conversion element
WO2012132064A1 (en) Photovoltaic element
WO2012132613A1 (en) Method for producing photoelectric conversion element
JP6004946B2 (en) Solar cell and solar cell module
WO2015145886A1 (en) Electrode pattern forming method and solar cell manufacturing method
WO2013046376A1 (en) Solar cell
WO2012132616A1 (en) Method for producing photoelectric conversion element
JP5885677B2 (en) Solar cell module and manufacturing method thereof
JPWO2012132834A1 (en) Solar cell and method for manufacturing solar cell
JP6906195B2 (en) Solar cell
WO2012132654A1 (en) Back-junction photoelectric conversion element and method for manufacturing back-junction photoelectric conversion element
JP6681607B2 (en) Solar cell and method for manufacturing solar cell
WO2012132932A1 (en) Solar cell and method for producing solar cell
JP2015185658A (en) Method of manufacturing solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP