WO2012124015A1 - 非水二次電池 - Google Patents
非水二次電池 Download PDFInfo
- Publication number
- WO2012124015A1 WO2012124015A1 PCT/JP2011/055762 JP2011055762W WO2012124015A1 WO 2012124015 A1 WO2012124015 A1 WO 2012124015A1 JP 2011055762 W JP2011055762 W JP 2011055762W WO 2012124015 A1 WO2012124015 A1 WO 2012124015A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- layer
- electrode mixture
- mixture layer
- current collector
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous secondary battery having a large capacity at the time of high output discharge even when the positive electrode mixture layer is thickened.
- non-aqueous secondary batteries have been desired to have a high capacity at a low cost so that they can be used as secondary batteries for storage batteries such as industrial machinery or solar power generation systems.
- Patent Document 1 discloses that the negative electrode is configured without using a current collecting conductor, thereby increasing the proportion of the active material in the entire negative electrode, and the energy per unit volume and unit mass of the secondary battery. Technologies for improving the density have been proposed.
- Patent Document 2 discloses a non-aqueous secondary battery in which the apparent density of the positive and negative active material layers (electrode mixture layer) and the mass balance between the positive and negative active materials and the current collector are adjusted. .
- capacitance battery from a practical viewpoint can be provided by employ
- JP 2006-4903 A Japanese Patent Application Laid-Open No. 5-74494 JP 2010-86711 A JP 2009-289586 A
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-aqueous secondary battery having a large capacity at the time of high output discharge even if the positive electrode mixture layer is thickened.
- the non-aqueous secondary battery of the present invention that has achieved the above object includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode contains an active material on at least one surface of a current collector.
- the positive electrode mixture layer has a thickness of 70 to 400 ⁇ m and has a plurality of layers, and the layer in contact with the current collector among the plurality of layers has a thickness of 60 ⁇ m.
- the porosity is 1% or more and less than 30%, and the layers other than the layer in contact with the current collector have a porosity of 30% or more.
- FIG. 1 is a partial longitudinal sectional view schematically showing an example of a positive electrode according to the nonaqueous secondary battery of the present invention.
- a positive electrode 10 shown in FIG. 1 has positive electrode mixture layers 20 and 21 containing an active material (positive electrode active material) on both surfaces of a current collector 30.
- the positive electrode mixture layer 20 has two layers 20a and 20b with different porosity, and the positive electrode mixture layer 21 also has two layers 21a and 21b with different porosity.
- the positive electrode according to the nonaqueous secondary battery of the present invention has a positive electrode mixture layer containing an active material on at least one surface of the current collector, and the positive electrode mixture layer has a thickness of 70.
- the layer in contact with the current collector among the plurality of layers (20a and 21a in the positive electrode shown in FIG. 1) has a thickness of 60 ⁇ m or less and a porosity of about 400 ⁇ m.
- the porosity of the layers other than the layer that is 1% or more and less than 30% and is in contact with the current collector (in the positive electrode shown in FIG. 1, 20b and 21b) is 30% or more.
- the positive electrode active material is usually secondary particles in which primary particles are aggregated.
- the positive electrode active material in which the secondary particles are aggregated is dispersed in the positive electrode mixture layer of the positive electrode, the area that can be involved in the battery reaction in the positive electrode active material is reduced.
- increasing the density of the positive electrode mixture layer and increasing the amount of the positive electrode active material to increase the capacity reduces voids in the positive electrode mixture layer, lowers the permeability of the nonaqueous electrolyte, and makes contact with the nonaqueous electrolyte.
- the surface area (that is, the reaction area of the positive electrode active material) of the positive electrode active material that can be reduced.
- Such a phenomenon does not cause much problems when the positive electrode mixture layer is thin, but becomes obvious when the positive electrode mixture layer becomes thicker, for example, 70 ⁇ m or more, and the resistance inside the layer increases.
- the problem due to the above phenomenon becomes more remarkable at the time of high output discharge in which the resistance in the positive electrode mixture layer is increased as compared with that at the time of low output discharge, and as a result, the capacity of the positive electrode mixture layer is sufficiently increased. It cannot be pulled out, and the discharge capacity decreases.
- the positive electrode mixture layer has a multilayer structure, and among these layers, in the layer having a relatively low internal resistance by contacting the current collector, the porosity is reduced and the positive electrode active layer is reduced.
- the porosity is increased, and the nonaqueous electrolyte interface in the positive electrode mixture layer is increased.
- the problem caused by increasing the thickness of the positive electrode mixture layer related to the nonaqueous secondary battery is, for example, that the positive electrode mixture layer is a single layer and the porosity thereof is increased so that It is also conceivable to increase the reaction area with the water electrolyte interface and to improve the permeability of the non-aqueous electrolyte into the positive electrode mixture layer to suppress a decrease in discharge capacity during high-power discharge.
- the positive electrode mixture layer is subjected to press treatment for controlling the thickness and density (porosity) of the positive electrode mixture layer (details will be described later)
- the positive electrode mixture layer is a single layer and the thickness is If it is large, a strong press is applied locally, and the distribution of pores tends to be uneven.
- the positive electrode mixture layer has a multilayer structure, so a layer in contact with the current collector is first formed, and then a layer in contact with this layer is formed.
- the positive electrode mixture layer is formed step by step. Since the thickness of each layer constituting the positive electrode mixture layer is smaller than the total thickness of the positive electrode mixture layer, the pore distribution in each of these layers becomes relatively uniform. Therefore, in the nonaqueous secondary battery of the present invention, the effect of better suppressing the reduction in discharge capacity during high output discharge can be expected due to the uniformity of the pore distribution of each layer constituting the positive electrode mixture layer.
- the positive electrode according to the non-aqueous secondary battery of the present invention and the positive electrode mixture layer having a single positive electrode mixture layer with a large overall porosity the same amount of positive electrode active material is charged. (That is, when the positive electrode capacity is the same), the positive electrode mixture layer has a multilayer structure, and the porosity is changed between the layer in contact with the current collector and the other layers.
- the positive electrode can make the positive electrode mixture layer thinner. Therefore, the nonaqueous secondary battery of the present invention has an advantage that the increase in the thickness of the positive electrode can be suppressed as much as possible while increasing the capacity.
- the layer in contact with the current collector is used from the viewpoint of increasing the battery capacity per unit volume by increasing the filling amount of the positive electrode active material.
- the porosity is less than 30% and preferably 25% or less. However, if the porosity of the layer in contact with the current collector of the positive electrode mixture layer is too small, there is a possibility that the capacity cannot be sufficiently extracted. Therefore, the porosity is 1% or more, 15% The above is preferable.
- the layer other than the layer in contact with the current collector may be a single layer or a plurality (two layers, three layers, four layers, etc.)
- the number of layers is preferably small, and more preferably one layer. That is, the positive electrode material mixture layer is more preferably composed of two layers including a layer in contact with the current collector.
- the layers other than the layer in contact with the current collector have good nonaqueous electrolyte permeability, and the overall porosity is 30% or more from the viewpoint of suppressing a decrease in discharge capacity during high output discharge. Yes, it is preferably 35% or more.
- the porosity of the layers other than the layer in contact with the current collector is preferably 45% or less.
- the porosity of the layer in contact with the current collector and the porosity of the layers other than the layer in contact with the current collector are obtained by scanning a cross-sectional image in the thickness direction of the positive electrode mixture layer with a scanning electron microscope ( This is a value measured by the following procedure using a SEM image taken at a magnification of 1000 times.
- the captured image is read using image analysis software ("A Image-kun” manufactured by Asahi Kasei Engineering).
- Cut out the layer whose porosity is to be measured in the image (a layer in contact with the current collector or a layer other than a layer in contact with the current collector).
- the void portion is extracted using the command “particle extraction”.
- the command “binarization processing” is performed at the threshold value.
- the hole area ratio is calculated using the command “area ratio measurement”, and the value is set as the porosity of the measurement target layer.
- the positive electrode active material contained in the positive electrode mixture layer relating to the positive electrode of the nonaqueous secondary battery of the present invention is the same as various positive electrode active materials used in conventionally known nonaqueous secondary batteries. Although it can be used, it is preferable to use a lithium-containing composite oxide having a spinel structure containing Mn. Since the spinel-structured lithium-containing composite oxide containing Mn is excellent in thermal stability, for example, a highly safe non-aqueous secondary battery can be configured.
- the lithium-containing composite oxide having a spinel structure containing Mn includes a general formula Li 1 + x M 2 O 4 (wherein ⁇ 0.1 ⁇ x ⁇ 0.1, and M is at least one type including Mn.
- a composite oxide represented by the above-described elements and represented by the Mn atomic ratio of all elements constituting M is 70 mol% or more is preferably used.
- lithium-containing composite oxide having a spinel structure containing Mn include, for example, spinel manganese composite oxides represented by compositions such as LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 ; Some of the elements related to the manganese composite oxide are replaced with other elements such as Ca, Mg, Sr, Sc, Zr, V, Nb, W, Cr, Mo, Fe, Co, Ni, Zn, Al, Si, and Ga. Lithium-containing composite oxides having a spinel structure substituted with elements such as Ge, Sn, etc. (such as lithium-containing composite oxides containing Mn and one or more of the above-exemplified elements as element M in the general formula); Etc.
- a positive electrode active material other than a spinel-structured lithium-containing composite oxide containing Mn can be used as such a positive electrode active material.
- a positive electrode active material for example, a layered structure represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, etc.) And an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.).
- Specific examples of the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.).
- the positive electrode active material In the positive electrode active material according to the non-aqueous secondary battery of the present invention, only one of the above-described various positive electrode active materials may be used, or two or more of them may be used in combination.
- a spinel-structured lithium-containing composite oxide containing Mn As the above, it is preferable to use a spinel-structured lithium-containing composite oxide containing Mn as the positive electrode active material, which is used alone, or contains this and the exemplified Mn. It is desirable to use together with a positive electrode active material other than the spinel-structured lithium-containing composite oxide (hereinafter referred to as “other positive electrode active material”).
- the content of the lithium-containing composite oxide having a spinel structure containing Mn in the total positive electrode active material is: It is preferable that it is 70 mass% or more, and it is more preferable that it is 80 mass% or more.
- the positive electrode mixture layer preferably contains a conductive additive or a binder.
- the conductive assistant include acetylene black; ketjen black; carbon blacks such as channel black, furnace black, lamp black, and thermal black; carbon materials such as carbon fibers; and conductive fibers such as metal fibers.
- binder related to the positive electrode mixture layer examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polyvinylpyrrolidone (PVP). It is done.
- PVDF polyvinylidene fluoride
- PTFE polytetrafluoroethylene
- SBR styrene butadiene rubber
- CMC carboxymethyl cellulose
- PVP polyvinylpyrrolidone
- composition of the positive electrode mixture layer is, for example, 80.0 to 99.3 mass% for the positive electrode active material, 0.1 to 10 mass% for the conductive assistant, and 0.1 to 10 mass% for the binder. It is preferable.
- the thickness of the positive electrode mixture layer (when the positive electrode mixture layer is provided on both sides of the current collector, the thickness per side of the current collector. The same applies to the thickness of the positive electrode mixture layer). From the viewpoint of achieving the above, it is 70 ⁇ m or more, and preferably 100 ⁇ m or more. However, if the positive electrode mixture layer is too thick, lithium ion diffusion polarization increases and the internal resistance of the battery increases. Therefore, the thickness of the positive electrode mixture layer is 400 ⁇ m or less, and preferably 200 ⁇ m or less.
- the thickness of the layer in contact with the current collector is 60 ⁇ m or less, and preferably 35 ⁇ m or less. If the layer in contact with the current collector is too thick, the resistance in the vicinity of the surface on the side opposite to the current collector of this layer increases, and the effect of suppressing the decrease in discharge capacity during high-power discharge is reduced. Further, if the layer in contact with the current collector of the positive electrode mixture layer is too thin, the capacity per unit volume of the battery may be reduced. Therefore, the thickness of the layer in contact with the current collector is 5 ⁇ m or more. The thickness is preferably 10 ⁇ m or more.
- the positive electrode current collector aluminum foil, punching metal, net, expanded metal, or the like can be used, but aluminum foil is usually used.
- the thickness of the positive electrode current collector is preferably 10 to 30 ⁇ m.
- the positive electrode can be manufactured, for example, by the following method. First, a positive electrode mixture containing a positive electrode active material, a conductive additive and a binder is dispersed in a solvent [an organic solvent such as N-methyl-2-pyrrolidone (NMP) or water] to form a positive electrode mixture-containing composition ( Paste, slurry, etc.) are prepared, applied to the surface of the current collector, dried, and subjected to a press treatment to form a layer in contact with the current collector. Then, the positive electrode mixture-containing composition is applied to the surface of the layer in contact with the current collector, dried and subjected to a press treatment, and then the layer in contact with the current collector is subjected to the pressing process. Other layers are formed. When a plurality of layers other than the layer in contact with the current collector are provided, the steps of applying, drying, and pressing the positive electrode mixture-containing composition may be sequentially repeated as many times as necessary.
- a solvent an organic solvent such as N-methyl-2-pyrrolidon
- the porosity of each layer in the positive electrode mixture layer can be determined by, for example, selecting the conditions of the press treatment to be applied after the positive electrode mixture-containing composition is applied to the current collector or the surface of the previously formed layer and dried. Can be adjusted. Usually, in order to increase the density of the positive electrode mixture layer, press treatment is performed at a relatively large linear pressure. In the positive electrode according to the present invention, first, when forming a layer in contact with the current collector, the normal positive electrode is applied.
- the press treatment may be performed at the same linear pressure as that of the press treatment, specifically, for example, a linear pressure of about 100 to 400 kgf / cm, and when a layer other than the layer in contact with the current collector is formed, for example, 10
- the press treatment may be performed with a linear pressure of about 200 kgf / cm and smaller than the linear pressure during the press treatment applied to the layer in contact with the current collector.
- the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the positive electrode may be any of the positive electrodes described above.
- Other configurations and structures are not particularly limited, and are conventionally known. The configuration and structure employed in the non-aqueous secondary battery used can be applied.
- the negative electrode for example, one having a negative electrode mixture layer containing a negative electrode active material or a binder on at least one surface of the current collector can be used.
- the negative electrode active material examples include graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite; graphitizable carbonaceous materials such as coke obtained by firing pitch; furfuryl alcohol resin (PFA) ), Polyparaphenylene (PPP), and a non-graphitizable carbonaceous material such as amorphous carbon obtained by baking a phenol resin at a low temperature.
- graphite materials such as natural graphite (flaky graphite), artificial graphite, and expanded graphite
- graphitizable carbonaceous materials such as coke obtained by firing pitch
- lithium or a lithium-containing compound can also be used as the negative electrode active material.
- the lithium-containing compound include a lithium alloy such as Li—A
- the same binders as those exemplified above as those that can be used for the positive electrode mixture layer can be used.
- the negative electrode mixture layer may contain a conductive aid as necessary.
- the conductive auxiliary agent related to the negative electrode mixture layer the same conductive auxiliary agents as those exemplified above as those that can be used for the positive electrode mixture layer can be used.
- the negative electrode active material is preferably 80.0 to 99.8% by mass and the binder is preferably 0.1 to 10% by mass.
- the amount of the conductive additive in the negative electrode mixture layer is preferably 0.1 to 10% by mass.
- the thickness of the negative electrode mixture layer (when the negative electrode mixture layer is provided on both sides of the current collector, the thickness per side of the current collector) is preferably 70 to 350 ⁇ m.
- the negative electrode is, for example, a negative electrode mixture-containing composition prepared by dispersing a negative electrode mixture containing a negative electrode active material and a binder and, if necessary, a conductive auxiliary agent in a solvent (an organic solvent such as NMP or water).
- a solvent an organic solvent such as NMP or water.
- An object can be produced by applying it to one or both sides of a current collector and drying it, and subjecting it to a press treatment as necessary.
- the separator according to the non-aqueous secondary battery of the present invention has a property that the pores are blocked (that is, a shutdown function) at 80 ° C. or higher (more preferably 100 ° C. or higher) and 170 ° C. or lower (more preferably 150 ° C. or lower).
- a separator used in a normal non-aqueous secondary battery for example, a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be used.
- the microporous film constituting the separator may be, for example, one using only PE or one using PP, or a laminate of a PE microporous film and a PP microporous film. There may be.
- the thickness of the separator is preferably 10 to 30 ⁇ m, for example.
- the positive electrode, the negative electrode, and the separator are formed in the form of a laminated electrode body in which a separator is interposed between the positive electrode and the negative electrode, or a wound electrode body in which the separator is wound in a spiral shape. It can be used for the non-aqueous secondary battery of the invention.
- nonaqueous electrolyte for example, a solution (nonaqueous electrolyte) prepared by dissolving a lithium salt in the following nonaqueous solvent can be used.
- solvent examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ⁇ -butyrolactone ( ⁇ -BL ), 1,2-dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, dimethyl sulfoxide (DMSO), 1,3-dioxolane, formamide, dimethylformamide (DMF), dioxolane, acetonitrile, nitromethane, Methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran Aprotic organic solvents such as derivatives, diethyl ether and 1,3-propane sultone
- the inorganic ion salt according to the non-aqueous electrolyte for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] At least one selected from the above.
- the concentration of these lithium salts in the electrolytic solution is preferably 0.6 to 1.8 mol / l, and more preferably 0.9 to 1.6 mol / l.
- vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexyl benzene, biphenyl, fluorobenzene for the purpose of improving the safety, charge / discharge cycleability, and high-temperature storage properties of these non-aqueous electrolytes.
- Additives such as t-butylbenzene can be added as appropriate.
- the non-aqueous electrolyte used in the non-aqueous secondary battery of the present invention is a non-aqueous electrolyte, and the kinematic viscosity at 25 ° C. is preferably 10 cSt or less, and more preferably 5 cSt or less. If it is a non-aqueous electrolyte solution having such a kinematic viscosity, even if the positive electrode mixture layer is thickened, it becomes easy to penetrate in the thickness direction, so the capacity reduction at the time of high output discharge in the non-aqueous secondary battery, It can suppress more favorably.
- the kinematic viscosity of the non-aqueous electrolyte can be adjusted by, for example, using two or more solvents for the non-aqueous electrolyte and adjusting the balance between the viscosity and the ratio. However, if the non-aqueous electrolyte has a too low kinematic viscosity, it may be difficult to obtain a non-aqueous electrolyte having a solvent composition that can ensure good battery characteristics.
- the viscosity is preferably 1 cSt or more, and more preferably 3 cSt or more.
- the viscometer constant in the above equation the number of seconds dropped in a thermostatic water bath is measured using a standard solution for viscometer calibration, and the value obtained by gradually reducing the kinematic viscosity of the standard solution over this time is used.
- a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can, an aluminum can, or the like as an outer can is cited. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
- Example 1 Preparation of positive electrode> Lithium manganate (LiMn 2 O 4 ) as a positive electrode active material: 74% by mass and LiNi 0.8 Co 0.15 Al 0.05 O 2 : 19% by mass, acetylene black as a conductive auxiliary agent: 3.5% by mass % And a binder of PVDF: 3.2 mass% and PVP: 0.3 mass%, an appropriate amount of NMP is added, and mixed and dispersed using a planetary mixer. The containing slurry was prepared. This slurry was applied to one side of an aluminum foil having a thickness of 13 ⁇ m at a constant thickness, dried at 85 ° C., and then vacuum dried at 100 ° C.
- LiMn 2 O 4 Lithium manganate
- LiNi 0.8 Co 0.15 Al 0.05 O 2 19% by mass
- acetylene black as a conductive auxiliary agent
- a binder of PVDF 3.2 mass% and PVP: 0.3 mass%
- NMP 0.3
- a press process was performed using a roll press machine at a linear pressure of 130 kgf / cm to form a layer having a thickness of 30 ⁇ m and a porosity of 22% (a layer in contact with the current collector) on one side of the current collector.
- the positive electrode mixture-containing slurry was applied to the surface of the layer formed on one side of the current collector at a constant thickness, dried at 85 ° C, and then vacuum dried at 100 ° C. Thereafter, a roll press machine is used to perform a press treatment at a linear pressure of 30 kgf / cm to form a layer having a thickness of 80 ⁇ m and a porosity of 41% (a layer other than the layer in contact with the current collector).
- a positive electrode having a positive electrode mixture layer having a structure on one side of the current collector was obtained.
- the positive electrode was adjusted so that the amount of the positive electrode mixture layer was 20 mg / cm 2 . Furthermore, this positive electrode was cut so that the area of the positive electrode mixture layer was 30 mm ⁇ 30 mm.
- ⁇ Battery assembly> The positive electrode and the negative electrode after cutting are overlapped via a PE microporous membrane separator (thickness 18 ⁇ m) to form a laminated electrode body, and this laminated electrode body is accommodated in an aluminum laminate sheet exterior body of 90 mm ⁇ 160 mm. .
- Comparative Example 1 The same positive electrode mixture-containing slurry as used in Example 1 is formed to have a constant thickness on one surface of an aluminum foil having a thickness of 13 ⁇ m, and the amount of the positive electrode mixture layer after drying is 20 mg / cm 2. Thus, it was applied only once, dried at 85 ° C., and then vacuum dried at 100 ° C. Then, the press process was performed with the linear pressure of 10 kgf / cm using the roll press machine, and the positive electrode which has a porosity of 48% and has the single-layered positive mix layer on one side was obtained. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
- Comparative Example 2 A positive electrode having a porosity of 22% and a single-layered positive electrode mixture layer on one side was obtained in the same manner as in Comparative Example 1 except that the linear pressure during the press treatment was 130 kgf / cm. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
- Comparative Example 3 A positive electrode having a porosity of 41% and a single-layered positive electrode mixture layer on one side was obtained in the same manner as in Comparative Example 1 except that the linear pressure during the press treatment was 30 kgf / cm. A laminated nonaqueous secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
- Table 1 shows the porosity and thickness of the positive electrode mixture layer (each layer constituting the positive electrode mixture layer) of the positive electrode used in the battery of the example and the comparative example, and the charge / discharge characteristic evaluation result of the battery of the example and the comparative example Is shown in Table 2.
- the nonaqueous secondary battery of Example 1 using a positive electrode having a positive electrode mixture layer that has a layer in contact with the current collector and other layers and that has an appropriate configuration of each layer As compared with the battery of the comparative example, the decrease in capacity is suppressed even at the time of high output discharge with a large discharge current.
- the battery of Example 1 has a capacity of 97% with respect to the discharge capacity at a current value equivalent to 1 C, for example, even when discharging at a current value of 40 mA (equivalent to 2 C) required for the current industrial machine battery. Therefore, it can be said that it is suitable for applications requiring high output discharge.
- the battery of Comparative Example 3 having a positive electrode mixture layer having a single layer structure in which the porosity is increased and the permeability of the nonaqueous electrolyte is increased is also maintained, for example, at a current value of 40 mA (equivalent to 2C).
- the rate is the same as that of the battery of Example 1, but the current value of 60 mA (equivalent to 3C) and 80 mA (equivalent to 4C) is higher, and the battery of Example 1 maintains the capacity. The rate is large.
- the positive electrode according to the non-aqueous secondary battery of Example 1 has the same amount of the positive electrode mixture layer, that is, the amount of the positive electrode active material, as compared with the positive electrodes according to the batteries of Comparative Example 1 and Comparative Example 3.
- the thickness of the entire positive electrode mixture layer can be reduced.
- the non-aqueous secondary battery of the present invention can satisfactorily suppress a decrease in capacity at the time of high output discharge even if the positive electrode mixture layer is thickened, it can be used for power supplies for industrial machines, solar power generation systems, wind power generation systems. It can be used for the same applications as various applications where conventionally known non-aqueous secondary batteries are applied, including applications requiring high capacity and high output discharge, such as it can.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】 正極合剤層を厚くしても、高出力放電時における容量の大きな非水二次電池を提供する。 【解決手段】 正極、負極、セパレータおよび非水電解液を備えた非水二次電池であって、前記正極は、集電体の少なくとも片面に、活物質を含有する正極合剤層を有しており、前記正極合剤層は、厚みが70~400μmで、複数の層を有しており、前記複数の層のうち、集電体と接する層は、厚みが60μm以下で、空孔率が1%以上30%未満であり、集電体と接する層以外の層は、空孔率が30%以上であることを特徴とする非水二次電池により、前記課題を解決する。
Description
本発明は、正極合剤層を厚くしても、高出力放電時における容量の大きな非水二次電池に関するものである。
近年、非水二次電池には、産業機械用または太陽光発電システムなどの蓄電池用二次電池としての用途に適用させるべく、低コストでの高容量化が望まれている。
こうした非水二次電池への要求に応える手段の一つとして、電池容量には関与しない部材を減らすことにより、電池あたりの活物質量を増加させて、高容量化を図ることが行われている。例えば、特許文献1には、集電用の導電体を使用せずに負極を構成することで、負極全体に占める活物質の割合を高め、二次電池の単位体積あたりおよび単位質量あたりのエネルギー密度の向上を図る技術が提案されている。
また、電極(正極および負極)の電極合剤層(正極合剤層および負極合剤層)の厚みを大きくすることで、非水二次電池の高容量化を図る方法もある。しかしながら、電極合剤層の厚みを単純に大きくした場合には、高出力放電時に、初期放電容量が大幅に低下するといった問題がある。
例えば、特許文献2には、正負極の活物質層(電極合剤層)の見かけ密度や、正負極の活物質と集電体の質量バランスを調整した非水二次電池が開示されている。特許文献2では、前記の構成を採用することで、実用的な観点からの高容量電池を提供できるとしている。
ところが、特許文献2に開示の非水二次電池でも、例えば正極合剤層の厚みを大きくすると、高出力放電時においては十分な容量を引き出すことが困難である。
この他、電極の構造を変えることで電池特性の向上を図る技術としては、例えば、正極合剤層や負極合剤層を多層化し、それぞれの層で空隙率を変えた電極の提案がある(特許文献3、4)。
前記の通り、電極の構造の調整によって非水二次電池の高容量化などを図る技術は種々知られているが、これらの技術によっても、正極合剤層を厚くした場合の高出力放電時における容量低下を抑制することは困難である。
本発明は、前記事情に鑑みてなされたものであり、その目的は、正極合剤層を厚くしても、高出力放電時における容量の大きな非水二次電池を提供することにある。
前記目的を達成し得た本発明の非水二次電池は、正極、負極、セパレータおよび非水電解液を備えており、前記正極は、集電体の少なくとも片面に、活物質を含有する正極合剤層を有しており、前記正極合剤層は、厚みが70~400μmで、複数の層を有しており、前記複数の層のうち、集電体と接する層は、厚みが60μm以下で、空孔率が1%以上30%未満であり、集電体と接する層以外の層は、空孔率が30%以上であることを特徴とするものである。
本発明によれば、正極合剤層を厚くしても、高出力放電時における容量の大きな非水二次電池を提供することができる。
図1に、本発明の非水二次電池に係る正極の一例を模式的に表す一部縦断面図を示す。図1に示す正極10は、集電体30の両面に、活物質(正極活物質)などを含有する正極合剤層20、21を有している。そして、正極合剤層20は、空孔率の異なる2層20a、20bを有しており、また、正極合剤層21も、空孔率の異なる2層21a、21bを有している。
このように、本発明の非水二次電池に係る正極は、集電体の少なくとも片面に、活物質を含有する正極合剤層を有しており、前記正極合剤層は、厚みが70~400μmで、複数の層を有しており、前記複数の層のうち、集電体と接する層(図1に示す正極では、20a、21a)は、厚みが60μm以下で、空孔率が1%以上30%未満であり、集電体と接する層以外の層(図1に示す正極では、20b、21b)は、空孔率が30%以上である。
正極合剤層を厚くし、その内部の活物質量を増やすことで高容量化を図った非水二次電池では、高出力放電を行った場合に、その電池本来の容量を十分に引き出すことができず、放電容量が低下する。これは、以下のような理由によるものと考えられる。
正極活物質は、通常、一次粒子が凝集した二次粒子となっている。このような二次粒子の凝集した状態の正極活物質が正極の正極合剤層中で分散していると、正極活物質における電池反応に関与し得る面積が小さくなる。また、正極合剤層の密度を高め、正極活物質量を増やして高容量化を図ると、正極合剤層中の空隙が減り、非水電解質の浸透性が低下し、非水電解質と接触し得る正極活物質の表面積(すなわち、正極活物質の反応面積)が小さくなる。
こうした現象は、正極合剤層が薄い場合には、あまり問題を引き起こさないが、正極合剤層が例えば70μm以上と厚くなり、その内部での抵抗が大きくなると、顕在化する。そして、低出力放電時に比べて正極合剤層内での抵抗が増大する高出力放電時においては、前記の現象による問題がより顕著となり、その結果として、正極合剤層の有する容量を十分に引き出すことができなくなって、放電容量が低下する。
そこで、本発明の非水二次電池では、正極合剤層を多層構造とし、このうち、集電体と接することで比較的内部の抵抗が小さい層では、空孔率を小さくして正極活物質の充填量を多くできるようにする一方で、集電体と接しておらず内部の抵抗が比較的高くなる層では、空孔率を大きくして、正極合剤層における非水電解質界面との反応面積を大きくし、かつ非水電解質の浸透性を良好にすることで、正極合剤層を厚くしても、高出力放電時における放電容量の低下を良好に抑制し得るようにした。
なお、非水二次電池に係る正極合剤層を厚くすることによる問題を、例えば、正極合剤層を単一の層とし、その空孔率を大きくすることで、正極合剤層における非水電解質界面との反応面積を大きくし、かつ正極合剤層内への非水電解質の浸透性を良好にして、高出力放電時における放電容量の低下を抑制することも考えられる。しかしながら、正極の製造時に正極合剤層の厚みや密度(空孔率)制御のためにプレス処理を施すと(詳しくは後述する)、正極合剤層が単一の層で、かつその厚みが大きい場合には、局所的に強いプレスがかかり、空孔の分布が不均一になりやすい。そして、局所的に空孔率が小さくなった領域では、非水電解質界面との反応面積が小さくなったり、非水電解質が浸透し難くなったりする虞がある。
これに対し、本発明の非水二次電池に係る正極では、正極合剤層を多層構造とすることから、まず集電体と接する層を形成し、その後に、この層と接する層を形成するというように、段階的に正極合剤層を形成する製法を採用できる。正極合剤層を構成する各層の厚みは、正極合剤層全体の厚みよりも小さいことから、これらの各層における空孔分布は比較的均一になる。そのため、本発明の非水二次電池では、正極合剤層を構成する各層の空孔分布の均一さによって、高出力放電時における放電容量の低下を、より良好に抑制する効果が期待できる。
また、例えば、本発明の非水二次電池に係る正極と、正極合剤層を単一の層とし、その全体の空孔率を大きくした正極とで、正極活物質の充填量を同量とした場合(すなわち、正極の容量を同じにした場合)では、正極合剤層を多層構造とし、かつ集電体と接する層と、それ以外の層とで空孔率を変える本発明に係る正極の方が、正極合剤層をより薄くすることができる。よって、本発明の非水二次電池では、容量を大きくしつつ、正極の厚みの増大を可及的に抑制できるといったメリットもある。
本発明の非水二次電池の有する正極に係る正極合剤層のうち、集電体と接する層は、正極活物質の充填量を多くして、単位体積当たりの電池容量をより高める観点から、空孔率が30%未満であり、25%以下であることが好ましい。ただし、正極合剤層の集電体と接する層の空孔率が小さすぎると、却って容量を十分に引き出し得ない虞があることから、その空孔率は、1%以上であり、15%以上であることが好ましい。
本発明の非水二次電池の有する正極に係る正極合剤層のうち、集電体と接する層以外の層は、1層であってもよく、複数(2層、3層、4層など)であってもよいが、正極の生産性を高める観点からは、層数が少ないことが好ましく、1層であることがより好ましい。すなわち、正極合剤層は、集電体と接する層を含む2層で構成されていることがより好ましい。
前記集電体と接する層以外の層は、非水電解質の浸透性を良好にして、高出力放電時における放電容量の低下を抑制する観点から、その全体の空孔率が、30%以上であり、35%以上であることが好ましい。
ただし、前記集電体と接する層以外の層の空孔率が大き過ぎると、これらの層における非水電解質界面との反応面積が大きくなるが、その一方で、正極活物質粒子間の距離が広がって、これらの粒子間での抵抗接触が大きくなり、また、正極活物質粒子同士の導電パスを形成している導電助剤と正極活物質粒子との導電パスも切れてしまい、これらの粒子間での抵抗接触も大きくなる。そのため、電池の高出力放電時における容量低下の抑制効果が小さくなる虞がある。よって、前記集電体と接する層以外の層の空孔率は、45%以下であることが好ましい。
正極合剤層における集電体と接する層の空孔率、および集電体と接する層以外の層の空孔率は、正極合剤層の厚み方向の断面の画像を、走査型電子顕微鏡(SEM)を用いて倍率1000倍で撮影し、その画像を用いて下記の手順によって測定される値である。
(1)画像解析ソフト(旭化成エンジニアリング社製「A像くん」)を用いて、撮影した画像を読み込む。
(2)画像中における空孔率の測定対象の層(集電体と接する層、または集電体と接する層以外の層)を切り取る。
(3)コマンド「粒子抽出」を用いて空隙部分を抽出する。
(4)しきい値にてコマンド「二値化処理」を行う。
(5)コマンド「面積率計測」を用いて空孔面積率を算出し、その値を、測定対象の層の空孔率とする。
(1)画像解析ソフト(旭化成エンジニアリング社製「A像くん」)を用いて、撮影した画像を読み込む。
(2)画像中における空孔率の測定対象の層(集電体と接する層、または集電体と接する層以外の層)を切り取る。
(3)コマンド「粒子抽出」を用いて空隙部分を抽出する。
(4)しきい値にてコマンド「二値化処理」を行う。
(5)コマンド「面積率計測」を用いて空孔面積率を算出し、その値を、測定対象の層の空孔率とする。
本発明の非水二次電池の有する正極に係る正極合剤層に含有させる正極活物質は、従来から知られている非水二次電池で使用されている各種の正極活物質と同じものが使用できるが、Mnを含有するスピネル構造のリチウム含有複合酸化物を使用することが好ましい。Mnを含有するスピネル構造のリチウム含有複合酸化物は熱的安定性に優れているため、例えば、安全性の高い非水二次電池を構成することができる。
前記Mnを含有するスピネル構造のリチウム含有複合酸化物としては、一般式Li1+xM2O4(ここで、-0.1≦x≦0.1であり、Mは、少なくともMnを含む1種以上の元素を表し、Mを構成する全元素のうちMnの原子比は70mol%以上)で表される複合酸化物が好ましく用いられる。
Mnを含有するスピネル構造のリチウム含有複合酸化物の具体例としては、例えば、LiMn2O4、LiNi0.5Mn1.5O4などの組成で代表されるスピネルマンガン複合酸化物;前記スピネルマンガン複合酸化物に係る元素の一部を他の元素、例えば、Ca、Mg、Sr、Sc、Zr、V、Nb、W、Cr、Mo、Fe、Co、Ni、Zn、Al、Si、Ga、Ge、Snなどの元素で置換したスピネル構造を有するリチウム含有複合酸化物(前記一般式における元素Mとして、Mnと、前記例示の元素の1種以上とを含むリチウム含有複合酸化物など);などが挙げられる。
また、正極活物質には、Mnを含有するスピネル構造のリチウム含有複合酸化物以外の正極活物質を用いることもできる。このような正極活物質としては、例えば、Li1+xMO2(-0.1<x<0.1、M:Co、Ni、Mn、Al、Mg、Zr、Tiなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMPO4(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などが挙げられる。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoO2やLiNi1-xCox-yAlyO2(0.1≦x≦0.3、0.01≦y≦0.2)などの他、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3O2、LiMn5/12Ni5/12Co1/6O2、LiNi3/5Mn1/5Co1/5O2など)などを例示することができる。
本発明の非水二次電池に係る正極活物質には、前記例示の各種正極活物質のうちの1種のみを用いてもよく、2種以上を併用してもよい。なお、前記の通り、正極活物質には、Mnを含有するスピネル構造のリチウム含有複合酸化物を使用することが好ましく、これを単独で使用するか、または、これと、前記例示のMnを含有するスピネル構造のリチウム含有複合酸化物以外の正極活物質(以下、「他の正極活物質」という)とを併用することが望ましい。
なお、Mnを含有するスピネル構造のリチウム含有複合酸化物と他の正極活物質とを併用する場合、Mnを含有するスピネル構造のリチウム含有複合酸化物の、全正極活物質中における含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
正極合剤層には、正極活物質の他に、導電助剤やバインダなどを含有させることが好ましい。導電助剤としては、例えば、アセチレンブラック;ケッチェンブラック;チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用しても構わない。
また、正極合剤層に係るバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)などが挙げられる。
正極合剤層の組成としては、例えば、正極活物質を80.0~99.3質量%とし、導電助剤を0.1~10質量%とし、バインダを0.1~10質量%とすることが好ましい。
正極合剤層の厚み(集電体の両面に正極合剤層を設ける場合には、集電体の片面あたりの厚み。正極合剤層の厚みについて、以下同じ。)は、電池の高容量化を図る観点から、70μm以上であり、100μm以上であることが好ましい。ただし、正極合剤層が厚すぎると、リチウムイオン拡散分極が増加し、電池の内部抵抗が増大してしまう。よって、正極合剤層の厚みは、400μm以下であり、200μm以下であることが好ましい。
正極合剤層のうち、集電体と接する層の厚みは、60μm以下であり、35μm以下であることが好ましい。集電体と接する層が厚すぎると、この層の集電体とは反対側の表面近傍での抵抗が大きくなって、高出力放電時における放電容量の低下を抑える効果が小さくなる。また、正極合剤層のうち、集電体と接する層が薄すぎると、電池の体積あたりの容量自体が小さくなる虞があることから、集電体と接する層の厚みは、5μm以上であることが好ましく、10μm以上であることがより好ましい。
正極集電体には、アルミニウム製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、アルミニウム箔が用いられる。正極集電体の厚みは、10~30μmであることが好ましい。
正極は、例えば、以下の方法により製造することができる。まず、正極活物質、導電助剤およびバインダなどを含有する正極合剤を、溶剤[N-メチル-2-ピロリドン(NMP)などの有機溶剤や水]に分散させて正極合剤含有組成物(ペースト、スラリーなど)を調製し、これを集電体の表面に塗布して乾燥し、プレス処理を施す工程を経て、集電体と接する層を形成する。そして、集電体と接する層の表面に前記の正極合剤含有組成物を塗布して乾燥し、プレス処理を施す工程を経て、集電体と接する層の表面に、集電体と接する層以外の層を形成する。集電体と接する層以外の層を複数設ける場合には、前記の正極合剤含有組成物の塗布、乾燥、プレス処理の各工程を、必要とされる層の数だけ順次繰り返せばよい。
正極合剤層における各層の空孔率は、例えば、正極合剤含有組成物を集電体や、先に形成した層の表面に塗布し、乾燥した後に施すプレス処理の条件を選択することにより調整できる。通常は、正極合剤層の密度を高めるために比較的大きな線圧でプレス処理を施すが、本発明に係る正極においては、まず、集電体と接する層の形成時には、通常の正極に施すプレス処理と同程度の線圧、具体的は、例えば、100~400kgf/cm程度の線圧でプレス処理を行えばよく、また、集電体と接する層以外の層の形成時には、例えば、10~200kgf/cm程度の線圧であり、かつ集電体と接する層に施したプレス処理時の線圧よりも小さな線圧でプレス処理を施せばよい。
本発明の非水二次電池は、正極、負極、セパレータおよび非水電解質を備えており、かつ正極が前記の正極であればよく、その他の構成および構造については特に制限はなく、従来から知られている非水二次電池で採用されている構成および構造を適用することができる。
負極としては、例えば、集電体の少なくとも片面に、負極活物質やバインダを含有する負極合剤層を有する構造のものが使用できる。
負極活物質としては、例えば、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛材料;ピッチを焼成して得られるコークスなどの易黒鉛化性炭素質材料;フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素などの難黒鉛化性炭素質材料;などの炭素材料が挙げられる。また、炭素材料の他に、リチウムやリチウム含有化合物も負極活物質として用いることができる。リチウム含有化合物としては、Li-Alなどのリチウム合金や、Si、Snなどのリチウムとの合金化が可能な元素を含む合金が挙げられる。更にSn酸化物やSi酸化物などの酸化物系材料も用いることができる。
負極合剤層に係るバインダには、正極合剤層に使用し得るものとして先に例示した各種バインダと同じものが使用できる。
また、負極合剤層には、必要に応じて導電助剤を含有させてもよい。負極合剤層に係る導電助剤には、正極合剤層に使用し得るものとして先に例示した各種導電助剤と同じものが使用できる。
負極合剤層の組成としては、例えば、負極活物質を80.0~99.8質量%とし、バインダを0.1~10質量%とすることが好ましい。また、負極合剤層に導電助剤を含有させる場合には、負極合剤層における導電助剤の量を0.1~10質量%とすることが好ましい。また、負極合剤層の厚み(集電体の両面に負極合剤層を設ける場合には、集電体の片面あたりの厚み)は、70~350μmであることが好ましい。
負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤などを含有する負極合剤を、溶剤(NMPなどの有機溶剤や水)に分散させて調製した負極合剤含有組成物(ペースト、スラリーなど)を、集電体の片面または両面などに塗布して乾燥し、必要に応じてプレス処理を施す工程を経て製造することができる。
本発明の非水二次電池に係るセパレータは、80℃以上(より好ましくは100℃以上)170℃以下(より好ましくは150℃以下)において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましく、通常の非水二次電池などで使用されているセパレータ、例えば、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。セパレータの厚みは、例えば、10~30μmであることが好ましい。
前記の正極と前記の負極と前記のセパレータとは、正極と負極との間にセパレータを介在させて重ねた積層電極体や、更にこれを渦巻状に巻回した巻回電極体の形態で本発明の非水二次電池に使用することができる。
本発明の非水二次電池に係る非水電解質には、例えば、下記の非水系溶媒中に、リチウム塩を溶解させることで調製した溶液(非水電解液)が使用できる。
溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、γ-ブチロラクトン(γ-BL)、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、ジメチルスルフォキシド(DMSO)、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド(DMF)、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトンなどの非プロトン性有機溶媒を1種単独で、または2種以上を混合した混合溶媒として用いることができる。
非水電解質に係る無機イオン塩としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiCF3CO2、Li2C2F4(SO3)2、LiN(CF3SO2)2、LiC(CF3SO2)3、LiCnF2n+1SO3(n≧2)、LiN(RfOSO2)2[ここでRfはフルオロアルキル基]などのリチウム塩から選ばれる少なくとも1種が挙げられる。これらのリチウム塩の電解液中の濃度としては、0.6~1.8mol/lとすることが好ましく、0.9~1.6mol/lとすることがより好ましい。
また、これらの非水電解質に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤を適宜加えることもできる。
なお、本発明の非水二次電池に使用する非水電解質は非水電解液であって、25℃における動粘度が、10cSt以下であることが好ましく、5cSt以下であることがより好ましい。このような動粘度を有する非水電解液であれば、正極合剤層を厚くしても、その厚み方向に浸透しやすくなるため、非水二次電池における高出力放電時の容量低下を、より良好に抑制することができる。
なお、非水電解液の動粘度は、例えば、非水電解液用の溶媒を2種以上併用し、これらの粘度と比率とのバランスを調節することで、調整することができる。ただし、非水電解液の動粘度が小さすぎると、良好な電池特性を確保し得るような溶媒組成の非水電解液を得難くなる虞があることから、非水電解液の25℃における動粘度は、1cSt以上であることが好ましく、3cSt以上であることがより好ましい。
本明細書でいう非水電解液の25℃における動粘度は、以下の方法により測定される値である。キャノン-フェンスケ粘度計を用い、恒温層に静置した非水電解液の温度が25℃に達したら、測定を開始する。管を吸引して測時球の上標線より5~10mm上まで液面を上げた後に、自然流下させて液面が測時球の上下標線間を通過するために要する時間(落下秒数)を測定する。同様の測定を3回以上繰り返し行い、2回の流出時間が0.2%以内で一致したときは、その平均値を用い、下記式を用いて動粘度を算出する。
動粘度(cSt) = 落下秒数×粘度計定数
動粘度(cSt) = 落下秒数×粘度計定数
前記の式における粘度計定数には、粘度計校正用標準液を用いて恒温水槽内で落下秒数を測り、この時間で標準液の動粘度を徐した数値を用いる。
本発明の非水二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<正極の作製>
正極活物質であるマンガン酸リチウム(LiMn2O4):74質量%およびLiNi0.8Co0.15Al0.05O2:19質量%、導電助剤であるアセチレンブラック:3.5質量%、並びにバインダであるPVDF:3.2質量%およびPVP:0.3質量%からなる正極合剤に、適量のNMPを添加し、プラネタリ―ミキサーを用いて混合・分散を行い、正極合剤含有スラリーを調整した。このスラリーを、厚みが13μmのアルミニウム箔の片面に一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧130kgf/cmでプレス処理を施して、厚みが30μm、空孔率が22%の層(集電体と接する層)を集電体の片面に形成した。
<正極の作製>
正極活物質であるマンガン酸リチウム(LiMn2O4):74質量%およびLiNi0.8Co0.15Al0.05O2:19質量%、導電助剤であるアセチレンブラック:3.5質量%、並びにバインダであるPVDF:3.2質量%およびPVP:0.3質量%からなる正極合剤に、適量のNMPを添加し、プラネタリ―ミキサーを用いて混合・分散を行い、正極合剤含有スラリーを調整した。このスラリーを、厚みが13μmのアルミニウム箔の片面に一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧130kgf/cmでプレス処理を施して、厚みが30μm、空孔率が22%の層(集電体と接する層)を集電体の片面に形成した。
集電体の片面に形成した前記の層の表面に、前記の正極合剤含有スラリーを一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧30kgf/cmでプレス処理を施して、厚みが80μm、空孔率が41%の層(集電体と接する層以外の層)を形成して、2層構造の正極合剤層を集電体の片面に有する正極を得た。この正極は、正極合剤層の量が20mg/cm2となるように調整した。更に、この正極を、正極合剤層の面積が30mm×30mmとなるように裁断した。
<負極の作製>
負極活物質である天然黒鉛:48質量%および人造黒鉛:48質量%、並びにバインダであるCMC:2.0質量%およびSBR:2.0質量%からなる負極合剤に、適量の水を添加し、十分に混合して負極合剤含有スラリーを調整した。このスラリーを、厚みが7μmの銅箔の片面に一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、プレス処理を施して厚みが70μmの負極合剤層を集電体の片面に有する負極を得た。更に、この負極を、合剤層の面積が35mm×35mmとなるように裁断した。
負極活物質である天然黒鉛:48質量%および人造黒鉛:48質量%、並びにバインダであるCMC:2.0質量%およびSBR:2.0質量%からなる負極合剤に、適量の水を添加し、十分に混合して負極合剤含有スラリーを調整した。このスラリーを、厚みが7μmの銅箔の片面に一定厚みで塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、プレス処理を施して厚みが70μmの負極合剤層を集電体の片面に有する負極を得た。更に、この負極を、合剤層の面積が35mm×35mmとなるように裁断した。
<電池の組み立て>
裁断後の前記正極と前記負極とを、PE製微多孔膜セパレータ(厚み18μm)を介して重ね合わせて積層電極体とし、この積層電極体を、90mm×160mmのアルミニウムラミネートシート外装体に収容した。続いて、非水電解質(体積比がEC:DEC=3:7の混合溶媒に、LiPF6を1.2mol/l濃度で溶解させた溶液、25℃における動粘度が4.2cSt)を外装体内に1ml注入した後、外装+体を封止して、ラミネート形非水二次電池を得た。
裁断後の前記正極と前記負極とを、PE製微多孔膜セパレータ(厚み18μm)を介して重ね合わせて積層電極体とし、この積層電極体を、90mm×160mmのアルミニウムラミネートシート外装体に収容した。続いて、非水電解質(体積比がEC:DEC=3:7の混合溶媒に、LiPF6を1.2mol/l濃度で溶解させた溶液、25℃における動粘度が4.2cSt)を外装体内に1ml注入した後、外装+体を封止して、ラミネート形非水二次電池を得た。
比較例1
実施例1で用いたものと同じ正極合剤含有スラリーを、厚みが13μmのアルミニウム箔の片面に、一定厚みとなるように、かつ乾燥後の正極合剤層の量が20mg/cm2となるように1回だけ塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧10kgf/cmでプレス処理を施して、空孔率が48%で、単層構造の正極合剤層を片面に有する正極を得た。そして、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
実施例1で用いたものと同じ正極合剤含有スラリーを、厚みが13μmのアルミニウム箔の片面に、一定厚みとなるように、かつ乾燥後の正極合剤層の量が20mg/cm2となるように1回だけ塗布し、85℃で乾燥した後、100℃で真空乾燥した。その後、ロールプレス機を用いて線圧10kgf/cmでプレス処理を施して、空孔率が48%で、単層構造の正極合剤層を片面に有する正極を得た。そして、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
比較例2
プレス処理時の線圧を130kgf/cmとした以外は比較例1と同様にして、空孔率が22%で、単層構造の正極合剤層を片面に有する正極を得た。そして、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
プレス処理時の線圧を130kgf/cmとした以外は比較例1と同様にして、空孔率が22%で、単層構造の正極合剤層を片面に有する正極を得た。そして、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
比較例3
プレス処理時の線圧を30kgf/cmとした以外は比較例1と同様にして、空孔率が41%で、単層構造の正極合剤層を片面に有する正極を得た。そして、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
プレス処理時の線圧を30kgf/cmとした以外は比較例1と同様にして、空孔率が41%で、単層構造の正極合剤層を片面に有する正極を得た。そして、この正極を用いた以外は、実施例1と同様にしてラミネート形非水二次電池を作製した。
実施例および比較例のラミネート形非水二次電池について、下記の充放電特性評価を行った。
<充放電特性評価>
実施例および比較例の各電池について、1Cの電流値(20mA)で4.2Vまで定電流充電を行った後、電流値が2mAになるまで4.2Vで定電圧充電する充電と、その後に所定条件でする放電とを行う一連の操作を1サイクルとして、4サイクルの充放電を行った。なお、放電は、1サイクル目の電流値を20mA、2サイクル目の電流値を40mA、3サイクル目の電流値を60mA、および4サイクル目の電流値を80mAとし、それぞれ2.5Vになるまで行った。そして、各電池の電流値20mAでの放電容量を100%として、その他の電流値での放電容量の相対値を算出した。
実施例および比較例の各電池について、1Cの電流値(20mA)で4.2Vまで定電流充電を行った後、電流値が2mAになるまで4.2Vで定電圧充電する充電と、その後に所定条件でする放電とを行う一連の操作を1サイクルとして、4サイクルの充放電を行った。なお、放電は、1サイクル目の電流値を20mA、2サイクル目の電流値を40mA、3サイクル目の電流値を60mA、および4サイクル目の電流値を80mAとし、それぞれ2.5Vになるまで行った。そして、各電池の電流値20mAでの放電容量を100%として、その他の電流値での放電容量の相対値を算出した。
実施例および比較例の電池に使用した正極に係る正極合剤層(それを構成する各層)の空孔率および厚みを表1に示し、実施例および比較例の電池の前記充放電特性評価結果を表2に示す。
表1および表2に示す通り、集電体と接する層およびそれ以外の層を有し、各層の構成を適正にした正極合剤層を有する正極を用いた実施例1の非水二次電池は、比較例の電池に比べて、放電電流を大きくした高出力放電時においても容量の低下が抑制されている。実施例1の電池は、例えば、現状の産業機械用電池に要求される電流値40mA(2C相当)での放電の場合にも、1C相当の電流値での放電容量に対して97%の容量が維持されており、高出力放電が要求される用途に好適であるといえる。
また、空孔率を大きくして非水電解質の浸透性を高めた単層構造の正極合剤層を有する比較例3の電池も、例えば、電流値40mA(2C相当)での放電容量の維持率が、実施例1の電池と同等であるが、電流値が60mA(3C相当)および80mA(4C相当)と、より大きな電流値での放電では、実施例1の電池の方が容量の維持率が大きい。また、実施例1の非水二次電池に係る正極は、比較例1や比較例3の電池に係る正極に比べて、正極合剤層の量、すなわち、正極活物質の量を同じにしつつ、正極合剤層全体の厚みを小さくできている。
本発明の非水二次電池は、正極合剤層を厚くしても、高出力放電時の容量低下を良好に抑制し得ることから、産業機械の電源用途や太陽光発電システム、風力発電システムの蓄電池用途のように、高容量であり、かつ高出力放電が要求される用途をはじめとして、従来から知られている非水二次電池が適用されている各種用途と同じ用途に用いることができる。
10 正極
20、21 正極合剤層
20a、21a 集電体と接する層
20b、21b 集電体と接する層以外の層
30 集電体
20、21 正極合剤層
20a、21a 集電体と接する層
20b、21b 集電体と接する層以外の層
30 集電体
Claims (3)
- 正極、負極、セパレータおよび非水電解液を備えた非水二次電池であって、
前記正極は、集電体の少なくとも片面に、活物質を含有する正極合剤層を有しており、
前記正極合剤層は、厚みが70~400μmで、複数の層を有しており、
前記複数の層のうち、集電体と接する層は、厚みが60μm以下で、空孔率が1%以上30%未満であり、集電体と接する層以外の層は、空孔率が30%以上であることを特徴とする非水二次電池。 - 正極合剤層の有する複数の層のうち、集電体と接する層以外の層の空孔率が、45%以下である請求項1に記載の非水二次電池。
- 正極合剤層の含有する活物質は、Mnを含有するスピネル構造のリチウム含有複合酸化物である請求項1または2に記載の非水二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/055762 WO2012124015A1 (ja) | 2011-03-11 | 2011-03-11 | 非水二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/055762 WO2012124015A1 (ja) | 2011-03-11 | 2011-03-11 | 非水二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012124015A1 true WO2012124015A1 (ja) | 2012-09-20 |
Family
ID=46830153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055762 WO2012124015A1 (ja) | 2011-03-11 | 2011-03-11 | 非水二次電池 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012124015A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110495035A (zh) * | 2017-03-31 | 2019-11-22 | 株式会社村田制作所 | 锂离子二次电池 |
CN112531143A (zh) * | 2019-09-17 | 2021-03-19 | 株式会社东芝 | 电极、二次电池、电池包及车辆 |
EP4276935A1 (en) * | 2022-05-11 | 2023-11-15 | Prime Planet Energy & Solutions, Inc. | Nonaqueous electrolyte secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09320569A (ja) * | 1996-05-30 | 1997-12-12 | Ricoh Co Ltd | 非水系2次電池 |
JP2002151055A (ja) * | 2000-08-28 | 2002-05-24 | Nissan Motor Co Ltd | リチウムイオン二次電池 |
JP2006196457A (ja) * | 2005-01-11 | 2006-07-27 | Samsung Sdi Co Ltd | 電気化学電池用の電極、その製造方法及びそれを利用した電気化学電池 |
JP2007214038A (ja) * | 2006-02-10 | 2007-08-23 | Toyota Motor Corp | 非水系二次電池、電極、非水系二次電池の製造方法、及び、電極の製造方法 |
JP2008300239A (ja) * | 2007-05-31 | 2008-12-11 | Panasonic Corp | 非水電解質二次電池用電極、リチウムイオン二次電池、および非水電解質二次電池用電極の製造方法 |
JP2010165644A (ja) * | 2009-01-19 | 2010-07-29 | Panasonic Corp | 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 |
-
2011
- 2011-03-11 WO PCT/JP2011/055762 patent/WO2012124015A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09320569A (ja) * | 1996-05-30 | 1997-12-12 | Ricoh Co Ltd | 非水系2次電池 |
JP2002151055A (ja) * | 2000-08-28 | 2002-05-24 | Nissan Motor Co Ltd | リチウムイオン二次電池 |
JP2006196457A (ja) * | 2005-01-11 | 2006-07-27 | Samsung Sdi Co Ltd | 電気化学電池用の電極、その製造方法及びそれを利用した電気化学電池 |
JP2007214038A (ja) * | 2006-02-10 | 2007-08-23 | Toyota Motor Corp | 非水系二次電池、電極、非水系二次電池の製造方法、及び、電極の製造方法 |
JP2008300239A (ja) * | 2007-05-31 | 2008-12-11 | Panasonic Corp | 非水電解質二次電池用電極、リチウムイオン二次電池、および非水電解質二次電池用電極の製造方法 |
JP2010165644A (ja) * | 2009-01-19 | 2010-07-29 | Panasonic Corp | 非水電解質二次電池用正極およびそれを用いた非水電解質二次電池 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110495035A (zh) * | 2017-03-31 | 2019-11-22 | 株式会社村田制作所 | 锂离子二次电池 |
CN110495035B (zh) * | 2017-03-31 | 2022-07-08 | 株式会社村田制作所 | 锂离子二次电池 |
CN112531143A (zh) * | 2019-09-17 | 2021-03-19 | 株式会社东芝 | 电极、二次电池、电池包及车辆 |
EP4276935A1 (en) * | 2022-05-11 | 2023-11-15 | Prime Planet Energy & Solutions, Inc. | Nonaqueous electrolyte secondary battery |
JP7503095B2 (ja) | 2022-05-11 | 2024-06-19 | プライムプラネットエナジー&ソリューションズ株式会社 | 非水電解質二次電池 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5213015B2 (ja) | リチウムイオン二次電池 | |
JP2012190625A (ja) | 非水二次電池 | |
JP2011081931A (ja) | リチウムイオン二次電池 | |
JP2013062105A (ja) | リチウムイオン二次電池 | |
CN111640975A (zh) | 用于锂离子电化学电池的电解质组合物 | |
KR20140013885A (ko) | 리튬 이온 이차 전지 | |
JP2013229307A (ja) | 非水電解質溶液およびリチウムイオン二次電池 | |
US10403891B2 (en) | Positive electrode material and lithium ion battery | |
JP2015088465A (ja) | 非水電解質二次電池 | |
CN113097446B (zh) | 非水电解质二次电池用负极和非水电解质二次电池 | |
JP2012138322A (ja) | 非水二次電池 | |
JP2015195195A (ja) | 非水電解質二次電池 | |
JP2009277395A (ja) | 非水二次電池および非水二次電池システム | |
JP2013140714A (ja) | 非水二次電池 | |
US20220399575A1 (en) | Non-aqueous electrolyte secondary battery | |
JP7276957B2 (ja) | リチウムイオン二次電池 | |
JP2012181978A (ja) | 非水電解液電池 | |
EP4071849B1 (en) | Nonaqueous electrolyte secondary battery | |
WO2012124015A1 (ja) | 非水二次電池 | |
JP2007250499A (ja) | リチウムイオン二次電池 | |
KR101001567B1 (ko) | 리튬이온 2차 전지 | |
CN113097447B (zh) | 非水电解质二次电池用负极和非水电解质二次电池 | |
CN111886744A (zh) | 用于锂离子电化学电池的电解质组合物 | |
JP2019169346A (ja) | リチウムイオン二次電池 | |
JP7017108B2 (ja) | 活物質、電極及びリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11860898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11860898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |