Nothing Special   »   [go: up one dir, main page]

WO2012121154A1 - 下地基板、窒化ガリウム結晶積層基板及びその製造方法 - Google Patents

下地基板、窒化ガリウム結晶積層基板及びその製造方法 Download PDF

Info

Publication number
WO2012121154A1
WO2012121154A1 PCT/JP2012/055407 JP2012055407W WO2012121154A1 WO 2012121154 A1 WO2012121154 A1 WO 2012121154A1 JP 2012055407 W JP2012055407 W JP 2012055407W WO 2012121154 A1 WO2012121154 A1 WO 2012121154A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
crystal
gallium nitride
substrate
base substrate
Prior art date
Application number
PCT/JP2012/055407
Other languages
English (en)
French (fr)
Inventor
大士 古家
正信 東
只友 一行
成仁 岡田
Original Assignee
株式会社トクヤマ
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ, 国立大学法人山口大学 filed Critical 株式会社トクヤマ
Priority to KR1020137022202A priority Critical patent/KR20140019328A/ko
Priority to US13/983,257 priority patent/US20130313567A1/en
Priority to CN2012800080170A priority patent/CN103348044A/zh
Priority to EP12755674.4A priority patent/EP2684988A1/en
Publication of WO2012121154A1 publication Critical patent/WO2012121154A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth
    • H01L21/0265Pendeoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/12Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves

Definitions

  • the present invention relates to a base substrate, a gallium nitride crystal multilayer substrate, and more particularly to a multilayer substrate in which a gallium nitride (GaN) crystal layer having a low threading dislocation density is stacked on a sapphire base substrate, and a method for manufacturing the same.
  • GaN gallium nitride
  • any GaN layer has crystal growth of GaN in the axial direction, and the surface is a c-plane ( ⁇ OOO1> plane).
  • the piezoelectric polarization generated by the compressive strain applied to the InGaN quantum well layer is superimposed on the InGaN quantum well layer, Therefore, a large internal polarization electric field is generated in the c-axis direction. Under the influence of this internal polarization electric field, the quantum confined Stark Effect (QCSE) is considered to cause problems such as peak emission wavelength shift due to decrease in luminous efficiency and increase in required injection current. It has been.
  • QCSE quantum confined Stark Effect
  • an InGaN layer is formed on the a-plane: ⁇ 11-20> plane or m-plane: ⁇ 1-100> plane, which is a nonpolar plane of the GaN crystal, and spontaneously It has been studied to avoid the influence of an internal electric field in which polarization and piezoelectric polarization are superimposed (see Patent Documents 1 to 3).
  • an InGaN quantum well layer is formed on a plane called a semipolar plane inclined about 60 degrees in the a-axis or m-axis direction, for example, a semipolar ⁇ 11-22> plane, thereby It has also been studied to avoid the influence of internal electrodes (Non-patent document 1, Non-patent document 2).
  • the substrate is said to have a threading dislocation density of about 2 to 3 ⁇ 10 8 pieces / cm 2, and a crystal substrate having a high crystal quality with a lower threading dislocation density is desired.
  • Non-polar surface of GaN crystal such as a substrate having a low threading dislocation density and a high crystal quality such as a-plane or m-plane, or a substrate having ⁇ 11-22> or ⁇ 10-11> plane
  • Another object of the present invention is to provide a GaN crystal multilayer substrate in which a GaN crystal layer having a semipolar plane as a main surface is laminated on a sapphire base substrate, a manufacturing method thereof, and a sapphire base substrate used in the manufacturing method.
  • the present inventors have studied a method of growing a GaN crystal having a desired crystal plane using a sapphire base substrate having a plurality of concave grooves as a starting point from the side wall surface of the groove of the base substrate.
  • the size of the crystal growth region on the side wall of the groove greatly affects the crystal quality (threading dislocation density), while it has little effect on the surface flatness of the grown crystal and the crystallinity evaluated by X-ray diffraction measurement.
  • the present invention has been completed.
  • the present invention includes a sapphire base substrate and a gallium nitride crystal layer formed by crystal growth on the base substrate, and a plurality of the gallium nitride crystal layers are formed on the main surface of the sapphire base substrate.
  • the crystal is grown laterally starting from the side wall of the groove and the surface is formed in parallel to the main surface, and the dark spot density of the gallium nitride crystal is less than 2 ⁇ 10 8 pieces / cm 2 .
  • the dark spot density of the gallium nitride crystal is 1.4 ⁇ 10 8 pieces / cm 2 or less
  • the gallium nitride crystal layer is a gallium nitride crystal layer comprising a surface having a nonpolar or semipolar plane orientation
  • a plurality of grooves having sidewalls inclined with respect to the main surface of the underlying substrate are formed on a sapphire base substrate, and a gallium nitride crystal is selectively grown laterally starting from the sidewalls of the groove.
  • a method for producing a gallium nitride crystal multilayer substrate characterized in that the width (d) of the region on the side wall on which the gallium nitride crystal is grown is set to 10 to 750 nm.
  • the width (d) of the region in which the gallium nitride crystal is grown is 100 to 200 nm, 5) It is preferable that the side wall from which the lateral crystal growth from the groove portion starts is the c-plane of the sapphire single crystal.
  • the dark spot density of the gallium nitride crystal is less than 2 ⁇ 10 8 pieces / cm 2 , preferably 1.85 ⁇ 10 8 pieces / cm 2 or less, particularly preferably 1.4 ⁇ 10 8. Since it is 8 pieces / cm 2 or less and the crystal quality is high, the light emitting efficiency of a semiconductor light emitting device such as an LED or LD manufactured using the laminated substrate is improved. Further, by selectively growing a gallium nitride crystal from the side wall of the groove formed on the sapphire base substrate, a high-quality gallium nitride crystal having a nonpolar or semipolar surface as a main surface can be obtained. For this reason, the semiconductor light-emitting device manufactured using this is less affected by the decrease in light emission efficiency due to the quantum confined Stark effect than the conventional gallium nitride crystal layer substrate having the c-plane as the main surface.
  • the gallium nitride crystal multilayer substrate of the present invention has a plurality of groove portions having side walls inclined with respect to the main surface of the base substrate, and a width (d) of 10 to 750 nm for growing a gallium nitride crystal on the side walls of the groove portions.
  • a sapphire base substrate provided with a growth region is used as a lower layer, and the surface thereof is formed in parallel with the main surface by lateral crystal growth (ELO) starting from the side wall. It has a structure in which gallium nitride crystal layers having a dark spot density of less than 2 ⁇ 10 8 pieces / cm 2 are stacked.
  • the dark spot density is a physical property value that serves as an index for indicating the density of threading dislocations, which are dislocation defects in the crystal, and is measured using a scanning electron microscope / cathode luminescence (SEM / CL) apparatus.
  • SEM / CL scanning electron microscope / cathode luminescence
  • As a measurement sample a sample in which an n-type GaN crystal layer is stacked on an undoped GaN crystal layer is used, and measurement is performed on the surface of the n-type GaN layer.
  • the acceleration voltage during measurement is 5 kV, and the observation range is 20 ⁇ m ⁇ 20 ⁇ m. At this time, the dark spot density is calculated from the total number of dark spots observed within the observation range.
  • the sapphire base substrate for producing the crystal laminated substrate of the present invention has a plurality of groove portions having side walls inclined with respect to the main surface of the substrate on the sapphire substrate, and selectively gallium nitride crystals on the side walls of the groove portions.
  • the width (d) of the region in which is grown is set to 10 to 750 nm.
  • a sapphire substrate whose main surface has a specific plane orientation is used. However, in order to obtain a desired GaN crystal to be described later, it may be a miscut surface inclined at a predetermined angle with respect to the crystal axis.
  • a disk-shaped substrate having a thickness of 0.3 to 3.0 mm and a diameter of 50 to 300 mm is usually used.
  • an arbitrary plane orientation is selected according to the crystal plane of the target GaN crystal.
  • the main surface of the sapphire base substrate is set to ⁇ 10-12>.
  • the main surface of the sapphire base substrate is set to ⁇ 11-23>.
  • the ⁇ 10-10> plane, the ⁇ 11-20> plane, the ⁇ 20-21> plane, and the like can be main surfaces.
  • sapphire c-plane a sapphire substrate having a ⁇ 10-12> plane as a main surface and a c-plane of sapphire single crystal (hereinafter referred to as sapphire c-plane) is formed on a part of the side wall of the groove.
  • the angle formed by the main surface of the sapphire substrate is 57.6 degrees.
  • the angle formed between the ⁇ 11-22> plane of the target GaN crystal and the c plane of the GaN crystal is 58.4 degrees
  • a ⁇ 11-22> plane GaN crystal layer grows with an inclination of 0.8 degrees with respect to the sapphire main surface.
  • a miscut substrate having an off angle with the ⁇ 10-12> plane is used, and the ⁇ 11-22> plane, which is the surface of the GaN crystal layer, is parallel to the main surface of the sapphire substrate.
  • Various miscut substrates designed so that the surface of the GaN crystal layer is parallel to the main surface of the sapphire base substrate depending on the plane orientation of the target GaN crystal and the surface orientation of the sapphire base substrate used are used. be able to.
  • a plurality of grooves are provided in parallel on the main surface of the sapphire base substrate.
  • the opening width of the groove is not particularly limited, and is usually set in the range of 0.5 to 10 ⁇ m.
  • the interval between the groove portions that is, the interval between the adjacent groove portions and the groove portion on the base substrate main surface line is 1 to 100 ⁇ m.
  • the lateral width of the bottom surface of the groove that is, the distance (w) in the direction perpendicular to the extending direction of the groove is not particularly limited, and is generally 1 to 100,000 ⁇ m.
  • the number of grooves on the main surface can be arbitrarily set according to the desired area of the GaN crystal to be formed. However, in consideration of the width of the opening, the interval between the grooves, and the width of the bottom surface, it is usually per 1 mm. About 10 to 500 may be provided.
  • the groove has a side wall inclined at a predetermined angle with respect to the base substrate main surface, As shown in FIG. 3, the cross-sectional shape is tapered so as to narrow the groove width from the groove opening toward the groove bottom. As shown in FIG. 3, the inclination angle means an angle ( ⁇ ) formed between the main surface of the base substrate and the extended surface of the groove side wall. The angle is determined in consideration of the surface orientation of the GaN crystal to be formed in accordance with the surface orientation of the base substrate main surface.
  • this angle is set to 58.4 degrees
  • the GaN crystal is grown so that the c-axis of the GaN crystal is in the same direction as the c-axis of the sapphire base substrate to obtain a desired crystal.
  • the angle 58.4 degrees at this time is formed by the ⁇ 11-22> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction.
  • the angle is determined from being 58.4 degrees.
  • the angle formed between the ⁇ 10-12> plane, which is the main surface of the sapphire base substrate used, and the sapphire c-plane appearing on the side wall of the groove is 57.6 degrees
  • the angle ( ⁇ ) is 57.6 degrees
  • the surface of the GaN crystal layer grown thereon is inclined by about 0.8 degrees with respect to the main surface of the sapphire base substrate. Therefore, by using a miscut substrate in which the main surface of the substrate is an off-angle with respect to the sapphire ⁇ 10-12> surface so as to cancel out this angle, the ⁇ 11-22> surface of the GaN crystal becomes the sapphire base.
  • a GaN crystal layer grown so as to be parallel to the main surface of the substrate can be obtained.
  • this angle is set to 62.0 degrees
  • the crystal is grown so that the c-axis of the GaN crystal is in the same direction as the c-axis of the sapphire base substrate to obtain a desired crystal.
  • the angle 62.0 degrees at this time is formed by the ⁇ 10-11> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction.
  • the angle is determined from 62.0 degrees.
  • the angle formed between the ⁇ 11-23> plane, which is the main surface of the sapphire base substrate used, and the sapphire c-plane appearing on the side wall of the groove is 61.2 degrees
  • the angle ( ⁇ ) is 61.2 degrees
  • the surface of the GaN crystal layer grown thereon is inclined about 0.8 degrees with respect to the main surface of the sapphire base substrate. Therefore, by using a miscut substrate in which the main surface of the substrate has an off-angle with respect to the sapphire ⁇ 11-23> surface so as to cancel this angle, the ⁇ 10-11> surface of the GaN crystal becomes the sapphire base.
  • a GaN crystal layer grown so as to be parallel to the main surface of the substrate can be obtained.
  • the angle of 90 degrees is the angle formed between the ⁇ 11-20> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction. , 90 degrees.
  • the etching proceeds not only in the direction perpendicular to the main surface of the sapphire substrate but also in a direction other than the vertical including the parallel direction. It is technically difficult to form a groove portion having an angle ( ⁇ ) of 90 degrees, that is, forming a groove portion whose groove side wall is truly perpendicular to the main surface of the sapphire substrate.
  • a GaN crystal is formed on the sapphire base substrate having the ⁇ 11-20> plane as the main surface.
  • a GaN crystal layer grown so that the ⁇ 10-10> plane is parallel to the main surface of the sapphire base substrate can be obtained.
  • the angle of 90 degrees is the angle formed between the ⁇ 10-10> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction. , 90 degrees.
  • the angle of 90 degrees is the angle formed between the ⁇ 10-10> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction. , 90 degrees.
  • the setting of the width (d) of the GaN crystal growth region (hereinafter referred to as crystal growth region) on the sidewall of the groove is extremely important for reducing the threading dislocation density.
  • the width (d) of the crystal growth region means that when the entire side wall region that is the growth starting point is the crystal growth region, the side where the main substrate main surface and the side wall intersect, the side wall and the groove bottom surface The shortest distance (interval) on the side wall between the intersecting sides.
  • the distance (d) obtained by removing the width of the masking portion from the shortest distance (interval) is referred to.
  • the width (d) needs to be set to 10 to 750 nm in order to make the dark spot density less than 2 ⁇ 10 8 pieces / cm 2 .
  • the width (d) needs to be 100 to 200 nm.
  • the lower limit of the width (d) is not particularly limited and is preferably as small as possible. However, the lower limit of the width (d) is determined based on technical restrictions in manufacturing the groove described below.
  • the groove portion having the sidewall having the predetermined inclination angle is formed by patterning a photoresist in which only a portion where the groove portion is to be formed becomes an open portion, the photoresist is used as an etching resist, and the sapphire base substrate is subjected to reactive ion etching (Reactive Ion Etching). : RIE) or other dry etching or wet etching.
  • control means such as the width of the side wall, the width of the groove opening, the space between the grooves, and the width of the bottom surface, the photoresist coating amount, baking temperature, baking time, UV irradiation amount, UV, Examples include the shape of a photomask when irradiating.
  • the etching stage it can be controlled by the etching gas type, etching gas concentration, etching gas mixture ratio, antenna power, bias power, etching time, and the like.
  • the width of the side wall which is important in the present invention, can be controlled by obtaining an etching rate, which is the rate at which sapphire is etched per unit time, and changing the etching time.
  • a base substrate having side walls of various plane orientations can be created by selecting the main surface of the sapphire base substrate and setting the direction in which the groove extends. Specifically, when the base substrate main surface is the ⁇ 10-12> plane and the extending direction of the groove is the ⁇ 11-20> plane orientation, that is, the a-axis direction, The c-plane is exposed. When the underlying substrate main surface is the ⁇ 11-23> plane and the extending direction of the groove is the ⁇ 10-10> plane orientation, that is, the m-axis direction, the c-plane is exposed on the side wall that is the crystal growth surface. .
  • the underlying substrate main surface is the ⁇ 11-20> plane and the extending direction of the groove is the ⁇ 10-10> plane orientation, that is, the m-axis direction
  • the c-plane is exposed on the side wall that is the crystal growth surface.
  • the base substrate main surface is the ⁇ 10-10> plane and the extending direction of the groove is the ⁇ 11-20> plane orientation, that is, the a-axis direction
  • the c-plane is exposed on the side wall which is the crystal growth surface.
  • the base substrate main surface is the ⁇ 0002> plane and the extending direction of the groove is the ⁇ 10-10> plane orientation, that is, the m-axis direction
  • the a-plane is exposed on the side wall which is the crystal growth plane.
  • the sapphire base substrate can be arbitrarily designed with respect to the surface orientation of its main surface and the surface orientation of the side wall that becomes the crystal growth starting surface.
  • the sidewalls having various plane orientations lateral growth starting from the c-plane sidewall is likely to occur preferentially and easily controlled. Therefore, it is a preferable aspect to form a side wall composed of the c-plane on at least a part of the side wall constituting the groove.
  • SiO 2 film, SiN x , film, TiO 2 film, ZrO 2 is formed in a region other than the crystal growth region by a method such as vacuum deposition, sputtering, or CVD (Chemical Vapor Deposition).
  • CVD Chemical Vapor Deposition
  • the thickness of the masking layer is usually O.D. It is about 01 to 3 ⁇ m.
  • the GaN crystal layer is crystal-grown in the lateral direction by ELO starting from the side wall, and its surface is formed on the sapphire base substrate in parallel with the main surface of the base substrate.
  • the thickness of the GaN crystal layer to be formed (height from the main surface of the sapphire base substrate) is not particularly limited, but is usually 2 to 20 ⁇ m.
  • the plane orientation of the crystal surface of the GaN crystal layer corresponds to the main surface of the sapphire base substrate, as described above, and includes the ⁇ 11-22> plane, the ⁇ 10-11> plane, the ⁇ 20-21> plane, and the like.
  • the growth method of the GaN crystal is not particularly limited, and metal organic vapor phase epitaxy (Metal Organic Vapor Phase Epitaxy: MOVPE), molecular beam epitaxy (Molecular Beam Epitaxy: MBE), hydride vapor phase epitaxy (Hydride Vapor Phase Epitaxy) : HVPE), among which the metalorganic vapor phase epitaxy is the most common.
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • MBE molecular beam epitaxy
  • HVPE hydride vapor phase epitaxy
  • the technique described in WO2010 / 023846 proposed by the inventors of the present invention can be applied mutatis mutandis without any limitation.
  • the MOVPE apparatus used for crystal growth is mainly composed of a substrate transport system, a substrate heating system, a gas supply system, and a gas exhaust system, all of which are electronically controlled.
  • the substrate heating system is composed of a thermocouple, a resistance heater, and a carbon or SiC susceptor provided thereon, and a quartz tray on which the sapphire base substrate of the present invention is set on the susceptor is conveyed. Then, epitaxial growth of the semiconductor layer is performed.
  • This substrate heating system is installed in a quartz double tube or a stainless steel reaction vessel equipped with a water cooling mechanism, and a carrier gas and various source gases are supplied into the double tube or reaction vessel.
  • a quartz flow channel is used to realize a laminar gas flow on the substrate.
  • the carrier gas include H 2 and N 2 .
  • An example of the nitrogen element supply source is NH 3 .
  • An example of the Ga element supply source is trimethylgallium (TMG).
  • the sapphire base substrate is set on a quartz tray so that the main surface of the sapphire faces upward, and then the sapphire base substrate is heated to 1050 to 1150 degrees and the pressure in the reaction vessel is set to 10 to 100 kPa.
  • the sapphire base substrate is thermally cleaned by circulating H 2 as a carrier gas in a flow channel installed inside and maintaining that state for several minutes.
  • the temperature of the sapphire base substrate is set to 1050 to 1150 degrees
  • the pressure in the reaction vessel is set to 10 to 100 kPa
  • the carrier gas H 2 is circulated at a flow rate of 10 L / min in the reaction vessel, and NH 3 and TMG are supplied in O.D.
  • the flow rate is 1 to 5 L / min and 10 to 150 ⁇ mol / min.
  • undoped GaN is heteroepitaxially grown on the side wall of the groove of the sapphire base substrate.
  • a GaN layer grows in the normal direction of the main surface of the substrate, and as shown in FIG. 6, a GaN crystal layer is formed on the sapphire base substrate to obtain a laminated substrate.
  • the layer thickness of the GaN crystal layer is about 2 to 20 ⁇ m.
  • the growth temperature is controlled in order to control the growth from the side wall of the groove without causing growth from the main surface of the substrate. It is necessary to optimize various conditions such as growth pressure, raw material gas supply amount, raw material gas supply ratio, carrier gas type, and carrier gas amount. After determining the growth method, reaction apparatus, raw material, and the like to be used, the conditions may be determined in advance through preliminary experiments.
  • the sapphire base substrate used in the present invention may be one in which, for example, the main surface is covered with a crystal growth inhibiting layer made of SiO 2 or the like other than the region for crystal growth. By providing the crystal growth inhibition layer, it is possible to suppress the growth from the main surface of the substrate and control the growth to be preferentially performed from the side wall of the groove.
  • the GaN crystal has a base substrate main surface, a groove sidewall exposed from the sapphire c surface, and the other groove sidewall.
  • crystal growth from it is necessary to optimize the above various growth conditions in order to control the growth so as to preferentially occur from the groove side wall where the sapphire c-plane is exposed.
  • the growth from the main surface of the base substrate can be suppressed by providing a crystal growth inhibiting layer.
  • the GaN crystal may grow from the base substrate main surface and the groove side wall.
  • the groove side walls on both sides have the same plane orientation, it is necessary to control so that the GaN crystal having the same plane orientation grows from either side and the crystal grows from either side wall of the trench.
  • the growth from the main surface of the base substrate may be suppressed. In order to suppress the growth from the main surface of the base substrate, it is effective to provide a crystal growth inhibiting layer, but control is possible only by optimizing the above various growth conditions.
  • the GaN crystal layer is constituted by an aggregate of a plurality of band-like GaN crystals grown from the growth region on the side wall of the groove, or by an integrated body in which the band-like GaN crystals are linked together.
  • the surface orientation of the surface of the obtained GaN crystal layer varies depending on the crystal structure of the sapphire base substrate. For example, when the main surface of the sapphire base substrate is the ⁇ 10-12> plane and the side wall that serves as the growth origin is the c plane, the a axis of sapphire and the m axis of the GaN crystal are parallel on the side wall surface.
  • a GaN crystal having a crystal orientation relationship in which the m-axis of sapphire and the a-axis of the GaN crystal are parallel grows.
  • a GaN crystal layer grown so that the ⁇ 11-22> plane of the GaN crystal is parallel to the main surface of the sapphire base substrate is formed on the sapphire base substrate.
  • the main surface of the sapphire base substrate is the ⁇ 11-23> plane and the side wall serving as the growth origin is the c-plane
  • the m-axis of sapphire and the a-axis of the GaN crystal are parallel on the side wall surface.
  • a GaN crystal in which the a-axis of sapphire and the m-axis of the GaN crystal are parallel to each other is crystal-grown.
  • the gallium nitride crystal multilayer substrate obtained by the above various growth methods can be used as it is as a substrate for various semiconductor light emitting devices.
  • Example 1 [Production of sapphire base substrate] A resist was patterned on the stripe on the ⁇ 10-12> plane sapphire base substrate, and then dry etching was performed by reactive ion etching (RIE) to form a plurality of grooves on the sapphire base substrate.
  • the groove portion was formed so that the groove opening width was 3 ⁇ m, the groove depth was 100 nm, and the width of the main surface portion of the substrate to the adjacent groove portion was 3 ⁇ m.
  • the inclination angle of the side wall is about 60 degrees, and the width (d) of the side wall calculated from the groove depth and the inclination angle of the side wall is 115 nm. After dry etching, the resist was washed away to obtain a sapphire base substrate.
  • This sapphire base substrate has 8466 grooves on the main surface of the substrate.
  • the groove is composed of a side wall made of a sapphire c-plane serving as a crystal growth region, a side wall having another plane orientation, and a bottom surface of the groove.
  • the prepared sapphire base substrate is set in a MOVPE apparatus on a quartz tray so that the substrate surface faces upward, and then the substrate is heated to 1150 ° C. and the pressure in the reaction vessel is set to 100 kPa.
  • the substrate was thermally cleaned by circulating H 2 at 10 L / min as a carrier gas and maintaining this state for 10 minutes.
  • the pressure in the reaction vessel was 100kPa while the temperature of the substrate and 460 ° C., while also a flow of carrier gas to circulate inside the reaction vessel at a flow rate of H 2 5L / min, there Group V element source ( NH 3 ) and a group III element supply source (TMG) were deposited at about 25 nm of amorphous GaN on the substrate with respective supply amounts of 5 L / min and 5.5 ⁇ mol / min. Subsequently, the temperature of the substrate is set to 1075 ° C., the pressure in the reaction vessel is set to 20 kPa, and the carrier gas flowing in the reaction vessel is set to H 2 , and the carrier gas is circulated at a flow rate of 5 L / min.
  • the GaN deposited on was recrystallized to selectively form GaN crystal nuclei in the crystal growth region on the side wall of the groove.
  • the temperature of the base substrate is set to 1075 ° C.
  • the pressure in the reaction vessel is set to 20 kPa
  • the carrier gas flowing through the reaction vessel is set to H 2 , while flowing at a flow rate of 5 L / min.
  • a group V element supply source NH 3
  • a group III element supply source TMG
  • An undoped GaN crystal was grown to form a GaN crystal layer on the substrate so that lateral crystal growth occurred from the side wall of the groove of the base substrate.
  • the temperature of the base substrate is set to 1025 ° C.
  • the pressure in the reaction vessel is set to 20 kPa
  • the carrier gas flowing through the reaction vessel is set to H 2 , while flowing at a flow rate of 5 L / min.
  • a group V element supply source (NH 3 ) and a group III element supply source (TMG) for 300 minutes so that the respective supply amounts are 2 L / min and 30 ⁇ mol / min, and growing a GaN crystal.
  • the GaN crystals grown from the side walls of the groove portions of the base substrate were associated with each other to form a GaN crystal layer in which the surface composed of the ⁇ 11-22> plane of the GaN crystal was formed parallel to the main surface of the base substrate.
  • n-type GaN crystal layer [Formation of n-type GaN crystal layer]
  • the temperature of the substrate is set to 1025 ° C.
  • the pressure in the reaction vessel is set to 20 kPa
  • the carrier gas to be circulated in the reaction vessel is set to H 2 , while being circulated at a flow rate of 5 L / min.
  • Group element supply source (NH 3 ), Group III element supply source (TMG), and n-type doping element supply source (SiH 4 ) are supplied at 2 L / min, 30 ⁇ mol / min, and 5.8 ⁇ 10, respectively.
  • An n-type GaN crystal layer epitaxially grown in the same plane orientation as the undoped GaN crystal layer was formed on the undoped GaN crystal layer at a flow rate of ⁇ 3 ⁇ mol / min for 60 minutes.
  • Example 2 A GaN crystal layer was formed on the sapphire base substrate in the same manner as in Example 1 except that the groove depth of the groove formed on the sapphire base substrate was 200 nm and the side wall width (d) was adjusted to 231 nm. .
  • Example 3 A GaN crystal layer was formed on the sapphire base substrate in the same manner as in Example 1 except that the groove depth of the groove formed on the sapphire base substrate was 500 nm and the side wall width (d) was adjusted to 587 nm. .
  • Comparative Example 1 A GaN crystal layer was formed on the sapphire base substrate in the same manner as in Example 1 except that the groove depth of the groove formed on the sapphire base substrate was 1 ⁇ m and the side wall width (d) was adjusted to 1155 nm. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Lasers (AREA)

Abstract

貫通転位密度が低く高い結晶性を有するGaN結晶のa面:<11-20>面やm面:<1-100>面を主面とする基板、或いは<11-22>面を主面とする基板など、多様な面方位の面がサファイア下地基板上に積層されたGaN結晶積層基板、並びにその製造方法を提供する。サファイア下地基板と、該基板上に結晶成長せしめて形成された窒化ガリウム結晶層とを含み、該窒化ガリウム結晶層は、サファイア下地基板の主面に複数本形成された溝部の、例えばc面からなる側壁から横方向結晶成長して該主面と平行に表面が形成され、その表面がa面やm面などの無極性面、<11-22>面などの半極性面からなり、且つ、該窒化ガリウム結晶の暗点密度が2×10個/cm未満、好ましくは1.85×10個/cm以下、特に好ましくは1.4×10個/cm以下である窒化ガリウム結晶積層基板。

Description

下地基板、窒化ガリウム結晶積層基板及びその製造方法
 本発明は、下地基板、窒化ガリウム結晶積層基板、詳しくは、サファイア下地基板上に、貫通転位密度が小さな窒化ガリウム(GaN)結晶層を積層した積層基板、並びにその製造方法に関する。
 発光ダイオード(LED)や半導体レーザ(LD)などの半導体発光素子として、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MuItiQuantumWells:MQWs)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。このような量産化されている半導体発光素子では、いずれのGaN層も、軸方向にGaNが結晶成長し、表面が、c面(<OOO1>面)となっている。
 ところで、表面がc面であるGaN結晶層では、Ga原子のみを含むGa原子面が僅かにプラスに帯電する一方、N原子のみを含むN原子面が僅かにマイナスに帯電し、結果としてc軸方向(層厚さ方向)に自発分極が発生する。また、GaN結晶層上に異種半導体層をヘテロエピタキシャル成長させた場合、両者の格子定数の違いによって、GaN結晶に圧縮歪や引っ張り歪が生じ、GaN結晶内でc軸方向に圧電分極(ピエゾ分極)が発生する(特許文献1及び2参照)。
 この結果、前記構成の半導体発光素子では、多重量子井戸層において、InGaN量子井戸層に固定電荷に起因する自発分極に加えて、InGaN量子井戸層に加わる圧縮歪により生じたピエゾ分極が重畳され、そのためc軸方向に大きな内部分極電場が発生することとなる。この内部分極電場の影響を受けて、量子閉じ込めシュタルク効果(Quantum-Confined Stark Effect:QCSE)により、発光効率の低下や必要な注入電流の増大に伴う発光のピーク波長シフトなどの問題が生じると考えられている。
 上記問題を解決するために、GaN結晶の無極性面である、a面:<11-20>面やm面:<1-100>面を用いて、その上にInGaN層を形成し、自発分極とピエゾ分極の重畳された内部電界の影響を回避することが検討されている(特許文献1~3参照)。
 更に、c面が、a軸あるいはm軸方向に約60度傾斜した半極性面といわれている面、例えば、半極性の<11-22>面上にInGaN量子井戸層を形成し、それによって内部電極の影響を回避することも検討されている(非特許文献1、非特許文献2)。
 しかしながら、現在入手可能な上記GaN結晶のa面やm面といった無極性面を主面とする基板、或いは<11-22>面や<10-11>面等の半極性面を主面とする基板は、貫通転位密度が2~3×10個/cm程度と言われており、より貫通転位密度が低い高い結晶品質の結晶基板が望まれている。
特開2008-53593号公報 特開2008-53594号公報 特開2007-243006号公報
Japanese Journal of Applied Physics Vol.45,2006,L659. Applied Physics Letters Vol.90,2007,261912.
 GaN結晶の、貫通転位密度が低く高い結晶品質のa面やm面を主面とする基板、或いは<11-22>面や<10-11>面を主面とする基板など、無極性面や半極性面を主面としたGaN結晶層がサファイア下地基板上に積層されたGaN結晶積層基板、その製造方法、並びに当該製造方法に使用されるサファイア下地基板を提供することを目的とする。
 本発明者らは、複数本の凹状の溝部を有するサファイア下地基板を用いて、該下地基板の溝部の側壁面を起点として所望の結晶面を有するGaN結晶を成長させる方法について検討してきた。その過程で、溝部側壁面の結晶成長領域の大きさが結晶品質(貫通転位密度)に大きく影響する一方、成長した結晶の表面平坦性やX線回折測定により評価した結晶性にはほとんど影響を及ぼさないことを見出し、本願発明を完成するに至った。
 即ち、本発明は、サファイア下地基板と、該下地基板上に結晶成長せしめて形成された窒化ガリウム結晶層とを含み、該窒化ガリウム結晶層は、サファイア下地基板の主面に複数本形成された溝部の側壁を起点として横方向結晶成長して該主面と平行に、その表面が形成されたものであり、且つ、該窒化ガリウム結晶の暗点密度が2×10個/cm未満であることを特徴とする窒化ガリウム結晶積層基板である。
 上記窒化ガリウム結晶積層基板において、
1)窒化ガリウム結晶の暗点密度が1.4×10個/cm以下であること、
2)窒化ガリウム結晶層が、無極性または半極性の面方位を有する表面からなる窒化ガリウム結晶層であること、
3)溝部からの横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であること
が好ましい。
 他の発明は、サファイア下地基板上に、該下地基板の主面に対して傾斜した側壁を有する複数本の溝部を形成し、該溝部の側壁を起点として選択的に窒化ガリウム結晶を横方向成長させる窒化ガリウム結晶積層基板の製造方法において、
 上記側壁における窒化ガリウム結晶を成長させる領域の幅(d)を10~750nmに設定することを特徴とする窒化ガリウム結晶積層基板の製造方法である。
 上記窒化ガリウム結晶積層基板の製造方法において、
4)窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであること、
5)溝部からの横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることが好ましい。
 更に他の発明は、サファイア下地基板上に、該下地基板の主面に対して傾斜した側壁を有する溝部を複数本有し、該溝部の側壁における選択的に窒化ガリウム結晶を成長させる領域の幅(d)が10~750nmに設定されていることを特徴とする結晶積層基板製造用サファイア下地基板である。
 上記結晶積層基板製造用サファイア下地基板において、
6)窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであること、
7)溝部からの横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることが好ましい。
 本発明の窒化ガリウム結晶積層基板は、窒化ガリウム結晶の暗点密度が2×10個/cm未満、好ましくは1.85×10個/cm以下、特に好ましくは1.4×10個/cm以下であって結晶品質が高いので、該積層基板を用いて作製されるLEDやLDなどの半導体発光素子は、その発光効率が向上する。
 また、サファイア下地基板上に形成した溝部の側壁より選択的に窒化ガリウム結晶を成長させることにより、無極性面または半極性面を主面とする、高品質の窒化ガリウム結晶が得られる。このため、これを用いて作製される半導体発光素子は、従来のc面を主面とする窒化ガリウム結晶層基板に比べて、量子閉じ込めシュタルク効果による発光効率の低下の影響が小さい。
本発明のサファイア下地基板の部分断面図である。 本発明のサファイア下地基板の一例を示す図である。 サファイア下地基板の溝部の拡大断面図である。 マスキング部を有するサファイア下地基板の溝部の拡大斜視図である。 下地基板上にGaN結晶が成長する過程を示す模式図である。 サファイア下地基板、および得られたGaN結晶層の状態を示す模式図である。 側壁の幅(d)と暗点密度との関係を示すグラフである。
 本発明の窒化ガリウム結晶積層基板は、下地基板の主面対して傾斜した側壁を有する溝部を複数本有し、該溝部の側壁に窒化ガリウム結晶を成長させるための、幅(d)10~750nmの成長領域が設けられたサファイア下地基板を下層とし、その上に、当該側壁を起点として横方向結晶成長(epitaxial lateral overgrowth;ELO)して上記主面と平行に、その表面が形成された、暗点密度が2×10個/cm未満の窒化ガリウム結晶層が積層された構造を有する。
 暗点密度とは、結晶の転位欠陥である貫通転位の密度を示すための指標となる物性値であり、走査型電子顕微鏡/カソードルミネッセンス(SEM・CL)装置を用いて測定される。測定試料はアンドープGaN結晶層の上にn型GaN結晶層を積層した試料を用い、n型GaN層表面において測定を行う。測定時の加速電圧は5kVとし、観察範囲は20μm×20μmとする。このとき、観察範囲内に観察された暗点の総数より暗点密度を算出する。
 本発明の結晶積層基板製造用のサファイア下地基板は、サファイア基板上に、該基板の主面に対して傾斜した側壁を有する溝部を複数本有し、該溝部の側壁における選択的に窒化ガリウム結晶を成長させる領域の幅(d)が、10~750nmに設定されている。
 上記下地基板としては、主面が特定の面方位であるサファイア基板を使用する。しかしながら、後述する所望のGaN結晶を得るために、結晶軸に対して所定の角度傾斜したミスカット面であるものでもよい。
 該下地基板は、通常、厚みが0.3~3.0mm、直径が50~300mmの円盤状のものが使用される。
 サファイア下地基板の主面は、目的とするGaN結晶の結晶面に合わせて任意の面方位が選択される。例えば、<11-22>面を表面に有するGaN結晶を成長させたい場合は、サファイア下地基板の主面は<10-12>とする。<10-11>面を表面に有するGaN結晶を成長させたい場合は、サファイア下地基板の主面は<11-23>とする。その他、<10-10>面、<11-20>面、<20-21>面等を主面することができる。
 また、例えば、<10-12>面を主面とするサファイア基板を用い、溝部の側壁の一部にサファイア単結晶のc面(以下、サファイアc面という)を形成した場合、サファイアc面とサファイア基板主面とがなす角度は57.6度である。しかし、目的とするGaN結晶の<11-22>面とGaN結晶のc面とのなす角は58.4度であるため、<10-12>面を主面とするサファイア基板上には、サファイア主面に対して0.8度傾斜して<11-22>面GaN結晶層が成長する。この角度を相殺するために、<10-12>面にオフ角をつけた面であるミスカット基板を用い、GaN結晶層表面である<11-22>面がサファイア基板主面に対して平行となるように成長させることができる。このように目的とするGaN結晶の面方位と、用いるサファイア下地基板との面方位によって、GaN結晶層表面がサファイア下地基板主面と平行になるように設計された、種々のミスカット基板を用いることができる。
 該サファイア下地基板の主面には、複数本の溝部が並行に設けられる。溝部の開口部幅は特に制限されず、通常0.5~10μmの範囲から設定される。溝部の間隔、即ち、相互に隣接する溝部と溝部の下地基板主面線上の間隔は、1~100μmである。溝部底面の横方向の幅、即ち溝部の延びる方向に垂直な方向の距離(w)も特に限定されず、1~100000μmが一般的である。
 主面上の溝部の数は、形成されるGaN結晶の所望する面積に応じて任意に設けることができるが、上記開口部幅、溝部の間隔、底面の幅を勘案して、通常、1mm当り、10~500本程度設ければ良い。
 上記溝部は、下地基板主面に対して所定の角度で傾斜した側壁を有しており、
図3に示すように、その断面形状は、溝開口部から溝底部に向かって溝幅を狭めるように傾斜してテ―パー状になっている。
 該傾斜角度とは、図3に示すように、下地基板主面と溝部側壁の延長面とがなす角度(Θ)を意味する。該角度は、下地基板主面の面方位に合わせて形成させたいGaN結晶の面方位を勘案して決定される。
 例えば、サファイア下地基板主面の面方位が<10-12>であり、所望するGaN結晶の面方位が<11-22>面である場合は、この角度を58.4度として、この側壁から、GaN結晶を、サファイア下地基板のc軸にGaN結晶のc軸が同一の方向となるように成長させて所望の結晶を得る。
 このときの角度58.4度は、所望するGaN結晶の主面である<11-22>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、58.4度であることから決定される。しかし、用いるサファイア下地基板の主面である<10-12>面と、溝部の側壁に現れるサファイアc面とがなす角度は57.6度であるため、下地基板主面と溝部側壁とがなす角度(Θ)は57.6度となり、その上に成長したGaN結晶層の表面は、サファイア下地基板の主面に対し、約0.8度傾斜する。そこで、この角度を相殺するように、基板主面がサファイア<10-12>面にオフ角をつけた面であるミスカット基板を用いることにより、GaN結晶の<11-22>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
 サファイア下地基板主面の面方位が<11-23>であり、所望するGaN結晶の面方位が<10-11>面である場合は、この角度を62.0度として、この側壁から、GaN結晶を、サファイア下地基板のc軸にGaN結晶のc軸が同一の方向となるように成長させて所望の結晶を得る。
 このときの角度62.0度は、所望するGaN結晶の主面である<10-11>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、62.0度であることから決定される。しかし、用いるサファイア下地基板の主面である<11-23>面と、溝部の側壁に現れるサファイアc面とがなす角度は61.2度であるため、下地基板主面と溝部側壁とがなす角度(Θ)は61.2度となり、その上に成長したGaN結晶層の表面は、サファイア下地基板の主面に対し、約0.8度傾斜する。そこで、この角度を相殺するように、基板主面がサファイア<11-23>面にオフ角をつけた面であるミスカット基板を用いることにより、GaN結晶の<10-11>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
 サファイア下地基板主面の面方位が<11-20>であり、所望するGaN結晶の面方位が<10-10>面である場合は、この角度を90度として、この側壁から、GaN結晶を、サファイア下地基板のc軸にGaN結晶のc軸が同一の方向となるように成長させて所望の結晶を得る。
 このときの角度90度は、所望するGaN結晶の主面である<11-20>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、90度であることから決定される。しかし、サファイア基板に溝部を形成するエッチング工程において、サファイア基板主面に対して垂直方向のみならず、平行方向を含んだ垂直以外の方向にもエッチングが進行するため、下地基板主面と溝部側壁とがなす角度(Θ)が90度、すなわち、溝部側壁がサファイア基板主面に対して真に垂直な溝部を形成することは技術上困難である。しかしながら、下地基板主面と溝部側壁とがなす角度(Θ)が90度に近い溝部を有するサファイア基板を用いることにより、<11-20>面を主面とするサファイア下地基板上に、GaN結晶の<10-10>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
 サファイア下地基板主面の面方位が<10-10>であり、所望するGaN結晶の面方位が<11-20>面である場合は、この角度を90度として、この側壁から、GaN結晶を、サファイア下地基板のc軸にGaN結晶のc軸が同一の方向となるように成長させて所望の結晶を得る。
 このときの角度90度は、所望するGaN結晶の主面である<10-10>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、90度であることから決定される。しかし、前記のように下地基板主面と溝部側壁とがなす角度(Θ)が90度となる溝部を形成することは技術上困難である。しかしながら、下地基板主面と溝部側壁とがなす角度(Θ)が90度に近い溝部を有するサファイア基板を用いることにより、<10-10>面を主面とするサファイア下地基板上に、GaN結晶の<11-20>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
 サファイア下地基板主面の面方位が<0001>であり、所望するGaN結晶の面方位が<10-10>面である場合は、この角度を90度として、この側壁から、GaN結晶を、サファイア下地基板のa軸にGaN結晶のc軸が同一の方向となるように成長させて所望の結晶を得る。
 このときの角度90度は、所望するGaN結晶の主面である<10-10>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、90度であることから決定される。しかし、前記のように下地基板主面と溝部側壁とがなす角度(Θ)が90度となる溝部を形成することは技術上困難である。しかしながら、下地基板主面と溝部側壁とがなす角度(Θ)が90度に近い溝部を有するサファイア基板を用いることにより、<0001>面を主面とするサファイア下地基板上に、GaN結晶の<10-10>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
 本願発明においては、上記溝部の側壁における、GaN結晶成長させる領域(以下、結晶成長領域という)の幅(d)の設定が、貫通転位密度の低減のために極めて重要である。
 結晶成長領域の幅(d)とは、図3に示す如く、成長起点となる側壁の全領域が結晶成長領域である場合は、下地基板主面と側壁が交わる辺と、側壁と溝部底面が交わる辺との間の、側壁上の最短距離(間隔)を云う。
 図4に示す如く、側壁の一部がマスキングされ結晶成長領域が制限されている場合は、上記最短距離(間隔)から、マスキング部分の幅を除いた距離(d)を云う。
 本発明においては、当該幅(d)を、暗点密度を2×10個/cm未満にするために、10~750nmに設定する必要がある。特に、暗点密度を1.4×10個/cm未満にするためには幅(d)を100~200nmにすることが必要である。幅(d)の下限は特に制限はなく小さいほど良いが、下記に述べる溝部作製の際の技術上の制約から決定される。
 上記所定の傾斜角度の側壁を有する溝部は、溝部形成予定部分だけが開ロ部となるフォトレジストのパターニングを形成し、フォトレジストをエッチングレジストとし、サファイア下地基板を反応性イオンエッチング(Reactive Ion Etching:RIE)等のドライエッチング或いはウエットエッチングをすることにより形成することができる。
 更に、側壁の幅、溝部開口部幅、溝部間隔、底面幅などの制御手段としては、フォトレジストのパターニングを形成する段階において、フォトレジストの塗布量、ベーク温度、ベーク時間、UV照射量、UV照射する際のフォトマスクの形状などが挙げられる。また、エッチングの段階において、エッチングガス種、エッチングガス濃度、エッチングガス混合比、アンテナパワー、バイアスパワー、エッチング時間などによっても制御できる。
 これら種々の条件を組み合わせることにより、所定の形状である溝部を有したサファイア下地基板を得ることができる。特に本発明において重要である側壁の幅は、単位時間あたりにサファイアがエッチングされる速度であるエッチングレートを求め、エッチング時間を変更することで制御が可能である。
 上記方法において、サファイア下地基板主面の選定、並びに溝部の延びる方向の設定により、種々の面方位の側壁を有する下地基板を作成することができる。
 具体的には、下地基板主面が<10-12>面、溝部の延びる方向が<11-20>面の面方位、即ち、a軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<11-23>面、溝部の延びる方向が<10-10>面の面方位、即ち、m軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<11-20>面、溝部の延びる方向が<10-10>面の面方位、即ち、m軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<10-10>面、溝部の延びる方向が<11-20>面の面方位、即ち、a軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<0002>面、溝部の延びる方向が<10-10>面の面方位、即ち、m軸方向である場合は、結晶成長面である側壁にはa面が露出する。
 上記の通り、サファイア下地基板は、その主面の面方位並びに結晶成長の起点の面となる側壁の面方位を任意に設計することができる。種々の面方位を有する側壁の中で、c面側壁を起点とした横方向成長が優先的に起こり易いし制御し易い。従って、溝部を構成する側壁の少なくとも一部にc面からなる側壁を形成しておくことは、好ましい態様である。
 側壁の一部をマスキングする手段としては、真空蒸着、スパッタリング、CVD(Chemical Vapor Deposition)等の方法により、結晶成長領域以外の領域に、SiO膜、SiN、膜、TiO膜、ZrO膜等を形成してマスキングする方法が挙げられる。該マスキング層の厚さは、通常O.01~3μm程度である。
 GaN結晶層は、上記側壁を起点として、ELOにより横方向に結晶成長して、サファイア下地基板上に下地基板主面と平行にその表面が形成される。形成されるGaN結晶層の厚み(サファイア下地基板主面からの高さ)は、特に限定されないが、通常、2~20μmである。
 GaN結晶層の結晶表面の面方位は、上記の通りサファイア下地基板主面に対応し、<11-22>面、<10-11>面、<20-21>面などからなる。
 GaN結晶の成長方法は、特に限定されず、有機金属気相成長法(Metal Organic Vapor Phase Epitaxy:MOVPE)、分子線エピタキシ法(Molecular Beam Epitaxy:MBE)、ハイドライド気相成長法(Hydride Vapor Phase Epitaxy:HVPE)が採用され、これらのうち有機金属気相成長法が最も一般的である。以下では、有機金属気相成長法を利用した成長方法について説明する。また、本願発明の発明者等によって提案されたWO2010/023846号公報に記載の技術を何ら制限なく準用できる。
 結晶成長に用いられるMOVPE装置は、大きくは基板搬送系、基板加熱系、ガス供給系、及びガス排気系から構成され、全て電子制御される。基板加熱系は、熱電対及び抵抗加熱ヒータ、並びにその上に設けられた炭素製或いはSiC製のサセプタで構成され、そして、そのサセプタの上に本発明のサファイア下地基板をセットした石英トレイが搬送され、半導体層のエピタキシャル成長が行われる。この基板加熱系は、水冷機構を備えた石英製の二重管内或いはステンレス製の反応容器内に設置され、その二重管或いは反応容器内にキャリアガス及び各種原料ガスが供給される。特にステンレス反応容器を使う場合は、基板上に層流のガスの流れを実現するために、石英製のフローチャネルを用いる。
 キャリアガスとしては、例えば、H、Nが挙げられる。窒素元素供給源としては、例えば、NHが挙げられる。Ga元素供給源としては、例えば、トリメチルガリウム(TMG)が挙げられる。
 以下具体的に、GaN結晶層の形成について説明する。まず、サファイア下地基板を基板主面が上向きになるように石英トレイ上にセットした後、サファイア下地基板を1050~1150度に加熱すると共に反応容器内の圧力を10~100kPaとし、また、反応容器内に設置したフローチャネル内にキャリアガスとしてHを流通させ、その状態を数分間保持することによりサファイア下地基板をサーマルクリーニングする。
 次いで、サファイア下地基板の温度を1050~1150度とすると共に反応容器内の圧力を10~100kPaとし、また、反応容器内にキャリアガスHを10L/minの流量で流通させながら、そこにNH、及びTMGを、それぞれの供給量がO.1~5L/min、及び10~150μmol/minとなるように流す。このとき、図5に示すように、サファイア下地基板の溝部の側壁から、その上にアンドープのGaNがヘテロエピタキシャル成長する。そして、その結晶成長により基板主面の法線方向にGaNの層の成長が進展し、図6に示すように、サファイア下地基板上にGaN結晶層が形成されて積層基板が得られる。GaN結晶層の層厚みは約2~20μmである。GaN結晶層を形成させる前に、側壁の結晶成長領域面上に厚さ20~30nm程度の低温バッファ層を形成することが好ましい。
 本発明のサファイア下地基板を用いてGaN結晶の結晶成長を行う際、該基板主面からの成長を起こさずに、溝部の側壁から優先的に成長がおこるように制御するためには、成長温度、成長圧力、原料ガス供給量、原料ガス供給比、キャリアガス種、キャリアガス量等の種々の条件を最適化する必要がある。使用する成長方法や反応装置や原料等を決定した上で、予め、予備的な実験でその条件を決定しておけば良い。また、本発明に用いるサファイア下地基板は、結晶成長させる領域以外、例えば主面がSiO等からなる結晶成長阻害層で被覆されたものでも良い。結晶成長阻害層の付与によって、基板主面からの成長を抑制し、溝部の側壁から優先的に成長が起こるよう制御することができる。
 具体的には、下地基板主面が<10-12>面、或いは<11-23>面である場合、GaN結晶は下地基板主面、サファイアc面が露出した溝部側壁、もう一方の溝部側壁から結晶成長する可能性がある。この場合、サファイアc面が露出した溝部側壁から優先的に成長が起こるように制御するには、上記種々の成長条件の最適化が必要である。また、下地基板主面からの成長は、結晶成長阻害層の付与によっても抑制が可能である。
 下地基板主面が<11-20>面、<10-10>面、或いは<0002>面である場合、GaN結晶は下地基板主面、及び溝部側壁から結晶成長する可能性がある。このとき、両側の溝部側壁は同じ面方位を有しているため、どちらからも同じ面方位を有したGaN結晶が成長し、どちらか一方の溝部側壁から結晶が成長するように制御する必要はなく、下地基板主面からの成長を抑制すればよい。下地基板主面からの成長を抑制するには結晶成長阻害層の付与が効果的であるが、上記種々の成長条件の最適化のみでも制御は可能である。
 GaN結晶層は、溝部の側壁の成長領域から結晶成長した複数の帯状のGaN結晶の集合体によって、或いは、帯状のGaN結晶が会合して連なった一体物によって構成される。
 得られるGaN結晶層の表面の面方位は、サファイア下地基板の結晶構造によって、種々異なることとなる。例えば、サファイア下地基板の主面が<10-12>面であって、成長起点となる側壁がc面である場合は、側壁面上には、サファイアのa軸とGaN結晶のm軸が平行であり、サファイアのm軸とGaN結晶のa軸が平行な結晶方位関係にあるGaN結晶が結晶成長する。この結果、該サファイア下地基板上には、GaN結晶の<11-22>面がサファイア下地基板の主面に対して平行となるように成長したGaN結晶層が形成される。
 或いは、サファイア下地基板の主面が<11-23>面であって、成長起点となる側壁がc面である場合は、側壁面上には、サファイアのm軸とGaN結晶のa軸が平行であり、サファイアのa軸とGaN結晶のm軸が平行な結晶方位関係にあるGaN結晶が結晶成長する。この結果、該サファイア下地基板上には、GaN結晶の<10-11>面がサファイア下地基板の主面に対して平行となるように成長したGaN結晶層が形成される。
 上記各種の成長法によって得られた窒化ガリウム結晶積層基板は、このまま各種半導体発光素子の基板として使用することができる。
 以下、実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
実施例1
〔サファイア下地基板の作製〕
 <10-12>面サファイア下地基板上にストライプ上にレジストをパターニングし、次いで反応性イオンエッチング(RIE)によりドライエッチングすることで、サファイア下地基板上に複数本の溝部を形成した。溝部は、溝開口幅が3μm、溝の深さが100nm、及び隣接する溝部までの基板主面部分の幅が3μmとなるように形成した。側壁の傾斜角度は約60度であり、溝深さ及び側壁の傾斜角度より算出した側壁の幅(d)は115nmである。
 ドライエッチングの後、レジストを洗浄除去することでサファイア下地基板を得た。このサファイア下地基板は、基板主面上に8466本の溝部が存在する。該溝部は結晶成長領域となるサファイアc面からなる側壁、更に他の面方位の側壁及び溝部底面から構成されている。
〔アンドープGaN結晶層の形成〕
 作製したサファイア下地基板を、MOVPE装置内に、基板表面が上向きになるように石英トレイ上にセットした後、基板を1150℃に加熱すると共に反応容器内の圧力を100kPaとし、また、反応容器内にキャリアガスとしてHを10L/minで流通させ、その状態を10分間保持することにより基板をサーマルクリーニングした。
 次いで、基板の温度を460℃とすると共に反応容器内の圧力を100kPaとし、また、反応容器内を流通させるキャリアガスをH5L/minの流量で流しながら、そこにV族元素供給源(NH)、及びIII族元素供給源(TMG)を、それぞれの供給量が5L/min及び5.5μmol/minで基板上にアモルファス状のGaNを約25nm堆積させた。続いて基板の温度を1075℃とすると共に反応容器内の圧力を20kPaとし、また、反応容器内を流通させるキャリアガスをHとして、それを5L/minの流量で流通させることで、基板上に堆積したGaNを再結晶化し、溝部側壁の結晶成長領域に選択的にGaN結晶核を形成した。
 続いて、下地基板の温度を1075℃とすると共に反応容器内の圧力を20kPaとし、また、反応容器内を流通させるキャリアガスをHとして、それを5L/minの流量で流通させながら、そこにV族元素供給源(NH)、及びIII族元素供給源(TMG)を、それぞれの供給量が2L/min及び30μmol/minとなるように30分間流し、GaN結晶核の上にGaN(アンドープGaN)を結晶成長させることにより、下地基板の溝部の側壁から横方向結晶成長するように基板上にGaN結晶層を形成した。
 続いて、下地基板の温度を1025℃とすると共に反応容器内の圧力を20kPaとし、また、反応容器内を流通させるキャリアガスをHとして、それを5L/minの流量で流通させながら、そこにV族元素供給源(NH)、及びIII族元素供給源(TMG)を、それぞれの供給量が2L/min及び30μmol/minとなるように300分間流し、GaN結晶を成長させることにより、下地基板の各溝部の側壁から成長したGaN結晶同士を会合し、GaN結晶の<11-22>面からなる表面が下地基板主面に対して平行に形成されたGaN結晶層を形成した。
〔n型GaN結晶層の形成〕
 次いで、基板の温度を1025℃とすると共に反応容器内の圧力を20kPaとし、また、反応容器内を流通させるキャリアガスをHとして、それを5L/minの流量で流通させながら、そこにV族元素供給源(NH)、III族元素供給源(TMG)、及びn型ドーピング元素供給源(SiH)を、それぞれの供給量が2L/min、30μmol/min、及び5.8×10-3μmol/minとなるように60分間流し、アンドープGaN結晶層の上部に、アンドープGaN結晶層と同一面方位にエピタキシャル成長したn型GaN結晶層を形成した。
実施例2
 サファイア下地基板に形成した溝部の溝深さを200nmとし、側壁の幅(d)を231nmに調整したことを除いては実施例1と同様にして、サファイア下地基板上にGaN結晶層を形成した。
実施例3
 サファイア下地基板に形成した溝部の溝深さを500nmとし、側壁の幅(d)を587nmに調整したことを除いては実施例1と同様にして、サファイア下地基板上にGaN結晶層を形成した。
比較例1
 サファイア下地基板に形成した溝部の溝深さを1μmとし、側壁の幅(d)を1155nmに調整したことを除いては実施例1と同様にして、サファイア下地基板上にGaN結晶層を形成した。
〔暗点密度評価〕
 実施例1~3、及び比較例1のそれぞれで得られたGaN結晶層について、走査型電子顕微鏡/カソードルミネッセンス(SEM・CL)装置を用いて、n型GaN結晶層表面の観察を行った。このときの加速電圧は5kV、観察範囲は20μm×20μmとし、観察範囲内に観察された暗点の総数から暗点密度を算出したところ、表1に示す結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 上記実施例1~3および比較例1のデータから、側壁の幅(d)と暗点密度との関係を図7に示した(X軸は対数表示)。この図から、下地基板の側壁の幅(d)を、750nm以下にすることにより、暗点密度が2×10個/cm未満の<11-22>面方位のGaN結晶層が、特に、幅(d)を、200nm以下にすることにより、暗点密度が1.85×10個/cm以下の高結晶品質のGaN結晶層が得られることが認識でき、結晶成長領域である側壁の幅(d)が結晶品質に大きく寄与することが確認できる。
 10 サファイア下地基板
 11 下地基板主面
 20 下地基板溝部
 21 溝部側壁
 22 溝部底面
 23 側壁結晶成長領域
 30 GaN結晶層
 31 GaN結晶層表面
 40 マスキング部

Claims (10)

  1.  サファイア下地基板と、該基板上に結晶成長せしめて形成された窒化ガリウム結晶層とを含み、該窒化ガリウム結晶層は、サファイア下地基板の主面に複数本形成された溝部の側壁を起点として横方向結晶成長して該主面と平行に、その表面が形成されたものであり、且つ、該窒化ガリウム結晶の暗点密度が2×10個/cm未満であることを特徴とする窒化ガリウム結晶積層基板。
  2.  窒化ガリウム結晶の暗点密度が1.4×10個/cm以下であることを特徴とする請求項1に記載の窒化ガリウム結晶積層基板。
  3.  窒化ガリウム結晶層が、無極性または半極性の面方位を有する表面からなる窒化ガリウム結晶層であることを特徴とする請求項1又は2に記載の窒化ガリウム結晶積層基板。
  4.  横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることを特徴とする請求項1~3の何れか一項に記載の窒化ガリウム結晶積層基板。
  5.  サファイア下地基板上に、該下地基板の主面に対して傾斜した側壁を有する複数本の溝部を形成し、該溝部の側壁を起点として選択的に窒化ガリウム結晶を横方向成長させる窒化ガリウム結晶積層基板の製造方法において、
     前記側壁における窒化ガリウム結晶を成長させる領域の幅(d)を10~750nmに設定することを特徴とする窒化ガリウム結晶積層基板の製造方法。
  6.  窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであることを特徴とする請求項5に記載の窒化ガリウム結晶積層基板の製造方法。
  7.  横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることを特徴とする請求項5または6に記載の窒化ガリウム結晶積層基板の製造方法。
  8.  サファイア下地基板上に、該下地基板の主面に対して傾斜した側壁を有する溝部を複数本有し、該溝部の側壁における選択的に窒化ガリウム結晶を成長させる領域の幅(d)が10~750nmに設定されていることを特徴とする結晶積層基板製造用サファイア下地基板。
  9.  窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであることを特徴とする請求項8に記載の結晶積層基板製造用サファイア下地基板。
  10.  横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることを特徴とする請求項8または9に記載の結晶積層基板製造用サファイア下地基板。
PCT/JP2012/055407 2011-03-07 2012-03-02 下地基板、窒化ガリウム結晶積層基板及びその製造方法 WO2012121154A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137022202A KR20140019328A (ko) 2011-03-07 2012-03-02 하지 기판, 질화갈륨 결정 적층 기판 및 그의 제조 방법
US13/983,257 US20130313567A1 (en) 2011-03-07 2012-03-02 Base substrate, gallium nitride crystal multi-layer substrate and production process therefor
CN2012800080170A CN103348044A (zh) 2011-03-07 2012-03-02 基底基板、氮化镓晶体层叠基板及其制造方法
EP12755674.4A EP2684988A1 (en) 2011-03-07 2012-03-02 Base, substrate with gallium nitride crystal layer, and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-049487 2011-03-07
JP2011049487A JP2012184144A (ja) 2011-03-07 2011-03-07 窒化ガリウム結晶積層基板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2012121154A1 true WO2012121154A1 (ja) 2012-09-13

Family

ID=46798118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055407 WO2012121154A1 (ja) 2011-03-07 2012-03-02 下地基板、窒化ガリウム結晶積層基板及びその製造方法

Country Status (7)

Country Link
US (1) US20130313567A1 (ja)
EP (1) EP2684988A1 (ja)
JP (1) JP2012184144A (ja)
KR (1) KR20140019328A (ja)
CN (1) CN103348044A (ja)
TW (1) TW201245515A (ja)
WO (1) WO2012121154A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141099A1 (ja) * 2012-03-19 2013-09-26 国立大学法人山口大学 窒化ガリウム結晶自立基板及びその製造方法
US10032958B2 (en) 2012-12-20 2018-07-24 Ngk Insulators, Ltd. Seed crystal substrates, composite substrates and functional devices

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435812B2 (en) 2012-02-17 2019-10-08 Yale University Heterogeneous material integration through guided lateral growth
JP6346457B2 (ja) * 2013-03-08 2018-06-20 国立大学法人山口大学 窒化ガリウム結晶自立基板の製造方法
JPWO2014136393A1 (ja) * 2013-03-08 2017-02-09 国立大学法人山口大学 加工基板及びそれを用いた半導体装置
US9312446B2 (en) 2013-05-31 2016-04-12 Ngk Insulators, Ltd. Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor
CN105556684B (zh) 2013-07-22 2019-10-18 亮锐控股有限公司 分离形成在衬底晶片上的发光设备的方法
EP3315639B1 (en) 2013-08-08 2024-05-01 Mitsubishi Chemical Corporation Self-standing gan substrate, gan crystal, method for producing gan single crystal, and method for producing semiconductor device
CN105830237B (zh) 2013-12-18 2019-09-06 日本碍子株式会社 发光元件用复合基板及其制造方法
WO2015107813A1 (ja) 2014-01-17 2015-07-23 三菱化学株式会社 GaN基板、GaN基板の製造方法、GaN結晶の製造方法および半導体デバイスの製造方法
CN108305923B (zh) 2014-03-31 2020-09-15 日本碍子株式会社 多晶氮化镓自立基板和使用该多晶氮化镓自立基板的发光元件
US9978845B2 (en) 2014-04-16 2018-05-22 Yale University Method of obtaining planar semipolar gallium nitride surfaces
CN106233471A (zh) * 2014-04-16 2016-12-14 耶鲁大学 蓝宝石衬底上的氮‑极性的半极性GaN层和器件
TW201545372A (zh) * 2014-05-30 2015-12-01 Mitsubishi Chem Corp 磊晶晶圓、半導體發光元件、發光裝置及磊晶晶圓之製造方法
WO2016051890A1 (ja) 2014-09-29 2016-04-07 日本碍子株式会社 窒化ガリウム自立基板、発光素子及びそれらの製造方法
DE102014115253A1 (de) * 2014-10-20 2016-04-21 Osram Opto Semiconductors Gmbh Verfahren zur Strukturierung einer Schichtenfolge und Halbleiterlaser-Vorrichtung
US9558943B1 (en) * 2015-07-13 2017-01-31 Globalfoundries Inc. Stress relaxed buffer layer on textured silicon surface
US10541514B2 (en) 2016-02-25 2020-01-21 Ngk Insulators, Ltd. Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device
WO2017145802A1 (ja) 2016-02-25 2017-08-31 日本碍子株式会社 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
JP6688109B2 (ja) 2016-02-25 2020-04-28 日本碍子株式会社 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法
US10896818B2 (en) 2016-08-12 2021-01-19 Yale University Stacking fault-free semipolar and nonpolar GaN grown on foreign substrates by eliminating the nitrogen polar facets during the growth
US11145507B2 (en) * 2019-12-16 2021-10-12 Wafer Works Corporation Method of forming gallium nitride film over SOI substrate
US11804374B2 (en) 2020-10-27 2023-10-31 Taiwan Semiconductor Manufacturing Company, Ltd. Strain relief trenches for epitaxial growth
CN113219122A (zh) * 2021-05-12 2021-08-06 中国电子科技集团公司第四十六研究所 一种快速区分氮化铝体单晶极性面的方法与装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243006A (ja) 2006-03-10 2007-09-20 Kyocera Corp 窒化物系半導体の気相成長方法、及び、エピタキシャル基板とそれを用いた半導体装置
JP2008053593A (ja) 2006-08-28 2008-03-06 Sharp Corp 窒化物半導体層の形成方法
JP2008053594A (ja) 2006-08-28 2008-03-06 Sharp Corp 窒化物半導体層の形成方法
JP2008078603A (ja) * 2006-09-18 2008-04-03 National Central Univ パターン化されたサファイア基板および発光ダイオードの製造方法
JP2009040657A (ja) * 2007-08-10 2009-02-26 Mitsubishi Chemicals Corp エピタキシャルウェハの製造方法
WO2010023846A1 (ja) 2008-08-25 2010-03-04 国立大学法人山口大学 半導体基板及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012809A (ja) * 2005-06-29 2007-01-18 Univ Of Tokushima 窒化ガリウム系化合物半導体装置およびその製造方法
JP4888857B2 (ja) * 2006-03-20 2012-02-29 国立大学法人徳島大学 Iii族窒化物半導体薄膜およびiii族窒化物半導体発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007243006A (ja) 2006-03-10 2007-09-20 Kyocera Corp 窒化物系半導体の気相成長方法、及び、エピタキシャル基板とそれを用いた半導体装置
JP2008053593A (ja) 2006-08-28 2008-03-06 Sharp Corp 窒化物半導体層の形成方法
JP2008053594A (ja) 2006-08-28 2008-03-06 Sharp Corp 窒化物半導体層の形成方法
JP2008078603A (ja) * 2006-09-18 2008-04-03 National Central Univ パターン化されたサファイア基板および発光ダイオードの製造方法
JP2009040657A (ja) * 2007-08-10 2009-02-26 Mitsubishi Chemicals Corp エピタキシャルウェハの製造方法
WO2010023846A1 (ja) 2008-08-25 2010-03-04 国立大学法人山口大学 半導体基板及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, vol. 90, 2007, pages 261912
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 45, 2006, pages L659

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141099A1 (ja) * 2012-03-19 2013-09-26 国立大学法人山口大学 窒化ガリウム結晶自立基板及びその製造方法
JP2013193918A (ja) * 2012-03-19 2013-09-30 Tokuyama Corp 窒化ガリウム結晶自立基板及びその製造方法
US10032958B2 (en) 2012-12-20 2018-07-24 Ngk Insulators, Ltd. Seed crystal substrates, composite substrates and functional devices

Also Published As

Publication number Publication date
KR20140019328A (ko) 2014-02-14
CN103348044A (zh) 2013-10-09
TW201245515A (en) 2012-11-16
EP2684988A1 (en) 2014-01-15
US20130313567A1 (en) 2013-11-28
JP2012184144A (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2012121154A1 (ja) 下地基板、窒化ガリウム結晶積層基板及びその製造方法
JP5635013B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
JP5392855B2 (ja) 半導体基板及びその製造方法
JP5276852B2 (ja) Iii族窒化物半導体エピタキシャル基板の製造方法
JP4932121B2 (ja) Iii−v族窒化物系半導体基板の製造方法
US8212287B2 (en) Nitride semiconductor structure and method of making same
US8659031B2 (en) Method of producing template for epitaxial growth and nitride semiconductor device
JP2013173641A (ja) 窒化ガリウム結晶積層基板及びその製造方法
JP2010516599A (ja) ナノ構造テンプレートを使用した単結晶半導体材料の製造、単結晶半導体材料、および半導体ナノ構造
JP2007317752A (ja) テンプレート基板
JP5293592B2 (ja) Iii族窒化物半導体の製造方法およびテンプレート基板
JP2007314360A (ja) テンプレート基板
JP6346457B2 (ja) 窒化ガリウム結晶自立基板の製造方法
US20150102358A1 (en) Nitride semiconductor multilayer structure, semiconductor light-emitting device, and method for manufacturing nitride semiconductor multilayer structure
WO2013141099A1 (ja) 窒化ガリウム結晶自立基板及びその製造方法
JP2015032730A (ja) 窒化物半導体構造およびそれを製造する方法
JP4810517B2 (ja) Iii−v族窒化物系半導体基板
JP2011171394A (ja) 窒化物半導体薄膜および窒化物半導体規則混晶ならびにその成長方法
JP5869064B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
JP5313976B2 (ja) 窒化物半導体薄膜およびその成長方法
JP5255935B2 (ja) 結晶基板および薄膜形成方法ならびに半導体装置
JP2009208989A (ja) 化合物半導体基板およびその製造方法
WO2013128893A1 (ja) 半導体装置の製造方法
KR20120090189A (ko) m-면 사파이어 기판에 질화물계 박막을 형성하는 방법 및 이에 의해 제조된 질화물계 반도체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983257

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012755674

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137022202

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE