WO2012121154A1 - 下地基板、窒化ガリウム結晶積層基板及びその製造方法 - Google Patents
下地基板、窒化ガリウム結晶積層基板及びその製造方法 Download PDFInfo
- Publication number
- WO2012121154A1 WO2012121154A1 PCT/JP2012/055407 JP2012055407W WO2012121154A1 WO 2012121154 A1 WO2012121154 A1 WO 2012121154A1 JP 2012055407 W JP2012055407 W JP 2012055407W WO 2012121154 A1 WO2012121154 A1 WO 2012121154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plane
- crystal
- gallium nitride
- substrate
- base substrate
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 245
- 239000000758 substrate Substances 0.000 title claims abstract description 213
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 179
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 177
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229910052594 sapphire Inorganic materials 0.000 claims abstract description 126
- 239000010980 sapphire Substances 0.000 claims abstract description 126
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims 1
- 238000005121 nitriding Methods 0.000 claims 1
- 239000012159 carrier gas Substances 0.000 description 13
- 238000005530 etching Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 230000010287 polarization Effects 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical group C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 7
- 230000000873 masking effect Effects 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 229910021478 group 5 element Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000005701 quantum confined stark effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02428—Structure
- H01L21/0243—Surface structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02647—Lateral overgrowth
- H01L21/0265—Pendeoepitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/12—Pendeo epitaxial lateral overgrowth [ELOG], e.g. for growing GaN based blue laser diodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24479—Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
- Y10T428/2457—Parallel ribs and/or grooves
Definitions
- the present invention relates to a base substrate, a gallium nitride crystal multilayer substrate, and more particularly to a multilayer substrate in which a gallium nitride (GaN) crystal layer having a low threading dislocation density is stacked on a sapphire base substrate, and a method for manufacturing the same.
- GaN gallium nitride
- any GaN layer has crystal growth of GaN in the axial direction, and the surface is a c-plane ( ⁇ OOO1> plane).
- the piezoelectric polarization generated by the compressive strain applied to the InGaN quantum well layer is superimposed on the InGaN quantum well layer, Therefore, a large internal polarization electric field is generated in the c-axis direction. Under the influence of this internal polarization electric field, the quantum confined Stark Effect (QCSE) is considered to cause problems such as peak emission wavelength shift due to decrease in luminous efficiency and increase in required injection current. It has been.
- QCSE quantum confined Stark Effect
- an InGaN layer is formed on the a-plane: ⁇ 11-20> plane or m-plane: ⁇ 1-100> plane, which is a nonpolar plane of the GaN crystal, and spontaneously It has been studied to avoid the influence of an internal electric field in which polarization and piezoelectric polarization are superimposed (see Patent Documents 1 to 3).
- an InGaN quantum well layer is formed on a plane called a semipolar plane inclined about 60 degrees in the a-axis or m-axis direction, for example, a semipolar ⁇ 11-22> plane, thereby It has also been studied to avoid the influence of internal electrodes (Non-patent document 1, Non-patent document 2).
- the substrate is said to have a threading dislocation density of about 2 to 3 ⁇ 10 8 pieces / cm 2, and a crystal substrate having a high crystal quality with a lower threading dislocation density is desired.
- Non-polar surface of GaN crystal such as a substrate having a low threading dislocation density and a high crystal quality such as a-plane or m-plane, or a substrate having ⁇ 11-22> or ⁇ 10-11> plane
- Another object of the present invention is to provide a GaN crystal multilayer substrate in which a GaN crystal layer having a semipolar plane as a main surface is laminated on a sapphire base substrate, a manufacturing method thereof, and a sapphire base substrate used in the manufacturing method.
- the present inventors have studied a method of growing a GaN crystal having a desired crystal plane using a sapphire base substrate having a plurality of concave grooves as a starting point from the side wall surface of the groove of the base substrate.
- the size of the crystal growth region on the side wall of the groove greatly affects the crystal quality (threading dislocation density), while it has little effect on the surface flatness of the grown crystal and the crystallinity evaluated by X-ray diffraction measurement.
- the present invention has been completed.
- the present invention includes a sapphire base substrate and a gallium nitride crystal layer formed by crystal growth on the base substrate, and a plurality of the gallium nitride crystal layers are formed on the main surface of the sapphire base substrate.
- the crystal is grown laterally starting from the side wall of the groove and the surface is formed in parallel to the main surface, and the dark spot density of the gallium nitride crystal is less than 2 ⁇ 10 8 pieces / cm 2 .
- the dark spot density of the gallium nitride crystal is 1.4 ⁇ 10 8 pieces / cm 2 or less
- the gallium nitride crystal layer is a gallium nitride crystal layer comprising a surface having a nonpolar or semipolar plane orientation
- a plurality of grooves having sidewalls inclined with respect to the main surface of the underlying substrate are formed on a sapphire base substrate, and a gallium nitride crystal is selectively grown laterally starting from the sidewalls of the groove.
- a method for producing a gallium nitride crystal multilayer substrate characterized in that the width (d) of the region on the side wall on which the gallium nitride crystal is grown is set to 10 to 750 nm.
- the width (d) of the region in which the gallium nitride crystal is grown is 100 to 200 nm, 5) It is preferable that the side wall from which the lateral crystal growth from the groove portion starts is the c-plane of the sapphire single crystal.
- the dark spot density of the gallium nitride crystal is less than 2 ⁇ 10 8 pieces / cm 2 , preferably 1.85 ⁇ 10 8 pieces / cm 2 or less, particularly preferably 1.4 ⁇ 10 8. Since it is 8 pieces / cm 2 or less and the crystal quality is high, the light emitting efficiency of a semiconductor light emitting device such as an LED or LD manufactured using the laminated substrate is improved. Further, by selectively growing a gallium nitride crystal from the side wall of the groove formed on the sapphire base substrate, a high-quality gallium nitride crystal having a nonpolar or semipolar surface as a main surface can be obtained. For this reason, the semiconductor light-emitting device manufactured using this is less affected by the decrease in light emission efficiency due to the quantum confined Stark effect than the conventional gallium nitride crystal layer substrate having the c-plane as the main surface.
- the gallium nitride crystal multilayer substrate of the present invention has a plurality of groove portions having side walls inclined with respect to the main surface of the base substrate, and a width (d) of 10 to 750 nm for growing a gallium nitride crystal on the side walls of the groove portions.
- a sapphire base substrate provided with a growth region is used as a lower layer, and the surface thereof is formed in parallel with the main surface by lateral crystal growth (ELO) starting from the side wall. It has a structure in which gallium nitride crystal layers having a dark spot density of less than 2 ⁇ 10 8 pieces / cm 2 are stacked.
- the dark spot density is a physical property value that serves as an index for indicating the density of threading dislocations, which are dislocation defects in the crystal, and is measured using a scanning electron microscope / cathode luminescence (SEM / CL) apparatus.
- SEM / CL scanning electron microscope / cathode luminescence
- As a measurement sample a sample in which an n-type GaN crystal layer is stacked on an undoped GaN crystal layer is used, and measurement is performed on the surface of the n-type GaN layer.
- the acceleration voltage during measurement is 5 kV, and the observation range is 20 ⁇ m ⁇ 20 ⁇ m. At this time, the dark spot density is calculated from the total number of dark spots observed within the observation range.
- the sapphire base substrate for producing the crystal laminated substrate of the present invention has a plurality of groove portions having side walls inclined with respect to the main surface of the substrate on the sapphire substrate, and selectively gallium nitride crystals on the side walls of the groove portions.
- the width (d) of the region in which is grown is set to 10 to 750 nm.
- a sapphire substrate whose main surface has a specific plane orientation is used. However, in order to obtain a desired GaN crystal to be described later, it may be a miscut surface inclined at a predetermined angle with respect to the crystal axis.
- a disk-shaped substrate having a thickness of 0.3 to 3.0 mm and a diameter of 50 to 300 mm is usually used.
- an arbitrary plane orientation is selected according to the crystal plane of the target GaN crystal.
- the main surface of the sapphire base substrate is set to ⁇ 10-12>.
- the main surface of the sapphire base substrate is set to ⁇ 11-23>.
- the ⁇ 10-10> plane, the ⁇ 11-20> plane, the ⁇ 20-21> plane, and the like can be main surfaces.
- sapphire c-plane a sapphire substrate having a ⁇ 10-12> plane as a main surface and a c-plane of sapphire single crystal (hereinafter referred to as sapphire c-plane) is formed on a part of the side wall of the groove.
- the angle formed by the main surface of the sapphire substrate is 57.6 degrees.
- the angle formed between the ⁇ 11-22> plane of the target GaN crystal and the c plane of the GaN crystal is 58.4 degrees
- a ⁇ 11-22> plane GaN crystal layer grows with an inclination of 0.8 degrees with respect to the sapphire main surface.
- a miscut substrate having an off angle with the ⁇ 10-12> plane is used, and the ⁇ 11-22> plane, which is the surface of the GaN crystal layer, is parallel to the main surface of the sapphire substrate.
- Various miscut substrates designed so that the surface of the GaN crystal layer is parallel to the main surface of the sapphire base substrate depending on the plane orientation of the target GaN crystal and the surface orientation of the sapphire base substrate used are used. be able to.
- a plurality of grooves are provided in parallel on the main surface of the sapphire base substrate.
- the opening width of the groove is not particularly limited, and is usually set in the range of 0.5 to 10 ⁇ m.
- the interval between the groove portions that is, the interval between the adjacent groove portions and the groove portion on the base substrate main surface line is 1 to 100 ⁇ m.
- the lateral width of the bottom surface of the groove that is, the distance (w) in the direction perpendicular to the extending direction of the groove is not particularly limited, and is generally 1 to 100,000 ⁇ m.
- the number of grooves on the main surface can be arbitrarily set according to the desired area of the GaN crystal to be formed. However, in consideration of the width of the opening, the interval between the grooves, and the width of the bottom surface, it is usually per 1 mm. About 10 to 500 may be provided.
- the groove has a side wall inclined at a predetermined angle with respect to the base substrate main surface, As shown in FIG. 3, the cross-sectional shape is tapered so as to narrow the groove width from the groove opening toward the groove bottom. As shown in FIG. 3, the inclination angle means an angle ( ⁇ ) formed between the main surface of the base substrate and the extended surface of the groove side wall. The angle is determined in consideration of the surface orientation of the GaN crystal to be formed in accordance with the surface orientation of the base substrate main surface.
- this angle is set to 58.4 degrees
- the GaN crystal is grown so that the c-axis of the GaN crystal is in the same direction as the c-axis of the sapphire base substrate to obtain a desired crystal.
- the angle 58.4 degrees at this time is formed by the ⁇ 11-22> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction.
- the angle is determined from being 58.4 degrees.
- the angle formed between the ⁇ 10-12> plane, which is the main surface of the sapphire base substrate used, and the sapphire c-plane appearing on the side wall of the groove is 57.6 degrees
- the angle ( ⁇ ) is 57.6 degrees
- the surface of the GaN crystal layer grown thereon is inclined by about 0.8 degrees with respect to the main surface of the sapphire base substrate. Therefore, by using a miscut substrate in which the main surface of the substrate is an off-angle with respect to the sapphire ⁇ 10-12> surface so as to cancel out this angle, the ⁇ 11-22> surface of the GaN crystal becomes the sapphire base.
- a GaN crystal layer grown so as to be parallel to the main surface of the substrate can be obtained.
- this angle is set to 62.0 degrees
- the crystal is grown so that the c-axis of the GaN crystal is in the same direction as the c-axis of the sapphire base substrate to obtain a desired crystal.
- the angle 62.0 degrees at this time is formed by the ⁇ 10-11> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction.
- the angle is determined from 62.0 degrees.
- the angle formed between the ⁇ 11-23> plane, which is the main surface of the sapphire base substrate used, and the sapphire c-plane appearing on the side wall of the groove is 61.2 degrees
- the angle ( ⁇ ) is 61.2 degrees
- the surface of the GaN crystal layer grown thereon is inclined about 0.8 degrees with respect to the main surface of the sapphire base substrate. Therefore, by using a miscut substrate in which the main surface of the substrate has an off-angle with respect to the sapphire ⁇ 11-23> surface so as to cancel this angle, the ⁇ 10-11> surface of the GaN crystal becomes the sapphire base.
- a GaN crystal layer grown so as to be parallel to the main surface of the substrate can be obtained.
- the angle of 90 degrees is the angle formed between the ⁇ 11-20> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction. , 90 degrees.
- the etching proceeds not only in the direction perpendicular to the main surface of the sapphire substrate but also in a direction other than the vertical including the parallel direction. It is technically difficult to form a groove portion having an angle ( ⁇ ) of 90 degrees, that is, forming a groove portion whose groove side wall is truly perpendicular to the main surface of the sapphire substrate.
- a GaN crystal is formed on the sapphire base substrate having the ⁇ 11-20> plane as the main surface.
- a GaN crystal layer grown so that the ⁇ 10-10> plane is parallel to the main surface of the sapphire base substrate can be obtained.
- the angle of 90 degrees is the angle formed between the ⁇ 10-10> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction. , 90 degrees.
- the angle of 90 degrees is the angle formed between the ⁇ 10-10> plane that is the principal surface of the desired GaN crystal and the c-plane of the GaN crystal that is perpendicular to the c-axis of the GaN crystal that is the growth direction. , 90 degrees.
- the setting of the width (d) of the GaN crystal growth region (hereinafter referred to as crystal growth region) on the sidewall of the groove is extremely important for reducing the threading dislocation density.
- the width (d) of the crystal growth region means that when the entire side wall region that is the growth starting point is the crystal growth region, the side where the main substrate main surface and the side wall intersect, the side wall and the groove bottom surface The shortest distance (interval) on the side wall between the intersecting sides.
- the distance (d) obtained by removing the width of the masking portion from the shortest distance (interval) is referred to.
- the width (d) needs to be set to 10 to 750 nm in order to make the dark spot density less than 2 ⁇ 10 8 pieces / cm 2 .
- the width (d) needs to be 100 to 200 nm.
- the lower limit of the width (d) is not particularly limited and is preferably as small as possible. However, the lower limit of the width (d) is determined based on technical restrictions in manufacturing the groove described below.
- the groove portion having the sidewall having the predetermined inclination angle is formed by patterning a photoresist in which only a portion where the groove portion is to be formed becomes an open portion, the photoresist is used as an etching resist, and the sapphire base substrate is subjected to reactive ion etching (Reactive Ion Etching). : RIE) or other dry etching or wet etching.
- control means such as the width of the side wall, the width of the groove opening, the space between the grooves, and the width of the bottom surface, the photoresist coating amount, baking temperature, baking time, UV irradiation amount, UV, Examples include the shape of a photomask when irradiating.
- the etching stage it can be controlled by the etching gas type, etching gas concentration, etching gas mixture ratio, antenna power, bias power, etching time, and the like.
- the width of the side wall which is important in the present invention, can be controlled by obtaining an etching rate, which is the rate at which sapphire is etched per unit time, and changing the etching time.
- a base substrate having side walls of various plane orientations can be created by selecting the main surface of the sapphire base substrate and setting the direction in which the groove extends. Specifically, when the base substrate main surface is the ⁇ 10-12> plane and the extending direction of the groove is the ⁇ 11-20> plane orientation, that is, the a-axis direction, The c-plane is exposed. When the underlying substrate main surface is the ⁇ 11-23> plane and the extending direction of the groove is the ⁇ 10-10> plane orientation, that is, the m-axis direction, the c-plane is exposed on the side wall that is the crystal growth surface. .
- the underlying substrate main surface is the ⁇ 11-20> plane and the extending direction of the groove is the ⁇ 10-10> plane orientation, that is, the m-axis direction
- the c-plane is exposed on the side wall that is the crystal growth surface.
- the base substrate main surface is the ⁇ 10-10> plane and the extending direction of the groove is the ⁇ 11-20> plane orientation, that is, the a-axis direction
- the c-plane is exposed on the side wall which is the crystal growth surface.
- the base substrate main surface is the ⁇ 0002> plane and the extending direction of the groove is the ⁇ 10-10> plane orientation, that is, the m-axis direction
- the a-plane is exposed on the side wall which is the crystal growth plane.
- the sapphire base substrate can be arbitrarily designed with respect to the surface orientation of its main surface and the surface orientation of the side wall that becomes the crystal growth starting surface.
- the sidewalls having various plane orientations lateral growth starting from the c-plane sidewall is likely to occur preferentially and easily controlled. Therefore, it is a preferable aspect to form a side wall composed of the c-plane on at least a part of the side wall constituting the groove.
- SiO 2 film, SiN x , film, TiO 2 film, ZrO 2 is formed in a region other than the crystal growth region by a method such as vacuum deposition, sputtering, or CVD (Chemical Vapor Deposition).
- CVD Chemical Vapor Deposition
- the thickness of the masking layer is usually O.D. It is about 01 to 3 ⁇ m.
- the GaN crystal layer is crystal-grown in the lateral direction by ELO starting from the side wall, and its surface is formed on the sapphire base substrate in parallel with the main surface of the base substrate.
- the thickness of the GaN crystal layer to be formed (height from the main surface of the sapphire base substrate) is not particularly limited, but is usually 2 to 20 ⁇ m.
- the plane orientation of the crystal surface of the GaN crystal layer corresponds to the main surface of the sapphire base substrate, as described above, and includes the ⁇ 11-22> plane, the ⁇ 10-11> plane, the ⁇ 20-21> plane, and the like.
- the growth method of the GaN crystal is not particularly limited, and metal organic vapor phase epitaxy (Metal Organic Vapor Phase Epitaxy: MOVPE), molecular beam epitaxy (Molecular Beam Epitaxy: MBE), hydride vapor phase epitaxy (Hydride Vapor Phase Epitaxy) : HVPE), among which the metalorganic vapor phase epitaxy is the most common.
- MOVPE Metal Organic Vapor Phase Epitaxy
- MBE molecular beam epitaxy
- HVPE hydride vapor phase epitaxy
- the technique described in WO2010 / 023846 proposed by the inventors of the present invention can be applied mutatis mutandis without any limitation.
- the MOVPE apparatus used for crystal growth is mainly composed of a substrate transport system, a substrate heating system, a gas supply system, and a gas exhaust system, all of which are electronically controlled.
- the substrate heating system is composed of a thermocouple, a resistance heater, and a carbon or SiC susceptor provided thereon, and a quartz tray on which the sapphire base substrate of the present invention is set on the susceptor is conveyed. Then, epitaxial growth of the semiconductor layer is performed.
- This substrate heating system is installed in a quartz double tube or a stainless steel reaction vessel equipped with a water cooling mechanism, and a carrier gas and various source gases are supplied into the double tube or reaction vessel.
- a quartz flow channel is used to realize a laminar gas flow on the substrate.
- the carrier gas include H 2 and N 2 .
- An example of the nitrogen element supply source is NH 3 .
- An example of the Ga element supply source is trimethylgallium (TMG).
- the sapphire base substrate is set on a quartz tray so that the main surface of the sapphire faces upward, and then the sapphire base substrate is heated to 1050 to 1150 degrees and the pressure in the reaction vessel is set to 10 to 100 kPa.
- the sapphire base substrate is thermally cleaned by circulating H 2 as a carrier gas in a flow channel installed inside and maintaining that state for several minutes.
- the temperature of the sapphire base substrate is set to 1050 to 1150 degrees
- the pressure in the reaction vessel is set to 10 to 100 kPa
- the carrier gas H 2 is circulated at a flow rate of 10 L / min in the reaction vessel, and NH 3 and TMG are supplied in O.D.
- the flow rate is 1 to 5 L / min and 10 to 150 ⁇ mol / min.
- undoped GaN is heteroepitaxially grown on the side wall of the groove of the sapphire base substrate.
- a GaN layer grows in the normal direction of the main surface of the substrate, and as shown in FIG. 6, a GaN crystal layer is formed on the sapphire base substrate to obtain a laminated substrate.
- the layer thickness of the GaN crystal layer is about 2 to 20 ⁇ m.
- the growth temperature is controlled in order to control the growth from the side wall of the groove without causing growth from the main surface of the substrate. It is necessary to optimize various conditions such as growth pressure, raw material gas supply amount, raw material gas supply ratio, carrier gas type, and carrier gas amount. After determining the growth method, reaction apparatus, raw material, and the like to be used, the conditions may be determined in advance through preliminary experiments.
- the sapphire base substrate used in the present invention may be one in which, for example, the main surface is covered with a crystal growth inhibiting layer made of SiO 2 or the like other than the region for crystal growth. By providing the crystal growth inhibition layer, it is possible to suppress the growth from the main surface of the substrate and control the growth to be preferentially performed from the side wall of the groove.
- the GaN crystal has a base substrate main surface, a groove sidewall exposed from the sapphire c surface, and the other groove sidewall.
- crystal growth from it is necessary to optimize the above various growth conditions in order to control the growth so as to preferentially occur from the groove side wall where the sapphire c-plane is exposed.
- the growth from the main surface of the base substrate can be suppressed by providing a crystal growth inhibiting layer.
- the GaN crystal may grow from the base substrate main surface and the groove side wall.
- the groove side walls on both sides have the same plane orientation, it is necessary to control so that the GaN crystal having the same plane orientation grows from either side and the crystal grows from either side wall of the trench.
- the growth from the main surface of the base substrate may be suppressed. In order to suppress the growth from the main surface of the base substrate, it is effective to provide a crystal growth inhibiting layer, but control is possible only by optimizing the above various growth conditions.
- the GaN crystal layer is constituted by an aggregate of a plurality of band-like GaN crystals grown from the growth region on the side wall of the groove, or by an integrated body in which the band-like GaN crystals are linked together.
- the surface orientation of the surface of the obtained GaN crystal layer varies depending on the crystal structure of the sapphire base substrate. For example, when the main surface of the sapphire base substrate is the ⁇ 10-12> plane and the side wall that serves as the growth origin is the c plane, the a axis of sapphire and the m axis of the GaN crystal are parallel on the side wall surface.
- a GaN crystal having a crystal orientation relationship in which the m-axis of sapphire and the a-axis of the GaN crystal are parallel grows.
- a GaN crystal layer grown so that the ⁇ 11-22> plane of the GaN crystal is parallel to the main surface of the sapphire base substrate is formed on the sapphire base substrate.
- the main surface of the sapphire base substrate is the ⁇ 11-23> plane and the side wall serving as the growth origin is the c-plane
- the m-axis of sapphire and the a-axis of the GaN crystal are parallel on the side wall surface.
- a GaN crystal in which the a-axis of sapphire and the m-axis of the GaN crystal are parallel to each other is crystal-grown.
- the gallium nitride crystal multilayer substrate obtained by the above various growth methods can be used as it is as a substrate for various semiconductor light emitting devices.
- Example 1 [Production of sapphire base substrate] A resist was patterned on the stripe on the ⁇ 10-12> plane sapphire base substrate, and then dry etching was performed by reactive ion etching (RIE) to form a plurality of grooves on the sapphire base substrate.
- the groove portion was formed so that the groove opening width was 3 ⁇ m, the groove depth was 100 nm, and the width of the main surface portion of the substrate to the adjacent groove portion was 3 ⁇ m.
- the inclination angle of the side wall is about 60 degrees, and the width (d) of the side wall calculated from the groove depth and the inclination angle of the side wall is 115 nm. After dry etching, the resist was washed away to obtain a sapphire base substrate.
- This sapphire base substrate has 8466 grooves on the main surface of the substrate.
- the groove is composed of a side wall made of a sapphire c-plane serving as a crystal growth region, a side wall having another plane orientation, and a bottom surface of the groove.
- the prepared sapphire base substrate is set in a MOVPE apparatus on a quartz tray so that the substrate surface faces upward, and then the substrate is heated to 1150 ° C. and the pressure in the reaction vessel is set to 100 kPa.
- the substrate was thermally cleaned by circulating H 2 at 10 L / min as a carrier gas and maintaining this state for 10 minutes.
- the pressure in the reaction vessel was 100kPa while the temperature of the substrate and 460 ° C., while also a flow of carrier gas to circulate inside the reaction vessel at a flow rate of H 2 5L / min, there Group V element source ( NH 3 ) and a group III element supply source (TMG) were deposited at about 25 nm of amorphous GaN on the substrate with respective supply amounts of 5 L / min and 5.5 ⁇ mol / min. Subsequently, the temperature of the substrate is set to 1075 ° C., the pressure in the reaction vessel is set to 20 kPa, and the carrier gas flowing in the reaction vessel is set to H 2 , and the carrier gas is circulated at a flow rate of 5 L / min.
- the GaN deposited on was recrystallized to selectively form GaN crystal nuclei in the crystal growth region on the side wall of the groove.
- the temperature of the base substrate is set to 1075 ° C.
- the pressure in the reaction vessel is set to 20 kPa
- the carrier gas flowing through the reaction vessel is set to H 2 , while flowing at a flow rate of 5 L / min.
- a group V element supply source NH 3
- a group III element supply source TMG
- An undoped GaN crystal was grown to form a GaN crystal layer on the substrate so that lateral crystal growth occurred from the side wall of the groove of the base substrate.
- the temperature of the base substrate is set to 1025 ° C.
- the pressure in the reaction vessel is set to 20 kPa
- the carrier gas flowing through the reaction vessel is set to H 2 , while flowing at a flow rate of 5 L / min.
- a group V element supply source (NH 3 ) and a group III element supply source (TMG) for 300 minutes so that the respective supply amounts are 2 L / min and 30 ⁇ mol / min, and growing a GaN crystal.
- the GaN crystals grown from the side walls of the groove portions of the base substrate were associated with each other to form a GaN crystal layer in which the surface composed of the ⁇ 11-22> plane of the GaN crystal was formed parallel to the main surface of the base substrate.
- n-type GaN crystal layer [Formation of n-type GaN crystal layer]
- the temperature of the substrate is set to 1025 ° C.
- the pressure in the reaction vessel is set to 20 kPa
- the carrier gas to be circulated in the reaction vessel is set to H 2 , while being circulated at a flow rate of 5 L / min.
- Group element supply source (NH 3 ), Group III element supply source (TMG), and n-type doping element supply source (SiH 4 ) are supplied at 2 L / min, 30 ⁇ mol / min, and 5.8 ⁇ 10, respectively.
- An n-type GaN crystal layer epitaxially grown in the same plane orientation as the undoped GaN crystal layer was formed on the undoped GaN crystal layer at a flow rate of ⁇ 3 ⁇ mol / min for 60 minutes.
- Example 2 A GaN crystal layer was formed on the sapphire base substrate in the same manner as in Example 1 except that the groove depth of the groove formed on the sapphire base substrate was 200 nm and the side wall width (d) was adjusted to 231 nm. .
- Example 3 A GaN crystal layer was formed on the sapphire base substrate in the same manner as in Example 1 except that the groove depth of the groove formed on the sapphire base substrate was 500 nm and the side wall width (d) was adjusted to 587 nm. .
- Comparative Example 1 A GaN crystal layer was formed on the sapphire base substrate in the same manner as in Example 1 except that the groove depth of the groove formed on the sapphire base substrate was 1 ⁇ m and the side wall width (d) was adjusted to 1155 nm. .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
ところで、表面がc面であるGaN結晶層では、Ga原子のみを含むGa原子面が僅かにプラスに帯電する一方、N原子のみを含むN原子面が僅かにマイナスに帯電し、結果としてc軸方向(層厚さ方向)に自発分極が発生する。また、GaN結晶層上に異種半導体層をヘテロエピタキシャル成長させた場合、両者の格子定数の違いによって、GaN結晶に圧縮歪や引っ張り歪が生じ、GaN結晶内でc軸方向に圧電分極(ピエゾ分極)が発生する(特許文献1及び2参照)。
この結果、前記構成の半導体発光素子では、多重量子井戸層において、InGaN量子井戸層に固定電荷に起因する自発分極に加えて、InGaN量子井戸層に加わる圧縮歪により生じたピエゾ分極が重畳され、そのためc軸方向に大きな内部分極電場が発生することとなる。この内部分極電場の影響を受けて、量子閉じ込めシュタルク効果(Quantum-Confined Stark Effect:QCSE)により、発光効率の低下や必要な注入電流の増大に伴う発光のピーク波長シフトなどの問題が生じると考えられている。
更に、c面が、a軸あるいはm軸方向に約60度傾斜した半極性面といわれている面、例えば、半極性の<11-22>面上にInGaN量子井戸層を形成し、それによって内部電極の影響を回避することも検討されている(非特許文献1、非特許文献2)。
しかしながら、現在入手可能な上記GaN結晶のa面やm面といった無極性面を主面とする基板、或いは<11-22>面や<10-11>面等の半極性面を主面とする基板は、貫通転位密度が2~3×108個/cm2程度と言われており、より貫通転位密度が低い高い結晶品質の結晶基板が望まれている。
上記窒化ガリウム結晶積層基板において、
1)窒化ガリウム結晶の暗点密度が1.4×108個/cm2以下であること、
2)窒化ガリウム結晶層が、無極性または半極性の面方位を有する表面からなる窒化ガリウム結晶層であること、
3)溝部からの横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であること
が好ましい。
上記側壁における窒化ガリウム結晶を成長させる領域の幅(d)を10~750nmに設定することを特徴とする窒化ガリウム結晶積層基板の製造方法である。
上記窒化ガリウム結晶積層基板の製造方法において、
4)窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであること、
5)溝部からの横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることが好ましい。
上記結晶積層基板製造用サファイア下地基板において、
6)窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであること、
7)溝部からの横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることが好ましい。
また、サファイア下地基板上に形成した溝部の側壁より選択的に窒化ガリウム結晶を成長させることにより、無極性面または半極性面を主面とする、高品質の窒化ガリウム結晶が得られる。このため、これを用いて作製される半導体発光素子は、従来のc面を主面とする窒化ガリウム結晶層基板に比べて、量子閉じ込めシュタルク効果による発光効率の低下の影響が小さい。
暗点密度とは、結晶の転位欠陥である貫通転位の密度を示すための指標となる物性値であり、走査型電子顕微鏡/カソードルミネッセンス(SEM・CL)装置を用いて測定される。測定試料はアンドープGaN結晶層の上にn型GaN結晶層を積層した試料を用い、n型GaN層表面において測定を行う。測定時の加速電圧は5kVとし、観察範囲は20μm×20μmとする。このとき、観察範囲内に観察された暗点の総数より暗点密度を算出する。
上記下地基板としては、主面が特定の面方位であるサファイア基板を使用する。しかしながら、後述する所望のGaN結晶を得るために、結晶軸に対して所定の角度傾斜したミスカット面であるものでもよい。
該下地基板は、通常、厚みが0.3~3.0mm、直径が50~300mmの円盤状のものが使用される。
また、例えば、<10-12>面を主面とするサファイア基板を用い、溝部の側壁の一部にサファイア単結晶のc面(以下、サファイアc面という)を形成した場合、サファイアc面とサファイア基板主面とがなす角度は57.6度である。しかし、目的とするGaN結晶の<11-22>面とGaN結晶のc面とのなす角は58.4度であるため、<10-12>面を主面とするサファイア基板上には、サファイア主面に対して0.8度傾斜して<11-22>面GaN結晶層が成長する。この角度を相殺するために、<10-12>面にオフ角をつけた面であるミスカット基板を用い、GaN結晶層表面である<11-22>面がサファイア基板主面に対して平行となるように成長させることができる。このように目的とするGaN結晶の面方位と、用いるサファイア下地基板との面方位によって、GaN結晶層表面がサファイア下地基板主面と平行になるように設計された、種々のミスカット基板を用いることができる。
主面上の溝部の数は、形成されるGaN結晶の所望する面積に応じて任意に設けることができるが、上記開口部幅、溝部の間隔、底面の幅を勘案して、通常、1mm当り、10~500本程度設ければ良い。
図3に示すように、その断面形状は、溝開口部から溝底部に向かって溝幅を狭めるように傾斜してテ―パー状になっている。
該傾斜角度とは、図3に示すように、下地基板主面と溝部側壁の延長面とがなす角度(Θ)を意味する。該角度は、下地基板主面の面方位に合わせて形成させたいGaN結晶の面方位を勘案して決定される。
このときの角度58.4度は、所望するGaN結晶の主面である<11-22>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、58.4度であることから決定される。しかし、用いるサファイア下地基板の主面である<10-12>面と、溝部の側壁に現れるサファイアc面とがなす角度は57.6度であるため、下地基板主面と溝部側壁とがなす角度(Θ)は57.6度となり、その上に成長したGaN結晶層の表面は、サファイア下地基板の主面に対し、約0.8度傾斜する。そこで、この角度を相殺するように、基板主面がサファイア<10-12>面にオフ角をつけた面であるミスカット基板を用いることにより、GaN結晶の<11-22>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
このときの角度62.0度は、所望するGaN結晶の主面である<10-11>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、62.0度であることから決定される。しかし、用いるサファイア下地基板の主面である<11-23>面と、溝部の側壁に現れるサファイアc面とがなす角度は61.2度であるため、下地基板主面と溝部側壁とがなす角度(Θ)は61.2度となり、その上に成長したGaN結晶層の表面は、サファイア下地基板の主面に対し、約0.8度傾斜する。そこで、この角度を相殺するように、基板主面がサファイア<11-23>面にオフ角をつけた面であるミスカット基板を用いることにより、GaN結晶の<10-11>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
このときの角度90度は、所望するGaN結晶の主面である<11-20>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、90度であることから決定される。しかし、サファイア基板に溝部を形成するエッチング工程において、サファイア基板主面に対して垂直方向のみならず、平行方向を含んだ垂直以外の方向にもエッチングが進行するため、下地基板主面と溝部側壁とがなす角度(Θ)が90度、すなわち、溝部側壁がサファイア基板主面に対して真に垂直な溝部を形成することは技術上困難である。しかしながら、下地基板主面と溝部側壁とがなす角度(Θ)が90度に近い溝部を有するサファイア基板を用いることにより、<11-20>面を主面とするサファイア下地基板上に、GaN結晶の<10-10>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
このときの角度90度は、所望するGaN結晶の主面である<10-10>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、90度であることから決定される。しかし、前記のように下地基板主面と溝部側壁とがなす角度(Θ)が90度となる溝部を形成することは技術上困難である。しかしながら、下地基板主面と溝部側壁とがなす角度(Θ)が90度に近い溝部を有するサファイア基板を用いることにより、<10-10>面を主面とするサファイア下地基板上に、GaN結晶の<11-20>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
このときの角度90度は、所望するGaN結晶の主面である<10-10>面と、成長方向であるGaN結晶のc軸に対して垂直となるGaN結晶のc面とがなす角度が、90度であることから決定される。しかし、前記のように下地基板主面と溝部側壁とがなす角度(Θ)が90度となる溝部を形成することは技術上困難である。しかしながら、下地基板主面と溝部側壁とがなす角度(Θ)が90度に近い溝部を有するサファイア基板を用いることにより、<0001>面を主面とするサファイア下地基板上に、GaN結晶の<10-10>面がサファイア下地基板主面に対して平行となるように成長したGaN結晶層を得ることができる。
結晶成長領域の幅(d)とは、図3に示す如く、成長起点となる側壁の全領域が結晶成長領域である場合は、下地基板主面と側壁が交わる辺と、側壁と溝部底面が交わる辺との間の、側壁上の最短距離(間隔)を云う。
図4に示す如く、側壁の一部がマスキングされ結晶成長領域が制限されている場合は、上記最短距離(間隔)から、マスキング部分の幅を除いた距離(d)を云う。
本発明においては、当該幅(d)を、暗点密度を2×108個/cm2未満にするために、10~750nmに設定する必要がある。特に、暗点密度を1.4×108個/cm2未満にするためには幅(d)を100~200nmにすることが必要である。幅(d)の下限は特に制限はなく小さいほど良いが、下記に述べる溝部作製の際の技術上の制約から決定される。
更に、側壁の幅、溝部開口部幅、溝部間隔、底面幅などの制御手段としては、フォトレジストのパターニングを形成する段階において、フォトレジストの塗布量、ベーク温度、ベーク時間、UV照射量、UV照射する際のフォトマスクの形状などが挙げられる。また、エッチングの段階において、エッチングガス種、エッチングガス濃度、エッチングガス混合比、アンテナパワー、バイアスパワー、エッチング時間などによっても制御できる。
これら種々の条件を組み合わせることにより、所定の形状である溝部を有したサファイア下地基板を得ることができる。特に本発明において重要である側壁の幅は、単位時間あたりにサファイアがエッチングされる速度であるエッチングレートを求め、エッチング時間を変更することで制御が可能である。
具体的には、下地基板主面が<10-12>面、溝部の延びる方向が<11-20>面の面方位、即ち、a軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<11-23>面、溝部の延びる方向が<10-10>面の面方位、即ち、m軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<11-20>面、溝部の延びる方向が<10-10>面の面方位、即ち、m軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<10-10>面、溝部の延びる方向が<11-20>面の面方位、即ち、a軸方向である場合は、結晶成長面である側壁にはc面が露出する。下地基板主面が<0002>面、溝部の延びる方向が<10-10>面の面方位、即ち、m軸方向である場合は、結晶成長面である側壁にはa面が露出する。
上記の通り、サファイア下地基板は、その主面の面方位並びに結晶成長の起点の面となる側壁の面方位を任意に設計することができる。種々の面方位を有する側壁の中で、c面側壁を起点とした横方向成長が優先的に起こり易いし制御し易い。従って、溝部を構成する側壁の少なくとも一部にc面からなる側壁を形成しておくことは、好ましい態様である。
GaN結晶層の結晶表面の面方位は、上記の通りサファイア下地基板主面に対応し、<11-22>面、<10-11>面、<20-21>面などからなる。
キャリアガスとしては、例えば、H2、N2が挙げられる。窒素元素供給源としては、例えば、NH3が挙げられる。Ga元素供給源としては、例えば、トリメチルガリウム(TMG)が挙げられる。
次いで、サファイア下地基板の温度を1050~1150度とすると共に反応容器内の圧力を10~100kPaとし、また、反応容器内にキャリアガスH2を10L/minの流量で流通させながら、そこにNH3、及びTMGを、それぞれの供給量がO.1~5L/min、及び10~150μmol/minとなるように流す。このとき、図5に示すように、サファイア下地基板の溝部の側壁から、その上にアンドープのGaNがヘテロエピタキシャル成長する。そして、その結晶成長により基板主面の法線方向にGaNの層の成長が進展し、図6に示すように、サファイア下地基板上にGaN結晶層が形成されて積層基板が得られる。GaN結晶層の層厚みは約2~20μmである。GaN結晶層を形成させる前に、側壁の結晶成長領域面上に厚さ20~30nm程度の低温バッファ層を形成することが好ましい。
下地基板主面が<11-20>面、<10-10>面、或いは<0002>面である場合、GaN結晶は下地基板主面、及び溝部側壁から結晶成長する可能性がある。このとき、両側の溝部側壁は同じ面方位を有しているため、どちらからも同じ面方位を有したGaN結晶が成長し、どちらか一方の溝部側壁から結晶が成長するように制御する必要はなく、下地基板主面からの成長を抑制すればよい。下地基板主面からの成長を抑制するには結晶成長阻害層の付与が効果的であるが、上記種々の成長条件の最適化のみでも制御は可能である。
得られるGaN結晶層の表面の面方位は、サファイア下地基板の結晶構造によって、種々異なることとなる。例えば、サファイア下地基板の主面が<10-12>面であって、成長起点となる側壁がc面である場合は、側壁面上には、サファイアのa軸とGaN結晶のm軸が平行であり、サファイアのm軸とGaN結晶のa軸が平行な結晶方位関係にあるGaN結晶が結晶成長する。この結果、該サファイア下地基板上には、GaN結晶の<11-22>面がサファイア下地基板の主面に対して平行となるように成長したGaN結晶層が形成される。
或いは、サファイア下地基板の主面が<11-23>面であって、成長起点となる側壁がc面である場合は、側壁面上には、サファイアのm軸とGaN結晶のa軸が平行であり、サファイアのa軸とGaN結晶のm軸が平行な結晶方位関係にあるGaN結晶が結晶成長する。この結果、該サファイア下地基板上には、GaN結晶の<10-11>面がサファイア下地基板の主面に対して平行となるように成長したGaN結晶層が形成される。
上記各種の成長法によって得られた窒化ガリウム結晶積層基板は、このまま各種半導体発光素子の基板として使用することができる。
〔サファイア下地基板の作製〕
<10-12>面サファイア下地基板上にストライプ上にレジストをパターニングし、次いで反応性イオンエッチング(RIE)によりドライエッチングすることで、サファイア下地基板上に複数本の溝部を形成した。溝部は、溝開口幅が3μm、溝の深さが100nm、及び隣接する溝部までの基板主面部分の幅が3μmとなるように形成した。側壁の傾斜角度は約60度であり、溝深さ及び側壁の傾斜角度より算出した側壁の幅(d)は115nmである。
ドライエッチングの後、レジストを洗浄除去することでサファイア下地基板を得た。このサファイア下地基板は、基板主面上に8466本の溝部が存在する。該溝部は結晶成長領域となるサファイアc面からなる側壁、更に他の面方位の側壁及び溝部底面から構成されている。
作製したサファイア下地基板を、MOVPE装置内に、基板表面が上向きになるように石英トレイ上にセットした後、基板を1150℃に加熱すると共に反応容器内の圧力を100kPaとし、また、反応容器内にキャリアガスとしてH2を10L/minで流通させ、その状態を10分間保持することにより基板をサーマルクリーニングした。
次いで、基板の温度を460℃とすると共に反応容器内の圧力を100kPaとし、また、反応容器内を流通させるキャリアガスをH25L/minの流量で流しながら、そこにV族元素供給源(NH3)、及びIII族元素供給源(TMG)を、それぞれの供給量が5L/min及び5.5μmol/minで基板上にアモルファス状のGaNを約25nm堆積させた。続いて基板の温度を1075℃とすると共に反応容器内の圧力を20kPaとし、また、反応容器内を流通させるキャリアガスをH2として、それを5L/minの流量で流通させることで、基板上に堆積したGaNを再結晶化し、溝部側壁の結晶成長領域に選択的にGaN結晶核を形成した。
続いて、下地基板の温度を1025℃とすると共に反応容器内の圧力を20kPaとし、また、反応容器内を流通させるキャリアガスをH2として、それを5L/minの流量で流通させながら、そこにV族元素供給源(NH3)、及びIII族元素供給源(TMG)を、それぞれの供給量が2L/min及び30μmol/minとなるように300分間流し、GaN結晶を成長させることにより、下地基板の各溝部の側壁から成長したGaN結晶同士を会合し、GaN結晶の<11-22>面からなる表面が下地基板主面に対して平行に形成されたGaN結晶層を形成した。
次いで、基板の温度を1025℃とすると共に反応容器内の圧力を20kPaとし、また、反応容器内を流通させるキャリアガスをH2として、それを5L/minの流量で流通させながら、そこにV族元素供給源(NH3)、III族元素供給源(TMG)、及びn型ドーピング元素供給源(SiH4)を、それぞれの供給量が2L/min、30μmol/min、及び5.8×10-3μmol/minとなるように60分間流し、アンドープGaN結晶層の上部に、アンドープGaN結晶層と同一面方位にエピタキシャル成長したn型GaN結晶層を形成した。
サファイア下地基板に形成した溝部の溝深さを200nmとし、側壁の幅(d)を231nmに調整したことを除いては実施例1と同様にして、サファイア下地基板上にGaN結晶層を形成した。
実施例3
サファイア下地基板に形成した溝部の溝深さを500nmとし、側壁の幅(d)を587nmに調整したことを除いては実施例1と同様にして、サファイア下地基板上にGaN結晶層を形成した。
比較例1
サファイア下地基板に形成した溝部の溝深さを1μmとし、側壁の幅(d)を1155nmに調整したことを除いては実施例1と同様にして、サファイア下地基板上にGaN結晶層を形成した。
実施例1~3、及び比較例1のそれぞれで得られたGaN結晶層について、走査型電子顕微鏡/カソードルミネッセンス(SEM・CL)装置を用いて、n型GaN結晶層表面の観察を行った。このときの加速電圧は5kV、観察範囲は20μm×20μmとし、観察範囲内に観察された暗点の総数から暗点密度を算出したところ、表1に示す結果が得られた。
11 下地基板主面
20 下地基板溝部
21 溝部側壁
22 溝部底面
23 側壁結晶成長領域
30 GaN結晶層
31 GaN結晶層表面
40 マスキング部
Claims (10)
- サファイア下地基板と、該基板上に結晶成長せしめて形成された窒化ガリウム結晶層とを含み、該窒化ガリウム結晶層は、サファイア下地基板の主面に複数本形成された溝部の側壁を起点として横方向結晶成長して該主面と平行に、その表面が形成されたものであり、且つ、該窒化ガリウム結晶の暗点密度が2×108個/cm2未満であることを特徴とする窒化ガリウム結晶積層基板。
- 窒化ガリウム結晶の暗点密度が1.4×108個/cm2以下であることを特徴とする請求項1に記載の窒化ガリウム結晶積層基板。
- 窒化ガリウム結晶層が、無極性または半極性の面方位を有する表面からなる窒化ガリウム結晶層であることを特徴とする請求項1又は2に記載の窒化ガリウム結晶積層基板。
- 横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることを特徴とする請求項1~3の何れか一項に記載の窒化ガリウム結晶積層基板。
- サファイア下地基板上に、該下地基板の主面に対して傾斜した側壁を有する複数本の溝部を形成し、該溝部の側壁を起点として選択的に窒化ガリウム結晶を横方向成長させる窒化ガリウム結晶積層基板の製造方法において、
前記側壁における窒化ガリウム結晶を成長させる領域の幅(d)を10~750nmに設定することを特徴とする窒化ガリウム結晶積層基板の製造方法。 - 窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであることを特徴とする請求項5に記載の窒化ガリウム結晶積層基板の製造方法。
- 横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることを特徴とする請求項5または6に記載の窒化ガリウム結晶積層基板の製造方法。
- サファイア下地基板上に、該下地基板の主面に対して傾斜した側壁を有する溝部を複数本有し、該溝部の側壁における選択的に窒化ガリウム結晶を成長させる領域の幅(d)が10~750nmに設定されていることを特徴とする結晶積層基板製造用サファイア下地基板。
- 窒化ガリウム結晶を成長させる領域の幅(d)が100~200nmであることを特徴とする請求項8に記載の結晶積層基板製造用サファイア下地基板。
- 横方向結晶成長の起点となる側壁が、サファイア単結晶のc面であることを特徴とする請求項8または9に記載の結晶積層基板製造用サファイア下地基板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137022202A KR20140019328A (ko) | 2011-03-07 | 2012-03-02 | 하지 기판, 질화갈륨 결정 적층 기판 및 그의 제조 방법 |
US13/983,257 US20130313567A1 (en) | 2011-03-07 | 2012-03-02 | Base substrate, gallium nitride crystal multi-layer substrate and production process therefor |
CN2012800080170A CN103348044A (zh) | 2011-03-07 | 2012-03-02 | 基底基板、氮化镓晶体层叠基板及其制造方法 |
EP12755674.4A EP2684988A1 (en) | 2011-03-07 | 2012-03-02 | Base, substrate with gallium nitride crystal layer, and process for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-049487 | 2011-03-07 | ||
JP2011049487A JP2012184144A (ja) | 2011-03-07 | 2011-03-07 | 窒化ガリウム結晶積層基板及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012121154A1 true WO2012121154A1 (ja) | 2012-09-13 |
Family
ID=46798118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055407 WO2012121154A1 (ja) | 2011-03-07 | 2012-03-02 | 下地基板、窒化ガリウム結晶積層基板及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130313567A1 (ja) |
EP (1) | EP2684988A1 (ja) |
JP (1) | JP2012184144A (ja) |
KR (1) | KR20140019328A (ja) |
CN (1) | CN103348044A (ja) |
TW (1) | TW201245515A (ja) |
WO (1) | WO2012121154A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141099A1 (ja) * | 2012-03-19 | 2013-09-26 | 国立大学法人山口大学 | 窒化ガリウム結晶自立基板及びその製造方法 |
US10032958B2 (en) | 2012-12-20 | 2018-07-24 | Ngk Insulators, Ltd. | Seed crystal substrates, composite substrates and functional devices |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10435812B2 (en) | 2012-02-17 | 2019-10-08 | Yale University | Heterogeneous material integration through guided lateral growth |
JP6346457B2 (ja) * | 2013-03-08 | 2018-06-20 | 国立大学法人山口大学 | 窒化ガリウム結晶自立基板の製造方法 |
JPWO2014136393A1 (ja) * | 2013-03-08 | 2017-02-09 | 国立大学法人山口大学 | 加工基板及びそれを用いた半導体装置 |
US9312446B2 (en) | 2013-05-31 | 2016-04-12 | Ngk Insulators, Ltd. | Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor |
CN105556684B (zh) | 2013-07-22 | 2019-10-18 | 亮锐控股有限公司 | 分离形成在衬底晶片上的发光设备的方法 |
EP3315639B1 (en) | 2013-08-08 | 2024-05-01 | Mitsubishi Chemical Corporation | Self-standing gan substrate, gan crystal, method for producing gan single crystal, and method for producing semiconductor device |
CN105830237B (zh) | 2013-12-18 | 2019-09-06 | 日本碍子株式会社 | 发光元件用复合基板及其制造方法 |
WO2015107813A1 (ja) | 2014-01-17 | 2015-07-23 | 三菱化学株式会社 | GaN基板、GaN基板の製造方法、GaN結晶の製造方法および半導体デバイスの製造方法 |
CN108305923B (zh) | 2014-03-31 | 2020-09-15 | 日本碍子株式会社 | 多晶氮化镓自立基板和使用该多晶氮化镓自立基板的发光元件 |
US9978845B2 (en) | 2014-04-16 | 2018-05-22 | Yale University | Method of obtaining planar semipolar gallium nitride surfaces |
CN106233471A (zh) * | 2014-04-16 | 2016-12-14 | 耶鲁大学 | 蓝宝石衬底上的氮‑极性的半极性GaN层和器件 |
TW201545372A (zh) * | 2014-05-30 | 2015-12-01 | Mitsubishi Chem Corp | 磊晶晶圓、半導體發光元件、發光裝置及磊晶晶圓之製造方法 |
WO2016051890A1 (ja) | 2014-09-29 | 2016-04-07 | 日本碍子株式会社 | 窒化ガリウム自立基板、発光素子及びそれらの製造方法 |
DE102014115253A1 (de) * | 2014-10-20 | 2016-04-21 | Osram Opto Semiconductors Gmbh | Verfahren zur Strukturierung einer Schichtenfolge und Halbleiterlaser-Vorrichtung |
US9558943B1 (en) * | 2015-07-13 | 2017-01-31 | Globalfoundries Inc. | Stress relaxed buffer layer on textured silicon surface |
US10541514B2 (en) | 2016-02-25 | 2020-01-21 | Ngk Insulators, Ltd. | Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device |
WO2017145802A1 (ja) | 2016-02-25 | 2017-08-31 | 日本碍子株式会社 | 多結晶窒化ガリウム自立基板及びそれを用いた発光素子 |
JP6688109B2 (ja) | 2016-02-25 | 2020-04-28 | 日本碍子株式会社 | 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法 |
US10896818B2 (en) | 2016-08-12 | 2021-01-19 | Yale University | Stacking fault-free semipolar and nonpolar GaN grown on foreign substrates by eliminating the nitrogen polar facets during the growth |
US11145507B2 (en) * | 2019-12-16 | 2021-10-12 | Wafer Works Corporation | Method of forming gallium nitride film over SOI substrate |
US11804374B2 (en) | 2020-10-27 | 2023-10-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strain relief trenches for epitaxial growth |
CN113219122A (zh) * | 2021-05-12 | 2021-08-06 | 中国电子科技集团公司第四十六研究所 | 一种快速区分氮化铝体单晶极性面的方法与装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007243006A (ja) | 2006-03-10 | 2007-09-20 | Kyocera Corp | 窒化物系半導体の気相成長方法、及び、エピタキシャル基板とそれを用いた半導体装置 |
JP2008053593A (ja) | 2006-08-28 | 2008-03-06 | Sharp Corp | 窒化物半導体層の形成方法 |
JP2008053594A (ja) | 2006-08-28 | 2008-03-06 | Sharp Corp | 窒化物半導体層の形成方法 |
JP2008078603A (ja) * | 2006-09-18 | 2008-04-03 | National Central Univ | パターン化されたサファイア基板および発光ダイオードの製造方法 |
JP2009040657A (ja) * | 2007-08-10 | 2009-02-26 | Mitsubishi Chemicals Corp | エピタキシャルウェハの製造方法 |
WO2010023846A1 (ja) | 2008-08-25 | 2010-03-04 | 国立大学法人山口大学 | 半導体基板及びその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007012809A (ja) * | 2005-06-29 | 2007-01-18 | Univ Of Tokushima | 窒化ガリウム系化合物半導体装置およびその製造方法 |
JP4888857B2 (ja) * | 2006-03-20 | 2012-02-29 | 国立大学法人徳島大学 | Iii族窒化物半導体薄膜およびiii族窒化物半導体発光素子 |
-
2011
- 2011-03-07 JP JP2011049487A patent/JP2012184144A/ja active Pending
-
2012
- 2012-03-02 US US13/983,257 patent/US20130313567A1/en not_active Abandoned
- 2012-03-02 EP EP12755674.4A patent/EP2684988A1/en not_active Withdrawn
- 2012-03-02 WO PCT/JP2012/055407 patent/WO2012121154A1/ja active Application Filing
- 2012-03-02 CN CN2012800080170A patent/CN103348044A/zh active Pending
- 2012-03-02 KR KR1020137022202A patent/KR20140019328A/ko not_active Application Discontinuation
- 2012-03-06 TW TW101107486A patent/TW201245515A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007243006A (ja) | 2006-03-10 | 2007-09-20 | Kyocera Corp | 窒化物系半導体の気相成長方法、及び、エピタキシャル基板とそれを用いた半導体装置 |
JP2008053593A (ja) | 2006-08-28 | 2008-03-06 | Sharp Corp | 窒化物半導体層の形成方法 |
JP2008053594A (ja) | 2006-08-28 | 2008-03-06 | Sharp Corp | 窒化物半導体層の形成方法 |
JP2008078603A (ja) * | 2006-09-18 | 2008-04-03 | National Central Univ | パターン化されたサファイア基板および発光ダイオードの製造方法 |
JP2009040657A (ja) * | 2007-08-10 | 2009-02-26 | Mitsubishi Chemicals Corp | エピタキシャルウェハの製造方法 |
WO2010023846A1 (ja) | 2008-08-25 | 2010-03-04 | 国立大学法人山口大学 | 半導体基板及びその製造方法 |
Non-Patent Citations (2)
Title |
---|
APPLIED PHYSICS LETTERS, vol. 90, 2007, pages 261912 |
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 45, 2006, pages L659 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013141099A1 (ja) * | 2012-03-19 | 2013-09-26 | 国立大学法人山口大学 | 窒化ガリウム結晶自立基板及びその製造方法 |
JP2013193918A (ja) * | 2012-03-19 | 2013-09-30 | Tokuyama Corp | 窒化ガリウム結晶自立基板及びその製造方法 |
US10032958B2 (en) | 2012-12-20 | 2018-07-24 | Ngk Insulators, Ltd. | Seed crystal substrates, composite substrates and functional devices |
Also Published As
Publication number | Publication date |
---|---|
KR20140019328A (ko) | 2014-02-14 |
CN103348044A (zh) | 2013-10-09 |
TW201245515A (en) | 2012-11-16 |
EP2684988A1 (en) | 2014-01-15 |
US20130313567A1 (en) | 2013-11-28 |
JP2012184144A (ja) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012121154A1 (ja) | 下地基板、窒化ガリウム結晶積層基板及びその製造方法 | |
JP5635013B2 (ja) | エピタキシャル成長用テンプレート及びその作製方法 | |
JP5392855B2 (ja) | 半導体基板及びその製造方法 | |
JP5276852B2 (ja) | Iii族窒化物半導体エピタキシャル基板の製造方法 | |
JP4932121B2 (ja) | Iii−v族窒化物系半導体基板の製造方法 | |
US8212287B2 (en) | Nitride semiconductor structure and method of making same | |
US8659031B2 (en) | Method of producing template for epitaxial growth and nitride semiconductor device | |
JP2013173641A (ja) | 窒化ガリウム結晶積層基板及びその製造方法 | |
JP2010516599A (ja) | ナノ構造テンプレートを使用した単結晶半導体材料の製造、単結晶半導体材料、および半導体ナノ構造 | |
JP2007317752A (ja) | テンプレート基板 | |
JP5293592B2 (ja) | Iii族窒化物半導体の製造方法およびテンプレート基板 | |
JP2007314360A (ja) | テンプレート基板 | |
JP6346457B2 (ja) | 窒化ガリウム結晶自立基板の製造方法 | |
US20150102358A1 (en) | Nitride semiconductor multilayer structure, semiconductor light-emitting device, and method for manufacturing nitride semiconductor multilayer structure | |
WO2013141099A1 (ja) | 窒化ガリウム結晶自立基板及びその製造方法 | |
JP2015032730A (ja) | 窒化物半導体構造およびそれを製造する方法 | |
JP4810517B2 (ja) | Iii−v族窒化物系半導体基板 | |
JP2011171394A (ja) | 窒化物半導体薄膜および窒化物半導体規則混晶ならびにその成長方法 | |
JP5869064B2 (ja) | エピタキシャル成長用テンプレート及びその作製方法 | |
JP5313976B2 (ja) | 窒化物半導体薄膜およびその成長方法 | |
JP5255935B2 (ja) | 結晶基板および薄膜形成方法ならびに半導体装置 | |
JP2009208989A (ja) | 化合物半導体基板およびその製造方法 | |
WO2013128893A1 (ja) | 半導体装置の製造方法 | |
KR20120090189A (ko) | m-면 사파이어 기판에 질화물계 박막을 형성하는 방법 및 이에 의해 제조된 질화물계 반도체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12755674 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13983257 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012755674 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137022202 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |