WO2012115096A1 - 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 - Google Patents
二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 Download PDFInfo
- Publication number
- WO2012115096A1 WO2012115096A1 PCT/JP2012/054109 JP2012054109W WO2012115096A1 WO 2012115096 A1 WO2012115096 A1 WO 2012115096A1 JP 2012054109 W JP2012054109 W JP 2012054109W WO 2012115096 A1 WO2012115096 A1 WO 2012115096A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- secondary battery
- water
- electrode active
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8828—Coating with slurry or ink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to, for example, a negative electrode for a secondary battery provided in a secondary battery such as a lithium ion secondary battery, a slurry composition for negative electrode for producing the negative electrode for secondary battery, and a method for producing the negative electrode for secondary battery.
- the present invention also relates to a secondary battery including the secondary battery negative electrode.
- the electrode is usually a liquid composition in which a polymer serving as a binder (binder) is dispersed or dissolved in a solvent such as water or an organic solvent, an electrode active material, and optionally conductive carbon or the like.
- a solvent such as water or an organic solvent
- an electrode active material such as water or an organic solvent
- optionally conductive carbon or the like an electrode active material
- the conductive agent is mixed to obtain a slurry composition, and this slurry composition is applied to a current collector and dried.
- binders and various additives for binding the electrode active material and the like to the current collector for example, Patent Document 1). To 4).
- Patent Document 1 and Patent Document 2 describe a slurry for a negative electrode of a non-aqueous secondary battery including a binder composed of a carbon material active material, a water-dispersed emulsion resin, and a water-soluble polymer.
- a binder composed of a carbon material active material, a water-dispersed emulsion resin, and a water-soluble polymer.
- the water-soluble polymer polyvinyl alcohol, carboxymethyl cellulose, sodium polyacrylate, and the like are described. According to this, it is described that the coating film strength and the coating film density of the battery are improved.
- Patent Document 3 includes 0.02 to 13% by weight of a fluorine-containing unsaturated monomer, 10 to 38% by weight of an aliphatic conjugated diene monomer, and 0.1 to 10% by weight of an ethylenically unsaturated carboxylic acid monomer. And a binder for a secondary battery electrode comprising a copolymer latex obtained by emulsion polymerization of a monomer composed of 49 to 88.88% by weight of other monomers copolymerizable therewith. Yes. According to this, it is described that it is excellent in blending stability, blocking resistance, suitability for dust removal, and binding power.
- Patent Document 4 describes a secondary battery electrode binder made of a polymer having a monomer unit derived from a fluorine atom-containing monomer such as (fluoro) alkyl (meth) acrylate. And it describes that a cellulose polymer, polyacrylate, etc. can be added in order to improve applicability
- the particles of the electrode active material contained in the negative electrode may expand and contract with charge / discharge. When such expansion and contraction are repeated, the negative electrode gradually expands and the secondary battery may be deformed. Therefore, development of a technique capable of suppressing the swelling of the negative electrode as described above is desired.
- some conventional secondary batteries have a reduced capacity when stored in a high temperature environment of, for example, 60 ° C. Therefore, it is desired to develop a technology that can suppress a decrease in the capacity of the secondary battery even when the secondary battery is stored in a high temperature environment.
- the present invention was devised in view of the above-mentioned problems, and can be used for a secondary battery that can suppress the swelling of the negative electrode accompanying charge / discharge and that is less likely to have a reduced capacity even when stored in a high-temperature environment.
- An object is to provide a negative electrode, a slurry composition for a negative electrode capable of producing the negative electrode for a secondary battery, a method for producing a negative electrode for a secondary battery, and a secondary battery including the negative electrode for a secondary battery. .
- the present inventor has obtained an ethylenically unsaturated carboxylic acid monomer unit and a (meth) acrylic acid ester monomer unit in the electrode active material layer of the negative electrode for a secondary battery. And a fluorine-containing (meth) acrylic acid ester monomer unit in a specific ratio, each containing a water-soluble polymer, can suppress the swelling of the negative electrode accompanying charging and discharging, and stored in a high temperature environment Even in this case, the inventors have found that the capacity can hardly be reduced and completed the present invention. That is, according to the present invention, the following [1] to [10] are provided.
- a negative electrode for a secondary battery comprising a negative electrode active material, a binder and a water-soluble polymer,
- the water-soluble polymer is composed of 15% to 50% by weight of ethylenically unsaturated carboxylic acid monomer units, 30% to 70% by weight of (meth) acrylic acid ester monomer units, and fluorine-containing (meth) acrylic acid.
- a negative electrode for a secondary battery which is a copolymer containing 0.5 to 10% by weight of ester monomer units.
- the binder is a polymer containing an aliphatic conjugated diene monomer unit.
- the binder is a polymer containing an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer unit.
- a secondary battery comprising a positive electrode, a negative electrode, an electrolytic solution, and a separator, A secondary battery, wherein the negative electrode is the negative electrode for a secondary battery according to any one of [1] to [7].
- a negative electrode slurry composition comprising a negative electrode active material, a binder, a water-soluble polymer, and water, The water-soluble polymer is composed of 15% to 50% by weight of ethylenically unsaturated carboxylic acid monomer units, 30% to 70% by weight of (meth) acrylic acid ester monomer units, and fluorine-containing (meth) acrylic acid.
- a slurry composition for a negative electrode which is a copolymer containing 0.5 to 10% by weight of ester monomer units.
- a method for producing a negative electrode for a secondary battery comprising applying the slurry composition for a negative electrode according to [9] to a surface of a current collector and drying.
- the negative electrode for a secondary battery of the present invention it is possible to realize a secondary battery that can suppress swelling of the negative electrode due to charge and discharge and that can hardly reduce the capacity even when stored in a high temperature environment.
- the secondary battery of this invention can suppress the swelling of the negative electrode accompanying charging / discharging, and is hard to reduce a capacity
- (meth) acryl means “acryl” or “methacryl”.
- positive electrode active material means an electrode active material for positive electrode
- negative electrode active material means an electrode active material for negative electrode
- the “positive electrode active material layer” means an electrode active material layer provided on the positive electrode
- the “negative electrode active material layer” means an electrode active material layer provided on the negative electrode.
- the negative electrode for a secondary battery of the present invention includes a negative electrode active material, a binder, and a water-soluble polymer.
- the negative electrode of the present invention includes a current collector and a negative electrode active material layer formed on the surface of the current collector, and the negative electrode active material layer includes the negative electrode active material, a binder, and a water-soluble polymer. .
- the negative electrode active material is an electrode active material for a negative electrode, and is a material that transfers electrons in the negative electrode of the secondary battery.
- a material that can occlude and release lithium is usually used as the negative electrode active material.
- the material that can occlude and release lithium include a metal-based active material, a carbon-based active material, and an active material that combines these materials.
- the metal-based active material is an active material containing a metal, and usually contains an element capable of inserting lithium (also referred to as dope) in the structure, and the theoretical electric capacity per weight when lithium is inserted is 500 mAh.
- the upper limit of the theoretical electric capacity is not particularly limited, but may be, for example, 5000 mAh / g or less.
- the metal-based active material for example, lithium metal, a single metal that forms a lithium alloy and an alloy thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof are used.
- the single metal forming the lithium alloy examples include single metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, Zn, and Ti. Can be mentioned. Moreover, as a single metal alloy which forms a lithium alloy, the compound containing the said single metal is mentioned, for example. Among these, silicon (Si), tin (Sn), lead (Pb), and titanium (Ti) are preferable, and silicon, tin, and titanium are more preferable. Accordingly, a single metal of silicon (Si), tin (Sn), or titanium (Ti), an alloy containing these single metals, or a compound of these metals is preferable.
- the metallic active material may further contain one or more nonmetallic elements.
- SiO x C y capable of inserting and detaching lithium (also referred to as dedoping) at a low potential is preferable.
- SiO x C y can be obtained by firing a polymer material containing silicon.
- the range of 0.8 ⁇ x ⁇ 3 and 2 ⁇ y ⁇ 4 is preferably used in view of the balance between capacity and cycle characteristics.
- Lithium metal, elemental metal forming lithium alloy and oxides, sulfides, nitrides, silicides, carbides and phosphides of the alloys include oxides, sulfides, nitrides and silicides of lithium-insertable elements Products, carbides, phosphides and the like.
- an oxide is particularly preferable.
- a lithium-containing metal composite oxide containing an oxide such as tin oxide, manganese oxide, titanium oxide, niobium oxide, and vanadium oxide and a metal element selected from the group consisting of Si, Sn, Pb, and Ti atoms is used. .
- Li x Ti y M z O 4 As the lithium-containing metal composite oxide, a lithium titanium composite oxide represented by Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, and M represents an element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.), Li x Mn y M A lithium manganese composite oxide represented by z O 4 (x, y, z and M are the same as defined in the lithium titanium composite oxide). Among these, Li 4/3 Ti 5/3 O 4 , Li 1 Ti 2 O 4 , Li 4/5 Ti 11/5 O 4 , and Li 4/3 Mn 5/3 O 4 are preferable.
- an active material containing silicon is preferable as the metal-based active material.
- an active material containing silicon By using an active material containing silicon, the electric capacity of the secondary battery can be increased.
- an active material containing silicon expands and contracts greatly (for example, about 5 times) with charge and discharge.
- battery performance due to expansion and contraction of an active material containing silicon is increased. The decrease can be prevented by the water-soluble polymer according to the present invention.
- the active materials containing silicon SiO x , SiC and SiO x Cy are preferable, and SiO x Cy is more preferable.
- SiO x Cy is more preferable.
- the carbon-based active material refers to an active material having carbon as a main skeleton into which lithium can be inserted, and examples thereof include a carbonaceous material and a graphite material.
- the carbonaceous material is generally a carbon material with low graphitization (ie, low crystallinity) obtained by carbonizing a carbon precursor by heat treatment at 2000 ° C. or lower.
- the minimum of the said heat processing is not specifically limited, For example, it is good also as 500 degreeC or more.
- Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
- Examples of the graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
- MCMB is carbon fine particles obtained by separating and extracting mesophase microspheres generated in the process of heating pitches at around 400 ° C.
- the mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres.
- Pyrolytic vapor-grown carbon fibers are (1) a method of pyrolyzing acrylic polymer fibers, etc., (2) a method of spinning by spinning a pitch, or (3) using nanoparticles such as iron as a catalyst.
- non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, furfuryl alcohol resin fired bodies (PFA), and hard carbon.
- the graphite material is a graphite material having high crystallinity close to that of graphite obtained by heat-treating graphitizable carbon at 2000 ° C. or higher.
- the upper limit of the said heat processing temperature is not specifically limited, For example, it is good also as 5000 degrees C or less.
- Examples of the graphite material include natural graphite and artificial graphite.
- Examples of artificial graphite include artificial graphite mainly heat-treated at 2800 ° C. or higher, graphitized MCMB heat-treated at 2000 ° C. or higher, graphitized mesophase pitch-based carbon fiber heat-treated mesophase pitch-based carbon fiber at 2000 ° C. or higher, etc. Is mentioned.
- carbonaceous materials are preferable.
- the resistance of the secondary battery can be reduced, and a secondary battery having excellent input / output characteristics can be manufactured.
- a negative electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the negative electrode active material is preferably particle-sized.
- a higher density electrode can be formed during electrode molding.
- the volume average particle diameter of the particles of the negative electrode active material is appropriately selected in consideration of other constituent requirements of the secondary battery, and is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 100 ⁇ m or less. , Preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
- the 50% cumulative volume diameter of the negative electrode active material particles is usually 1 ⁇ m or more, preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics. It is.
- the 50% cumulative volume diameter can be obtained as a particle diameter at which the cumulative volume calculated from the small diameter side in the measured particle size distribution is 50% by measuring the particle size distribution by a laser diffraction method.
- the tap density of the negative electrode active material is not particularly limited, but 0.6 g / cm 3 or more is preferably used.
- the specific surface area of the negative electrode active material is usually 2 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 5 m 2 / g or more, and usually 20 m 2 / g or less, preferably from the viewpoint of improving the output density. It is 15 m 2 / g or less, more preferably 10 m 2 / g or less.
- the specific surface area of a negative electrode active material can be measured by BET method, for example.
- the binder is a component that binds the electrode active material to the surface of the current collector in the negative electrode.
- the binder binds the negative electrode active material so that the negative electrode active material is not detached from the negative electrode active material layer.
- the binder usually binds particles other than the negative electrode active material contained in the negative electrode active material layer, and also plays a role of maintaining the strength of the negative electrode active material layer.
- the binder it is preferable to use a binder having excellent performance for holding the negative electrode active material and high adhesion to the current collector.
- a polymer is used as the binder.
- the polymer may be a homopolymer or a copolymer.
- the polymer as the binder is preferably a polymer containing an aliphatic conjugated diene monomer unit. Since the aliphatic conjugated diene monomer unit is a low-rigidity and flexible repeating unit, the polymer containing the aliphatic conjugated diene monomer unit is used as a binder, so that the negative electrode active material layer and the current collector Good adhesion can be obtained.
- the aliphatic conjugated diene monomer unit is a repeating unit obtained by polymerizing an aliphatic conjugated diene monomer.
- aliphatic conjugated diene monomers include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3 butadiene, 2-chloro-1,3-butadiene, Substituted straight chain conjugated pentadienes, substituted and side chain conjugated hexadienes, and the like. Of these, 1,3-butadiene is preferred.
- an aliphatic conjugated diene monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as the binder may contain only one type of aliphatic conjugated diene monomer unit, or may contain two or more types in combination at any ratio.
- the ratio of the aliphatic conjugated diene monomer unit is usually 20 parts by weight or more, preferably 30 parts by weight or more, usually 70 parts by weight or less, preferably 60 parts by weight or less, More preferably, it is 55 parts by weight or less.
- the polymer as the binder preferably contains an aromatic vinyl monomer unit.
- the aromatic vinyl monomer unit is stable, and the negative electrode active material layer can be stabilized by reducing the solubility of the polymer containing the aromatic vinyl monomer unit in the electrolytic solution.
- the aromatic vinyl monomer unit is a repeating unit obtained by polymerizing an aromatic vinyl monomer.
- the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyl toluene, divinylbenzene and the like. Of these, styrene is preferred. Therefore, when combined with the fact that the polymer as the binder preferably contains an aliphatic conjugated diene monomer unit such as butadiene, the polymer as the binder comprises an aliphatic conjugated diene monomer unit and an aromatic vinyl monomer.
- a polymer including a body unit is preferable, and for example, a styrene / butadiene copolymer is preferable.
- an aromatic vinyl monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as the binder may contain only one type of aromatic vinyl monomer, or may contain two or more types in combination at any ratio.
- the polymer as a binder may contain an unreacted aliphatic conjugated diene monomer and an unreacted aromatic vinyl monomer as residual monomers.
- the amount of the unreacted aliphatic conjugated diene monomer contained in the polymer as the binder is preferably 50 ppm or less, more preferably 10 ppm or less, and the unreacted aromatic vinyl contained in the polymer as the binder.
- the amount of the monomer is preferably 1000 ppm or less, more preferably 200 ppm or less.
- the negative electrode slurry composition according to the present invention is applied to the surface of the current collector and dried to produce a negative electrode. It is possible to prevent the surface of the negative electrode from being roughened by foaming or causing an environmental load due to odor.
- the amount of the aromatic vinyl monomer contained in the polymer as the binder is kept within the above range, it is possible to suppress the environmental load and the roughness of the negative electrode surface that occur according to the drying conditions, and furthermore, the resistance of the polymer as the binder. Electrolyte property can be improved.
- the ratio of the aromatic vinyl monomer unit is usually 30 parts by weight or more, preferably 35 parts by weight or more, and usually 79.5 parts by weight or less, preferably 69 parts by weight or less. It is.
- the ratio of the aromatic vinyl monomer unit is set to the lower limit value or more of the above range, the electrolyte solution resistance of the secondary battery negative electrode of the present invention can be increased, and by setting the ratio to the upper limit value or less, When the slurry composition for negative electrodes according to the present invention is applied to a current collector, sufficient adhesion between the negative electrode active material layer and the current collector can be obtained.
- the polymer as the binder preferably contains an ethylenically unsaturated carboxylic acid monomer unit.
- the ethylenically unsaturated carboxylic acid monomer unit includes a carboxyl group (—COOH group) that enhances the adsorptivity to the negative electrode active material and the current collector, and is a repeating unit having high strength. Desorption of the negative electrode active material can be stably prevented, and the strength of the negative electrode can be improved.
- the ethylenically unsaturated carboxylic acid monomer unit is a repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer.
- the ethylenically unsaturated carboxylic acid monomer include monocarboxylic and dicarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid, and anhydrides thereof.
- an ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the polymer as the binder may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.
- the ratio of the ethylenically unsaturated carboxylic acid monomer units is usually 0.5 parts by weight or more, preferably 1 part by weight or more, more preferably 2 parts by weight or more. It is 10 parts by weight or less, preferably 8 parts by weight or less, more preferably 7 parts by weight or less.
- the polymer as the binder may contain any repeating unit other than those described above as long as the effects of the present invention are not significantly impaired.
- the monomer corresponding to the arbitrary repeating unit include a vinyl cyanide monomer, an unsaturated carboxylic acid alkyl ester monomer, an unsaturated monomer containing a hydroxyalkyl group, and an unsaturated carboxylic acid.
- acid amide monomers may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like. Of these, acrylonitrile and methacrylonitrile are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- unsaturated carboxylic acid alkyl ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, glycidyl methacrylate, dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, and dimethyl itaco. Nate, monomethyl fumarate, monoethyl fumarate, 2-ethylhexyl acrylate and the like. Of these, methyl methacrylate is preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- Examples of unsaturated monomers containing a hydroxyalkyl group include ⁇ -hydroxyethyl acrylate, ⁇ -hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2- Examples thereof include hydroxypropyl methacrylate, di- (ethylene glycol) maleate, di- (ethylene glycol) itaconate, 2-hydroxyethyl maleate, bis (2-hydroxyethyl) maleate, and 2-hydroxyethyl methyl fumarate. Of these, ⁇ -hydroxyethyl acrylate is preferred. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- Examples of the unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, N, N-dimethylacrylamide and the like. Of these, acrylamide and methacrylamide are preferable. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- polymer as the binder for example, monomers used in usual emulsion polymerization such as ethylene, propylene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride may be used. In addition, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the weight average molecular weight of the polymer as the binder is preferably 10,000 or more, more preferably 20,000 or more, preferably 1,000,000 or less, more preferably 500,000 or less.
- the weight average molecular weight of the polymer as the binder is in the above range, the strength of the negative electrode of the present invention and the dispersibility of the negative electrode active material are easily improved.
- the weight average molecular weight of the polymer as a binder as a polystyrene conversion value which used tetrahydrofuran as a developing solvent by gel permeation chromatography (GPC).
- the glass transition temperature of the binder is preferably ⁇ 75 ° C. or higher, more preferably ⁇ 55 ° C. or higher, particularly preferably ⁇ 35 ° C. or higher, and usually 40 ° C. or lower, preferably 30 ° C. or lower, more preferably 20 ° C. or lower. Especially preferably, it is 15 degrees C or less.
- the glass transition temperature of the binder is within the above range, characteristics such as flexibility, binding property and winding property of the negative electrode, and adhesion between the negative electrode active material layer and the current collector are highly balanced, which is preferable.
- the binder is a water-insoluble polymer. Therefore, in the negative electrode slurry composition of the present invention, the binder is not dissolved in water as a solvent but is dispersed as particles.
- a polymer being water-insoluble means that an insoluble content becomes 90% by weight or more when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C.
- a polymer being water-soluble means that at 25 ° C., 0.5 g of the polymer is dissolved in 100 g of water and the insoluble content is less than 0.5% by weight.
- the number average particle size of the binder particles is preferably 50 nm or more, more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less.
- the number average particle diameter of the binder is in the above range, the strength and flexibility of the obtained negative electrode can be improved.
- the presence of particles can be easily measured by transmission electron microscopy, Coulter counter, laser diffraction scattering method, or the like.
- the binder is produced, for example, by polymerizing a monomer composition containing the above-described monomer in an aqueous solvent.
- the ratio of each monomer in the monomer composition is usually a repeating unit in a polymer as a binder (for example, an aliphatic conjugated diene monomer unit, an aromatic vinyl monomer unit, an ethylenically unsaturated carboxylic acid). The ratio of the acid monomer units).
- the aqueous solvent is not particularly limited as long as the binder particles can be dispersed.
- the boiling point at normal pressure is usually 80 ° C. or higher, preferably 100 ° C. or higher, and usually 350 ° C. or lower.
- it is selected from 300 ° C. or lower aqueous solvents. Examples of the aqueous solvent will be given below.
- the number in parentheses after the solvent name is the boiling point (unit: ° C) at normal pressure, and the value after the decimal point is rounded off or rounded down.
- aqueous solvent examples include water (100); ketones such as diacetone alcohol (169) and ⁇ -butyrolactone (204); ethyl alcohol (78), isopropyl alcohol (82), and normal propyl alcohol (97).
- Alcohols propylene glycol monomethyl ether (120), methyl cellosolve (124), ethyl cellosolve (136), ethylene glycol tertiary butyl ether (152), butyl cellosolve (171), 3-methoxy-3-methyl-1-butanol (174), Ethylene glycol monopropyl ether (150), diethylene glycol monobutyl pyrether (230), triethylene glycol monobutyl ether (271), dipropylene glycol monomethyl ether ( 88) glycol ethers and the like; 1,3-dioxolane (75), 1,4-dioxolane (101), ethers such as tetrahydrofuran (66); and the like.
- water is particularly preferable from the viewpoint that it is not flammable and a dispersion of binder particles can be easily obtained.
- water may be used as the main solvent, and an aqueous solvent other than the above-described water may be mixed and used within a range where the dispersed state of the binder particles can be ensured.
- the polymerization method is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
- the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. It is easy to obtain a high molecular weight product, and since the polymer is obtained in a state of being dispersed in water as it is, no redispersion treatment is required, and it can be used for production of the negative electrode slurry composition according to the present invention. From the viewpoint of production efficiency, the emulsion polymerization method is particularly preferable.
- the emulsion polymerization method is usually performed by a conventional method.
- the method is described in “Experimental Chemistry Course” Vol. 28, (Publisher: Maruzen Co., Ltd., edited by The Chemical Society of Japan). That is, water, an additive such as a dispersant, an emulsifier, a crosslinking agent, a polymerization initiator, and a monomer are added to a sealed container equipped with a stirrer and a heating device so as to have a predetermined composition, and the composition in the container
- a product is stirred to emulsify monomers and the like in water, and the temperature is increased while stirring to initiate polymerization.
- it is the method of putting into a sealed container and starting reaction similarly.
- polymerization initiator examples include organic compounds such as lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, and 3,3,5-trimethylhexanoyl peroxide.
- Peroxides examples include azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile; ammonium persulfate; potassium persulfate.
- a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- Emulsifiers, dispersants, polymerization initiators, and the like are generally used in these polymerization methods, and the amount used is generally the amount generally used.
- seed polymerization may be performed using seed particles.
- the polymerization temperature and the polymerization time can be arbitrarily selected depending on the polymerization method and the kind of the polymerization initiator. Usually, the polymerization temperature is about 30 ° C. or more, and the polymerization time is about 0.5 to 30 hours. Further, additives such as amines may be used as a polymerization aid.
- an aqueous dispersion of binder particles obtained by these methods is used, for example, alkali metal (for example, Li, Na, K, Rb, Cs) hydroxide, ammonia, inorganic ammonium compound (for example, NH 4 Cl).
- the pH may be adjusted to a range of usually 5 to 10, preferably 5 to 9, by mixing with a basic aqueous solution containing an organic amine compound (eg, ethanolamine, diethylamine, etc.).
- pH adjustment with an alkali metal hydroxide is preferable because it improves the binding property (peel strength) between the current collector and the negative electrode active material.
- the binder particles described above may be composite polymer particles composed of two or more types of polymers.
- the composite polymer particles are prepared by polymerizing at least one monomer component by a conventional method, then polymerizing at least one other monomer component, and polymerizing by a conventional method (two-stage polymerization method), etc. Can also be obtained. In this way, by polymerizing the monomer stepwise, it is possible to obtain core-shell structured particles having a core layer present inside the particle and a shell layer covering the core layer.
- the amount of the binder is usually 0.3 parts by weight or more, preferably 0.5 parts by weight or more, usually 8 parts by weight or less, preferably 4 parts by weight or less, more preferably 100 parts by weight of the negative electrode active material. 2 parts by weight or less.
- the water-soluble polymer according to the present invention specifies an ethylenically unsaturated carboxylic acid monomer unit, a (meth) acrylic acid ester monomer unit, and a fluorine-containing (meth) acrylic acid ester monomer unit. It is included in the composition ratio.
- the water-soluble polymer in the negative electrode of the present invention it is possible to suppress the swelling of the negative electrode that accompanies charging and discharging, and it is possible to realize a secondary battery in which the capacity is not easily lowered even when stored in a high temperature environment.
- the secondary battery of the present invention is usually coated with a negative electrode slurry composition of the present invention on a current collector, a negative electrode active material. Excellent adhesion of the layer to the current collector, and high temperature cycle characteristics and low temperature output characteristics. The reason why such an excellent effect can be obtained is not necessarily clear, but according to the study of the present inventor, it is presumed that the reason is as follows.
- the ethylenically unsaturated carboxylic acid monomer unit contains a carboxyl group
- the solubility of the water-soluble polymer according to the present invention in water is increased, and Adsorption of the water-soluble polymer according to the present invention to the negative electrode active material can be promoted.
- the (meth) acrylic acid ester monomer unit has high strength, the molecule of the water-soluble polymer according to the present invention can be stabilized.
- the water-soluble polymer according to the present invention is swellable in water (when the water-soluble polymer is immersed in water, the water-soluble polymer The degree of swelling by absorbing water is improved, and the water-soluble polymer can be elastically deformed. It is considered that the effects described above are achieved by combining these actions.
- the water-soluble polymer when the negative electrode active material expands or contracts in the negative electrode, the water-soluble polymer can be elastically deformed following the expansion or contraction of the negative electrode active material, so that swelling of the negative electrode accompanying charge / discharge can be suppressed.
- the binder cannot adhere to the negative electrode active material, and a gap is generated between the negative electrode active materials or between the negative electrode active material and the conductive agent.
- the electrical connection between the active material and the conductive agent may be impaired. If the electrical connection is impaired, the electric capacity of the secondary battery may be reduced.
- the water-soluble polymer can be elastically deformed following the expansion or contraction of the negative electrode active material, the generation of the gap can be suppressed and the electrical connection can be maintained, so that the cycle characteristics can be improved.
- the water-soluble polymer is adsorbed on the surface of the negative electrode active material and covers the negative electrode active material to form a protective layer.
- this protective layer decomposition of the electrolytic solution under a high temperature environment and decomposition of the electrolytic solution accompanying charge / discharge can be suppressed.
- bubbles are generated around the negative electrode active material, which may hinder the transfer of electrons and reduce the electric capacity of the secondary battery.
- the decomposition of the electrolytic solution can be suppressed by the water-soluble polymer, the decrease in electric capacity as described above can be suppressed, and the high temperature storage characteristics and the high temperature cycle characteristics can be improved.
- the protective layer formed of the water-soluble polymer according to the present invention has higher ionic conductivity than a protective layer formed by a conventional additive such as carboxymethyl cellulose (hereinafter referred to as “CMC” as appropriate).
- CMC carboxymethyl cellulose
- the water-soluble polymer according to the present invention has swelling properties with respect to the electrolyte solution (when the water-soluble polymer is immersed in the electrolyte solution, the water-soluble polymer swells by absorbing the electrolyte solution). This is probably because of this. Since the ionic conductivity is high, the diffusion resistance (that is, the resistance that hinders the diffusion of ions) is reduced, so that the secondary battery of the present invention has high output characteristics, particularly excellent low-temperature output characteristics. In addition, even if it has swellability with respect to the electrolytic solution in this way, the solvent of the electrolytic solution is swollen to the extent that it cannot easily pass through the protective layer. To be demonstrated.
- the water-soluble polymer according to the present invention is highly soluble in water and can be easily adsorbed on the negative electrode active material. For this reason, in the whole slurry composition for negative electrodes of this invention, a water-soluble polymer can cover the surface of the particle
- the negative electrode active material is difficult to be produced when the negative electrode slurry composition is applied, a coating film having a uniform film thickness and composition can be easily formed. Moreover, since the negative electrode active material is well dispersed in the negative electrode active material layer obtained from the coating film thus formed, the electric capacity of the secondary battery can be improved.
- the water-soluble polymer according to the present invention has high flexibility and is flexible, it easily adheres to the surface of the current collector and the surface of the negative electrode active material without any gap. For this reason, the water-soluble polymer can enhance the adhesion by supplementing the binder to the current collector and the negative electrode active material. Therefore, the adhesion of the negative electrode active material layer to the current collector can be improved.
- the ethylenically unsaturated carboxylic acid monomer unit is a repeating unit obtained by polymerizing an ethylenically unsaturated carboxylic acid monomer.
- the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acid and derivatives thereof, ethylenically unsaturated dicarboxylic acid and acid anhydrides thereof, and derivatives thereof.
- Examples of the ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid and the like.
- Examples of derivatives of ethylenically unsaturated monocarboxylic acids include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, Examples thereof include ⁇ -diaminoacrylic acid.
- Examples of the ethylenically unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
- Examples of the acid anhydride of the ethylenically unsaturated dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
- Examples of derivatives of ethylenically unsaturated dicarboxylic acids include methyl maleate such as methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid; diphenyl maleate, nonyl maleate, Examples thereof include maleic acid esters such as decyl maleate, dodecyl maleate, octadecyl maleate and fluoroalkyl maleate.
- ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid are preferable. It is because the dispersibility with respect to water of the obtained water-soluble polymer can be improved more.
- ethylenically unsaturated carboxylic acid monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of ethylenically unsaturated carboxylic acid monomer unit, or may contain two or more types in combination at any ratio.
- the ratio of the ethylenically unsaturated carboxylic acid monomer unit is usually 15% by weight or more, preferably 20% by weight or more, more preferably 25% by weight or more, and usually 50% by weight. % Or less, preferably 45% by weight or less, more preferably 40% by weight or less.
- the (meth) acrylic acid ester monomer unit is a repeating unit obtained by polymerizing a (meth) acrylic acid ester monomer.
- those containing fluorine are distinguished from (meth) acrylate monomers as fluorine-containing (meth) acrylate monomers.
- Examples of (meth) acrylic acid ester monomers include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, Acrylic acid alkyl esters such as 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t- Butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl Meth
- a (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio.
- the ratio of the (meth) acrylic acid ester monomer unit is usually 30% by weight or more, preferably 35% by weight or more, more preferably 40% by weight or more, and usually 70% by weight or less.
- the fluorine-containing (meth) acrylic acid ester monomer unit is a repeating unit obtained by polymerizing a fluorine-containing (meth) acrylic acid ester monomer.
- Examples of the fluorine-containing (meth) acrylic acid ester monomer include monomers represented by the following formula (I).
- R 1 Represents a hydrogen atom or a methyl group.
- R 2 Represents a hydrocarbon group containing a fluorine atom.
- the carbon number of the hydrocarbon group is usually 1 or more and usually 18 or less.
- the number of fluorine atoms contained in R 2 may be one or two or more.
- fluorine-containing (meth) acrylic acid ester monomers represented by formula (I) are: (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, (meth) acrylic acid fluoride Aralkyl etc. are mentioned. Of these, alkyl fluoride (meth) acrylate is preferable.
- Such monomers include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, ⁇ - (perfluorooctyl) ethyl (meth) acrylate, (Meth) acrylic acid 2,2,3,3-tetrafluoropropyl, (meth) acrylic acid 2,2,3,4,4,4-hexafluorobutyl, (meth) acrylic acid 1H, 1H, 9H-par Fluoro-1-nonyl, 1H, 1H, 11H-perfluoroundecyl (meth) acrylate, perfluorooctyl (meth) acrylate, 3 [4 [1-trifluoromethyl-2,2- (meth) acrylic acid (Meth) acrylic acid perfluoroalkyl esters such as bis [bis (trifluoromethyl) fluoromethyl] ethynyloxy] benzooxy] 2-hydroxypropyl Etc.
- a fluorine-containing (meth) acrylic acid ester monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention may contain only one type of fluorine-containing (meth) acrylic acid ester monomer unit, or may contain two or more types in combination at any ratio. .
- the ratio of the fluorine-containing (meth) acrylate monomer unit is usually 0.5% by weight or more, preferably 1% by weight or more, and usually 10% by weight or less, preferably Is 5% by weight or less.
- the water-soluble polymer according to the present invention is the above-described ethylenically unsaturated carboxylic acid monomer unit, (meth) acrylic acid ester monomer unit, and fluorine-containing (meth) acrylic, unless the effects of the present invention are significantly impaired.
- a repeating unit other than the acid ester monomer unit may be included. Such a repeating unit is obtained by polymerizing a monomer copolymerizable with an ethylenically unsaturated carboxylic acid monomer, a (meth) acrylic acid ester monomer, or a fluorine-containing (meth) acrylic acid ester monomer. It is the repeating unit obtained.
- Examples of the copolymerizable monomer include carboxylic acid ester monomers having two or more carbon-carbon double bonds such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
- Styrene monomers such as styrene, chlorostyrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, chloromethylstyrene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene; acrylamide, Amide monomers such as N-methylolacrylamide and acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ -unsaturated nitrile compound monomers such as acrylonitrile and methacrylonitrile; Olefin such as ethylene and propylene Monomers; Monomers containing halogen atoms such as vinyl chloride
- Vinyl ether monomers such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; heterocycles such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole And vinyl compound monomers.
- the said copolymerizable monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Therefore, the water-soluble polymer according to the present invention is a repeating unit other than the ethylenically unsaturated carboxylic acid monomer unit, the (meth) acrylic acid ester monomer unit, and the fluorine-containing (meth) acrylic acid ester monomer unit. May be included, and two or more types may be combined in any ratio.
- the ratio of repeating units other than the ethylenically unsaturated carboxylic acid monomer unit, the (meth) acrylic acid ester monomer unit, and the fluorine-containing (meth) acrylic acid ester monomer unit Is preferably 0 to 10% by weight, more preferably 0 to 5% by weight.
- the weight average molecular weight of the water-soluble polymer is usually smaller than that of the polymer to be a binder, preferably 100 or more, more preferably 500 or more, particularly preferably 1000 or more, preferably 500000 or less, more preferably 250,000 or less. Particularly preferably, it is 100,000 or less.
- the water-soluble polymer can be softened by setting it to the upper limit value or less of the above range, for example, it is possible to suppress swelling of the negative electrode and improve adhesion of the negative electrode active material layer to the current collector.
- the weight average molecular weight of a water-soluble polymer as a value of polyethylene oxide conversion which used GPC as the developing solvent the solution which dissolved 0.85 g / ml sodium nitrate in 10 volume% aqueous solution of acetonitrile.
- the glass transition temperature of the water-soluble polymer is usually 0 ° C. or higher, preferably 5 ° C. or higher, and is usually 100 ° C. or lower, preferably 50 ° C. or lower. When the glass transition temperature of the water-soluble polymer is in the above range, both the adhesion and flexibility of the negative electrode can be achieved.
- the glass transition temperature of the water-soluble polymer can be adjusted by combining various monomers.
- the water-soluble polymer has a viscosity of 0.1 mPa ⁇ s or more, preferably 1 mPa ⁇ s or more, more preferably 10 mPa ⁇ s or more, and usually 20000 mPa ⁇ s or less, preferably 1 wt% aqueous solution. It is 10,000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less.
- the viscosity can be adjusted by, for example, the molecular weight of the water-soluble polymer.
- the said viscosity is a value when it measures at 25 degreeC and rotation speed 60rpm using an E-type viscosity meter.
- a method for producing a water-soluble polymer for example, a monomer containing the above-described ethylenically unsaturated carboxylic acid monomer, (meth) acrylic acid ester monomer, and fluorine-containing (meth) acrylic acid ester monomer
- the composition may be produced by polymerization in an aqueous solvent.
- the aqueous solvent and the polymerization method may be the same as in the production of the binder, for example.
- an aqueous solution in which a water-soluble polymer is usually dissolved in an aqueous solvent is obtained.
- the water-soluble polymer may be taken out from the aqueous solution thus obtained.
- a negative electrode slurry composition is produced using the water-soluble polymer dissolved in an aqueous solvent, and the negative electrode slurry composition is prepared. To produce a negative electrode.
- the aqueous solution containing the water-soluble polymer in an aqueous solvent is usually acidic, it may be alkalized to pH 7 to pH 13 as necessary. Thereby, the handleability of aqueous solution can be improved and the coating property of the slurry composition for negative electrodes can be improved.
- Examples of the method for alkalinizing to pH 7 to pH 13 include alkali metal aqueous solutions such as lithium hydroxide aqueous solution, sodium hydroxide aqueous solution and potassium hydroxide aqueous solution; alkaline earth metal aqueous solutions such as calcium hydroxide aqueous solution and magnesium hydroxide aqueous solution; The method of mixing aqueous alkali solution, such as aqueous ammonia solution, is mentioned.
- the said alkaline aqueous solution may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the water-soluble polymer is usually less than that of the binder, and is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more, and particularly preferably 1 part by weight with respect to 100 parts by weight of the negative electrode active material. It is above, Preferably it is 10 weight part or less, More preferably, it is 5 weight part or less.
- the negative electrode active material layer may contain other components in addition to the above-described negative electrode active material, binder, and water-soluble polymer.
- the component include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, and an electrolyte solution additive. These are not particularly limited as long as they do not affect the battery reaction. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the viscosity modifier is a component used for adjusting the viscosity of the negative electrode slurry composition of the present invention to improve the dispersibility and coating property of the negative electrode slurry composition.
- the viscosity modifier contained in the negative electrode slurry composition remains in the negative electrode active material layer.
- a water-soluble polysaccharide as the viscosity modifier.
- examples of polysaccharides include natural polymers and cellulose semisynthetic polymers.
- a viscosity modifier may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- natural polymers examples include polysaccharides and proteins derived from plants or animals.
- natural polymers that have been subjected to fermentation treatment with microorganisms, heat treatment, or the like can also be exemplified. These natural polymers can be classified as plant natural polymers, animal natural polymers, microbial natural polymers, and the like.
- Examples of plant-based natural polymers include gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, cannan, quince seed (malmello), arche colloid (gasso extract), starch (rice, corn, potato, Derived from wheat and the like), glycyrrhizin and the like.
- Examples of animal-based natural polymers include collagen, casein, albumin, gelatin, and the like.
- examples of the microbial natural polymer include xanthan gum, dextran, succinoglucan, and bullulan.
- Cellulosic semisynthetic polymers can be classified into nonionic, anionic and cationic.
- Nonionic cellulose semisynthetic polymers include, for example, alkylcelluloses such as methylcellulose, methylethylcellulose, ethylcellulose, and microcrystalline cellulose; hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxypropyl And hydroxyalkylcelluloses such as methylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose;
- anionic cellulose semisynthetic polymer examples include alkyl celluloses obtained by substituting the above nonionic cellulose semisynthetic polymer with various derivative groups, and sodium salts and ammonium salts thereof. Specific examples include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC) and salts thereof.
- Examples of cationic cellulose semisynthetic polymers include low nitrogen hydroxyethyl cellulose dimethyl diallyl ammonium chloride (polyquaternium-4), O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethyl cellulose (polyquaternium- 10), and O- [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethylcellulose chloride (polyquaternium-24).
- cellulose-based semi-synthetic polymers sodium salts thereof and ammonium salts thereof are preferable because they can have cationic, anionic and amphoteric characteristics.
- an anionic cellulose semisynthetic polymer is particularly preferable from the viewpoint of dispersibility of the negative electrode active material.
- the degree of etherification of the cellulose semisynthetic polymer is preferably 0.5 or more, more preferably 0.6 or more, preferably 1.0 or less, more preferably 0.8 or less.
- the degree of etherification refers to the degree of substitution of hydroxyl groups (three) per anhydroglucose unit in cellulose with a substitution product such as a carboxymethyl group.
- the degree of etherification can theoretically take a value of 0-3.
- the cellulosic semi-synthetic polymer adsorbs on the surface of the negative electrode active material and is compatible with water, so it has excellent dispersibility, and the negative electrode active material is at the primary particle level. Can be finely dispersed.
- the average degree of polymerization of the viscosity modifier calculated from the intrinsic viscosity obtained from an Ubbelohde viscometer is preferably 500 or more, more preferably 1000 or more. It is preferably 2500 or less, more preferably 2000 or less, and particularly preferably 1500 or less.
- the average degree of polymerization of the viscosity modifier may affect the fluidity of the negative electrode slurry composition of the present invention, the film uniformity of the negative electrode active material layer, and the process in the process. By making the average degree of polymerization within the above range, the stability of the negative electrode slurry composition of the present invention over time can be improved, and coating without agglomerates and without thickness unevenness becomes possible.
- the amount of the viscosity modifier is preferably 0 part by weight or more and preferably 0.5 part by weight or less with respect to 100 parts by weight of the negative electrode active material.
- the conductive agent is a component that improves electrical contact between the negative electrode active materials. By including the conductive agent, the discharge rate characteristics of the secondary battery of the present invention can be improved.
- a conductive agent for example, acetylene black, ketjen black, carbon black, graphite, vapor grown carbon fiber, conductive carbon such as carbon nanotube, and the like can be used.
- a electrically conductive agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the conductive agent is preferably 1 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.
- the reinforcing material for example, various inorganic and organic spherical, plate, rod or fiber fillers can be used. By using the reinforcing material, a tough and flexible negative electrode can be obtained, and a secondary battery exhibiting excellent long-term cycle characteristics can be realized.
- the amount of the reinforcing material is usually 0.01 parts by weight or more, preferably 1 part by weight or more, and usually 20 parts by weight or less, preferably 10 parts by weight or less, with respect to 100 parts by weight of the negative electrode active material.
- leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
- the amount of the leveling agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material.
- the leveling agent is in the above range, the productivity, smoothness, and battery characteristics during the production of the negative electrode are excellent.
- the dispersibility of the negative electrode active material and the like in the negative electrode slurry composition can be improved, and the smoothness of the negative electrode obtained thereby can be improved.
- Examples of the electrolytic solution additive include vinylene carbonate. By using the electrolytic solution additive, for example, decomposition of the electrolytic solution can be suppressed.
- the amount of the electrolytic solution additive is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. By setting the amount of the electrolytic solution additive in the above range, a secondary battery excellent in cycle characteristics and high temperature characteristics can be realized.
- the negative electrode active material layer may contain nanoparticles, such as fumed silica and fumed alumina, for example.
- nanoparticles such as fumed silica and fumed alumina
- the thixotropy of the negative electrode slurry composition can be adjusted, so that the leveling property of the negative electrode of the present invention obtained thereby can be improved.
- the amount of the nanoparticles is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the negative electrode active material. When the nanoparticles are in the above range, the stability and productivity of the negative electrode slurry composition can be improved, and high battery characteristics can be realized.
- the negative electrode of the present invention includes a negative electrode active material layer containing the above-described negative electrode active material, binder and water-soluble polymer, and other components used as necessary.
- This negative electrode active material layer is usually provided on the surface of the current collector.
- the negative electrode active material layer may be provided on at least one side of the current collector, but is preferably provided on both sides.
- the current collector for the negative electrode is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but a metal material is preferable because of its heat resistance.
- a metal material is preferable because of its heat resistance.
- the material for the current collector for the negative electrode include iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum.
- copper is particularly preferable as the current collector used for the secondary battery negative electrode.
- the said material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 mm to 0.5 mm is preferable.
- the current collector is preferably used after roughening the surface in advance.
- the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
- a mechanical polishing method usually, a polishing cloth with an abrasive particle fixed thereto, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
- an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity of the negative electrode active material layer.
- a negative electrode active material layer is provided on the surface of the current collector.
- the thickness of the negative electrode active material layer is usually 5 ⁇ m or more, preferably 30 ⁇ m or more, and is usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the negative electrode active material layer is in the above range, load characteristics and cycle characteristics can be improved.
- the content ratio of the negative electrode active material in the negative electrode active material layer is preferably 85% by weight or more, more preferably 88% by weight or more, preferably 99% by weight or less, more preferably 97% by weight or less.
- the method for producing the negative electrode for secondary battery of the present invention (hereinafter referred to as “the method for producing the negative electrode of the present invention” as appropriate) is not particularly limited.
- the slurry composition for negative electrode of the present invention is prepared, You may manufacture by the manufacturing method including apply
- the negative electrode slurry composition of the present invention is a slurry-like composition containing a negative electrode active material, a binder, a water-soluble polymer, and water.
- the slurry composition for negative electrodes of this invention may contain components other than a negative electrode active material, a binder, a water-soluble polymer, and water as needed.
- the amount of the negative electrode active material, the binder, the water-soluble polymer, and the components included as necessary is usually the same as the amount of each component included in the negative electrode active material layer.
- a part of the water-soluble polymer is usually dissolved in water, but another part of the water-soluble polymer is adsorbed on the surface of the negative electrode active material.
- the negative electrode active material is covered with a stable layer of a water-soluble polymer, and the dispersibility of the negative electrode active material in the solvent is improved.
- the slurry composition for negative electrodes of this invention has the favorable coating property at the time of apply
- Water functions as a solvent or a dispersion medium in the negative electrode slurry composition, and the negative electrode active material is dispersed, the binder is dispersed in the form of particles, and the water-soluble polymer is dissolved.
- a liquid other than water may be used as a solvent in combination with water. It is preferable to combine a binder and a liquid that dissolves the water-soluble polymer because the dispersion of the negative electrode active material is stabilized by adsorbing the binder and the water-soluble polymer to the surface.
- the type of liquid to be combined with water is preferably selected from the viewpoint of drying speed and environment.
- Preferred examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, Esters such as ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N— Examples include amides such as methylpyrrolidone and N, N-dimethylformamide, among which N-methylpyrrolidone (NMP) is preferable. In
- the amount of water and the liquid is preferably adjusted so that the viscosity of the slurry composition for negative electrode of the present invention is suitable for coating.
- the concentration of the solid content of the slurry composition for negative electrode of the present invention is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 90% by weight or less, more preferably 80% by weight. It is used by adjusting to the following amount.
- the negative electrode slurry composition of the present invention may be produced by mixing the negative electrode active material, the binder, the water-soluble polymer, water, and components used as necessary.
- the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
- a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
- the negative electrode slurry of the present invention can be produced by applying the slurry composition for negative electrode of the present invention to the surface of the current collector and drying it to form a negative electrode active material layer on the surface of the current collector.
- the method for applying the negative electrode slurry composition of the present invention to the surface of the current collector is not particularly limited.
- Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
- drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
- the drying time is usually from 5 minutes to 30 minutes, and the drying temperature is usually from 40 ° C to 180 ° C.
- the negative electrode active material layer after applying and drying the negative electrode slurry composition on the surface of the current collector, it is preferable to subject the negative electrode active material layer to a pressure treatment using, for example, a die press or a roll press, if necessary. .
- the porosity of the negative electrode active material layer can be lowered.
- the porosity is preferably 5% or more, more preferably 7% or more, preferably 30% or less, more preferably 20% or less.
- the negative electrode active material layer contains a curable polymer
- the secondary battery of the present invention includes the negative electrode of the present invention.
- the secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the negative electrode is the negative electrode of the present invention. Since the negative electrode of the present invention is provided, the secondary battery of the present invention can suppress swelling of the negative electrode accompanying charging / discharging, or make it difficult to reduce the capacity even when stored in a high temperature environment. Moreover, normally, the high-temperature cycle characteristics and low-temperature output characteristics of the secondary battery of the present invention can be improved, and the adhesion of the negative electrode active material layer to the current collector can be improved.
- the positive electrode usually includes a current collector and a positive electrode active material layer including a positive electrode active material and a positive electrode binder formed on the surface of the current collector.
- the current collector of the positive electrode is not particularly limited as long as it is a material having electrical conductivity and electrochemical durability.
- the current collector for the positive electrode for example, the current collector used for the negative electrode of the present invention may be used. Among these, aluminum is particularly preferable.
- the positive electrode active material for example, when the secondary battery of the present invention is a lithium ion secondary battery, a material capable of inserting and removing lithium ions is used.
- Such positive electrode active materials are roughly classified into those made of inorganic compounds and those made of organic compounds.
- Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like.
- Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
- transition metal oxide examples include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 and the like can be mentioned. Among them, MnO, V 2 O 5 , V 6 O 13 and TiO 2 are preferable from the viewpoint of cycle stability and capacity.
- transition metal sulfide examples include TiS 2 , TiS 3 , amorphous MoS 2 , FeS, and the like.
- lithium-containing composite metal oxide examples include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.
- lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), lithium composite oxide of Co—Ni—Mn, Ni—Mn— Examples thereof include lithium composite oxides of Al and lithium composite oxides of Ni—Co—Al.
- lithium-containing composite metal oxide having a spinel structure examples include Li [Mn 3/2 M 1/2 ] O 4 in which lithium manganate (LiMn 2 O 4 ) or a part of Mn is substituted with another transition metal. (Where M is Cr, Fe, Co, Ni, Cu, etc.).
- lithium-containing composite metal oxide having an olivine type structure examples include Li X MPO 4 (wherein M is Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti).
- Examples of the positive electrode active material made of an organic compound include conductive polymers such as polyacetylene and poly-p-phenylene.
- the positive electrode active material which consists of a composite material which combined the inorganic compound and the organic compound.
- a composite material covered with a carbon material may be produced by reducing and firing an iron-based oxide in the presence of a carbon source material, and this composite material may be used as a positive electrode active material.
- Iron-based oxides tend to have poor electrical conductivity, but can be used as a high-performance positive electrode active material by using a composite material as described above.
- you may use as a positive electrode active material what carried out the element substitution of the said compound partially.
- a positive electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the volume average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
- the volume average particle diameter of the positive electrode active material particles is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 50 ⁇ m or less, preferably 30 ⁇ m or less.
- the content ratio of the positive electrode active material in the positive electrode active material layer is preferably 90% by weight or more, more preferably 95% by weight or more, preferably 99.9% by weight or less, more preferably 99% by weight or less.
- binder for the positive electrode examples include polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, and polyacrylonitrile derivatives.
- Resins; Soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, and vinyl soft polymers can be used.
- a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the positive electrode active material layer may contain components other than the positive electrode active material and the binder as necessary. Examples thereof include a viscosity modifier, a conductive agent, a reinforcing material, a leveling agent, an electrolytic solution additive, and the like. Moreover, these components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the thickness of the positive electrode active material layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and usually 300 ⁇ m or less, preferably 250 ⁇ m or less. When the thickness of the positive electrode active material layer is in the above range, high characteristics can be realized in both load characteristics and energy density.
- the positive electrode may be manufactured, for example, in the same manner as the above-described negative electrode.
- Electrolyte As the electrolytic solution, for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent may be used.
- the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
- LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
- One of these may be used alone, or two or more of these may be used in combination at any ratio.
- the amount of the supporting electrolyte is usually 1% by weight or more, preferably 5% by weight or more, and usually 30% by weight or less, preferably 20% by weight or less with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.
- the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
- the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide;
- dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide.
- a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- an additive may be included in the electrolytic solution as necessary.
- carbonate compounds such as vinylene carbonate (VC) are preferable.
- an additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- Examples of the electrolytic solution other than the above include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolytic solution; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; Can do.
- separator As the separator, a porous substrate having a pore portion is usually used.
- separators include (a) a porous separator having pores, (b) a porous separator having a polymer coating layer formed on one or both sides, and (c) a porous resin coat containing inorganic ceramic powder. And a porous separator having a layer formed thereon.
- these include solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
- a polymer film for a gel polymer electrolyte a separator coated with a gelled polymer coat layer; a separator coated with a porous film layer composed of an inorganic filler and an inorganic filler dispersant; and the like.
- the manufacturing method of the secondary battery of the present invention is not particularly limited.
- the above-described negative electrode and positive electrode may be overlapped via a separator, and this may be wound or folded in accordance with the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed.
- an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
- the shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
- Adhesive strength The negative electrodes produced in Examples and Comparative Examples were cut into rectangles having a length of 100 mm and a width of 10 mm to obtain test pieces. A cellophane tape was affixed on the surface of the negative electrode active material layer of the test piece with the surface of the negative electrode active material layer facing down. At this time, a cellophane tape defined in JIS Z1522 was used. Moreover, the cellophane tape was fixed to the test bench. Then, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed 3 times, the average value was calculated
- Coating property Apply the slurry composition for negative electrode manufactured in Examples and Comparative Examples on a 20 ⁇ m thick copper foil as a current collector so that the film thickness after drying is about 150 ⁇ m, and then dry. It was. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode. The obtained negative electrode was cut out with a size of 10 ⁇ 10 cm, and the number of pinholes having a diameter of 0.1 mm or more was visually measured. The smaller the number of pinholes, the better the coatability.
- Viscosity of 1% aqueous solution of water-soluble polymer A 1% aqueous solution of a water-soluble polymer was prepared from 10% aqueous ammonia and ion-exchanged water for the water-soluble polymers produced in Examples and Comparative Examples. The viscosity of this aqueous solution was measured with a B-type viscometer.
- Example 1 (Production of water-soluble polymer) In a 5 MPa pressure vessel with a stirrer, 67.5 parts of ethyl acrylate as a (meth) acrylic acid ester monomer, 30 parts of methacrylic acid as an ethylenically unsaturated carboxylic acid monomer, fluorine-containing (meth) acrylic acid ester After adding 2.5 parts of trifluoromethyl methacrylate as a body, 1.0 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 part of potassium persulfate as a polymerization initiator, The polymerization was started by heating to 60 ° C.
- the reaction was stopped by cooling to obtain an aqueous dispersion containing a binder made of styrene butadiene rubber (hereinafter referred to as “SBR” where appropriate).
- SBR styrene butadiene rubber
- a 5% aqueous sodium hydroxide solution was added to the aqueous dispersion containing the binder thus obtained to adjust the pH to 8, and then the unreacted monomer was removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the aqueous dispersion containing a desired binder.
- the weight average molecular weight of the obtained binder was measured and found to be 1500,000.
- the aqueous solution containing the water-soluble polymer was diluted with water to adjust the concentration to 5%.
- a planetary mixer with a disper 50 parts of SiOC (volume average particle diameter: 12 ⁇ m) as an anode active material and 50 parts of artificial graphite (volume average particle diameter: 24.5 ⁇ m) having a specific surface area of 4 m 2 / g and the above water-soluble
- a 1% portion of a 5% aqueous solution of a polymer was added in an amount corresponding to the solid content, adjusted to a solid content concentration of 55% with ion-exchanged water, and then mixed at 25 ° C for 60 minutes.
- the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
- a 40% aqueous dispersion of an acrylate polymer having a glass transition temperature Tg of ⁇ 40 ° C. and a number average particle size of 0.20 ⁇ m was prepared.
- the acrylate polymer is a copolymer obtained by emulsion polymerization of a monomer mixture containing 78% by weight of 2-ethylhexyl acrylate, 20% by weight of acrylonitrile, and 2% by weight of methacrylic acid.
- LiFePO 4 having a volume average particle size of 0.5 ⁇ m and having an olivine crystal structure as a positive electrode active material and a 1% aqueous solution of carboxymethyl cellulose (“BSH-12” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a dispersant 1 part at a time and a 40% aqueous dispersion of the above acrylate polymer as a binder are mixed with 5 parts at a solid content, and ion-exchanged water is added to this so that the total solid content concentration is 40%.
- the slurry composition for positive electrodes was prepared by mixing with a planetary mixer.
- the above positive electrode slurry composition was applied on a copper foil having a thickness of 20 ⁇ m as a current collector by a comma coater so that the film thickness after drying was about 200 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode.
- a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m, manufactured by a dry method, porosity 55%) was cut into a circle having a diameter of 18 mm.
- Lithium ion secondary battery An aluminum packaging exterior was prepared as the battery exterior.
- the positive electrode was placed so that the surface of the current collector was in contact with the aluminum packaging exterior.
- a separator was disposed on the surface of the positive electrode active material layer of the positive electrode.
- the negative electrode was placed on the separator so that the surface of the negative electrode active material layer faced the separator.
- Example 2 In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene which is an aliphatic conjugated diene monomer, 1.5 parts of methacrylic acid which is an ethylenically unsaturated carboxylic acid monomer, 65.5 parts of acrylonitrile, 4 parts of sodium dodecylbenzenesulfonate, 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then heated to 50 ° C. to initiate polymerization.
- NBR nitrile butadiene rubber
- Example 1 In the production of the slurry composition for the negative electrode, the same procedure as in Example 1 was used except that the aqueous dispersion containing the binder composed of the NBR was used instead of the aqueous dispersion containing the binder used in Example 1. A lithium ion secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 1.
- Example 3 In a 5 MPa pressure vessel equipped with a stirrer, 76 parts of 2-ethylhexyl acrylate as an acrylate ester, 4 parts of methacrylic acid as an ethylenically unsaturated carboxylic acid monomer, 20 parts of acrylonitrile, 4 parts of sodium dodecylbenzenesulfonate as an emulsifier, After adding 150 parts of ion exchange water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization.
- Example 1 In the production of the negative electrode slurry composition, the same procedure as in Example 1 was used, except that the aqueous dispersion containing the binder composed of the ACR was used instead of the aqueous dispersion containing the binder used in Example 1. A lithium ion secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 1.
- Example 4 In the production of the water-soluble polymer, the amount of methacrylic acid, which is an ethylenically unsaturated carboxylic acid monomer, is changed to 20 parts, and the amount of ethyl acrylate, which is a (meth) acrylic acid ester monomer, is 77.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 1.
- Example 5 In the production of the water-soluble polymer, the amount of methacrylic acid that is an ethylenically unsaturated carboxylic acid monomer is changed to 25 parts, and the amount of ethyl acrylate that is a (meth) acrylic acid ester monomer is 72.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 1.
- Example 6 In the production of the water-soluble polymer, the amount of methacrylic acid that is an ethylenically unsaturated carboxylic acid monomer is changed to 40 parts, and the amount of ethyl acrylate that is a (meth) acrylic acid ester monomer is 57.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 2.
- Example 7 In the production of the water-soluble polymer, the amount of methacrylic acid that is an ethylenically unsaturated carboxylic acid monomer is changed to 45 parts, and the amount of ethyl acrylate that is a (meth) acrylate monomer is 52.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 2.
- Example 8 In the production of the water-soluble polymer, the amount of ethyl acrylate which is a (meth) acrylate monomer is changed to 69 parts, and the amount of trifluoromethyl methacrylate which is a fluorine-containing (meth) acrylate monomer is changed.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 1 part, and each evaluation item was evaluated. The results are shown in Table 2.
- Example 9 In the production of the water-soluble polymer, the amount of ethyl acrylate which is a (meth) acrylate monomer is changed to 65 parts, and the amount of trifluoromethyl methacrylate which is a fluorine-containing (meth) acrylate monomer is changed.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 5 parts, and each evaluation item was evaluated. The results are shown in Table 2.
- Example 10 In the production of the water-soluble polymer, the amount of ethyl acrylate which is a (meth) acrylate monomer is changed to 61 parts, and the amount of trifluoromethyl methacrylate which is a fluorine-containing (meth) acrylate monomer is changed.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount was changed to 9 parts, and each evaluation item was evaluated. The results are shown in Table 2.
- Example 11 In the production of the water-soluble polymer, lithium ion dioxide was prepared in the same manner as in Example 1 except that trifluoromethyl acrylate was used instead of trifluoromethyl methacrylate as the fluorine-containing (meth) acrylic acid ester monomer. A secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 3.
- Example 12 In the production of the water-soluble polymer, lithium ion 2 was prepared in the same manner as in Example 1 except that perfluorooctyl methacrylate was used instead of trifluoromethyl methacrylate as the fluorine-containing (meth) acrylate monomer. A secondary battery was manufactured, and each evaluation item was evaluated. The results are shown in Table 3.
- Example 13 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount of the aqueous solution of the water-soluble polymer was changed to 0.7 parts corresponding to the solid content when producing the slurry composition for the negative electrode. Each evaluation item was evaluated. The results are shown in Table 3.
- Example 14 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount of the aqueous solution of the water-soluble polymer was changed to 0.5 parts corresponding to the solid content when producing the slurry composition for the negative electrode. Each evaluation item was evaluated. The results are shown in Table 3.
- Example 15 In the production of the slurry composition for the negative electrode, a lithium ion secondary battery was produced in the same manner as in Example 1 except that 100 parts of SiOC was used without using artificial graphite as the negative electrode active material. Evaluation was performed. The results are shown in Table 3. Moreover, the capacity
- Example 16 In producing the negative electrode slurry composition, a lithium ion secondary battery was produced in the same manner as in Example 1 except that 100 parts of artificial graphite was used without using SiOC as the negative electrode active material. Evaluation was performed. The results are shown in Table 4. Moreover, the capacity
- Example 17 In the production of the negative electrode slurry composition, a lithium ion secondary battery was produced in the same manner as in Example 1 except that 20 parts of SiOC and 80 parts of artificial graphite were used as the negative electrode active material. Evaluation was performed. The results are shown in Table 4.
- Example 18 In the production of the water-soluble polymer, a lithium ion secondary battery was produced in the same manner as in Example 1 except that acrylic acid was used instead of methacrylic acid as the ethylenically unsaturated carboxylic acid monomer. Each evaluation item was evaluated. The results are shown in Table 4.
- Example 19 In the production of the slurry composition for the negative electrode, instead of adding 1 part of the aqueous solution of the water-soluble polymer corresponding to the solid content, 0.5 part of the aqueous solution of the water-soluble polymer and carboxy which is a cellulose-based thickener.
- a lithium ion secondary battery was produced in the same manner as in Example 1 except that 0.5 part of methylcellulose was added in combination, and each evaluation item was evaluated. The results are shown in Table 4.
- Example 1 A lithium ion secondary battery was prepared in the same manner as in Example 1 except that 1 part of carboxymethyl cellulose was added instead of adding 1 part of an aqueous solution of a water-soluble polymer corresponding to the solid content during the production of the negative electrode slurry composition. Manufactured and evaluated each evaluation item. The results are shown in Table 5.
- the secondary battery obtained by the present invention is a secondary battery that exhibits practically excellent performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
すなわち、本発明によれば以下の〔1〕~〔10〕が提供される。
前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、二次電池用負極。
〔2〕 前記負極活物質が、リチウムを吸蔵及び放出でき、金属を含む、〔1〕記載の二次電池用負極。
〔3〕 前記負極活物質が、Siを含有する化合物である、〔1〕又は〔2〕記載の二次電池用負極。
〔4〕 前記バインダーが、脂肪族共役ジエン単量体単位を含む重合体である、〔1〕~〔3〕のいずれか一項に記載の二次電池用負極。
〔5〕 前記バインダーが、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含む重合体である、〔1〕~〔4〕のいずれか一項に記載の二次電池用負極。
〔6〕 前記水溶性重合体のエチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、〔1〕~〔5〕のいずれか一項に記載の二次電池用負極。
〔7〕 前記水溶性重合体の1重量%水溶液の粘度が、0.1mPa・s~20000mPa・sである、〔1〕~〔6〕のいずれか一項に記載の二次電池用負極。
〔8〕 正極、負極、電解液、及びセパレーターを備える二次電池であって、
前記負極が、〔1〕~〔7〕のいずれか一項に記載の二次電池用負極である、二次電池。
〔9〕 負極活物質、バインダー、水溶性重合体及び水を含む負極用スラリー組成物であって、
前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、負極用スラリー組成物。
〔10〕 〔9〕記載の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることを含む、二次電池用負極の製造方法。
本発明の二次電池は、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量を低下し難い。
本発明の負極用スラリー組成物を用いれば、本発明の二次電池用負極を製造できる。
本発明の二次電池用負極の製造方法によれば、本発明の二次電池用負極を製造できる。
本発明の二次電池用負極(以下、適宜「本発明の負極」という。)は、負極活物質、バインダー及び水溶性重合体を含む。通常、本発明の負極は、集電体と、前記集電体の表面に形成された負極活物質層とを備え、負極活物質層が前記の負極活物質、バインダー及び水溶性重合体を含む。
負極活物質は、負極用の電極活物質であり、二次電池の負極において電子の受け渡しをする物質である。
例えば本発明の二次電池がリチウムイオン二次電池である場合には、負極活物質として、通常は、リチウムを吸蔵及び放出しうる物質を用いる。このようにリチウムを吸蔵及び放出しうる物質としては、例えば、金属系活物質、炭素系活物質、及びこれらを組み合わせた活物質などが挙げられる。
炭素質材料としては、一般的には、炭素前駆体を2000℃以下で熱処理して炭素化させた、黒鉛化の低い(即ち、結晶性の低い)炭素材料である。なお、前記の熱処理の下限は特に限定されないが、例えば500℃以上としてもよい。
バインダーは、負極において電極活物質を集電体の表面に結着させる成分である。本発明の負極では、バインダーが負極活物質を結着することにより、負極活物質層から負極活物質が脱離しないようになっている。また、バインダーは通常は負極活物質層に含まれる負極活物質以外の粒子をも結着し、負極活物質層の強度を維持する役割も果たしている。
なお、脂肪族共役ジエン単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、脂肪族共役ジエン単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、芳香族ビニル単量体を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
なお、エチレン性不飽和カルボン酸単量体は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。したがって、バインダーとしての重合体は、エチレン性不飽和カルボン酸単量体単位を、1種類だけ含んでいてもよく、2種類以上を任意の比率で組み合わせて含んでいてもよい。
単量体組成物中の各単量体の比率は、通常、バインダーとしての重合体における繰り返し単位(例えば、脂肪族共役ジエン単量体単位、芳香族ビニル単量体単位、エチレン性不飽和カルボン酸単量体単位等)の比率と同様にする。
また、アミン類などの添加剤を重合助剤として用いてもよい。
本発明に係る水溶性重合体は、エチレン性不飽和カルボン酸単量体単位と、(メタ)アクリル酸エステル単量体単位と、フッ素含有(メタ)アクリル酸エステル単量体単位とを、特定の構成比率で含む。本発明の負極が水溶性重合体を含むことにより、充放電に伴う負極の膨らみを抑制でき、且つ、高温環境で保存した場合でも容量が低下し難い二次電池を実現できる。また、本発明に係る水溶性重合体を用いたことにより、本発明の二次電池は、通常、本発明の負極用スラリー組成物を集電体に塗布する際の塗工性、負極活物質層の集電体への密着性、並びに、高温サイクル特性及び低温出力特性にも優れる。
このように優れた効果を奏することができる理由は必ずしも定かではないが、本発明者の検討によれば、以下のような理由によるものと推察される。
エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸及びその誘導体、エチレン性不飽和ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸等のマレイン酸メチルアリル;マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキル等のマレイン酸エステルなどが挙げられる。これらの中でも、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸が好ましい。得られる水溶性重合体の水に対する分散性がより高めることができるからである。
フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、下記の式(I)で表される単量体が挙げられる。
前記の式(I)において、R2 は、フッ素原子を含有する炭化水素基を表す。炭化水素基の炭素数は、通常1以上であり、通常18以下である。また、R2が含有するフッ素原子の数は、1個でもよく、2個以上でもよい。
本発明の負極において、負極活物質層には、上述した負極活物質、バインダー、水溶性重合体以外に他の成分が含まれていてもよい。その成分の例を挙げると、粘度調整剤、導電剤、補強材、レベリング剤、電解液添加剤等が挙げられる。これらは、電池反応に影響を及ぼさないものであれば特に限られない。また、これらの成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
電解液添加剤の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。電解液添加剤の量を上記範囲にすることにより、サイクル特性及び高温特性に優れた二次電池を実現できる。
ナノ微粒子の量は、負極活物質の量100重量部に対して、好ましくは0.01重量部~10重量部である。ナノ微粒子が上記範囲であることにより、負極用スラリー組成物の安定性及び生産性を改善し、高い電池特性を実現できる。
本発明の負極は、上述した負極活物質、バインダー及び水溶性重合体、並びに必要に応じて用いられる他の成分を含む負極活物質層を備える。この負極活物質層は、通常、集電体の表面に設けられる。この際、負極活物質層は、集電体の少なくとも片面に設けられていればよいが、両面に設けられていることが好ましい。
集電体は、負極活物質層との接着強度を高めるため、表面に予め粗面化処理して使用することが好ましい。粗面化方法としては、例えば、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、通常、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体の表面に中間層を形成してもよい。
負極活物質層の厚みは、通常5μm以上、好ましくは30μm以上であり、通常300μm以下、好ましくは250μm以下である。負極活物質層の厚みが上記範囲にあることにより、負荷特性及びサイクル特性を良好にすることができる。
本発明の二次電池用負極の製造方法(以下、適宜「本発明の負極の製造方法」という。)は特に制限されないが、例えば、本発明の負極用スラリー組成物を用意し、その負極用スラリー組成物を集電体の表面に塗布し、乾燥させることを含む製造方法によって製造してもよい。
本発明の二次電池は、本発明の負極を備える。通常、本発明の二次電池は、正極、負極、電解液及びセパレーターを備え、前記負極が、本発明の負極となっている。
本発明の負極を備えるので、本発明の二次電池では、充放電に伴う負極の膨らみを抑制できたり、高温環境で保存した場合でも容量を低下し難くしたりできる。また、通常、本発明の二次電池の高温サイクル特性及び低温出力特性を改善したり、負極活物質層の集電体への密着性を高めたりすることもできる。
正極は、通常、集電体と、集電体の表面に形成された、正極活物質及び正極用のバインダーを含む正極活物質層とを備える。
上記の遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
遷移金属硫化物としては、例えば、TiS2、TiS3、非晶質MoS2、FeS等が挙げられる。
層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム複合酸化物、Ni-Mn-Alのリチウム複合酸化物、Ni-Co-Alのリチウム複合酸化物等が挙げられる。
スピネル構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn2O4)又はMnの一部を他の遷移金属で置換したLi[Mn3/2M1/2]O4(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。
オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、LiXMPO4(式中、Mは、Mn、Fe、Co、Ni、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、B及びMoからなる群より選ばれる少なくとも1種を表し、Xは0≦X≦2を満たす数を表す。)で表されるオリビン型燐酸リチウム化合物が挙げられる。
さらに、前記の化合物を部分的に元素置換したものを正極活物質として用いてもよい。また、上記の無機化合物と有機化合物の混合物を正極活物質として用いてもよい。
なお、正極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものを使用してもよい。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
セパレーターとしては、通常、気孔部を有する多孔性基材を用いる。セパレーターの例を挙げると、(a)気孔部を有する多孔性セパレーター、(b)片面または両面に高分子コート層が形成された多孔性セパレーター、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレーター、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレーター、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレーター;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレーター;などが挙げられる。
本発明の二次電池の製造方法は、特に限定されない。例えば、上述した負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
1.密着強度
実施例および比較例で製造した負極を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、負極活物質層の表面を下にして、負極活物質層の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは試験台に固定しておいた。その後、集電体の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、負極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
実施例および比較例で製造した負極用スラリー組成物を、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極を得た。得られた負極を10×10cmの寸法で切り出し、目視にて直径0.1mm以上のピンホールの個数を測定した。ピンホールの個数が小さいほど、塗工性に優れることを示す。
(1)高温保存特性
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、4.2Vに充電し、60℃で7日間保存した後、4.2V、0.1Cの充放電レートにて充放電の操作を行い、高温保存後の容量C1を測定した。高温保存特性は、ΔCS=C1/C0×100(%)で示す容量変化率ΔCSにて評価した。この容量変化率ΔCSの値が高いほど、高温保存特性に優れることを示す。
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、60℃の環境下で充放電を繰り返し、100サイクル後の容量C2を測定した。高温サイクル特性は、ΔCC=C2/C0×100(%)で示す容量変化率ΔCCにて評価した。この容量変化率ΔCCの値が高いほど、高温サイクル特性に優れることを示す。
前記の「(1)高温保存特性」の評価の後でリチウムイオン二次電池のセルを解体し、負極の極板の厚みd1を測定した。リチウムイオン二次電池のセルの作製前における負極の極板の厚みをd0として、負極の極板膨らみ率(d1-d0)/d0を算出した。この値が低いほど、極板膨らみ特性に優れることを示す。
実施例および比較例で製造したラミネート型セルのリチウムイオン二次電池を24時間静置させた後に、4.2V、0.1Cの充放電レートにて充放電の操作を行った。その後、-25℃の環境下で、充放電の操作を行い、放電開始10秒後の電圧V10を測定した。低温出力特性は、ΔV=4.2V-V10で示す電圧変化ΔVにて評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
実施例および比較例で製造した水溶性重合体を10%アンモニア水およびイオン交換水により、水溶性重合体の1%水溶液を調製した。この水溶液の粘度を、B型粘度計により測定した。
(水溶性重合体の製造)
攪拌機付き5MPa耐圧容器に、(メタ)アクリル酸エステル単量体としてアクリル酸エチル67.5部、エチレン性不飽和カルボン酸単量体としてメタクリル酸30部、フッ素含有(メタ)アクリル酸エステル単量体としてトリフルオロメチルメタクリレート2.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.0部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、60℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、水溶性重合体を含む水溶液を得た。こうして得られた水溶性重合体を含む水溶液に、10%アンモニア水を添加してpH8に調整し、所望の水溶性重合体を含む水溶液を得た。得られた水溶性重合体の重量平均分子量を測定したところ、128000であった。
得られた水溶性重合体を含む水溶液を用いて、上述した要領で水溶性重合体の1%水溶液を調製し、その粘度を測定した。結果を表1に示す。
攪拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体である1,3-ブタジエン33部、エチレン性不飽和カルボン酸単量体であるメタクリル酸1.5部、芳香族ビニル単量体であるスチレン65.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、スチレンブタジエンゴム(以下、適宜「SBR」という。)からなるバインダーを含む水系分散液を得た。こうして得られたバインダーを含む水系分散液に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望のバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1500000であった。
上記の水溶性重合体を含む水溶液を水で希釈して濃度を5%に調整した。
ディスパー付きのプラネタリーミキサーに、負極活物質としてSiOC(体積平均粒子径:12μm)50部及び比表面積4m2/gの人造黒鉛(体積平均粒子径:24.5μm)50部と、上記の水溶性重合体の5%水溶液を固形分相当で1部とをそれぞれ加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した後、さらに25℃で15分混合し混合液を得た。
得られた負極用スラリー組成物について、上述した要領で塗工性の評価を行った。結果を表1に示す。
上記の負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、負極活物質層の厚みが80μmの負極を得た。
得られた負極について、上述した要領で密着強度の評価を行った。結果を表1に示す。
正極用のバインダーとして、ガラス転移温度Tgが-40℃で、数平均粒子径が0.20μmのアクリレート重合体の40%水分散体を用意した。前記のアクリレート重合体は、アクリル酸2-エチルヘキシル78重量%、アクリロニトリル20重量%、及びメタクリル酸2重量%を含む単量体混合物を乳化重合して得られる共重合体である。
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、直径18mmの円形に切り抜いた。
電池の外装として、アルミ包材外装を用意した。上記の正極を、集電体の表面がアルミ包材外装に接するように配置した。正極の正極活物質層の面上に、セパレーターを配置した。さらに、セパレーター上に、上記の負極を、負極活物質層の表面がセパレーターに向かい合うよう配置した。電解液(溶媒:EC/DEC=1/2、電解質:濃度1MのLiPF6)を空気が残らないように注入し、さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。
得られた電池について、上述した要領で高温保存特性、高温サイクル特性及び極板膨らみ特性によって耐久性を評価し、更に、低温出力特性を評価した。結果を表1に示す。また、得られたリチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量(初期容量)は50mAhであった。
攪拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体である1,3-ブタジエン33部、エチレン性不飽和カルボン酸単量体であるメタクリル酸1.5部、アクリロニトリル65.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、ニトリルブタジエンゴム(以下、適宜「NBR」という。)からなるバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1380000であった。
攪拌機付き5MPa耐圧容器に、アクリル酸エステルであるアクリル酸2-エチルヘキシル76部、エチレン性不飽和カルボン酸単量体であるメタクリル酸4部、アクリロニトリル20部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、及び、重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、アクリルゴム(以下、適宜「ACR」という。)からなるバインダーを含む水系分散液を得た。得られたバインダーの重量平均分子量を測定したところ、1280000であった。
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を20部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を77.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を25部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を72.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表1に示す。
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を40部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を57.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を45部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を52.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を69部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を1部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を65部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を61部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートの量を9部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表2に示す。
水溶性重合体の製造の際、フッ素含有(メタ)アクリル酸エステル単量体として、トリフルオロメチルメタクリレートの代わりにトリフルオロメチルアクリレートを用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
水溶性重合体の製造の際、フッ素含有(メタ)アクリル酸エステル単量体として、トリフルオロメチルメタクリレートの代わりにパーフルオロオクチルメタクリレートを用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
負極用スラリー組成物の製造の際、水溶性重合体の水溶液の量を固形分相当で0.7部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
負極用スラリー組成物の製造の際、水溶性重合体の水溶液の量を固形分相当で0.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。
負極用スラリー組成物の製造の際、負極活物質として人造黒鉛を用いないでSiOCを100部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表3に示す。また、リチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量(初期容量)は70mAhであった。
負極用スラリー組成物の製造の際、負極活物質としてSiOCを用いないで人造黒鉛を100部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。また、リチウムイオン二次電池を4.2V、0.1Cの充放電レートで最初に充放電させたときの容量(初期容量)は34.8mAhであった。
負極用スラリー組成物の製造の際、負極活物質としてSiOCを20部と人造黒鉛を80部用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体として、メタクリル酸の代わりにアクリル酸を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。
負極用スラリー組成物の製造の際、水溶性重合体の水溶液を固形分相当で1部加える代わりに、水溶性重合体の水溶液を固形分で0.5部とセルロース系増粘剤であるカルボキシメチルセルロース0.5部とを組み合わせて加えたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表4に示す。
負極用スラリー組成物の製造の際、水溶性重合体の水溶液を固形分相当で1部加える代わりにカルボキシメチルセルロースを1部加えたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
水溶性重合体の製造の際、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を70部に変更し、フッ素含有(メタ)アクリル酸エステル単量体であるトリフルオロメチルメタクリレートを用いなかったこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を10部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を87.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
水溶性重合体の製造の際、エチレン性不飽和カルボン酸単量体であるメタクリル酸の量を60部に変更し、(メタ)アクリル酸エステル単量体であるアクリル酸エチルの量を37.5部に変更したこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
負極用スラリー組成物の製造の際、負極活物質としてSiOCを用いないで人造黒鉛を100部用いたこと、並びに、水溶性重合体の水溶液を固形分相当で1部加える代わりにカルボキシメチルセルロースを1部加えたこと以外は実施例1と同様にして、リチウムイオン二次電池を製造し、各評価項目の評価を行った。結果を表5に示す。
表1~表5から分かるように、実施例においては、充放電に伴う負極の膨らみを抑制でき、高温環境で保存した場合でも容量が低下し難い二次電池を実現でき、更に高温サイクル特性を向上させられるため、耐久性に優れた二次電池を実現できている。従来検討されていた二次電池では、フッ素を含む重合体を電極に含ませる場合、電極活物質の密着性向上及びレート特性の改善などを目的とすることが多かったことに鑑みれば、前記のような膨らみの抑制、並びに高温保存特性及び高温サイクル特性の向上が可能であることは、従来検討されていた効果とは異質な効果であるといえる。
したがって、本発明により得られる二次電池は、実用上優れた性能を発揮する二次電池である。
Claims (10)
- 負極活物質、バインダー及び水溶性重合体を含む二次電池用負極であって、
前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、二次電池用負極。 - 前記負極活物質が、リチウムを吸蔵及び放出でき、金属を含む、請求項1に記載の二次電池用負極。
- 前記負極活物質が、Siを含有する化合物である、請求項1又は2に記載の二次電池用負極。
- 前記バインダーが、脂肪族共役ジエン単量体単位を含む重合体である、請求項1~3のいずれか一項に記載の二次電池用負極。
- 前記バインダーが、脂肪族共役ジエン単量体単位及び芳香族ビニル単量体単位を含む重合体である、請求項1~4のいずれか一項に記載の二次電池用負極。
- 前記水溶性重合体のエチレン性不飽和カルボン酸単量体が、エチレン性不飽和モノカルボン酸単量体である、請求項1~5のいずれか一項に記載の二次電池用負極。
- 前記水溶性重合体の1重量%水溶液の粘度が、0.1mPa・s~20000mPa・sである、請求項1~6のいずれか一項に記載の二次電池用負極。
- 正極、負極、電解液、及びセパレーターを備える二次電池であって、
前記負極が、請求項1~7のいずれか一項に記載の二次電池用負極である、二次電池。 - 負極活物質、バインダー、水溶性重合体及び水を含む負極用スラリー組成物であって、
前記水溶性重合体が、エチレン性不飽和カルボン酸単量体単位15重量%~50重量%、(メタ)アクリル酸エステル単量体単位30重量%~70重量%及びフッ素含有(メタ)アクリル酸エステル単量体単位0.5重量%~10重量%を含む共重合体である、負極用スラリー組成物。 - 請求項9に記載の負極用スラリー組成物を、集電体の表面に塗布し、乾燥させることを含む、二次電池用負極の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013501067A JPWO2012115096A1 (ja) | 2011-02-23 | 2012-02-21 | 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 |
EP12749342.7A EP2680349A1 (en) | 2011-02-23 | 2012-02-21 | Secondary cell negative electrode, secondary cell, slurry composition for negative electrode, and method of producing secondary cell negative electrode |
KR1020137022065A KR20140018882A (ko) | 2011-02-23 | 2012-02-21 | 2 차 전지용 부극, 2 차 전지, 부극용 슬러리 조성물 및 2 차 전지용 부극의 제조 방법 |
CN2012800099618A CN103384932A (zh) | 2011-02-23 | 2012-02-21 | 二次电池用负极、二次电池、负极用浆料组合物及二次电池用负极的制造方法 |
US14/001,030 US20130330622A1 (en) | 2011-02-23 | 2012-02-21 | Secondary cell negative electrode, secondary cell slurry composition for negative electrode, and method of producing secondary cell negative electrode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-037644 | 2011-02-23 | ||
JP2011037644 | 2011-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012115096A1 true WO2012115096A1 (ja) | 2012-08-30 |
Family
ID=46720873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054109 WO2012115096A1 (ja) | 2011-02-23 | 2012-02-21 | 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130330622A1 (ja) |
EP (1) | EP2680349A1 (ja) |
JP (1) | JPWO2012115096A1 (ja) |
KR (1) | KR20140018882A (ja) |
CN (1) | CN103384932A (ja) |
WO (1) | WO2012115096A1 (ja) |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031690A1 (ja) * | 2011-08-30 | 2013-03-07 | 日本ゼオン株式会社 | 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池 |
WO2013086441A2 (en) | 2011-12-08 | 2013-06-13 | Sarepta Therapeutics, Inc. | Oligonucleotide analogues targeting human lmna |
JP2013131368A (ja) * | 2011-12-21 | 2013-07-04 | Toyo Kagaku Kk | 電極用バインダー |
WO2013125645A1 (ja) * | 2012-02-23 | 2013-08-29 | 日本ゼオン株式会社 | 二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池 |
WO2014024937A1 (ja) * | 2012-08-09 | 2014-02-13 | 日本ゼオン株式会社 | 二次電池用負極、二次電池、スラリー組成物、及び製造方法 |
JP2014089834A (ja) * | 2012-10-29 | 2014-05-15 | Nippon Zeon Co Ltd | リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池 |
JP2014146471A (ja) * | 2013-01-28 | 2014-08-14 | Nippon Zeon Co Ltd | 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池 |
US20140242452A1 (en) * | 2013-02-27 | 2014-08-28 | GM Global Technology Operations LLC | Lithium ion battery |
JP2014160651A (ja) * | 2013-01-28 | 2014-09-04 | Nippon Zeon Co Ltd | リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 |
WO2014148064A1 (ja) | 2013-03-22 | 2014-09-25 | 日本ゼオン株式会社 | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池 |
KR20140138057A (ko) * | 2013-05-23 | 2014-12-03 | 주식회사 엘지화학 | 이차전지용 바인더 및 이를 포함하는 이차전지 |
KR20150067016A (ko) * | 2013-12-09 | 2015-06-17 | 삼성에스디아이 주식회사 | 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지 |
JP2015201444A (ja) * | 2014-04-08 | 2015-11-12 | 奇美實業股▲分▼有限公司 | リチウムイオン電池負極用樹脂、樹脂組成物、スラリー、負極およびリチウムイオン電池 |
WO2015186363A1 (ja) * | 2014-06-04 | 2015-12-10 | 日本ゼオン株式会社 | リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池 |
JPWO2013147007A1 (ja) * | 2012-03-30 | 2015-12-14 | 日本ゼオン株式会社 | 二次電池負極用スラリー組成物 |
CN105190968A (zh) * | 2013-05-29 | 2015-12-23 | 日本瑞翁株式会社 | 电化学元件电极用粘合剂、电化学元件电极用粒子复合体、电化学元件电极、电化学元件、以及电化学元件电极的制造方法 |
JP2016181422A (ja) * | 2015-03-24 | 2016-10-13 | 日本ゼオン株式会社 | リチウムイオン二次電池シリコン系負極用バインダー組成物およびリチウムイオン二次電池シリコン系負極用スラリー組成物 |
WO2017150048A1 (ja) | 2016-03-03 | 2017-09-08 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
WO2017170281A1 (ja) | 2016-03-28 | 2017-10-05 | 日本ゼオン株式会社 | 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子 |
WO2018003636A1 (ja) | 2016-06-29 | 2018-01-04 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
WO2018096975A1 (ja) | 2016-11-24 | 2018-05-31 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 |
WO2018123624A1 (ja) | 2016-12-28 | 2018-07-05 | 日本ゼオン株式会社 | 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池 |
WO2018163969A1 (ja) | 2017-03-08 | 2018-09-13 | 日本ゼオン株式会社 | 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法 |
WO2018168420A1 (ja) | 2017-03-13 | 2018-09-20 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、非水系二次電池用負極および非水系二次電池、並びに、非水系二次電池用電極の製造方法 |
WO2018168615A1 (ja) | 2017-03-13 | 2018-09-20 | 日本ゼオン株式会社 | 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子 |
WO2018173975A1 (ja) | 2017-03-23 | 2018-09-27 | 日本ゼオン株式会社 | 非水系二次電池正極用バインダー組成物、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池 |
WO2018180101A1 (ja) | 2017-03-28 | 2018-10-04 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法 |
US20190006676A1 (en) * | 2017-06-30 | 2019-01-03 | Ppg Industries Ohio, Inc. | Slurry composition for lithium ion electrical storage devices |
WO2019044452A1 (ja) | 2017-08-29 | 2019-03-07 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 |
WO2019044166A1 (ja) | 2017-08-30 | 2019-03-07 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池 |
WO2019054173A1 (ja) | 2017-09-15 | 2019-03-21 | 日本ゼオン株式会社 | 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法 |
US10249879B2 (en) | 2014-05-14 | 2019-04-02 | Zeon Corporation | Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery |
WO2019065416A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 |
WO2019065370A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池部材、および非水系二次電池 |
WO2019065130A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 |
WO2019065471A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子 |
WO2019065909A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用電極層および二次電池 |
US10290873B2 (en) | 2014-09-05 | 2019-05-14 | Zeon Corporation | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
US10312522B2 (en) | 2015-03-27 | 2019-06-04 | Zeon Corporation | Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery |
WO2019131348A1 (ja) | 2017-12-27 | 2019-07-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池 |
WO2019131347A1 (ja) | 2017-12-27 | 2019-07-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および、非水系二次電池 |
WO2019156086A1 (ja) | 2018-02-07 | 2019-08-15 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子 |
US10388961B2 (en) | 2015-07-14 | 2019-08-20 | Zeon Corporation | Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
US10388930B2 (en) | 2014-06-26 | 2019-08-20 | Zeon Corporation | Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery |
WO2019159706A1 (ja) | 2018-02-19 | 2019-08-22 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
WO2019181744A1 (ja) | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
WO2019181660A1 (ja) | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
WO2019188722A1 (ja) | 2018-03-27 | 2019-10-03 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法 |
WO2019208419A1 (ja) | 2018-04-26 | 2019-10-31 | 日本ゼオン株式会社 | 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス |
US10468713B2 (en) | 2014-12-26 | 2019-11-05 | Zeon Corporation | Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery, and methods for producing composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019221056A1 (ja) | 2018-05-17 | 2019-11-21 | 日本ゼオン株式会社 | 非水系二次電池用スラリー、非水系二次電池用セパレータ、非水系二次電池用電極、非水系二次電池用積層体および非水系二次電池 |
WO2020004145A1 (ja) | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池 |
WO2020004332A1 (ja) | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子 |
WO2020004526A1 (ja) | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池 |
US10529989B2 (en) | 2014-08-11 | 2020-01-07 | Zeon Corporation | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
WO2020022343A1 (ja) | 2018-07-24 | 2020-01-30 | 日本ゼオン株式会社 | 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池 |
WO2020031791A1 (ja) | 2018-08-07 | 2020-02-13 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物およびその製造方法、非水系二次電池用機能層、非水系二次電池部材、並びに非水系二次電池 |
WO2020045246A1 (ja) | 2018-08-29 | 2020-03-05 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用電池部材およびその製造方法、並びに非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
US10593948B2 (en) | 2015-09-30 | 2020-03-17 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2020066857A1 (ja) | 2018-09-27 | 2020-04-02 | 日本ゼオン株式会社 | 非水系二次電池接着層用スラリーおよび接着層付き非水系二次電池用電池部材、並びに、非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
US10633473B2 (en) | 2016-05-13 | 2020-04-28 | Zeon Corporation | Binder particle aggregate for electrochemical device electrode, slurry composition for electrochemical device electrode, production methods therefor, electrode for electrochemical device, and electrochemical device |
WO2020090395A1 (ja) | 2018-10-31 | 2020-05-07 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池用セパレータ、および非水系二次電池 |
US10707532B2 (en) | 2015-10-28 | 2020-07-07 | Zeon Corporation | Composition for adhesive layer of non-aqueous secondary battery, adhesive layer for non-aqueous secondary battery, adhesive layer-equipped separator for non-aqueous secondary battery, adhesive layer-equipped electrode for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing same |
US10720647B2 (en) | 2016-01-29 | 2020-07-21 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery |
WO2020162503A1 (ja) * | 2019-02-06 | 2020-08-13 | デンカ株式会社 | 組成物、正極用スラリー及び電池 |
US10784502B2 (en) | 2015-06-08 | 2020-09-22 | Zeon Corporation | Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery |
WO2020196111A1 (ja) | 2019-03-28 | 2020-10-01 | 日本ゼオン株式会社 | 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池 |
WO2020213721A1 (ja) | 2019-04-18 | 2020-10-22 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池 |
WO2020213722A1 (ja) | 2019-04-18 | 2020-10-22 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池 |
US10910651B2 (en) | 2016-03-10 | 2021-02-02 | Zeon Corporation | Binder for non-aqueous secondary battery electrode, slurry for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2021020061A1 (ja) | 2019-07-31 | 2021-02-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池 |
JP2021022521A (ja) * | 2019-07-30 | 2021-02-18 | 株式会社大阪ソーダ | バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス |
WO2021039673A1 (ja) | 2019-08-30 | 2021-03-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池 |
WO2021039672A1 (ja) | 2019-08-30 | 2021-03-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池 |
US10964947B2 (en) | 2015-06-29 | 2021-03-30 | Zeon Corporation | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
WO2021059880A1 (ja) | 2019-09-27 | 2021-04-01 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池 |
WO2021065457A1 (ja) | 2019-09-30 | 2021-04-08 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 |
US10985375B2 (en) | 2016-09-20 | 2021-04-20 | Zeon Corporation | Slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
CN112825277A (zh) * | 2019-11-20 | 2021-05-21 | 珠海冠宇电池股份有限公司 | 一种聚合物基正温度系数热敏电阻复合材料及其制备方法和应用 |
WO2021131980A1 (ja) | 2019-12-27 | 2021-07-01 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池 |
WO2021200350A1 (ja) | 2020-03-31 | 2021-10-07 | 日本ゼオン株式会社 | 非水二次電池用バインダー組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極および非水二次電池 |
WO2022044716A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子 |
WO2022045154A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2022045267A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子 |
WO2022044871A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2022045266A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子 |
US11283066B2 (en) * | 2014-03-12 | 2022-03-22 | Sanyo Chemical Industries, Ltd. | Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery |
WO2022113704A1 (ja) | 2020-11-30 | 2022-06-02 | 日本ゼオン株式会社 | 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池 |
WO2022113860A1 (ja) | 2020-11-30 | 2022-06-02 | 日本ゼオン株式会社 | 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池 |
US11387457B2 (en) | 2015-09-30 | 2022-07-12 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2022168591A1 (ja) | 2021-02-03 | 2022-08-11 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、非水系二次電池用耐熱層付きセパレータ、および非水系二次電池 |
US11462737B2 (en) | 2015-09-30 | 2022-10-04 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2022209997A1 (ja) | 2021-03-30 | 2022-10-06 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池 |
WO2022230621A1 (ja) | 2021-04-28 | 2022-11-03 | 日本ゼオン株式会社 | 非水系二次電池用積層体、接着用組成物及び非水系二次電池 |
WO2022230908A1 (ja) | 2021-04-28 | 2022-11-03 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池 |
WO2023276709A1 (ja) | 2021-06-30 | 2023-01-05 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2023276788A1 (ja) | 2021-06-30 | 2023-01-05 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2023008165A1 (ja) | 2021-07-30 | 2023-02-02 | 日本ゼオン株式会社 | 非水系二次電池用積層体、非水系二次電池用積層体の製造方法及び非水系二次電池 |
WO2023032717A1 (ja) | 2021-08-31 | 2023-03-09 | 日本ゼオン株式会社 | 電気化学素子正極用バインダー組成物、電気化学素子正極用導電材分散液、電気化学素子正極用スラリー組成物、電気化学素子用正極および電気化学素子 |
WO2023032718A1 (ja) | 2021-08-31 | 2023-03-09 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用積層体及びその製造方法、並びに、非水系二次電池 |
WO2023074356A1 (ja) | 2021-10-29 | 2023-05-04 | 日本ゼオン株式会社 | 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池 |
WO2023074502A1 (ja) | 2021-10-28 | 2023-05-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池 |
WO2023162609A1 (ja) | 2022-02-28 | 2023-08-31 | 日本ゼオン株式会社 | 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池 |
WO2023162835A1 (ja) | 2022-02-28 | 2023-08-31 | 日本ゼオン株式会社 | 電気化学素子用組成物及びその製造方法、電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極並びに電気化学素子 |
US11784313B2 (en) | 2015-09-30 | 2023-10-10 | Zeon Corporation | Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoating layer-equipped current collector for secondary battery electrode, electrode for secondary battery, and secondary battery |
US11831018B2 (en) | 2016-06-29 | 2023-11-28 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US11870075B2 (en) | 2016-02-17 | 2024-01-09 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10090527B2 (en) * | 2013-03-15 | 2018-10-02 | Zeon Corporation | Binder composition for secondary battery, slurry composition for secondary battery, negative electrode for secondary battery, and secondary battery |
CN105103340B (zh) * | 2013-03-26 | 2018-04-03 | 日产自动车株式会社 | 非水电解质二次电池 |
CN105830257B (zh) * | 2013-12-26 | 2018-09-14 | 日本瑞翁株式会社 | 锂离子二次电池负极用浆料组合物、锂离子二次电池用负极及锂离子二次电池 |
CN105794028B (zh) * | 2013-12-26 | 2018-12-18 | 日本瑞翁株式会社 | 锂离子二次电池负极用粘合剂组合物、负极用浆料组合物、负极以及锂离子二次电池 |
WO2015146649A1 (ja) * | 2014-03-24 | 2015-10-01 | 昭和電工株式会社 | リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法 |
KR20160061167A (ko) * | 2014-11-21 | 2016-05-31 | 삼성에스디아이 주식회사 | 무기물층이 코팅된 전극, 그 제조 방법 및 이를 구비한 이차 전지 |
JP6465323B2 (ja) * | 2015-04-22 | 2019-02-06 | 東亞合成株式会社 | 非水電解質二次電池電極用バインダー及びその用途 |
KR101833615B1 (ko) * | 2015-04-29 | 2018-02-28 | 주식회사 엘지화학 | 음극 활물질 및 이를 포함하는 음극 |
KR101698745B1 (ko) * | 2015-08-03 | 2017-01-23 | 주식회사 한솔케미칼 | 리튬 이온 이차전지 음극용 코어-쉘 구조의 바인더 및 이의 제조방법, 및 상기 바인더를 포함하는 슬러리 |
HUE061953T2 (hu) * | 2015-11-30 | 2023-09-28 | Zeon Corp | Készítmény nemvizes másodlagos akkumulátor ragasztóréteghez, nemvizes másodlagos akkumulátor ragasztóréteg és nemvizes másodlagos akkumulátor |
CN106129330B (zh) * | 2016-08-29 | 2019-08-20 | 深圳市沃特玛电池有限公司 | 一种磷酸铁锂电池正极片及其制备方法、磷酸铁锂电池 |
CN110402510B (zh) * | 2017-03-24 | 2022-07-08 | 日本瑞翁株式会社 | 非水系二次电池用粘结剂组合物和非水系二次电池用浆料组合物 |
JP7160796B2 (ja) * | 2017-04-21 | 2022-10-25 | 三洋化成工業株式会社 | リチウムイオン電極用粘着剤、リチウムイオン電池用電極及びリチウムイオン電池用電極の製造方法 |
KR102335525B1 (ko) | 2017-05-18 | 2021-12-03 | 현대자동차주식회사 | 이종 바인더 적용 수소연료전지용 전극막 접합체의 제조방법, 및 이로 제조된 전극막 접합체 |
CN110870103B (zh) * | 2017-07-28 | 2022-12-16 | 日本瑞翁株式会社 | 电化学元件用电极及电化学元件、以及电化学元件用电极的制造方法 |
US11777147B2 (en) | 2017-11-01 | 2023-10-03 | Nec Corporation | Lithium ion secondary battery |
US20190214631A1 (en) | 2018-03-22 | 2019-07-11 | Fmc Lithium Usa Corp. | Methods of applying printable lithium compositions for forming battery electrodes |
US11469407B2 (en) | 2018-12-20 | 2022-10-11 | Ppg Industries Ohio, Inc. | Battery electrode coatings applied by waterborne electrodeposition |
WO2020203042A1 (ja) * | 2019-03-29 | 2020-10-08 | Jsr株式会社 | 全固体二次電池用バインダー、全固体二次電池用バインダー組成物、全固体二次電池用スラリー、全固体二次電池用固体電解質シート及びその製造方法、並びに全固体二次電池及びその製造方法 |
US11699791B2 (en) * | 2019-08-16 | 2023-07-11 | Sk On Co., Ltd. | Binder for secondary battery and secondary battery including the same |
CN110931793B (zh) * | 2019-11-21 | 2022-06-14 | 合肥国轩高科动力能源有限公司 | 一种负极粘结剂及含有该粘结剂的硅基负极片的制备方法 |
JP7216344B2 (ja) * | 2020-01-31 | 2023-02-01 | 東洋インキScホールディングス株式会社 | 分散剤、導電材分散体、及び電極膜用スラリー |
US11482696B2 (en) | 2020-02-26 | 2022-10-25 | Ppg Industries Ohio, Inc. | Method of coating an electrical current collector and electrodes resulting therefrom |
CN116018362A (zh) * | 2020-09-30 | 2023-04-25 | 富士胶片和光纯药株式会社 | 二次电池用粘合剂组合物、电极用组合物、电极片及二次电池以及这些电极片及二次电池的制造方法 |
US11824196B2 (en) * | 2020-10-14 | 2023-11-21 | Samsung Sdi Co., Ltd. | Negative electrode slurry, negative electrode, and rechargeable battery |
CN112919533A (zh) * | 2021-01-14 | 2021-06-08 | 华南理工大学 | 一种氮掺杂碳包覆的磷掺杂二氧化钛材料及其制备方法与应用 |
FR3138659A1 (fr) * | 2022-08-03 | 2024-02-09 | Coatex | Composition d’anode au liant anionique |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042819A (ja) | 2000-07-31 | 2002-02-08 | Nippon Zeon Co Ltd | 二次電池電極用バインダー、二次電池電極および二次電池 |
JP2002231251A (ja) * | 2001-02-06 | 2002-08-16 | Nippon Zeon Co Ltd | リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池 |
JP2003217573A (ja) | 2002-01-22 | 2003-07-31 | Hitachi Powdered Metals Co Ltd | 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法 |
JP2003308841A (ja) | 2002-04-16 | 2003-10-31 | Hitachi Powdered Metals Co Ltd | 非水系二次電池の負極塗膜形成用スラリー |
JP2006040800A (ja) * | 2004-07-29 | 2006-02-09 | Hitachi Chem Co Ltd | リチウム電池電極用バインダ樹脂溶液及びこの溶液と活物質から製造される電極および電池 |
WO2007125924A1 (ja) * | 2006-04-26 | 2007-11-08 | Mitsui Chemicals, Inc. | 電気化学セル電極用バインダー |
WO2008120786A1 (ja) * | 2007-03-30 | 2008-10-09 | Zeon Corporation | 二次電池電極用バインダー、二次電池電極および二次電池 |
JP2010146870A (ja) | 2008-12-19 | 2010-07-01 | Nippon A&L Inc | 二次電池電極用バインダー |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW519777B (en) * | 1999-10-18 | 2003-02-01 | Zeon Corp | The binder composition for the secondary battery electrode of lithium ion and its utilization |
JP4636444B2 (ja) * | 2004-09-22 | 2011-02-23 | 日立化成工業株式会社 | 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス |
TW201043672A (en) * | 2009-03-30 | 2010-12-16 | Jsr Corp | Composition for electrochemical-device electrode binder, electrode slurry for electrochemical device, and electrode for electrochemical device |
-
2012
- 2012-02-21 EP EP12749342.7A patent/EP2680349A1/en not_active Withdrawn
- 2012-02-21 CN CN2012800099618A patent/CN103384932A/zh active Pending
- 2012-02-21 WO PCT/JP2012/054109 patent/WO2012115096A1/ja active Application Filing
- 2012-02-21 JP JP2013501067A patent/JPWO2012115096A1/ja active Pending
- 2012-02-21 KR KR1020137022065A patent/KR20140018882A/ko not_active Application Discontinuation
- 2012-02-21 US US14/001,030 patent/US20130330622A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002042819A (ja) | 2000-07-31 | 2002-02-08 | Nippon Zeon Co Ltd | 二次電池電極用バインダー、二次電池電極および二次電池 |
JP2002231251A (ja) * | 2001-02-06 | 2002-08-16 | Nippon Zeon Co Ltd | リチウムイオン二次電池電極用バインダー組成物およびリチウムイオン二次電池 |
JP2003217573A (ja) | 2002-01-22 | 2003-07-31 | Hitachi Powdered Metals Co Ltd | 非水系二次電池の負極塗膜形成用スラリーおよび該スラリーの調整方法 |
JP2003308841A (ja) | 2002-04-16 | 2003-10-31 | Hitachi Powdered Metals Co Ltd | 非水系二次電池の負極塗膜形成用スラリー |
JP2006040800A (ja) * | 2004-07-29 | 2006-02-09 | Hitachi Chem Co Ltd | リチウム電池電極用バインダ樹脂溶液及びこの溶液と活物質から製造される電極および電池 |
WO2007125924A1 (ja) * | 2006-04-26 | 2007-11-08 | Mitsui Chemicals, Inc. | 電気化学セル電極用バインダー |
WO2008120786A1 (ja) * | 2007-03-30 | 2008-10-09 | Zeon Corporation | 二次電池電極用バインダー、二次電池電極および二次電池 |
JP2010146870A (ja) | 2008-12-19 | 2010-07-01 | Nippon A&L Inc | 二次電池電極用バインダー |
Non-Patent Citations (1)
Title |
---|
"Jikken Kagaku Kouza (Course of Experimental Chemistry", vol. 28, MARUZEN PUBLISHING CO., LTD. |
Cited By (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031690A1 (ja) * | 2011-08-30 | 2013-03-07 | 日本ゼオン株式会社 | 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池 |
US10224549B2 (en) | 2011-08-30 | 2019-03-05 | Zeon Corporation | Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery |
JPWO2013031690A1 (ja) * | 2011-08-30 | 2015-03-23 | 日本ゼオン株式会社 | 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池 |
WO2013086441A2 (en) | 2011-12-08 | 2013-06-13 | Sarepta Therapeutics, Inc. | Oligonucleotide analogues targeting human lmna |
WO2013086444A2 (en) | 2011-12-08 | 2013-06-13 | Sarepta Therapeutics, Inc. | Methods for treating progeroid laminopathies using oligonucleotide analogues targeting human lmna |
JP2013131368A (ja) * | 2011-12-21 | 2013-07-04 | Toyo Kagaku Kk | 電極用バインダー |
WO2013125645A1 (ja) * | 2012-02-23 | 2013-08-29 | 日本ゼオン株式会社 | 二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池 |
JPWO2013125645A1 (ja) * | 2012-02-23 | 2015-07-30 | 日本ゼオン株式会社 | 二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池 |
JPWO2013147007A1 (ja) * | 2012-03-30 | 2015-12-14 | 日本ゼオン株式会社 | 二次電池負極用スラリー組成物 |
WO2014024937A1 (ja) * | 2012-08-09 | 2014-02-13 | 日本ゼオン株式会社 | 二次電池用負極、二次電池、スラリー組成物、及び製造方法 |
JP2014089834A (ja) * | 2012-10-29 | 2014-05-15 | Nippon Zeon Co Ltd | リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池 |
JP2014160651A (ja) * | 2013-01-28 | 2014-09-04 | Nippon Zeon Co Ltd | リチウムイオン二次電池用バインダー組成物、その製造方法、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池 |
JP2014146471A (ja) * | 2013-01-28 | 2014-08-14 | Nippon Zeon Co Ltd | 二次電池負極用スラリー組成物、その製造方法、二次電池用負極、及び二次電池 |
US20140242452A1 (en) * | 2013-02-27 | 2014-08-28 | GM Global Technology Operations LLC | Lithium ion battery |
WO2014148064A1 (ja) | 2013-03-22 | 2014-09-25 | 日本ゼオン株式会社 | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池 |
CN104981927A (zh) * | 2013-05-23 | 2015-10-14 | Lg化学株式会社 | 用于二次电池的粘合剂以及包含该粘合剂的二次电池 |
KR101597745B1 (ko) * | 2013-05-23 | 2016-02-25 | 주식회사 엘지화학 | 이차전지용 바인더 및 이를 포함하는 이차전지 |
US10044041B2 (en) | 2013-05-23 | 2018-08-07 | Lg Chem, Ltd. | Binder for secondary batteries and secondary battery including the same |
KR20140138057A (ko) * | 2013-05-23 | 2014-12-03 | 주식회사 엘지화학 | 이차전지용 바인더 및 이를 포함하는 이차전지 |
CN105190968A (zh) * | 2013-05-29 | 2015-12-23 | 日本瑞翁株式会社 | 电化学元件电极用粘合剂、电化学元件电极用粒子复合体、电化学元件电极、电化学元件、以及电化学元件电极的制造方法 |
KR20150067016A (ko) * | 2013-12-09 | 2015-06-17 | 삼성에스디아이 주식회사 | 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지 |
KR102317780B1 (ko) | 2013-12-09 | 2021-10-25 | 삼성에스디아이 주식회사 | 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지 |
JP2015115109A (ja) * | 2013-12-09 | 2015-06-22 | 三星エスディアイ株式会社Samsung SDI Co.,Ltd. | リチウムイオン(lithiumion)二次電池負極用水系スラリー(slurry)、リチウムイオン二次電池用負極活物質層、及びリチウムイオン二次電池 |
KR20210131934A (ko) * | 2013-12-09 | 2021-11-03 | 삼성에스디아이 주식회사 | 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지 |
KR102425511B1 (ko) | 2013-12-09 | 2022-07-26 | 삼성에스디아이 주식회사 | 리튬이온 이차전지용 음극 수계 슬러리, 이를 포함하는 음극 활물질층 및 리튬이온 이차전지 |
US11283066B2 (en) * | 2014-03-12 | 2022-03-22 | Sanyo Chemical Industries, Ltd. | Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery |
US9520596B2 (en) | 2014-04-08 | 2016-12-13 | Chi Mei Corporation | Resin for negative electrode of lithium ion battery, resin composition, slurry, negative electrode, and lithium ion battery |
JP2015201444A (ja) * | 2014-04-08 | 2015-11-12 | 奇美實業股▲分▼有限公司 | リチウムイオン電池負極用樹脂、樹脂組成物、スラリー、負極およびリチウムイオン電池 |
US10249879B2 (en) | 2014-05-14 | 2019-04-02 | Zeon Corporation | Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery |
WO2015186363A1 (ja) * | 2014-06-04 | 2015-12-10 | 日本ゼオン株式会社 | リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池 |
US11552297B2 (en) | 2014-06-04 | 2023-01-10 | Zeon Corporation | Binder composition for lithium ion secondary battery electrode-use, slurry composition for lithium ion secondary battery electrode-use, electrode for lithium ion secondary battery-use, and lithium ion secondary battery |
US10388930B2 (en) | 2014-06-26 | 2019-08-20 | Zeon Corporation | Laminate for non-aqueous secondary battery, method of manufacturing the same, and non-aqueous secondary battery |
US10529989B2 (en) | 2014-08-11 | 2020-01-07 | Zeon Corporation | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
US10290873B2 (en) | 2014-09-05 | 2019-05-14 | Zeon Corporation | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
US10468713B2 (en) | 2014-12-26 | 2019-11-05 | Zeon Corporation | Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery, and methods for producing composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
EP3800714A1 (en) | 2014-12-26 | 2021-04-07 | Zeon Corporation | Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery, and methods for producing composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
JP2016181422A (ja) * | 2015-03-24 | 2016-10-13 | 日本ゼオン株式会社 | リチウムイオン二次電池シリコン系負極用バインダー組成物およびリチウムイオン二次電池シリコン系負極用スラリー組成物 |
US10312522B2 (en) | 2015-03-27 | 2019-06-04 | Zeon Corporation | Binder composition for lithium ion secondary battery positive electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery and lithium ion secondary battery |
US10784502B2 (en) | 2015-06-08 | 2020-09-22 | Zeon Corporation | Slurry composition for secondary battery negative electrode, negative electrode for secondary battery, and secondary battery |
US10964947B2 (en) | 2015-06-29 | 2021-03-30 | Zeon Corporation | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
EP3920285A1 (en) | 2015-07-14 | 2021-12-08 | Zeon Corporation | Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
US10388961B2 (en) | 2015-07-14 | 2019-08-20 | Zeon Corporation | Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery |
US11784313B2 (en) | 2015-09-30 | 2023-10-10 | Zeon Corporation | Conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, undercoating layer-equipped current collector for secondary battery electrode, electrode for secondary battery, and secondary battery |
US10593948B2 (en) | 2015-09-30 | 2020-03-17 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US11462737B2 (en) | 2015-09-30 | 2022-10-04 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US11387457B2 (en) | 2015-09-30 | 2022-07-12 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US10707532B2 (en) | 2015-10-28 | 2020-07-07 | Zeon Corporation | Composition for adhesive layer of non-aqueous secondary battery, adhesive layer for non-aqueous secondary battery, adhesive layer-equipped separator for non-aqueous secondary battery, adhesive layer-equipped electrode for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing same |
US10720647B2 (en) | 2016-01-29 | 2020-07-21 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery |
US11870075B2 (en) | 2016-02-17 | 2024-01-09 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US11145864B2 (en) | 2016-03-03 | 2021-10-12 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2017150048A1 (ja) | 2016-03-03 | 2017-09-08 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
US10910651B2 (en) | 2016-03-10 | 2021-02-02 | Zeon Corporation | Binder for non-aqueous secondary battery electrode, slurry for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US11046797B2 (en) | 2016-03-28 | 2021-06-29 | Zeon Corporation | Binder composition for electrochemical device electrode, slurry composition for electrochemical device electrode, electrochemical device electrode, and electrochemical device |
WO2017170281A1 (ja) | 2016-03-28 | 2017-10-05 | 日本ゼオン株式会社 | 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子 |
US10633473B2 (en) | 2016-05-13 | 2020-04-28 | Zeon Corporation | Binder particle aggregate for electrochemical device electrode, slurry composition for electrochemical device electrode, production methods therefor, electrode for electrochemical device, and electrochemical device |
WO2018003636A1 (ja) | 2016-06-29 | 2018-01-04 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
US11831018B2 (en) | 2016-06-29 | 2023-11-28 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US10985375B2 (en) | 2016-09-20 | 2021-04-20 | Zeon Corporation | Slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2018096975A1 (ja) | 2016-11-24 | 2018-05-31 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 |
US11011794B2 (en) | 2016-11-24 | 2021-05-18 | Zeon Corporation | Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2018123624A1 (ja) | 2016-12-28 | 2018-07-05 | 日本ゼオン株式会社 | 非水系二次電池負極用スラリー組成物及びその製造方法、非水系二次電池用負極、並びに非水系二次電池 |
US11462738B2 (en) | 2016-12-28 | 2022-10-04 | Zeon Corporation | Slurry composition including lithium titanium oxide and nitrile butadiene rubber and method of producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2018163969A1 (ja) | 2017-03-08 | 2018-09-13 | 日本ゼオン株式会社 | 非水系二次電池機能層用バインダー組成物、非水系二次電池機能層用スラリー組成物、非水系二次電池用機能層、非水系二次電池用機能層付きセパレータ、非水系二次電池およびその製造方法 |
WO2018168420A1 (ja) | 2017-03-13 | 2018-09-20 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、非水系二次電池用負極および非水系二次電池、並びに、非水系二次電池用電極の製造方法 |
WO2018168615A1 (ja) | 2017-03-13 | 2018-09-20 | 日本ゼオン株式会社 | 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子 |
US11802171B2 (en) | 2017-03-13 | 2023-10-31 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, non-aqueous secondary battery, and method of producing electrode for non-aqueous secondary battery |
WO2018173975A1 (ja) | 2017-03-23 | 2018-09-27 | 日本ゼオン株式会社 | 非水系二次電池正極用バインダー組成物、非水系二次電池正極用組成物、非水系二次電池用正極および非水系二次電池 |
US11742487B2 (en) | 2017-03-23 | 2023-08-29 | Zeon Corporation | Binder composition for non-aqueous secondary battery positive electrode, composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US11469420B2 (en) | 2017-03-28 | 2022-10-11 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, non-aqueous secondary battery electrode, non-aqueous secondary battery, and method of producing non-aqueous secondary battery electrode |
WO2018180101A1 (ja) | 2017-03-28 | 2018-10-04 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池、並びに、非水系二次電池用電極の製造方法 |
US11374223B2 (en) * | 2017-06-30 | 2022-06-28 | Ppg Industries Ohio, Inc. | Slurry composition including binder containing reaction product of epoxy functional polymer and acid functional polymer for lithium ion electrical storage devices |
US20190006676A1 (en) * | 2017-06-30 | 2019-01-03 | Ppg Industries Ohio, Inc. | Slurry composition for lithium ion electrical storage devices |
US11245115B2 (en) | 2017-08-29 | 2022-02-08 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019044452A1 (ja) | 2017-08-29 | 2019-03-07 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池 |
US11873363B2 (en) | 2017-08-30 | 2024-01-16 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019044166A1 (ja) | 2017-08-30 | 2019-03-07 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池 |
WO2019054173A1 (ja) | 2017-09-15 | 2019-03-21 | 日本ゼオン株式会社 | 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法 |
US11462727B2 (en) | 2017-09-28 | 2022-10-04 | Zeon Corporation | Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery component, and non-aqueous secondary battery |
WO2019065130A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 |
US11710821B2 (en) | 2017-09-28 | 2023-07-25 | Zeon Corporation | Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019065909A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用電極層および二次電池 |
US11978903B2 (en) | 2017-09-28 | 2024-05-07 | Zeon Corporation | Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery |
WO2019065416A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池 |
WO2019065370A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池部材、および非水系二次電池 |
WO2019065471A1 (ja) | 2017-09-28 | 2019-04-04 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子 |
WO2019131348A1 (ja) | 2017-12-27 | 2019-07-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池 |
US11637327B2 (en) | 2017-12-27 | 2023-04-25 | Zeon Corporation | Composition for non-aqueous secondary battery functional layer, battery component for non-aqueous secondary battery, method of producing laminate for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019131347A1 (ja) | 2017-12-27 | 2019-07-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および、非水系二次電池 |
US12095090B2 (en) | 2018-02-07 | 2024-09-17 | Zeon Corporation | Binder composition for electrochemical device, slurry composition for electrochemical device, functional layer for electrochemical device, and electrochemical device |
WO2019156086A1 (ja) | 2018-02-07 | 2019-08-15 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子 |
WO2019159706A1 (ja) | 2018-02-19 | 2019-08-22 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
US11996562B2 (en) | 2018-02-19 | 2024-05-28 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019181744A1 (ja) | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
WO2019181660A1 (ja) | 2018-03-23 | 2019-09-26 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池 |
US11673984B2 (en) | 2018-03-23 | 2023-06-13 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2019188722A1 (ja) | 2018-03-27 | 2019-10-03 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法 |
JP7400713B2 (ja) | 2018-03-27 | 2023-12-19 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法 |
JPWO2019188722A1 (ja) * | 2018-03-27 | 2021-03-18 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池機能層用スラリー組成物、二次電池部材、二次電池、および二次電池負極用スラリー組成物の製造方法 |
WO2019208419A1 (ja) | 2018-04-26 | 2019-10-31 | 日本ゼオン株式会社 | 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー組成物、蓄電デバイス用電極、および蓄電デバイス |
US11362334B2 (en) | 2018-04-26 | 2022-06-14 | Zeon Corporation | Binder composition for electrical storage device, slurry composition for electrical storage device electrode, electrode for electrical storage device, and electrical storage device |
WO2019221056A1 (ja) | 2018-05-17 | 2019-11-21 | 日本ゼオン株式会社 | 非水系二次電池用スラリー、非水系二次電池用セパレータ、非水系二次電池用電極、非水系二次電池用積層体および非水系二次電池 |
WO2020004526A1 (ja) | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池 |
WO2020004332A1 (ja) | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子 |
WO2020004145A1 (ja) | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池 |
US11976147B2 (en) | 2018-06-29 | 2024-05-07 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method of producing same, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
US11929507B2 (en) | 2018-06-29 | 2024-03-12 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode and method of producing same, electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2020022343A1 (ja) | 2018-07-24 | 2020-01-30 | 日本ゼオン株式会社 | 非水系二次電池用スラリーおよびその製造方法、非水系二次電池用電池部材およびその製造方法、並びに、非水系二次電池 |
US11569489B2 (en) | 2018-07-24 | 2023-01-31 | Zeon Corporation | Slurry for non-aqueous secondary battery and method of producing same, battery member for non-aqueous secondary battery and method of producing same, and non-aqueous secondary battery |
US12095113B2 (en) | 2018-08-07 | 2024-09-17 | Zeon Corporation | Composition for non-aqueous secondary battery functional layer and method of producing same, functional layer for non-aqueous secondary battery, non- aqueous secondary battery member, and non-aqueous secondary battery |
WO2020031791A1 (ja) | 2018-08-07 | 2020-02-13 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物およびその製造方法、非水系二次電池用機能層、非水系二次電池部材、並びに非水系二次電池 |
WO2020045246A1 (ja) | 2018-08-29 | 2020-03-05 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用電池部材およびその製造方法、並びに非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
US11811087B2 (en) | 2018-08-29 | 2023-11-07 | Zeon Corporation | Composition for non-aqueous secondary battery adhesive layer, battery member for non-aqueous secondary battery and method of producing same, method of producing laminate for non-aqueous secondary battery, and method of producing non-aqueous secondary battery |
WO2020066857A1 (ja) | 2018-09-27 | 2020-04-02 | 日本ゼオン株式会社 | 非水系二次電池接着層用スラリーおよび接着層付き非水系二次電池用電池部材、並びに、非水系二次電池用積層体の製造方法および非水系二次電池の製造方法 |
WO2020090395A1 (ja) | 2018-10-31 | 2020-05-07 | 日本ゼオン株式会社 | 非水系二次電池機能層用組成物、非水系二次電池用機能層、非水系二次電池用セパレータ、および非水系二次電池 |
WO2020162503A1 (ja) * | 2019-02-06 | 2020-08-13 | デンカ株式会社 | 組成物、正極用スラリー及び電池 |
WO2020196111A1 (ja) | 2019-03-28 | 2020-10-01 | 日本ゼオン株式会社 | 非水系二次電池負極用スラリー組成物、非水系二次電池用負極および非水系二次電池 |
WO2020213721A1 (ja) | 2019-04-18 | 2020-10-22 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池 |
US12100840B2 (en) | 2019-04-18 | 2024-09-24 | Zeon Corporation | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
WO2020213722A1 (ja) | 2019-04-18 | 2020-10-22 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池 |
JP7325707B2 (ja) | 2019-07-30 | 2023-08-15 | 株式会社大阪ソーダ | バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス |
JP2021022521A (ja) * | 2019-07-30 | 2021-02-18 | 株式会社大阪ソーダ | バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス |
WO2021020061A1 (ja) | 2019-07-31 | 2021-02-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池 |
WO2021039673A1 (ja) | 2019-08-30 | 2021-03-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池 |
WO2021039672A1 (ja) | 2019-08-30 | 2021-03-04 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用バインダー組成物、非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、及び非水系二次電池 |
WO2021059880A1 (ja) | 2019-09-27 | 2021-04-01 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、および非水系二次電池 |
WO2021065457A1 (ja) | 2019-09-30 | 2021-04-08 | 日本ゼオン株式会社 | 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池 |
CN112825277A (zh) * | 2019-11-20 | 2021-05-21 | 珠海冠宇电池股份有限公司 | 一种聚合物基正温度系数热敏电阻复合材料及其制备方法和应用 |
CN112825277B (zh) * | 2019-11-20 | 2023-02-03 | 珠海冠宇电池股份有限公司 | 一种聚合物基正温度系数热敏电阻复合材料及其制备方法和应用 |
WO2021131980A1 (ja) | 2019-12-27 | 2021-07-01 | 日本ゼオン株式会社 | 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池 |
WO2021200350A1 (ja) | 2020-03-31 | 2021-10-07 | 日本ゼオン株式会社 | 非水二次電池用バインダー組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極および非水二次電池 |
WO2022045267A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子 |
WO2022045154A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2022044871A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2022044716A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物、電気化学素子用電極および電気化学素子 |
WO2022045266A1 (ja) | 2020-08-31 | 2022-03-03 | 日本ゼオン株式会社 | 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー組成物及びその製造方法、電気化学素子用電極、並びに電気化学素子 |
WO2022113704A1 (ja) | 2020-11-30 | 2022-06-02 | 日本ゼオン株式会社 | 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池 |
WO2022113860A1 (ja) | 2020-11-30 | 2022-06-02 | 日本ゼオン株式会社 | 非水系リチウムイオン二次電池電極用バインダー組成物及びその製造方法、非水系リチウムイオン二次電池電極用バインダー溶液、非水系リチウムイオン二次電池電極用スラリー組成物、非水系リチウムイオン二次電池用電極、並びに非水系リチウムイオン二次電池 |
WO2022168591A1 (ja) | 2021-02-03 | 2022-08-11 | 日本ゼオン株式会社 | 非水系二次電池耐熱層用スラリー組成物、非水系二次電池用耐熱層、非水系二次電池用耐熱層付きセパレータ、および非水系二次電池 |
WO2022209997A1 (ja) | 2021-03-30 | 2022-10-06 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池 |
WO2022230908A1 (ja) | 2021-04-28 | 2022-11-03 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池 |
WO2022230621A1 (ja) | 2021-04-28 | 2022-11-03 | 日本ゼオン株式会社 | 非水系二次電池用積層体、接着用組成物及び非水系二次電池 |
WO2023276709A1 (ja) | 2021-06-30 | 2023-01-05 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2023276788A1 (ja) | 2021-06-30 | 2023-01-05 | 日本ゼオン株式会社 | 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子 |
WO2023008165A1 (ja) | 2021-07-30 | 2023-02-02 | 日本ゼオン株式会社 | 非水系二次電池用積層体、非水系二次電池用積層体の製造方法及び非水系二次電池 |
WO2023032718A1 (ja) | 2021-08-31 | 2023-03-09 | 日本ゼオン株式会社 | 非水系二次電池接着層用組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用積層体及びその製造方法、並びに、非水系二次電池 |
WO2023032717A1 (ja) | 2021-08-31 | 2023-03-09 | 日本ゼオン株式会社 | 電気化学素子正極用バインダー組成物、電気化学素子正極用導電材分散液、電気化学素子正極用スラリー組成物、電気化学素子用正極および電気化学素子 |
WO2023074502A1 (ja) | 2021-10-28 | 2023-05-04 | 日本ゼオン株式会社 | 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータ及び非水系二次電池 |
WO2023074356A1 (ja) | 2021-10-29 | 2023-05-04 | 日本ゼオン株式会社 | 非水系二次電池負極用バインダー組成物、非水系二次電池負極用スラリー組成物、非水系二次電池用負極、及び非水系二次電池 |
WO2023162835A1 (ja) | 2022-02-28 | 2023-08-31 | 日本ゼオン株式会社 | 電気化学素子用組成物及びその製造方法、電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極並びに電気化学素子 |
WO2023162609A1 (ja) | 2022-02-28 | 2023-08-31 | 日本ゼオン株式会社 | 非水系二次電池正極用バインダー組成物、非水系二次電池正極用導電材分散液、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、及び非水系二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN103384932A (zh) | 2013-11-06 |
US20130330622A1 (en) | 2013-12-12 |
EP2680349A1 (en) | 2014-01-01 |
JPWO2012115096A1 (ja) | 2014-07-07 |
KR20140018882A (ko) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5900354B2 (ja) | 二次電池負極用スラリー、二次電池用負極及びその製造方法、並びに二次電池 | |
JP5708301B2 (ja) | 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 | |
WO2012115096A1 (ja) | 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 | |
JP5987471B2 (ja) | 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法 | |
JP5991321B2 (ja) | 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池 | |
JP5761197B2 (ja) | 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池負極、二次電池及び二次電池負極用バインダー組成物の製造方法 | |
JP6011608B2 (ja) | 二次電池負極用バインダー組成物、二次電池用負極、二次電池負極用スラリー組成物、製造方法及び二次電池 | |
JP6481609B2 (ja) | 二次電池用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極、および、二次電池 | |
JP6168058B2 (ja) | 二次電池用負極、二次電池、スラリー組成物、及び製造方法 | |
WO2011096463A1 (ja) | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池 | |
WO2014148064A1 (ja) | リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池 | |
WO2011037142A1 (ja) | リチウムイオン二次電池負極及びリチウムイオン二次電池 | |
JP6115468B2 (ja) | 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極および二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749342 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013501067 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012749342 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012749342 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137022065 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14001030 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |