Nothing Special   »   [go: up one dir, main page]

WO2012111850A1 - 多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法 - Google Patents

多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法 Download PDF

Info

Publication number
WO2012111850A1
WO2012111850A1 PCT/JP2012/054338 JP2012054338W WO2012111850A1 WO 2012111850 A1 WO2012111850 A1 WO 2012111850A1 JP 2012054338 W JP2012054338 W JP 2012054338W WO 2012111850 A1 WO2012111850 A1 WO 2012111850A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline
wafer
silicon
casting
crystal grain
Prior art date
Application number
PCT/JP2012/054338
Other languages
English (en)
French (fr)
Inventor
義男 村上
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Publication of WO2012111850A1 publication Critical patent/WO2012111850A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/001Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient

Definitions

  • the present invention relates to a polycrystalline wafer, a method for producing the same, and a method for casting a polycrystalline material, and in particular, a method for casting a polycrystalline material capable of obtaining a polycrystalline ingot having high strength, and cutting the polycrystalline ingot.
  • the present invention relates to a polycrystalline wafer which is manufactured by slicing a polycrystalline block and has few cracks in a cell process or a module process.
  • silicon crystals are mainly used as substrates for manufacturing solar cells.
  • Silicon crystals include single crystals and polycrystals, and solar cells using single crystal silicon as a substrate have a conversion efficiency that converts incident light energy into electrical energy compared to those using polycrystalline silicon as a substrate. It is characterized by being expensive.
  • This single crystal silicon is generally produced by the Czochralski method in order to produce dislocation-free high-quality crystals.
  • the production by this Czochralski method has a problem of high cost.
  • a casting method is known as a method for producing polycrystalline silicon (for example, Patent Document 1).
  • high-purity silicon as a raw material is heated and dissolved in a crucible, and a dopant such as boron is added uniformly and solidified in the crucible. Since crucibles are required to have heat resistance and shape stability, quartz is generally used. By applying a unidirectional solidification method to this casting method, it is possible to obtain polycrystalline silicon having large crystal grains.
  • the polycrystalline silicon cast by the above casting method has low strength, and there are the following problems in manufacturing a polycrystalline silicon wafer by slicing a silicon block formed by cutting a silicon ingot. That is, in the wafer slicing step, a fixed abrasive method in which slicing is mainly performed using a wire in which abrasive grains made of diamond or the like are fixed to the outer peripheral surface of a core wire (elementary wire) made of steel wire or the like, and abrasive grains There is a free abrasive method in which slicing is performed using a slurry containing steel and a steel wire.
  • the polycrystalline wafer manufactured without cracking is also low in strength of the wafer, so that cracking occurs later in the cell process and module process when used as a substrate for solar cells. There was a problem that it was easy.
  • the objective of this invention is providing the casting method of the polycrystalline material which can obtain a polycrystalline ingot with high intensity
  • Another object of the present invention is to provide a polycrystalline wafer that can be produced at a low crack generation rate in the slicing process and that has a low crack generation rate in the cell process and module process.
  • the present inventor has intensively studied to solve the above problems. As a result, the present inventor increases the strength of the border by reducing the crystal grain size only at the border of the polycrystalline ingot, thereby reducing the incidence of cracking during slicing of the polycrystalline block, Moreover, the knowledge that the incidence rate of the crack of the polycrystalline wafer in a cell process and a module process can be reduced was acquired. Specifically, the present inventor has found that, in the electromagnetic casting method described later, by controlling the cooling rate of the melt of the polycrystalline material, it is possible to reduce the crystal grain size of only the edge portion of the polycrystalline ingot. I found it.
  • the present invention is based on the above findings, and the gist of the present invention is as follows.
  • a rectangular flat plate-shaped polycrystalline wafer having an edge on at least one side of the rectangle, the crystal grain size of the edge being 0.05 to 0 of the crystal grain size in the center of the rectangle
  • a bottomless cooling mold in which at least a part in the axial direction is divided into a plurality of parts in the circumferential direction is arranged in the induction coil of the chamber, and polycrystalline is formed in the cooling mold by electromagnetic induction heating by the induction coil.
  • a method of casting a polycrystalline material in which a melt of a material is melted, and the melt is cooled and solidified to be drawn downward, The method for casting a polycrystalline material, wherein a rate of cooling the melt is 100 ° C./sec or more.
  • the polycrystalline ingot obtained by the polycrystalline material casting method according to the above (5) or (6) is cut, divided into polycrystalline blocks, and the polycrystalline blocks are sliced.
  • the casting method of the present invention it is possible to obtain a polycrystalline ingot having a strong edge portion. Since the polycrystalline block obtained by cutting the polycrystalline ingot has a high edge portion strength, the occurrence rate of cracks in the wafer slicing step can be reduced. Therefore, high-speed slicing by the fixed abrasive method is possible, and the throughput of the slicing process is improved. In addition, since the strength of the edge of the polycrystalline wafer obtained by slicing the polycrystalline block is high, the rate of occurrence of wafer cracking in the cell process and module process, which are the manufacturing processes of solar cells, is reduced. Yield can also be improved.
  • the cracking rate during the slicing step can be kept low.
  • the polycrystalline wafer of the present invention has a small crystal grain size only at the edge portion and a large crystal grain size at other portions, the conversion efficiency of the solar cell can be sufficiently increased.
  • FIG. 1 It is sectional drawing which shows an example of the apparatus used for an electromagnetic casting method.
  • A It is a schematic perspective view of the silicon ingot obtained by the casting method of this invention.
  • B It is a schematic top view of the silicon ingot obtained by the casting method of this invention. It is the figure which showed typically a mode that the silicon ingot obtained by the casting method of this invention was cut
  • A (b) It is the figure which showed typically a mode that the silicon block was sliced and a silicon wafer was manufactured.
  • A) (b) It is a figure which shows the photograph of the polycrystalline silicon wafer of this invention.
  • C It is a figure which shows the photograph of the polycrystalline silicon wafer obtained by the casting method.
  • FIG. 1 is a cross-sectional view schematically showing an example of an electromagnetic casting apparatus used in the electromagnetic casting method.
  • the chamber 1 is a double-walled cooling container that is protected from heat generation inside, and a cooling mold 2, an induction coil 3, and a heater 4 are arranged in the center.
  • the cooling mold 2 is a copper water-cooled cylinder, and is divided into a plurality of parts in the circumferential direction except the upper part, and has no bottom.
  • the induction coil 3 is concentrically provided on the outer peripheral side of the cooling mold 2 and is connected to a power source by a coaxial cable (not shown).
  • the heater 4 is provided concentrically below the cooling mold 2, heats the ingot 5 pulled down from the cooling mold 2, and gives a predetermined temperature gradient in the downward axis direction of the ingot 5.
  • the casting method of the present invention will be described by taking polycrystalline silicon as an example of the polycrystalline material.
  • the silicon material 6 is charged into the cooling mold 2, and then an alternating current is passed through the induction coil 3.
  • the cooling mold 2 is divided in the circumferential direction, and the respective pieces are electrically separated from each other. Therefore, a current loop is formed in each piece, and the current generates a magnetic field in the cooling mold 2. Thereby, the silicon material is melted by electromagnetic induction heating, and the silicon melt 7 is melted.
  • the silicon material in the cooling mold 2 receives a force inward in the radial direction of the cooling mold 2 due to electromagnetic interaction between the magnetic field generated by the inner wall of the cooling mold 2 and the current on the surface of the molten silicon. 2 is melted in a non-contact state, impurity contamination from the cooling mold is prevented, and the ingot 5 can be easily pulled down.
  • the lowering device 8 that holds the molten silicon and the ingot at the lower part is moved downward.
  • the induction coil 3 is separated from the lower end of the induction coil 3, the induction magnetic field is reduced, the amount of generated heat and the above-mentioned radial inward force are reduced, and the molten silicon 7 is solidified from the outer peripheral side by the cooling effect of the cooling mold 2. , Pull this down.
  • the silicon material 6 is continuously added to the cooling mold 2 and the melting and solidification of the silicon material 6 is continued to allow continuous casting of polycrystalline silicon. It becomes.
  • the conductivity of the polycrystalline silicon wafer can be controlled by inserting a silicon material 6 to which a dopant is added.
  • a molten raw material such as boron, gallium, or aluminum is used as a dopant.
  • a molten raw material such as phosphorus, arsenic, or antimony is used as a dopant. it can.
  • the cooling rate of the polycrystalline material melt in order to solidify the polycrystalline material, it is important to set the cooling rate of the polycrystalline material melt to 100 ° C./sec or more.
  • the polycrystalline material can be, for example, polycrystalline silicon.
  • the cooling rate means an average value (° C./sec) of temperature change per unit time until the silicon melt is solidified.
  • the above cooling rate can be achieved by using a water-cooled mold using copper having good thermal conductivity and setting the temperature of the cooling water to 30 ° C. or lower.
  • a cooling rate shall be 500 degrees C / sec or less.
  • the silicon ingot 9 in which the crystal grain size of the rim portion 10 is 5 mm or less. it can.
  • the crystal grain size of the center portion 11 of the silicon ingot 9 is about 10 to 20 mm
  • the crystal grain size in the rim portion 10 is 0.05 to 0.5 times the crystal grain size in the center portion 11.
  • the particle diameter means the average of the diameters of the particles in the entire area of each of the border part 10 or the center part 11, and the diameter of a single particle is defined by the length in the longest direction of the grains.
  • the crystal grain size can be measured by observing with an optical microscope.
  • the crystal grains in the central part 11 have a radial regular shape.
  • the edging portion 10 is a rectangle (square or rectangular) surface or cross section perpendicular to the casting direction of a rectangular silicon ingot 9 that is rectangular from four sides. This is a portion having a width of 5 mm to 5 cm on the inner side in the radial direction of the cross section.
  • the radial direction herein refers to the normal direction of each side of the rectangular surface, and the center position O of the rectangular surface (two diagonal lines of the rectangle) with respect to each side. The position of the intersection point) is the inside.
  • the center portion 11 includes the center position O in a rectangular (square or rectangular) surface or cross section of a rectangular silicon ingot perpendicular to the casting direction. It is a part, and is a part on the center O side from the edge part 10 described above.
  • a rectangular parallelepiped and a rectangle are not mathematically exact and include shapes having manufacturing errors.
  • the crystal grain size of the edge portion 10 is smaller than that of the central portion 11. For this reason, as for this silicon ingot 9, the intensity
  • Vickers hardness (Hv) is used as an index indicating strength.
  • the Vickers hardness is obtained based on JIS Z 2244 (2009) using a Vickers hardness meter (manufactured by Mitutoyo Corporation: micro hardness meter MVK-G3) with a load of 9.8 N.
  • the Vickers hardness (Hv) of the edge portion 10 is 1.2 to 5 times the Vickers hardness (Hv) of the center portion 11.
  • the silicon block 12 includes an edge portion 10 and a center portion 11 of the silicon ingot 9. That is, the silicon block 12 has a surface or a cross section perpendicular to the casting direction (the direction in which the ingot is cast) of 5 mm from the one side of the outer periphery or two adjacent sides to the inside of the rectangular surface in the radial direction. It comprises an edge portion 10 having a width of ⁇ 5 cm and a center portion 11 which is a portion other than the edge portion and is closer to the center of the rectangular surface than the edge portion. Since the silicon block 12 is obtained by dividing the silicon ingot 9, similarly to the silicon ingot 9, the Vickers hardness of the edge portion 10 is 1.2 to 5 times larger than the Vickers hardness of the center portion 11.
  • FIGS. 4A and 4B are views schematically showing a state in which the silicon wafer 12 is manufactured by slicing the silicon block 12 so that the cross section is perpendicular to the casting direction.
  • the edge portion 10 of the silicon block 12 obtained according to the present invention is positioned at the start of slicing, so that the strength of the edge portion 10 is high.
  • the occurrence of wafer cracking during slicing can be reduced, or the occurrence of wafer cracking during slicing can be reduced even if the wafer is thinned and sliced.
  • the polycrystalline wafer 13 has a rectangular flat plate shape.
  • the polycrystalline wafer 13 of the present invention includes an edge portion 10 and a center portion 11 of the silicon ingot 9. That is, the polycrystalline wafer 13 of the present invention includes an edge portion 10 having a width of 5 mm to 5 cm and an edge portion from one side of the outer periphery or two adjacent sides radially inward of the rectangular wafer.
  • the center portion 11 is a portion other than 10 and located on the center side of the rectangle from the edge portion 10.
  • the radial direction of the wafer means a normal direction of each side of the rectangular surface or cross section in a rectangular surface or cross section perpendicular to the casting direction (the direction in which the ingot 9 is cast), and for each side, The center position (position of the intersection of two diagonal lines of the rectangle) of the rectangular surface is the inner side.
  • the crystal grain size of the rim portion 10 is the crystal of the center portion 11 as in the silicon ingot 9 and the silicon block 12. 0.05 to 0.5 times the particle size. Specifically, the crystal grain size of the edge portion 10 of the silicon wafer 13 is 5 mm or less.
  • the Vickers hardness (Hv) of the edge portion 10 of the silicon wafer 13 is 1.2 to 5 times the Vickers hardness (Hv) of the center portion 11. Specifically, the Vickers hardness (Hv) of the edge portion 10 is 1100 (Hv) or more.
  • the central portion 11 has radial regular crystal grains. In the example shown in FIG. 5 (b), the central portion 11 has straight regular crystal grains.
  • the polycrystalline wafer of the present invention since the polycrystalline wafer of the present invention has a high strength at the edge portion, the occurrence rate of cracks in the manufacturing process of the solar cell is also low. In addition, since the central portion 11 has a large crystal grain size, the polycrystalline wafer of the present invention has a high conversion efficiency of the solar cell equivalent to the silicon wafer manufactured by the casting method shown in FIG.
  • a polycrystalline silicon ingot having a rectangular shape with a cross section of 350 mm ⁇ 500 mm is manufactured by the above-described casting method using the casting apparatus shown in FIG. 1, and a large number of polycrystalline silicon blocks are produced from the ingot.
  • the polycrystalline silicon is, as Invention Examples 1 and 2, using a water-cooling mold using copper having good thermal conductivity, and setting the cooling water temperature to 29 ° C., so that the cooling rate is 150 ° C. / Casting was performed as sec.
  • the silicon block having the cross section shown in FIG. 5A was designated as invention example 1
  • Comparative Example 1 a water-cooled mold using copper having good heat conductivity was used, and the temperature of the cooling water was set to 80 ° C., so that the above cooling rate was 20 ° C./sec. A polycrystalline silicon wafer was produced in which the crystal grain size of the borders on two adjacent sides was slightly smaller than the central part. Further, as Comparative Example 2, a polycrystalline silicon block obtained by cutting a polycrystalline silicon ingot manufactured by a conventional method using a casting method was prepared.
  • the conversion efficiency of solar cells manufactured using 500 wafers according to Invention Examples 1 and 2 and Comparative Examples 1 and 2 was evaluated.
  • the conversion efficiency of the solar cell is a ratio (E2 / E1) ⁇ 100 (%) of the light energy E1 irradiated per unit cell area of the solar cell and the converted electric energy E2 taken out per unit cell area.
  • Table 5 shows the evaluation results.
  • the polycrystalline wafers according to Invention Examples 1 and 2 have high strength, as shown in Table 4, it can be seen that the rate of occurrence of wafer cracking in the cell process and module process during the production of solar cells is low. Furthermore, the wafers according to Invention Examples 1 and 2 have high strength only at the edge portion and low strength at the center portion. That is, since the crystal grain size is small only at the border and the crystal grain size at the center is large, as shown in Table 5, the conversion efficiency of the solar cells manufactured using the wafers according to Invention Examples 1 and 2 is a comparative example. It is equivalent to the conversion efficiency of the solar cell manufactured using the wafer concerning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明の多結晶材料の鋳造方法は、電磁鋳造法において、融液の冷却速度を制御することを特徴とする。また、本発明の多結晶ウェーハの製造方法は、この鋳造方法により得られた多結晶インゴットを切断して、多結晶ブロックに分割し、該多結晶ブロックをスライスすることを特徴とする。さらに、本発明の多結晶ウェーハは、縁取り部の強度(ビッカース硬度)が中心部対比で高いことを特徴とする。

Description

多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法
 本発明は、多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法に関し、特に、強度の高い多結晶インゴットを得ることのできる多結晶材料の鋳造方法及び、該多結晶インゴットを切断してなる多結晶ブロックをスライスして製造され、セル工程やモジュール工程における割れの少ない多結晶ウェーハに関する。
 現在、太陽電池の製造用の基板としては、主にシリコン結晶が用いられている。
 シリコン結晶には単結晶と多結晶とがあり、単結晶シリコンを基板として用いた太陽電池は、多結晶シリコンを基板としたものと比較して、入射した光エネルギーを電気エネルギーにする変換効率が高いという特徴がある。
 この単結晶シリコンは、無転位の高品質な結晶を製造するため、一般にチョクラルスキー法によって製造されるが、このチョクラルスキー法による製造は、コストが高くなるという問題がある。
 一方、多結晶シリコンを製造する方法としては、キャスト法が知られている(例えば特許文献1)。
 キャスト法による多結晶シリコンの鋳造では、ルツボ内で原料である高純度シリコンを加熱溶解し、ボロン等のドーパントを均一添加して、ルツボの中で凝固させる。ルツボは、耐熱性及び形状安定性が求められるため、一般に石英が用いられる。
 このキャスト法に一方向性凝固法を適用することにより、結晶粒の大きい多結晶シリコンを得ることが可能となる。
 しかし、上記キャスト法によって鋳造された多結晶シリコンは強度が低く、シリコンインゴットを切断してできたシリコンブロックをスライスして多結晶シリコンウェーハを製造するに当たり、以下の問題があった。すなわち、ウェーハスライス工程においては、主に、鋼線等からなる芯線(素線)の外周面にダイヤモンド等からなる砥粒を固着させたワイヤーを用いてスライスを行う固定砥粒法と、砥粒の入ったスラリーと鋼線とを用いてスライスを行う遊離砥粒法とがある。ところが、上記キャスト法によって鋳造された多結晶シリコンは強度が低いため、固定砥粒法による高速のスライスでは、高確率でウェーハに割れが生じてしまい、このため、遊離砥粒法による低速のスライスを行う必要があり、スライス工程のスループットが低いという問題があった。
 また、上述のスライス工程において、割れが生じずに製造された多結晶ウェーハについても、ウェーハの強度が低いため、その後、太陽電池用の基板として用いる際のセル工程、モジュール工程において、割れが生じやすいという問題があった。
 特に、近年、多結晶ウェーハの厚みは薄厚化してきており、とりわけウェーハの厚さが200μm以下の場合に、ウェーハスライス工程や上述のセル工程、モジュール工程における割れの発生率が高くなるため、このようなウェーハの割れに対する対策の必要性が増してきている。
特開平6−64913号公報
 本発明の目的は、強度の高い多結晶インゴットを得ることのできる多結晶材料の鋳造方法を提供することにある。
 また、本発明は、スライス工程において、低い割れの発生率で製造でき、且つ上記のセル工程、モジュール工程での割れの発生率も低い多結晶ウェーハを提供することも目的とする。
 本発明者は前記課題を解決すべく、鋭意究明を重ねた。
 その結果、本発明者は、多結晶インゴットの縁取り部のみ、結晶粒径を小さくすることにより、縁取り部の強度を高め、これにより、多結晶ブロックのスライス時の割れの発生率を低減し、また、セル工程、モジュール工程での多結晶ウェーハの割れの発生率を低減させることができることの知見を得た。
 本発明者は、具体的には、後述の電磁鋳造法において、多結晶材料の融液の冷却速度を制御することにより、多結晶インゴットの縁取り部のみの結晶粒径を小さくすることができることを見出した。
 本発明は、上記の知見に立脚するものであり、その要旨構成は、以下の通りである。
 (1)矩形平板状の多結晶ウェーハであり、該矩形の少なくとも1辺に縁取り部を有し、該縁取り部の結晶粒径は、前記矩形の中心部における結晶粒径の0.05~0.5倍であることを特徴とする、多結晶ウェーハ。
 (2)前記縁取り部におけるビッカース硬度(Hv)は、前記矩形の中心部におけるビッカース硬度(Hv)の1.2~5倍であることを特徴とする、上記(1)に記載の多結晶ウェーハ。
 (3)前記縁取り部における結晶粒径は、5mm以下であることを特徴とする、上記(1)又は(2)に記載の多結晶ウェーハ。
 (4)前記縁取り部のビッカース硬度(Hv)は、1100Hv以上であることを特徴とする、上記(1)~(3)のいずれか一項に記載の多結晶ウェーハ。
 (5)チャンバの誘導コイル内に、軸方向の少なくとも一部が周方向で複数に分割された無底の冷却モールドを配置し、前記誘導コイルによる電磁誘導加熱により、前記冷却モールド内に多結晶材料の融液を溶製し、前記融液を冷却して凝固させつつ下方へ引き抜く、多結晶材料の鋳造方法であって、
 前記融液を冷却する速度は、100℃/sec以上であることを特徴とする、多結晶材料の鋳造方法。
 (6)前記冷却速度を100℃/sec以上にすることによって、前記縁取り部の結晶粒径を5mm以下に制御することを特徴とする、上記(5)に記載の多結晶材料の鋳造方法。
 (7)上記(5)又は(6)に記載の多結晶材料の鋳造方法により得られた多結晶インゴットを切断して、多結晶ブロックに分割し、該多結晶ブロックをスライスすることを特徴とする、多結晶ウェーハの製造方法。
 本発明の鋳造方法によれば、縁取り部の強度の高い多結晶インゴットを得ることができる。
 この多結晶インゴットを切断して得られる多結晶ブロックは、縁取り部の強度が高いため、ウェーハスライス工程での割れの発生率を低減することができる。
 従って、固定砥粒法による高速のスライスが可能となり、スライス工程のスループットが向上する。
 また、多結晶ブロックをスライスして得られる多結晶ウェーハの縁取り部の強度も高いため、太陽電池の製造工程であるセル工程、モジュール工程におけるウェーハの割れの発生率も低減し、太陽電池製造の歩留まりを向上させることもできる。
 さらに、近年のウェーハの厚さが薄化したプロセスにおいてもスライス工程時の割れ率を低く抑えることができる。
 また、本発明の多結晶ウェーハは、縁取り部のみの結晶粒径が小さく、その他の部分の結晶粒径は大きいため、太陽電池の変換効率を十分高くすることができる。
電磁鋳造法に用いる装置の一例を示す断面図である。 (a)本発明の鋳造方法によって得られたシリコンインゴットの概略斜視図である。(b)本発明の鋳造方法によって得られたシリコンインゴットの概略上面図である。 本発明の鋳造方法によって得られたシリコンインゴットを切断して、複数のシリコンブロックに分割する様子を模式的に示した図である。 (a)(b)シリコンブロックをスライスしてシリコンウェーハを製造する様子を模式的に示した図である。 (a)(b)本発明の多結晶シリコンウェーハの写真を示す図である。(c)キャスト法によって得られた多結晶シリコンウェーハの写真を示す図である。
 図1は、電磁鋳造法に用いる電磁鋳造装置の一例を模式的に示す断面図である。
 図1に示すように、チャンバ1は、内部の発熱から保護されるように二重壁構造の冷却容器になっており、中央部に冷却モールド2、誘導コイル3、ヒータ4が配置されている。
 図示例で、冷却モールド2は、銅の水冷筒体であり、上部を除いて周方向に複数分割され、無底である。
 また、図示例で、誘導コイル3は、冷却モールド2の外周側に同芯に周設されて、同軸ケーブル(図示せず)で電源に接続される。
 図示例で、ヒータ4は、冷却モールド2の下方に同芯に設けられ、冷却モールド2から引き下げられるインゴット5を加熱して、インゴット5の引き下げ軸方向に所定の温度勾配を与える。
 以下、多結晶材料として多結晶シリコンを例にとって本発明の鋳造方法について説明する。
 図1に示す装置を用いて、多結晶シリコンを鋳造するには、まず、冷却モールド2にシリコン材料6を装入し、次いで、誘導コイル3に交流電流を流す。
 冷却モールド2は、周方向に分割され、各素片は互いに電気的に分離されているため、各素片内で電流ループを形成し、該電流が冷却モールド2内に磁界を発生する。
 これにより、電磁誘導加熱によってシリコン材料が溶解され、シリコン融液7が溶製される。
 ここで、冷却モールド2内のシリコン材料は、冷却モールド2の内壁がつくる磁界と溶融シリコン表面の電流との電磁気的相互作用によって、冷却モールド2の径方向内側への力を受けるため、冷却モールド2とは非接触の状態で溶解されることとなり、冷却モールドからの不純物汚染が防止され、またインゴット5の下方への引き下げが容易となる。
 ここで、溶融シリコンを凝固させるに当たっては、溶融シリコンとインゴットを下部で保持する引き下げ装置8を下方へ移動させる。誘導コイル3の下端から離間するにつれ、誘導磁界が小さくなり、発熱量及び上記の径方向内側への力が小さくなり、冷却モールド2による冷却効果によって、溶融シリコン7が外周側から凝固していき、これを下方へ引き抜いていく。
 引き下げ装置の下方への移動に合わせて、冷却モールド2へシリコン材料を連続的に追加装入して、シリコン材料6の溶解及び凝固を継続していくことにより、多結晶シリコンの連続鋳造が可能となる。
 なお、多結晶シリコンウェーハの導電性は、ドーパントを添加したシリコン材料6を装入することによって、制御することができる。
 p型多結晶シリコンウェーハの鋳造には、ドーパントとしてボロン、ガリウム、アルミニウムなどの溶融原料を用い、n型多結晶シリコンウェーハの鋳造には、ドーパントとしてリン、砒素、アンチモンなど溶融原料を用いることができる。
 ここで、本発明の鋳造方法においては、上記の多結晶材料を凝固させるに当たり、多結晶材料の融液の冷却速度を100℃/sec以上とすることが肝要である。多結晶材料は、例えば多結晶シリコンとすることができる。
 また、冷却速度とは、シリコン融液が固化するまでの間における、単位時間当たりの温度変化の平均値(℃/sec)を意味する。
 具体的には、熱伝導の良好な銅を用いた水冷モールドを使用し、冷却水の温度を30℃以下とすることによって、上記の冷却速度を達成することができる。
 なお、冷却速度は、500℃/sec以下とすることが好ましい。
 これにより、外周部は水冷された銅モールドによる急冷効果のため、図2(a)(b)に示すように、縁取り部10の結晶粒径が5mm以下であるシリコンインゴット9を製造することができる。
 このとき、シリコンインゴット9の中心部11の結晶粒径は、10~20mm程度であり、縁取り部10における結晶粒径は、中心部11における結晶粒径の0.05~0.5倍である。
 ここで、粒径とは、縁取り部10又は中心部11それぞれの部分の全域における粒子の径の大きさの平均をいい、粒子単体の径は、粒の最長の方向の長さで定義するものとする。
 また、結晶粒径の測定は、光学顕微鏡で観察することによって行うことができる。
 なお、中心部11の結晶粒は放射状の規則正しい形状をなしている。
 また、縁取り部10とは、図2(a)(b)に示すように、直方体のシリコンインゴット9の、鋳造方向に垂直な矩形(正方形又は長方形)の面又は断面において、4辺夫々から矩形の断面の径方向の内側に、5mm~5cmの幅をもつ部分である。
 ここでいう、径方向とは、図2(b)に示すように、矩形の面の各辺の法線方向をいい、各辺に対し、矩形の面の中心位置O(矩形の2つの対角線の交点の位置)側が内側である。
 また、中心部11とは、図2(a)(b)に示すように、直方体のシリコンインゴットの、鋳造方向に垂直な矩形(正方形又は長方形)の面又は断面における上記の中心位置Oを含む部分であり、上記の縁取り部10より中心O側の部分である。
 なお、直方体、矩形(正方形、長方形)とは、数学的に厳密なものでなく、製造上の誤差を有する形状を含むものとする。
 上述の通り、本発明の鋳造方法によって得られるシリコンインゴット9は、縁取り部10の結晶粒径は中心部11対比で小さい。このため、該シリコンインゴット9は、縁取り部10の強度が中心部10対比で高くなる。
 ここで、強度を示す指標として、ビッカース硬度(Hv)を用いる。ビッカース硬度は、ビッカース硬度計(株式会社ミツトヨ製:微小硬度計MVK−G3)を用い、荷重9.8Nとし、JIS Z 2244(2009年)に基づいて求めたものである。
 本発明の鋳造方法によって得られるシリコンインゴット9は、縁取り部10のビッカース硬度(Hv)が中心部11のビッカース硬度(Hv)の1.2~5倍である。
 次に、図3に示すように、シリコンインゴット9を切断することにより、複数の直方体のシリコンブロック12を製造することができる。
 このシリコンブロック12は、図3に示すように、上記シリコンインゴット9の縁取り部10と中心部11とからなる。すなわち、シリコンブロック12は、鋳造方向(インゴットを鋳造した方向)に垂直な面又は断面が、外周のうちの1辺から又は隣接する2辺の夫々から、矩形の面の径方向内側に、5mm~5cmの幅をもつ縁取り部10と、縁取り部以外の部分であり、縁取り部より矩形の面の中心側にある、中心部11とからなる。
 シリコンブロック12は、上記シリコンインゴット9を分割したものであるから、シリコンインゴット9と同様に、縁取り部10のビッカース硬度は、中心部11のビッカース硬度より1.2~5倍大きい。
 次に、図4(a)(b)は、シリコンブロック12を、断面が鋳造方向に垂直となるようにスライスしてシリコンウェーハ13を製造する様子を模式的に示す図である。
 上述のように、本発明によって得られたシリコンブロック12の縁取り部10を、スライスを開始する位置とすることにより、この縁取り部10の強度が高いため、上述の固定砥粒法による高速のスライスでもスライス時のウェーハの割れの発生を低減させることができ、又は、ウェーハの厚みを薄くしてスライスしてもスライス時のウェーハの割れの発生を低減させることができる。
 ここで、図4(a)(b)に示すように、多結晶ウェーハ13は、矩形平板状である。
 図4(a)(b)に示すように、本発明の多結晶ウェーハ13は、上記シリコンインゴット9の縁取り部10と中心部11とからなる。すなわち、本発明の多結晶ウェーハ13は、外周のうちの1辺から又は隣接する2辺の夫々から、矩形のウェーハの径方向内側に、5mm~5cmの幅をもつ縁取り部10と、縁取り部10以外の部分であって、縁取り部10より矩形の中心側にある中心部11とからなる。
 ここで、ウェーハの径方向とは、鋳造方向(インゴット9を鋳造した方向)に垂直な矩形の面又は断面において、矩形の面又は断面の各辺の法線方向をいい、各辺に対し、当該矩形の面の中心位置(矩形の2つの対角線の交点の位置)側が内側である。
 シリコンウェーハ13は、シリコンブロック12を鋳造方向に垂直にスライスして製造されるものであるため、シリコンインゴット9及びシリコンブロック12と同様に、縁取り部10の結晶粒径は、中心部11の結晶粒径の0.05~0.5倍である。具体的にはシリコンウェーハ13の縁取り部10の結晶粒径は5mm以下である。
 また、シリコンウェーハ13の縁取り部10のビッカース硬度(Hv)は、中心部11のビッカース硬度(Hv)の1.2~5倍である。具体的には縁取り部10のビッカース硬度(Hv)は、1100(Hv)以上である。
 なお、図5(a)(b)に多結晶シリコンウェーハの上面の写真を示すように、図5(a)に示す例では、中心部11は放射状の規則正しい結晶粒を有しており、図5(b)に示す例では、中心部11は、直線状の規則正しい結晶粒を有している。
 上記のように、本発明の多結晶ウェーハは、縁取り部の強度が高いため、太陽電池の製造工程における割れの発生率も低い。
 また、中心部11は結晶粒径が大きいため、本発明の多結晶ウェーハは、図5(c)に示す、キャスト法によって製造したシリコンウェーハと同等に太陽電池の変換効率が高い。
 本発明の効果を確かめるため、図1に示す鋳造装置を用い、上述の鋳造方法によって断面が350mm×500mmの矩形の形状の多結晶シリコンインゴットを製造し、該インゴットから多数の多結晶シリコンブロックを製造した。
 ここで、多結晶シリコンは、発明例1、2として、熱伝導の良好な銅を用いた水冷モールドを使用し、冷却水の温度を29℃とすることによって、上述の冷却速度を150℃/secとして鋳造を行った。
 鋳造されたシリコンインゴットをシリコンブロックに分割したとき、図5(a)に示す断面を有するシリコンブロックを発明例1とし、図5(b)に示す断面を有するシリコンブロックを発明例2とした。
 また、比較例1として、熱伝導の良好な銅を用いた水冷モールドを使用し、冷却水の温度を80℃とすることにより、上述の冷却速度を20℃/secとして鋳造を行い、正方形の隣接する2辺の縁取り部の結晶粒径が中心部よりやや小さい多結晶シリコンウェーハを製造した。
 さらに、比較例2としてキャスト法による従来の方法で製造した多結晶シリコンインゴットを切断した多結晶シリコンブロックを用意した。
 まず、ウェーハスライス工程における割れの発生率を評価するため、発明例1、2及び、比較例1、2にかかる多結晶シリコンブロックをそれぞれ10個製造し、この多結晶シリコンブロックをスライスして多結晶シリコンウェーハを500枚製造し、割れが発生する確率を評価した。
 スライスは、固定砥粒法で行い、平均粒径が20μmのダイヤモンドを砥粒として固着させたワイヤーを使用した。なお、ウェーハの縁取り部がスライスの開始口となるようにした。
 まず、厚さ200μmの多結晶シリコンウェーハに切断する場合について、スライスの速度を0.2~1.0mm/sの範囲で変化させて行った(表1)。
 次に、スライスの速度を0.6mm/sとして、製造するウェーハの厚さを100~200μmの範囲で変えて割れの発生率を評価した(表2)。
 評価結果をそれぞれ表1、2にまとめている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次に、発明例1、2及び比較例1、2にかかる各10枚のウェーハの強度を測定する試験を行った。強度は、ウェーハの縁取り部と中心部とのそれぞれの強度を、上述のビッカース硬度(JIS Z 2244:2009年)により評価した。
 また、発明例1、2及び比較例1、2にかかる各10枚のウェーハの縁取り部と中心部とのそれぞれの結晶粒径を上述の測定方法によって評価した。
 表3に10枚のウェーハのビッカース硬度(Hv)の平均値及び、結晶粒径の平均値を示す。
Figure JPOXMLDOC01-appb-T000003
 次に、上記の発明例1、2及び比較例1、2にかかる各500枚のウェーハを用いて、太陽電池を製造した際の、セル工程又はモジュール工程でのウェーハの割れの発生率を評価した。
 評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 次に、発明例1、2及び比較例1、2にかかるウェーハ500枚を用いて製造した太陽電池の変換効率を評価した。
 ここで、太陽電池の変換効率は、太陽電池のセル単位面積当たりに照射した光エネルギーE1とセル単位面積当たりから取り出される変換後の電気エネルギーE2との比(E2/E1)×100(%)で定義される。
 表5に評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
 表1、2に示すように、発明例1、2にかかるシリコンブロックは、高速でスライスしても割れの発生率を低く抑えることができ、また、200μm以下の厚さのウェーハにスライスする場合でも割れの発生率を低く抑えることができる。
 また、表3に示すように、発明例1、2にかかる多結晶シリコンウェーハは、縁取り部のみビッカース硬度が高く、中心部対比で1.2~5倍であることがわかる。このため、発明例1、2にかかる多結晶シリコンウェーハは、強度が高いことがわかる。
 さらに、発明例1、2にかかる多結晶ウェーハは強度が高いため、表4に示すように、太陽電池製造時のセル工程、モジュール工程でのウェーハの割れの発生率も低いことがわかる。
 さらにまた、発明例1、2にかかるウェーハは縁取り部のみ強度が高く、中心部の強度は低い。すなわち、縁取り部のみ結晶粒径が小さく、中心部の結晶粒径は大きいため、表5に示すように、発明例1、2にかかるウェーハを用いて製造した太陽電池の変換効率は、比較例にかかるウェーハを用いて製造した太陽電池の変換効率と同等である。
1 チャンバ
2 冷却モールド
3 誘導コイル
4 ヒータ
5 インゴット
6 シリコン材料
7 溶融シリコン
8 引き下げ装置
9 インゴット
10 縁取り部
11 中心部
12 多結晶ブロック
13 多結晶ウェーハ

Claims (7)

  1.  矩形平板状の多結晶ウェーハであり、該矩形の少なくとも1辺に縁取り部を有し、該縁取り部の結晶粒径は、前記矩形の中心部における結晶粒径の0.05~0.5倍であることを特徴とする、多結晶ウェーハ。
  2.  前記縁取り部におけるビッカース硬度(Hv)は、前記矩形の中心部におけるビッカース硬度(Hv)の1.2~5倍であることを特徴とする、請求項1に記載の多結晶ウェーハ。
  3.  前記縁取り部における結晶粒径は、5mm以下であることを特徴とする、請求項1又は2に記載の多結晶ウェーハ。
  4.  前記縁取り部のビッカース硬度(Hv)は、1100Hv以上であることを特徴とする、請求項1~3のいずれか一項に記載の多結晶ウェーハ。
  5.  チャンバの誘導コイル内に、軸方向の少なくとも一部が周方向で複数に分割された無底の冷却モールドを配置し、前記誘導コイルによる電磁誘導加熱により、前記冷却モールド内に多結晶材料の融液を溶製し、前記融液を冷却して凝固させつつ下方へ引き抜く、多結晶材料の鋳造方法であって、
     前記融液を冷却する速度は、100℃/sec以上であることを特徴とする、多結晶材料の鋳造方法。
  6.  前記冷却速度を100℃/sec以上にすることによって、前記縁取り部の結晶粒径を5mm以下に制御することを特徴とする、請求項5に記載の多結晶材料の鋳造方法。
  7.  請求項5又は6に記載の多結晶材料の鋳造方法により得られた多結晶インゴットを切断して、多結晶ブロックに分割し、該多結晶ブロックをスライスすることを特徴とする、多結晶ウェーハの製造方法。
PCT/JP2012/054338 2011-02-18 2012-02-16 多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法 WO2012111850A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011033944A JP2012171821A (ja) 2011-02-18 2011-02-18 多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法
JP2011-033944 2011-02-18

Publications (1)

Publication Number Publication Date
WO2012111850A1 true WO2012111850A1 (ja) 2012-08-23

Family

ID=46672753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054338 WO2012111850A1 (ja) 2011-02-18 2012-02-16 多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法

Country Status (3)

Country Link
JP (1) JP2012171821A (ja)
TW (1) TW201247949A (ja)
WO (1) WO2012111850A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085517A (zh) * 2019-04-02 2019-08-02 江苏华恒新能源有限公司 一种长宽非等尺寸的长方形多晶硅太阳能电池片加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297702B2 (en) * 2015-08-26 2019-05-21 Sino-American Silicon Products Inc. Polycrystalline silicon column and polycrystalline silicon wafer
US11427930B2 (en) * 2018-07-20 2022-08-30 Sumitomo Electric Industries, Ltd. Diamond polycrystal and tool including same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264775A (ja) * 1999-03-23 2000-09-26 Sumitomo Sitix Amagasaki:Kk 電磁誘導鋳造装置
JP2007015905A (ja) * 2005-07-11 2007-01-25 Kyocera Corp 多結晶シリコンインゴット、多結晶シリコン基板、並びに太陽電池素子および多結晶シリコンインゴットの鋳造方法。
JP2008174397A (ja) * 2007-01-16 2008-07-31 Sumco Solar Corp 多結晶シリコンの鋳造方法
JP2009084145A (ja) * 2007-09-10 2009-04-23 Tohoku Univ Si多結晶インゴット、Si多結晶インゴットの製造方法およびSi多結晶ウェハー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264775A (ja) * 1999-03-23 2000-09-26 Sumitomo Sitix Amagasaki:Kk 電磁誘導鋳造装置
JP2007015905A (ja) * 2005-07-11 2007-01-25 Kyocera Corp 多結晶シリコンインゴット、多結晶シリコン基板、並びに太陽電池素子および多結晶シリコンインゴットの鋳造方法。
JP2008174397A (ja) * 2007-01-16 2008-07-31 Sumco Solar Corp 多結晶シリコンの鋳造方法
JP2009084145A (ja) * 2007-09-10 2009-04-23 Tohoku Univ Si多結晶インゴット、Si多結晶インゴットの製造方法およびSi多結晶ウェハー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085517A (zh) * 2019-04-02 2019-08-02 江苏华恒新能源有限公司 一种长宽非等尺寸的长方形多晶硅太阳能电池片加工方法

Also Published As

Publication number Publication date
JP2012171821A (ja) 2012-09-10
TW201247949A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
US7749324B2 (en) Casting method of silicon ingot and cutting method of the same
JP5380442B2 (ja) 種結晶から鋳造シリコンを製造するための方法および装置
JP5141020B2 (ja) 多結晶シリコンの鋳造方法
CN101370970A (zh) 制造单晶铸硅的方法和装置以及用于光电领域的单晶铸硅实体
TWI532891B (zh) Polycrystalline silicon wafers
US7888158B1 (en) System and method for making a photovoltaic unit
KR20110127134A (ko) 실리콘 용융액으로부터 다결정 실리콘 잉곳을 견인하는 방법들 및 견인 어셈블리들
WO2012151155A2 (en) Apparatus and method for producing a multicrystalline material having large grain sizes
US20160348271A1 (en) Integrated System of Silicon Casting and Float Zone Crystallization
WO2012111850A1 (ja) 多結晶ウェーハ及びその製造方法、並びに多結晶材料の鋳造方法
KR101074304B1 (ko) 금속 실리콘과 그 제조 방법
WO2018008561A1 (ja) 単結晶シリコン板状体およびその製造方法
JP4664967B2 (ja) シリコン鋳造装置およびシリコン基板の製造方法
JP4060106B2 (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
WO2013145558A1 (ja) 多結晶シリコンおよびその鋳造方法
JP6401051B2 (ja) 多結晶シリコンインゴットの製造方法
JP2009203499A (ja) ターゲット材およびその製造方法
KR20120052855A (ko) n형 다결정 실리콘 웨이퍼 그리고 n형 다결정 실리콘 잉곳 및 그 제조 방법
JP2012041211A (ja) 多結晶シリコンウェーハ及びその鋳造方法
JP2004322195A (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板
JP5701287B2 (ja) ドーパント材、半導体基板、太陽電池素子、およびドーパント材の製造方法
JP2013089693A (ja) スライス台および半導体ウェーハの製造方法
CN111270302B (zh) 一种高品质半导体硅材料耗材生长方法
CN103628132B (zh) 一种多晶硅芯片、多晶硅晶锭及制造多晶硅晶锭的方法
Arnberg et al. Solidification of silicon for solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746711

Country of ref document: EP

Kind code of ref document: A1