WO2012105797A2 - 나노 안테나를 포함하는 구조체 및 이의 제조방법 - Google Patents
나노 안테나를 포함하는 구조체 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2012105797A2 WO2012105797A2 PCT/KR2012/000744 KR2012000744W WO2012105797A2 WO 2012105797 A2 WO2012105797 A2 WO 2012105797A2 KR 2012000744 W KR2012000744 W KR 2012000744W WO 2012105797 A2 WO2012105797 A2 WO 2012105797A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- present
- nanoantenna
- container
- thermotherapy
- porous micro
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
- A61M5/1723—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
- A61M31/002—Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
- H01P11/001—Manufacturing waveguides or transmission lines of the waveguide type
- H01P11/003—Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/002—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using short elongated elements as dissipative material, e.g. metallic threads or flake-like particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49016—Antenna or wave energy "plumbing" making
Definitions
- the present invention relates to a structure comprising a nano-antenna, a method of manufacturing the same, a drug carrier comprising the same, a complex for thermal therapy, a drug treatment device and a thermal therapy device.
- Nanoliter-sized chemical delivery systems and devices such as micelles, vesicles, droplets and capsules, have very small volumes of reagents, enabling spatially and temporally controlled chemistry. do.
- the chemical delivery system can be utilized for fine release of chemicals, local drug delivery, delivery of biomolecules, and thermotherapy.
- the integrated functions include sensing, actuation and telemetry.
- One way to achieve the above functions is to manufacture an electrical and optical module on the outer surface of the delivery device.
- modules of small size integrated using various nanofabrication techniques can act as a sensor, detector and controller. These modules have the advantages of small size, low power consumption and moderate cost, but they are risky for macroscale applications.
- a module such as an antenna can be easily connected to the radio signal, thereby solving the above problem.
- the present invention as a means for solving the above problems, a porous micro container; And it provides a structure comprising a nano-antenna pattern formed on the outer surface of the porous micro container.
- the present invention provides a method for manufacturing a structure comprising the step of forming a nano-antenna pattern on the outer surface of the porous micro-container using a focused ion beam system.
- the present invention is another means for solving the above problems, the structure according to the present invention; And it provides a drug carrier comprising a pharmaceutically active ingredient carried in the porous micro-container of the structure.
- the present invention is another means for solving the above problems, the structure according to the present invention; And it provides a thermotherapy complex comprising a nanowires supported in the porous micro-container of the structure.
- the present invention is another means for solving the above problems, drug delivery system according to the present invention;
- a biosensor unit located on an outer surface of the drug carrier to sense bioinformation inside the living body;
- a transmission module which receives the bio information from the bio sensor unit and wirelessly transmits the bio information to an external control unit through a nano antenna pattern formed on an outer surface of the drug carrier;
- a reception module wirelessly receiving a drug release signal corresponding to the bio information from the external controller through a nanoantenna pattern formed on an outer surface of the drug carrier;
- An external control unit wirelessly receiving bio information from the transmitting module and wirelessly transmitting a drug release signal corresponding to the bio information to the receiving module;
- a power supply unit supplying power to the transmission module for the wireless transmission.
- thermotherapy complex as another means for solving the above problems, the thermotherapy complex according to the invention;
- a biosensor unit located on an outer surface of the thermotherapy complex to sense bioinformation inside a living body;
- a transmission module which receives the bio information from the bio sensor unit and wirelessly transmits the bio information to an external control unit through a nanoantenna pattern formed on an outer surface of the thermotherapy complex;
- a receiving module for wirelessly receiving a nanowire emission signal corresponding to the bio information from the external controller through a nanoantenna pattern formed on an outer surface of the thermotherapy complex;
- An external control unit for wirelessly receiving bio information from the transmission module and wirelessly transmitting a nanowire emission signal corresponding to the bio information to the reception module;
- a power supply unit supplying power to the transmission module for the wireless transmission.
- the nano-antenna pattern is formed on the outer surface of the porous micro-container, can be controlled wirelessly from the outside, when used as a drug carrier and a thermotherapy complex, at the desired application site inside the living body Medication and thermotherapy can be given as desired.
- the structure of the present invention can transmit and receive a wireless signal with the external control unit through the nano-antenna, it detects a signal inside the living body and transmits it to the external control unit, and according to the corresponding signal transmitted from the external control unit drug or nanowires By releasing the back, it can be utilized as a drug treatment device or a heat treatment device.
- FIG. 1 is a perspective view showing the structure of a structure according to an embodiment of the present invention.
- FIG. 2 is a perspective view showing the structure of a structure according to another embodiment of the present invention.
- Figure 3 is a schematic diagram showing a manufacturing or preparation process of a porous micro-container according to an embodiment of the present invention.
- FIG. 4 is a view showing various shapes and pores of the porous micro container according to another embodiment of the present invention.
- FIG. 5 is a schematic diagram illustrating a process of forming a dielectric layer on an outer surface of a porous micro container, and forming a nanoantenna pattern using an FIB system on top of the dielectric layer according to an embodiment of the present invention.
- FIG. 6 is an enlarged photograph of a field emission scanning microscopy (FESEM) image of the structure.
- FESEM field emission scanning microscopy
- FIG 7 is a graph illustrating a reflection mode (S 11 ) of a structure according to an embodiment of the present invention measured using a High Frequency Structural Simulator (HFSS).
- HFSS High Frequency Structural Simulator
- VNA vector network analyzer
- FIG. 9 is a view showing magnetization characteristics in an electric field plane of a structure according to an embodiment of the present invention.
- FIG. 10 is a view showing magnetization characteristics in a magnetic field plane of a structure according to an embodiment of the present invention.
- the present invention is a porous micro container; And a nanoantenna pattern formed on an outer surface of the porous micro container.
- the structure 1 of the present invention includes a porous micro container 10 having pores 13; And a nano antenna pattern 11 formed on an outer surface of the porous micro container 10, wherein the nano antenna pattern 11 may be formed by arranging one or more nano antennas 12.
- Attached Figure 1 shows the porous micro-container as a hexahedron
- the shape of the porous micro-container of the present invention is not particularly limited, and may have any volume so long as it is a shape capable of supporting a material therein.
- a shape of the porous micro container may include, but is not limited to, a polyhedron, a sphere, or a cylinder surrounded by a plurality of surfaces.
- the polyhedrons, spheres and cylinders include not only shapes in a mathematical sense, but also shapes similar to the shapes.
- a sphere includes not only a perfect sphere but also a shape close to a sphere
- a cylinder includes not only a perfect cylinder but also a shape close to a cylinder.
- the polyhedron means a shape capable of forming a volume surrounded by four or more faces.
- the basic skeleton of the porous micro container that is, the main material of the porous micro container is not particularly limited, and any material having magnetic properties may be employed without limitation.
- Metal may be used, and gold, which is not harmful to the human body, may be used, but is not limited thereto.
- the type of metal coated with gold or perline is not particularly limited, and conventional metals Alternatively, all metal alloys may be used.
- porous microcontainer of the present invention can be made of a magnetic material, its movement and control in the electromagnetic field region can be possible.
- Solder hinges may be attached to the inner edges of the porous micro-containers of the present invention, that is, the boundary lines where the inner and inner surfaces contact.
- the solder hinge may enable self-assembly of the porous micro container by using the surface tension of the solder when manufacturing the porous micro container [3. Park, J., Slanac, D., Leong, T., Ye, H., and Gracias, D. H., 'Reconfigurable microfluidics with metallic containers,' IEEE MEMS, 2008, 17 (2), pp. 265-271].
- the volume of the porous micro-container of the present invention may be 10 ⁇ m 3 to 64,000,000 ⁇ m 3 , preferably 10 ⁇ m 3 to 1,000 ⁇ m 3 , more preferably 50 ⁇ m 3 to 100 ⁇ m 3 .
- the volume of the porous micro-container is less than 10 ⁇ m 3 , when supporting the pharmaceutically active ingredient or nanowire to be described later, the supporting amount may be too small.
- the volume of the porous micro container exceeds 64,000,000 ⁇ m 3 , a large fluid resistance when moving in vivo There is a fear that the movement may not be smooth.
- Porous micro-container of the present invention has pores, as shown in Figure 1 attached, the average diameter of the pores is 0.1 ⁇ m to 50 ⁇ m, preferably 0.2 ⁇ m to 30 ⁇ m, more preferably 0.5 ⁇ m to 20 ⁇ m Can be.
- the average diameter of the pores in the above range it is possible to smoothly carry and release the pharmaceutically active ingredient or nanowires to be described later through the pores of the porous micro-container.
- the structure of the present invention may include a nano-antenna pattern formed on the outer surface of the porous micro container in order to enable remote control through an external wireless signal.
- the nanoantenna pattern of the present invention may be formed on the outer surface of the porous micro-container in an area of 0.01 ⁇ m 2 to 0.5 ⁇ m 2 , preferably 0.03 ⁇ m 2 to 0.3 ⁇ m 2 , more preferably 0.05 ⁇ m 2 to 0.1 ⁇ m 2 . May be, but is not limited thereto.
- the nanoantenna pattern of the present invention may be formed by arranging one or more nanoantennas.
- the width, length, and height of the nanoantenna may be 10 nm to 300 nm, 10 ⁇ m to 300 ⁇ m, and 10 nm to 300 nm, respectively, but are not limited thereto.
- by controlling the width, length and height of the nano-antenna in the above range it is possible to transmit and receive radio frequencies in various areas according to the size through the antenna of various sizes.
- One or more nanoantennas constituting the nanoantenna pattern of the present invention may be arranged at regular intervals, and the constant interval is not particularly limited, but may be preferably 10 nm to 300 nm.
- the nano-antennas are arranged at regular intervals of 10 nm to 300 nm to form nano-antenna patterns, thereby resonating at a radio frequency in a desired region, thereby enabling compatibility with other high-frequency devices.
- the material of the nanoantenna of the present invention can be used without limitation so long as it can transmit and receive external radio signals.
- the nanoantenna of the present invention may include, for example, a conductive material.
- the conductive material may be a metal material or a magnetic material.
- the metal material is at least one selected from the group consisting of Al, Pt, Pd, Ag, Cu, Au and alloys containing them
- the magnetic material is selected from the group consisting of Fe, Co, Ni and Gd.
- At least one metal, an alloy including the metal, or an oxide of the metal may be, but is not limited thereto.
- the alloy may be any alloy as long as the alloy includes at least one of the metal material and the magnetic material.
- the nanoantenna of the present invention is an omnidirectional antenna, and can measure all directions close to a circle in the horizontal plane of the electric field, but is not limited thereto.
- the nanoantenna of the present invention may transmit and receive a radio frequency (RF) of 0.5 GHz to 40 GHz, preferably 7.5 GHz to 13.4 GHz, but is not limited thereto.
- RF radio frequency
- the frequency of the RF is less than 0.5 GHz, the frequency is too low may cause problems in compatibility with other high frequency devices, if it exceeds 40 GHz, the frequency is too high also other high frequency devices This can cause problems with compatibility.
- the bandwidth of the nanoantenna may include a resonant frequency of the nanoantenna.
- the bandwidth of the nano-antenna in the present invention can reach up to 60% at the center frequency. That is, it can respond appropriately to the electromagnetic wave reacting in the frequency band within 60% of the said resonance frequency.
- the structure of the present invention may further comprise a dielectric layer formed between the outer surface of the micro container and the nanoantenna pattern.
- the dielectric layer of the present invention insulates the nanoantenna pattern from the micro container so that the nanoantenna pattern can function as an independent electronic module.
- the structure 2 of the present invention includes a porous micro container 10 having pores 13; A dielectric layer 13 formed on an outer surface of the porous micro container 10; And a nanoantenna pattern 11 on the dielectric layer, wherein the nanoantenna pattern 11 may be formed by arranging one or more nanoantennas 12.
- the thickness of the dielectric layer may be 10 nm to 300 nm, preferably 150 nm to 250 nm, but is not limited thereto. In the present invention, if the thickness of the dielectric layer is less than 10 nm, there is a fear that the insulation effect is insignificant due to breakdown when the dielectric layer is defective or the formation of a high electric field, if it exceeds 300 nm, it is too thick to be mechanical Damage may occur.
- the type of dielectric layer is not particularly limited, and any dielectric layer may be employed without limitation.
- a polymer having excellent insulation, corrosion resistance, hydrophobicity, and biocompatibility such as silicon oxides, silicon nitrides, or parylene-based polymers, may be used. It doesn't happen.
- the present invention also relates to a method of manufacturing a structure comprising forming a nanoantenna pattern on an outer surface of a porous microcontainer using a focused ion beam system.
- the details of the porous micro container and the nano antenna pattern are the same as described above.
- a porous micro container may be prepared or prepared.
- 3 is a view illustrating a process of preparing or preparing a porous micro container according to an embodiment of the present invention.
- a metal frame of a two-dimensional (planar) structure using photolithography [3. Park, J., Slanac, D., Leong, T., Ye, H., and Gracias, D. H., 'Reconfigurable microfluidics with metallic containers,' IEEE MEMS, 2008, 17 (2), pp. 265-271].
- the metal frame forms a basic skeleton of the micro container, and may be one or more metals selected from the group consisting of nickel, iron, copper, zinc, and gold, but is not limited thereto.
- a solder hinge is attached to all corner portions of the metal frame and heated to liquefy the solder.
- the surface tension of the liquefied solder can be used to self-assemble the micro container [5. Leong, T., Lester, P. A., Koh, T. L., Call, E. K., and Gracias, D. H., 'Surface tension-driven self-folding polyhedra,' Langmuir, 2007, 23, pp. 8747-8751].
- pores may be formed in the metal surface in the process of manufacturing a metal frame having a two-dimensional (planar) structure using photolithography.
- FIG. 4 is a view showing various shapes and pores of the porous micro container according to an embodiment of the present invention.
- the porous micro-container As described above, after manufacturing or preparing the porous micro-container according to the present invention, it may be performed to form a nano-antenna pattern on the outer surface of the porous micro-container using the FIB system.
- the conventional nanolithographic process using electron-beam lithography is a top-down method, which requires an additional removal process in addition to the deposition process.
- the FIB system is for manufacturing nanostructures, and can directly form nanostructures even in three-dimensional objects such as micro containers.
- the FIB system is widely known in the microelectronics field [6. Reyntjens, S., and Puers, R., ‘A review of focused ion beam applications in microsystem technology,’ J. Micromech. Microeng. 2001, 11, pp. 287-300], as with the present invention, the FIB system process for forming nanoantennas on the outer surface of a porous microcontainer was first discovered by the inventors.
- a conductive material for forming a nanoantenna is provided.
- the conductive material may be deposited on the outer surface of the porous micro-container through a gallium ion beam by introducing a gas, including Pt (CH 3 ) 3 , which includes platinum (Pt). Details of the conductive material are the same as described above.
- the current of the gallium ion beam may be 0.2 picoamps (pA) to 1000 picoamps (pA), but is not limited thereto.
- the porous micro container may be exposed to a gas including a gallium ion beam and a conductive material for 100 seconds to 500 seconds, but is not limited thereto.
- the method of manufacturing a structure of the present invention may further include forming a dielectric layer on the outer surface of the porous micro container before forming the nanoantenna pattern on the outer surface of the porous micro container.
- the nano antenna pattern can be insulated from the porous micro container to function as an independent electronic module.
- the step of forming the dielectric layer on the outer surface of the porous micro-container may be performed using Plasma Enhanced Chemical Vapor Deposition (PECVD), but is not limited thereto.
- PECVD Plasma Enhanced Chemical Vapor Deposition
- FIG. 5 is a schematic diagram illustrating a process of forming a dielectric layer on an outer surface of a porous micro container and forming a nanoantenna pattern using an FIB system on top of the dielectric layer according to an embodiment of the present invention.
- the invention also provides a structure according to the invention described above; And it relates to a drug carrier comprising a pharmaceutically active ingredient carried in the interior of the porous micro-container of the structure.
- the drug carrier of the present invention can release a drug at a desired time at a desired site inside a living body by using the aforementioned structure according to the present invention.
- the drug carrier of the present invention uses the structure according to the present invention, it is possible to receive the radio frequency transmitted from the outside through the nanoantenna pattern included in the structure.
- the nanoantenna pattern of the structure receives an external radio frequency, heat may be generated.
- the heat generated through the nanoantenna pattern may be transferred to the inside of the porous micro container, thereby releasing the pharmaceutically active ingredient contained in the inside of the porous micro container to the outside.
- the drug carrier of the present invention when placed in a desired area inside the living body, for example, cancer cell tissue, and transmits a radio frequency that the nanoantenna pattern can receive from the outside at a desired time for drug release, the porous micro
- the pharmaceutically active ingredient carried in the inside of the container can be released to achieve cancer cell therapeutic effect.
- the method of moving the drug carrier of the present invention to a desired site inside a living body can employ various means known in the art without limitation.
- the site within the living body to which the drug delivery system of the present invention is to be applied is not particularly limited, and may be any site requiring drug treatment.
- the kind of the pharmaceutically active ingredient which can be introduced into the drug carrier of the present invention is not particularly limited, and various kinds of ingredients known in the art can be used.
- examples of the pharmaceutically active ingredient include anti-cancer agents, antibiotics, hormones, hormonal antagonists, interleukin, interferon, growth factor, tumor necrosis factor, endotoxin, lymphokoxy, urokinase, streptokinase, tissue plasminogen activator, protease inhibitor, One or more selected from the group consisting of alkyl phosphocholine, radioisotope labeling substance, surfactant, cardiovascular drug, gastrointestinal drug and nervous system drug, but are not limited thereto.
- anticancer agent in the present invention epirubicin, docetaxel, gemcitabine, paclitaxel, cisplatin, carboplatin, taxol, procarbazine, cyclophosphamide, diactinomycin, daunorubicin, etoposide, One or more selected from the group consisting of taxoxifen, doxorubicin, mitomycin, mitomycin, bleomycin, flicomycin, transplatinum, vinblastine and methotrexate.
- the method of introducing such a pharmaceutically active ingredient into the construct of the present invention is not particularly limited, and may be introduced using, for example, a method of mixing the construct and the pharmaceutically active ingredient together in a suitable solvent. .
- the type of disease to which the drug delivery system of the present invention can be applied is not particularly limited, and for example, gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, colon cancer or Cervical cancer and the like.
- the use of the drug carrier of the present invention is not limited to the above diseases, and variously control the pharmaceutically active ingredient contained therein, and can be used for various purposes.
- the pharmaceutically active ingredient may be encapsulated with a hydrogel.
- the drug carrier of the present invention includes a pharmaceutically active ingredient encapsulated with a hydrogel, thereby preventing the pharmaceutically active ingredient from being easily released and controlling the release time to release at a desired time.
- the drug delivery system of the present invention can be encapsulated by hydrogel, so that even if the drug delivery system of the present invention is located at a desired site inside the living body, it will not be released arbitrarily.
- the nanoantenna pattern of the drug carrier When the drug carrier of the present invention is placed in a desired area inside the living body and transmits a radio frequency at an external time at which a drug is to be released, the nanoantenna pattern of the drug carrier generates heat while receiving the radio frequency. do. Heat generated in the nanoantenna pattern may be transferred to the porous micro container to melt the hydrogel supported therein. Accordingly, the pharmaceutically active ingredient encapsulated with the hydrogel may be released through the pores of the porous micro container.
- hydrogel that can encapsulate the pharmaceutically active ingredient in the present invention is not particularly limited and may be employed without limitation as long as it can melt by heat and have fluidity.
- gelatin or pluronic gel may be used as the hydrogel, but is not limited thereto.
- the method of introducing such a hydrogel into the structure of the present invention is not particularly limited.
- the hydrogel is loaded onto the structure containing the pharmaceutically active ingredient.
- a hydrogel can be introduce
- the present invention also relates to the above-described structure according to the present invention; And it relates to a thermotherapy complex comprising nanowires carried in the interior of the porous micro-container of the structure.
- thermotherapy complex of the present invention releases a nanowire at a desired time in a desired region inside a living body, and kills target cells through the nanowire to obtain a therapeutic effect.
- hypothermia refers to a cancer cell or the like that is weaker in heat than a normal cell, so that particles that can release heat are injected into the target site, and then heat the target cells. By killing means to cure.
- the composite for thermal therapy of the present invention uses the structure according to the present invention, it is possible to receive the radio frequency transmitted from the outside through the nanoantenna pattern included in the structure.
- the nanoantenna pattern of the structure receives an external radio frequency, heat may be generated. Heat generated through the nanoantenna pattern may be transferred to the inside of the porous micro container to heat the nanowires supported in the inside of the porous micro container to be discharged to the outside. The heated nanowires may be attached to target cells in vivo to be killed by heat.
- thermotherapy complex of the present invention when placed in a desired area of the living body, for example, cancer cell tissue, and transmits a radio frequency that the nanoantenna pattern can receive from the outside at a desired time for the thermotherapy.
- the nanowires supported in the interior of the porous micro-container are released in a heated state, thereby achieving cancer cell therapeutic effects.
- the method for transferring the thermotherapy complex of the present invention to a desired site inside a living body can employ various means known in the art without limitation.
- the site inside the living body to which the complex for thermal treatment of the present invention is to be applied is not particularly limited, and any site capable of thermal treatment may be used.
- the type of nanowires that can be introduced into the thermotherapy complex of the present invention is not particularly limited, and any conductive material capable of releasing heat can be used without limitation.
- at least one metal selected from the group consisting of Fe, Ni, Co, Gd, Ag, Au, Pt, Pd, Zn and Ti; An alloy comprising the metal; Oxide of the metal; Nitrides of the metals; Or a carbide of the metal, but is not limited thereto.
- the alloy is possible without limitation as long as it includes any one or more of the above metals.
- the method of introducing such a nanowire into the structure of the present invention is not particularly limited, and may be introduced using, for example, a method of mixing the structure and the nanowire together in a suitable dispersion solvent.
- the kind of disease to which the complex for treating heat of the present invention may be applied is not particularly limited, and for example, gastric cancer, lung cancer, breast cancer, ovarian cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, Colon cancer or cervical cancer, and the like.
- the use of the complex for thermal therapy of the present invention is not limited to the above diseases, it can be used in various applications that can be heated.
- the nanowires may be encapsulated with a hydrogel.
- the thermotherapy complex of the present invention includes a nanowire encapsulated with a hydrogel, thereby preventing the nanowires from being easily detached from the thermotherapy complex and controlling the release time to release at a desired time.
- thermotherapy complex of the present invention may encapsulate the nanowires with a hydrogel, so that the thermotherapy complex of the present invention may be freely detached even when the thermotherapy complex of the present invention is located at a desired site inside the living body.
- thermotherapy complex of the present invention When the thermotherapy complex of the present invention is placed in a desired area inside the living body, and transmits a radio frequency from the outside at the time to perform the thermotherapy, while the nano-antenna pattern of the thermotherapy complex receives the radio frequency, It generates heat. Heat generated in the nanoantenna pattern may be transferred to the porous micro container to melt the hydrogel supported therein. Accordingly, the nanowires encapsulated with the hydrogel may be released through the pores of the porous micro container. Since the nanowires are heated by heat transmitted from the nanoantenna pattern, the nanowires are released through the pores and then attached to target cells, for example, cancer cells, to induce death by heat of the cancer cells, thereby providing a heat treatment effect. You can reap.
- hydrogel capable of encapsulating nanowires
- any type of hydrogel may be used without limitation as long as it can melt by heat and have fluidity.
- gelatin or pluronic gel may be used as the hydrogel, but is not limited thereto.
- the method of introducing the hydrogel into the structure of the present invention is not particularly limited.
- the structure on which the nanowires are supported is placed in a container containing the hydrogel.
- a hydrogel can be introduce
- the present invention also provides a drug carrier according to the present invention described above; A biosensor unit located on an outer surface of the drug carrier to sense bioinformation inside the living body; A transmission module which receives the bio information from the bio sensor unit and wirelessly transmits the bio information to an external control unit through a nano antenna pattern formed on an outer surface of the drug carrier; A reception module wirelessly receiving a drug release signal corresponding to the bio information from the external controller through a nanoantenna pattern formed on an outer surface of the drug carrier; An external control unit wirelessly receiving bio information from the transmitting module and wirelessly transmitting a drug release signal corresponding to the bio information to the receiving module; And a power supply unit supplying power to the transmission module for the wireless transmission.
- the drug treatment device of the present invention obtains the bioinformation inside the living body using the above-described drug delivery system and transmits it to an external control unit, and the external control unit analyzes it and transmits a drug release signal corresponding to the bioinformation to the drug delivery unit, Drug treatment suitable for the biological environment can be performed.
- the drug carrier included in the drug treatment device of the present invention is the same as described above.
- the drug treatment device of the present invention may include a biosensor unit which is located on an outer surface of the drug carrier and detects bio information inside a living body.
- the biosensor may detect various bioinformation inside the living body such as a pH change in a living body or a change of a specific chemical.
- the specific kind of the biosensor unit is not particularly limited, and may be, for example, a pH sensor, a sensor for detecting a specific chemical, or a micro camera capable of capturing an image or a video.
- the drug treatment device of the present invention may include a transmission module that receives the bio information from the biosensor unit and wirelessly transmits the bio information to an external control unit through a nanoantenna pattern formed on an outer surface of the drug carrier.
- the drug treatment device of the present invention may include a receiving module for wirelessly receiving a drug release signal corresponding to the bio information from the external control unit through a nano-antenna pattern formed on the outer surface of the drug carrier.
- the drug treatment device of the present invention may include an external control unit which wirelessly receives bio information from the transmission module and wirelessly transmits a drug release signal corresponding to the bio information to the reception module.
- the external control unit may receive bio information in the living body, analyze the bio information, and transmit a drug release signal corresponding to the bio information to the receiving module, thereby enabling mutual communication between the external control unit and the drug delivery unit. That is, since the nanoantenna pattern of the present invention can transmit and receive radio frequency, communication with an external controller may be possible.
- Drug treatment device of the present invention may include a power supply for supplying power to the transmission module for the wireless transmission.
- the power supply unit may be a microchip-type cell or a biofuel cell attached to the outer surface of the drug carrier of the present invention, or may obtain energy through electromagnetic waves from the outside of the living body.
- the biofuel cell when using a biofuel cell attached to the outer surface of the drug carrier as a power supply unit, the biofuel cell may generate electricity using glucose, which is a biofuel present in a living body. have.
- the present invention is a thermotherapy complex according to the present invention described above;
- a biosensor unit located on an outer surface of the thermotherapy complex to sense bioinformation inside a living body;
- a transmission module which receives the bio information from the bio sensor unit and wirelessly transmits the bio information to an external control unit through a nanoantenna pattern formed on an outer surface of the thermotherapy complex;
- a receiving module for wirelessly receiving a nanowire emission signal corresponding to the bio information from the external controller through a nanoantenna pattern formed on an outer surface of the thermotherapy complex;
- An external control unit for wirelessly receiving bio information from the transmission module and wirelessly transmitting a nanowire emission signal corresponding to the bio information to the reception module;
- a power supply unit for supplying power to the transmission module for the wireless transmission.
- the thermal therapy apparatus of the present invention obtains bioinformation from the inside of a living body using the aforementioned thermal therapy complex and transmits the bioinformation to an external controller, and the external controller analyzes the nanowire emission signal corresponding to the bioinformation for thermal therapy. By transferring to the complex, a thermotherapy suitable for the living environment can be performed.
- thermotherapy complex included in the thermotherapy device of the present invention is the same as described above.
- the thermotherapy device of the present invention may include a biosensor unit that is located on an outer surface of the thermotherapy complex to sense bioinformation inside a living body.
- the biosensor may detect various bioinformation inside the living body such as a pH change in a living body or a change of a specific chemical substance.
- the specific kind of the biosensor unit is not particularly limited, and may be, for example, a pH sensor, a sensor for detecting a specific chemical, or a micro camera capable of capturing an image or a video.
- the apparatus for treating heat of the present invention may include a transmission module which receives the bio information from the biosensor unit and wirelessly transmits the bio information to an external control unit through a nanoantenna pattern formed on an outer surface of the thermotherapy complex.
- the apparatus for treating heat of the present invention may include a receiving module for wirelessly receiving a nanowire emission signal corresponding to the bio information from the external controller through a nanoantenna pattern formed on an outer surface of the thermotherapy complex.
- the apparatus for treating heat of the present invention may include an external control unit which wirelessly receives bio information from the transmission module and wirelessly transmits a nanowire emission signal corresponding to the bio information to the reception module.
- the external control unit may receive bio information in the living body, analyze the bio information, and transmit a nanowire emission signal corresponding to the bio information to the receiving module, thereby enabling mutual communication between the external control unit and the drug carrier. That is, since the nanoantenna pattern of the present invention enables transmission and reception of radio frequency, communication with an external controller may be possible.
- the thermal treatment apparatus of the present invention may include a power supply unit for supplying power to the transmission module for the wireless transmission.
- the power supply unit may be a microchip-type cell or a biofuel cell attached to the outer surface of the thermotherapy complex of the present invention, or may obtain energy through electromagnetic waves from the outside of the living body.
- thermotherapy device of the present invention when using a biofuel cell attached to an outer surface of a thermotherapy complex as a power source, the biofuel cell generates electricity using glucose, which is a biofuel present in a living body. You can.
- a nickel basic skeleton having a two-dimensional structure having pores having a mean diameter of 50 ⁇ m and a planar cross shape was prepared.
- a solder hinge was attached to all corner portions of the nickel base skeleton.
- the nickel base skeleton with solder hinge is then heated at a temperature of 100 ° C. for 3 minutes and then heated to 250 ° C. for 3 minutes to liquefy the solder and attach it using the surface tension of the liquefied solder.
- the hexahedral porous micro container was self-assembled.
- the volume of the porous micro container was 64,000,000 ⁇ m 3 .
- a dielectric layer was formed on the outer surface of the prepared porous micro container by coating silicon oxide having a thickness of 200 nm using Plasma Enhanced Chemical Vapor Deposition (PECVD).
- PECVD Plasma Enhanced Chemical Vapor Deposition
- a nanoantenna pattern was formed on the formed dielectric layer by using a focused ion beam induced metal deposition (FIB) system. Specifically, Pt containing a conductive material (platinum) while irradiating a dielectric layer formed on the outer surface of the porous micro container with a gallium ion beam having an energy of 25 keV, a beam current of 50 picoamps (pA) and a diameter of 10 nm. The (CH 3 ) 3 gas was passed through a gallium ion beam for 300 seconds to form a nanoantenna pattern having an area of about 0.07 ⁇ m 2 on the dielectric layer.
- FIB focused ion beam induced metal deposition
- Each nanoantenna constituting the nanoantenna pattern has a size of 80 nm ⁇ 100 ⁇ m ⁇ 100 nm (width ⁇ length ⁇ height), and the nanoantennas are arranged at regular intervals of 100 nm.
- FIG. 6 is an enlarged photograph of a field emission scanning microscopy (FESEM) image of the structure. As shown in FIG. 6, when the nanoantenna is enlarged clockwise from the upper left, it can be seen that the nanoantennas are arranged at regular intervals to form a nanoantenna pattern.
- FESEM field emission scanning microscopy
- HFSS manufactured by Ansoft
- Ansoft which is a high frequency electromagnetic simulator
- the accompanying Fig. 7 is a graph showing the reflection mode (S 11, reflection mode) of the structure measured by using the HFSS.
- the reflection mode was analyzed using microwave having a frequency of 100 MHz to 14 GHz.
- the nanoantenna pattern of Example 1 has a resonance frequency of 10.8 GHz and exhibits a return loss of ⁇ 10 dB within a frequency range of 7.5 GHz to 13.4 GHz.
- the bandwidth of the nanoantenna pattern was 49.3% at the center frequency of 10.8 GHz when compared to the frequency range of 7.5 GHz to 13.4 GHz.
- VNA vector network analyzer
- Agilent 8720 ES vector network analyzer
- the standard experimental setup was based on VNA and microstrip line connections for high frequency characteristics.
- the microstrip connection was measured using a ground-signal-ground probe. As shown in FIG. 8, it has a resonance frequency of about 10.8 GHz and exhibits a return loss of -29 dB.
- the standing wave ratio at the peak was 1.01, indicating ideal impedance matching. Impedance matching with external circuitry caused loss differences from the measured results.
- FIG. 9 is a diagram illustrating magnetization characteristics in an electric field plane of a structure. As shown in FIG. 9, the nanoantenna pattern included in the structure of the present invention exhibits the characteristics of an omnidirectional antenna, and is similar to one dipole antenna at a 90 ° position. Null was shown.
- FIG. 10 is a diagram showing magnetization characteristics in a magnetic field plane of the structure.
- the nanoantenna pattern included in the structure of the present invention exhibited the characteristics of a wide band microwave antenna, and the center frequency may be moved to a lower frequency.
- the antenna gain can be improved by making a longer periodic pattern of the nanoantenna pattern.
- the construct of the present invention can be used as a drug delivery device, a drug delivery device or a thermotherapy device.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Manufacturing & Machinery (AREA)
- Diabetes (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
본 발명은 나노 안테나를 포함하는 구조체, 이의 제조 방법, 이를 포함하는 약물 전달체, 온열 치료용 복합체, 약물 치료 장치 및 온열 치료 장치에 관한 것이다. 본 발명의 구조체는, 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴이 형성되어 있어, 외부에서 무선으로 제어가 가능하고, 이를 약물 전달체 및 온열 치료용 복합체로서 활용하는 경우, 생체 내부의 원하는 적용 부위에서 원하는 시간에 따라 약물 치료 및 온열 치료를 할 수 있다. 또한, 본 발명의 구조체는 나노 안테나를 통해 외부 제어부와 무선 신호의 송신 및 수신이 가능하므로, 생체 내부의 신호를 감지하여 외부 제어부에 전송하고, 외부 제어부로터 전송된 대응 신호에 따라 약물 또는 나노 와이어 등을 방출할 수 있다.
Description
본 발명은 나노 안테나를 포함하는 구조체, 이의 제조 방법, 이를 포함하는 약물 전달체, 온열 치료용 복합체, 약물 치료 장치 및 온열 치료 장치에 관한 것이다.
마이셀(micelles), 소낭(vesicles), 액적(droplets) 및 캡슐(capsules)과 같은 나노리터 크기의 화학 전달 시스템 및 장치는 아주 작은 부피의 시약을 가지고, 공간적, 시간적으로 제어되는 화학 분야가 가능하도록 한다. 상기 화학 전달 시스템은 화학 물질의 미세 방출, 국부적인 약물 전달, 생체 분자의 전달 및 온열 치료 등에 활용할 수 있다.
장래에는 다양한 기능이 하나의 화학 전달 시스템에 집적될 수 있을 것으로 예상된다. 상기 집적 가능한 기능들로서, 검출(sensing), 작동(actuation) 및 원격 측정(telemetry) 등을 들 수 있다. 상기 기능들을 달성하기 위한 하나의 방편으로서, 전달 장치의 외부 표면에 전기적이고, 광학적인 모듈을 제조하는 것을 들 수 있다.
현재, 다양한 나노 제조 기술을 활용하여 작은 크기로 집적된 모듈을 제조하는 것이 가능하다. 상기 모듈은 센서(sensor), 검출기(detector) 및 제어기(controller)로서 작동할 수 있다. 이러한 모듈은 크기가 작고, 전력 소비가 적으며, 적정 비용이 소모된다는 이점이 있지만, 거시적 규모에 적용하기에는 모험적이라는 문제가 있다. 그러나, 안테나와 같은 모듈은 무선 신호와 쉽게 연결될 수 있어, 상기 문제를 해결할 수 있다.
본 발명은 나노 안테나를 포함하는 구조체, 이의 제조 방법, 이를 포함하는 약물 전달체, 온열 치료용 복합체 및 치료 장치를 제공하는 것을 목적으로 한다.
본 발명은 상기 과제를 해결하기 위한 수단으로서, 다공성 마이크로 컨테이너; 및 상기 다공성 마이크로 컨테이너의 외부 표면에 형성된 나노 안테나 패턴을 포함하는 구조체를 제공한다.
본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, 집속이온빔 시스템(Focused Ion Beam System)을 이용하여 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴을 형성하는 단계를 포함하는 구조체의 제조 방법을 제공한다.
본 발명은 상기 과제를 해결하기 위한 또 다른 수단으로서, 본 발명에 따른 구조체; 및 상기 구조체의 다공성 마이크로 컨테이너 내부에 담지된 약제학적 활성 성분을 포함하는 약물 전달체를 제공한다.
본 발명은 상기 과제를 해결하기 위한 또 다른 수단으로서, 본 발명에 따른 구조체; 및 상기 구조체의 다공성 마이크로 컨테이너 내부에 담지된 나노 와이어를 포함하는 온열 치료용 복합체를 제공한다.
본 발명은 상기 과제를 해결하기 위한 또 다른 수단으로서, 본 발명에 따른 약물 전달체; 상기 약물 전달체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부; 상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈; 상기 외부 제어부로부터 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈; 상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부; 및 상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함하는, 약물 전달체를 이용한 약물 치료 장치를 제공한다.
본 발명은 상기 과제를 해결하기 위한 또 다른 수단으로서, 본 발명에 따른 온열 치료용 복합체; 상기 온열 치료용 복합체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부; 상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈; 상기 외부 제어부로부터 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈; 상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부; 및 상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함하는, 온열 치료용 복합체를 이용한 온열 치료 장치를 제공한다.
본 발명의 구조체는, 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴이 형성되어 있어, 외부에서 무선으로 제어가 가능하고, 이를 약물 전달체 및 온열 치료용 복합체로서 활용하는 경우, 생체 내부의 원하는 적용 부위에서 원하는 시간에 따라 약물 치료 및 온열 치료를 할 수 있다. 또한, 본 발명의 구조체는 나노 안테나를 통해 외부 제어부와 무선 신호의 송신 및 수신이 가능하므로, 생체 내부의 신호를 감지하여 외부 제어부에 전송하고, 외부 제어부로터 전송된 대응 신호에 따라 약물 또는 나노 와이어 등을 방출함으로써, 약물 치료 장치 또는 온열 치료 장치로서 활용될 수 있다.
도 1은 본 발명의 일 구체예에 따른 구조체의 구조를 나타내는 사시도이다.
도 2는 본 발명의 다른 구체예에 따른 구조체의 구조를 나타내는 사시도이다.
도 3은 본 발명의 일 구체예에 따른 다공성 마이크로 컨테이너의 제조 또는 준비 공정을 나타내는 모식도이다.
도 4는 본 발명의 다른 구체예에 따른 다공성 마이크로 컨테이너의 다양한 형상 및 기공을 나타내는 도면이다.
도 5는 본 발명의 일 구체예에 따라, 다공성 마이크로 컨테이너의 외부 표면에 유전체층을 형성하고, 상기 유전체층의 상부에 FIB 시스템을 이용하여 나노 안테나 패턴을 형성하는 과정을 나타내는 모식도이다.
도 6은 상기 구조체의 FESEM(Field Emission Scanning Microscopy) 이미지를 점차적으로 확대시킨 사진이다.
도 7은 High Frequency Structural Simulator(HFSS) 를 이용하여 측정한 본 발명의 일 구체예에 따른 구조체의 반사 모드(S11, reflection mode)를 나타내는 그래프이다.
도 8은 벡터 네트워크 분석기(vector network analyzer, VNA, Agilent 8720 ES)를 이용하여 측정한 본 발명의 일 구체예에 따른 구조체의 S-파라미터 실험 분석 결과를 나타내는 도면이다.
도 9는 본 발명의 일 구체예에 따른 구조체의 전계면(electric field plane)에서의 자화(magnetization) 특성을 나타내는 도면이다.
도 10은 본 발명의 일 구체예에 따른 구조체의 자계면(magnetic field plane)에서의 자화(magnetization) 특성을 나타내는 도면이다.
본 발명은 다공성 마이크로 컨테이너; 및 상기 다공성 마이크로 컨테이너의 외부 표면에 형성된 나노 안테나 패턴을 포함하는 구조체에 관한 것이다.
이하, 본 발명의 구조체를 첨부된 도면을 참조하여 구체적으로 설명한다.
첨부된 도 1 은 본 발명의 일 구체예에 따른 구조체의 구조를 나타내는 사시도이다. 도 1 에 나타난 바와 같이, 본 발명의 구조체(1)는, 기공(13)을 가지는 다공성 마이크로 컨테이너(10); 및 상기 다공성 마이크로 컨테이너(10)의 외부 표면에 형성된 나노 안테나 패턴(11)을 포함하고, 상기 나노 안테나 패턴(11)은 하나 이상의 나노 안테나(12)가 배열되어 형성될 수 있다.
첨부된 도 1 은 다공성 마이크로 컨테이너를 육면체로 도시하고 있지만, 본 발명의 다공성 마이크로 컨테이너의 형상은 특별히 한정되지 않고, 부피를 가지고 있어, 내부에 물질을 담지할 수 있는 형상이라면 제한 없이 채용할 수 있다. 본 발명에서는 예를 들면, 다공성 마이크로 컨테이너의 형상으로서, 다수의 면으로 둘러싸여 있는 다면체, 구형 또는 원통형을 들 수 있으나, 이에 제한되는 것은 아니다. 상기 다면체, 구형 및 원통형은 수학적 의미의 형상 뿐만 아니라, 상기 형상과 흡사한 형상까지 포함한다. 즉, 예를 들면, 구형은 완전한 구형 뿐만 아니라, 구형에 가까운 형상까지 포함하는 것이고, 원통형은 완전한 원통형 뿐만 아니라, 원통형에 가까운 형상까지 포함하는 것이다. 상기 다면체는 4개 이상의 면으로 둘러싸여 부피를 형성할 수 있는 형상을 의미한다.
본 발명에서 다공성 마이크로 컨테이너의 기본 골격, 즉 다공성 마이크로 컨테이너의 주요 재료는 특별히 한정되지 않고, 자성을 가지는 물질이라면 제한 없이 채용할 수 있다. 본 발명에서는 다공성 마이크로 컨테이너의 기본 골결으로, 예를 들면, 니켈, 철, 구리, 아연, 금, 이들의 합금 및 금 또는 페럴린(parylene)계 고분자로 코팅된 금속으로 이루어진 군으로부터 선택되는 하나 이상의 금속을 사용할 수 있고, 바람직하게는 인체에 해롭지 않은 금을 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 페럴린은 절연성, 내식성, 소수성 및 생체적합성의 특성을 가지고 있어, 금과 함께 그 자체가 인체에 유해하지 않기 때문에, 금 또는 페럴린으로 코팅된 금속의 종류는 특별히 한정되지 않고, 통상적인 금속 또는 금속 합금을 모두 사용할 수 있다.
본 발명의 다공성 마이크로 컨테이너는 자성 물질로 구성될 수 있기 때문에, 전자기장 영역에서 그 이동 및 제어가 가능할 수 있다.
본 발명의 다공성 마이크로 컨테이너의 내부 모서리, 즉 내부의 면과 면이 접하는 경계선에는 땜납 경첩(solder hinge)이 부착되어 있을 수 있다. 본 발명에서 상기 땜납 경첩은 다공성 마이크로 컨테이너의 제조 시, 땜납의 표면 장력을 이용하여 다공성 마이크로 컨테이너의 자가 조립(self-assembly)이 가능하도록 할 수 있다[3. Park, J., Slanac, D., Leong, T., Ye, H., and Gracias, D. H., 'Reconfigurable microfluidics with metallic containers,' IEEE MEMS, 2008, 17 (2), pp. 265-271].
본 발명의 다공성 마이크로 컨테이너의 부피는 10 ㎛3 내지 64,000,000 ㎛3, 바람직하게는 10 ㎛3 내지 1,000 ㎛3, 보다 바람직하게는 50 ㎛3 내지 100 ㎛3 일 수 있다. 상기 다공성 마이크로 컨테이너의 부피가 10 ㎛3 미만이면, 후술할 약제학적 활성 성분 또는 나노 와이어를 담지할 경우, 그 담지량이 너무 적을 수 있고, 64,000,000 ㎛3 을 초과하면, 생체 내에서 이동 시 큰 유체 저항을 받아 이동이 원활하지 못할 우려가 있다.
본 발명의 다공성 마이크로 컨테이너는 첨부된 도 1 에 나타난 바와 같이, 기공을 가지며, 상기 기공의 평균 직경은 0.1 ㎛ 내지 50 ㎛, 바람직하게는 0.2 ㎛ 내지 30 ㎛, 보다 바람직하게는 0.5 ㎛ 내지 20 ㎛일 수 있다. 본 발명에서는 상기 기공의 평균 직경을 상기 범위 내로 제어함으로써, 다공성 마이크로 컨테이너의 기공을 통한 후술할 약제학적 활성 성분 또는 나노 와이어의 담지 및 방출이 원활하게 이루어질 수 있도록 할 수 있다.
본 발명의 구조체는 외부의 무선 신호를 통한 원격 제어가 가능하도록 하기 위하여, 상기 다공성 마이크로 컨테이너의 외부 표면에 형성된 나노 안테나 패턴을 포함할 수 있다.
본 발명의 나노 안테나 패턴은 상기 다공성 마이크로 컨테이너의 외부 표면에 0.01 ㎛2 내지 0.5 ㎛2, 바람직하게는 0.03 ㎛2 내지 0.3 ㎛2, 보다 바람직하게는 0.05 ㎛2 내지 0.1 ㎛2의 넓이로 형성될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 나노 안테나 패턴은 하나 이상의 나노 안테나가 배열되어 형성될 수 있다. 상기 나노 안테나의 가로, 세로 및 높이는 각각 10 nm 내지 300 nm, 10 ㎛ 내지 300 ㎛ 및 10 nm 내지 300 nm일 수 있으나, 이에 제한되는 것은 아니다. 본 발명에서는 나노 안테나의 가로, 세로 및 높이를 상기 범위로 제어함으로써, 다양한 크기의 안테나를 통해 크기에 따른 다양한 영역의 무선 주파수를 송신 및 수신할 수 있도록 할 수 있다.
본 발명의 나노 안테나 패턴을 구성하는 하나 이상의 나노 안테나는 일정한 간격으로 배열될 수 있고, 상기 일정한 간격은 특별히 한정되지 않지만, 바람직하게는 10 nm 내지 300 nm일 수 있다. 본 발명에서는 나노 안테나를 10 nm 내지 300 nm의 일정한 간격으로 배열하여 나노 안테나 패턴을 형성함으로써, 원하는 영역의 무선 주파수에서 공진하여 차후 다른 고주파수의 장치들과 호환성을 기질 수 있다.
본 발명의 나노 안테나의 재료는 외부의 무선 신호를 송신 및 수신할 수 있는 것이라면 제한 없이 채용할 수 있다. 본 발명의 나노 안테나는 예를 들면, 전도성 물질을 포함할 수 있다.
본 발명에서 상기 전도성 물질은 금속 물질 또는 자성 물질일 수 있다. 본 발명에서 상기 금속 물질은 Al, Pt, Pd, Ag, Cu, Au 및 이들을 포함하는 합금으로 이루어진 군으로부터 선택되는 하나 이상이고, 상기 자성 물질은 Fe, Co, Ni 및 Gd로 이루어진 군으로부터 선택되는 하나 이상의 금속, 상기 금속을 포함하는 합금 또는 상기 금속의 산화물일 수 있으나, 이에 제한되는 것은 아니다. 상기 합금은 상기 금속 물질이나 상기 자성 물질 중 어느 하나 이상을 포함하는 합금이라면, 제한 없이 가능하다.
본 발명의 나노 안테나는 무지향성 안테나(omnidirectional antenna)로서, 전기장의 수평면에서 원형에 가까운 모든 방향성을 띨 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 나노 안테나는 0.5 GHz 내지 40 GHz, 바람직하게는 7.5 GHz 내지 13.4 GHz의 무선 주파수(Radio Frequency, RF)를 송신 및 수신할 수 있으나, 이에 제한되는 것은 아니다. 본 발명에서 상기 RF의 주파수가 0.5 GHz 미만이면, 주파수가 너무 낮아 다른 고주파수의 장치들과의 호환성에 있어서 문제가 야기 될 수 있고, 40 GHz를 초과하면, 주파수가 너무 높아 역시 다른 고주파수의 장치들과의 호환성에 있어서 문제가 야기 될 수 있다.
본 발명에서 나노 안테나의 대역폭(bandwidth)은 상기 나노 안테나의 공명 주파수(resonant frequency)를 포함할 수 있다. 상기 나노 안테나의 공명 주파수를 포함하는 대역폭을 사용함으로써, 후술할 약물 치료 및 온열 치료의 효과를 극대화할 수 있다.
또한, 상기 공명 주파수(resonant frequency)를 중심 주파수(centre frequency)로 설정할 경우, 본 발명에서 나노 안테나의 대역폭은 중심 주파수에서 60%까지 도달할 수 있다. 즉, 상기 공명 주파수의 60% 이내의 주파수 대역에서 반응하는 전자기파에 대해서 적절하게 반응할 수 있다.
본 발명의 구조체는 마이크로 컨테이너의 외부 표면 및 나노 안테나 패턴 사이에 형성된 유전체층(dielectric layer)을 추가로 포함할 수 있다. 본 발명의 상기 유전체층은 나노 안테나 패턴을 마이크로 컨테이너로부터 절연시켜 상기 나노 안테나 패턴이 독립적인 전자 모듈로서의 기능을 수행할 수 있도록 도와준다.
첨부된 도 2 는 본 발명의 다른 구체예에 따른 구조체의 구조를 나타내는 사시도이다. 도 2 에 나타난 바와 같이, 본 발명의 구조체(2)는, 기공(13)을 가지는 다공성 마이크로 컨테이너(10); 상기 다공성 마이크로 컨테이너(10)의 외부 표면에 형성된 유전체층(13); 및 상기 유전체층 상부의 나노 안테나 패턴(11)을 포함하고, 상기 나노 안테나 패턴(11)은 하나 이상의 나노 안테나(12)가 배열되어 형성될 수 있다.
본 발명에서 유전체층의 두께는 10 nm 내지 300 nm, 바람직하게는 150 nm 내지 250 nm일 수 있으나, 이에 제한되는 것은 아니다. 본 발명에서 상기 유전체층의 두께가 10 nm 미만이면, 너무 얇아서 유전체층의 결함시 또는 높은 전기장의 형성시 브레이크 다운(breakdown)에 의해 절연 효과가 미미할 우려가 있고, 300 nm를 초과하면, 너무 두꺼워서 기계적인 손상이 발생할 우려가 있다.
본 발명에서 유전체층의 종류는 특별히 한정되지 않고, 절연성이 우수한 것이라면 제한 없이 채용할 수 있다. 본 발명에서는 예를 들면, 유전체층으로서 규소 산화물(silicon oxides), 질화 규소(silicon nitrides) 또는 페럴린(parylene)계 고분자와 같은 절연성, 내식성, 소수성 및 생체적합성이 우수한 고분자를 사용할 수 있으나, 이에 제한되는 것은 아니다.
본 발명은 또한, 집속이온빔 시스템(Focused Ion Beam System)을 이용하여 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴을 형성하는 단계를 포함하는 구조체의 제조 방법에 관한 것이다.
상기 구조체의 제조 방법에 있어서, 다공성 마이크로 컨테이너 및 나노 안테나 패턴에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명에 따른 구조체를 제조하기 위해서는, 우선 다공성 마이크로 컨테이너를 제조 또는 준비할 수 있다. 첨부된 도 3 은 본 발명의 일 구체예에 따른 다공성 마이크로 컨테이너의 제조 또는 준비 공정을 나타내는 도면이다.
본 발명에서는 상기 마이크로 컨테이너의 제조 또는 준비 공정을 위해, 포토리소그래피를 이용하여 2차원(평면) 구조의 금속 틀을 제작할 수 있다 [3. Park, J., Slanac, D., Leong, T., Ye, H., and Gracias, D. H., 'Reconfigurable microfluidics with metallic containers,' IEEE MEMS, 2008, 17 (2), pp. 265-271]. 상기 금속 틀은 마이크로 컨테이너의 기본 골격을 이루고, 니켈, 철, 구리, 아연 및 금으로 이루어진 군으로부터 선택되는 하나 이상의 금속일 수 있으나, 이에 제한되는 것은 아니다.
상기 2차원(평면) 구조의 금속 틀을 제작한 후, 상기 금속 틀의 모든 모서리 부분에 땜납 경첩을 부착하고, 가열하여 상기 땜납을 액화시킨다. 상기 액화된 땜납의 표면 장력을 이용하여 마이크로 컨테이너를 자가 조립할 수 있다 [5. Leong, T., Lester, P. A., Koh, T. L., Call, E. K., and Gracias, D. H., 'Surface tension-driven self-folding polyhedra,' Langmuir, 2007, 23, pp. 8747-8751].
본 발명에서 상기 마이크로 컨테이너에 다공성을 부여하기 위하여, 포토리소그래피를 이용하여 2차원(평면) 구조의 금속 틀을 제작하는 과정에서 금속 면에 기공을 형성시킬 수 있다.
첨부된 도 4 는 본 발명의 일 구체예에 따른 다공성 마이크로 컨테이너의 다양한 형상 및 기공을 나타내는 도면이다.
상기와 같이, 본 발명에 따른 다공성 마이크로 컨테이너를 제조 또는 준비한 후, FIB 시스템을 이용하여 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴을 형성하는 단계를 수행할 수 있다.
종래의 전자-빔 리소그래피를 이용한 나노리소그래픽 공정은 탑-다운(top-down) 방식으로서, 증착 공정 이외에 추가적인 제거 공정이 요한다는 단점이 있었다. 그러나, FIB 시스템은 나노 구조체를 제조하기 위한 것으로, 마이크로 컨테이너와 같은 3차원 물체에서 조차도 나노 구조체를 직접 형성할 수 있다. 상기 FIB 시스템은 마이크로일렉트로닉스 분야에서 넓리 알려져 있으나[6. Reyntjens, S., and Puers, R., ‘A review of focused ion beam applications in microsystem technology,’J. Micromech. Microeng. 2001, 11, pp. 287-300], 본 발명과 같이, 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나를 형성하기 위한 FIB 시스템 공정은 본 발명자에 의해 처음으로 밝혀졌다.
본 발명에서는 구체적으로, 20 keV 내지 30 keV의 에너지 및 약 5 nm 내지 20 nm의 직경을 가지는 갈륨 이온 빔(ion beam)을 다공성 마이크로 컨테이너의 외부 표면에 조사하면서, 나노 안테나를 형성할 전도성 물질을 포함하는 기체, 예를 들면, 백금(Pt)을 포함하는 Pt(CH3)3 가스를 투입하여, 갈륨 이온 빔을 통해 상기 전도성 물질을 다공성 마이크로 컨테이너의 외부 표면에 증착시킬 수 있다. 상기 전도성 물질에 대한 구체적인 내용은 전술한 바와 동일하다.
상기 증착 과정 동안, 갈륨 이온 빔의 전류는 0.2 피코암페어(pA) 내지 1000 피코암페어(pA)일 수 있으나, 이에 제한되는 것은 아니다.
상기 증착 공정을 통해 나노 안테나 패턴을 형성하기 위해서, 다공성 마이크로 컨테이너는 100 초 내지 500 초 동안 갈륨 이온 빔 및 전도성 물질을 포함하는 기체에 노출될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 구조체 제조 방법은 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴을 형성하기 전에, 다공성 마이크로 컨테이너의 외부 표면에 유전체층을 형성하는 단계를 추가로 포함할 수 있다.
본 발명에서는 다공성 마이크로 컨테이너의 외부 표면에 유전체층을 먼저 형성한 후, 상기 유전체층의 상부에 나노 안테나 패턴을 형성함으로써, 나노 안테나 패턴을 다공성 마이크로 컨테이너로부터 절연시켜 독립적인 전자 모듈로서 기능할 수 있도록 한다.
본 발명의 구조체 제조 방법에서 상기 유전체층에 대한 구체적인 내용은 전술한 바와 동일하다.
본 발명에서 다공성 마이크로 컨테이너의 외부 표면에 유전체층을 형성하는 단계는 Plasma Enhanced Chemical Vapor Deposition(PECVD)을 이용하여 수행될 수 있으나, 이에 제한되는 것은 아니다.
첨부된 도 5 는 본 발명의 일 구체예에 따라, 다공성 마이크로 컨테이너의 외부 표면에 유전체층을 형성하고, 상기 유전체층의 상부에 FIB 시스템을 이용하여 나노 안테나 패턴을 형성하는 과정을 나타내는 모식도이다.
본 발명은 또한, 전술한 본 발명에 따른 구조체; 및 상기 구조체의 다공성 마이크로 컨테이너의 내부에 담지된 약제학적 활성 성분을 포함하는 약물 전달체에 관한 것이다.
본 발명의 약물 전달체는, 본 발명에 따른 전술한 구조체를 이용함으로써, 생체 내부의 원하는 부위에서 원하는 시간에 따라 약물을 방출할 수 있다.
구체적으로, 본 발명의 약물 전달체는 본 발명에 따른 구조체를 이용하기 때문에, 구조체에 포함되는 나노 안테나 패턴을 통해 외부에서 송신한 무선 주파수를 수신할 수 있다. 상기 구조체의 나노 안테나 패턴이 외부의 무선 주파수를 수신하게 되면, 열을 발생시킬 수 있다. 상기 나노 안테나 패턴을 통해 발생된 열은 다공성 마이크로 컨테이너의 내부로 전달되어, 다공성 마이크로 컨테이너의 내부에 담지된 약제학적 활성 성분을 외부로 방출하도록 할 수 있다.
이에 따라, 본 발명의 약물 전달체를 생체 내부의 원하는 부위, 예를 들면, 암세포 조직에 위치시키고, 약물 방출을 원하는 시간에 외부에서 나노 안테나 패턴이 수신할 수 있는 무선 주파수를 송신하게 되면, 다공성 마이크로 컨테이너의 내부에 담지된 약제학적 활성 성분이 방출되어, 암세포 치료 효과를 거둘 수 있다.
본 발명의 약물 전달체를 생체 내부의 원하는 부위에 이동시키는 방법은 이 분야에서 공지된 다양한 수단을 제한 없이 채용할 수 있다. 또한, 본 발명의 약물 전달체를 적용하고자 하는 생체 내부의 부위는 특별히 한정되지 않고, 약물 치료가 필요한 모든 부위일 수 있다.
본 발명의 약물 전달체 내에 도입될 수 있는 약제학적 활성 성분의 종류는 특별히 한정되지 않고, 이 분야에서 공지된 각종의 성분을 모두 사용할 수 있다. 본 발명에서는 상기 약제학적 활성 성분의 예로서, 항암제, 항생제, 호르몬, 호르몬 길항제, 인터루킨, 인터페론, 성장 인자, 종양 괴사 인자, 엔도톡신, 림포톡시, 유로키나제, 스트렙토키나제, 조직 플라스마노겐 활성제, 프로테아제 저해제, 알킬포스포콜린, 방사선 동위원소 표지 물질, 계면활성제, 심혈관계 약물, 위장관계 약물 및 신경계 약물로 이루어진 군으로부터 선택되는 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 항암제의 구체적인 예로는, 에피루비신, 도세탁셀, 젬시타빈, 파클리탁셀, 시스플라틴, 카르보플라틴, 택솔, 프로카르바진, 시클로포스파미드, 디악티노마이신, 다우노루비신, 에토포시드, 탁목시펜, 독소루비신, 미토마이신, 블레오마이신, 플리코마이신, 트랜스플라티눔, 빈블라스틴 및 메토트렉세이트로 이루어진 군으로부터 선택되는 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 약제학적 활성 성분을 본 발명의 구조체에 도입하는 방법은 특별히 한정되지 않고, 예를 들면, 적절한 용매 내에서 상기 구조체 및 약제학적 활성 성분을 함께 혼합하는 방법 등을 사용하여 도입할 수 있다.
또한, 상기 본 발명의 약물 전달체가 적용될 수 있는 질병의 종류는 특별히 한정되지 않고, 예를 들면, 위암, 페암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 결장암 또는 자궁경부암 등을 들 수 있다. 그러나, 본 발명의 약물 전달체의 용도는 상기 질병에 한정되지 않고, 내부에 함유되는 약제학적 활성 성분을 다양하게 조절하여, 각종 용도로 사용될 수 있다.
본 발명에서 상기 약제학적 활성 성분은 하이드로젤(hydrogel)로 봉지되어 있을 수 있다. 본 발명의 약물 전달체는 하이드로젤로 봉지되어 있는 약제학적 활성 성분을 포함함으로써, 약제학적 활성 성분이 쉽게 방출되는 것을 방지하고, 원하는 시간에 방출할 수 있도록 방출 시간을 제어할 수 있다.
구체적으로, 본 발명의 약물 전달체는 하이드로젤로 약제학적 활성 성분을 봉지함으로써, 본 발명의 약물 전달체가 생체 내부의 원하는 부위에 위치하더라도, 자의적으로 방출되지 않도록 할 수 있다.
본 발명의 약물 전달체를 생체 내부의 원하는 부위에 위치시킨 후, 약물을 방출하고자 하는 시간에 외부에서 무선 주파수를 송신하게 되면, 약물 전달체의 나노 안테나 패턴이 상기 무선 주파수를 수신하면서, 열을 발생하게 된다. 상기 나노 안테나 패턴에서 발생한 열은 다공성 마이크로 컨테이너로 전달되어, 그 내부에 담지된 하이드로젤을 녹일 수 있다. 이에 따라, 하이드로젤로 봉지되어 있던 약제학적 활성 성분이 다공성 마이크로 컨테이너의 기공을 통해 방출될 수 있다.
본 발명에서 약제학적 활성 성분을 봉지할 수 있는 하이드로젤의 구체적인 종류는 특별히 한정되지 않고, 열에 의해 녹아 유동성을 가질 수 있는 것이라면 제한 없이 채용할 수 있다. 본 발명에서는 예를 들면, 하이드로젤로서 젤라틴(gelatin) 또는 플루로닉 젤(pluronic gel)을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 하이드로젤을 본 발명의 구조체에 도입하는 방법은 특별히 한정되지 않고, 예를 들면, 약제학적 활성 성분을 본 발명의 구조체에 담지한 후, 상기 약제학적 활성 성분이 담지된 구조체를 하이드로젤이 담겨진 용기에 넣음으로써, 하이드로젤을 본 발명의 구조체에 도입할 수 있다.
본 발명은 또한, 본 발명에 따른 전술한 구조체; 및 상기 구조체의 다공성 마이크로 컨테이너의 내부에 담지된 나노 와이어를 포함하는 온열 치료용 복합체에 관한 것이다.
본 발명의 온열 치료용 복합체는, 본 발명에 따른 전술한 구조체를 이용함으로써, 생체 내부의 원하는 부위에서 원하는 시간에 따라 나노 와이어를 방출하고, 상기 나노 와이어를 통해 타겟 세포를 사멸시켜 치료 효과를 얻을 수 있다.
본 명세서에서 사용되는 용어인 "온열 치료(hyperthermia)"는 암 세포 등이 정상 세포에 비해 열에 약하다는 점을 이용하여 열을 방출할 수 있는 입자를 타겟 부위에 투입한 후, 열에 의해 타겟 세포를 사멸시킴으로써 치료하는 것을 의미한다.
구체적으로, 본 발명의 온열 치료용 복합체는 본 발명에 따른 구조체를 이용하기 때문에, 구조체에 포함되는 나노 안테나 패턴을 통해 외부에서 송신한 무선 주파수를 수신할 수 있다. 상기 구조체의 나노 안테나 패턴이 외부의 무선 주파수를 수신하게 되면, 열을 발생시킬 수 있다. 상기 나노 안테나 패턴을 통해 발생된 열은 다공성 마이크로 컨테이너의 내부로 전달되어, 다공성 마이크로 컨테이너의 내부에 담지된 나노 와이어를 가열시켜 외부로 방출하도록 할 수 있다. 상기 가열된 나노 와이어는 생체 내의 타겟 세포에 부착되어 열에 의해 사멸되도록 할 수 있다.
이에 따라, 본 발명의 온열 치료용 복합체를 생체 내부의 원하는 부위, 예를 들면, 암세포 조직에 위치시키고, 온열 치료를 원하는 시간에 외부에서 상기 나노 안테나 패턴이 수신할 수 있는 무선 주파수를 송신하게 되면, 다공성 마이크로 컨테이너의 내부에 담지된 나노 와이어가 가열된 상태로 방출되어, 암세포 치료 효과 등을 거둘 수 있다.
본 발명의 온열 치료용 복합체를 생체 내부의 원하는 부위에 이동시키는 방법은 이 분야에서 공지된 다양한 수단을 제한 없이 채용할 수 있다. 또한, 본 발명의 온열 치료용 복합체를 적용하고자 하는 생체 내부의 부위는 특별히 한정되지 않고, 온열 치료가 가능한 모든 부위일 수 있다.
본 발명의 온열 치료용 복합체 내에 도입될 수 있는 나노 와이어의 종류는 특별히 한정되지 않고, 열을 방출할 수 있는 전도성 물질이라면, 제한 없이 사용할 수 있다. 본 발명에서는 상기 나노 와이어의 예로서, Fe, Ni, Co, Gd, Ag, Au, Pt, Pd, Zn 및 Ti으로 이루어진 군으로부터 선택되는 하나 이상의 금속; 상기 금속을 포함하는 합금; 상기 금속의 산화물; 상기 금속의 질화물; 또는 상기 금속의 탄화물을 들 수 있으나, 이에 제한되는 것은 아니다. 상기 합금은 상기 금속 중 어느 하나 이상을 포함하는 것이라면 제한 없이 가능하다.
상기와 같은 나노 와이어를 본 발명의 구조체에 도입하는 방법은 특별히 한정되지 않고, 예를 들면, 적절한 분산 용매 내에서 상기 구조체 및 나노 와이어를 함께 혼합하는 방법 등을 사용하여 도입할 수 있다.
또한, 상기 본 발명의 온열 치료용 복합체가 적용될 수 있는 질병의 종류는 특별히 한정되지 않고, 예를 들면, 위암, 페암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 결장암 또는 자궁경부암 등을 들 수 있다. 그러나, 본 발명의 온열 치료용 복합체의 용도는 상기 질병에 한정되지 않고, 온열 치료가 가능한 각종 용도로 사용될 수 있다.
본 발명에서 상기 나노 와이어는 하이드로젤(hydrogel)로 봉지되어 있을 수 있다. 본 발명의 온열 치료용 복합체는 하이드로젤로 봉지되어 있는 나노 와이어를 포함함으로써, 나노 와이어가 온열 치료용 복합체로부터 쉽게 이탈되는 것을 방지하고, 원하는 시간에 방출할 수 있도록 방출 시간을 제어할 수 있다.
구체적으로, 본 발명의 온열 치료용 복합체는 하이드로젤로 나노 와이어를 봉지함으로써, 본 발명의 온열 치료용 복합체가 생체 내부의 원하는 부위에 위치하더라도, 자의적으로 이탈되지 않도록 할 수 있다.
본 발명의 온열 치료용 복합체를 생체 내부의 원하는 부위에 위치시킨 후, 온열 치료를 하고자 하는 시간에 외부에서 무선 주파수를 송신하게 되면, 온열 치료용 복합체의 나노 안테나 패턴이 상기 무선 주파수를 수신하면서, 열을 발생하게 된다. 상기 나노 안테나 패턴에서 발생한 열은 다공성 마이크로 컨테이너로 전달되어, 그 내부에 담지된 하이드로젤을 녹일 수 있다. 이에 따라, 하이드로젤로 봉지되어 있던 나노 와이어가 다공성 마이크로 컨테이너의 기공을 통해 방출될 수 있다. 상기 나노 와이어는 나노 안테나 패턴으로부터 전달된 열에 의해 가열되어 있기 때문에, 상기 기공을 통해 방출된 후, 타겟 세포, 예를 들면, 암세포 등에 부착되어, 상기 암세포의 열에 의한 사멸을 유도하여 온열 치료 효과를 거둘 수 있다.
본 발명에서 나노 와이어를 봉지할 수 있는 하이드로젤의 구체적인 종류는 특별히 한정되지 않고, 열에 의해 녹아 유동성을 가질 수 있는 것이라면 제한 없이 채용할 수 있다. 본 발명에서는 예를 들면, 하이드로젤로서 젤라틴(gelatin) 또는 플루로닉 젤(pluronic gel)을 사용할 수 있으나, 이에 제한되는 것은 아니다.
상기와 같은 하이드로젤을 본 발명의 구조체에 도입하는 방법은 특별히 한정되지 않고, 예를 들면, 나노 와이어를 본 발명의 구조체에 담지한 후, 상기 나노 와이어가 담지된 구조체를 하이드로젤이 담긴 용기에 넣음으로써, 하이드로젤을 본 발명의 구조체에 도입할 수 있다.
본 발명은 또한, 전술한 본 발명에 따른 약물 전달체; 상기 약물 전달체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부; 상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈; 상기 외부 제어부로부터 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈; 상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부; 및 상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함하는, 약물 전달체를 이용한 약물 치료 장치에 관한 것이다.
본 발명의 약물 치료 장치는 전술한 약물 전달체를 이용하여 생체 내부의 바이오 정보를 입수하여 이를 외부 제어부로 전송하고, 외부 제어부는 이를 분석하여 바이오 정보에 대응하는 약물 방출 신호를 약물 전달체에 전송하여, 생체 환경에 적합한 약물 치료를 수행할 수 있다.
본 발명의 약물 치료 장치에 포함되는 약물 전달체는 전술한 바와 동일하다.
본 발명의 약물 치료 장치는 상기 약물 전달체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부를 포함할 수 있다. 상기 바이오 센서부는 생체 내부의 pH 변화 또는 특정 화학 물질의 변화 등 생체 내부의 다양한 바이오 정보를 감지할 수 있다. 본 발명에서 상기 바이오 센서부의 구체적인 종류는 특별히 한정되지 않고, 예를 들면, pH 센서, 특정 화학 물질을 탐지하는 센서 또는 이미지나 동영상을 촬영할 수 있는 마이크로 카메라 등 일 수 있다.
본 발명의 약물 치료 장치는 상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈을 포함할 수 있다.
또한, 본 발명의 약물 치료 장치는 상기 외부 제어부로부터 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈을 포함할 수 있다.
본 발명의 약물 치료 장치는 상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부를 포함할 수 있다. 상기 외부 제어부는 생체 내부의 바이오 정보를 전송 받아, 이를 분석하고, 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 수신 모듈로 전송함으로써, 외부 제어부와 약물 전달체 간의 상호 통신이 가능할 수 있다. 즉, 본 발명의 나노 안테나 패턴은 무선 주파수의 송신 및 수신이 가능하기 때문에, 외부 제어부와의 통신이 가능할 수 있다.
본 발명의 약물 치료 장치는 상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함할 수 있다. 상기 전원부는 본 발명의 약물 전달체의 외부 표면에 부착되어 있는 마이크로 칩 형태의 전지 또는 바이오 연료전지(biofuel cell)일 수 있거나, 생체 외부로부터 전자기파를 통해 에너지를 획득할 수 도 있다.
본 발명의 약물 치료 장치에서, 전원부로서 약물 전달체의 외부 표면에 부착되어 있는 바이오 연료전지를 사용할 경우, 상기 바이오 연료전지는 생체 내에 존재하는 바이오 연료인 포도당(glucose)을 이용하여 전기를 발생시킬 수 있다.
또한, 본 발명은 전술한 본 발명에 따른 온열 치료용 복합체; 상기 온열 치료용 복합체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부; 상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈; 상기 외부 제어부로부터 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈; 상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부; 및 상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함하는, 온열 치료용 복합체를 이용한 온열 치료 장치에 관한 것이다.
본 발명의 온열 치료 장치는 전술한 온열 치료용 복합체를 이용하여 생체 내부의 바이오 정보를 입수하여 이를 외부 제어부로 전송하고, 외부 제어부는 이를 분석하여 바이오 정보에 대응하는 나노 와이어 방출 신호를 온열 치료용 복합체에 전송하여, 생체 환경에 적합한 온열 치료를 수행할 수 있다.
본 발명의 온열 치료 장치에 포함되는 온열 치료용 복합체는 전술한 바와 동일하다.
본 발명의 온열 치료 장치는 상기 온열 치료용 복합체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부를 포함할 수 있다. 상기 바이오 센서부는 생체 내부의 pH 변화 또는 특정 화학 물질의 변화 등 생체 내부의 다양한 바이오 정보를 감지할 수 있다. 본 발명에서 상기 바이오 센서부의 구체적인 종류는 특별히 한정되지 않고, 예를 들면, pH 센서, 특정 화학 물질을 탐지하는 센서 또는 이미지나 동영상을 촬영할 수 있는 마이크로 카메라 등 일 수 있다.
본 발명의 온열 치료 장치는 상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈을 포함할 수 있다.
또한, 본 발명의 온열 치료 장치는 상기 외부 제어부로부터 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈을 포함할 수 있다.
본 발명의 온열 치료 장치는 상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부를 포함할 수 있다. 상기 외부 제어부는 생체 내부의 바이오 정보를 전송 받아, 이를 분석하고, 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 수신 모듈로 전송함으로써, 외부 제어부와 약물 전달체 간의 상호 통신이 가능할 수 있다. 즉, 본 발명의 나노 안테나 패턴은 무선 주파수의 송신 및 수신이 가능하기 때문에, 외부 제어부와의 통신이 가능할 수 있다.
본 발명의 온열 치료 장치는 상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함할 수 있다. 상기 전원부는 본 발명의 온열 치료용 복합체의 외부 표면에 부착되어 있는 마이크로 칩 형태의 전지 또는 바이오 연료전지(biofuel cell)일 수 있거나, 생체 외부로부터 전자기파를 통해 에너지를 획득할 수 도 있다.
본 발명의 온열 치료 장치에서, 전원부로서 온열 치료용 복합체의 외부 표면에 부착되어 있는 바이오 연료전지를 사용할 경우, 상기 바이오 연료전지는 생체 내에 존재하는 바이오 연료인 포도당(glucose)을 이용하여 전기를 발생시킬 수 있다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
(1) 마이크로 컨테이너의 제조 내지 준비
포토리소그래피를 이용하여 첨부된 도 3(a)와 같이, 평균 직경이 50 ㎛인 기공 및 평면 십자 형태를 가지는 2차원 구조의 니켈 기본 골격을 제조하였다. 그 후, 첨부된 도 3(b)와 같이, 니켈 기본 골격의 모든 모서리 부분에 땜납 경첩을 부착하였다. 이어서, 땜납 경첩이 부착된 니켈 기본 골격을 100℃의 온도에서 3 분 동안 가열한 후, 250℃까지 3 분에 걸쳐 가열하여, 땜납을 액화시키고, 액화된 땜납의 표면 장력을 이용하여 첨부된 도 3(c)와 같이, 육면체 형태의 다공성 마이크로 컨테이너를 자가 조립하였다. 상기 다공성 마이크로 컨테이너의 부피는 64,000,000 ㎛3이었다.
(2) 마이크로 컨테이너 상에 유전체층 형성
상기 준비된 다공성 마이크로 컨테이너의 외부 표면에 Plasma Enhanced Chemical Vapor Deposition(PECVD)를 이용하여 두께가 200 nm인 실리콘 산화물을 코팅하여 유전체층을 형성하였다.
(3) 유전체층 상에 나노 안테나 패턴 형성
상기 형성된 유전체층 상에 FIB 시스템(Focused Ion Beam induced metal deposition)을 이용하여 나노 안테나 패턴을 형성하였다. 구체적으로, 25 keV의 에너지, 50 피코암페어(pA)의 빔 전류 및 10 nm의 직경을 가지는 갈륨 이온 빔을 상기 다공성 마이크로 컨테이너 외부 표면에 형성된 유전체층에 조사하면서, 전도성 물질(백금)을 포함하는 Pt(CH3)3 가스를 갈륨 이온 빔으로 300 초 동안 통과시켜, 약 0.07 ㎛2의 넓이를 가지는 나노 안테나 패턴을 유전체층 상에 형성하였다. 상기 나노 안테나 패턴을 구성하는 각각의 나노 안테나는 80 nm×100 ㎛×100 nm(가로×세로×높이)의 크기를 가지며, 상기 나노 안테나는 100 nm의 일정한 간격으로 배열되었다.
이로써, 다공성 마이크로 컨테이너, 상기 다공성 마이크로 컨테이너의 외부 표면에 형성된 유전체층 및 상기 유전체층 상에 형성된 나노 안테나 패턴을 가지는 구조체를 완성하였다.
첨부된 도 6 은 상기 구조체의 FESEM(Field Emission Scanning Microscopy) 이미지를 점차적으로 확대시킨 사진이다. 도 6 에 나타난 바와 같이, 좌상으로부터 시계 방향으로 나노 안테나를 확대시킨 결과, 나노 안테나가 일정한 간격으로 배열되어 나노 안테나 패턴을 형성하고 있음을 확인할 수 있다.
실험예 1
상기 실시예 1에서 제조된 구조체에 대한 전파 특성을 확인하기 위하여, 고주파수 전자기 시뮬레이터(high frequency electromagnetic simulator)인 HFSS(Ansoft사(제))를 이용하였다.
첨부된 도 7 은 상기 HFSS를 이용하여 측정한 구조체의 반사 모드(S11, reflection mode)를 나타내는 그래프이다. 상기 반사 모드는 100 MHz 내지 14 GHz의 주파수를 가지는 마이크로파를 이용하여 분석하였다. 도 7 에 나타난 바와 같이, 실시예 1의 나노 안테나 패턴은 10.8 GHz의 공명 주파수를 가지고, 7.5 GHz 내지 13.4 GHz의 주파수 범위 내에서 -10 dB의 반사 손실(return loss)을 나타내었다. 상기 나노 안테나 패턴의 대역폭(bandwidth)은 상기 7.5 GHz 내지 13.4 GHz의 주파수 범위와 비교할 때, 10.8 GHz의 중심 주파수(centre frequency)에서 49.3%였다.
첨부된 도 8 은 벡터 네트워크 분석기(vector network analyzer, VNA, Agilent 8720 ES)를 이용하여 구조체의 S-파라미터 실험 분석 결과를 나타내는 도면이다. 상기 표준 실험 셋업은 고주파수 특성을 위해 VNA와 마이크로스트립 선로 접속을 기반으로 이루어졌다. 상기 마이크로스트립 접속은 그라운드-시그널-그라운드 프로브를 이용하여 측정하였다. 도 8 에 나타난 바와 같이, 약 10.8 GHz의 공명 주파수를 가지고, -29 dB의 반사 손실을 나타내었다. 피크에서 정재파비(standing wave ratio)는 1.01이고, 이상적인 임피던스 매칭을 나타내었다. 외부 회로와의 임피던스 매칭에 의해, 측정된 결과로부터 손실 차이가 유발되었다.
첨부된 도 9 는 구조체의 전계면(electric field plane)에서의 자화(magnetization) 특성을 나타내는 도면이다. 도 9 에 나타난 바와 같이, 본 발명의 구조체에 포함되는 나노 안테나 패턴은 무지향성 안테나(omnidirectional antenna)의 특성을 나타내며, 한 개의 다이폴 안테나(dipole antenna)와 유사하게 90° 위치(90° position)에서 눌(null)을 나타내었다.
첨부된 도 10 은 구조체의 자계면(magnetic field plane)에서의 자화(magnetization) 특성을 나타내는 도면이다. 도 10 에 나타난 바와 같이, 본 발명의 구조체에 포함되는 나노 안테나 패턴은 넓은 영역의 마이크로파 안테나(wide band microwave antenna)의 특성을 나타내었고, 중심 주파수(centre frequency)가 더 낮은 주파수로 이동될 수 있으며, 나노 안테나 패턴의 주기적인 패턴(periodic pattern)을 더 길게 제조함으로써, 안테나 이득(antenna gain)을 향상시킬 수 있다.
본 발명의 구조체는 약물 전달체, 약물 전달 장치 또는 온열 치료 장치로 사용할 수 있다.
Claims (36)
- 다공성 마이크로 컨테이너; 및상기 다공성 마이크로 컨테이너의 외부 표면에 형성된 나노 안테나 패턴을 포함하는 구조체.
- 제 1 항에 있어서,다공성 마이크로 컨테이너의 형상은 다면체, 구형 또는 원통형인 구조체.
- 제 2 항에 있어서,다공성 마이크로 컨테이너의 기본 골격은 니켈, 철, 구리, 아연, 금, 이들의 합금 및 금 또는 페럴린(parylene)계 고분자로 코팅된 금속으로 이루어진 군으로부터 선택되는 하나 이상의 금속으로 이루어지는 구조체.
- 제 2 항에 있어서,다공성 마이크로 컨테이너의 내부 모서리는 땜납 경첩(solder hinge)으로 부착되어 있는 구조체.
- 제 1 항에 있어서,다공성 마이크로 컨테이너의 부피는 10 ㎛3 내지 64,000,000 ㎛3인 구조체.
- 제 1 항에 있어서,다공성 마이크로 컨테이너는 평균 직경이 0.1 ㎛ 내지 50 ㎛인 기공을 가지는 구조체.
- 제 1 항에 있어서,나노 안테나 패턴은 하나 이상의 나노 안테나가 배열되어 형성되는 구조체.
- 제 7 항에 있어서,나노 안테나는 10 nm 내지 300 nm의 가로 길이, 10 ㎛ 내지 300 ㎛의 세로 길이 및 10 nm 내지 300 nm의 높이를 가지는 구조체.
- 제 7 항에 있어서,하나 이상의 나노 안테나는 일정 간격으로 배열되어 있는 구조체.
- 제 9 항에 있어서,일정 간격이 10 nm 내지 300 nm인 구조체.
- 제 7 항에 있어서,나노 안테나는 전도성 물질을 포함하는 구조체.
- 제 11 항에 있어서,전도성 물질은 금속 물질 또는 자성 물질인 구조체.
- 제 12 항에 있어서,금속 물질은 Al, Pt, Pd, Ag, Cu, Au 및 이들을 포함하는 합금으로 이루어진 군으로부터 선택되는 하나 이상이고, 자성 물질은 Fe, Co, Ni 및 Gd로 이루어진 군으로부터 선택되는 하나 이상의 금속, 상기 금속을 포함하는 합금 또는 상기 금속의 산화물인 구조체.
- 제 7 항에 있어서,나노 안테나는 무지향성 안테나(omnidirectional antenna)인 구조체.
- 제 7 항에 있어서,나노 안테나는 0.5 GHz 내지 40 GHz의 무선 주파수(radio frequency)를 송·수신하는 구조체.
- 제 7 항에 있어서,나노 안테나의 대역폭(bandwidth)은 상기 나노 안테나의 공명 주파수(resonant frequency)를 포함하는 구조체.
- 제 1 항에 있어서,마이크로 컨테이너의 외부 표면 및 나노 안테나 패턴 사이에 형성된 유전체층(dielectric layer)을 추가로 포함하는 구조체.
- 제 17 항에 있어서,유전체층의 두께는 10 nm 내지 300 nm인 구조체.
- 제 17 항에 있어서,유전체층은 규소 산화물(silicon oxides), 질화 규소(silicon nitrides) 또는 페럴린(parylene)계 고분자인 구조체.
- 집속이온빔 시스템(Focused Ion Beam System)을 이용하여 다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴을 형성하는 단계를 포함하는 구조체의 제조 방법.
- 제 20 항에 있어서,다공성 마이크로 컨테이너의 외부 표면에 나노 안테나 패턴을 형성하기 전에, 다공성 마이크로 컨테이너의 외부 표면에 유전체층을 형성하는 단계를 추가로 포함하는 구조체의 제조 방법.
- 제 1 항 내지 제 19 항 중 어느 한 항에 따른 구조체; 및상기 구조체의 다공성 마이크로 컨테이너 내부에 담지된 약제학적 활성 성분을 포함하는 약물 전달체.
- 제 22 항에 있어서,약제학적 활성 성분은 하이드로젤(hydrogel)로 봉지되어 있는 약물 전달체.
- 제 23 항에 있어서,하이드로젤이 젤라틴(gelatin) 또는 플루로닉 젤(pluronic gel)인 약물 전달체.
- 제 22 항에 있어서,약제학적 활성 성분은 항암제, 항생제, 호르몬, 호르몬 길항제, 인터루킨, 인터페론, 성장 인자, 종양 괴사 인자, 엔도톡신, 림포톡시, 유로키나제, 스트렙토키나제, 조직 플라스마노겐 활성제, 프로테아제 저해제, 알킬포스포콜린, 방사선 동위원소 표지 물질, 계면활성제, 심혈관계 약물, 위장관계 약물 및 신경계 약물로 이루어진 군으로부터 선택되는 하나 이상인 약물 전달체.
- 제 25 항에 있어서,항암제가 에피루비신, 도세탁셀, 젬시타빈, 파클리탁셀, 시스플라틴, 카르보플라틴, 택솔, 프로카르바진, 시클로포스파미드, 디악티노마이신, 다우노루비신, 에토포시드, 탁목시펜, 독소루비신, 미토마이신, 블레오마이신, 플리코마이신, 트랜스플라티눔, 빈블라스틴 및 메토트렉세이트로 이루어진 군으로부터 선택되는 하나 이상인 약물 전달체.
- 제 1 항 내지 제 19 항 중 어느 한 항에 따른 구조체; 및상기 구조체의 다공성 마이크로 컨테이너 내부에 담지된 나노 와이어를 포함하는 온열 치료용 복합체.
- 제 27 항에 있어서,나노 와이어는 Fe, Ni, Co, Gd, Ag, Au, Pt, Pd, Zn 및 Ti으로 이루어진 군으로부터 선택되는 하나 이상의 금속; 상기 금속을 포함하는 합금; 상기 금속의 산화물; 상기 금속의 질화물; 또는 상기 금속의 탄화물인 온열 치료용 복합체.
- 제 27 항에 있어서,나노 와이어는 하이드로젤(hydrogel)로 봉지되어 있는 온열 치료용 복합체.
- 제 29 항에 있어서,하이드로젤이 젤라틴(gelatin) 또는 플루로닉 젤(pluronic gel)인 온열 치료용 복합체.
- 제 22 항에 따른 약물 전달체;상기 약물 전달체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부;상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈;상기 외부 제어부로부터 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 약물 전달체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈;상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 약물 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부; 및상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함하는, 약물 전달체를 이용한 약물 치료 장치.
- 제 31 항에 있어서,전원부는 약물 전달체의 외부 표면에 부착되어 있는 마이크로 칩 형태의 전지 또는 바이오연료 전지(biofuel cell)인 약물 치료 장치.
- 제 31 항에 있어서,전원부는 생체 외부로부터 전자기파를 통해 에너지를 획득하는 약물 치료 장치.
- 제 27 항에 따른 온열 치료용 복합체;상기 온열 치료용 복합체의 외부 표면에 위치하여 생체 내부의 바이오 정보를 감지하는 바이오 센서부;상기 바이오 센서부로부터 상기 바이오 정보를 수신하여 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 외부 제어부로 무선 송신하는 송신 모듈;상기 외부 제어부로부터 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 온열 치료용 복합체의 외부 표면에 형성된 나노 안테나 패턴을 통해 무선 수신하는 수신 모듈;상기 송신 모듈로부터 바이오 정보를 무선 수신하고, 상기 바이오 정보에 대응하는 나노 와이어 방출 신호를 상기 수신 모듈로 무선 송신하는 외부 제어부; 및상기 무선 송신을 위해 상기 송신 모듈에 전원을 공급하는 전원부를 포함하는, 온열 치료용 복합체를 이용한 온열 치료 장치.
- 제 34 항에 있어서,전원부는 약물 전달체의 외부 표면에 부착되어 있는 마이크로 칩 형태의 전지 또는 바이오연료 전지(biofuel cell)인 약물 치료 장치.
- 제 34 항에 있어서,전원부는 생체 외부로부터 전자기파를 통해 에너지를 획득하는 온열 치료 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/982,856 US9801998B2 (en) | 2011-01-31 | 2012-01-31 | Structure having nanoantenna and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110009823A KR101271696B1 (ko) | 2011-01-31 | 2011-01-31 | 나노 안테나를 포함하는 구조체 및 이의 제조방법 |
KR10-2011-0009823 | 2011-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012105797A2 true WO2012105797A2 (ko) | 2012-08-09 |
WO2012105797A3 WO2012105797A3 (ko) | 2012-10-11 |
Family
ID=46603206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/000744 WO2012105797A2 (ko) | 2011-01-31 | 2012-01-31 | 나노 안테나를 포함하는 구조체 및 이의 제조방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9801998B2 (ko) |
KR (1) | KR101271696B1 (ko) |
WO (1) | WO2012105797A2 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122963B1 (ko) | 2014-01-17 | 2020-06-15 | 삼성전자주식회사 | 광학 소자 및 광학 소자로부터의 광의 진행 방향을 제어하는 방법 |
EP2942618B1 (en) | 2014-05-09 | 2017-07-12 | Samsung Electronics Co., Ltd | Spectro-sensor and spectrometer employing the same |
KR102135375B1 (ko) * | 2014-11-21 | 2020-07-17 | 엘지전자 주식회사 | 고주파 안테나 기판용 자기유전 복합체 및 그 제조방법 |
US9955590B2 (en) * | 2015-10-21 | 2018-04-24 | Advanced Semiconductor Engineering, Inc. | Redistribution layer structure, semiconductor substrate structure, semiconductor package structure, chip structure, and method of manufacturing the same |
CN111888634B (zh) * | 2020-07-30 | 2021-06-15 | 浙江大学 | 一种自动给药系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060276879A1 (en) * | 2002-11-13 | 2006-12-07 | Whye-Kei Lye | Medical devices having porous layers and methods for making the same |
KR100802139B1 (ko) * | 2006-08-08 | 2008-02-11 | 한국생명공학연구원 | 자성 나노입자를 함유하는 골드 나노케이지 |
KR20090082825A (ko) * | 2008-01-28 | 2009-07-31 | 연세대학교 산학협력단 | 집속이온빔을 이용한 나노패턴 형성방법 |
KR20090093169A (ko) * | 2008-02-28 | 2009-09-02 | 연세대학교 산학협력단 | 자성 나노복합체, 그 제조 방법 및 상기를 포함하는생물의학적 조성물 |
KR20090131364A (ko) * | 2008-06-18 | 2009-12-29 | 재단법인서울대학교산학협력재단 | 체내삽입형 약물방출장치 및 이를 이용한 약물방출제어시스템 |
KR100943993B1 (ko) * | 2009-04-15 | 2010-02-26 | 최경재 | 나노 복합체 및 이의 제조 방법 |
US20100303716A1 (en) * | 2007-11-15 | 2010-12-02 | The Regents Of The University Of California | Switchable nano-vehicle delivery systems, and methods for making and using them |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10571606B2 (en) * | 2009-10-23 | 2020-02-25 | Trustees Of Boston University | Nanoantenna arrays for nanospectroscopy, methods of use and methods of high-throughput nanofabrication |
-
2011
- 2011-01-31 KR KR1020110009823A patent/KR101271696B1/ko active IP Right Grant
-
2012
- 2012-01-31 WO PCT/KR2012/000744 patent/WO2012105797A2/ko active Application Filing
- 2012-01-31 US US13/982,856 patent/US9801998B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060276879A1 (en) * | 2002-11-13 | 2006-12-07 | Whye-Kei Lye | Medical devices having porous layers and methods for making the same |
KR100802139B1 (ko) * | 2006-08-08 | 2008-02-11 | 한국생명공학연구원 | 자성 나노입자를 함유하는 골드 나노케이지 |
US20100303716A1 (en) * | 2007-11-15 | 2010-12-02 | The Regents Of The University Of California | Switchable nano-vehicle delivery systems, and methods for making and using them |
KR20090082825A (ko) * | 2008-01-28 | 2009-07-31 | 연세대학교 산학협력단 | 집속이온빔을 이용한 나노패턴 형성방법 |
KR20090093169A (ko) * | 2008-02-28 | 2009-09-02 | 연세대학교 산학협력단 | 자성 나노복합체, 그 제조 방법 및 상기를 포함하는생물의학적 조성물 |
KR20090131364A (ko) * | 2008-06-18 | 2009-12-29 | 재단법인서울대학교산학협력재단 | 체내삽입형 약물방출장치 및 이를 이용한 약물방출제어시스템 |
KR100943993B1 (ko) * | 2009-04-15 | 2010-02-26 | 최경재 | 나노 복합체 및 이의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
US9801998B2 (en) | 2017-10-31 |
WO2012105797A3 (ko) | 2012-10-11 |
KR101271696B1 (ko) | 2013-06-05 |
KR20120088462A (ko) | 2012-08-08 |
US20130317421A1 (en) | 2013-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012105797A2 (ko) | 나노 안테나를 포함하는 구조체 및 이의 제조방법 | |
KR100713745B1 (ko) | 상전이 리간드로 코팅된 수용성 자성 또는 금속 산화물나노입자 및 이의 제조방법 | |
Di Corato et al. | Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting | |
US10724903B2 (en) | Polymer encapsulated particles as surface enhanced Raman scattering probes | |
Moran et al. | Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields | |
US9005995B2 (en) | Self-assembled, micropatterned, and radio frequency (RF) shielded biocontainers and their uses for remote spatially controlled chemical delivery | |
Chen et al. | Designed fabrication of unique eccentric mesoporous silica nanocluster-based core–shell nanostructures for pH-responsive drug delivery | |
Mrówczyński et al. | Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery | |
Gimi et al. | Self-assembled three dimensional radio frequency (RF) shielded containers for cell encapsulation | |
Yan et al. | Self‐Assembly of Peptide‐Based Colloids Containing Lipophilic Nanocrystals | |
TW200524503A (en) | Electronic device and method for producing the same | |
Raghavan et al. | An overview of metamaterials in biomedical applications | |
WO2015090145A1 (zh) | 一种负载贵金属量子点的磁性复合微球及其制备方法 | |
US20070020310A1 (en) | Self-assembled, micropatterned, and radio frequency (RF) shielded BioContainers | |
Yim et al. | Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window | |
More et al. | Development of surface engineered mesoporous alumina nanoparticles: drug release aspects and cytotoxicity assessment | |
Augustine | Electromagnetic modelling of human tissues and its application on the interaction between antenna and human body in the BAN context | |
Tran et al. | Direct synthesis of rev peptide-conjugated gold nanoparticles and their application in cancer therapeutics | |
Liu et al. | Capture and separation of circulating tumor cells using functionalized magnetic nanocomposites with simultaneous in situ chemotherapy | |
Zhu et al. | Metal‐Organic Framework‐Based Nanoheater with Photo‐Triggered Cascade Effects for On‐Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy | |
Wang et al. | Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite@ Au nanoparticles | |
Popescu et al. | Metal-based nanosystems for diagnosis | |
Shen et al. | Conjugating folate on superparamagnetic Fe3O4@ Au nanoparticles using click chemistry | |
Fan et al. | Tunable and enhanced SERS activity of magneto-plasmonic Ag–Fe3O4 nanocomposites with one pot synthesize method | |
Zhang et al. | Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12741523 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13982856 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12741523 Country of ref document: EP Kind code of ref document: A2 |