Nothing Special   »   [go: up one dir, main page]

WO2012105154A1 - Method for manufacturing photoelectric conversion element - Google Patents

Method for manufacturing photoelectric conversion element Download PDF

Info

Publication number
WO2012105154A1
WO2012105154A1 PCT/JP2011/080458 JP2011080458W WO2012105154A1 WO 2012105154 A1 WO2012105154 A1 WO 2012105154A1 JP 2011080458 W JP2011080458 W JP 2011080458W WO 2012105154 A1 WO2012105154 A1 WO 2012105154A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
tray
conductive layer
photoelectric conversion
conversion element
Prior art date
Application number
PCT/JP2011/080458
Other languages
French (fr)
Japanese (ja)
Inventor
大介 藤嶋
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012105154A1 publication Critical patent/WO2012105154A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion element.
  • Patent Document 1 includes a first conductive type crystalline semiconductor substrate having a front surface and a back surface, and light is incident from the front surface side, an amorphous semiconductor film formed on the surface of the crystalline semiconductor substrate, A first transparent conductive film formed on the amorphous semiconductor film and containing a metal dopant of 1.5 mass% or more and 5 mass% or less, and a first transparent conductive film formed on the back surface of the crystalline semiconductor substrate A photovoltaic device comprising a second transparent conductive film containing a metal dopant less than the content of the metal dopant is disclosed.
  • the sheet resistance of the transparent conductive layer can increase. For this reason, when the amount of moisture contained in the transparent conductive layer increases, it affects the current collection efficiency when the electricity generated by the photoelectric conversion unit of the photoelectric conversion element is collected by the collector electrode.
  • a method for manufacturing a photoelectric conversion element according to the present invention is formed on a first main surface of a crystalline semiconductor substrate including a first main surface and a second main surface opposite to the first main surface, and the crystalline semiconductor substrate.
  • a laminated structure portion including the first semiconductor layer and the second semiconductor layer formed on the second main surface of the crystalline semiconductor substrate is held by the holding member, and the laminated structure portion is held by the holding member.
  • a transparent conductive layer is formed on the surface of the transparent conductive layer, and a metal layer is formed on the surface of the transparent conductive layer while being held by the holding member.
  • the characteristics of the photoelectric conversion element can be improved.
  • it is sectional drawing of a photoelectric conversion element.
  • it is a flowchart which shows the procedure of the manufacturing method of a photoelectric conversion element.
  • it is a figure which shows a conveyance tray.
  • it is a schematic diagram which shows the manufacturing line of the process of S2.
  • it is a flowchart which shows the procedure of the process of S2.
  • it is a figure which shows a mode that a film
  • FIG. 1 is a cross-sectional view of the photoelectric conversion element 10.
  • the photoelectric conversion element 10 is configured by laminating a transparent conductive layer 11, a laminated structure 24, a transparent conductive layer 17, and a metal layer 18 from the light receiving surface side.
  • a collecting electrode 21 including a plurality of finger electrode portions (not shown) and a plurality of bus bar electrode portions 19 is provided on the light receiving surface of the photoelectric conversion element 10.
  • a collector electrode 23 including a plurality of protruding electrode portions 22 is provided on the back surface of the photoelectric conversion element 10.
  • the “light receiving surface” means a surface on which light such as sunlight is mainly incident.
  • the “back surface” means a surface opposite to the light receiving surface.
  • the laminated structure 24 includes, from the light receiving surface side, a p-type amorphous silicon layer 12, an i-type a amorphous silicon layer 13, an n-type single crystal silicon substrate 14, and an i-type amorphous silicon layer 15.
  • the n-type amorphous silicon layer 16 is laminated.
  • the transparent conductive layer 11 is stacked on the p-type amorphous silicon layer 12.
  • the transparent conductive layer 11 is made of, for example, a metal oxide such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is configured to include at least one. These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga). It may be doped. The concentration of the dopant can be 0 to 20 wt%.
  • the transparent conductive layer 11 is described as being formed using indium tin oxide (ITO).
  • the film thickness of the transparent conductive layer 11 is preferably, for example, 100 nm in consideration of an anti-reflection (AR) effect.
  • the transparent conductive layer 17 is stacked on the n-type amorphous silicon layer 16.
  • the transparent conductive layer 17 is made of, for example, a metal oxide such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is configured to include at least one.
  • These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga). It may be doped. The concentration of the dopant can be 0 to 20 wt%.
  • the transparent conductive layer 17 is described as being formed using indium tin oxide (ITO).
  • ITO indium tin oxide
  • the film thickness of the transparent conductive layer 17 is preferably equal to or greater than the thickness of the transparent conductive layer 11, and is preferably, for example, from 100 nm to 150 nm.
  • the metal layer 18 is laminated on the transparent conductive layer 17.
  • the metal layer 18 is laminated so as to cover substantially the entire surface of the transparent conductive layer 17 formation region.
  • “so as to cover substantially the entire surface of the region where the transparent conductive layer 17 is formed” means a state in which it can be considered that the transparent conductive layer 17 is substantially entirely covered. This includes a state in which a part of the metal layer 18 laminated is missing.
  • the area of the formation region of the metal layer 18 is preferably in the range of 90% to 100% of the area of the formation region of the transparent conductive layer 17.
  • the metal layer 18 has a higher light reflectivity for light in the infrared region, particularly in the wavelength region of about 800 nm to 1200 nm, and higher conductivity than the transparent conductive layer 17 in the wavelength region used in the photoelectric conversion element 10. It is preferable to use a metal. For this reason, the metal layer 18 can be formed of a metal such as Ag, Al, Cu, Sn, Ni and Cr, or an alloy containing one or more of these metals.
  • the metal layer 18 may be composed of a laminate of a plurality of films made of the above metals or alloys. As the metal layer 18, it is more preferable to use Ag having a high reflectance at wavelengths in the infrared region.
  • the film thickness of the metal layer 18 is preferably, for example, 150 nm or more and 1000 nm or less, and more preferably 300 nm or more and 600 nm.
  • the metal layer 18 is described as being formed using Ag.
  • the metal layer 18 generally has higher light reflectance and conductivity than the transparent conductive layer 17. For this reason, when the metal layer 18 is formed on the back surface side of the photoelectric conversion element 10 via the transparent conductive layer 17, the light that has passed through the stacked structure portion 24 and reached the back surface is reflected by the metal layer 18, and again It can be led to the laminated structure 24. Thereby, the incident light and reflected light from the light-receiving surface side can be used effectively, and the conversion efficiency of the photoelectric conversion element 10 can be increased.
  • the transparent conductive layer 11, the transparent conductive layer 17, and the metal layer 18 may be formed not only by a sputtering method but also by a method such as vapor deposition or ion plating.
  • the bus bar electrode portion 19 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10. It is preferable that the bus bar electrode portion 19 is arranged so as to collect the current collected as evenly as possible in the finger electrode portion arranged so as to collect current evenly from within the surface of the photoelectric conversion element 10. .
  • the protruding electrode part 22 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10.
  • the protruding electrode portion 22 is preferably disposed so as to collect electricity collected in the metal layer 18 as evenly as possible.
  • each film thickness illustrated above can be measured using a transmission electron microscope (TEM). And each film thickness illustrated above has shown the average film thickness of the thickness along the lamination direction in the cross section of the photoelectric conversion element 10.
  • TEM transmission electron microscope
  • FIG. 2 is a flowchart showing the procedure of the method for manufacturing the photoelectric conversion element 10.
  • the procedure of the manufacturing method of the photoelectric conversion element 10 will be described.
  • the laminated structure portion 24 is formed by the plasma CVD method (S1).
  • the transparent conductive layer 11 is laminated on the light receiving surface side surface of the laminated structure portion 24 by sputtering or vapor deposition with the laminated structure portion 24 held on the transport tray 25, and the back surface of the laminated structure portion 24.
  • the transparent conductive layer 17 and the metal layer 18 are laminated on the surface on the side (S2).
  • the collector electrode 21 and the collector electrode 23 are formed on the transparent conductive layer 11 and the metal layer 18 by screen printing, respectively (S3).
  • step S2 will be described in detail.
  • FIG. 3 is a diagram showing the transport tray 25.
  • the transport tray 25 is a holding member that holds the stacked structure portion 24.
  • the transport tray 25 includes a tray main body portion 26 and a plurality of sub-trays 27.
  • a transport tray 25 that holds a plurality of stacked structure portions 24 is shown.
  • the tray main body 26 is a plate-like support frame in which a rectangular opening is formed at the center.
  • Each sub-tray 27 can be attached to and detached from the opening of the tray body 26, and has a structure in which a plurality of laminated structures 24 are sandwiched and held by plate-like members that can be divided vertically.
  • the sub-tray 27 is configured to expose almost the entire front surface and back surface of the multilayer structure 24 while holding the plurality of multilayer structures 24 by sandwiching the end of the multilayer structure 24.
  • the sub-tray 27 has a size that can be fitted into the opening of the tray main body 26.
  • a support member for supporting the sub-tray 27 is provided at the edge of the opening of the tray main body 26 along the juxtaposition direction of the sub-tray 27, and the sub-tray 27 fitted into the opening of the tray main-body 26 is not dropped by the support member. To be held.
  • Both ends of the sub-tray 27 are attached to the tray body 26 so as to be rotatable. Thereby, the front surface and the back surface of the laminated structure portion 24 held by the sub-tray 27 can be reversed with respect to the front and back surfaces of the tray main body portion 26.
  • FIG. 4 is a schematic diagram showing a production line in the step S2.
  • FIG. 5 is a flowchart showing the step S2.
  • a plurality of laminated structures 24 on which the transparent conductive layer 11, the transparent conductive layer 17, and the metal layer 18 are to be formed are held by the sub-tray 27 (S10). Then, a predetermined number of sub-trays 27 are mounted on the tray body 26 (S12). As a result, a predetermined number of stacked structure portions 24 are held on the transport tray 25. Steps S10 and S12 are performed at the attachment / detachment position 40, which is a space region exposed to the atmosphere.
  • the transport tray 25 prepared in this manner is transported into the first vacuum device 42, and in the first vacuum device 42, a transparent conductive material is formed on the p-type amorphous silicon layer 12 of each stacked structure portion 24 by sputtering. Layer 11 is formed (S14).
  • the transport tray 25 is unloaded from the first vacuum device 42, and the sub-tray 27 mounted on the transport tray 25 is reversed. Thereby, the front surface and the back surface of the laminated structure 24 are reversed (S16).
  • the process of S16 is performed at the reversal position 44, which is a space area exposed to the atmosphere.
  • the transport tray 25 is carried into the second vacuum device 46, and the transparent conductive layer 17 is formed on the n-type amorphous silicon layer 16 of the stacked structure portion 24 in the second vacuum device 46 by sputtering. (S18).
  • the transport tray 25 is transported from the second vacuum device 46 into the third vacuum device 48, and the metal layer 18 is deposited on the transparent conductive layer 17 of the laminated structure portion 24 by sputtering in the third vacuum device 48. Form (S20). Thereafter, the transport tray 25 is unloaded from the third vacuum device 48 to the attachment / detachment position 40, and the sub-tray 27 is removed from the tray body 26 (S22).
  • the sub-tray 27 holding the laminated structure 24 is removed from the tray body 26 and replaced with the sub-tray 27 holding the new laminated structure 24.
  • the steps S10 to S22 are repeated, as shown in FIG. 6, the surface of the tray main body 26 has a transparent conductive layer 11a, a transparent conductive layer 17a, a metal layer 18a, a transparent conductive layer 11a, and a transparent conductive layer 17a.
  • the metal layer 18a, the transparent conductive layer 11a,... are repeatedly formed and deposited.
  • the transparent conductive layer 11a and the transparent conductive layer 17a have a polycrystalline structure including many crystal grain boundaries.
  • the metal layer 18a has a metal crystal structure with few crystal grain boundaries. Therefore, the metal layer 18a has less moisture and impurity adsorption at the crystal grain boundary and less moisture and impurity permeability through the grain boundary than the transparent conductive layer 11a and the transparent conductive layer 17a. Therefore, by forming the metal layer 18a on at least a part of the surface of the transport tray 25, moisture and impurities released from the transport tray 25 when the transport tray 25 is carried into the vacuum apparatus can be reduced. . Further, even if the transparent conductive layers 11a and 17a are not yet deposited on the transport tray 25, the impurities and the like can be reduced by forming the metal layer 18a.
  • the transparent conductive layer 11a is formed on the tray main body portion 26 as shown in FIG.
  • a metal layer 18a is formed and covered on at least a part of the surface of the tray body 26, in particular, at least a part of the surface on which the transparent conductive layer 11a or the transparent conductive layer 17a is laminated.
  • the transparent conductive layers 11 and 17 are newly formed using the tray body 26, the transparent conductive layer 11a and the transparent conductive layer 17a stacked on the surface of the tray body 26 by the metal layer 18 are included.
  • the release of moisture and impurities can be suppressed. Therefore, the amount of moisture and impurities taken into the transparent conductive layers 11 and 17 formed in the laminated structure 24 at the same time when forming the transparent conductive layers 11 and 17 is reduced without replacing the tray main body portion 26.
  • the sheet resistance increases as the amount of water in the films of the transparent conductive layers 11 and 17 increases, an increase in the sheet resistance of the transparent conductive layers 11 and 17 can be suppressed. Electric efficiency can be improved.
  • the transparent conductive layer 11 is formed in the next film formation process in which the metal layer 18 is formed, the transparent conductive layer 11 is compared with the transparent conductive layer 17 formed in the next film formation process in which the transparent conductive layer 11 is formed. The amount of water taken into the film can be further reduced.
  • FIG. 8 is a schematic diagram showing a production line of a modification of the step S2.
  • FIG. 9 is a flowchart showing a specific procedure of a modification of the step S2.
  • a plurality of laminated structures 24 on which the transparent conductive layer 11, the transparent conductive layer 17, and the metal layer 18 are to be formed are held by the sub-tray 27 (S30). Then, a predetermined number of sub-trays 27 are mounted on the tray body 26 (S32). As a result, a predetermined number of stacked structure portions 24 are held on the transport tray 25. Steps S30 and S32 are performed at the attachment / detachment position 50, which is a space region exposed to the atmosphere.
  • the transport tray 25 prepared in this way is transported into the first vacuum device 52, and in the first vacuum device 52, a transparent conductive material is formed on the n-type amorphous silicon layer 16 of each stacked structure portion 24 by sputtering. Layer 17 is formed (S34). Next, the transport tray 25 is transported from the first vacuum device 52 into the second vacuum device 53, and the metal layer 18 is deposited on the transparent conductive layer 17 of the stacked structure portion 24 by sputtering in the second vacuum device 53. Form (S36).
  • the transport tray 25 is unloaded from the second vacuum device 53, and the sub-tray 27 attached to the transport tray 25 is reversed. Thereby, the front surface and the back surface of the laminated structure 24 are reversed (S38).
  • the process of S38 is performed at the reversal position 54, which is a space area exposed to the atmosphere.
  • the transport tray 25 is carried into the third vacuum device 56, and the transparent conductive layer 11 is formed on the p-type amorphous silicon layer 12 of the stacked structure portion 24 by the sputtering method in the third vacuum device 56. (S40).
  • the transport tray 25 is unloaded from the third vacuum device 56 to the attachment / detachment position 50, and the sub-tray 27 is removed from the tray body 26 (S42).
  • the steps S30 to S42 are completed, the sub-tray 27 holding the stacked structure portion 24 is removed from the tray main body 26 and replaced with the sub-tray 27 holding a new stacked structure portion 24.
  • the processes of S30 to S32 are repeated, as shown in FIG. 10, on the surface of the tray body 26, the transparent conductive layer 17a, the metal layer 18a, the transparent conductive layer 11a, the transparent conductive layer 17a, the metal layer 18a, A film is repeatedly formed and deposited in the order of the transparent conductive layers 11a.
  • the metal layer is formed on at least a part of the surface of the tray main body 26, particularly at least a part of the surface on which the transparent conductive layer 11a or the transparent conductive layer 17a is laminated. 18a is formed and covered.
  • the transparent conductive layers 11 and 17 are newly formed using the tray main body portion 26, the transparent conductive layer 11a and the transparent conductive layer 17a laminated on the surface of the tray main body portion 26 by the metal layer 18 are included. It is possible to suppress the release of moisture and impurities.
  • the amount of moisture and impurities taken into the transparent conductive layers 11 and 17 formed in the laminated structure 24 at the same time when forming the transparent conductive layers 11 and 17 is reduced without replacing the tray main body portion 26. be able to.
  • the sheet resistance increases as the amount of water in the films of the transparent conductive layers 11 and 17 increases, an increase in the sheet resistance of the transparent conductive layers 11 and 17 can be suppressed. Electric efficiency can be improved.
  • the transparent conductive layer 11 is formed in the next film formation process in which the metal layer 18 is formed, the transparent conductive layer 11 is compared with the transparent conductive layer 17 formed in the next film formation process in which the transparent conductive layer 11 is formed. The amount of water taken into the film can be further reduced.
  • the transparent conductive layers 11 and 17 and the metal layer 18 have been described as being formed by different vacuum devices in the above-described step S2 and the modified example of the step S2, they may be formed by the same vacuum device.
  • the inversion positions 44 and 54 have been described as being a space region exposed to the atmosphere, but may be a space region in a vacuum state.
  • the transparent conductive layer 11 As described above, in the photoelectric conversion element 10, the transparent conductive layer 11, the p-type amorphous silicon layer 12, the i-type amorphous silicon layer 13, the n-type single crystal silicon substrate 14, i from the light receiving surface side.
  • the present invention is not limited to the stacked structure.
  • a transparent conductive layer for example, from the light receiving surface side, a transparent conductive layer, an n-type amorphous silicon layer, an i-type amorphous silicon layer, an n-type single crystal silicon substrate, an i-type amorphous silicon layer, a p-type amorphous silicon layer, A structure in which a transparent conductive layer and a metal layer are arranged side by side may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for manufacturing a photoelectric conversion element (10) comprising: holding, on a transport tray (25), a layered structure (24) which includes a p-type amorphous silicon layer (12), an i-type a-amorphous silicon layer (13), an n-type single crystal silicon substrate (14), an i-type amorphous silicon layer (15), and an n-type amorphous silicon layer (16); forming a transparent electroconductive layer (17) on the surface of the layered structure (24) while held on the transport tray (25); and forming a metal layer (18) on the surface of the transparent electroconductive layer (17) while held on the transport tray (25).

Description

光電変換素子の製造方法Method for manufacturing photoelectric conversion element
 本発明は、光電変換素子の製造方法に関する。 The present invention relates to a method for manufacturing a photoelectric conversion element.
 特許文献1には、表面および裏面を有し、表面側から光が入射される第1導電型の結晶系半導体基板と、結晶系半導体基板の表面上に形成された非晶質半導体膜と、非晶質半導体膜上に形成され、1.5質量%以上5質量%以下の金属ドーパントが含有される第1透明導電膜と、結晶系半導体基板の裏面上に形成され、第1透明導電膜の金属ドーパントの含有量よりも少ない金属ドーパントが含有されている第2透明導電膜とを備えた、光起電力装置が開示されている。 Patent Document 1 includes a first conductive type crystalline semiconductor substrate having a front surface and a back surface, and light is incident from the front surface side, an amorphous semiconductor film formed on the surface of the crystalline semiconductor substrate, A first transparent conductive film formed on the amorphous semiconductor film and containing a metal dopant of 1.5 mass% or more and 5 mass% or less, and a first transparent conductive film formed on the back surface of the crystalline semiconductor substrate A photovoltaic device comprising a second transparent conductive film containing a metal dopant less than the content of the metal dopant is disclosed.
特開2004-221368号公報JP 2004-221368 A
 透明導電層に含まれる水分量(水素量)が増えると、当該透明導電層のシート抵抗が大きくなりうる。このため、透明導電層に含まれる水分量が多くなると、光電変換素子の光電変換部で発電された電気を集電極で集める際の集電効率に影響する。 As the amount of water (hydrogen amount) contained in the transparent conductive layer increases, the sheet resistance of the transparent conductive layer can increase. For this reason, when the amount of moisture contained in the transparent conductive layer increases, it affects the current collection efficiency when the electricity generated by the photoelectric conversion unit of the photoelectric conversion element is collected by the collector electrode.
 本発明に係る光電変換素子の製造方法は、第1主面及び第1主面と対向する第2主面を含む結晶系半導体基板と、結晶系半導体基板の第1主面上に形成された第1半導体層と、結晶系半導体基板の第2主面上に形成された第2半導体層と、を備えた積層構造部を保持部材に保持し、保持部材に保持した状態で、積層構造部の表面上に透明導電層を形成し、保持部材に保持した状態で、透明導電層の表面上に金属層を形成する。 A method for manufacturing a photoelectric conversion element according to the present invention is formed on a first main surface of a crystalline semiconductor substrate including a first main surface and a second main surface opposite to the first main surface, and the crystalline semiconductor substrate. A laminated structure portion including the first semiconductor layer and the second semiconductor layer formed on the second main surface of the crystalline semiconductor substrate is held by the holding member, and the laminated structure portion is held by the holding member. A transparent conductive layer is formed on the surface of the transparent conductive layer, and a metal layer is formed on the surface of the transparent conductive layer while being held by the holding member.
 本発明によれば、光電変換素子の特性を向上させることができる。 According to the present invention, the characteristics of the photoelectric conversion element can be improved.
本発明に係る実施の形態において、光電変換素子の断面図である。In embodiment which concerns on this invention, it is sectional drawing of a photoelectric conversion element. 本発明に係る実施の形態において、光電変換素子の製造方法の手順を示すフローチャートである。In embodiment concerning this invention, it is a flowchart which shows the procedure of the manufacturing method of a photoelectric conversion element. 本発明に係る実施の形態において、搬送トレイを示す図である。In embodiment which concerns on this invention, it is a figure which shows a conveyance tray. 本発明に係る実施の形態において、S2の工程の製造ラインを示す模式図である。In embodiment which concerns on this invention, it is a schematic diagram which shows the manufacturing line of the process of S2. 本発明に係る実施の形態において、S2の工程の手順を示すフローチャートである。In embodiment which concerns on this invention, it is a flowchart which shows the procedure of the process of S2. 本発明に係る実施の形態において、S2の工程を繰り返すことにより、搬送トレイのトレイ本体部の表面に膜が堆積する様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows a mode that a film | membrane accumulates on the surface of the tray main-body part of a conveyance tray by repeating the process of S2. 本発明に係る実施の形態において、比較のために、金属層を形成しないでS2の工程を繰り返すことにより、搬送トレイのトレイ本体部の表面に膜が堆積する様子を示す図である。In embodiment which concerns on this invention, for a comparison, it is a figure which shows a mode that a film | membrane accumulates on the surface of the tray main-body part of a conveyance tray by repeating the process of S2 without forming a metal layer. 本発明に係る実施の形態において、S2の工程の変形例の製造ラインを示す模式図である。In embodiment which concerns on this invention, it is a schematic diagram which shows the manufacturing line of the modification of the process of S2. 本発明に係る実施の形態において、S2の工程の変形例の手順を示すフローチャートである。In embodiment which concerns on this invention, it is a flowchart which shows the procedure of the modification of the process of S2. 本発明に係る実施の形態において、S2の工程の変形例を繰り返すことにより、搬送トレイのトレイ本体部の表面に膜が堆積する様子を示す図である。In embodiment which concerns on this invention, it is a figure which shows a mode that a film | membrane accumulates on the surface of the tray main-body part of a conveyance tray by repeating the modification of the process of S2.
 以下に図面を用いて、本発明に係る実施の形態を詳細に説明する。この説明において、具体的な形状、材料、数値、方向、形成方法及び製造方法等は、例示であって、用途、目的、仕様等にあわせて適宜変更することができる。 Embodiments according to the present invention will be described below in detail with reference to the drawings. In this description, specific shapes, materials, numerical values, directions, formation methods, manufacturing methods, and the like are exemplifications, and can be appropriately changed according to the application, purpose, specifications, and the like.
 以下では、全ての図面において、同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。 In the following, in all the drawings, the same symbols are attached to the same elements, and the duplicate description is omitted. In the description in the text, the symbols described before are used as necessary.
 図1は、光電変換素子10の断面図である。光電変換素子10は、受光面側から、透明導電層11と、積層構造部24と、透明導電層17と、金属層18とが積層されて構成される。光電変換素子10の受光面上には、複数のフィンガー電極部(不図示)と複数のバスバー電極部19とを含む集電極21が設けられる。また、光電変換素子10の裏面上には、複数の突起電極部22を含む集電極23が設けられる。ここで、「受光面」とは、太陽光等の光が主に入射される面を意味する。また、「裏面」とは、受光面と反対側の面を意味する。 FIG. 1 is a cross-sectional view of the photoelectric conversion element 10. The photoelectric conversion element 10 is configured by laminating a transparent conductive layer 11, a laminated structure 24, a transparent conductive layer 17, and a metal layer 18 from the light receiving surface side. A collecting electrode 21 including a plurality of finger electrode portions (not shown) and a plurality of bus bar electrode portions 19 is provided on the light receiving surface of the photoelectric conversion element 10. In addition, a collector electrode 23 including a plurality of protruding electrode portions 22 is provided on the back surface of the photoelectric conversion element 10. Here, the “light receiving surface” means a surface on which light such as sunlight is mainly incident. The “back surface” means a surface opposite to the light receiving surface.
 積層構造部24は、受光面側から、p型非晶質シリコン層12と、i型a非晶質シリコン層13と、n型単結晶シリコン基板14と、i型非晶質シリコン層15と、n型非晶質シリコン層16とが積層されて構成される。 The laminated structure 24 includes, from the light receiving surface side, a p-type amorphous silicon layer 12, an i-type a amorphous silicon layer 13, an n-type single crystal silicon substrate 14, and an i-type amorphous silicon layer 15. The n-type amorphous silicon layer 16 is laminated.
 透明導電層11は、p型非晶質シリコン層12上に積層される。透明導電層11は、例えば、多結晶構造を有する酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、及び酸化チタン(TiO2)等の金属酸化物のうちの少なくとも1つを含んで構成される。これらの金属酸化物に、錫(Sn)、亜鉛(Zn)、タングステン(W)、アンチモン(Sb)、チタン(Ti)、アルミニウム(Al)、セリウム(Ce)、ガリウム(Ga)などのドーパントがドープされていてもよい。ドーパントの濃度は、0~20wt%とすることができる。ここでは、透明導電層11はインジウム錫酸化物(ITO)を用いて形成されているものとして説明する。透明導電層11の膜厚は、反射防止(Anti-Reflection:AR)効果を考えて、例えば、100nmであることが好適である。 The transparent conductive layer 11 is stacked on the p-type amorphous silicon layer 12. The transparent conductive layer 11 is made of, for example, a metal oxide such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is configured to include at least one. These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga). It may be doped. The concentration of the dopant can be 0 to 20 wt%. Here, the transparent conductive layer 11 is described as being formed using indium tin oxide (ITO). The film thickness of the transparent conductive layer 11 is preferably, for example, 100 nm in consideration of an anti-reflection (AR) effect.
 透明導電層17は、n型非晶質シリコン層16上に積層される。透明導電層17は、例えば、多結晶構造を有する酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化錫(SnO2)、及び酸化チタン(TiO2)等の金属酸化物のうちの少なくとも1つを含んで構成される。これらの金属酸化物に、錫(Sn)、亜鉛(Zn)、タングステン(W)、アンチモン(Sb)、チタン(Ti)、アルミニウム(Al)、セリウム(Ce)、ガリウム(Ga)などのドーパントがドープされていてもよい。ドーパントの濃度は、0~20wt%とすることができる。ここでは、透明導電層17はインジウム錫酸化物(ITO)を用いて形成されているものとして説明する。透明導電層17の膜厚は、透明導電層11の厚み以上が好適であり、例えば、100nm以上150nm以下であることが好適である。 The transparent conductive layer 17 is stacked on the n-type amorphous silicon layer 16. The transparent conductive layer 17 is made of, for example, a metal oxide such as indium oxide (In 2 O 3 ), zinc oxide (ZnO), tin oxide (SnO 2 ), and titanium oxide (TiO 2 ) having a polycrystalline structure. It is configured to include at least one. These metal oxides contain dopants such as tin (Sn), zinc (Zn), tungsten (W), antimony (Sb), titanium (Ti), aluminum (Al), cerium (Ce), and gallium (Ga). It may be doped. The concentration of the dopant can be 0 to 20 wt%. Here, the transparent conductive layer 17 is described as being formed using indium tin oxide (ITO). The film thickness of the transparent conductive layer 17 is preferably equal to or greater than the thickness of the transparent conductive layer 11, and is preferably, for example, from 100 nm to 150 nm.
 金属層18は、透明導電層17上に積層される。金属層18は、透明導電層17の形成領域の略全面を覆うように積層される。ここで、「透明導電層17の形成領域の略全面を覆うように」とは、透明導電層17上の実質的に全体を覆っているとみなせる状態を意味し、例えば、透明導電層17上に積層された金属層18の一部が欠けている状態も含む。金属層18の形成領域の面積は、透明導電層17の形成領域の面積の90%~100%範囲が好適である。 The metal layer 18 is laminated on the transparent conductive layer 17. The metal layer 18 is laminated so as to cover substantially the entire surface of the transparent conductive layer 17 formation region. Here, “so as to cover substantially the entire surface of the region where the transparent conductive layer 17 is formed” means a state in which it can be considered that the transparent conductive layer 17 is substantially entirely covered. This includes a state in which a part of the metal layer 18 laminated is missing. The area of the formation region of the metal layer 18 is preferably in the range of 90% to 100% of the area of the formation region of the transparent conductive layer 17.
 金属層18は、透明導電層17よりも、光電変換素子10で利用される波長領域のうち、特に波長800nm~1200nm程度の赤外領域の光の光反射率が高く、かつ、導電性が高い金属を用いて構成することが好適である。このため、金属層18は、Ag、Al、Cu、Sn、Ni及びCr等の金属や、これらの金属の一種類以上を含む合金により形成することができる。金属層18は、上記金属や合金からなる複数の膜の積層体によって構成されていてもよい。金属層18は、赤外領域の波長において反射率が高いAgを用いることがより好適である。金属層18の膜厚は、例えば、150nm以上1000nm以下であることが好適であり、さらに300nm以上600nmとすることが好適である。なお、ここでは、金属層18はAgを用いて形成されるものとして説明する。 The metal layer 18 has a higher light reflectivity for light in the infrared region, particularly in the wavelength region of about 800 nm to 1200 nm, and higher conductivity than the transparent conductive layer 17 in the wavelength region used in the photoelectric conversion element 10. It is preferable to use a metal. For this reason, the metal layer 18 can be formed of a metal such as Ag, Al, Cu, Sn, Ni and Cr, or an alloy containing one or more of these metals. The metal layer 18 may be composed of a laminate of a plurality of films made of the above metals or alloys. As the metal layer 18, it is more preferable to use Ag having a high reflectance at wavelengths in the infrared region. The film thickness of the metal layer 18 is preferably, for example, 150 nm or more and 1000 nm or less, and more preferably 300 nm or more and 600 nm. Here, the metal layer 18 is described as being formed using Ag.
 金属層18は、一般的に、光反射率及び導電性が透明導電層17よりも高い。このため、金属層18が透明導電層17を介して光電変換素子10の裏面側に形成されることにより、積層構造部24を透過して裏面に到達した光が金属層18によって反射され、再び積層構造部24へ導くことができる。これにより、受光面側からの入射光及び反射光を有効に利用することができ、光電変換素子10の変換効率を高めることができる。 The metal layer 18 generally has higher light reflectance and conductivity than the transparent conductive layer 17. For this reason, when the metal layer 18 is formed on the back surface side of the photoelectric conversion element 10 via the transparent conductive layer 17, the light that has passed through the stacked structure portion 24 and reached the back surface is reflected by the metal layer 18, and again It can be led to the laminated structure 24. Thereby, the incident light and reflected light from the light-receiving surface side can be used effectively, and the conversion efficiency of the photoelectric conversion element 10 can be increased.
 金属層18は、金属結晶構造を有することから、一般的に水分透過性、水分含有性及び水分吸着性が透明導電層17よりも小さい。
 透明導電層11、透明導電層17、および、金属層18の形成は、スパッタリングの手法のみならず、蒸着やイオンプレーティングなどの手法によって形成されてもよい。
Since the metal layer 18 has a metal crystal structure, in general, the moisture permeability, moisture content, and moisture adsorption are smaller than those of the transparent conductive layer 17.
The transparent conductive layer 11, the transparent conductive layer 17, and the metal layer 18 may be formed not only by a sputtering method but also by a method such as vapor deposition or ion plating.
 バスバー電極部19は、光電変換素子10において発電された電気を集電して取り出すために設けられる電極部材である。バスバー電極部19は、光電変換素子10の面内からまんべんなく集電が行われるように配置されたフィンガー電極部において集電された電気をできるだけ均等に集電するように配置することが好適である。 The bus bar electrode portion 19 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10. It is preferable that the bus bar electrode portion 19 is arranged so as to collect the current collected as evenly as possible in the finger electrode portion arranged so as to collect current evenly from within the surface of the photoelectric conversion element 10. .
 突起電極部22は、光電変換素子10において発電された電気を集電して取り出すために設けられる電極部材である。突起電極部22は、金属層18において集電された電気をできるだけ均等に集電するように配置することが好適である。 The protruding electrode part 22 is an electrode member provided for collecting and taking out the electricity generated in the photoelectric conversion element 10. The protruding electrode portion 22 is preferably disposed so as to collect electricity collected in the metal layer 18 as evenly as possible.
 上記で例示した各膜厚は、透過電子顕微鏡(TEM)を用いて測定することができる。そして、上記で例示した各膜厚は、光電変換素子10の断面において、積層方向に沿った厚みの平均膜厚を示している。 Each film thickness illustrated above can be measured using a transmission electron microscope (TEM). And each film thickness illustrated above has shown the average film thickness of the thickness along the lamination direction in the cross section of the photoelectric conversion element 10. FIG.
 図2は、光電変換素子10の製造方法の手順を示すフローチャートである。ここで、光電変換素子10の製造方法の手順について説明すると、まず、プラズマCVD法によって、積層構造部24を形成する(S1)。次に、積層構造部24を搬送トレイ25に保持した状態で、スパッタリング法や蒸着法によって、積層構造部24の受光面側の表面上に透明導電層11を積層し、積層構造部24の裏面側の表面上に透明導電層17及び金属層18を積層する(S2)。最後に、スクリーン印刷法によって、透明導電層11及び金属層18上に、それぞれ集電極21及び集電極23を形成する(S3)。なお、S2及びS3の工程は、複数の積層構造部24に対して同時に行ってもよい。 FIG. 2 is a flowchart showing the procedure of the method for manufacturing the photoelectric conversion element 10. Here, the procedure of the manufacturing method of the photoelectric conversion element 10 will be described. First, the laminated structure portion 24 is formed by the plasma CVD method (S1). Next, the transparent conductive layer 11 is laminated on the light receiving surface side surface of the laminated structure portion 24 by sputtering or vapor deposition with the laminated structure portion 24 held on the transport tray 25, and the back surface of the laminated structure portion 24. The transparent conductive layer 17 and the metal layer 18 are laminated on the surface on the side (S2). Finally, the collector electrode 21 and the collector electrode 23 are formed on the transparent conductive layer 11 and the metal layer 18 by screen printing, respectively (S3). In addition, you may perform the process of S2 and S3 with respect to the some laminated structure part 24 simultaneously.
 以下では、光電変換素子10の製造方法の各工程のうち、S2の工程について詳説する。 Hereinafter, among the steps of the method for manufacturing the photoelectric conversion element 10, the step S2 will be described in detail.
 図3は、搬送トレイ25を示す図である。搬送トレイ25は、積層構造部24を保持する保持部材である。搬送トレイ25は、トレイ本体部26と、複数のサブトレイ27とを備える。ここでは、例示として、複数の積層構造部24を保持する搬送トレイ25を示している。トレイ本体部26は、中央部に矩形の開口部が形成された板状の支持枠である。各サブトレイ27は、トレイ本体部26の開口部に着脱可能であり、上下に分割可能な板状部材により複数の積層構造部24を挟み込んで保持する構造を有する。サブトレイ27は、積層構造部24の端部を挟み込むことによって、複数の積層構造部24を保持した状態で、積層構造部24の表面及び裏面のほぼ全面を露出させるように構成されている。 FIG. 3 is a diagram showing the transport tray 25. The transport tray 25 is a holding member that holds the stacked structure portion 24. The transport tray 25 includes a tray main body portion 26 and a plurality of sub-trays 27. Here, as an example, a transport tray 25 that holds a plurality of stacked structure portions 24 is shown. The tray main body 26 is a plate-like support frame in which a rectangular opening is formed at the center. Each sub-tray 27 can be attached to and detached from the opening of the tray body 26, and has a structure in which a plurality of laminated structures 24 are sandwiched and held by plate-like members that can be divided vertically. The sub-tray 27 is configured to expose almost the entire front surface and back surface of the multilayer structure 24 while holding the plurality of multilayer structures 24 by sandwiching the end of the multilayer structure 24.
 サブトレイ27は、トレイ本体部26の開口部に嵌め込むことができるサイズに作られている。トレイ本体部26の開口部のサブトレイ27の並置方向に沿った縁にはサブトレイ27を支持する支持部材が設けられ、トレイ本体部26の開口部に嵌め込まれたサブトレイ27はその支持部材によって落下しないように保持される。 The sub-tray 27 has a size that can be fitted into the opening of the tray main body 26. A support member for supporting the sub-tray 27 is provided at the edge of the opening of the tray main body 26 along the juxtaposition direction of the sub-tray 27, and the sub-tray 27 fitted into the opening of the tray main-body 26 is not dropped by the support member. To be held.
 サブトレイ27の両端部は、トレイ本体部26に対して回転可能に取り付けられる。これにより、トレイ本体部26の表裏面に対してサブトレイ27に保持された積層構造部24の表面と裏面とを反転させることができる。 Both ends of the sub-tray 27 are attached to the tray body 26 so as to be rotatable. Thereby, the front surface and the back surface of the laminated structure portion 24 held by the sub-tray 27 can be reversed with respect to the front and back surfaces of the tray main body portion 26.
 図4は、S2の工程の製造ラインを示す模式図である。図5は、S2の工程を示すフローチャートである。 FIG. 4 is a schematic diagram showing a production line in the step S2. FIG. 5 is a flowchart showing the step S2.
 まず、透明導電層11、透明導電層17及び金属層18が形成される対象となる複数の積層構造部24をサブトレイ27によって保持させる(S10)。そして、所定数のサブトレイ27をトレイ本体部26に装着する(S12)。これにより、所定数の積層構造部24が搬送トレイ25に保持される。S10及びS12の工程は、大気に晒された空間領域である着脱位置40において行われる。 First, a plurality of laminated structures 24 on which the transparent conductive layer 11, the transparent conductive layer 17, and the metal layer 18 are to be formed are held by the sub-tray 27 (S10). Then, a predetermined number of sub-trays 27 are mounted on the tray body 26 (S12). As a result, a predetermined number of stacked structure portions 24 are held on the transport tray 25. Steps S10 and S12 are performed at the attachment / detachment position 40, which is a space region exposed to the atmosphere.
 このように準備した搬送トレイ25を、第1真空装置42内に搬送させ、第1真空装置42内において、スパッタリング法によって、各積層構造部24のp型非晶質シリコン層12上に透明導電層11を形成する(S14)。 The transport tray 25 prepared in this manner is transported into the first vacuum device 42, and in the first vacuum device 42, a transparent conductive material is formed on the p-type amorphous silicon layer 12 of each stacked structure portion 24 by sputtering. Layer 11 is formed (S14).
 その後、搬送トレイ25を第1真空装置42から搬出し、搬送トレイ25に装着されたサブトレイ27を反転させる。これにより、積層構造部24の表面と裏面とが反転する(S16)。S16の工程は、大気に晒された空間領域である反転位置44において行われる。そして、搬送トレイ25を第2真空装置46内に搬入し、第2真空装置46内において、スパッタリング法によって、積層構造部24のn型非晶質シリコン層16上に透明導電層17を形成する(S18)。 Thereafter, the transport tray 25 is unloaded from the first vacuum device 42, and the sub-tray 27 mounted on the transport tray 25 is reversed. Thereby, the front surface and the back surface of the laminated structure 24 are reversed (S16). The process of S16 is performed at the reversal position 44, which is a space area exposed to the atmosphere. Then, the transport tray 25 is carried into the second vacuum device 46, and the transparent conductive layer 17 is formed on the n-type amorphous silicon layer 16 of the stacked structure portion 24 in the second vacuum device 46 by sputtering. (S18).
 次に、第2真空装置46から第3真空装置48内に搬送トレイ25を搬送し、第3真空装置48内において、スパッタリング法によって、積層構造部24の透明導電層17上に金属層18を形成する(S20)。その後、第3真空装置48から搬送トレイ25を着脱位置40に搬出し、サブトレイ27をトレイ本体部26から取り外す(S22)。 Next, the transport tray 25 is transported from the second vacuum device 46 into the third vacuum device 48, and the metal layer 18 is deposited on the transparent conductive layer 17 of the laminated structure portion 24 by sputtering in the third vacuum device 48. Form (S20). Thereafter, the transport tray 25 is unloaded from the third vacuum device 48 to the attachment / detachment position 40, and the sub-tray 27 is removed from the tray body 26 (S22).
 S10~S22の工程が一巡すると、トレイ本体部26から積層構造部24を保持したサブトレイ27が取り外され、新たな積層構造部24を保持したサブトレイ27に取り替えられる。S10~S22の工程が繰り返されると、図6に示されるように、トレイ本体部26の表面には、透明導電層11a、透明導電層17a、金属層18a、透明導電層11a、透明導電層17a、金属層18a、透明導電層11a・・・の順に繰り返し膜が形成されて堆積する。 When the steps S10 to S22 are completed, the sub-tray 27 holding the laminated structure 24 is removed from the tray body 26 and replaced with the sub-tray 27 holding the new laminated structure 24. When the steps S10 to S22 are repeated, as shown in FIG. 6, the surface of the tray main body 26 has a transparent conductive layer 11a, a transparent conductive layer 17a, a metal layer 18a, a transparent conductive layer 11a, and a transparent conductive layer 17a. , The metal layer 18a, the transparent conductive layer 11a,... Are repeatedly formed and deposited.
 一般的に、透明導電層11a及び透明導電層17aは結晶粒界を多く含む多結晶構造を有する。これに対して、金属層18aは結晶粒界が少ない金属結晶構造を有する。したがって、金属層18aは、透明導電層11a及び透明導電層17aに比べて結晶粒界における水分や不純物の吸着が少なく、粒界を介した水分や不純物の透過性も小さい。したがって、搬送トレイ25の表面の少なくとも一部に金属層18aを成膜することによって、真空装置内に搬送トレイ25を搬入した際に搬送トレイ25から放出される水分や不純物を低減することができる。また、仮に、搬送トレイ25に透明導電層11a,17aが堆積される前の状態であっても金属層18aを成膜することによって、上記不純物等を低減することができる。 Generally, the transparent conductive layer 11a and the transparent conductive layer 17a have a polycrystalline structure including many crystal grain boundaries. In contrast, the metal layer 18a has a metal crystal structure with few crystal grain boundaries. Therefore, the metal layer 18a has less moisture and impurity adsorption at the crystal grain boundary and less moisture and impurity permeability through the grain boundary than the transparent conductive layer 11a and the transparent conductive layer 17a. Therefore, by forming the metal layer 18a on at least a part of the surface of the transport tray 25, moisture and impurities released from the transport tray 25 when the transport tray 25 is carried into the vacuum apparatus can be reduced. . Further, even if the transparent conductive layers 11a and 17a are not yet deposited on the transport tray 25, the impurities and the like can be reduced by forming the metal layer 18a.
 トレイ本体部26を交換せずに透明導電層11a及び透明導電層17aを繰り返し成膜する場合、金属層18aを形成しないと、図7に示されるように、トレイ本体部26に透明導電層11a、透明導電層17a、透明導電層11a、透明導電層17a、透明導電層11a・・・の順に繰り返し膜が形成される。このような状態において、第1真空装置42内あるいは第2真空装置46内においてスパッタリング法による透明導電層11,17の形成処理を適用すると、トレイ本体部26に積層された透明導電層11a、透明導電層17aに含まれる水分や不純物が放出され、同時に積層構造部24に成膜される透明導電層11,17に取り込まれて膜質に悪影響を及ぼすおそれがある。 In the case where the transparent conductive layer 11a and the transparent conductive layer 17a are repeatedly formed without replacing the tray main body portion 26, if the metal layer 18a is not formed, the transparent conductive layer 11a is formed on the tray main body portion 26 as shown in FIG. The transparent conductive layer 17a, the transparent conductive layer 11a, the transparent conductive layer 17a, the transparent conductive layer 11a,... In such a state, when the formation process of the transparent conductive layers 11 and 17 by the sputtering method is applied in the first vacuum device 42 or the second vacuum device 46, the transparent conductive layer 11a laminated on the tray main body 26, the transparent There is a possibility that moisture and impurities contained in the conductive layer 17a are released and simultaneously taken into the transparent conductive layers 11 and 17 formed in the laminated structure portion 24 to adversely affect the film quality.
 一方、図6に示されるように、トレイ本体部26の表面の少なくとも一部、特に透明導電層11a又は透明導電層17aが積層された表面の少なくとも一部に金属層18aを形成して覆った場合、そのトレイ本体部26を用いて透明導電層11,17を新たに形成する際に、金属層18によってトレイ本体部26の表面に積層された透明導電層11a、透明導電層17aに含まれる水分や不純物が放出されることを抑制することができる。したがって、トレイ本体部26を交換しなくとも、透明導電層11,17を形成する際に同時に積層構造部24に成膜される透明導電層11,17に取り込まれる水分や不純物の量を低減することができる。一般的に、透明導電層11,17の膜中の水分量が増加するとシート抵抗は増加するので、透明導電層11,17のシート抵抗の上昇を抑制することができ、光電変換素子10の集電効率を向上させることができる。なお、透明導電層11は、金属層18が形成された次の成膜工程で形成されるため、透明導電層11が形成された次の成膜工程で形成される透明導電層17に比べて、膜中に取り込まれる水分量をより低減することができる。 On the other hand, as shown in FIG. 6, a metal layer 18a is formed and covered on at least a part of the surface of the tray body 26, in particular, at least a part of the surface on which the transparent conductive layer 11a or the transparent conductive layer 17a is laminated. In this case, when the transparent conductive layers 11 and 17 are newly formed using the tray body 26, the transparent conductive layer 11a and the transparent conductive layer 17a stacked on the surface of the tray body 26 by the metal layer 18 are included. The release of moisture and impurities can be suppressed. Therefore, the amount of moisture and impurities taken into the transparent conductive layers 11 and 17 formed in the laminated structure 24 at the same time when forming the transparent conductive layers 11 and 17 is reduced without replacing the tray main body portion 26. be able to. In general, since the sheet resistance increases as the amount of water in the films of the transparent conductive layers 11 and 17 increases, an increase in the sheet resistance of the transparent conductive layers 11 and 17 can be suppressed. Electric efficiency can be improved. In addition, since the transparent conductive layer 11 is formed in the next film formation process in which the metal layer 18 is formed, the transparent conductive layer 11 is compared with the transparent conductive layer 17 formed in the next film formation process in which the transparent conductive layer 11 is formed. The amount of water taken into the film can be further reduced.
 次に、上記光電変換素子10の製造方法において、S2の工程の変形例について説明する。図8は、S2の工程の変形例の製造ラインを示す模式図である。図9は、S2の工程の変形例の具体的な手順を示すフローチャートである。 Next, in the method for manufacturing the photoelectric conversion element 10, a modified example of the step S2 will be described. FIG. 8 is a schematic diagram showing a production line of a modification of the step S2. FIG. 9 is a flowchart showing a specific procedure of a modification of the step S2.
 まず、透明導電層11、透明導電層17及び金属層18が形成される対象となる複数の積層構造部24をサブトレイ27によって保持させる(S30)。そして、所定数のサブトレイ27をトレイ本体部26に装着する(S32)。これにより、所定数の積層構造部24が搬送トレイ25に保持される。S30及びS32の工程は、大気に晒された空間領域である着脱位置50において行われる。 First, a plurality of laminated structures 24 on which the transparent conductive layer 11, the transparent conductive layer 17, and the metal layer 18 are to be formed are held by the sub-tray 27 (S30). Then, a predetermined number of sub-trays 27 are mounted on the tray body 26 (S32). As a result, a predetermined number of stacked structure portions 24 are held on the transport tray 25. Steps S30 and S32 are performed at the attachment / detachment position 50, which is a space region exposed to the atmosphere.
 このように準備した搬送トレイ25を、第1真空装置52内に搬送させ、第1真空装置52内において、スパッタリング法によって、各積層構造部24のn型非晶質シリコン層16上に透明導電層17を形成する(S34)。次に、第1真空装置52から第2真空装置53内に搬送トレイ25を搬送し、第2真空装置53内において、スパッタリング法によって、積層構造部24の透明導電層17上に金属層18を形成する(S36)。 The transport tray 25 prepared in this way is transported into the first vacuum device 52, and in the first vacuum device 52, a transparent conductive material is formed on the n-type amorphous silicon layer 16 of each stacked structure portion 24 by sputtering. Layer 17 is formed (S34). Next, the transport tray 25 is transported from the first vacuum device 52 into the second vacuum device 53, and the metal layer 18 is deposited on the transparent conductive layer 17 of the stacked structure portion 24 by sputtering in the second vacuum device 53. Form (S36).
 その後、搬送トレイ25を第2真空装置53から搬出し、搬送トレイ25に装着されたサブトレイ27を反転させる。これにより、積層構造部24の表面と裏面とが反転する(S38)。S38の工程は、大気に晒された空間領域である反転位置54において行われる。そして、搬送トレイ25を第3真空装置56内に搬入し、第3真空装置56内において、スパッタリング法によって、積層構造部24のp型非晶質シリコン層12上に透明導電層11を形成する(S40)。 Thereafter, the transport tray 25 is unloaded from the second vacuum device 53, and the sub-tray 27 attached to the transport tray 25 is reversed. Thereby, the front surface and the back surface of the laminated structure 24 are reversed (S38). The process of S38 is performed at the reversal position 54, which is a space area exposed to the atmosphere. Then, the transport tray 25 is carried into the third vacuum device 56, and the transparent conductive layer 11 is formed on the p-type amorphous silicon layer 12 of the stacked structure portion 24 by the sputtering method in the third vacuum device 56. (S40).
 その後、第3真空装置56から搬送トレイ25を着脱位置50に搬出し、サブトレイ27をトレイ本体部26から取り外す(S42)。 Thereafter, the transport tray 25 is unloaded from the third vacuum device 56 to the attachment / detachment position 50, and the sub-tray 27 is removed from the tray body 26 (S42).
 続いて、上記光電変換素子10の製造方法において、S2の工程の変形例の作用について説明する。S30~S42の工程が一巡すると、トレイ本体部26から積層構造部24を保持したサブトレイ27が取り外され、新たな積層構造部24を保持したサブトレイ27に取り替えられる。S30~S32の工程が繰り返されると、図10に示されるように、トレイ本体部26の表面には、透明導電層17a、金属層18a、透明導電層11a、透明導電層17a、金属層18a、透明導電層11a・・・の順に繰り返し膜が形成されて堆積する。 Subsequently, in the method for manufacturing the photoelectric conversion element 10, an operation of a modified example of the step S2 will be described. When the steps S30 to S42 are completed, the sub-tray 27 holding the stacked structure portion 24 is removed from the tray main body 26 and replaced with the sub-tray 27 holding a new stacked structure portion 24. When the processes of S30 to S32 are repeated, as shown in FIG. 10, on the surface of the tray body 26, the transparent conductive layer 17a, the metal layer 18a, the transparent conductive layer 11a, the transparent conductive layer 17a, the metal layer 18a, A film is repeatedly formed and deposited in the order of the transparent conductive layers 11a.
 したがって、S2の工程の変形例を用いた場合であっても、トレイ本体部26の表面の少なくとも一部、特に透明導電層11a又は透明導電層17aが積層された表面の少なくとも一部に金属層18aを形成して覆われる。これにより、そのトレイ本体部26を用いて透明導電層11,17を新たに形成する際に、金属層18によってトレイ本体部26の表面に積層された透明導電層11a、透明導電層17aに含まれる水分や不純物が放出されることを抑制することができる。したがって、トレイ本体部26を交換しなくとも、透明導電層11,17を形成する際に同時に積層構造部24に成膜される透明導電層11,17に取り込まれる水分や不純物の量を低減することができる。
 一般的に、透明導電層11,17の膜中の水分量が増加するとシート抵抗は増加するので、透明導電層11,17のシート抵抗の上昇を抑制することができ、光電変換素子10の集電効率を向上させることができる。なお、透明導電層11は、金属層18が形成された次の成膜工程で形成されるため、透明導電層11が形成された次の成膜工程で形成される透明導電層17に比べて、膜中に取り込まれる水分量をより低減することができる。
Therefore, even when the modified example of the step S2 is used, the metal layer is formed on at least a part of the surface of the tray main body 26, particularly at least a part of the surface on which the transparent conductive layer 11a or the transparent conductive layer 17a is laminated. 18a is formed and covered. Thus, when the transparent conductive layers 11 and 17 are newly formed using the tray main body portion 26, the transparent conductive layer 11a and the transparent conductive layer 17a laminated on the surface of the tray main body portion 26 by the metal layer 18 are included. It is possible to suppress the release of moisture and impurities. Therefore, the amount of moisture and impurities taken into the transparent conductive layers 11 and 17 formed in the laminated structure 24 at the same time when forming the transparent conductive layers 11 and 17 is reduced without replacing the tray main body portion 26. be able to.
In general, since the sheet resistance increases as the amount of water in the films of the transparent conductive layers 11 and 17 increases, an increase in the sheet resistance of the transparent conductive layers 11 and 17 can be suppressed. Electric efficiency can be improved. In addition, since the transparent conductive layer 11 is formed in the next film formation process in which the metal layer 18 is formed, the transparent conductive layer 11 is compared with the transparent conductive layer 17 formed in the next film formation process in which the transparent conductive layer 11 is formed. The amount of water taken into the film can be further reduced.
 なお、上記S2の工程及びS2の工程の変形例では、透明導電層11,17及び金属層18はそれぞれ異なる真空装置で形成するものとして説明したが、同じ真空装置で形成してもよい。また、上記S2の工程及びS2の工程の変形例では、反転位置44,54は、大気に晒された空間領域であるものとして説明したが、真空状態の空間領域であってもよい。 Although the transparent conductive layers 11 and 17 and the metal layer 18 have been described as being formed by different vacuum devices in the above-described step S2 and the modified example of the step S2, they may be formed by the same vacuum device. In the above-described step S2 and the modified example of the step S2, the inversion positions 44 and 54 have been described as being a space region exposed to the atmosphere, but may be a space region in a vacuum state.
 また、上記のように、光電変換素子10では、受光面側から、透明導電層11、p型非晶質シリコン層12、i型非晶質シリコン層13、n型単結晶シリコン基板14、i型非晶質シリコン層15、n型非晶質シリコン層16、透明導電層17及び金属層18の並びで積層される構造であるとして説明したが、当該積層構造に限定されない。例えば、受光面側から、透明導電層、n型非晶質シリコン層、i型非晶質シリコン層、n型単結晶シリコン基板、i型非晶質シリコン層、p型非晶質シリコン層、透明導電層及び金属層の並びで積層される構造であってもよい。 As described above, in the photoelectric conversion element 10, the transparent conductive layer 11, the p-type amorphous silicon layer 12, the i-type amorphous silicon layer 13, the n-type single crystal silicon substrate 14, i from the light receiving surface side. Although described as a structure in which the type amorphous silicon layer 15, the n type amorphous silicon layer 16, the transparent conductive layer 17, and the metal layer 18 are stacked, the present invention is not limited to the stacked structure. For example, from the light receiving surface side, a transparent conductive layer, an n-type amorphous silicon layer, an i-type amorphous silicon layer, an n-type single crystal silicon substrate, an i-type amorphous silicon layer, a p-type amorphous silicon layer, A structure in which a transparent conductive layer and a metal layer are arranged side by side may be used.
 10 光電変換素子、11,11a,17,17a 透明導電層、12 p型アモルファスシリコン層、13 i型アモルファスシリコン層、14 n型単結晶シリコン基板、15 i型アモルファスシリコン層、16 n型アモルファスシリコン層、18,18a 金属層、19 バスバー電極部、21 集電極、22 バスバー電極部、23 集電極、24 積層構造部、25 搬送トレイ、26 トレイ本体部、27 サブトレイ、40 着脱位置、42 第1真空装置、44 反転位置、46 第2真空装置、48 第3真空装置、50 着脱位置、52 第1真空装置、53 第2真空装置、54 反転位置、56 第3真空装置。 10 photoelectric conversion element, 11, 11a, 17, 17a transparent conductive layer, 12 p-type amorphous silicon layer, 13 i-type amorphous silicon layer, 14 n-type single crystal silicon substrate, 15 i-type amorphous silicon layer, 16 n-type amorphous silicon Layer, 18, 18a metal layer, 19 bus bar electrode part, 21 collector electrode, 22 bus bar electrode part, 23 collector electrode, 24 laminated structure part, 25 transport tray, 26 tray body part, 27 sub-tray, 40 attachment / detachment position, 42 1st Vacuum device, 44 reverse position, 46 second vacuum device, 48 third vacuum device, 50 attachment / detachment position, 52 first vacuum device, 53 second vacuum device, 54 reverse position, 56 third vacuum device.

Claims (5)

  1.  第1主面及び前記第1主面と対向する第2主面を含む結晶系半導体基板と、前記結晶系半導体基板の前記第1主面上に形成された第1半導体層と、前記結晶系半導体基板の前記第2主面上に形成された第2半導体層と、を備えた積層構造部を保持部材に保持し、
     前記保持部材に保持した状態で、前記積層構造部の表面上に透明導電層を形成し、
     前記保持部材に保持した状態で、前記透明導電層の表面上に金属層を形成する、光電変換素子の製造方法。
    A crystal semiconductor substrate including a first main surface and a second main surface opposite to the first main surface; a first semiconductor layer formed on the first main surface of the crystal semiconductor substrate; and the crystal system Holding a laminated structure portion including a second semiconductor layer formed on the second main surface of the semiconductor substrate on a holding member;
    In a state of being held by the holding member, a transparent conductive layer is formed on the surface of the laminated structure portion,
    The manufacturing method of a photoelectric conversion element which forms a metal layer on the surface of the said transparent conductive layer in the state hold | maintained at the said holding member.
  2.  請求項1に記載の光電変換素子の製造方法において、
     前記保持部材は、
     前記積層構造部を保持するサブトレイと、
     開口部を有するトレイ本体部と、を含み、
     前記積層構造部を前記サブトレイに保持し、
     前記トレイ本体部の開口部に前記サブトレイを嵌め込む、光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of Claim 1,
    The holding member is
    A sub-tray for holding the laminated structure;
    A tray body having an opening, and
    Holding the laminated structure portion on the sub-tray;
    A method for manufacturing a photoelectric conversion element, wherein the sub-tray is fitted into an opening of the tray main body.
  3.  請求項2に記載の光電変換素子の製造方法において、
     前記サブトレイは、
     板状の第1支持枠と、
     板状の第2支持枠と、を含み、
     前記積層構造部の端部を前記第1支持枠および前記第2支持枠に挟み込む、光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of Claim 2,
    The sub-tray is
    A plate-like first support frame;
    A plate-like second support frame,
    A method for manufacturing a photoelectric conversion element, wherein an end portion of the stacked structure portion is sandwiched between the first support frame and the second support frame.
  4.  請求項2または請求項3に記載の光電変換素子の製造方法において、
     前記サブトレイを、前記トレイ本体部に対して回転するように前記トレイ本体部に取り付け、
     前記第1半導体層の表面上に前記透明導電膜を形成し、
     前記サブトレイを回転した後、前記第2半導体層の表面上に前記透明導電膜を形成する、光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of Claim 2 or Claim 3,
    The sub-tray is attached to the tray body so as to rotate with respect to the tray body.
    Forming the transparent conductive film on the surface of the first semiconductor layer;
    A method for manufacturing a photoelectric conversion element, comprising: forming the transparent conductive film on a surface of the second semiconductor layer after rotating the sub-tray.
  5.  請求項1から請求項4のいずれか1に記載の光電変換素子の製造方法において、
     前記透明導電層の表面のうち50%以上の領域上に前記金属層を形成する、光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of any one of Claims 1-4,
    The manufacturing method of the photoelectric conversion element which forms the said metal layer on a 50% or more area | region among the surfaces of the said transparent conductive layer.
PCT/JP2011/080458 2011-01-31 2011-12-28 Method for manufacturing photoelectric conversion element WO2012105154A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-018542 2011-01-31
JP2011018542 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105154A1 true WO2012105154A1 (en) 2012-08-09

Family

ID=46602384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080458 WO2012105154A1 (en) 2011-01-31 2011-12-28 Method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2012105154A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140112649A (en) * 2013-03-13 2014-09-24 엘지전자 주식회사 Solar cell
JP5608828B1 (en) * 2012-10-02 2014-10-15 株式会社カネカ Crystalline silicon solar cell manufacturing method, solar cell module manufacturing method, crystalline silicon solar cell, and solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010856A1 (en) * 1993-10-11 1995-04-20 Universite De Neuchatel Photovoltaic cell and method for fabrication of said cell
JPH11103081A (en) * 1997-09-29 1999-04-13 Sanyo Electric Co Ltd Photovoltaic element
JP2006310774A (en) * 2005-03-29 2006-11-09 Sanyo Electric Co Ltd Photovoltaic element and method for manufacturing the same
US20080000522A1 (en) * 2006-06-30 2008-01-03 General Electric Company Photovoltaic device which includes all-back-contact configuration; and related processes
JP2011003750A (en) * 2009-06-19 2011-01-06 Kaneka Corp Crystal silicon system solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010856A1 (en) * 1993-10-11 1995-04-20 Universite De Neuchatel Photovoltaic cell and method for fabrication of said cell
JPH11103081A (en) * 1997-09-29 1999-04-13 Sanyo Electric Co Ltd Photovoltaic element
JP2006310774A (en) * 2005-03-29 2006-11-09 Sanyo Electric Co Ltd Photovoltaic element and method for manufacturing the same
US20080000522A1 (en) * 2006-06-30 2008-01-03 General Electric Company Photovoltaic device which includes all-back-contact configuration; and related processes
JP2011003750A (en) * 2009-06-19 2011-01-06 Kaneka Corp Crystal silicon system solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608828B1 (en) * 2012-10-02 2014-10-15 株式会社カネカ Crystalline silicon solar cell manufacturing method, solar cell module manufacturing method, crystalline silicon solar cell, and solar cell module
KR20140112649A (en) * 2013-03-13 2014-09-24 엘지전자 주식회사 Solar cell
KR101979843B1 (en) 2013-03-13 2019-05-17 엘지전자 주식회사 Solar cell

Similar Documents

Publication Publication Date Title
TWI585783B (en) Transparent conductive film laminate, method for manufacturing the same, and thin film solar cell and manufacturing method thereof
WO2012105155A1 (en) Photoelectric converter and method for producing same
WO2014073329A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
TW201115753A (en) Solar cell front contact doping
US20130109124A1 (en) Methods of making a transparent layer and a photovoltaic device
WO2010144460A1 (en) Flexible photovoltaic cells having a polyimide material layer and method of producing same
WO2012013155A1 (en) Cdte solar battery and method of preparing the same
WO2012105148A1 (en) Photoelectric conversion element
WO2012105154A1 (en) Method for manufacturing photoelectric conversion element
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
JP6199608B2 (en) Photoelectric conversion device
US20130146134A1 (en) Solar cell with nanolaminated transparent electrode and method of manufacturing the same
WO2015050082A1 (en) Photovoltaic element and method for producing same
JP2012244065A (en) Thin film photoelectric conversion device, manufacturing method thereof, and thin film photoelectric conversion module
JP6042679B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
JP5158807B2 (en) Photoelectric conversion element and manufacturing method thereof
WO2012105153A1 (en) Photoelectric conversion element
TW201709541A (en) Photovoltaic power generation element and method for manufacturing same
US20130133720A1 (en) Solar battery module and manufacturing method thereof
WO2015050083A1 (en) Photovoltaic element
TW201924081A (en) Method for manufacturing solar cell, solar cell, and solar cell module
KR20150048304A (en) Solar cell including a transparent electrode having multilayer structure
JP5818789B2 (en) Thin film solar cell
JP5307280B2 (en) Thin film photoelectric conversion element
WO2015050161A1 (en) Photovoltaic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP