Nothing Special   »   [go: up one dir, main page]

WO2012102400A1 - ステータティース、ステータ、回転電機、および、回転電機の制御方法 - Google Patents

ステータティース、ステータ、回転電機、および、回転電機の制御方法 Download PDF

Info

Publication number
WO2012102400A1
WO2012102400A1 PCT/JP2012/051895 JP2012051895W WO2012102400A1 WO 2012102400 A1 WO2012102400 A1 WO 2012102400A1 JP 2012051895 W JP2012051895 W JP 2012051895W WO 2012102400 A1 WO2012102400 A1 WO 2012102400A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
winding
stator
windings
stator teeth
Prior art date
Application number
PCT/JP2012/051895
Other languages
English (en)
French (fr)
Inventor
赤津 観
大樹 土方
Original Assignee
学校法人 芝浦工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 芝浦工業大学 filed Critical 学校法人 芝浦工業大学
Priority to CN201280006749.6A priority Critical patent/CN103339835B/zh
Priority to EP12739300.7A priority patent/EP2670028B1/en
Priority to US13/982,407 priority patent/US9287745B2/en
Priority to KR1020137019712A priority patent/KR101504856B1/ko
Priority to JP2012554875A priority patent/JP5725572B2/ja
Publication of WO2012102400A1 publication Critical patent/WO2012102400A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • H02K3/20Windings for salient poles for auxiliary purposes, e.g. damping or commutating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/16Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using ac to ac converters without intermediate conversion to dc

Definitions

  • the present invention relates to a stator tooth, a stator, a rotating electrical machine including the stator, and a method for controlling the rotating electrical machine.
  • Permanent magnet synchronous motor uses a permanent magnet for the rotor, so it is a motor with higher output and higher efficiency than induction machines and other motors.
  • a punched silicon steel plate is laminated and used for the stator, and a coil is wound around the silicon steel plate.
  • an induced voltage is generated in the coil.
  • a voltage higher than the induced voltage is applied from the inverter connected to the coil, and a current synchronized with the rotation is applied to the coil.
  • the rotor generates torque by flowing the current.
  • control called field weakening control is control in which a magnetic flux that is opposed to a magnetic flux generated by a magnet is generated from a coil so that the magnetic flux of the magnet does not interlink with the coil.
  • the field weakening control since the magnetic flux of the magnet appears to be weakened, the induction machine voltage is lowered and the rotation speed is increased.
  • variable field structure two types of magnets with different force (coercive force) to hold the magnetic flux of the magnet are arranged on the rotor, and the magnetic flux direction of the magnet with weak coercive force is maintained by an external current.
  • the structure is opposite to that of a strong magnet.
  • Patent Document 1 and Patent Document 2 the coil wound around the stator is divided into two, and when the rotational speed is slow, the two are connected in series, and when the rotational speed is fast, the two coils are divided. By using only half, the magnetic flux linked to the coil can be reduced to half.
  • Patent Document 3 the coil wound around the stator is separated into two, and when the rotation speed is high and the torque is low, the windings are connected in parallel, and when the rotation speed is low and the torque is high.
  • a technique for reducing the magnetic flux linked to the coil in half by connecting the windings in series is disclosed.
  • Patent Document 4 a magnet disposed on a rotor is made rotatable so that when the rotational speed is slow, the magnet is disposed in a direction facing the coil. When the rotational speed is fast, the magnet is oriented parallel to the coil.
  • a technique for arranging magnets is disclosed. Since the magnet arranged in the direction parallel to the coil has a small area when viewed from the coil, the magnetic flux linked to the coil can be reduced.
  • variable field structure in order to maintain the polarity of the magnet having a weak coercive force, it is necessary to energize a continuous current, and there is a problem that efficiency is lowered. Further, a space for arranging a magnet having a weak coercive force is required on the rotor, and there is a problem that the output is lowered as compared with a motor having a magnet having a strong coercive force. Furthermore, in order to reverse the polarity of the magnet having a weak coercive force, it is necessary to flow a large current instantaneously, resulting in a problem that the inverter capacity becomes large and the dielectric strength of the coil needs to be increased.
  • Patent Literature 1 when only half of the coil is used, the current cannot be increased. Therefore, the torque is higher than when two coils are connected and used. There is a problem of halving.
  • the present invention has been made in view of the above-described circumstances.
  • a single motor can exhibit a plurality of driving characteristics without increasing the size of the apparatus, and the output range can be expanded.
  • the problem is to plan.
  • a stator tooth according to the present invention is a stator tooth attached to a stator yoke, and includes at least two windings wound around the stator tooth and the two windings. An end of one of the windings and at least one switch connected to the end of the other winding, wherein the switch is another winding wound around another stator tooth. It is also possible to connect to the end of the line (first mode).
  • the stator according to the present invention is a stator including a stator yoke and a stator tooth that is formed integrally with the stator yoke or attached to the stator yoke, and is wound around the stator tooth. At least two windings, At least one switch connected to an end of one of the two windings and an end of the other set of windings, the switch surrounding the other stator teeth It is connectable also to the edge part of the other winding wound by (2nd aspect).
  • the rotating electrical machine is a stator tooth formed integrally with a rotor having a permanent magnet and a stator yoke, or attached to the stator yoke, and at least with respect to one pole pair of the permanent magnet
  • a rotor having a permanent magnet and a stator tooth formed integrally with the stator yoke or attached to the stator yoke, wherein one pole of the permanent magnet is provided.
  • At least three or more stator teeth provided for the pair, at least two windings wound around each of the stator teeth, and an end of one of the two windings
  • at least one switch provided on each of the stator teeth, and the switch is connected to the other end of the other stator teeth.
  • a method for controlling a rotating electrical machine connected to an end of a winding wherein the rotational speed required for the rotating electrical machine is lower than a predetermined reference speed
  • the switch is switched so that the end of one of the two windings is connected to the end of the other winding, and the rotational speed required for the rotating electrical machine is a predetermined reference If higher than the speed, the switch is connected to the end of one of the two windings and the end of the other winding wound around the other stator teeth.
  • the winding of the winding wound around the stator teeth by switching the switch.
  • the connection state can be freely changed between concentrated winding and distributed winding according to the rotation speed, so multiple drive characteristics can be achieved with one motor and the output range can be expanded without increasing the size of the device. be able to.
  • the connection between windings to which a positive voltage is to be applied in each phase is intermittently switched at a predetermined ratio
  • the connection between windings to which a negative voltage is to be applied is
  • the connection between windings to which a positive voltage is to be applied is always connected.
  • the voltage applied to the winding may be changed from a DC voltage to an AC voltage (sixth aspect).
  • control method of the sixth aspect it is not necessary to connect an inverter to the outside, and the system can be reduced in size.
  • the winding connection state in each phase is the concentrated winding state in which the end of one of the two windings and the end of the other winding are connected Or two states in a distributed winding state in which an end of one of the two windings and an end of another winding wound around the other stator teeth are connected
  • the switch may be switched so as to switch in time finely according to the voltage target value, and the induced voltage may be a sine wave (seventh aspect).
  • torque ripple can be reduced and reduction of iron loss can be achieved.
  • the switch is a control method for a rotating electrical machine connected to an end of another winding wound around another stator tooth, the switch being When switching so that the end of one of the two windings and the end of the other winding wound around the other stator teeth are connected, each stator tooth
  • the switches may be switched so as to be connected to different windings at the same time, and the switches may be switched so that the number of windings included in each phase is equal (eighth mode).
  • the imbalance between the phases can be eliminated.
  • the switch includes a switch for connecting or disconnecting the windings wound at least three in series and one winding wound around one stator tooth.
  • a switch that connects or disconnects the wire and one winding wound around another stator tooth, and is connected to a current supply end among the windings wound around each stator tooth The winding at the end opposite to the winding of the part is connected to the winding at the end opposite to the winding at the end connected to the current supply end in the pair of stator teeth.
  • a switch for connecting or disconnecting the end winding connected to the current supply end of each stator tooth and the end winding connected to the current supply end of the paired stator teeth.
  • a rotor having a permanent magnet and a stator tooth formed integrally with the stator yoke or attached to the stator yoke, At least six or more stator teeth provided for one pole pair of magnets, at least three windings wound around each of the stator teeth, and at least three windings wound
  • a first switch that connects or disconnects the first switch, one winding wound around one stator tooth, and one winding wound around another stator tooth. Of the windings wound around each stator tooth, on the opposite side of the winding at the end connected to the current supply end.
  • the winding of the part is connected to the winding of the end opposite to the winding of the end connected to the current supply end of the pair of stator teeth, and is connected to the current supply end of each stator tooth.
  • a three-phase alternating current to a rotating electrical machine having a third switch for connecting or disconnecting a winding at one end and a winding at an end connected to a current supply end in a pair of stator teeth.
  • the first switch is turned on at least three windings.
  • the first switch When the first connection mode that is switched so as to be connected in series and the rotational speed required for the rotating electrical machine is higher than a predetermined reference speed, the first switch is disconnected and the second switch is Stators Switching between the first connection mode and the second connection mode is performed by switching the alternating current of any phase.
  • the third switch When it is detected that the value has become zero, the third switch is connected to the winding of the end connected to the current supply end of the stator tooth to which the alternating current of the phase is supplied, and the pair of stator teeth. The windings of the stator teeth to which the alternating current of the phase is supplied by the first switch, respectively.
  • One winding wound around the stator teeth of the phase by the second switch when it is detected that the alternating current value of any one of the phases becomes zero next Are connected to one winding wound around other stator teeth. Further, with respect to a plurality of other stator teeth, one winding wound around each stator tooth and other stator teeth are connected to the other stator teeth. One winding wound is connected, and the stator is paired with the winding at the end connected to the current supply end of the stator teeth to which the alternating current of the phase is supplied by the third switch. Switching between the second connection mode and the first connection mode is performed by disconnecting the winding at the end connected to the current supply end in the teeth, and the alternating current value of any phase is zero. When it is detected that the winding has been achieved, the windings are connected and disconnected by a procedure reverse to the above procedure (tenth aspect).
  • a rotor having a permanent magnet and a stator tooth formed integrally with the stator yoke or attached to the stator yoke, At least six or more stator teeth provided for one pole pair of magnets, at least three windings wound around each of the stator teeth, and at least three windings wound A first switch that connects or disconnects the first switch, one winding wound around one stator tooth, and one winding wound around another stator tooth. Of the windings wound around each stator tooth, on the opposite side of the winding at the end connected to the current supply end.
  • the winding of the part is connected to the winding of the end opposite to the winding of the end connected to the current supply end of the pair of stator teeth, and is connected to the current supply end of each stator tooth.
  • a three-phase alternating current to a rotating electrical machine having a third switch for connecting or disconnecting a winding at one end and a winding at an end connected to a current supply end in a pair of stator teeth.
  • a second connection mode that switches so as to connect other stator teeth, and switching from the first connection mode to the second connection mode is performed by alternating current of any phase.
  • the third switch is connected to the winding of the end connected to the current supply end of the stator tooth to which the alternating current of the phase is supplied, and the pair of stator teeth. The windings of the stator teeth to which the alternating current of the phase is supplied by the first switch, respectively.
  • the winding of each phase is changed from the concentrated winding to the common winding at the timing when the current of each phase becomes zero.
  • a current that is three times the current flows in the common winding during the period from the period when the current of each phase becomes zero to the period when the current becomes zero.
  • a current that is the same as that before the connection of the common winding flows, so that no torque ripple is generated.
  • switching from 2 series to distributed winding does not cause a voltage spike at the time of switching, and the winding can be switched without loss.
  • the first connection aspect and the second connection aspect are finely divided in time according to a voltage target value.
  • the switch is switched so as to switch, and the induced voltage is changed to a sine wave (a twelfth aspect).
  • the first connection mode and the second connection mode are switched at the timing when the current of each phase becomes 0, torque ripple is not generated. Further, no voltage spike is generated at the time of switching, and the winding can be switched without loss.
  • the switch in the stator teeth of the first aspect, is a bidirectional switch in which the source terminals of the MOSFETs or the drain terminals are connected to each other (the thirteenth aspect). ).
  • the switch in the stator of the second aspect, is a bidirectional switch in which source terminals or drain terminals of MOSFETs are connected to each other (fourteenth aspect). .
  • the switch is a bidirectional switch in which source terminals of MOSFETs or drain terminals are connected to each other.
  • the switch in the method for controlling a rotating electric machine according to the fourth aspect, the sixth aspect, or the seventh aspect, is a bidirectional device in which MOSFET source terminals or drain terminals are connected to each other. It is a switch (16th aspect).
  • stator teeth of the thirteenth aspect, the stator of the fourteenth aspect, the rotating electric machine of the fifteenth aspect, and the control method of the rotating electric machine of the sixteenth aspect of the present invention since the bidirectional switch is used, the connection between the windings to be disconnected Can be reliably separated.
  • FIG. 3 is a diagram showing a configuration of stator teeth A of the permanent magnet synchronous motor 1. It is a figure which shows the connection state of each group of coils of stator teeth A to F and a switch. It is a figure which shows the connection state of the coil and switch when each coil of stator teeth A to F is concentrated winding. It is a figure explaining each coil of stator teeth A to F being concentrated winding. It is a figure which shows the connection state of the coil and switch when each coil of the stator teeth A to F is distributed winding. It is a figure explaining each coil of stator teeth A to F being distributed winding.
  • FIG. 2 is a block diagram illustrating a configuration of a control device for the permanent magnet synchronous motor 1.
  • FIG. It is a figure which shows the characteristic at the time of making each coil of stator teeth A-F into concentrated winding. It is a figure which shows the characteristic at the time of making each coil of stator teeth A-F into distributed winding. It is a figure which shows the change of the induced voltage at the time of switching a coil from concentrated winding to distributed winding during rotation of the permanent magnet synchronous motor 1.
  • FIG. It is a connection diagram at the time of concentrated winding parallel connection which concerns on 2nd Embodiment of this invention. It is a figure for demonstrating the three-phase inverter for motor drive in 3rd Embodiment of this invention.
  • FIG. 1 It is a figure which shows the drive example of an inverter. It is a block diagram which shows the structure of the control apparatus of the motor 1 which concerns on 3rd Embodiment of this invention. It is a figure which shows the connection state of the coil and switch which concern on 3rd Embodiment of this invention. It is a figure which shows the connection state of the coil and switch which concern on 4th Embodiment of this invention. It is a figure which shows switching of the coil connection state according to the drive range which concerns on 5th Embodiment of this invention. It is a figure which shows the connection state of the coil and switch which concern on 6th Embodiment of this invention.
  • FIG. 1 is a diagram showing a configuration of a permanent magnet synchronous motor having two poles (one pole pair) and six slots (number of stator teeth: 6) according to the first embodiment of the present invention.
  • a permanent magnet synchronous motor 1 is formed of a stator yoke 2 formed of a silicon steel plate and the like, and also formed of a silicon steel plate or the like, and can be fixed to the stator yoke 2 integrally or to the stator yoke 2.
  • the stator 4 is composed of six stator teeth A, B, C, D, E, and F. Inside the six stator teeth A to F, a rotor 7 having N pole 5 and S pole 6 permanent magnets on the outer peripheral portion is rotatably provided.
  • FIG. 2 is a diagram showing a configuration of one stator tooth A. As shown in FIG. As shown in FIG. 2, a single stator tooth A is wound with a predetermined number of coils 3, and each coil 3 is connected via a switch 8.
  • the switch 8 may be a semiconductor switching element such as a power transistor or a solid state relay. A switch other than the semiconductor switching element may be used. Further, in the example of FIG. 2, the switch 8 is provided on the stator teeth, but the present invention is not limited to this example, and the switch 8 may be provided outside the motor 1.
  • FIG. 3 is a diagram showing a connection state between each coil 3 of each stator tooth A to F and the switch 8 in the present embodiment.
  • two switches are connected to the end of the first coil (the uppermost part in FIG. 3) of each stator tooth. Also, two switches are connected to the end of the second coil (second from the top in FIG. 3). That is, a total of four switches are connected to one stator tooth coil. In FIG. 2, four switches 8 are shown corresponding to this connection state.
  • the mounting position of the switch 8 is not limited to the position shown in FIG.
  • the switch 8 between the first coil 3 and the second coil 3 of each stator tooth A to F is turned on, and the second coil 3 of each stator tooth A to F
  • the switch 8 between the third coil 3 is turned on.
  • the other switches 8 are turned off.
  • the coil 3 is wound in a concentrated manner.
  • the switch 8 between the second coil 3 of each stator tooth A to F and the first coil 3 of the status tooth adjacent counterclockwise is turned on, and each stator tooth is turned on.
  • the switch 8 between the third coil 3 of A to F and the second coil 3 of the status tooth adjacent counterclockwise is turned on.
  • the other switches 8 are turned off.
  • the coil 3 is in a state of being wound with distributed winding (full-pitch winding).
  • the motor 1 of this embodiment can control the connection state of the coils 3 of the stator teeth A to F by switching the switch 8 on and off.
  • the connection state of the coil 3 is controlled by a control device as shown in FIG.
  • a switch control device 9 is connected to each switch 8, and a motor control device 10 is connected to the switch control device 9.
  • the motor control device 10 outputs data corresponding to the on / off pattern of each switch 8 to the switch control device 9, and the switch control device 9 switches on / off of each switch 8 based on the data. .
  • an inverter 11 is connected to the motor control device 10, and the output of the inverter 11 is connected to the input ends of the coils 3 of the stator teeth A to F.
  • the inverter 11 of the present embodiment is a three-phase output inverter using six switching elements.
  • the inverter 11 performs PWM switching based on a control signal from the motor control device 10, converts a direct current supplied from the battery 12 into a three-phase alternating current, and supplies it to the coil 3. As a result, the rotation speed of the motor 1 and the output torque are adjusted.
  • the inverter 11 since the three-phase motor 1 is used, the inverter 11 also has a three-phase output, but the present invention is not limited to this example. When a motor having three or more phases is used, an appropriate inverter may be used.
  • the winding is in a distributed winding state.
  • the stator teeth A, the stator teeth B, and the coils 3 of the stator teeth C are connected in series one by one. And the sum of the magnetic fluxes of stator teeth B and stator teeth C.
  • FIG. 10 is a graph showing a state in which the induced voltage decreases when the coil connection state is switched from concentrated winding to distributed winding during rotation.
  • the characteristics shown in FIG. 9 are obtained by switching the coil winding state between the concentrated winding state shown in FIG. 4 and the distributed winding state shown in FIG.
  • Both characteristics shown in FIG. 10 can be used. That is, although it is a single motor, it has a plurality of drive characteristics and can improve the output range. Further, in an operation region that can be covered by both, it is possible to improve efficiency by selecting an efficient driving method.
  • a predetermined reference value is set for the rotational speed or torque according to the characteristics of the motor, etc.
  • the coil winding state is set to the concentrated winding state and the distributed winding with the reference value as a threshold value. It is sufficient to switch to the state.
  • a switch may be provided at both ends of each set, or one switch is provided at the one end of the first and second coils, and the other end of the second coil and the end of the third coil.
  • One switch may be provided in the unit. That is, it is only necessary to realize switching of the coil connection state as described above, and the number of switches and the mounting position are not limited.
  • FIG. 12 is a connection diagram at the time of concentrated winding parallel connection according to the second embodiment of the present invention. As an example, connection of only the U phase is shown. In this example, switches 8 are provided at both ends of the three coils 3 in each of the stator teeth A to F, and all the ends of the three coils 3 are connected. As a result, the coil 3 is in a concentrated winding state in parallel connection.
  • FIG. 13 shows a configuration of a three-phase inverter for driving a motor
  • FIG. 14 shows a 120-degree energization switching pattern as a simple driving example of this inverter.
  • the third embodiment of the present invention is an embodiment that realizes the function of this inverter by turning on / off the switch 8 without providing an inverter outside the motor 1.
  • the U-phase formed by the third coil 3 of the stator teeth A, the second coil 3 of the stator teeth B, and the first coil 3 of the stator teeth C Connect one end of the to the positive terminal. Further, the one end of the first coil 3 of the stator teeth C is connected to the neutral point. Further, one end of the V phase formed by the third coil 3 of the stator teeth E, the second coil 3 of the stator teeth F, and the first coil 3 of the stator teeth A is connected to the negative terminal.
  • the switch 8 that connects the third coil 3 of the stator tooth A and the second coil 3 of the stator tooth B, and the second coil 3 of the stator tooth B and the first coil 3 of the stator tooth C.
  • PWM switching is performed by repeatedly turning on / off the switch 8 connecting the two at a certain ratio.
  • the current is U + from the DC power supply positive terminal, the third coil 3 of the stator tooth A, and the second coil of the stator tooth B. 3, the first coil 3 of the stator teeth C, the neutral point, the first coil 3 of the stator teeth A, the second coil 3 of the stator teeth F, the third coil 3 of the stator teeth E, V ⁇ , minus It will flow in the order of the terminals.
  • the inverter function can be realized by setting the predetermined switch 8 to the PWM switching and ON state in a predetermined section without providing an inverter outside the motor 1. . Therefore, the system can be downsized.
  • FIG. 17 shows a fourth embodiment of the present invention in which the coils 3 are in different connection states for each phase.
  • the third coil 3 of the stator tooth C and the third coil of the stator tooth F among the six coils in the V phase are connected by a connection method as shown in FIG.
  • the magnetic flux is linked only to two coils of the coil 3.
  • the magnetic flux is linked to the four coils of the third and third coils 3 of the stator teeth A and the second and third coils 3 of the stator teeth D.
  • magnetic fluxes are linked to six coils including all the coils 3 of the stator teeth E and all the coils 3 of the stator teeth B.
  • the induced voltage can be changed to a sine wave by finely switching the connection method of the coil according to requirements.
  • the edge connected to the edge part of the 1st coil of another adjacent stator teeth among the edge parts of the 2nd coil of each stator teeth may be changed, or the switch may be added so that the portion is connected to the corresponding end of the first coil of the same stator teeth.
  • the end portion connected to the end portion of the second coil of the other adjacent stator teeth is the second coil of the same stator teeth. What is necessary is just to change the connection state of a switch or to add a switch so that it may be connected to the corresponding edge part.
  • FIG. 18 shows a configuration example of the fifth embodiment of the present invention in which the coil connection state is switched according to the drive range.
  • all-node winding (distributed winding) is performed in the low-speed and high-torque region, concentrated winding is performed in the high-speed and low-torque region, and the series and parallel windings are switched between them.
  • the switching method is not limited to the example of FIG. 17 and can be appropriately selected depending on each motor configuration.
  • FIG. 19 and 20 show the connection configuration of the coil according to the sixth embodiment of the present invention.
  • the coils as shown in FIG. 20 are connected, as shown in FIG. 21, the coil 3 wound on the rotor side of the stator teeth is more affected by the leakage magnetic flux than the coil 3 wound on the stator yoke side. Will become bigger. As a result, an imbalance between phases occurs.
  • the coils when connecting to coils of adjacent stator teeth, the coils are connected to different coils so that the number of coils in each set included in each phase is equal. .
  • coils between adjacent stator teeth are different, and the number of first coils, second coils, and third coils in each phase is two.
  • the unbalance between the phases can be eliminated.
  • the coil may be wound around the stator teeth in the stator in which the stator yoke and the stator teeth are integrated, or after the coils are wound around the stator teeth, the stator teeth are coupled to the stator yoke.
  • the present invention is provided as a stator tooth having the above-described switch around which a coil is wound as described above, as a stator including such a stator tooth, and further including such a stator. Each can be realized as a motor.
  • a switch for switching a connection state between adjacent coils wound around one stator tooth, or a switch for switching a connection state between coils wound around each adjacent stator tooth is formed by a MOSFET. This is an example of a configured bi-directional switch.
  • the coil 3a and the coil 3b shown in FIG. 22 are two adjacent coils wound around one stator tooth, or a coil wound around one stator tooth and a stator tooth winding adjacent to the stator tooth.
  • the coil is shown.
  • One end of the bidirectional switch 8 ' is connected to one end of the coil 3a, and the other end of the bidirectional switch 8' is connected to one end of the coil 3b.
  • FIG. 23 is a diagram showing the configuration of the bidirectional switch 8 ′.
  • the bidirectional switch 8 ′ of this embodiment includes an N-type MOSFET 20 and another N-type MOSFET 21.
  • the source terminal S of the N-type MOSFET 20 and the source terminal S of the N-type MOSFET 21 are connected to each other.
  • the drain terminal D of the N-type MOSFET 20 is connected to one end of the coil 3a, and the drain terminal D of the N-type MOSFET 21 is connected to one end of the coil 3b.
  • a parasitic diode 20a is formed in the N-type MOSFET 20, and a parasitic diode 21a is formed in the N-type MOSFET 21.
  • FIG. 24 is a diagram showing a control circuit for the bidirectional switches 8 ′ and 8 ′′.
  • the MOSFET 20 and the gate terminal of the MOSFET 21 of the bidirectional switch 8 ′ are switch-controlled through a gate resistor Rg. It is connected to the device 9.
  • the source terminals of the MOSFET 20 and the MOSFET 21 are grounded via the current cutoff resistor Rb.
  • the gate terminals of the MOSFET 20 ′ and the MOSFET 21 ′ of the bidirectional switch 8 ′′ are the gate resistance Rg. It is connected to the switch control device 9 via
  • the source terminals of the MOSFET 20 'and the MOSFET 21' are grounded via the current cutoff resistor Rb.
  • switch control device 9 is not shown in FIG. 24, the switch control device 9 is connected to the motor control device 10 as shown in FIG. 8 or FIG. 15, and based on the control data output from the motor control device 10.
  • the MOSFET is switched on / off.
  • the switch control device 9 applies a high level voltage to the gate terminals of the MOSFET 20 and the MOSFET 21, and applies a low level voltage to the gate terminals of the MOSFET 20 'and the MOSFET 21'.
  • the MOSFET 20 and the MOSFET 21 are turned on, and the MOSFET 20 'and the MOSFET 21' are turned off.
  • the current is input to the source terminal of the MOSFET 21 and flows to the coil 3b via the parasitic diode 21a of the MOSFET 21.
  • the current is input to the source terminal of the MOSFET 20 and flows to the coil 3a via the parasitic diode 20a of the MOSFET 20.
  • the switch between the coils is composed of a single MOSFET without using a bidirectional switch, either of the two coils is turned off by a parasitic diode formed on the MOSFET, even though the MOSFET is off. Current may flow in the direction.
  • the bidirectional switch is used as the switch between the coils, the connection and disconnection of the coil can be reliably controlled.
  • the gate resistance Rg is a resistance for adjusting the on / off switching speed of the MOSFET 20 'and the MOSFET 21', and the resistance value is set according to the characteristics of the MOSFET to be used. Specifically, it is about several ohms.
  • the current cutoff resistor Rb causes the current from the bidirectional switch in the on state to flow to the bidirectional switch in the off state through the ground line, and further to the coil connected to the bidirectional switch in the off state. It is provided to prevent this.
  • the current interruption resistance Rb is used for such a purpose, a resistance of several M ⁇ is used.
  • a silicon (Si) -based one may be used, but if a silicon carbide (SiC) -based or gallium nitride (GaN) -based one is used, the resistance decreases and a larger current flows. it can.
  • SiC silicon carbide
  • GaN gallium nitride
  • bidirectional switch of the present embodiment can be applied to the switches of any of the embodiments described above.
  • the present embodiment has described an example using an N-type MOSFET, a P-type MOSFET may be used.
  • the motor of the present invention is driven from concentrated winding driving to distributed winding driving without generating a period in which no current flows in any coil of the stator teeth in a period other than the period in which the current of each phase becomes zero. It is related with the method of switching to.
  • FIG. 26 is a circuit diagram of the motor of this embodiment. As shown in FIG. 26, the stator teeth A and the stator teeth D through which a U-phase current flows are respectively provided with coils 3A-1, 3A-2, 3A-3, and coils 3D-1, 3D-2, 3D. Three coils of -3 are wound.
  • connection and disconnection of the coil 3A-1 and the coil 3A-2 are performed by the switch 8A-1, and connection and disconnection of the coil 3A-2 and the coil 3A-3 are performed by the switch 8A-2. Similarly, connection and disconnection of 3D-1 and coil 3D-2 are performed by switch 8D-1, and connection and disconnection of coil 3D-2 and coil 3D-3 are performed by switch 8D-2.
  • stator teeth C and stator teeth F there are three coils 3C-1, 3C-2, 3C-3 and 3F-1, 3F-2, 3F-3 for stator teeth C and stator teeth F through which a V-phase current flows, respectively.
  • Each coil is wound.
  • connection and disconnection of the coil 3C-1 and the coil 3C-2 are performed by the switch 8C-1. Connection and disconnection of the coil 3C-2 and the coil 3C-3 are performed by the switch 8C-2. Similarly, connection and disconnection of 3F-1 and coil 3F-2 are performed by switch 8F-1, and connection and disconnection of coil 3F-2 and coil 3F-3 are performed by switch 8F-2.
  • connection and disconnection of the coil 3E-1 and the coil 3E-2 are performed by a switch 8E-1. Connection and disconnection of the coil 3E-2 and the coil 3E-3 are performed by a switch 8E-2. Similarly, connection and disconnection of 3B-1 and coil 3B-2 are performed by switch 8B-1, and connection and disconnection of coil 3B-2 and coil 3B-3 are performed by switch 8B-2.
  • connection and disconnection of the coils of the stator teeth A and the coils of the stator teeth B are performed by the switches 8AB-1 and 8AB-2.
  • Connection and disconnection of the coils of the stator teeth B and the coils of the stator teeth C are performed by the switches 8BC-1 and 8BC-2.
  • Connection and disconnection of the coils of the stator teeth C and the coils of the stator teeth D are performed by the switches 8CD-1 and 8CD-2.
  • Connection and disconnection of the coils of the stator teeth D and the coils of the stator teeth E are performed by the switch 8DE-1 and the switch 8DE-2.
  • connection and disconnection of the coils of the stator teeth E and the coils of the stator teeth F are performed by the switches 8EF-1 and 8EF-2.
  • connection and disconnection of the coil of the stator teeth F and the coil of the stator teeth G are similarly performed by two switches.
  • switches Sc1, Sc2, and Sc3 are provided between common windings that are commonly used for concentrated winding and distributed winding, and the common windings are connected and disconnected.
  • the switch Sc1 is used to connect and disconnect the switch 3A-1 and the switch 3D-1, which are common windings. Further, connection and disconnection of the common winding switches 3B-1 and 3E-1 are performed by the switch Sc2. The switch Sc3 connects and disconnects the common winding switches 3C-1 and 3F-1.
  • the concentrated winding state in which the coils of the respective stator teeth are connected in series is the state before switching in the present embodiment, and the current flows as indicated by the hatched arrows.
  • FIG. 26 shows an example of current flowing in the U phase.
  • the common windings 3A-1 and 3D-1 are connected by turning on the switch Sc1. By connecting the common winding in this way, in the period in which a negative current flows after the period III shown in FIG. 25, a current three times that before the period III flows in the common winding.
  • the U-phase current becomes a zero current period in the period VI of the switching period. Therefore, in this period, the switches 8AB-1, 8BC-1, 8EF-1, and 8DE-1 are turned on in order to connect the coils of the stator teeth A, B, C, F, E, and D.
  • the state where the coils of each stator tooth are connected in this way is a distributed winding state, and a current flows as shown by an arrow indicated by a dot in FIG.
  • the common winding since the common winding is connected before the switching, the common winding is three times as long as the common winding in the period from the period when the current of each phase becomes 0 to the period when it becomes 0 next. A current flows, and as a total current of each phase, a current that is the same as that before the connection of the common winding flows, so that no trill ripple is generated.
  • FIG. 27 to 33 the connection states of the windings in FIGS. 27 to 33 and the flowcharts in FIGS. 34 and 35.
  • step S1 when a switching command is input (step S1), whether the U-phase current is 0 (step S2), whether the V-phase current is 0 (step S3), or whether the W-phase current is 0. Is determined (step S4).
  • step S4 when the W-phase current becomes 0 (step S4: YES) as in the timing t0 shown in FIG. 25, the switch 8B-1 and the switch 8B-2, and the switch 8E-2 and the switch 8E-1 is turned off and switch Sc2 is turned on, so that the W-phase winding is switched from concentrated winding drive to two series of common winding coils 3B-1 and 3E-1 (step S5).
  • connection state of the windings of each phase is as shown in FIG. 28, and current flows as shown by arrows in FIG.
  • step S10 it is determined whether the U-phase current is 0 (step S10) or the V-phase current is 0 (step S6).
  • step S6 YES
  • the switch 8C-1 and the switch 8C-2, and the switch 8F-2 and the switch The 8F-1 is turned off and the switch Sc3 is turned on, so that the V-phase winding is switched from the concentrated winding driving to the two series of the coil 3C-1 and the coil 3F-1 of the common winding (step) S7).
  • connection state of the windings of each phase is as shown in FIG. 29, and current flows as shown by arrows in FIG.
  • step S8 it is determined whether or not the U-phase current is 0 (step S8). For example, when the U-phase current becomes 0 (step S8: YES) as in the timing t2 shown in FIG.
  • the switch 8A-1 and the switch 8A-2, and the switch 8D-2 and the switch 8D-1 are turned off and the switch Sc1 is turned on, so that the U-phase winding is shared from the concentrated winding drive.
  • the winding coil 3A-1 and coil 3D-1 are switched to two series (step S9).
  • step S5 After the W-phase winding is switched from concentrated winding drive to two series of common windings (step S5), when the U-phase current becomes 0 (step S10: YES), the switch 8A-1 And the switch 8A-2 and the switch 8D-2 and the switch 8D-1 are turned off and the switch Sc1 is turned on so that the U-phase winding is changed from the concentrated winding drive to the common coil 3A. -1 and coil 3D-1 are switched to two series (step S11).
  • step S12 it is determined whether or not the V-phase current is 0 (step S12). If the V-phase current becomes 0 (step S12: YES), the switch 8C-1 and the switch 8C-2, and The switch 8F-2 and the switch 8F-1 are turned off and the switch Sc3 is turned on so that the V-phase winding is connected to the common winding coils 3C-1 and 3F-1 from the concentrated winding drive. Two are switched in series (step S13).
  • Step S1 After inputting the switching command (step S1), for example, when the V-phase current becomes 0 at the timing t1 shown in FIG. 25 (step S3: YES), the switches 8C-1 and 8C-2, Further, the switch 8F-2 and the switch 8F-1 are turned off, and the switch Sc3 is turned on, so that the V-phase winding is changed from the concentrated winding drive to the common winding coils 3C-1 and 3F- 1 is switched to 2 in series (step S14).
  • step S15 it is determined whether the U-phase current is 0 (step S15) or the W-phase current is 0 (step 19), and the U-phase current becomes 0 at the timing t2 shown in FIG. If this occurs (step S15: YES), the switch 8A-1 and the switch 8A-2, and the switch 8D-2 and the switch 8D-1 are turned off and the switch Sc1 is turned on so that the U-phase The winding is switched from concentrated winding driving to two series of common winding coils 3A-1 and 3D-1 (step S16).
  • step S17 it is determined whether or not the W-phase current has become 0 (step S17). If the W-phase current has become 0 (step S17: YES), the switches 8B-1 and 8B-2, and The switch 8E-2 and the switch 8E-1 are turned off and the switch Sc2 is turned on, so that the W-phase winding is switched from the concentrated winding drive to the common winding coils 3B-1 and 3E-1. Are switched in series (step S18).
  • Step S14 After the V-phase winding is switched from concentrated winding drive to two series of common windings (step S14), when the W-phase current becomes 0 (step S19: YES), the switch 8B-1 And switch 8B-2, and switch 8E-2 and switch 8E-1 are turned off, and switch Sc2 is turned on to change the W-phase winding from concentrated winding drive to common winding coil 3B. -1 and the coil 3E-1 are switched to two series (step S20).
  • step S21 it is determined whether or not the U-phase current has become 0 (step S21). If the U-phase current has become 0 (step S21: YES), the switches 8A-1 and 8A-2, and The switch 8D-2 and the switch 8D-1 are turned off and the switch Sc1 is turned on so that the U-phase winding is switched from the concentrated winding drive to the common winding coils 3A-1 and 3D-1. Are switched in series (step S22).
  • Step S1 After inputting the switching command (step S1), for example, when the U-phase current becomes 0 at the timing t2 shown in FIG. 25 (step S2: YES), the switch 8A-1 and the switch 8A-2, Further, the switch 8D-2 and the switch 8D-1 are turned off, and the switch Sc1 is turned on, so that the U-phase winding is switched from the concentrated winding drive to the common winding coils 3A-1 and 3D- 1 is switched to 2 in series (step S23).
  • step S26 it is determined whether or not the V-phase current is 0 (step S26). If the V-phase current becomes 0 (step S26: YES), the switch 8C-1, the switch 8C-2, and the switch The 8F-2 and the switch 8F-1 are turned off and the switch Sc3 is turned on, so that the V-phase winding is switched from the concentrated winding drive to the common winding coils 3C-1 and 3F-1. Switching to serial (step S27).
  • Step S23 After the U-phase winding is switched from the concentrated winding drive to the two-series drive of the common winding (step S23), when the V-phase current becomes 0 (step S28: YES), the switch 8C-1 And the switch 8C-2 and the switch 8F-2 and the switch 8F-1 are turned off and the switch Sc3 is turned on so that the V-phase winding is changed from the concentrated winding drive to the common coil 3C. -1 and coil 3F-1 are switched in series (step S29).
  • step S30 it is determined whether or not the W-phase current is 0 (step S30). If the W-phase current becomes 0 (step S30: YES), the switch 8B-1, the switch 8B-2, and the switch 8E-2 and switch 8E-1 are turned off, and switch Sc2 is turned on, so that the W-phase winding is switched from the concentrated winding drive to the common winding coils 3B-1 and 3E-1. Switching to serial (step S31).
  • Step S40 After switching all three phase windings to two series of common windings as in any of the examples described above, whether the U-phase current is 0 (step S40) or the V-phase current is 0. Whether or not the W-phase current is 0 (step S42).
  • step S42 If it is determined that the W-phase current has become 0 as shown at timing t3 shown in FIG. 25 (step S42: YES), the switch Sc2 is turned off, and the common winding coil 3B-1 and coil 3E-1 2 Disconnect the series. Then, the switch 8BC-1 and the switch 8CD-2, and the switch 8FA-2 (not shown in FIG. 25) and 8EF-1 are turned on to drive the W phase in distributed winding (step S43).
  • connection state of the windings of each phase in this state is as shown in FIG. 31, and the current flows as shown by arrows in FIG.
  • Step S48 it is determined whether the U-phase current is 0 (step S48) or the V-phase current is 0 (step S44), and the V-phase current is 0 as shown at timing t4 shown in FIG. (Step S44: YES), the switch Sc3 is turned off to disconnect the two series of the common winding coils 3C-1 and 3F-1. Then, the switch 8CD-1 and the switch 8DE-2 and the switches 8AB-2 and 8FA-1 (not shown in FIG. 25) are turned on to drive the V phase in distributed winding (step S45).
  • connection state of the windings of each phase in this state is as shown in FIG. 32, and the current flows as shown by arrows in FIG.
  • step S46 it is determined whether or not the U-phase current is 0 (step S46).
  • step S46: YES the switch Sc1 is used. Is turned off, and the two series of the coil 3A-1 and the coil 3D-1 of the common winding are disconnected. Then, the switches 8AB-1 and 8BC-2, and the switches 8EF-2 and 8DE-1 are turned on to drive the U phase in distributed winding (step S47).
  • the winding of each phase is switched from concentrated winding to two series of common windings.
  • the current of the common winding will flow three times as much as before, and the total current of each phase is the connection of the common winding. Since the same current flows as before, torque ripple is not generated.
  • Step S43 After the W-phase winding is switched from two series to distributed winding drive (step S43), when the U-phase current becomes 0 (step S48: YES), the switch Sc1 is turned off and the common winding is turned on. The two series of wire coil 3A-1 and coil 3D-1 are disconnected. Then, the switches 8AB-1 and 8BC-2 and the switches 8EF-2 and 8DE-1 are turned on to drive the U phase in distributed winding (step S49).
  • step S50 it is determined whether or not the V-phase current has become 0 (step S50). If the V-phase current has become 0 (step S50: YES), the switch Sc3 is turned off and the common winding is turned on. The two series of the coil 3C-1 and the coil 3F-1 are disconnected. Then, the switches 8CD-1 and 8DE-2 and the switches 8AB-2 and 8FA-1 (not shown in FIG. 25) are turned on to drive the V phase in distributed winding (step S51).
  • Step S41: YES current of the V phase becomes 0
  • step S41: YES current of the V phase becomes 0
  • step S42: YES current of the V phase becomes 0
  • step S52 the switch 8CD-1 and the switch 8DE-2 and the switches 8AB-2 and 8FA-1 (not shown in FIG. 25) are turned on to drive the V phase in distributed winding (step S52).
  • step S53 it is determined whether the U-phase current is 0 (step S53) or the W-phase current is 0 (step S57), and the U-phase current is set to 0 as shown at timing t5 shown in FIG. If this happens (step S53: YES), the switch Sc1 is turned off to disconnect the two series of the common winding coils 3A-1 and 3D-1. Then, the switches 8AB-1 and 8BC-2, and the switches 8EF-2 and 8DE-1 are turned on to drive the U phase in distributed winding (step S54).
  • step S55 it is determined whether or not the W-phase current is 0 (step S55). If the W-phase current becomes 0 (step S55: YES), the switch Sc2 is turned off and the common winding coil is turned on. Disconnect the 2 series of 3B-1 and coil 3E-1. Then, the switch 8BC-1 and the switch 8CD-2, and the switch 8FA-2 (not shown in FIG. 25) and 8EF-1 are turned on to drive the W phase in distributed winding (step S56).
  • step S59 it is determined whether or not the U-phase current is 0 (step S59). If the U-phase current becomes 0 (step S59: YES), the switch Sc1 is turned off to The two series of the coil 3A-1 and the coil 3D-1 are disconnected. Then, the switches 8AB-1 and 8BC-2, and the switches 8EF-2 and 8DE-1 are turned on to drive the U phase in distributed winding (step S60).
  • Step S40 YES
  • the switch Sc1 is turned off.
  • the two series of the common winding coils 3A-1 and 3D-1 are disconnected.
  • the switches 8AB-1 and 8BC-2, and the switches 8EF-2 and 8DE-1 are turned on to drive the U phase in distributed winding (step S61).
  • step S66 it is determined whether the V-phase current is 0 (step S66) or the W-phase current is 0 (step S62). If the W-phase current becomes 0 (step S62: YES), the switch Sc2 is turned off, and the two series of the coil 3B-1 and the coil 3E-1 of the common winding are disconnected. Then, the switch 8BC-1 and the switch 8CD-2, and the switch 8FA-2 (not shown in FIG. 25) and 8EF-1 are turned on to drive the W phase in distributed winding (step S63).
  • step S64 it is determined whether or not the V-phase current has become 0 (step S64). If the V-phase current has become 0 (step S64: YES), the switch Sc3 is turned off and the common winding is turned on. The two series of the coil 3C-1 and the coil 3F-1 are disconnected. Then, the switch 8CD-1 and the switch 8DE-2 and the switches 8AB-2 and 8FA-1 (not shown in FIG. 25) are turned on to drive the V phase in distributed winding (step S65).
  • step S68 it is determined whether or not the W-phase current is 0 (step S68). If the W-phase current becomes 0 (step S68: YES), the switch Sc2 is turned off and the common winding coil is turned on. Disconnect the 2 series of 3B-1 and coil 3E-1. Then, the switch 8BC-1 and the switch 8CD-2, and the switch 8FA-2 (not shown in FIG. 25) and 8EF-1 are turned on to drive the W phase in distributed winding (step S69).
  • the winding of each phase is switched from concentrated winding to two series of common windings.
  • the current of the common winding will flow three times as much as before, and the total current of each phase is the connection of the common winding. Since the same current flows as before, torque ripple is not generated.
  • this embodiment demonstrated the example which switches the winding of each phase from concentrated winding drive to distributed winding drive at the time of 120 degree energization drive, it is applied also to the case of energization drive of an angle other than at the time of 120 degree energization drive. Is possible.
  • a bidirectional switch as described in the seventh embodiment may be used.
  • connection state of the winding wound around the stator teeth between concentrated winding and distributed winding according to the rotational speed By freely changing the connection state of the winding wound around the stator teeth between concentrated winding and distributed winding according to the rotational speed, multiple drive characteristics can be achieved with one motor without increasing the size of the device. It can be applied to the purpose of expanding the output range.
  • SYMBOLS 1 Motor (rotary electric machine), 2 ... Stator yoke, 3, 3a, 3b ... Coil (winding), 3A-1, 3A-2, 3A-3, 3B-1, 3B-2, 3B-3, 3C -1, 3C-2, 3C-3, 3D-1, 3D-2, 3D-3, 3E-1, 3E-2, 3E-3, 3F-1, 3F-2, 3F-3,. 4) Stator, 5, 6 ... Permanent magnet, 7 ... Rotor, 8 ...
  • Switch 8A-1, 8A-2, 8B-1, 8B-2, 8C-1, 8C-2, 8D-1, 8D-2, 8E-1, 8E-2, 8F-1, 8F-2, 8AB-1, 8AB-2, 8BC-1, 8BC-2, 8CD-1, 8CD-2, 8DE-1, 8DE- 2, 8EF-1, 8EF-2, 8FA-1, 8FA-2 ... switch, 8 ', 8 "... bidirectional switch, 9 ... switch control device, 10 ... mode Controller, 20, 20 ', 21, 21' ... MOSFET, 20a, 21a ... parasitic diode, A to F ... stator teeth, Rb ... current interruption resistance, Rg ... gate resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 一つのモータで複数の駆動特性を発揮し、出力範囲の拡大を図ることができるモータを提供すること。 各ステータティースA~Fに、それぞれ3つのコイルを巻回し、各ステータティースA~Fにおいて3つのコイルを直列接続して集中巻き状態を可能にするスイッチと、隣接するステータティースA~F間でいずれかの組のコイルを直列接続して分布巻き状態を可能にするスイッチとを設ける。回転速度やトルクなどに応じてコイルの集中巻き状態と分布巻き状態を切り替える。

Description

ステータティース、ステータ、回転電機、および、回転電機の制御方法
 本発明は、ステータティースと、ステータと、そのステータを備えた回転電機と、その回転電機の制御方法に関する。
 永久磁石同期モータは回転子に永久磁石を使用するために、誘導機や他のモータと比較して高出力、高効率なモータである。固定子には打ち抜いた珪素鋼板が積層して用いられ、珪素鋼板にはコイルが巻かれる。回転子の永久磁石から発生した磁束がコイルに鎖交することにより、コイルには誘起電圧が発生し、コイルに接続されたインバータから誘起電圧より高い電圧をかけ、回転に同期した電流をコイルに通流することにより回転子はトルクを発生する。
 このとき、誘起電圧は回転速度に比例して大きくなるために、インバータの電圧よりも誘起電圧が高くなってしまうとコイルに電流が通電できなくなるため、モータはトルクを発生することができず、回転速度上限が決まってしまう。そこで、回転速度上限を増加させるためには、磁石の磁束を弱める、またはコイルに鎖交する磁束を少なくする以下のような従来技術が知られている。
 一般に、弱め界磁制御と呼ばれる制御は、磁石の発生する磁束に対向した磁束をコイルから発生させて、磁石の磁束がコイルに鎖交しないようにする制御である。弱め界磁制御によれば、磁石の磁束が弱まったように見えるため、誘導機電圧が低くなり、回転速度が増加する。
 可変界磁構造と言われる構造は、磁石の磁束を保持する力(保磁力)が異なる2種類の磁石を回転子に配置して、保磁力の弱い磁石の磁束方向を外部からの電流で保磁力の強い磁石と逆向きにする構造である。このような構造にすることにより、保磁力の弱い磁石の極性が反転し、保磁力の強い磁石より出た磁束が保磁力の弱い磁石に入ることで、コイルに鎖交する磁束を少なくする。
 特許文献1、特許文献2には、固定子に巻くコイルを2つに分離し、回転速度が遅いときは2つを直列接続して用い、回転速度が速いときは2つのコイルを分断して半分だけ用いることで、コイルに鎖交する磁束を半分に低下させることができる。
 特許文献3には、固定子に巻くコイルを2つに分離し、回転速度が速いとき、かつ、低トルクのときには、巻き線を並列接続とし、回転速度が遅いとき、かつ、高トルクのときには、巻き線を直列接続にすることにより、コイルに鎖交する磁束を半分に低下させる技術が開示されている。
 特許文献4には、回転子に配置される磁石を回転可能にすることで、回転速度が遅いときには、コイルに対向した向きに磁石を配置して、回転速度が速いときには、コイルと平行な向きに磁石を配置する技術が開示されている。コイルに平行な向きに配置された磁石は、コイルから見て磁石の面積が少ないために、コイルに鎖交する磁束を少なくすることができる。
特許第3596711号 特許第3968673号 特開2005-354807号公報 特許第3695344号
 しかしながら、弱め界磁制御では、弱め界磁電流を通電するために、通電電流値が増加し、銅損が発生して効率が低下するといった問題がある。また、磁石の磁束を打ち消す磁界は磁石にとっては反磁界となるために、磁石の動作点が低下して、熱減磁しやすくなるといった問題がある。
 可変界磁構造では、保磁力の弱い磁石の極性を維持するために、連続的な電流を通電する必要があり、効率が低下するといった問題がある。また、保磁力の弱い磁石を配置するスペースが回転子上に必要となり、すべて保磁力の強い磁石のモータと比較して出力が低下するといった問題がある。さらには、保磁力の弱い磁石の極性を反転させるために、瞬間的に大電流を流す必要があり、インバータ容量が大きくなる、コイルの絶縁耐力を上げる必要がある、といった問題がある。
 特許文献1、特許文献2、特許文献3に開示された技術では、コイルを半分だけ用いている際に、電流を増加させることができないため、2つのコイルを接続して用いるときよりもトルクが半分になるといった問題がある。
 特許文献4に開示された技術では、磁石を回転させるための外部機構が必要となり、装置の大型化につながるといった問題がある。
 本発明は、上述した事情に鑑みてなされたものであり、永久磁石同期モータの技術分野において、装置を大型化することなく、一つのモータで複数の駆動特性を発揮し、出力範囲の拡大を図ることを解決課題とする。
 以上の課題を解決するため、本発明に係るステータティースは、ステータヨークに取り付けられるステータティースであって、前記ステータティースの周囲に巻回された少なくとも2つの巻き線と、前記2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続された少なくとも一つのスイッチと、を備え、前記スイッチは、他のステータティースの周囲に巻回される他の巻き線の端部にも接続自在である、ことを特徴とする(第1態様)。
 また、本発明に係るステータは、ステータヨークと、前記ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースとを備えたステータであつて、前記ステータティースの周囲に巻回された少なくとも2つの巻き線と、
 前記2つの巻き線のうちの一方の巻き線の端部、および、他方の組の巻き線の端部に接続された少なくとも一つのスイッチと、を備え、前記スイッチは、他のステータティースの周囲に巻回される他の巻き線の端部にも接続自在である、ことを特徴とする(第2態様)。
 また、本発明に係る回転電機は、永久磁石を有するロータと、ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、前記各2つ巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている、ことを特徴とする(第3態様)。
 さらに、本発明に係る回転電機の制御方法によれば、永久磁石を有するロータと、ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、前記各2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている回転電機の制御方法であって、前記回転電機に必要な回転速度が所定の基準速度よりも低い場合には、前記スイッチを、前記各2つの巻き線のうちの一方の巻き線の端部と、他方の巻き線の端部とが接続されるように切り替え、前記回転電機に必要な回転速度が所定の基準速度よりも高い場合には、前記スイッチを、前記各2つの巻き線のうちの一方の巻き線の端部と、前記他のステータティースの周囲に巻回された他の巻き線の端部とが接続されるように切り替える、ことを特徴とする(第4態様)。
 第1態様のステータティース、第2態様のステータ、第3態様の回転電機、第4態様の回転電機の制御方法によれば、スイッチの切り替えにより、ステータティースの周囲に巻回された巻き線の接続状態を、回転速度に応じて集中巻きと分布巻きとに自在に変えることができるので、装置を大型化することなく、一つのモータで複数の駆動特性を発揮し、出力範囲の拡大を図ることができる。
 第4態様の回転電機の制御方法において、回転速度の代わりにトルクに応じて集中巻きと分布巻きとに自在に変えるようにしてもよい(第5態様)。
 この場合でも、装置を大型化することなく、一つのモータで複数の駆動特性を発揮し、出力範囲の拡大を図ることができる。
 本発明の第6態様として、各相において正の電圧を印加すべき巻き線間の接続を、所定の比率で断続的に切り替える場合には、負の電圧を印加すべき巻き線間の接続を常時接続とし、各相において負の電圧を印加すべき巻き線間の接続を、所定の比率で断続的に切り替える場合には、正の電圧を印加すべき巻き線間の接続を常時接続として、巻き線に印加する電圧を直流電圧から交流電圧としてもよい(第6態様)。
 第6態様の制御方法によれば、インバータを外部に接続する必要がなく、システムの小型化が実現可能である。
 本発明の第7態様として、各相における巻き線の接続状態を、前記2つの巻き線のうちの一方の巻き線の端部と、他方の巻き線の端部とが接続される集中巻き状態、または、2つの巻き線のうちの一方の巻き線の端部と、前記他のステータティースの周囲に巻回された他の巻き線の端部とが接続される分布巻き状態の2つの状態に、電圧目標値にしたがって時間的に細かく切り替えるように前記スイッチを切り替え、誘起電圧を正弦波にするようにしてもよい(第7態様)。
 第7態様の制御方法によれば、トルクリップルを減少させることができ、鉄損の減少を達成することができる。
 本発明の第8態様として、前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている回転電機の制御方法であって、前記スイッチを、前記2つの巻き線のうちの一方の巻き線の端部と、前記他のステータティースの周囲に巻回された他の巻き線の端部とが接続されるように切り替える場合には、各ステータティースにおいて異なる巻き線と接続されるように前記スイッチを切り替えると共に、各相に含まれる各巻き線の数が等しくなるように前記スイッチを切り替えるようにしてもよい(第8態様)。
 第8態様の制御方法によれば、ロータ側のコイル数とヨーク側のコイル数を等しくすることで、各相間のアンバランスを解消することができる。
 本発明の第9態様としては、前記第3態様において、前記ステータティースは、前記永久磁石の1極対に対して少なくとも6つ以上設けられており、前記巻き線は、前記ステータティースのそれぞれの周囲に少なくとも3つずつ巻回されており、前記スイッチは、前記少なくとも3つずつ巻回された巻き線を直列に接続し、または切り離すスイッチと、一つのステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、または切り離すスイッチと、を備え、各ステータティースに巻回された巻き線のうち、電流供給端に接続される端部の巻き線とは反対側の端部の巻き線は、対になるステータティースにおける電流供給端に接続される端部の巻き線とは反対側の端部の巻き線と接続されており、各ステータティースの電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、または切り離すスイッチを備えている、ことを特徴とする(第9態様)。
 本発明の第10態様としては、本発明の回転電機の制御方法において、永久磁石を有するロータと、ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも6つ以上設けられたステータティースと、前記ステータティースのそれぞれの周囲に少なくとも3つずつ巻回された巻き線と、前記少なくとも3つずつ巻回された巻き線を直列に接続し、または切り離す第一のスイッチと、一つのステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、または切り離す第二のスイッチと、を備え、各ステータティースに巻回された巻き線のうち、電流供給端に接続される端部の巻き線とは反対側の端部の巻き線は、対になるステータティースにおける電流供給端に接続される端部の巻き線とは反対側の端部の巻き線と接続されており、各ステータティースの電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、または切り離す第三のスイッチを備えている回転電機に、3相交流電流を供給する回転電機の制御方法であって、前記回転電機に必要な回転速度が所定の基準速度よりも低い場合には、前記第一のスイッチを、前記少なくとも3つずつ巻回された巻き線を直列に接続するように切り替える第一の接続態様と、前記回転電機に必要な回転速度が所定の基準速度よりも高い場合には、前記第一のスイッチを切り離し、前記第二のスイッチを、一つのステータティースの巻き線と、他のステータティースを接続するように切り替える第二の接続態様とを備え、前記第一の接続態様から前記第二の接続態様との切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、前記第一のスイッチにより、その相の交流電流が供給されるステータティースの前記少なくとも3つずつ巻回された巻き線をそれぞれ切り離し、前記いずれかの相の交流電流値が次にゼロになったことを検知した時に、前記第二のスイッチにより、その相のステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、さらに、他の複数のステータティースについても、各ステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを切り離すことによって行い、前記第二の接続態様から前記第一の接続態様とのと切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、上記の手順とは逆の手順により各巻き線の接続と切り離しを行うことを特徴とする(第10態様)。
 本発明の第11態様としては、本発明の回転電機の制御方法において、永久磁石を有するロータと、ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも6つ以上設けられたステータティースと、前記ステータティースのそれぞれの周囲に少なくとも3つずつ巻回された巻き線と、前記少なくとも3つずつ巻回された巻き線を直列に接続し、または切り離す第一のスイッチと、一つのステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、または切り離す第二のスイッチと、を備え、各ステータティースに巻回された巻き線のうち、電流供給端に接続される端部の巻き線とは反対側の端部の巻き線は、対になるステータティースにおける電流供給端に接続される端部の巻き線とは反対側の端部の巻き線と接続されており、各ステータティースの電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、または切り離す第三のスイッチを備えている回転電機に、3相交流電流を供給する回転電機の制御方法であって、前記回転電機に必要なトルクが所定の基準速度よりも高い場合には、前記第一のスイッチを、前記少なくとも3つずつ巻回された巻き線を直列に接続するように切り替える第一の接続態様と、前記回転電機に必要なトルクが所定の基準速度よりも低い場合には、前記第一のスイッチを切り離し、前記第二のスイッチを、一つのステータティースの巻き線と、他のステータティースを接続するように切り替える第二の接続態様とを備え、前記第一の接続態様から前記第二の接続態様との切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、前記第一のスイッチにより、その相の交流電流が供給されるステータティースの前記少なくとも3つずつ巻回された巻き線をそれぞれ切り離し、前記いずれかの相の交流電流値が次にゼロになったことを検知した時に、前記第二のスイッチにより、その相のステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、さらに、他の複数のステータティースについても、各ステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを切り離すことによって行い、前記第二の接続態様から前記第一の接続態様とのと切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、上記の手順とは逆の手順により各巻き線の接続と切り離しを行うことを特徴とする(第11態様)。
 本発明の第9態様の回転電機、第10態様および第11態様の回転電機の制御方法によれば、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替えることにより、、各相の電流の0になる期間から次にの0になる期間までの期間に、共通巻線にはそれ以前の3倍の電流が流れることになり、各相の合計の電流としては、共通巻線の接続前と変わらない電流が流れるので、トルクリップルを発生させることがない。また、各相の電流が0のときに、2直列から分布巻きへの切り替えを行うことにより、切り替え時に電圧スパイクが発生せず、損失無しで巻線の切り替えが可能である。
 本発明の第12態様としては、前記第10態様および第11態様の回転電機の制御方法において、前記第一の接続態様と前記第二の接続態様とを、電圧目標値にしたがって時間的に細かく切り替えるように前記スイッチを切り替え、誘起電圧を正弦波にすることを特徴とする(第12態様)。
 第12態様によれば、各相の電流が0になったタイミングで、前記第一の接続態様と前記第二の接続態様を切り替えるので、トルクリップルを発生させることがない。また、切り替え時に電圧スパイクが発生せず、損失無しで巻線の切り替えが可能である。
 本発明の第13態様としては、前記第1態様のステータティースにおいて、前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする(第13態様)。
 本発明の第14態様としては、前記第2態様のステータにおいて、前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする(第14態様)。
 本発明の第15態様としては、前記第3態様または第5態様の回転電機において、前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする(第15態様)。
 本発明の第16態様としては、前記第4態様、第6態様、または第7態様の回転電機の制御方法において、前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする(第16態様)。
 本発明の第13態様のステータティース、第14態様のステータ、第15態様の回転電機、第16態様の回転電機の制御方法によれば、双方向スイッチを用いるので、切り離すべき巻線間の接続を、確実に切り離すことができる。
本発明の第1実施形態に係る永久磁石同期モータ1の構成を示す図である。 永久磁石同期モータ1のステータティースAの構成を示す図である。 ステータティースA~Fの各組のコイルとスイッチとの接続状態を示す図である。 ステータティースA~Fの各コイルを集中巻きにした場合のコイルとスイッチとの接続状態を示す図である。 ステータティースA~Fの各コイルが集中巻きになっていることを説明する図である。 ステータティースA~Fの各コイルを分布巻きにした場合のコイルとスイッチとの接続状態を示す図である。 ステータティースA~Fの各コイルが分布巻きになっていることを説明する図である。 永久磁石同期モータ1の制御装置の構成を示すブロック図である。 ステータティースA~Fの各コイルを集中巻きにした場合の特性を示す図である。 ステータティースA~Fの各コイルを分布巻きにした場合の特性を示す図である。 永久磁石同期モータ1の回転中にコイルを集中巻きから分布巻きに切り替えた場合の誘起電圧の変化を示す図である。 本発明の第2実施形態に係る集中巻き並列接続時の接続図である。 本発明の第3実施形態においてモータ駆動用三相インバータを説明するための図である。 インバータの駆動例を示す図である。 本発明の第3実施形態に係るモータ1の制御装置の構成を示すブロック図である。 本発明の第3実施形態に係るコイルとスイッチの接続状態を示す図である。 本発明の第4実施形態に係るコイルとスイッチの接続状態を示す図である。 本発明の第5実施形態に係る駆動範囲に応じたコイル接続状態の切り替えを示す図である。 本発明の第6実施形態に係るコイルとスイッチの接続状態を示す図である。 各相に含まれる各組のコイル数が等しくならないようにようにした接続状態を示す図である。 図20のように接続した場合の、テータティースのロータ側に巻かれたコイルと、ステータヨーク側に巻かれたコイルとの、もれ磁束の影響の違いを示す図である。 本発明の第7実施形態におけるコイルとスイッチを示す図である。 本発明の第7実施形態における双方向スイッチを示す図である。 本発明の第7実施形態における双方向スイッチの制御回路を示す図である。 本発明の第8実施形態における回転電機に供給される3相交流電流の波形を示す図である。 本発明の第8実施形態における回転電機の回路図である。 本発明の第8実施形態における集中巻き駆動時の各相のコイルの接続状態を示す図である。 本発明の第8実施形態におけるW相の電流がゼロの時にW相の巻線を集中巻き駆動から共通巻線の2直列に切り替えた状態を示す図である。 本発明の第8実施形態におけるV相の電流がゼロの時にV相の巻線を集中巻き駆動から共通巻線の2直列に切り替えた状態を示す図である。 本発明の第8実施形態におけるU相の電流がゼロの時にU相の巻線を集中巻き駆動から共通巻線の2直列に切り替えた状態を示す図である。 本発明の第8実施形態におけるW相の電流がゼロの時にW相の巻線を共通巻線の2直列から分布巻き駆動に切り替えた状態を示す図である。 本発明の第8実施形態におけるV相の電流がゼロの時にV相の巻線を共通巻線の2直列から分布巻き駆動に切り替えた状態を示す図である。 本発明の第8実施形態におけるU相の電流がゼロの時にU相の巻線を共通巻線の2直列から分布巻き駆動に切り替えた状態を示す図である。 本発明の第8実施形態における各相の巻線を集中巻き駆動から共通巻線の2直列に切り替えるまでの処理を示すフローチャートである。 本発明の第8実施形態における各相の巻線を共通巻線の2直列から分布巻き駆動に切り替えるまでの処理を示すフローチャートである。
 以下、この発明の好適な実施の形態を、添付図面等を参照しながら詳細に説明する。ただし、各図において、各部の寸法および縮尺は、実際のものと適宜に異ならせてある。また、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。
[第1実施形態]
 図1は、本発明の第1実施形態に係る2極(1極対)6スロット(ステータティース数:6個)の永久磁石同期モータの構成を示す図である。図1に示すように、永久磁石同期モータ1は、珪素鋼板等から形成されたステータヨーク2と、同じく珪素鋼板等から形成され、ステータヨーク2と一体に、または、ステータヨーク2に固定可能に構成された6個のステータティースA、B、C、D、E、Fとから成るステータ4を備えている。また、6個のステータティースA~Fの内側には、N極5とS極6の永久磁石を外周部に備えたロータ7が回転可能に設けられている。
 6個のステータティースA~Fには、それぞれ3つのコイル3が巻回されている。図2は、1個のステータティースAの構成を示す図である。図2に示すように、1個のステータティースAには、コイル3が1つにつき所定回数ずつ巻回され、各コイル3は、スイッチ8を介して接続されている。
 スイッチ8は、パワートランジスタ、ソリッドステートリレー等の半導体スイッチング素子を用いることができる。また、半導体スイッチング素子以外のスイッチを用いてもよい。さらに、図2の例では、スイッチ8をステータティース上に設けているが、本発明はこの例に限られるものではなく、モータ1の外部にスイッチ8を設けるようにしてもよい。
 また、本実施形態では、1個のステータティースの1つのコイル3が、隣接する1個のステータティースのいずれかのコイル3とスイッチ8を介して接続されている。図3は、本実施形態における各ステータティースA~Fの各コイル3と、スイッチ8との接続状態を示す図である。
 図3に示すように、本実施形態では、各ステータティースの第1の(図3において最上部)コイルの端部に2個のスイッチが接続されている。また、第2の(図3において最上部から2番目)のコイルの端部に2個のスイッチが接続されている。つまり、一つのステータティースのコイルについて合計で4個のスイッチが接続されている。図2においてスイッチ8が4個示されているのは、この接続状態に対応させたものである。但し、上述したように、スイッチ8の取り付け位置は図2に示される位置に限定されるものではない。
 例えば、図4のように、各ステータティースA~Fの第1のコイル3と第2のコイル3との間のスイッチ8をオン状態とし、各ステータティースA~Fの第2のコイル3と第3のコイル3との間のスイッチ8をオン状態とする。他のスイッチ8はオフ状態とする。この場合には、図5に示すように、コイル3が集中巻きで巻回された状態となる。
 また、図6のように、各ステータティースA~Fの第2のコイル3と、反時計回りに隣接するステータスティースの第1のコイル3との間のスイッチ8をオン状態とし、各ステータティースA~Fの第3のコイル3と、反時計回りに隣接するステータスティースの第2のコイル3との間のスイッチ8をオン状態とする。他のスイッチ8はオフ状態とする。この場合には、図7に示すように、コイル3が分布巻き(全節巻き)で巻回された状態となる。
 以上のように、本実施形態のモータ1は、スイッチ8のオン/オフの切り替えによって、各ステータティースA~Fのコイル3の接続状態を制御することができる。本実施形態では、図8に示すような制御装置により、コイル3の接続状態を制御している。
 図8に示すように、各スイッチ8にはスイッチ制御装置9が接続されており、スイッチ制御装置9には、モータ制御装置10が接続されている。モータ制御装置10は、各スイッチ8のオン/オフのパターンに応じたデータをスイッチ制御装置9に出力し、スイッチ制御装置9は、そのデータに基づいて各スイッチ8のオン/オフの切り替えを行う。
 また、モータ制御装置10には、インバータ11が接続されており、インバータ11の出力は各ステータティースA~Fのコイル3の入力端に接続されている。本実施形態のインバータ11は、スイッチング素子6個を用いた三相出力インバータである。インバータ11は、モータ制御装置10からの制御信号に基づいてPWMスイッチングを行い、バッテリ12から供給される直流電流を三相交流に変換してコイル3に供給する。その結果、モータ1の回転速度の調整や出力トルクの調整が行われることになる。
 なお、本実施形態では、三相のモータ1を用いているために、インバータ11についても三相出力のものを用いているが、本発明はこの例に限られるものではない。三相以上のモータを用いた場合には、適宜のインバータを用いればよい。
 例として、各ステータティースA~Fのコイル3の接続状態を集中巻きと分布巻きとに切り替えつつ、モータ1の回転速度の調整や出力トルクの調整を行う場合について説明する。まず、モータ制御装置10からスイッチ制御装置9にデータを出力して、各ステータティースA~Fにおける各コイル3間に接続されたスイッチ8をすべてオンにし、各ステータティースA~Fにおける各組のコイル3を図4に示すようにすべて直列に接続する。他のスイッチ8はオフにする。
 この場合には、各ステータティースA~Fにおける3つのコイル3が直列で接続された集中巻きの状態になるために、鎖交磁束が1つのコイルの3倍となり、図9に示すように高トルクを実現できる。しかし、誘起電圧も大きくなるために、回転速度に制限がかかる。
 次に、モータ制御装置10からスイッチ制御装置9にデータを出力して、図6に示すように、隣接するステータティースにおけるコイル3間のスイッチ8をオンにして、隣接するステータティースにおけるコイル3を直列に接続する。各ステータティースA~Fにおける各コイル3間に接続されたスイッチ8はすべてオフにする。
 この場合には、分布巻きの状態となり、例えばU相においては、ステータティースAとステータティースBとステータティースCのコイル3をそれぞれ一つずつ直列に接続するので、U相の磁束はステータティースAとステータティースBとステータティースCの磁束の和となる。
 その結果、1つのコイルが互いに隣のステータティースのコイルと接続されているため、図4の場合に比べて巻き線数は1/3であるが、巻き線の利用率(巻き線係数)が向上し、利用率が2倍となる。そのため、図10に示すように集中巻きの2/3倍のトルクとなり、かつ、誘起電圧が減少するため速度上限を上げることができる。図11は、回転中にコイルの接続状態を集中巻きから分布巻きに切り替えた際に誘起電圧が減少する状態を示すグラフである。
 以上から、本実施形態のモータ制御装置においては、コイルの巻回状態を、図4に示す集中巻きの状態と、図6に示す分布巻きの状態とに切り替えることにより、図9に示す特性と図10に示す特性の両方の特性を利用することができる。つまり、一つのモータでありながら、複数の駆動特性をもち、出力範囲を向上させることが可能である。また、両者がカバー可能な運転領域では効率の良い駆動方法を選択することにより、効率を向上させることが可能である。
 実際の制御を行う場合には、モータ等の特性に応じて、回転速度またはトルクに所定の基準値を設定し、その基準値を閾値として、コイルの巻回状態を集中巻きの状態と分布巻きの状態とに切り替えるようにすればよい。
 なお、本実施形態では、各ステータティースにおける第1と第2のコイルの一方の端部にそれぞれ2つのスイッチを設ける例について説明したが、本発明はこの例に限定されるものではない。各組の両端にそれぞれスイッチを設けても良いし、第1と第2のコイルの前記一方の端部に1つのスイッチを設け、第2のコイルの他方の端部と第3のコイルの端部にも1つのスイッチを設けても良い。つまり、上述したようなコイルの接続状態の切り替えが実現できれば良く、スイッチの個数や取り付け位置には限定されることはない。
[第2実施形態]
 図12は、本発明の第2実施形態に係る集中巻き並列接続時の接続図である。一例として、U相のみの接続を示している。この例では、各ステータティースA~Fにおける3つのコイル3の両端部にスイッチ8を設け、3つのコイル3の両端部をすべて接続する。その結果、コイル3は並列接続の集中巻きの状態となる。
 このように、コイル3を並列接続の集中巻きの状態とした場合には、図4に示す直列接続の集中巻きの場合と比較して、誘起電圧は1/6となり、より高速運転が可能となる。また、コイルに流す電流は、コイルの径で決定されるが、この場合は、図4に示す直列接続の集中巻きの6倍の電流を流すことができるため、特許文献1、特許文献2のような無駄なコイルがなく、トルクの低下がない。さらに、図4に示す直列接続の集中巻きの場合と比較して、抵抗値も1/6となるため、銅損の低減が可能であり、効率が向上する。
 なお、本実施形態のコイルの接続状態を実現するためには、各ステータティースのコイルの両端にそれぞれ2つのスイッチを設けても良いし、第1の実施形態のスイッチの各コイルに対する接続状態を変更して、並列接続が可能になるようにしても良い。この場合には、図3においてスイッチと接続されていないコイルの端部に、新たに設けたスイッチを接続する必要がある。
[第3実施形態]
 図13にモータ駆動用三相インバータの構成を示し、図14にこのインバータの簡単な駆動例として、120度通電方式のスイッチングパターンを示す。本発明の第3の実施形態は、図15に示すように、モータ1の外部にインバータを設けることなく、スイッチ8のオン/オフによってこのインバータの機能を実現する実施形態である。
 具体的には、図16に示すように、ステータティースAの第3のコイル3と、ステータティースBの第2のコイル3と、ステータティースCの第1のコイル3とから形成されるU相の片端をプラス端子に接続する。また、ステータティースCの第1のコイル3の方端を中性点に接続する。さらに、ステータティースEの第3のコイル3と、ステータティースFの第2のコイル3と、ステータティースAの第1のコイル3とから形成されるV相の片端を、マイナス端子に接続する。
 このような接続状態で、図14に示す60度から120度の区間では、図12のスイッチU+に相当するスイッチ8のオン/オフをある比率で繰り返し、PWMスイッチングを行う。また、図13のスイッチV-に相当するスイッチ8はオンとする。
 つまり、ステータティースAの第3のコイル3と、ステータティースBの第2のコイル3とを接続するスイッチ8、および、ステータティースBの第2のコイル3とステータティースCの第1のコイル3とを接続するスイッチ8のオン/オフをある比率で繰り返し、PWMスイッチングを行う。
 ステータティースEの第3のコイル3と、ステータティースFの第2のコイル3とを接続するスイッチ8、および、ステータティースFの第2のコイル3とステータティースAの第1のコイル3とを接続するスイッチ8はオンとする。
 このような制御を行うことにより、図14に示す60度から120度の区間では、電流は、直流電源プラス端子からU+、ステータティースAの第3のコイル3、ステータティースBの第2のコイル3、ステータティースCの第1のコイル3、中性点、ステータティースAの第1のコイル3、ステータティースFの第2のコイル3、ステータティースEの第3のコイル3、V-、マイナス端子の順序で流れることになる。
 このように、本実施形態によれば、モータ1の外部にインバータを設けることなく、所定の区間に所定のスイッチ8をPWMスイッチングおよびオン状態とすることにより、インバータの機能を実現することができる。したがって、システムの小型化が実現できる。
[第4実施形態]
 図17に各相でコイル3を異なる接続状態とした本発明の第4の実施形態を示す。例えば、V相の誘起電圧を減らしたい場合には、図17に示すような接続方法により、V相では6つのコイルのうち、ステータティースCの第3のコイル3と、ステータティースFの第3のコイル3との2つのコイルしか磁束が鎖交しないことになる。
 また、図16の例では、U相では、ステータティースAの第3および第2のコイル3と、ステータティースDの第2および第3のコイル3との4つのコイルに磁束が鎖交する。
 さらに、W相では、ステータティースEのすべてのコイル3と、ステータティースBのすべてのコイル3との6つのコイルに磁束が鎖交している。
 このように、コイルの接続方法を要求に合わせて時間的に細かく切り替えることで、誘起電圧を正弦波にすることが可能となる。
 誘起電圧を正弦波にすることで、正弦波電流の通電によりトルクリップルの減少や鉄損の減少が可能となる。また、逆に、各相で独立に高調波を発生させることもできるため、例えば、トルクのピーク値を向上させることも可能である。
 なお、本実施形態のコイルの接続状態を実現するためには、各ステータティースの第2のコイルの端部のうち、隣接する他のステータティースの第1のコイルの端部に接続される端部が、同一のステータティースの第1のコイルの対応する端部に接続されるように、スイッチの接続状態を変更するか、あるいは、スイッチを増設すればよい。また、同様に、各ステータティースの第3のコイルの端部のうち、隣接する他のステータティースの第2のコイルの端部に接続される端部が、同一のステータティースの第2のコイルの対応する端部に接続されるように、スイッチの接続状態を変更するか、あるいは、スイッチを増設すればよい。
[第5実施形態]
 以上から、任意のコイル接続状態により、任意の特性を出力できることが示された。図18に駆動範囲に応じてコイル接続状態を切り替えた本発明の第5の実施形態の構成例を示す。
 図18に示すように、本実施形態では、低速高トルク領域では全節巻き(分布巻き)、高速低トルク領域では集中巻き、その間では分布巻きの直列、並列を切り替えて実施する。その結果、1つのモータでは実現できない出力範囲が出力可能となる。切り替え方は図17の例に限ったことではなく、それぞれのモータ構成によって適切に選択できる。
[第6実施形態]
 図19および図20に本発明の第6の実施形態のコイルの接続構成を示す。図20に示すようなコイルの接続を行うと、図21に示すように、ステータティースのロータ側に巻かれたコイル3は、ステータヨーク側に巻かれたコイル3よりも、もれ磁束の影響が大きくなってしまう。その結果、各相間のアンバランスが生じてしまう。
 そこで、本実施形態は、図19に示すように、隣接するステータティースのコイルと接続する場合には、それぞれ異なるコイルと接続し、各相に含まれる各組のコイル数を等しくするようにする。
 図19に示す例では、隣接するステータティース間でのコイルがそれぞれ異なっており、各相において、第1のコイル、第2のコイル、第3のコイルの数は、いずれも2つになっている
 本実施形態によれば、ロータ側のコイル数と、ステータヨーク側のコイル数を等しくすることができるので、各相間のアンバランスを解消することができる。
 なお、上述した各実施形態においては、一つのステータティースのコイルと他のステータティースのコイルとの接続をスイッチによって行う場合には、隣接するステータティースのコイルとの接続を行う場合のみについて説明した。しかしながら、本発明はこのような場合に限られるものではなく、さらに多くのスイッチを設けて、様々な組み合わせでコイルを接続するようにしてもよい。
 また、上述した各実施形態では、一つのステータティースの3つのコイルが巻回されている場合について説明したが、本発明はこのような場合に限られるものではない。一つのステータティースに少なくとも2つのコイルが巻回されていればよく、3つ以上であっても構わない。
 さらに、上述した各実施形態では、各コイルの間に一つのスイッチを設ける場合について説明したが、本発明はこのような場合に限られるものではない。各コイルの両端にスイッチを設けてもよいし、適宜変更が可能である。
 また、本発明においては、ステータヨークとステータティースが一体となったステータにおけるステータティースにコイルを巻回しても良いし、ステータティースにコイルを巻回した後に、ステータティースをステータヨークに結合するようにしても良い。つまり、本発明は、上述のようにコイルが巻回されて上述のようなスイッチを有するステータティースとして、また、このようなステータティースを備えたステータとして、さらには、このようなステータを備えたモータとして、それぞれ実現することができる。
[第7実施形態]
 次に、図22ないし図24に基づいて、本発明の第7の実施形態について説明する。
 本実施形態は、一つステータティースに巻回された隣接するコイル間の接続状態を切り換えるスイッチ、あるいは、隣接するステータティースのそれぞれに巻回されたコイル間の接続状態を切り換えるスイッチを、MOSFETで構成された双方向スイッチ(Bi-directional Switch)で構成した例である。
 図22に示すコイル3aとコイル3bは、一つステータティースに巻回された隣接する二つコイル、あるいは、一のステータティースに巻回されたコイルと、そのステータティースに隣接するステータティース巻回されたコイルとを示している。双方向スイッチ8’の一端は、コイル3aの一端に接続され、双方向スイッチ8’の他端は、コイル3bの一端に接続されている。
 図23は、双方向スイッチ8’の構成を示す図である。図23に示すように、本実施形態の双方向スイッチ8’は、N型のMOSFET20と、もう一つのN型のMOSFET21とから構成されている。N型のMOSFET20のソース端子Sと、N型のMOSFET21のソース端子Sは互いに接続されている。また、N型のMOSFET20のドレイン端子Dは、コイル3aの一端に接続され、N型のMOSFET21のドレイン端子Dは、コイル3bの一端に接続されている。
 また、図23に示すように、N型のMOSFET20には寄生ダイオード20aが形成されており、N型のMOSFET21には寄生ダイオード21aが形成されている。
 図24は、双方向スイッチ8’,8”の制御回路を示す図である。図24に示すように、双方向スイッチ8’のMOSFET20とMOSFET21のゲート端子は、ゲート抵抗Rgを介してスイッチ制御装置9に接続されている。MOSFET20とMOSFET21のソース端子は、電流遮断抵抗Rbを介して接地されている。同様に、双方向スイッチ8”のMOSFET20’とMOSFET21’のゲート端子は、ゲート抵抗Rgを介してスイッチ制御装置9に接続されている。MOSFET20’とMOSFET21’のソース端子は、電流遮断抵抗Rbを介して接地されている。
 なお、スイッチ制御装置9は、図24における図示を省略するが、図8または図15に示すようなモータ制御装置10と接続されており、モータ制御装置10から出力される制御データに基づいて、MOSFETのオン/オフを切り替えるようになっている。
 次に、図22ないし図24に基づいて、本実施形態の回路の動作について説明する。一例として、双方向スイッチ8’をオン状態にして、双方向スイッチ8”をオフ状態にする場合について説明する。
 スイッチ制御装置9により、MOSFET20とMOSFET21のゲート端子にHighレベルの電圧を印加し、MOSFET20‘とMOSFET21’のゲート端子にはLowレベルの電圧を印加する。
 その結果、MOSFET20とMOSFET21はオン状態になり、MOSFET20‘とMOSFET21’はオフ状態になる。
 各コイルには、交流電流が流れるが、まず、コイル3aからコイル3bの方向に電流が流れる場合には、電流は、コイル3aからMOSFET20のドレイン端子に入力され、オン状態のMOSFET20に形成されたチャンネルを通り、MOSFET20のソース端子に至る。
 さらに、電流は、MOSFET21のソース端子に入力され、MOSFET21の寄生ダイオード21aを介してコイル3bに流れることになる。
 次に、コイル3bからからコイル3aの方向に電流が流れる場合には、電流は、コイル3bからMOSFET21のドレイン端子に入力され、オン状態のMOSFET21に形成されたチャンネルを通り、MOSFET21のソース端子に至る。
 さらに、電流は、MOSFET20のソース端子に入力され、MOSFET20の寄生ダイオード20aを介してコイル3aに流れることになる。
 オフ状態のMOSFET20‘とMOSFET21’については、各MOSFETにチャンネルが形成されていないので、コイルに電流が流れることはない。また、MOSFET20‘とMOSFET21’に形成されている寄生ダイオードは、どちらのコイルに対しても逆方向となるように形成されているので、コイルに電流が流れることはない。
 仮に、このコイル間のスイッチを、双方向スイッチを用いることなく、単体のMOSFETで構成した場合には、MOSFETがオフ状態であるにも拘わらず、MOSFETに形成された寄生ダイオードにより、どちらかの方向には電流が流れてしまうことがある。
 しかしながら、本実施形態においては、上述したように、コイル間のスイッチとして双方向スイッチを用いたので、コイルの接続と切り離しを確実に制御することが可能となる。
 なお、ゲート抵抗Rgは、MOSFET20’とMOSFET21’のオン/オフのスイッチング速度を調整するための抵抗で、使用するMOSFETの特性に応じて抵抗値が設定される。具体的には、数Ω程度になる。
 電流遮断抵抗Rbは、オン状態にある双方向スイッチからの電流が、接地ラインを通じてオフ状態にある双方向スイッチに流れ、さらに、そのオフ状態にある双方向スイッチに接続されているコイルに流れてしまうことを防止するために設けられている。
 例えば、双方向スイッチ8’のMOSFET20とMOSFET21がオン状態にあり、電流が、コイル3aから、MOSFET20およびMOSFET21を介してコイル3bに流れている場合を考える。
 この場合に、電流遮断抗Rbがなかったとすると、電流は、MOSFET20のソース端子からMOSFET21のソース端子へと流れるだけでなく、接地ラインを介して、オフ状態にある双方向スイッチ8’のMOSFET21’の寄生ダイオードへと流れ、MOSFET21’に接続されているコイルに流れてしまう。
 しかしながら、電流遮断抵抗Rbを設けることにより、MOSFET20のソース端子から接地ラインへと流れる電流を遮断することができ、上述のような不具合の発生を防止することができる。
 電流遮断抵抗Rbは、このような目的で使用されるため、数MΩのものが用いられる。
 MOSFETとしては、シリコン(Si)ベースのものを用いても良いが、シリコンカーバイド(SiC)ベースや、ガリウムナイトライド(GaN)ベースのものを用いれば、抵抗が下がり、より大きな電流を流すことができる。
 また、本実施形態の双方向スイッチは、上述したいずれの実施形態のスイッチにも適用可能である。
 さらに、本実施形態は、N型のMOSFETを用いた例について説明したが、P型のMOSFETを用いてもよい。
 
[第8実施形態]
 次に、図25ないし図35に基づいて、本発明の第8実施形態について説明する。本実施形態は、各相の電流が0になる期間以外の期間において、ステータティースのいずれのコイルにも電流が流れない期間を発生させることなく、本発明のモーターを集中巻き駆動から分布巻き駆動に切り替える方法に関するものである。
 図25は、120度通電駆動時に、本発明のモーターの各相に供給される電流の波形を示す図である。図25において、点線で表した波形は、U相に流れる電流Iuである。また、太い実線で表した波形は、V相に流れる電流Ivである。そして、細い実線で表した波形は、W相に流れる電流Iwである。
 図25に示すように、各相の電流は、電気角1周期でI~VIの6回の電流0期間がある。そこで、本実施形態では、I~IIIの準備期間において、集中巻きを構成している各コイル間の接続を切り離すと共に、集中巻きと分布巻きとで共通の巻線となる共通巻線を接続し、IV~VIの切り替え期間において、分布巻きを構成するように各コイルを接続すると共に、上記共通巻線を切り離す。
 図26は、本実施形態のモーターの回路図である。図26に示すように、U相の電流が流れるステータティースAとステータティースDには、それぞれ、コイル3A-1、3A-2、3A-3、および、コイル3D-1、3D-2、3D-3の3個ずつのコイルが巻回されている。
 コイル3A-1とコイル3A-2の接続と切り離しは、スイッチ8A-1により行われ、コイル3A-2とコイル3A-3の接続と切り離しは、スイッチ8A-2により行われる。
 同様に、3D-1とコイル3D-2の接続と切り離しは、スイッチ8D-1により行われ、コイル3D-2とコイル3D-3の接続と切り離しは、スイッチ8D-2により行われる。
また、V相の電流が流れるステータティースCとステータティースFには、それぞれ、コイル3C-1、3C-2、3C-3、および、コイル3F-1、3F-2、3F-3の3個ずつのコイルが巻回されている。
 コイル3C-1とコイル3C-2の接続と切り離しは、スイッチ8C-1により行われ、
コイル3C-2とコイル3C-3の接続と切り離しは、スイッチ8C-2により行われる。
 同様に、3F-1とコイル3F-2の接続と切り離しは、スイッチ8F-1により行われ、コイル3F-2とコイル3F-3の接続と切り離しは、スイッチ8F-2により行われる。
さらに、W相の電流が流れるステータティースEとステータティースBには、それぞれ、コイル3E-1、3E-2、3E-3、および、コイル3B-1、3B-2、3B-3の3個ずつのコイルが巻回されている。
 コイル3E-1とコイル3E-2の接続と切り離しは、スイッチ8E-1により行われ、
コイル3E-2とコイル3E-3の接続と切り離しは、スイッチ8E-2により行われる。
 同様に、3B-1とコイル3B-2の接続と切り離しは、スイッチ8B-1により行われ、コイル3B-2とコイル3B-3の接続と切り離しは、スイッチ8B-2により行われる。
 また、ステータティースAのコイルとステータティースBのコイルとの接続と切り離しは、スイッチ8AB-1とスイッチ8AB-2により行われる。
 ステータティースBのコイルとステータティースCのコイルとの接続と切り離しは、スイッチ8BC-1とスイッチ8BC-2により行われる。
 ステータティースCのコイルとステータティースDのコイルとの接続と切り離しは、スイッチ8CD-1とスイッチ8CD-2により行われる。
 ステータティースDのコイルとステータティースEのコイルとの接続と切り離しは、スイッチ8DE-1とスイッチ8DE-2により行われる。
 ステータティースEのコイルとステータティースFのコイルとの接続と切り離しは、スイッチ8EF-1とスイッチ8EF-2により行われる。
 なお、図26には図示を省略するが、ステータティースFのコイルとステータティースGのコイルとの接続と切り離しも、同様に二つのスイッチにより行われる。
 本実施形態においては、集中巻きと分布巻きとで共通に使用される共通巻線の間に、スイッチSc1、Sc2、Sc3を設け、共通巻線の接続と切り離しを行っている。
 具体的には、共通巻線であるスイッチ3A-1とスイッチ3D-1の接続と切り離しは、スイッチSc1により行う。また、共通巻線であるスイッチ3B-1とスイッチ3E-1の接続と切り離しは、スイッチSc2により行う。そして、共通巻線であるスイッチ3C-1とスイッチ3F-1の接続と切り離しは、スイッチSc3により行う。
 図26に示すように、各ステータティースのコイルを直列に接続した集中巻きの状態が、本実施形態における切り替え前の状態で、電流は、ハッチングを付した矢印のように流れる。図26では、U相に流れる電流の例を示している。
 U相に流れる電流は、図25に示すように、準備期間のIIIの期間において電流0期間となる。そこで、本実施形態では、この電流0期間において、スイッチ8A-18A-2、8D-2、8D-1をオフ状態とし、直列接続されていた6個のコイル、3A-1、3A-2、3A-3、3D-3、3D-2、3D-1を切り離す。
 また、スイッチSc1をオン状態とすることにより、共通巻線の3A-1と3D-1を接続する。このように共通巻線を接続することにより、図25に示すIIIの期間以降のマイナスの電流が流れる期間において、共通巻線には、IIIの期間前の3倍の電流が流れることになる。
 次に、図25に示すように、U相の電流は、切替期間のVIの期間において電流0期間となる。そこで、この期間に、ステータティースA、B、C、F、E、Dの各コイルを接続するために、スイッチ8AB-1、8BC-1、8EF-1、8DE-1をオン状態にする。
 そして、スイッチSc1をオフ状態とすることにより、共通巻線の3A-1と3D-1を切り離す。
 このように各ステータティースのコイルを接続した状態が分布巻きの状態で、図26においてドットで示した矢印のように電流が流れることになる。
 以下、同様にして各相において、集中巻きから分布巻きへと切り替え行う。
 本実施形態では、以上のように、各相の電流が0のときに、集中巻きから分布巻きへの切り替えを行っているので、切り替え時に電圧スパイクが発生せず、損失無しで巻線の切り替えが可能である。
 また、切り替え前においては、共通巻線を接続するようにしたので、各相の電流が0になる期間から次に0になる期間までの期間に、共通巻線にはそれ以前の3倍の電流が流れることになり、各相の合計の電流としては、共通巻線の接続前と変わらない電流が流れるので、トリルリップルを発生させることがない。
 以下、図27~図33の巻線の接続状態を示す図と、図34と図35のフローチャートに基づいて、本実施形態の集中巻きから分布巻きへの切り替え方法についてより詳細に説明する。
[3相全ての巻線を2直列に切り替えるステップ:例1]
 まず、図27に示すように、集中巻き駆動(Conecentrated Winding Drive:CWD)が行われており、図8または図15に示すようなモータ制御装置10から切り替え指令が出力された場合について説明する。なお、図27に示す集中巻き駆動が行われている場合には、図27に矢印で示すように各相の電流が流れている。
 まず、切り替え指令を入力すると(ステップS1)、U相の電流が0かどうか(ステップS2)、あるいは、V相の電流が0かどうか(ステップS3)、もしくは、W相の電流が0かどうかを判断する(ステップS4)。
 例えば、図25に示すt0のタイミングのように、W相の電流が0になった場合には(ステップS4:YES)、スイッチ8B-1とスイッチ8B-2、および、スイッチ8E-2とスイッチ8E-1をオフ状態にすると共に、スイッチSc2をオン状態にして、W相の巻線を、集中巻き駆動から、共通巻線のコイル3B-1とコイル3E-1の2直列に切り替える(ステップS5)。
 この状態では、各相の巻線の接続状態は図28のようになっており、図28に矢印で示すように電流が流れている。
 次に、U相の電流が0かどうか(ステップS10)、あるいは、V相の電流が0かどうか(ステップS6)を判断する。例えば、図25に示すt1のタイミングのように、V相の電流が0になった場合には(ステップS6:YES)、スイッチ8C-1とスイッチ8C-2、および、スイッチ8F-2とスイッチ8F-1をオフ状態にすると共に、スイッチSc3をオン状態にして、V相の巻線を、集中巻き駆動から、共通巻線のコイル3C-1とコイル3F-1の2直列に切り替える(ステップS7)。
 この状態では、各相の巻線の接続状態は図29のようになっており、図29に矢印で示すように電流が流れている。
 次に、U相の電流が0かどうか(ステップS8)を判断し、例えば、図25に示すt2のタイミングのように、U相の電流が0になった場合には(ステップS8:YES)、スイッチ8A-1とスイッチ8A-2、および、スイッチ8D-2とスイッチ8D-1をオフ状態にすると共に、スイッチSc1をオン状態にして、U相の巻線を、集中巻き駆動から、共通巻線のコイル3A-1とコイル3D-1の2直列に切り替える(ステップS9)。
 以上のようにして、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替える。この状態では、各相の巻線の接続状態は図30のようになっており、図30に矢印で示すように電流が流れている。
[3相全ての巻線を2直列に切り替えるステップ:例2]
 また、W相の巻線を集中巻き駆動から共通巻線の2直列に切り替えた後に(ステップS5)、U相の電流が0になった場合には(ステップS10:YES)、スイッチ8A-1とスイッチ8A-2、および、スイッチ8D-2とスイッチ8D-1をオフ状態にすると共に、スイッチSc1をオン状態にして、U相の巻線を、集中巻き駆動から、共通巻線のコイル3A-1とコイル3D-1の2直列に切り替える(ステップS11)。
 次に、V相の電流が0かどうかを判断し(ステップS12)、V相の電流が0になった場合には(ステップS12:YES)、スイッチ8C-1とスイッチ8C-2、および、スイッチ8F-2とスイッチ8F-1をオフ状態にすると共に、スイッチSc3をオン状態にして、V相の巻線を、集中巻き駆動から、共通巻線のコイル3C-1とコイル3F-1の2直列に切り替える(ステップS13)。
 以上のようにして、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替える。
[3相全ての巻線を2直列に切り替えるステップ:例3]
 切り替え指令を入力した後に(ステップS1)、例えば、図25に示すt1のタイミングでV相の電流が0になった場合には(ステップS3:YES)、スイッチ8C-1とスイッチ8C-2、および、スイッチ8F-2とスイッチ8F-1をオフ状態にすると共に、スイッチSc3をオン状態にして、V相の巻線を、集中巻き駆動から、共通巻線のコイル3C-1とコイル3F-1の2直列に切り替える(ステップS14)。
 次に、U相の電流が0かどうか(ステップS15)、または、W相の電流が0かどうかを判断し(ステップ19)、図25に示すt2のタイミングでU相の電流が0になった場合には(ステップS15:YES)、スイッチ8A-1とスイッチ8A-2、および、スイッチ8D-2とスイッチ8D-1をオフ状態にすると共に、スイッチSc1をオン状態にして、U相の巻線を、集中巻き駆動から、共通巻線のコイル3A-1とコイル3D-1の2直列に切り替える(ステップS16)。
 そして、W相の電流が0になったかどうかを判断し(ステップS17)、W相の電流が0になった場合には(ステップS17:YES)、スイッチ8B-1とスイッチ8B-2、および、スイッチ8E-2とスイッチ8E-1をオフ状態にすると共に、スイッチSc2をオン状態にして、W相の巻線を、集中巻き駆動から、共通巻線のコイル3B-1とコイル3E-1の2直列に切り替える(ステップS18)。
 以上のようにして、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替える。
[3相全ての巻線を2直列に切り替えるステップ:例4]
 また、V相の巻線を集中巻き駆動から共通巻線の2直列に切り替えた後に(ステップS14)、W相の電流が0になった場合には(ステップS19:YES)、スイッチ8B-1とスイッチ8B-2、および、スイッチ8E-2とスイッチ8E-1をオフ状態にすると共に、スイッチSc2をオン状態にして、W相の巻線を、集中巻き駆動から、共通巻線のコイル3B-1とコイル3E-1の2直列に切り替える(ステップS20)。
 そして、U相の電流が0になったかどうかを判断し(ステップS21)、U相の電流が0になった場合には(ステップS21:YES)、スイッチ8A-1とスイッチ8A-2、および、スイッチ8D-2とスイッチ8D-1をオフ状態にすると共に、スイッチSc1をオン状態にして、U相の巻線を、集中巻き駆動から、共通巻線のコイル3A-1とコイル3D-1の2直列に切り替える(ステップS22)。
 以上のようにして、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替える。
[3相全ての巻線を2直列に切り替えるステップ:例5]
 切り替え指令を入力した後に(ステップS1)、例えば、図25に示すt2のタイミングでU相の電流が0になった場合には(ステップS2:YES)、スイッチ8A-1とスイッチ8A-2、および、スイッチ8D-2とスイッチ8D-1をオフ状態にすると共に、スイッチSc1をオン状態にして、U相の巻線を、集中巻き駆動から、共通巻線のコイル3A-1とコイル3D-1の2直列に切り替える(ステップS23)。
 次に、W相の電流が0かどうか(ステップS24)、V相の電流が0かどうかを判断し(ステップS28)、W相の電流が0になつた場合には(ステップS24:YES)、スイッチ8B-1とスイッチ8B-2、および、スイッチ8E-2とスイッチ8E-1をオフ状態にすると共に、スイッチSc2をオン状態にして、W相の巻線を、集中巻き駆動から、共通巻線のコイル3B-1とコイル3E-1の2直列に切り替える(ステップS25)。
 そして、V相の電流が0かどうかを判断し(ステップS26)、V相の電流が0になった場合には(ステップS26:YES)、スイッチ8C-1とスイッチ8C-2、および、スイッチ8F-2とスイッチ8F-1をオフ状態にすると共に、スイッチSc3をオン状態にして、V相の巻線を、集中巻き駆動から、共通巻線のコイル3C-1とコイル3F-1の2直列に切り替える(ステップS27)。
 以上のようにして、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替える。
[3相全ての巻線を2直列に切り替えるステップ:例6]
 U相の巻線を集中巻線駆動から共通巻線の2直列駆動に切り替えた後に(ステップS23)、V相の電流が0になった場合には(ステップS28:YES)、スイッチ8C-1とスイッチ8C-2、および、スイッチ8F-2とスイッチ8F-1をオフ状態にすると共に、スイッチSc3をオン状態にして、V相の巻線を、集中巻き駆動から、共通巻線のコイル3C-1とコイル3F-1の2直列に切り替える(ステップS29)。
 そして、W相の電流が0かどうかを判断し(ステップS30)、W相の電流が0になった場合には(ステップS30:YES)、スイッチ8B-1とスイッチ8B-2、および、スイッチ8E-2とスイッチ8E-1をオフ状態にすると共に、スイッチSc2をオン状態にして、W相の巻線を、集中巻き駆動から、共通巻線のコイル3B-1とコイル3E-1の2直列に切り替える(ステップS31)。
 以上のようにして、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替える。
[3相全ての巻線を分布巻き駆動に切り替えるステップ:例1]
 以上に説明した何れかの例のように、3相全ての巻線を共通巻線の2直列に切り替えた後は、U相電流が0かどうか(ステップS40)、または、V相電流が0かどうか(ステップS41)、あいるは、W相電流が0かどうかを判断する(ステップS42)。
 図25に示すタイミングt3のようにW相の電流が0になったと判断すると(ステップS42:YES)、スイッチSc2をオフ状態にして、共通巻線のコイル3B-1とコイル3E-1の2直列を切り離す。そして、スイッチ8BC-1とスイッチ8CD-2、および、スイッチ8FA-2(図25には図示せず)と8EF-1をオン状態にしてW相を分布巻き駆動にする(ステップS43)。
 この状態の各相の巻線の接続状態は図31に示すようになっており、電流は図31に矢印で示すように流れている。
 次に、U相の電流が0かどうか(ステップS48)、または、V相の電流が0かどうかを判断し(ステップS44)、図25に示すタイミングt4のように、V相の電流が0になった場合には(ステップS44:YES)、スイッチSc3をオフ状態にして、共通巻線のコイル3C-1とコイル3F-1の2直列を切り離す。そして、スイッチ8CD-1とスイッチ8DE-2、および、スイッチ8AB-2と8FA-1(図25には図示せず)をオン状態にしてV相を分布巻き駆動にする(ステップS45)。
 この状態の各相の巻線の接続状態は図32に示すようになっており、電流は図32に矢印で示すように流れている。
 次に、U相の電流が0かどうかを判断し(ステップS46)、図25に示すタイミングt5のように、U相の電流が0になった場合には(ステップS46:YES)、スイッチSc1をオフ状態にして、共通巻線のコイル3A-1とコイル3D-1の2直列を切り離す。そして、スイッチ8AB-1とスイッチ8BC-2、および、スイッチ8EF-2と8DE-1をオン状態にしてU相を分布巻き駆動にする(ステップS47)。
 以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っている。この状態の各相の巻線の接続状態は図33に示すようになっており、電流は図33に矢印で示すように流れている。
 以上のように、本実施形態によれば、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替えるようにしたので、各相の電流の0になる期間から次にの0になる期間までの期間に、共通巻線にはそれ以前の3倍の電流が流れることになり、各相の合計の電流としては、共通巻線の接続前と変わらない電流が流れるので、トルクリップルを発生させることがない。
 また、本実施形態では、以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っているので、切り替え時に電圧スパイクが発生せず、損失無しで巻線の切り替えが可能である。
[3相全ての巻線を分布巻き駆動に切り替えるステップ:例2]
 W相の巻線を2直列から分布巻き駆動に切り替えた後に(ステップS43)、U相の電流が0になった場合には(ステップS48:YES)、スイッチSc1をオフ状態にして、共通巻線のコイル3A-1とコイル3D-1の2直列を切り離す。そして、スイッチ8AB-1とスイッチ8BC-2、および、スイッチ8EF-2と8DE-1をオン状態にしてU相を分布巻き駆動にする(ステップS49)。
 次に、V相の電流が0になったかどうかを判断し(ステップS50)、V相の電流が0になった場合には(ステップS50:YES)、スイッチSc3をオフ状態にして、共通巻線のコイル3C-1とコイル3F-1の2直列を切り離す。そして、スイッチ8CD-1とスイッチ8DE-2、および、スイッチ8AB-2と8FA-1(図25には図示せず)をオン状態にしてV相を分布巻き駆動にする(ステップS51)。
 以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っている。
[3相全ての巻線を分布巻き駆動に切り替えるステップ:例3]
 3相全ての巻線を2直列に切り替えた後に、図25に示すt4のタイミングのようにV相の電流が0になった場合には(ステップS41:YES)、スイッチSc3をオフ状態にして、共通巻線のコイル3C-1とコイル3F-1の2直列を切り離す。そして、スイッチ8CD-1とスイッチ8DE-2、および、スイッチ8AB-2と8FA-1(図25には図示せず)をオン状態にしてV相を分布巻き駆動にする(ステップS52)。
 次に、U相の電流が0かどうか(ステップS53)、または、W相の電流が0かどうかを判断し(ステップS57)、図25に示すタイミングt5のようにU相の電流が0になった場合には(ステップS53:YES)、スイッチSc1をオフ状態にして、共通巻線のコイル3A-1とコイル3D-1の2直列を切り離す。そして、スイッチ8AB-1とスイッチ8BC-2、および、スイッチ8EF-2と8DE-1をオン状態にしてU相を分布巻き駆動にする(ステップS54)。
 そして、W相の電流が0かどうかを判断し(ステップS55)、W相の電流が0になった場合には(ステップS55:YES)、スイッチSc2をオフ状態にして、共通巻線のコイル3B-1とコイル3E-1の2直列を切り離す。そして、スイッチ8BC-1とスイッチ8CD-2、および、スイッチ8FA-2(図25には図示せず)と8EF-1をオン状態にしてW相を分布巻き駆動にする(ステップS56)。
 以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っている。
[3相全ての巻線を分布巻き駆動に切り替えるステップ:例4]
 V相の巻線を2直列から分布巻き駆動に切り替えた後に(ステップS52)、W相の電流が0になった場合には(ステップS57:YES)、スイッチSc2をオフ状態にして、共通巻線のコイル3B-1とコイル3E-1の2直列を切り離す。そして、スイッチ8BC-1とスイッチ8CD-2、および、スイッチ8FA-2(図25には図示せず)と8EF-1をオン状態にしてW相を分布巻き駆動にする(ステップS58)。
 次に、U相の電流が0かどうかを判断し(ステップS59)、U相の電流が0になった場合には(ステップS59:YES)、スイッチSc1をオフ状態にして、共通巻線のコイル3A-1とコイル3D-1の2直列を切り離す。そして、スイッチ8AB-1とスイッチ8BC-2、および、スイッチ8EF-2と8DE-1をオン状態にしてU相を分布巻き駆動にする(ステップS60)。
 以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っている。
[3相全ての巻線を分布巻き駆動に切り替えるステップ:例5]
 3相全ての巻線を2直列に切り替えた後に、図25に示すタイミングt5のようにU相の電流が0になった場合には(ステップS40:YES)、スイッチSc1をオフ状態にして、共通巻線のコイル3A-1とコイル3D-1の2直列を切り離す。そして、スイッチ8AB-1とスイッチ8BC-2、および、スイッチ8EF-2と8DE-1をオン状態にしてU相を分布巻き駆動にする(ステップS61)。
 次に、V相の電流が0かどうか(ステップS66)、または、W相の電流が0かどうかを判断し(ステップS62)、W相の電流が0になった場合には(ステップS62:YES)、スイッチSc2をオフ状態にして、共通巻線のコイル3B-1とコイル3E-1の2直列を切り離す。そして、スイッチ8BC-1とスイッチ8CD-2、および、スイッチ8FA-2(図25には図示せず)と8EF-1をオン状態にしてW相を分布巻き駆動にする(ステップS63)。
 次に、V相の電流が0になったかどうかを判断し(ステップS64)、V相の電流が0になった場合には(ステップS64:YES)、スイッチSc3をオフ状態にして、共通巻線のコイル3C-1とコイル3F-1の2直列を切り離す。そして、スイッチ8CD-1とスイッチ8DE-2、および、スイッチ8AB-2と8FA-1(図25には図示せず)をオン状態にしてV相を分布巻き駆動にする(ステップS65)。
 以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っている。
[3相全ての巻線を分布巻き駆動に切り替えるステップ:例6]
 U相の巻線を2直列から分布巻き駆動に切り替えた後に(ステップS61)、V相の電流が0になった場合には(ステップS66:YES)、スイッチSc3をオフ状態にして、共通巻線のコイル3C-1とコイル3F-1の2直列を切り離す。そして、スイッチ8CD-1とスイッチ8DE-2、および、スイッチ8AB-2と8FA-1(図25には図示せず)をオン状態にしてV相を分布巻き駆動にする(ステップS67)。
 そして、W相の電流が0かどうかを判断し(ステップS68)、W相の電流が0になった場合には(ステップS68:YES)、スイッチSc2をオフ状態にして、共通巻線のコイル3B-1とコイル3E-1の2直列を切り離す。そして、スイッチ8BC-1とスイッチ8CD-2、および、スイッチ8FA-2(図25には図示せず)と8EF-1をオン状態にしてW相を分布巻き駆動にする(ステップS69)。
 以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っている。
 以上のように、本実施形態によれば、各相の電流が0になったタイミングで、各相の巻線を集中巻きから共通巻線の2直列に切り替えるようにしたので、各相の電流の0になる期間から次にの0になる期間までの期間に、共通巻線にはそれ以前の3倍の電流が流れることになり、各相の合計の電流としては、共通巻線の接続前と変わらない電流が流れるので、トルクリップルを発生させることがない。
 また、本実施形態では、以上のように、各相の電流が0のときに、2直列から分布巻きへの切り替えを行っているので、切り替え時に電圧スパイクが発生せず、損失無しで巻線の切り替えが可能である。
 なお、本実施形態は、120度通電駆動時において各相の巻線を集中巻き駆動から分布巻き駆動に切り替える例について説明したが、120度通電駆動時以外の角度の通電駆動の場合にも適用可能である。
 また、各コイルの接続と切り離しを行うスイッチは、第7実施形態で説明したような双方向スイッチを用いればよい。
 さらに、本実施形態は、各相の巻線を集中巻き駆動から分布巻き駆動に切り替える例について説明したが、各相の巻線を分布巻き駆動から集中巻き駆動に切り替える場合には、各相の電流値がゼロになることを検知した時に、上述した手順とは逆の手順で、分布巻き駆動から2直列へ、さらに、各相の電流値がゼロになることを検知した時に、2直列から集中巻き駆動へと切り替えるようにすればよい。
 ステータティースの周囲に巻回された巻き線の接続状態を、回転速度に応じて集中巻きと分布巻きとに自在に変えることにより、装置を大型化することなく、一つのモータで複数の駆動特性を発揮し、出力範囲の拡大を図る用途に適用できる。
 1…モータ(回転電機)、2…ステータヨーク、3,3a,3b…コイル(巻き線)、3A-1,3A-2,3A-3,3B-1,3B-2,3B-3,3C-1,3C-2,3C-3,3D-1,3D-2,3D-3,3E-1,3E-2,3E-3,3F-1,3F-2,3F-3…コイル(巻き線)、4…ステータ、5、6…永久磁石、7…ロータ、8…スイッチ、8A-1,8A-2,8B-1,8B-2,8C-1,8C-2,8D-1,8D-2,8E-1,8E-2,8F-1,8F-2,8AB-1,8AB-2,8BC-1,8BC-2,8CD-1,8CD-2,8DE-1,8DE-2,8EF-1,8EF-2,8FA-1,8FA-2…スイッチ、8’,8”…双方向スイッチ、9…スイッチ制御装置、10…モータ制御装置、20,20’,21,21’
…MOSFET、20a,21a…寄生ダイオード、A~F…ステータティース、Rb…電流遮断抵抗、Rg…ゲート抵抗。

Claims (22)

  1.  ステータヨークに取り付けられるステータティースであって、
     前記ステータティースの周囲に巻回された少なくとも2つの巻き線と、
     前記2つの巻き線のうちの一方の巻き線の端部、および、他方の組の巻き線の端部に接続された少なくとも一つのスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回される他の巻き線の端部にも接続自在である、
     ことを特徴とするステータティース。
  2.  前記一方の巻き線の端部には、前記他のステータティースの周囲に巻回される他の巻き線の端部に接続自在なスイッチがさらに備えられている、
     ことを特徴とする請求項1に記載のステータティース。
  3.  ステータヨークと、前記ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースとを備えたステータであつて、
     前記ステータティースの周囲に巻回された少なくとも2つの巻き線と、
     前記2つの巻き線のうちの一方の巻き線の端部、および、他方の組の巻き線の端部に接続された少なくとも一つのスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回される他の巻き線の端部にも接続自在である、
     ことを特徴とするステータ。
  4.  前記一方の巻き線の端部には、前記他のステータティースの周囲に巻回される他の巻き線の端部に接続自在なスイッチがさらに備えられている、
     ことを特徴とする請求項3に記載のステータ。
  5.  永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、
     前記各2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている、
     ことを特徴とする回転電機。
  6.  前記一方の巻き線の端部には、前記他のステータティースの周囲に巻回された他の巻き線の端部に接続自在なスイッチがさらに備えられている、
     ことを特徴とする請求項5に記載の回転電機。
  7.  前記スイッチは、前記少なくとも2つの巻き線を並列接続するように、互いの巻き線の端部に接続されている、
     ことを特徴とする請求項5または請求項6に記載の回転電機。
  8.   永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、
     前記各2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている回転電機の制御方法であって、
     前記回転電機に必要な回転速度が所定の基準速度よりも低い場合には、前記スイッチを、前記各2つの巻き線のうちの一方の巻き線の端部と、他方の巻き線の端部とが接続されるように切り替え、
     前記回転電機に必要な回転速度が所定の基準速度よりも高い場合には、前記スイッチを、前記各2つの巻き線のうちの一方の巻き線の端部と、前記他のステータティースの周囲に巻回された他の巻き線の端部とが接続されるように切り替える、
     ことを特徴とする回転電機の制御方法。
  9.  前記スイッチは、前記少なくとも2つの巻き線を並列接続するように、互いの巻き線の端部に接続されており、
     前記回転電機に必要な回転速度が所定の基準速度よりも低い場合には、前記スイッチを、前記各2つの巻き線が並列接続となるように切り替える、
     ことを特徴とする請求項8に記載の回転電機の制御方法。
  10.   永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、
     前記各2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている回転電機の制御方法であって、
     前記回転電機に必要なトルクが所定の基準トルクよりも高い場合には、前記スイッチを、前記各2つの巻き線のうちの一方の巻き線の端部と、他方の組の巻き線の端部とが接続されるように切り替え、
     前記回転電機に必要なトルクが所定の基準速度よりも低い場合には、前記スイッチを、前記各2つの巻き線のうちの一方の巻き線の端部と、前記他のステータティースの周囲に巻回された他の巻き線の端部とが接続されるように切り替える、
     ことを特徴とする回転電機の制御方法。
  11.  前記スイッチは、前記各2つの巻き線を並列接続するように、互いの巻き線の端部に接続されており、
     前記回転電機に必要なトルクが所定の基準トルクよりも高い場合には、前記スイッチを、前記各2つの巻き線が並列接続となるように切り替える、
     ことを特徴とする請求項10に記載の回転電機の制御方法。
  12.   永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、
     前記各2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている回転電機の制御方法であって、
     各相において正の電圧を印加すべき巻き線間の接続を、所定の比率で断続的に切り替える場合には、負の電圧を印加すべき巻き線間の接続を常時接続とし、各相において負の電圧を印加すべき巻き線間の接続を、所定の比率で断続的に切り替える場合には、正の電圧を印加すべき巻き線間の接続を常時接続として、巻き線に印加する電圧を直流電圧から交流電圧とする、
     ことを特徴とする回転電機の制御方法。
  13.   永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、
     前記各2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている回転電機の制御方法であって、
     各相における巻き線の接続状態を、前記各2つの巻き線のうちの一方の巻き線の端部と、他方の巻き線の端部とが接続される集中巻き状態、または、前記各2つの巻き線のうちの一方の巻き線の端部と、前記他のステータティースの周囲に巻回された他の巻き線の端部とが接続される分布巻き状態の2つの状態に、電圧目標値にしたがって時間的に細かく切り替えるように前記スイッチを切り替え、誘起電圧を正弦波にする、
     ことを特徴とする回転電機の制御方法。
  14.   永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも3つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも2つずつ巻回された巻き線と、
     前記各2つの巻き線のうちの一方の巻き線の端部、および、他方の巻き線の端部に接続され、前記ステータティースのそれぞれに少なくとも一つ設けられたスイッチと、を備え、
     前記スイッチは、他のステータティースの周囲に巻回された他の巻き線の端部にも接続されている回転電機の制御方法であって、
     前記スイッチを、前記各2つの巻き線のうちの一方の巻き線の端部と、前記他のステータティースの周囲に巻回された他の巻き線の端部とが接続されるように切り替える場合には、各ステータティースにおいて異なる巻き線と接続されるように前記スイッチを切り替えると共に、各相に含まれる各巻き線の数が等しくなるように前記スイッチを切り替える、
     ことを特徴とする回転電機の制御方法。
  15.  前記ステータティースは、前記永久磁石の1極対に対して少なくとも6つ以上設けられており、
     前記巻き線は、前記ステータティースのそれぞれの周囲に少なくとも3つずつ巻回されており、
     前記スイッチは、前記少なくとも3つずつ巻回された巻き線を直列に接続し、または切り離すスイッチと、一つのステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、または切り離すスイッチと、を備え、
     各ステータティースに巻回された巻き線のうち、電流供給端に接続される端部の巻き線とは反対側の端部の巻き線と接続されており、
     各ステータティースの電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、または切り離すスイッチを備えている、
     ことを特徴とする請求項5に記載の回転電機。
  16.  永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも6つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも3つずつ巻回された巻き線と、
     前記少なくとも3つずつ巻回された巻き線を直列に接続し、または切り離す第一のスイッチと、
     一つのステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、または切り離す第二のスイッチと、を備え、
     各ステータティースに巻回された巻き線のうち、電流供給端に接続される端部の巻き線とは反対側の端部の巻き線は、対になるステータティースにおける電流供給端に接続される端部の巻き線とは反対側の端部の巻き線と接続されており、
     各ステータティースの電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、または切り離す第三のスイッチを備えている回転電機に、3相交流電流を供給する回転電機の制御方法であって、前記回転電機に必要な回転速度が所定の基準速度よりも低い場合には、前記第一のスイッチを、前記少なくとも3つずつ巻回された巻き線を直列に接続するように切り替える第一の接続態様と、
     前記回転電機に必要な回転速度が所定の基準速度よりも高い場合には、前記第一のスイッチを切り離し、前記第二のスイッチを、一つのステータティースの巻き線と、他のステータティースを接続するように切り替える第二の接続態様とを備え、
     前記第一の接続態様から前記第二の接続態様との切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、
     前記第一のスイッチにより、その相の交流電流が供給されるステータティースの前記少なくとも3つずつ巻回された巻き線をそれぞれ切り離し、
     前記いずれかの相の交流電流値が次にゼロになったことを検知した時に、前記第二のスイッチにより、その相のステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、さらに、他の複数のステータティースについても、各ステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、
     前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを切り離すことによって行い、
     前記第二の接続態様から前記第一の接続態様とのと切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、上記の手順とは逆の手順により各巻き線の接続と切り離しを行う、
     ことを特徴とする回転電機の制御方法。
  17.  永久磁石を有するロータと、
     ステータヨークと一体に形成され、または、前記ステータヨークに取り付けられるステータティースであって、前記永久磁石の1極対に対して少なくとも6つ以上設けられたステータティースと、
     前記ステータティースのそれぞれの周囲に少なくとも3つずつ巻回された巻き線と、
     前記少なくとも3つずつ巻回された巻き線を直列に接続し、または切り離す第一のスイッチと、
     一つのステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、または切り離す第二のスイッチと、を備え、
     各ステータティースに巻回された巻き線のうち、電流供給端に接続される端部の巻き線とは反対側の端部の巻き線は、対になるステータティースにおける電流供給端に接続される端部の巻き線とは反対側の端部の巻き線と接続されており、
     各ステータティースの電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、または切り離す第三のスイッチを備えている回転電機に、3相交流電流を供給する回転電機の制御方法であって、前記回転電機に必要なトルクが所定の基準速度よりも高い場合には、前記第一のスイッチを、前記少なくとも3つずつ巻回された巻き線を直列に接続するように切り替える第一の接続態様と、
     前記回転電機に必要なトルクが所定の基準速度よりも低い場合には、前記第一のスイッチを切り離し、前記第二のスイッチを、一つのステータティースの巻き線と、他のステータティースを接続するように切り替える第二の接続態様とを備え、
     前記第一の接続態様から前記第二の接続態様との切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを接続し、
     前記第一のスイッチにより、その相の交流電流が供給されるステータティースの前記少なくとも3つずつ巻回された巻き線をそれぞれ切り離し、
     前記いずれかの相の交流電流値が次にゼロになったことを検知した時に、前記第二のスイッチにより、その相のステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、さらに、他の複数のステータティースについても、各ステータティースに巻回された一つの巻き線と、他のステータティースに巻回された一つの巻き線とを接続し、
     前記第三のスイッチにより、その相の交流電流が供給されるステータティースにおける電流供給端と接続される端部の巻き線と、対になるステータティースにおける電流供給端に接続される端部の巻き線とを切り離すことによって行い、
     前記第二の接続態様から前記第一の接続態様とのと切り替えは、いずれかの相の交流電流値がゼロになったことを検知した時に、上記の手順とは逆の手順により各巻き線の接続と切り離しを行う、
     ことを特徴とする回転電機の制御方法。
  18.  前記第一の接続態様と前記第二の接続態様とを、電圧目標値にしたがって時間的に細かく切り替えるように前記スイッチを切り替え、誘起電圧を正弦波にする、
     ことを特徴とする請求項16または請求項17に記載の回転電機の制御方法。
  19.  前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする請求項1または2に記載のステータティース。
  20.  前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする請求項3または4に記載のステータ。
  21.  前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする請求項5ないし7、または15のいずれか一に記載の回転電機。
  22.  前記スイッチは、MOSFETのソース端子同士、または、ドレイン端子同士を接続した双方向スイッチであることを特徴とする請求項8ないし14、または、請求項16ないし18のいずれか一に記載の回転電機の制御方法。
PCT/JP2012/051895 2011-01-27 2012-01-27 ステータティース、ステータ、回転電機、および、回転電機の制御方法 WO2012102400A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280006749.6A CN103339835B (zh) 2011-01-27 2012-01-27 定子齿、定子、旋转电机、及旋转电机的控制方法
EP12739300.7A EP2670028B1 (en) 2011-01-27 2012-01-27 Stator teeth, stator, rotating electric machine, and method for controlling rotating electric machine
US13/982,407 US9287745B2 (en) 2011-01-27 2012-01-27 Stator teeth, stator, rotating electric machine, and method for controlling rotating electric machine
KR1020137019712A KR101504856B1 (ko) 2011-01-27 2012-01-27 고정자 티스, 고정자, 회전 전기자, 및 회전 전기자의 제어 방법
JP2012554875A JP5725572B2 (ja) 2011-01-27 2012-01-27 ステータティース、ステータ、回転電機、および、回転電機の制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011015774 2011-01-27
JP2011-015774 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102400A1 true WO2012102400A1 (ja) 2012-08-02

Family

ID=46580963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051895 WO2012102400A1 (ja) 2011-01-27 2012-01-27 ステータティース、ステータ、回転電機、および、回転電機の制御方法

Country Status (6)

Country Link
US (1) US9287745B2 (ja)
EP (1) EP2670028B1 (ja)
JP (1) JP5725572B2 (ja)
KR (1) KR101504856B1 (ja)
CN (1) CN103339835B (ja)
WO (1) WO2012102400A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151855A (zh) * 2013-03-26 2013-06-12 胡风华 一种多枚体电机
JP2015142391A (ja) * 2014-01-27 2015-08-03 三菱電機株式会社 回転電機
JP2016063571A (ja) * 2014-09-16 2016-04-25 スズキ株式会社 回転電機
JP2019080449A (ja) * 2017-10-26 2019-05-23 三菱電機株式会社 駆動システム
JP2022536225A (ja) * 2018-11-19 2022-08-15 スマート イー, エルエルシー 無潤滑遠心圧縮機

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104285366B (zh) 2012-03-20 2017-10-31 凌力尔特实验室股份有限公司 具有增强的永久磁通密度的改进dc电动机/发电机
US9729016B1 (en) 2012-03-20 2017-08-08 Linear Labs, Inc. Multi-tunnel electric motor/generator
US10284029B2 (en) 2012-03-20 2019-05-07 Linear Labs, LLC Brushed electric motor/generator
US10263480B2 (en) * 2012-03-20 2019-04-16 Linear Labs, LLC Brushless electric motor/generator
FR3016755B1 (fr) * 2014-01-17 2017-11-24 Save Ingenierie Procede de gestion d'une machine electromagnetique permettant la modification de la topologie d'un circuit d'induits de ladite machine
CN104158364A (zh) * 2014-09-11 2014-11-19 吕三元 一种超高效三相异步电动机
US9641112B2 (en) * 2014-12-10 2017-05-02 Clark Equipment Company Protection method for a generator
US10447103B2 (en) 2015-06-28 2019-10-15 Linear Labs, LLC Multi-tunnel electric motor/generator
EP3365971B1 (en) 2015-10-20 2021-07-21 Linear Labs, Inc. A circumferential flux electric machine with field weakening mechanisms and methods of use
KR101642234B1 (ko) * 2015-11-04 2016-07-22 한양대학교 산학협력단 전기모터
US9621099B1 (en) * 2016-04-22 2017-04-11 GM Global Technology Operations LLC Method for switching between a full winding mode and a half winding mode in a three-phase machine
US10486537B2 (en) * 2016-08-29 2019-11-26 Hamilton Sundstrand Corporation Power generating systems having synchronous generator multiplex windings and multilevel inverters
CN106253532A (zh) * 2016-08-31 2016-12-21 江门市蓬江区硕泰电器有限公司 一种双线绕组线圈及电机
CN109891726B (zh) 2016-09-05 2021-03-09 利尼尔实验室有限责任公司 一种改进的多隧道电动机/发电机
DE102016218664A1 (de) 2016-09-28 2018-03-29 Robert Bosch Gmbh Elektromotor mit einer Mehrzahl von ringförmig angeordneten Statorspulen
CN110168866A (zh) * 2016-11-09 2019-08-23 Tvs电机股份有限公司 具有多区段绕组线圈和开关组合的定子的电机
US11043880B2 (en) 2016-11-10 2021-06-22 Hamilton Sunstrand Corporation Electric power generating system with a synchronous generator
US10498274B2 (en) 2016-11-10 2019-12-03 Hamilton Sundstrand Corporation High voltage direct current system for a vehicle
EP3602757B1 (en) * 2017-03-21 2023-03-08 TTI (Macao Commercial Offshore) Limited Brushless motor
GB2563624B (en) * 2017-06-20 2020-04-08 Dyson Technology Ltd A compressor
US11139722B2 (en) 2018-03-02 2021-10-05 Black & Decker Inc. Motor having an external heat sink for a power tool
JP7202798B2 (ja) * 2018-07-11 2023-01-12 株式会社ミツバ 三相回転電機の駆動装置及び三相回転電機ユニット
EP3618268B1 (en) * 2018-08-29 2024-07-24 ABB Schweiz AG Controlling of an electrical machine
US11277062B2 (en) 2019-08-19 2022-03-15 Linear Labs, Inc. System and method for an electric motor/generator with a multi-layer stator/rotor assembly
US20220200401A1 (en) 2020-12-23 2022-06-23 Black & Decker Inc. Brushless dc motor with circuit board for winding interconnections
KR102555421B1 (ko) * 2021-01-04 2023-07-12 한양대학교 에리카산학협력단 동기전동기
CN115664296A (zh) * 2022-11-11 2023-01-31 哈尔滨理工大学 一种定子绕组重构切换拓扑以及电机系统
CN116743030B (zh) * 2023-06-28 2024-08-30 浙江海川电气科技有限公司 一种永磁无刷变档电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205573A (ja) * 1992-12-28 1994-07-22 Honda Motor Co Ltd 巻線切替型回転電機
JP3596711B2 (ja) 1996-10-21 2004-12-02 株式会社安川電機 工作機用モータの巻線切替装置
JP2005006400A (ja) * 2003-06-11 2005-01-06 Sumitomo Electric Ind Ltd モータ駆動機構
JP3695344B2 (ja) 2001-04-16 2005-09-14 日産自動車株式会社 回転電機
JP2005354807A (ja) 2004-06-10 2005-12-22 Yaskawa Electric Corp 永久磁石同期電動機
JP3968673B2 (ja) 1997-11-25 2007-08-29 株式会社安川電機 永久磁石同期電動機の巻線切り替え方法
JP2009278841A (ja) * 2008-05-19 2009-11-26 Toyota Industries Corp 可動電機

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2235086C3 (de) * 1972-07-18 1979-01-18 Gerhard Berger Gmbh & Co Fabrik Elektrischer Messgeraete, 7630 Lahr Schrittmotor mit fünf Statorwicklungen
US4035701A (en) * 1975-03-27 1977-07-12 Grundfor A/S Method of stepwise speed control and three-phase squirrel-cage motor
DE2629642C3 (de) * 1976-07-01 1979-08-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Polumschaltbare Dreiphasenwicklung
US4477760A (en) * 1983-03-24 1984-10-16 Westinghouse Electric Corp. Continuous pole amplitude modulated electric machines
US4675591A (en) * 1985-04-19 1987-06-23 A. O. Smith Corporation Induction motor winding
EP0210047A3 (en) * 1985-07-16 1987-09-30 Maghemite Inc. Motor control and operation
US4772842A (en) * 1986-03-25 1988-09-20 Siemens Aktiengesellschaft Drive arrangement with a three-phase motor
FI103230B (fi) * 1989-09-27 1999-05-14 Satake Eng Co Ltd Induktiomoottori
JPH0815377B2 (ja) * 1989-10-05 1996-02-14 株式会社佐竹製作所 二固定子三相かご形誘導電動機
DE69100430T2 (de) * 1990-05-26 1994-04-28 Satake Eng Co Ltd Synchron-Induktionsmotor mit Doppelstator.
WO1992006530A1 (en) * 1990-10-09 1992-04-16 Stridsberg Innovation Ab An electric power train for vehicles
JP3037471B2 (ja) * 1991-07-05 2000-04-24 ファナック株式会社 誘導電動機の巻線切換駆動方式
US5483111A (en) * 1994-03-23 1996-01-09 Power Superconductor Applications Corp. Method and apparatus for elimination of the exit-edge effect in high speed linear induction machines for maglev propulsion systems
JPH07298682A (ja) * 1994-04-18 1995-11-10 Fanuc Ltd 誘導電動機の誘導電圧低減方法、及び誘導電圧低減装置
US5719453A (en) * 1994-05-31 1998-02-17 Emerson Electric Co. 2-on coil arrangement for a switched reluctance motor
US5614799A (en) * 1994-07-14 1997-03-25 Mts Systems Corporation Brushless direct current motor having adjustable motor characteristics
DE4431347C2 (de) * 1994-09-02 2000-01-27 Mannesmann Sachs Ag Wicklungsumschaltbarer elektromotorischer Antrieb für ein Fahrzeug
US5652493A (en) * 1994-12-08 1997-07-29 Tridelta Industries, Inc. (Magna Physics Division) Polyphase split-phase switched reluctance motor
US5917295A (en) * 1996-01-31 1999-06-29 Kaman Electromagnetics Corporation Motor drive system having a plurality of series connected H-bridges
US6097127A (en) * 1996-08-22 2000-08-01 Rivera; Nicholas N. Permanent magnet direct current (PMDC) machine with integral reconfigurable winding control
US5912522A (en) * 1996-08-22 1999-06-15 Rivera; Nicholas N. Permanent magnet direct current (PMDC) machine with integral reconfigurable winding control
KR100411500B1 (ko) * 1998-05-29 2003-12-18 가부시키가이샤 리코 직류 브러쉬리스 모터, 다면 스캐너 및 이를 포함하는 화상형성장치
US6175209B1 (en) * 1999-07-08 2001-01-16 Emerson Electric Co. 2/4-pole PSC motor with shared main winding and shared auxiliary winding
KR100400737B1 (ko) * 2000-09-18 2003-10-08 엘지전자 주식회사 극변환 모터
US6566841B2 (en) * 2001-02-08 2003-05-20 Scroll Technologies Scroll compressor having multiple motor performance characteristics
US20020163262A1 (en) * 2001-05-04 2002-11-07 Chun-Pu Hsu High performance stator device
US6853107B2 (en) 2003-03-26 2005-02-08 Wavecrest Laboratories, Llc Multiphase motor having different winding configurations for respective speed ranges
JP2004328900A (ja) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd 回転電機
GB0421443D0 (en) * 2004-09-27 2004-10-27 Unsworth Peter Point on wave (pow) control for motor starting and switching
ZA200711244B (en) * 2005-06-01 2009-05-27 Miraculous Motors Corp Apparatus and method for increasing efficiency of electric motors
US7550953B2 (en) * 2006-06-29 2009-06-23 Hamilton Sundstrand Corporation Coarse voltage regulation of a permanent magnet generator (PMG)
GB0613941D0 (en) * 2006-07-13 2006-08-23 Pml Flightlink Ltd Electronically controlled motors
US7348764B2 (en) * 2006-07-13 2008-03-25 Ocean Power Technologies, Inc. Coil switching of an electric generator
US8143834B2 (en) * 2007-01-22 2012-03-27 Ut-Battelle, Llc Electronically commutated serial-parallel switching for motor windings
US8901797B2 (en) * 2008-01-29 2014-12-02 Ford Global Technologies, Llc Brushless motor system for a vehicle fuel pump
US20130175966A1 (en) * 2008-09-02 2013-07-11 International Business Machines Corporation Dynamic reconfiguration-switching of windings in a motor used as a generator in a turbine
US9059658B2 (en) * 2008-09-02 2015-06-16 International Business Machines Corporation Increasing tape velocity by dynamic switching
WO2010050172A1 (ja) * 2008-10-28 2010-05-06 パナソニック株式会社 同期電動機
US8288979B2 (en) * 2009-01-16 2012-10-16 International Business Machines Corporation Motor control mechanism for electric vehicles
US8994307B2 (en) * 2009-01-16 2015-03-31 International Business Machines Corporation Selectively lowering resistance of a constantly used portion of motor windings in an electric motor
CN201414030Y (zh) * 2009-04-28 2010-02-24 袁正彪 一种三相直流电机绕组连接结构
JP5740930B2 (ja) * 2010-03-03 2015-07-01 日本電産株式会社 ステータ及びモータ
JP5740931B2 (ja) * 2010-03-03 2015-07-01 日本電産株式会社 分割ステータ、及びモータ
DE102010045177A1 (de) * 2010-09-03 2012-03-08 C. & E. Fein Gmbh Elektrischer Antrieb
US8415910B2 (en) * 2010-09-20 2013-04-09 Remy Technologies, L.L.C. Switch module for an electric machine having switchable stator windings
US20120068657A1 (en) * 2010-09-20 2012-03-22 Remy Technologies, L.L.C. Electric machine system including an electric machine having switched stator windings
US8803384B2 (en) * 2011-05-10 2014-08-12 The Boeing Company Stators with reconfigurable coil paths
JP5789145B2 (ja) * 2011-07-13 2015-10-07 オークマ株式会社 同期電動機
TWI467889B (zh) * 2011-09-19 2015-01-01 Univ Nat Taiwan Science Tech 複合式永磁同步電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205573A (ja) * 1992-12-28 1994-07-22 Honda Motor Co Ltd 巻線切替型回転電機
JP3596711B2 (ja) 1996-10-21 2004-12-02 株式会社安川電機 工作機用モータの巻線切替装置
JP3968673B2 (ja) 1997-11-25 2007-08-29 株式会社安川電機 永久磁石同期電動機の巻線切り替え方法
JP3695344B2 (ja) 2001-04-16 2005-09-14 日産自動車株式会社 回転電機
JP2005006400A (ja) * 2003-06-11 2005-01-06 Sumitomo Electric Ind Ltd モータ駆動機構
JP2005354807A (ja) 2004-06-10 2005-12-22 Yaskawa Electric Corp 永久磁石同期電動機
JP2009278841A (ja) * 2008-05-19 2009-11-26 Toyota Industries Corp 可動電機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151855A (zh) * 2013-03-26 2013-06-12 胡风华 一种多枚体电机
JP2015142391A (ja) * 2014-01-27 2015-08-03 三菱電機株式会社 回転電機
JP2016063571A (ja) * 2014-09-16 2016-04-25 スズキ株式会社 回転電機
JP2019080449A (ja) * 2017-10-26 2019-05-23 三菱電機株式会社 駆動システム
JP2022536225A (ja) * 2018-11-19 2022-08-15 スマート イー, エルエルシー 無潤滑遠心圧縮機

Also Published As

Publication number Publication date
EP2670028B1 (en) 2020-10-14
CN103339835B (zh) 2016-08-10
EP2670028A4 (en) 2017-11-15
KR101504856B1 (ko) 2015-03-20
CN103339835A (zh) 2013-10-02
US20130307455A1 (en) 2013-11-21
EP2670028A1 (en) 2013-12-04
US9287745B2 (en) 2016-03-15
JP5725572B2 (ja) 2015-05-27
JPWO2012102400A1 (ja) 2014-07-03
KR20130118929A (ko) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5725572B2 (ja) ステータティース、ステータ、回転電機、および、回転電機の制御方法
JP5350034B2 (ja) 電動機システム
JP5399067B2 (ja) 電動機
US10090742B2 (en) Rotating electric machine
US20140239876A1 (en) Electric drive with reconfigurable winding
JP6845818B2 (ja) 回転電機の駆動装置
CN101919156A (zh) 电机
WO2015071662A1 (en) Method and apparatus for control of switched reluctance motors
JP6531728B2 (ja) 回転電機装置
JP2016077052A (ja) 磁石レス回転電機及び回転電機制御システム
JP2005354807A (ja) 永久磁石同期電動機
EP2367281A2 (en) Packaging improvement for converter-fed transverse flux machine
JP2013042574A (ja) 永久磁石式回転電機
JP2009142130A (ja) 回転電機及び回転電機駆動装置
JP5696438B2 (ja) 永久磁石型電動機
JP2011130525A (ja) 電動機駆動システム
JP2018011492A (ja) 回転電機装置
WO2018207719A1 (ja) 可変速モータ装置
JP6335523B2 (ja) 回転電機
JP2019037124A (ja) タンデム式回転電機
JP2020156166A (ja) スイッチトリラクタンスモータ制御装置及びスイッチトリラクタンスモータ制御方法
US20220302864A1 (en) Switched reluctance machine having a switch for changing the number of turns
JP2016013047A (ja) 電動機の駆動装置
JP2017112817A (ja) 可変速交流電気機械
JP2015142392A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137019712

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012554875

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13982407

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012739300

Country of ref document: EP