Nothing Special   »   [go: up one dir, main page]

WO2012177054A2 - 랜덤 액세스 과정 수행 방법 및 장치 - Google Patents

랜덤 액세스 과정 수행 방법 및 장치 Download PDF

Info

Publication number
WO2012177054A2
WO2012177054A2 PCT/KR2012/004890 KR2012004890W WO2012177054A2 WO 2012177054 A2 WO2012177054 A2 WO 2012177054A2 KR 2012004890 W KR2012004890 W KR 2012004890W WO 2012177054 A2 WO2012177054 A2 WO 2012177054A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
random access
secondary cell
pdcch
terminal
Prior art date
Application number
PCT/KR2012/004890
Other languages
English (en)
French (fr)
Other versions
WO2012177054A3 (ko
Inventor
안준기
양석철
김민규
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/128,406 priority Critical patent/US9363050B2/en
Priority to KR1020137030427A priority patent/KR101498846B1/ko
Publication of WO2012177054A2 publication Critical patent/WO2012177054A2/ko
Publication of WO2012177054A3 publication Critical patent/WO2012177054A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for performing a random access process in a wireless communication system.
  • LTE Long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • a physical channel is a downlink channel PDSCH (Physical). It can be divided into a downlink shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH downlink shared channel
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the terminal may be located in any region within the cell, and the arrival time until the uplink signal transmitted by the terminal reaches the base station may vary depending on the position of each terminal.
  • the arrival time of the terminal located at the cell edge is longer than the arrival time of the terminal located at the cell center. In contrast, the arrival time of the terminal located at the cell center is shorter than the arrival time of the terminal located at the cell edge.
  • the base station In order to reduce interference between terminals, the base station needs to schedule the uplink signals transmitted by the terminals in the cell to be received within a boundary (hourly) every time.
  • the base station must adjust the transmission timing of each terminal according to the situation of each terminal, this adjustment is called uplink time alignment (uplink time alignment).
  • uplink time alignment uplink time alignment
  • the random access process is one of processes for maintaining uplink time synchronization.
  • the existing random access procedure is designed considering only one serving cell.
  • the present invention provides a method and apparatus for performing random access considering a plurality of serving cells.
  • a method of performing a random access procedure in a wireless communication system receives multi-cell configuration information for configuring at least one secondary cell, the terminal receives activation information for activating one of the at least one secondary cell, and the terminal is in the activated secondary cell. Transmits a random access preamble, the terminal receives a random access response including uplink resource allocation in the primary cell, and the terminal transmits a scheduled message using the uplink resource allocation in the activated secondary cell It involves doing.
  • the random access response may include a timing advance command (TAC) for uplink time synchronization.
  • TAC timing advance command
  • an apparatus for performing a random access procedure in a wireless communication system includes an RF (radio freqeuncy) unit for transmitting and receiving a radio signal, and a processor coupled to the RF unit, the processor receiving multi-cell configuration information for setting up at least one secondary cell, the at least Receiving activation information for activating one of one secondary cell, transmitting a random access preamble in the activated secondary cell, receiving a random access response including uplink resource allocation in the primary cell, and the activated 2 The cell transmits a scheduled message using the uplink resource allocation.
  • RF radio freqeuncy
  • 1 shows a structure of a downlink radio frame in 3GPP LTE.
  • FIG. 2 is an exemplary diagram illustrating monitoring of a PDCCH.
  • 3 shows an example of a multi-carrier.
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • FIG. 7 is a flowchart illustrating a random access procedure according to an embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the user equipment may be fixed or mobile, and may include a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • MS mobile station
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • the present invention is applied based on 3GPP long term evolution (LTE) based on 3rd Generation Partnership Project (3GPP) Technical Specification (TS) Release 8.
  • LTE long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • R-UTRA Physical Channels and Modulation
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • the time it takes for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • a physical channel is a physical downlink shared channel (PDSCH), a physical downlink shared channel (PUSCH), a physical downlink control channel (PDCCH), and a physical channel (PCFICH). It may be divided into a Control Format Indicator Channel (PHICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for uplink (UL) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the terminal to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a radio network temporary identifier (RNTI)). Mask to the CRC.
  • CRC cyclic redundancy check
  • RNTI radio network temporary identifier
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG includes four REs and one CCE includes nine REGs.
  • ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the number of CCEs used for transmission of the PDDCH is determined by the base station according to the channel state. For example, one CCE may be used for PDCCH transmission for a UE having a good downlink channel state. Eight CCEs may be used for PDCCH transmission for a UE having a poor downlink channel state.
  • a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell ID.
  • FIG. 2 is an exemplary diagram illustrating monitoring of a PDCCH. This may be referred to in section 9 of 3GPP TS 36.213 V8.7.0 (2009-05).
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a PDCCH candidate), and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the UE does not know where its PDCCH is transmitted using which CCE aggregation level or DCI format at which position in the control region.
  • a plurality of PDCCHs may be transmitted in one subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • the monitoring means that the UE attempts to decode the PDCCH according to the monitored PDCCH format.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH.
  • the UE monitors the PDCCH in the corresponding search space.
  • the search space is divided into a common search space and a UE-specific search space.
  • the common search space is a space for searching for a PDCCH having common control information.
  • the common search space includes 16 CCEs up to CCE indexes 0 to 15 and supports a PDCCH having a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
  • the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • Table 1 below shows the number of PDCCH candidates monitored by the UE.
  • the size of the search space is determined by Table 1, and the starting point of the search space is defined differently from the common search space and the terminal specific search space.
  • the starting point of the common search space is fixed irrespective of the subframe, but the starting point of the UE-specific search space is for each subframe according to the terminal identifier (eg, C-RNTI), the CCE aggregation level and / or the slot number in the radio frame. Can vary.
  • the terminal specific search space and the common search space may overlap.
  • the search space S (L) k is defined as a set of PDCCH candidates.
  • the CCE corresponding to the PDCCH candidate m in the search space S (L) k is given as follows.
  • N CCE, k can be used for transmission of the PDCCH in the control region of subframe k.
  • the control region includes a set of CCEs numbered from 0 to N CCE, k ⁇ 1.
  • M (L) is the number of PDCCH candidates at CCE aggregation level L in a given search space.
  • variable Y k is defined as follows.
  • n s is a slot number in a radio frame.
  • transmission of a downlink transport block is performed by a pair of PDCCH and PDSCH.
  • Transmission of an uplink transport block is performed by a pair of PDCCH and PUSCH.
  • the terminal receives a downlink transport block on the PDSCH indicated by the PDCCH.
  • the UE monitors the PDCCH in the downlink subframe and receives the downlink resource allocation on the PDCCH.
  • the terminal receives a downlink transport block on the PDSCH indicated by the downlink resource allocation.
  • the 3GPP LTE system supports a case where the downlink bandwidth and the uplink bandwidth are set differently, but this assumes one component carrier (CC).
  • the 3GPP LTE system supports up to 20MHz and may have different uplink and downlink bandwidths, but only one CC is supported for each of the uplink and the downlink.
  • Spectrum aggregation supports a plurality of CCs. For example, if five CCs are allocated as granularity in a carrier unit having a 20 MHz bandwidth, a bandwidth of up to 100 MHz may be supported.
  • One DL CC or a pair of UL CC and DL CC may correspond to one cell. Accordingly, it can be said that a terminal communicating with a base station through a plurality of DL CCs receives a service from a plurality of serving cells.
  • 3 shows an example of a multi-carrier.
  • the number of DL CCs and UL CCs is not limited.
  • PDCCH and PDSCH are independently transmitted in each DL CC, and PUCCH and PUSCH are independently transmitted in each UL CC. Since three DL CC-UL CC pairs are defined, the UE may be provided with services from three serving cells.
  • the UE may monitor the PDCCH in the plurality of DL CCs and receive DL transport blocks simultaneously through the plurality of DL CCs.
  • the terminal may transmit a plurality of UL transport blocks simultaneously through the plurality of UL CCs.
  • Each serving cell may be identified through a cell index (CI).
  • the CI may be unique within the cell or may be terminal-specific.
  • CI 0, 1, 2 is assigned to the first to third serving cells is shown.
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency and performs an initial connection establishment process, which is a terminal, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, can be established after the RRC connection is established, and can be used to provide additional radio resources. At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, RRC message).
  • the CI of the primary cell can be fixed.
  • the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • the UE may monitor the PDCCH through a plurality of serving cells. However, even if there are N serving cells, the base station can be configured to monitor the PDCCH for M (M ⁇ N) serving cells. In addition, the base station may be configured to preferentially monitor the PDCCH for L (L ⁇ M ⁇ N) serving cells.
  • Two scheduling schemes are possible in a multi-carrier system.
  • PDSCH scheduling is performed only in each serving cell.
  • the PDCCH of the primary cell schedules the PDSCH of the primary cell
  • the PDCCH of the secondary cell schedules the PDSCH of the secondary cell.
  • the PDCCH-PDSCH structure of the existing 3GPP LTE can be used as it is.
  • the PDCCH of each serving cell may schedule not only its own PDDSCH but also PDSCH of another serving cell.
  • a serving cell in which a PDCCH is transmitted is called a scheduling cell
  • a serving cell in which a PDSCH scheduled through the PDCCH of the scheduling cell is transmitted is called a scheduled cell.
  • the scheduling cell may also be referred to as a scheduling CC
  • the scheduled cell may also be referred to as a scheduled CC.
  • per-CC scheduling the scheduling cell and the scheduled cell are the same.
  • cross-CC scheduling the scheduling cell and the scheduled cell may be the same or different.
  • a carrier indicator field (CIF) is introduced into DCI.
  • the CIF includes the CI of the cell with the PDSCH being scheduled.
  • CIF may also be referred to as a CI of a scheduled cell.
  • per-CC scheduling the CIF is not included in the DCI of the PDCCH.
  • cross-CC scheduling CIF is included in DCI of PDCCH.
  • the base station may configure per-CC scheduling or cross-CC scheduling cell-specifically or terminal-specifically. For example, the base station may set cross-CC scheduling to a specific terminal with a higher layer message such as an RRC message.
  • a higher layer message such as an RRC message.
  • the base station may allow the PDCCH to be monitored only in a specific serving cell.
  • a cell activated to monitor the PDCCH is called an activated cell (or monitoring cell).
  • the terminal detects the PDCCH 510.
  • the DL transport block on the PDSCH 530 is received based on the DCI on the PDCCH 510. Even if cross-CC scheduling is configured, a PDCCH-PDSCH pair in the same cell may be used.
  • the terminal detects the PDCCH 520. Assume that the CIF in the DCI on the PDCCH 520 indicates the second serving cell. The terminal receives a DL transport block on the PDSCH 540 of the second serving cell.
  • the random access procedure is used for the terminal to obtain UL synchronization with the base station or to be allocated UL radio resources.
  • the terminal receives a root index and a physical random access channel (PRACH) configuration index from the base station.
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the terminal transmits the randomly selected random access preamble to the base station (S110).
  • the terminal selects one of 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH configuration index.
  • the terminal transmits the selected random access preamble in the selected subframe.
  • the base station receiving the random access preamble sends a random access response (RAR) to the terminal (S120).
  • RAR random access response
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with a random access-RNTI (RA-RNTI). A random access response in a medium access control (MAC) protocol data unit (PDU) is received on the PDSCH indicated by the DL grant on the detected PDCCH.
  • MAC medium access control
  • the random access response may include a timing advance command (TAC), a UL grant, and a temporary C-RNTI.
  • TAC timing advance command
  • UL grant UL grant
  • C-RNTI temporary C-RNTI
  • the TAC is information indicating a time synchronization value sent by the base station to the terminal to maintain UL time alignment.
  • the terminal updates the UL transmission timing by using the time synchronization value.
  • the time alignment timer (Time Alignment Timer) is started or restarted. Only when the time synchronization timer is in operation, the terminal may perform UL transmission.
  • the UL grant is a UL resource used for transmission of a scheduling message described later.
  • the terminal transmits a scheduled message according to the UL grant in the random access response to the base station (S130).
  • the random access preamble is also referred to as an M1 message, a random access response as an M2 message, and a scheduled message as an M3 message.
  • 3GPP LTE considers only one serving cell and does not support multiple serving cells. If the random access process is performed only in one serving cell (eg, primary cell), the existing random access process may be used as it is, but if the channel situation between serving cells is different, it may be necessary to perform the random access process in the secondary cell. .
  • Ambiguity may occur when a random access preamble is transmitted in a secondary cell. After the UE transmits the M1 message in the secondary cell, it is not clear in which cell to receive the M2 message and in which cell to transmit the M3 message.
  • a common search space exists only in a primary cell
  • a UE-specific search space exists in a primary cell and a secondary cell.
  • FIG. 7 is a flowchart illustrating a random access procedure according to an embodiment of the present invention.
  • the terminal receives the multi-cell configuration information from the base station (S710).
  • the multi-cell configuration information may be included in an RRC message such as an RRC connection reconfiguration message.
  • the multi-cell configuration information may be transmitted through the primary cell.
  • the multi-cell configuration information may include information for adding, modifying and / or releasing one or more secondary cells.
  • the multi-cell configuration information may include information about a cell index of a secondary cell, a physical cell identity (PCI) of a secondary cell, and / or a carrier frequency of a secondary cell.
  • PCI physical cell identity
  • the terminal receives activation information for activating or deactivating the secondary cell from the base station (S720). For example, assume that two secondary cells corresponding to cell indexes 1 and 2 are set from the multi-cell configuration information.
  • the activation information may include a bit indicating the activation or deactivation of the secondary cell of cell index 1 and a bit indicating the activation or deactivation of the secondary cell of cell index 2.
  • the terminal transmits the random access preamble M1 in the secondary cell (S730).
  • the base station may allocate a random access resource for the secondary cell to the terminal. For example, a root index for generating candidate random access preambles for the secondary cell and a PRACH configuration index for the secondary cell may be given by the base station.
  • the base station transmits a random access response (M2) to the terminal (S750).
  • M2 may include at least one of the TAC, UL grant, and temporary C-RNTI shown in FIG. 6.
  • the TAC may be applied independently for each cell assigned to the terminal or for each cell group. At this time, a cell group to which the same TAC is applied is called a TAG (timing advance group) for convenience.
  • the following scheme is proposed to define a serving cell to which M2 can be transmitted and a search space to schedule M2.
  • M2 may be transmitted only to the primary cell.
  • PDCCH scheduling M2 can be monitored only in the CSS of the primary cell.
  • the CIF value in the PDCCH corresponding to M2 may be ignored or may be designated as a cell index value (eg, 0) that always points to the primary cell.
  • the random access response may include the items of FIG. 6 described above.
  • M2 may be transmitted in an activated serving cell.
  • M2 may be transmitted in the primary cell and the activated secondary cell.
  • the PDCCH for scheduling M2 may be monitored in at least one of CSS of the primary cell, USS of the primary cell, and USS of the secondary cell.
  • the PDCCH may be monitored in the CSS of the corresponding secondary cell in order to schedule M2 transmitted in the secondary cell in per-CC scheduling.
  • M2 corresponding to M1 transmitted through a specific serving cell may be limited to monitor the PDCCH only in a search space for scheduling the specific cell.
  • the CIF value of the PDCCH scheduling M2 may be ignored or may be defined to indicate a cell index in which the corresponding M2 is transmitted.
  • the search space in which the PDCCH scheduling M2 is transmitted may be limited to the search of cells in which M1 may be transmitted. It is desirable if the cells to which M1 can be transmitted are limited.
  • the PDCCH scheduling M2 When the PDCCH scheduling M2 is monitored in the USS, the PDCCH may be identified by the C-RNTI rather than the RA-RNTI. The UE needs to be able to distinguish whether the PDCCH received through the corresponding USS schedules M2 or another PDSCH.
  • the UE After transmitting the random access preamble in the secondary cell, the UE assumes that all or part of the DCI format is not scheduled for PDSCH other than M2 during the interval for monitoring the random access response (this is called a random access monitoring interval). can do. That is, it is assumed that all DCI formats for PDSCH scheduling received during the RA monitoring interval are for M2 scheduling.
  • the DCI format for M2 scheduling may be DCI formats 1A and / or 1C.
  • the RA monitoring interval may be defined as until a timer posted after receiving a random access request or after transmitting M1 expires.
  • the RA monitoring interval may be applied only to the PDCCH in which the UE schedules PDSCH for the serving cell in which M1 is transmitted. That is, it corresponds only to the USS for scheduling the cell in which M1 is transmitted, and the schedule for other cells is not limited. For example, in cross-CC scheduling, it may be applied only to a PDCCH having a CIF value indicating a cell to which M1 is transmitted.
  • ACK / NACK is not transmitted for M2 and may not perform an HARQ operation.
  • M2 may be transmitted only to the serving cell to which M1 has been transmitted.
  • the PDCCH scheduling M2 may be monitored in the CSS of the primary cell (or including the USS scheduling the primary cell) for M2 transmitted to the primary cell.
  • M2 transmitted to the secondary cell can be monitored in the USS scheduling the secondary cell.
  • the PDCCH may be monitored in CSS of the secondary cell to schedule M2 transmitted to the secondary cell.
  • the terminal transmits the scheduled message M3 to the base station by using the UL grant included in M2 (S740).
  • the following scheme is proposed to define a cell in which M3 scheduled by M2 is transmitted.
  • M3 may be transmitted only to the primary cell regardless of the cell where M1 and / or M2 are transmitted.
  • each M2 may include the same UL grant.
  • M2s for different M1s may be limited to prevent M3 from scheduling in the same subframe.
  • M3 may be transmitted in a cell in which a corresponding M1 has been transmitted. For example, suppose that a UE transmits a random access preamble in a secondary cell having cell index 2. Even if the primary cell receives the random access response, the terminal transmits the scheduled message in the secondary cell of the cell index 2 using the UL grant included in the random access response. The random access response does not need to include a CIF indicating a cell in which the scheduled message is transmitted.
  • the base station can measure the UL timing for the corresponding secondary cell through M1.
  • the base station transmits M2 including the TAC for adjusting the UL timing to the terminal.
  • the terminal may apply the TAC to the secondary cell and then transmit M3. Since the UL timing for the corresponding secondary cell can be quickly recovered, it may be advantageous to transmit M3 to the cell where M1 is transmitted.
  • M3 may be limited to a cell belonging to a TAG to which the cell to which M1 is transmitted belongs.
  • M3 may be transmitted in a cell in which a corresponding M2 is transmitted (a cell in which a PDSCH of M2 is transmitted) or a cell indicated by a CIF included in a PDCCH scheduling M2.
  • M2 may include a CIF indicating a cell to which M3 is to be transmitted.
  • M3 may be transmitted in a cell in which a PDCCH for scheduling a corresponding M2 is transmitted.
  • the added secondary cell is in a deactivated state. Thereafter, until the secondary cell is activated, the detection of the PDCCH scheduling the secondary cell is not attempted. In addition, even after the activated secondary cell is deactivated, the UE does not attempt to detect the PDCCH that schedules the deactivated secondary cell.
  • the base station transmits a triggering message (this is called a M0 message) requesting the UE to start the random access process of the secondary cell, the UL cell of the secondary cell is synchronized more quickly. UL transmission may be made.
  • the M0 message is sent on the PDCCH.
  • the base station transmits M0 triggering M1 transmission in the secondary cell on the PDCCH of the primary cell.
  • the UE may monitor the PDCCH in CSS or USS.
  • the terminal transmits M1 in the secondary cell indicated by M0.
  • the base station transmits M2 in the primary cell.
  • the UE may monitor the PDCCH for scheduling M2 in the CSS of the primary cell.
  • the terminal transmits M3 in the primary cell.
  • the base station transmits M0 triggering M1 transmission in the secondary cell on the PDCCH of the primary cell.
  • the UE may monitor the PDCCH in CSS or USS.
  • the terminal transmits M1 in the secondary cell indicated by M0.
  • the base station transmits M2 in the primary cell.
  • the UE may monitor the PDCCH for scheduling M2 in the CSS of the primary cell.
  • M2 may include a CIF indicating a cell in which M3 is transmitted.
  • the terminal transmits M3 in the indicated cell.
  • the base station transmits M0 triggering M1 transmission in the secondary cell on the PDCCH of the primary cell.
  • the UE may monitor the PDCCH in CSS or USS.
  • the terminal transmits M1 in the secondary cell indicated by M0.
  • the base station transmits M2 in the primary cell.
  • the UE may monitor the PDCCH for scheduling M2 in the CSS of the primary cell.
  • the terminal transmits M3 in the cell in which M1 is transmitted.
  • the base station may induce a UL transmission of the terminal after adjusting the UL timing by starting a random access process using M0 for the secondary cell.
  • the timing at which the UE performs UL transmission becomes unclear.
  • UL transmission in the secondary cell except transmission of the random access preamble may be prohibited until the random access procedure is started for the secondary cell or the TAG to which the secondary cell belongs. More specifically, the UL transmission prohibition state (or un-synchronization state) in the secondary cell is transmitted until the TAC is received after the random access preamble transmission triggered by M0, or the transmission of M3 after the random access preamble transmission triggered by M0. Can be maintained until completion.
  • the UE which is out of the UL transmission prohibition state, may start a predetermined periodic UL transmission (CSI (channel state information) report, SRS (sounding reference signal) transmission, etc.).
  • CSI channel state information
  • SRS sounding reference signal
  • the base station directly instructs UL transmission in a secondary cell whose UL synchronization is unclear or for a TAG to which the secondary cell belongs, it may be considered that the base station has recognized that there is no problem in UL transmission in the secondary cell. Therefore, when a base station directly schedules UL transmission for a secondary cell for which UL transmission is prohibited because UL timing cannot be established, the terminal proposes to perform the corresponding UL transmission.
  • the UE may also perform subsequent periodic or aperiodic PUCCH / PUSCH transmission for the secondary cell or the TAG to which the secondary cell belongs.
  • the terminal receives the TAC for the secondary cell in an unsynchronized state and applies the received TAC to the secondary cell, the terminal sees that the UL timing of the secondary cell, the terminal is the secondary cell or the secondary cell PUCCH / PUSCH may be transmitted for the TAG to which it belongs.
  • the following proposes a method for solving the ambiguity of the UL transmission timing of the secondary cell.
  • the UE may perform PDCCH monitoring to receive M0 for a deactivated secondary cell or a specific cell of a TAG to which the secondary cell belongs.
  • the specific cell may be allocated by the base station to the terminal using RRC signaling or the like.
  • the terminal may lose the UL transmission timing.
  • the UE monitors the PDCCH for M0 that triggers the random access procedure so that the random access procedure can be quickly started even for the deactivated secondary cell.
  • the PDCCH may be monitored in the search space in the deactivated secondary cell or in the search space in the activated cell.
  • Monitoring of M0 for the deactivated secondary cell may be performed when the terminal determines that the UL synchronization has been lost or when the time synchronization timer expires or until the secondary cell is added and is activated.
  • the base station may instruct to perform UL synchronization when activating the secondary cell.
  • the base station may transmit a second bit indicating whether to perform UL synchronization with the first bit indicating the activation / deactivation of the secondary cell to the terminal. For example, if the second bit is '1', the UE indicates that the UE performs UL transmission after completing activation of the secondary cell and UL synchronization. If the second bit is '0', it indicates that the UE performs UL transmission immediately without UL synchronization after activation of the secondary cell.
  • the base station may inform the terminal of information about a random access resource in addition to the first bit and the second bit.
  • the random access resource is used to perform an initial random access procedure.
  • FIG. 8 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the memory 52 is connected to the processor 51 and stores various information for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 51.
  • the terminal 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the memory 62 is connected to the processor 61 and stores various information for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the terminal may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 랜덤 액세스 과정을 수행하는 방법 및 장치가 제공된다. 단말이 활성화된 2차셀에서 랜덤 액세스 프리앰블을 전송하고, 1차셀에서 상향링크 자원 할당을 포함하는 랜덤 액세스 응답을 수신한다. 상기 단말이 상기 활성화된 2차셀에서 상기 상향링크 자원 할당을 이용하여 스케줄링된 메시지를 전송한다.

Description

랜덤 액세스 과정 수행 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 랜덤 액세스 과정을 수행하는 방법 및 장치에 관한 것이다.
3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 LTE(long term evolution)는 유력한 차세대 이동통신 표준이다.
3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"에 개시된 바와 같이, 3GPP LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
단말들간의 상향링크 전송으로 인한 간섭을 줄이기 위해, 기지국이 단말의 상향링크 시간 동기(uplink time alignment)를 유지하는 것은 중요하다. 단말은 셀 내의 임의의 영역에 위치할 수 있고, 단말이 전송하는 상향링크 신호가 기지국에 도달하는 데까지 걸리는 도달 시간은 각 단말의 위치에 따라 다를 수 있다. 셀 가장자리(cell edge)에 위치하는 단말의 도달 시간은 셀 중앙에 위치하는 단말의 도달 시간보다 길다. 반대로, 셀 중앙에 위치하는 단말의 도달 시간은 셀 가장자리에 위치하는 단말의 도달 시간보다 짧다.
단말들간 간섭을 줄이기 위해, 기지국은 셀 내의 단말들이 전송한 상향링크 신호들이 매 시간 바운더리(boundary) 내에서 수신될 수 있도록 스케줄링하는 것이 필요하다. 기지국은 각 단말의 상황에 따라 각 단말의 전송 타이밍을 적절히 조절해야 하고, 이러한 조절을 상향링크 시간 동기(uplink time alignment)라고 한다. 랜덤 액세스 과정은 상향링크 시간 동기를 유지하기 위한 과정 중 하나이다.
최근에는, 보나 높은 데이터 레이트를 제공하기 위해 복수의 서빙 셀이 도입되고 있다. 기존 랜덤 액세스 과정은 하나의 서빙 셀만을 고려하여 설계되었다.
본 발명은 복수의 서빙 셀을 고려한 랜덤 액세스 수행 방법 및 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 랜덤 액세스 과정을 수행하는 방법이 제공된다. 상기 방법은 단말이 적어도 하나의 2차셀을 설정하는 다중 셀 설정 정보를 수신하고, 상기 단말이 상기 적어도 하나의 2차셀 중 하나를 활성화하는 활성화 정보를 수신하고, 상기 단말이 상기 활성화된 2차셀에서 랜덤 액세스 프리앰블을 전송하고, 상기 단말이 1차셀에서 상향링크 자원 할당을 포함하는 랜덤 액세스 응답을 수신하고, 및 상기 단말이 상기 활성화된 2차셀에서 상기 상향링크 자원 할당을 이용하여 스케줄링된 메시지를 전송하는 것을 포함한다.
상기 랜덤 액세스 응답은 상향링크 시간 동기를 위한 TAC(Timing Advance Command)를 포함할 수 있다.
다른 양태에서, 무선 통신 시스템에서 랜덤 액세스 과정을 수행하는 장치가 제공된다. 상기 방법은 무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 적어도 하나의 2차셀을 설정하는 다중 셀 설정 정보를 수신하고, 상기 적어도 하나의 2차셀 중 하나를 활성화하는 활성화 정보를 수신하고, 상기 활성화된 2차셀에서 랜덤 액세스 프리앰블을 전송하고, 1차셀에서 상향링크 자원 할당을 포함하는 랜덤 액세스 응답을 수신하고, 및 상기 활성화된 2차셀에서 상기 상향링크 자원 할당을 이용하여 스케줄링된 메시지를 전송한다.
2차셀이 설정되고 상기 2차셀로 랜덤 액세스 프리앰블이 전송될 때, 랜덤 액세스 과정을 수행하는 방법이 제안된다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다.
도 2는 PDCCH의 모니터링을 나타낸 예시도이다.
도 3은 다중 반송파의 일 예를 나타낸다.
도 4는 cross-CC 스케줄링의 일 예를 나타낸다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 6은 랜덤 액세스 응답의 일 예를 나타낸다.
도 7은 본 발명의 일 실시예에 따른 랜덤 액세스 과정을 나타낸 흐름도이다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
단말(User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) TS(Technical Specification) 릴리이즈(Release) 8을 기반으로 하는 3GPP LTE(long term evolution)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다.
도 1은 3GPP LTE에서 하향링크 무선 프레임의 구조를 나타낸다. 이는 3GPP TS 36.211 V8.7.0 (2009-05) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)"의 6절을 참조할 수 있다.
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 하나의 서브 프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP(Cyclic Prefix)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 3GPP TS 36.211 V8.7.0에 의하면, 정규 CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block, RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element, RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP TS 36.211 V8.7.0에 개시된 바와 같이, 3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
PDDCH의 전송에 사용되는 CCE의 개수는 기지국이 채널 상태에 따라 결정한다. 예를 들어, 좋은 하향링크 채널 상태를 갖는 단말에게는 하나의 CCE를 PDCCH 전송에 사용할 수 있다. 나쁜(poor) 하향링크 채널 상태를 갖는 단말에게는 8개의 CCE를 PDCCH 전송에 사용할 수 있다.
하나 또는 그 이상의 CCE로 구성된 제어채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
도 2는 PDCCH의 모니터링을 나타낸 예시도이다. 이는 3GPP TS 36.213 V8.7.0 (2009-05)의 9절을 참조할 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩을 사용한다. 블라인드 디코딩은 수신되는 PDCCH(이를 PDCCH 후보(candidate)라 함)의 CRC에 원하는 식별자를 디마스킹하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 단말은 자신의 PDCCH가 제어영역내에서 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷을 사용하여 전송되는지 알지 못한다.
하나의 서브프레임내에서 복수의 PDCCH가 전송될 수 있다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 단말은 해당되는 검색 공간내에서 PDCCH를 모니터링한다.
검색 공간은 공용 검색 공간(common search space)과 단말 특정 검색 공간(UE-specific search space)로 나뉜다. 공용 검색 공간은 공용 제어정보를 갖는 PDCCH를 검색하는 공간으로 CCE 인덱스 0~15까지 16개 CCE로 구성되고, {4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다.
다음 표 1은 단말에 의해 모니터링되는 PDCCH 후보의 개수를 나타낸다.
표 1
Search Space Type Aggregation level L Size [in CCEs] Number of PDCCH candidates DCI formats
UE-specific 1 6 6 0, 1, 1A,1B,1D, 2, 2A
2 12 6
4 8 2
8 16 2
Common 4 16 4 0, 1A, 1C, 3/3A
8 16 2
검색 공간의 크기는 상기 표 1에 의해 정해지고, 검색 공간의 시작점은 공용 검색 공간과 단말 특정 검색 공간이 다르게 정의된다. 공용 검색 공간의 시작점은 서브프레임에 상관없이 고정되어 있지만, 단말 특정 검색 공간의 시작점은 단말 식별자(예를 들어, C-RNTI), CCE 집합 레벨 및/또는 무선프레임내의 슬롯 번호에 따라 서브프레임마다 달라질 수 있다. 단말 특정 검색 공간의 시작점이 공용 검색 공간 내에 있을 경우, 단말 특정 검색 공간과 공용 검색 공간은 중복될(overlap) 수 있다.
집합 레벨 L∈{1,2,3,4}에서 검색 공간 S(L) k는 PDCCH 후보의 집합으로 정의된다. 검색 공간 S(L) k의 PDCCH 후보 m에 대응하는 CCE는 다음과 같이 주어진다.
수학식 1
Figure PCTKR2012004890-appb-M000001
여기서, i=0,1,...,L-1, m=0,...,M(L)-1, NCCE,k는 서브프레임 k의 제어영역내에서 PDCCH의 전송에 사용할 수 있는 CCE의 전체 개수이다. 제어영역은 0부터 NCCE,k-1로 넘버링된 CCE들의 집합을 포함한다. M(L)은 주어진 검색 공간에서의 CCE 집합 레벨 L에서 PDCCH 후보의 개수이다.
공용 검색 공간에서, Yk는 2개의 집합 레벨, L=4 및 L=8에 대해 0으로 셋팅된다.
집합 레벨 L의 단말 특정 검색 공간에서, 변수 Yk는 다음과 같이 정의된다.
수학식 2
Figure PCTKR2012004890-appb-M000002
여기서, Y-1=nRNTI≠0, A=39827, D=65537, k=floor(ns/2), ns는 무선 프레임내의 슬롯 번호(slot number)이다.
3GPP LTE에서 하향링크 전송블록의 전송은 PDCCH와 PDSCH의 쌍으로 수행된다. 상향링크 전송블록의 전송은 PDCCH와 PUSCH의 쌍으로 수행된다. 예를 들어, 단말은 PDCCH에 의해 지시되는 PDSCH 상으로 하향링크 전송블록을 수신한다. 단말은 하향링크 서브프레임에서 PDCCH를 모니터링하여, 하향링크 자원 할당를 PDCCH 상으로 수신한다. 단말은 상기 하향링크 자원 할당이 가리키는 PDSCH 상으로 하향링크 전송 블록을 수신한다.
이제 다중 반송파(multiple carrier) 시스템에 대해 기술한다.
3GPP LTE 시스템은 하향링크 대역폭과 상향링크 대역폭이 다르게 설정되는 경우를 지원하나, 이는 하나의 요소 반송파(component carrier, CC)를 전제한다. 3GPP LTE 시스템은 최대 20MHz을 지원하고, 상향링크 대역폭과 하향링크 대역폭을 다를 수 있지만, 상향링크와 하향링크 각각에 하나의 CC만을 지원한다.
스펙트럼 집성(spectrum aggregation)(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함)은 복수의 CC를 지원하는 것이다. 예를 들어, 20MHz 대역폭을 갖는 반송파 단위의 그래뉼래리티(granularity)로서 5개의 CC가 할당된다면, 최대 100Mhz의 대역폭을 지원할 수 있는 것이다.
하나의 DL CC 또는 UL CC와 DL CC의 쌍(pair)는 하나의 셀에 대응될 수 있다. 따라서, 복수의 DL CC를 통해 기지국과 통신하는 단말은 복수의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
도 3은 다중 반송파의 일 예를 나타낸다.
DL CC와 UL CC가 각각 3개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 각 DL CC에서 PDCCH와 PDSCH가 독립적으로 전송되고, 각 UL CC에서 PUCCH와 PUSCH가 독립적으로 전송된다. DL CC-UL CC 쌍이 3개가 정의되므로, 단말은 3개의 서빙 셀로부터 서비스를 제공받는다고 할 수 있다.
단말은 복수의 DL CC에서 PDCCH를 모니터링하고, 복수의 DL CC를 통해 동시에 DL 전송 블록을 수신할 수 있다. 단말은 복수의 UL CC를 통해 동시에 복수의 UL 전송 블록을 전송할 수 있다.
DL CC #1과 UL CC #1의 쌍이 제1 서빙 셀이 되고, DL CC #2과 UL CC #2의 쌍이 제2 서빙 셀이 되고, DL CC #3이 제3 서빙 셀이 된다고 하자. 각 서빙 셀은 셀 인덱스(Cell index, CI)를 통해 식별될 수 있다. CI는 셀 내에서 고유할 수 있고, 또는 단말-특정적일 수 있다. 여기서는, 제1 내지 제3 서빙셀에 CI=0, 1, 2가 부여된 예를 보여준다.
서빙 셀은 1차 셀(primary cell)과 2차 셀(secondary cell)로 구분될 수 있다. 1차 셀은 1차 주파수에서 동작하고, 단말인 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차 셀은 기준 셀(reference cell)이라고도 한다. 2차 셀은 2차 주파수에서 동작하고, RRC 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차 셀이 설정되고, 2차 셀은 상위 계층 시그널링(예, RRC 메시지)에 의해 추가/수정/해제될 수 있다.
1차 셀의 CI는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
단말은 복수의 서빙셀을 통해 PDCCH를 모니터링할 수 있다. 하지만, N개의 서빙 셀이 있더라도, 기지국으로 M (M≤N)개의 서빙 셀에 대해 PDCCH를 모니터링하도록 설정할 수 있다. 또한, 기지국은 L (L≤M≤N)개의 서빙 셀에 대해 우선적으로 PDCCH를 모니터링하도록 설정할 수 있다
다중 반송파 시스템에서 2가지의 스케줄링 방식이 가능하다.
첫번째인 per-CC 스케줄링에 의하면, 각 서빙 셀내에서만 PDSCH 스케줄링이 수행된다. 1차 셀의 PDCCH는 1차 셀의 PDSCH를 스케줄링하고, 2차 셀의 PDCCH는 2차 셀의 PDSCH를 스케줄링한다. 이에 의하면 기존 3GPP LTE의 PDCCH-PDSCH 구조를 그대로 사용할 수 있다.
두번째인 cross-CC 스케줄링에 의하면, 각 서빙 셀의 PDCCH은 자신의 PDDSCH를 스케줄링할 뿐 아니라 다른 서빙 셀의 PDSCH를 스케줄링할 수 있다.
PDCCH가 전송되는 서빙 셀을 스케줄링 셀(scheduling cell), 스케줄링 셀의 PDCCH를 통해 스케줄링되는 PDSCH가 전송되는 서빙 셀을 스케줄링된 셀(scheduled cell)이라고 한다. 스케줄링 셀은 스케줄링 CC라고도 하고, 스케줄링된 셀은 스케줄링된 CC라고도 할 수 있다. per-CC 스케줄링에 의하면, 스케줄링 셀과 스케줄링된 셀은 동일하다. cross-CC 스케줄링에 의하면, 스케줄링 셀과 스케줄링된 셀은 동일할 수도 다를 수도 있다.
cross-CC 스케줄링을 위해, CIF(carrier indicator field)가 DCI에 도입되고 있다. CIF는 스케줄링되는 PDSCH를 갖는 셀의 CI를 포함한다. CIF는 스케줄링된 셀의 CI를 가리킨다고도 할 수 있다. per-CC 스케줄링에 의하면 PDCCH의 DCI에 CIF가 포함되지 않는다. cross-CC 스케줄링에 의하면 PDCCH의 DCI에 CIF가 포함된다
기지국은 per-CC 스케줄링 또는 cross-CC 스케줄링을 셀-특정적 또는 단말-특정적으로 설정할 수 있다. 예를 들어, 기지국은 RRC 메시지와 같은 상위 계층 메시지로 특정 단말에게 cross-CC 스케줄링을 설정할 수 있다.
복수의 서빙 셀이 있더라도, 블라인드 디코딩으로 인한 부담을 줄이기 위해 기지국은 특정 서빙 셀에서만 PDCCH를 모니터링하도록 할 수 있다. PDCCH를 모니티링하도록 활성화된 셀을 활성화된(activated) 셀(또는 모니터링 셀)이라고 한다.
도 4는 cross-CC 스케줄링의 일 예를 나타낸다.
단말은 PDCCH(510)를 검출한다. 그리고, PDCCH(510) 상의 DCI를 기반으로 PDSCH(530) 상의 DL 전송 블록을 수신한다. cross-CC 스케줄링이 설정되더라도 동일한 셀 내의 PDCCH-PDSCH 쌍이 사용될 수 있다.
단말은 PDCCH(520)를 검출한다. PDCCH(520) 상의 DCI 내의 CIF가 제2 서빙셀을 가리킨다고 하자. 단말은 제2 서빙셀의 PDSCH(540) 상의 DL 전송 블록을 수신한다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다. 랜덤 액세스 과정은 단말이 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
단말은 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 기지국으로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
아래 표는 3GPP TS 36.211 V8.7.0 (2009-05)의 5.7절에 게시된 랜덤 액세스 설정의 일 예이다.
표 2
PRACH 설정 인덱스 프리앰블 포맷 시스템 프레임 번호 서브프레임 번호
0 0 Even 1
1 0 Even 4
2 0 Even 7
3 0 Any 1
4 0 Any 4
5 0 Any 7
6 0 Any 1, 6
단말은 임의로 선택된 랜덤 액세스 프리앰블을 기지국으로 전송한다(S110). 단말은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. 단말은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 기지국은 랜덤 액세스 응답(radom access response, RAR)을 단말로 보낸다(S120). 랜덤 액세스 응답은 2단계로 검출된다. 먼저 단말은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. 그리고, 검출된 PDCCH 상의 DL 그랜트에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 랜덤 액세스 응답의 일 예를 나타낸다.
랜덤 액세스 응답은 TAC(Timing Advance Command), UL 그랜트, 임시 C-RNTI를 포함할 수 있다.
TAC는 기지국이 단말에게 UL 시간 동기(time alignment)를 유지하기 위해 보내는 시간 동기 값을 지시하는 정보이다. 단말은 상기 시간 동기 값을 이용하여, UL 전송 타이밍을 갱신한다. 단말이 시간 동기를 갱신하면, 시간 동기 타이머(Time Alignment Timer)를 개시 또는 재시작한다. 시간 동기 타이머가 동작 중일 때만 단말은 UL 전송이 가능하다.
UL 그랜트는 후술하는 스케줄링 메시지의 전송에 사용되는 UL 자원이다.
다시 도 5를 참조하면, 단말은 랜덤 액세스 응답 내의 UL 그랜트에 따라 스케줄링된 메시지를 기지국으로 전송한다(S130).
이하에서는 랜덤 액세스 프리앰블을 M1 메시지, 랜덤 액세스 응답을 M2 메시지, 스케줄링된 메시지를 M3 메시지 라고도 한다.
3GPP LTE는 하나의 서빙 셀만을 고려하고 있고, 복수의 서빙 셀을 지원하지 않는다. 랜덤 액세스 과정이 하나의 서빙 셀(예, 1차 셀)에서만 수행되면 기존 랜덤 액세스 과정이 그대로 사용될 수 있으나, 서빙 셀들 간 채널 상황이 달라지면 2차 셀에서 랜덤 액세스 과정을 수행할 필요가 있을 수 있다.
2차 셀에서 랜덤 액세스 프리앰블이 전송되면 모호성이 발생할 수 있다. 단말이 2차 셀에서 M1 메시지를 전송한 후 M2 메시지를 어느 셀에서 수신하고, M3 메시지를 어느 셀에서 전송할지 명확하지 않다.
이하에서는 M2 메시지를 모니터링하는 방법과 M3 메시지를 전송하는 방식을 제안한다.
이하에서, CSS(common search space)는 1차 셀에서만 존재하고, USS(UE-specific search space)는 1차 셀 및 2차 셀에 존재하는 것을 가정한다.
도 7은 본 발명의 일 실시예에 따른 랜덤 액세스 과정을 나타낸 흐름도이다.
단말은 기지국으로부터 다중 셀 설정 정보를 수신한다(S710). 다중 셀 설정 정보는 RRC 연결 재설정(connection reconfiguration) 메시지와 같은 RRC 메시지에 포함될 수 있다. 다중 셀 설정 정보는 1차셀을 통해 전송될 수 있다.
다중 셀 설정 정보는 하나 또는 그 이상의 2차셀을 추가, 수정 및/또는 해제하는 정보를 포함할 수 있다. 다중 셀 설정 정보는 2차셀의 셀 인덱스, 2차셀의 PCI(physical cell identity) 및/또는 2차셀의 캐리어 주파수(carrier frequency)에 관한 정보를 포함할 수 있다.
단말은 기지국으로부터 2차셀을 활성화 또는 비활성화하는 활성화 정보를 수신한다(S720). 예를 들어, 다중 셀 설정 정보로부터 셀 인덱스 1 및 2에 대응하는 2개의 2차셀이 설정된다고 하자. 활성화 정보는 셀 인덱스 1인 2차셀의 활성화 또는 비활성화를 지시하는 비트 및 셀 인덱스 2인 2차셀의 활성화 또는 비활성화를 지시하는 비트를 포함할 수 있다.
이하에서는 하나의 2차셀이 설정되고, 활성화된 것을 가정한다.
단말은 2차셀에서 랜덤 액세스 프리앰블(M1)을 전송한다(S730). 기지국은 2차셀을 위한 랜덤 액세스 자원을 단말에게 할당할 수 있다. 예를 들어, 2차셀을 위한 후보 랜덤 액세스 프리앰블들을 생성하기 위한 루트 인덱스와 2차셀을 위한 PRACH 설정 인덱스가 기지국에 의해 주어질 수 있다.
기지국은 단말로 랜덤 액세스 응답(M2)을 전송한다(S750). M2는 도 6에 나타난 TAC, UL 그랜트 및 임시 C-RNTI 중 적어도 어느 하나를 포함할 수 있다. TAC는 단말에게 할당된 셀 별로, 혹은 셀 그룹 별로 독립적으로 적용될 수 있다. 이 때에 동일한 TAC의 적용을 받는 셀 그룹을 편의상 TAG(timing advance group)이라고 칭한다.
M2가 전송될 수 있는 서빙셀 및 M2를 스케줄하는 검색 공간을 정의하기 위해 다음과 같은 방식이 제안된다.
제 1 실시예에서, M2는 1차셀로만 전송될 수 있다. M2를 스케줄하는 PDCCH는 1차셀의 CSS에서만 모니터링될 수 있다. M2에 대응되는 PDCCH 내의 CIF 값은 무시되거나 항상 1차셀을 가리키는 셀 인덱스 값(예를 들어, 0)으로 지정될 수 있다. 랜덤 액세스 응답은 전술한 도 6의 항목들을 포함할 수 있다.
제 2 실시예에서, M2는 활성화된 서빙셀에서 전송될 수 있다. M2는 1차셀 및 활성화된 2차셀에서 전송될 수 있다. M2를 스케줄하는 PDCCH는 1차셀의 CSS, 1차셀의 USS 및 2차셀의 USS 중 적어도 어느 하나에서 모니터링될 수 있다. 추가적으로, per-CC 스케줄링에서 2차셀에서 전송되는 M2를 스케줄하기 위하여 해당되는 2차셀의 CSS에서 PDCCH가 모니터링될 수 있다.
특정 서빙셀을 통해 전송된 M1에 대응하는 M2는 상기 특정 셀을 스케줄하는 검색 공간에서만 PDCCH를 모니터링하도록 제한될 수 있다. M2를 스케줄하는 PDCCH의 CIF 값은 무시되거나 해당 M2가 전송되는 셀 인덱스를 가리키도록 정의될 수 있다.
M2를 스케줄하는 PDCCH가 전송되는 검색 공간은 M1이 전송될 수 있는 셀들의 검색으로 제한될 수 있다. M1이 전송될 수 있는 셀들이 제한된 경우에 바람직하다.
M2를 스케줄하는 PDCCH가 USS에서 모니터링될 때, RA-RNTI가 아닌 C-RNTI로 PDCCH가 식별될 수 있다. 단말은 해당 USS를 통해 수신한 PDCCH가 M2를 스케줄하는지 또는 다른 PDSCH를 스케줄하는지 구분할 수 있도록 하는 것이 필요하다.
랜덤 액세스 프리앰블을 2차셀에서 전송한 후, 단말은 랜덤 액세스 응답을 모니터링하는 구간(이를 RA(random access) 모니터링 구간이라 함) 동안 DCI 포맷의 전부 혹은 일부를 M2 이외의 PDSCH를 스케줄받지 않는 것을 가정할 수 있다. 즉, RA 모니터링 구간 동안 수신하는 PDSCH 스케줄링용 DCI 포맷은 모두 M2 스케줄링을 위한 것으로 가정한다. M2 스케줄링을 위한 DCI 포맷은 DCI 포맷 1A 및/또는 1C일 수 있다.
RA 모니터링 구간은 단말이 랜덤 액세스 요청을 수신한 후 혹은 M1을 전송한 이후 k번째(k>=0) DL 서브프레임 부터 k+n번째(n>0) DL 서브프레임 동안일 수 있다. 또는, RA 모니터링 구간은 랜덤 액세스 요청을 수신한 후 혹은 M1을 전송한 이후 게시되는 타이머가 만료될 때 까지로 정의될 수 있다.
RA 모니터링 구간은 단말이 M1이 전송된 서빙셀에 대하여 PDSCH를 스케줄하는 PDCCH에 대해서만 적용될 수 있다. 즉, M1이 전송된 셀을 스케줄하는 USS에만 해당하며, 이외의 셀에 대한 스케줄은 제한되지 않는다. 예를 들어, cross-CC 스케줄링에서 M1이 전송된 셀을 지칭하는 CIF 값을 갖는 PDCCH에만 적용될 수 있다.
M2에 대해서는 ACK/NACK이 전송되지 않으며, HARQ 동작을 수행하지 않을 수 있다.
제 3 실시예에서, M2는 M1이 전송된 서빙셀로만 전송될 수 있다. M2를 스케줄하는 PDCCH는 1차셀로 전송되는 M2에 대해서는 1차셀의 CSS(또는 1차셀을 스케줄하는 USS도 포함)에서 모니터링될 수 있다. 2차셀로 전송되는 M2에 대해서는 상기 2차셀을 스케줄하는 USS에서 모니터링될 수 있다. per-CC 스케줄링에서, 2차셀로 전송되는 M2를 스케줄하기 위하여 상기 2차셀의 CSS에서 PDCCH가 모니터링될 수 있다.
단말은 M2에 포함된 UL 그랜트를 이용하여 스케줄링된 메시지(M3)를 기지국으로 전송한다(S740). M2에 의해 스케줄되는 M3가 전송되는 셀을 정의하기 위해 다음과 같은 방식이 제안된다.
제 1 실시예에서, M1 및/또는 M2가 전송된 셀에 상관없이 M3는 1차셀로만 전송될 수 있다. 복수의 M2들이 동일한 서브프레임에서 M3를 스케줄링할 때, 각 M2는 동일한 UL 그랜트를 포함할 수 있다. 또는, 서로 다른 M1에 대한 M2들이 동일한 서브프레임에서의 M3가 스케줄링하지 못하도록 제한될 수 있다.
제 2 실시예에서, 대응되는 M1가 전송된 셀에서 M3가 전송될 수 있다. 예를 들어, 셀 인덱스 2인 2차 셀에서 랜덤 액세스 프리앰블을 단말이 전송한다고 하자. 1차 셀에서 랜덤 액세스 응답을 수신하더라도, 단말은 상기 랜덤 액세스 응답에 포함된 UL 그랜트를 이용하여 셀 인덱스 2인 2차 셀에서 스케줄링된 메시지를 전송한다. 상기 랜덤 액세스 응답에는 스케줄링된 메시지가 전송되는 셀을 지시하는 CIF가 포함될 필요는 없다.
M1을 통해 해당되는 2차셀에 대한 UL 타이밍을 기지국이 측정할 수 있다. 기지국은 UL 타이밍을 조정하는 TAC를 포함하는 M2를 단말에게 전송한다. 단말은 상기 TAC를 2차셀에 적용한 후, M3를 전송할 수 있다. 해당되는 2차셀에 대한 UL 타이밍을 신속하게 회복할 수 있으므로 M1이 전송된 셀로 M3가 전송되는 것이 잇점이 있을 수 있다.
또한, 이는 기존 M2의 구조를 변경할 필요가 없어 하위 호환성에 잇점이 있을 수 있다. M3는 M1이 전송된 셀이 속하는 TAG에 속하는 셀로 제한될 수 있다.
제 3 실시예에서, 대응되는 M2가 전송된 셀(M2의 PDSCH가 전송되는 셀) 또는 M2를 스케줄하는 PDCCH에 포함된 CIF가 가리키는 셀에서 M3가 전송될 수 있다.
제 4 실시예에서, M2는 M3가 전송될 셀을 가리키는 CIF를 포함할 수 있다.
제 5 실시예에서, 대응되는 M2를 스케줄하는 PDCCH가 전송되는 셀에서 M3가 전송될 수 있다.
이하에서는, 2차셀의 활성화/비활성화 상태를 고려하여 2차셀을 위한 랜덤 액세스 과정을 제안한다.
단말이 다중 셀 설정 정보를 수신하면, 추가된 2차셀은 비활성화된 상태이다. 이후 상기 2차셀이 활성화될 때까지, 상기 2차셀을 스케줄하는 PDCCH의 검출은 시도하지 않는다. 또한, 활성화된 2차셀이 비활성화된 후에도 단말은 비활성화된 2차셀을 스케줄하는 PDCCH의 검출은 시도하지 않는다.
하지만, 2차셀을 활성화시킨 후 2차셀의 UL 동기화를 조정하기 위해서는 랜덤 액세스 과정을 수행해야 하므로, 실질적인 UL 전송이 시작되기까지 많이 시간이 소요될 수 있다.
따라서, 2차셀이 비활성화된 상태에서도 기지국이 단말에게 해당 2차셀의 램덤 액세스 과정의 개시를 요청하는 트리거링 메시지(이를 M0 메시지라 함)를 전송하여, 2차셀의 UL 동기를 맞추도록 한다면 보다 신속하게 UL 전송이 이루어질 수 있다. M0 메시지는 PDCCH 상으로 전송된다.
이하에서는 2차셀을 위한 랜덤 액세스 프리앰블의 전송을 트리거링하는 M0 메시지를 단말이 모니터링하는 방법과 후속하는 랜덤 액세스 과정을 제안한다.
<제 1 실시예>
기지국은 2차셀에서의 M1 전송을 트리거링하는 M0를 1차셀의 PDCCH 상으로 전송한다. 단말은 상기 PDCCH를 CSS 또는 USS에서 모니터링할 수 있다.
단말은 M0가 가리키는 2차셀에서 M1을 전송한다.
기지국은 1차셀에서 M2를 전송한다. 단말은 M2를 스케줄하는 PDCCH를 1차셀의 CSS에서 모니터링할 수 있다.
단말은 M3를 1차셀에서 전송한다.
<제 2 실시예>
기지국은 2차셀에서의 M1 전송을 트리거링하는 M0를 1차셀의 PDCCH 상으로 전송한다. 단말은 상기 PDCCH를 CSS 또는 USS에서 모니터링할 수 있다.
단말은 M0가 가리키는 2차셀에서 M1을 전송한다.
기지국은 1차셀에서 M2를 전송한다. 단말은 M2를 스케줄하는 PDCCH를 1차셀의 CSS에서 모니터링할 수 있다.
M2는 M3가 전송되는 셀을 지시하는 CIF를 포함할 수 있다. 단말은 지시되는 셀에서 M3를 전송한다.
<제 3 실시예>
기지국은 2차셀에서의 M1 전송을 트리거링하는 M0를 1차셀의 PDCCH 상으로 전송한다. 단말은 상기 PDCCH를 CSS 또는 USS에서 모니터링할 수 있다.
단말은 M0가 가리키는 2차셀에서 M1을 전송한다.
기지국은 1차셀에서 M2를 전송한다. 단말은 M2를 스케줄하는 PDCCH를 1차셀의 CSS에서 모니터링할 수 있다.
단말은 M1이 전송된 셀에서 M3를 전송한다.
이하에서는, 2차셀에서의 초기 UL 전송에 대하여 제안된다.
전술한 바와 같이, 기지국은 2차셀에 대해 M0를 이용하여 랜덤 액세스 과정을 개시하도록 하여 UL 타이밍을 조정한 후 단말의 UL 전송을 유도할 수 있다.
하지만, UL 타이밍이 수립되어 있지 않은 경우(예를 들어, 2차셀이 추가되고 추가된 2차셀에 대한 랜덤 액세스 과정이 수행되기 전, 2차셀이 비활성화 상태에서 활성화 상태로 전환된 후, 2차셀의 시간 동기 타이머가 만료된 경우 등)에 대해 단말이 UL 전송을 수행할 타이밍이 불명확해진다.
UL 전송 타이밍이 불명료해지는 것을 막기 위하여, 2차 셀 또는 해당 2차셀이 속한 TAG에 대하여 랜덤 액세스 과정이 개시되기 전에는 랜덤 액세스 프리앰블의 전송을 제외한 2차 셀에서의 UL 전송을 금지할 수 있다. 보다 구체적으로, 2차셀에서의 UL 전송 금지 상태(혹은 un-synchronization 상태)는 M0에 의해 트리거링된 랜덤 액세스 프리앰블 전송 후 TAC를 수신하기 까지, 또는 M0에 의해 트리거링된 랜덤 액세스 프리앰블 전송 후 M3의 전송을 완료하기까지 유지될 수 있다. UL 전송 금지 상태에서 벗어난 단말은 미리 설정된 주기적 UL 전송(CSI(channel state information) 보고, SRS(sounding reference signal) 전송 등)을 시작할 수 있다.
하지만, UL 동기화가 불명확한 2차셀에 혹은 해당 2차셀이 속한 TAG에 대하여 기지국이 UL 전송을 직접 지시한다면, 기지국이 해당 2차셀에서의 UL 전송에 문제가 없음을 인지했다고 볼 수도 있다. 따라서, UL 타이밍을 수립하지 못해 UL 전송이 금지된 2차셀에 대해 기지국이 기지국이 UL 전송을 직접적으로 스케줄한 경우 단말이 해당 UL 전송을 수행하는 것을 제안한다. 비동기화(un-synchronization) 상태에서 직접적인 스케줄링을 통해 UL 전송을 수행한 경우, 단말은 해당 2차셀 혹은 해당 2차셀이 속한 TAG에 대하여 이후의 주기적 또는 비주기적 PUCCH/PUSCH 전송도 수행할 수 있다.
유사하게, 단말은 비동기화 상태인 2차셀에 대하여 TAC를 수신하고, 수신된 TAC를 2차셀에 적용한다면, 기지국이 2차셀의 UL 타이밍을 인지한 것으로 보고, 단말은 해당 2차셀 혹은 해당 2차셀이 속한 TAG에 대하여 PUCCH/PUSCH를 전송할 수 있다.
이하는 2차셀의 UL 전송 타이밍의 불명료성을 해소하기 위한 방법을 제안한다.
첫번째로, 단말은 비활성화된 2차셀 혹은 해당 2차셀이 속한 TAG의 특정 셀에 대해서도 M0를 수신하기 위해, PDCCH 모니터링을 수행할 수 있다. 상기 특정 셀은 기지국이 단말에게 RRC 시그널링 등을 이용하여 할당할 수 있다.
2차셀에 대해 비활성화 상태가 장시간 지속될 경우 단말이 UL 전송 타이밍을 잃게 될 수 있다. 단말은 비활성화된 2차셀에 대해서도 신속하게 랜덤 액세스 과정을 개시할 수 있도록 하기 위해 랜덤 액세스 과정을 트리거링하는 M0에 대한 PDCCH를 모니터링한다. 상기 PDCCH는 비활성화된 2차셀에서의 검색 공간에서 모니터링되거나, 활성화된 셀에서의 검색 공간에서 모니터링될 수 있다.
비활성화된 2차셀에 대한 M0의 모니터링은 단말이 UL 동기화를 잃었다고 판단하는 때 또는 시간 동기 타이머가 만료된 때 또는 2차셀이 추가된 후 활성화되기 전 까지 수행할 수 있다.
둘째로, 기지국이 2차셀을 활성화할 때 UL 동기화를 수행할 것을 지시할 수 있다.
기지국은 2차셀의 활성화/비활성화를 가리키는 제1비트와 UL 동기화를 수행하는지 여부를 가리키는 제2비트를 단말에게 전송할 수 있다. 예를 들어, 제2 비트가 '1'이면 단말은 2차셀의 활성화와 UL 동기화를 완료한 후 UL 전송을 수행하는 것을 가리킨다. 제2 비트가 '0'이면 단말은 2차셀의 활성화 후 UL 동기화 없이 바로 UL 전송을 수행하는 것을 가리킨다.
추가적으로, 기지국은 상기 제1 비트, 상기 제2 비트외에 랜덤 액세스 자원에 관한 정보를 단말에게 알려줄 수 있다. 제2 비트가 UL 동기화를 지시할 때, 상기 랜덤 액세스 자원은 초기 랜덤 액세스 과정을 수행하는 데 사용된다.
도 8은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 정보를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(51)에 의해 구현될 수 있다.
단말(60)은 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 정보를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 단말의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (14)

  1. 무선 통신 시스템에서 랜덤 액세스 과정을 수행하는 방법에 있어서,
    단말이 적어도 하나의 2차셀을 설정하는 다중 셀 설정 정보를 수신하고;
    상기 단말이 상기 적어도 하나의 2차셀 중 하나를 활성화하는 활성화 정보를 수신하고;
    상기 단말이 상기 활성화된 2차셀에서 랜덤 액세스 프리앰블을 전송하고;
    상기 단말이 1차셀에서 상향링크 자원 할당을 포함하는 랜덤 액세스 응답을 수신하고; 및
    상기 단말이 상기 활성화된 2차셀에서 상기 상향링크 자원 할당을 이용하여 스케줄링된 메시지를 전송하는 것을 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 랜덤 액세스 응답은 상향링크 시간 동기를 위한 TAC(Timing Advance Command)를 포함하는 것을 특징으로 하는 방법.
  3. 제 2 항에 있어서, 상기 TAC는 상기 활성화된 2차셀에 적용되는 것을 특징으로 하는 방법.
  4. 제 2 항에 있어서, 상기 TAC는 상기 1차셀 및 상기 활성화된 2차셀에 적용되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 다중 셀 설정 정보 및 상기 활성화 정보는 상기 1차셀에서 수신되는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 1차셀의 셀 인덱스는 0이고, 상기 적어도 하나의 2차셀의 셀 인덱스는 0보다 큰 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 단말이 상기 랜덤 액세스 프리앰블의 전송을 트리거링하는 지시자를 수신하는 것을 더 포함하는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서, 상기 지시자는 상기 활성화된 2차셀에서 수신되는 것을 특징으로 하는 방법.
  9. 제 7 항에 있어서, 상기 지시자는 상기 1차셀에서 수신되는 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 랜덤 액세스 과정을 수행하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio freqeuncy)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    적어도 하나의 2차셀을 설정하는 다중 셀 설정 정보를 수신하고;
    상기 적어도 하나의 2차셀 중 하나를 활성화하는 활성화 정보를 수신하고;
    상기 활성화된 2차셀에서 랜덤 액세스 프리앰블을 전송하고;
    1차셀에서 상향링크 자원 할당을 포함하는 랜덤 액세스 응답을 수신하고; 및
    상기 활성화된 2차셀에서 상기 상향링크 자원 할당을 이용하여 스케줄링된 메시지를 전송하는 것을 특징으로 하는 장치.
  11. 제 10 항에 있어서, 상기 랜덤 액세스 응답은 상향링크 시간 동기를 위한 TAC(Timing Advance Command)를 포함하는 것을 특징으로 하는 장치.
  12. 제 11 항에 있어서, 상기 TAC는 상기 활성화된 2차셀에 적용되는 것을 특징으로 하는 장치.
  13. 제 11 항에 있어서, 상기 TAC는 상기 1차셀 및 상기 활성화된 2차셀에 적용되는 것을 특징으로 하는 장치.
  14. 제 10 항에 있어서,
    상기 다중 셀 설정 정보 및 상기 활성화 정보는 상기 1차셀에서 수신되는 것을 특징으로 하는 장치.
PCT/KR2012/004890 2011-06-22 2012-06-21 랜덤 액세스 과정 수행 방법 및 장치 WO2012177054A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/128,406 US9363050B2 (en) 2011-06-22 2012-06-21 Method and device for performing a random access process
KR1020137030427A KR101498846B1 (ko) 2011-06-22 2012-06-21 랜덤 액세스 과정 수행 방법 및 장치

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US201161500104P 2011-06-22 2011-06-22
US61/500,104 2011-06-22
US201161511982P 2011-07-26 2011-07-26
US61/511,982 2011-07-26
US201161512372P 2011-07-27 2011-07-27
US61/512,372 2011-07-27
US201161521381P 2011-08-09 2011-08-09
US201161521724P 2011-08-09 2011-08-09
US61/521,381 2011-08-09
US61/521,724 2011-08-09
US201161538930P 2011-09-25 2011-09-25
US61/538,930 2011-09-25
US201161546535P 2011-10-12 2011-10-12
US61/546,535 2011-10-12
US201161559155P 2011-11-14 2011-11-14
US61/559,155 2011-11-14
US201261591278P 2012-01-27 2012-01-27
US61/591,278 2012-01-27

Publications (2)

Publication Number Publication Date
WO2012177054A2 true WO2012177054A2 (ko) 2012-12-27
WO2012177054A3 WO2012177054A3 (ko) 2013-04-04

Family

ID=47423086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004890 WO2012177054A2 (ko) 2011-06-22 2012-06-21 랜덤 액세스 과정 수행 방법 및 장치

Country Status (3)

Country Link
US (1) US9363050B2 (ko)
KR (1) KR101498846B1 (ko)
WO (1) WO2012177054A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112833A1 (ko) * 2013-01-17 2014-07-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 수신하는 방법 및 장치
US10531434B2 (en) * 2014-10-02 2020-01-07 Lg Electronics Inc. Method and user equipment for transmitting uplink signal and user equipment for receiving uplink signal
US20200252978A1 (en) * 2017-10-24 2020-08-06 Lg Electronics Inc. Method and device for performing random access procedure in wireless communication system
CN111869283A (zh) * 2018-01-11 2020-10-30 夏普株式会社 用户设备、基站和方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668687B2 (ja) * 2009-09-18 2015-02-12 日本電気株式会社 音声品質解析装置、音声品質解析方法およびプログラム
KR101528091B1 (ko) * 2011-04-28 2015-06-10 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
WO2013009068A2 (ko) * 2011-07-11 2013-01-17 엘지전자 주식회사 무선 통신 시스템에서 랜덤 액세스를 수행하는 방법 및 장치
EP2739099B1 (en) * 2011-07-29 2019-09-25 NEC Corporation Wireless station, wireless terminal, and time alignment timer control method in wireless communication system
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9769628B2 (en) * 2013-02-01 2017-09-19 Lg Electronics Inc. Method and apparatus for transmitting and receiving MBSFN subframe
WO2014148442A1 (ja) * 2013-03-22 2014-09-25 シャープ株式会社 端末装置、基地局装置、集積回路および無線通信方法
EP3393164A1 (en) * 2013-08-07 2018-10-24 Huawei Technologies Co., Ltd. Method and apparatus for configuring secondary cell, and host
CN104981022B (zh) * 2014-04-04 2020-07-10 北京三星通信技术研究有限公司 数据传输的方法、基站及终端
US10484887B2 (en) 2014-07-18 2019-11-19 Nokia Solutions And Networks Oy Monitoring and optimizing of control channel usage
US9871572B2 (en) 2015-03-09 2018-01-16 Ofinno Technologies, Llc Uplink control channel in a wireless network
US9820264B2 (en) * 2015-03-09 2017-11-14 Ofinno Technologies, Llc Data and multicast signals in a wireless device and wireless network
EP3629646B1 (en) * 2017-06-15 2022-11-30 Huawei Technologies Co., Ltd. Method and device for configuring time slot resources in wireless communication
EP3573406B1 (en) 2018-05-21 2021-07-07 Comcast Cable Communications, LLC Random access procedures using multiple active bandwidth parts
WO2019240530A1 (en) 2018-06-15 2019-12-19 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in heterogeneous network
KR20190142182A (ko) * 2018-06-15 2019-12-26 삼성전자주식회사 Hetnet에서의 통신 수행 방법 및 장치
US11943155B2 (en) * 2020-07-27 2024-03-26 Samsung Electronics Co., Ltd. Systems, methods, and apparatus for cross-carrier scheduling
US11832314B2 (en) 2021-12-14 2023-11-28 Korea University Research And Business Foundation Deep reinforcement learning-based random access method for low earth orbit satellite network and terminal for the operation
KR20230090961A (ko) 2021-12-14 2023-06-22 고려대학교 산학협력단 저궤도 위성 네트워크를 위한 심층 강화학습 기반의 랜덤 액세스 방법 및 이를 위한 단말

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100105438A (ko) * 2009-03-17 2010-09-29 에이치티씨 코포레이션 다중 컴포넌트 반송파들과의 다중 링크들을 설립하는 방법 및 관련 통신 기기
US20110103332A1 (en) * 2009-11-05 2011-05-05 Richard Lee-Chee Kuo Method and apparatus to trigger a random access procedure for carrier aggregration in a wireless communication network
KR20110053386A (ko) * 2008-09-12 2011-05-20 콸콤 인코포레이티드 다중캐리어 동작에서의 물리 랜덤 액세스 채널 (prach) 송신

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989105B2 (en) 2009-03-17 2015-03-24 Htc Corporation Method of establishing multiple links with multiple component carriers and related communication device
KR101785997B1 (ko) * 2009-10-30 2017-10-17 주식회사 골드피크이노베이션즈 무선통신 시스템에서 요소 반송파 집합 정보 전송방법 및 그 기지국, 단말의 수신방법
US8705467B2 (en) * 2011-04-29 2014-04-22 Nokia Corporation Cross-carrier preamble responses

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110053386A (ko) * 2008-09-12 2011-05-20 콸콤 인코포레이티드 다중캐리어 동작에서의 물리 랜덤 액세스 채널 (prach) 송신
KR20100105438A (ko) * 2009-03-17 2010-09-29 에이치티씨 코포레이션 다중 컴포넌트 반송파들과의 다중 링크들을 설립하는 방법 및 관련 통신 기기
US20110103332A1 (en) * 2009-11-05 2011-05-05 Richard Lee-Chee Kuo Method and apparatus to trigger a random access procedure for carrier aggregration in a wireless communication network

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112833A1 (ko) * 2013-01-17 2014-07-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 수신하는 방법 및 장치
US9807737B2 (en) 2013-01-17 2017-10-31 Lg Electronics Inc. Method for receiving control information in wireless communications system and apparatus therefor
US10531434B2 (en) * 2014-10-02 2020-01-07 Lg Electronics Inc. Method and user equipment for transmitting uplink signal and user equipment for receiving uplink signal
US11109359B2 (en) 2014-10-02 2021-08-31 Lg Electronics Inc. Method and user equipment for transmitting uplink signal and user equipment for receiving uplink signal
US20200252978A1 (en) * 2017-10-24 2020-08-06 Lg Electronics Inc. Method and device for performing random access procedure in wireless communication system
US10897782B2 (en) * 2017-10-24 2021-01-19 Lg Electronics Inc. Method and device for performing random access procedure in wireless communication system
CN111869283A (zh) * 2018-01-11 2020-10-30 夏普株式会社 用户设备、基站和方法
CN111869283B (zh) * 2018-01-11 2024-01-02 夏普株式会社 用户设备、基站和方法

Also Published As

Publication number Publication date
WO2012177054A3 (ko) 2013-04-04
KR101498846B1 (ko) 2015-03-04
US9363050B2 (en) 2016-06-07
KR20140004772A (ko) 2014-01-13
US20140198746A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
WO2012177054A2 (ko) 랜덤 액세스 과정 수행 방법 및 장치
WO2013025009A2 (ko) 랜덤 액세스 과정을 수행하는 방법 및 이를 이용한 무선기기
WO2012057578A2 (ko) 사운딩 참조 신호 전송 방법 및 장치
WO2013043027A1 (ko) 상향링크 전송 전력 제어 방법 및 장치
WO2012148239A2 (ko) 랜덤 액세스 수행 방법 및 장치
WO2013012213A2 (ko) 가변 대역폭을 지원하는 통신 방법 및 무선기기
WO2010120142A2 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
WO2012134107A2 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2013112029A1 (ko) 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기
WO2015194849A1 (ko) 상향링크 제어 정보의 전송 방법 및 이를 위한 장치
WO2017078384A1 (ko) 협대역을 이용한 통신 방법 및 mtc 기기
WO2013168938A1 (en) A method and apparatus of controlling cell deactivation in a wireless communication system
WO2013066083A2 (ko) 제어채널 모니터링 방법 및 무선기기
WO2015190883A1 (en) Method and apparatus for performing blind detection in wireless communication system
WO2013002562A2 (ko) Tdd 시스템에서 통신 방법 및 장치
WO2014185660A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 정보 수신 방법
WO2013048188A2 (ko) 상향링크 전송 파워 제어 방법 및 이를 이용한 무선기기
WO2013125873A1 (ko) 무선 통신 시스템에서 초기 접속 방법 및 장치
WO2012077974A2 (ko) 복수의 콤포넌트 캐리어를 지원하는 무선통신 시스템에서 셀 간 간섭을 제어하기 위한 방법 및 이를 위한 기지국 장치
WO2012108688A2 (ko) 스케줄링 정보 모니터링 방법 및 장치
WO2017119791A2 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2017043876A1 (ko) 협대역을 이용한 통신 방법 및 mtc 기기
WO2016036219A1 (ko) 무선 통신 시스템에서 비 면허 대역 상의 신호 송수신 방법 및 장치
WO2013147528A1 (ko) 반이중 기기를 위한 데이터 전송 방법 및 장치
WO2013112030A1 (ko) 반이중 기기를 위한 데이터 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801904

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20137030427

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128406

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801904

Country of ref document: EP

Kind code of ref document: A2