WO2012176715A1 - 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 - Google Patents
1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 Download PDFInfo
- Publication number
- WO2012176715A1 WO2012176715A1 PCT/JP2012/065452 JP2012065452W WO2012176715A1 WO 2012176715 A1 WO2012176715 A1 WO 2012176715A1 JP 2012065452 W JP2012065452 W JP 2012065452W WO 2012176715 A1 WO2012176715 A1 WO 2012176715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- amino
- salt
- vinylcyclopropanecarboxylic
- formula
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/57—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C233/58—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/45—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C255/46—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B53/00—Asymmetric syntheses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/46—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
- C07C229/48—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino or carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups and carboxyl groups bound to carbon atoms of the same non-condensed ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/06—Preparation of carboxylic acid amides from nitriles by transformation of cyano groups into carboxamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/24—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/06—Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid amides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/02—Systems containing only non-condensed rings with a three-membered ring
Definitions
- the present invention relates to 1-amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof which are very useful as pharmaceuticals and agricultural chemical intermediates.
- 1-Amino-2-vinylcyclopropanecarboxylic acid is widely used as a raw material for pharmaceuticals and agricultural chemicals, and in particular, optically active 1-amino-2-vinylcyclopropanecarboxylic acid is an intermediate for pharmaceuticals, particularly hepatitis C therapeutic agents. As important.
- 1-Aminocyclopropanecarboxylic acid derivatives are known to function as inhibitors of pyridoxal phosphate-dependent enzymes, and as lead compounds for antibiotics, antiviral agents, antitumor agents, etc., especially as drug development candidate compounds Attention has been paid.
- NS3 / 4A protease possessed by hepatitis C virus has been developed from a compound having 1-amino-2-vinylcyclopropanecarboxylic acid having a vinyl group at the 2-position of 1-aminocyclopropanecarboxylic acid as a part of the basic skeleton. Since it has been found that it can be inhibited and has high antiviral activity against hepatitis C virus, it has been developed as a therapeutic agent for hepatitis C (Drugs of the Future, 2009, 34 (7), 545).
- These key intermediates, optically active 1-amino-2-vinylcyclopropanecarboxylic acid are important compounds as pharmaceutical intermediates, and therefore, industrially simple production methods are required.
- optically active 1-amino-2-vinylcyclopropane carboxylic acid includes (1) production method using asymmetric organic synthesis technology (Organic Research & Development, 2010, 14, 692), (2) optical resolution A production method by diastereomeric salt separation using an agent and (3) a production method using a biocatalyst are known.
- the production method using the optical resolution technique of (2) above can obtain optically active 1-amino-2-vinylcyclopropanecarboxylic acid with high stereoselectivity, and separation of a small amount of enantiomer by-produced. It is currently most widely used because it has the advantage of not requiring special purification equipment for
- the production method using the biocatalyst (3) has a high stereoselectivity and it is often possible to obtain an optically active compound having a high optical purity.
- this method has little impact on the environment because water can be used as a reaction solvent, and by establishing a culture method for microorganisms that produce enzymes, biocatalysts compatible with industrial scale can be obtained stably and easily. Become. For this reason, the manufacturing method using a biocatalyst is often an advantageous process from the economical viewpoint as compared with the above-described other methods.
- Examples of production of optically active 1-amino-2-vinylcyclopropanecarboxylic acid using biocatalysts reported so far include, for example, Method of synthesizing racemic vinylcyclopropanemalonic acid diester by reaction of malonic acid diester with 1,4-dibromo-2-butene, then splitting this with lipase and using the Crutius rearrangement (International Publication WO2007 / 088571 And N-phenylmethyleneglycine alkyl ester and trans-1,4-dibromo-2-butene are reacted to synthesize racemic 1-amino-2-vinylcyclopropanecarboxylic acid alkyl ester.
- the present inventors have now proposed 1-amino-2-vinylcyclopropanecarboxylic acid amides having asymmetric carbons at the 1-position and 2-position as novel precursor compounds of 1-amino-2-vinylcyclopropanecarboxylic acids or We succeeded in obtaining the salt. With this compound, it was possible to produce optically active 1-amino-2-vinylcyclopropanecarboxylic acids, which are widely used as raw materials for pharmaceuticals and agricultural chemicals, at low cost and in high purity and high yield. The present invention is based on these findings.
- the present invention is widely used as a raw material for pharmaceuticals and agricultural chemicals, and optically active 1-amino-2-vinylcyclopropanecarboxylic acids, which are particularly important as hepatitis C drug intermediates, can be obtained at high cost and high purity. It is an object of the present invention to provide a substrate for optical resolution that can be produced in a yield.
- the molecular weight should be as low as possible from the viewpoint of atomic efficiency, and derivatization required by a method such as functional group conversion can be easily performed. It is an object of the present invention to provide a precursor compound of 1-amino-2-vinylcyclopropanecarboxylic acid that satisfies the following conditions.
- the present invention relates to the following compounds and methods.
- a process for producing 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof The following formula (3): (In the formula, * 1 and * 2 represent asymmetric carbon) 1-amino-2-vinylcyclopropanecarbonitrile or a salt thereof represented by formula (1) is hydrolyzed to give 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof represented by the formula (1) of the above [1] Including a method.
- a process for producing 1-amino-2-vinylcyclopropanecarboxylic acid or a salt thereof The following formula (1): (Wherein, * 1 and * 2 represents an asymmetric carbon) 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof represented by the following formula (4): (In the formula, * 1 and * 2 represent asymmetric carbon) And obtaining a 1-amino-2-vinylcyclopropanecarboxylic acid represented by the formula (I) or a salt thereof.
- a microbial cell having a stereoselective hydrolytic activity or a treated product thereof is added to a racemic mixture of 1-amino-2-vinylcyclopropanecarboxylic acid amide represented by the formula (1) or a salt thereof.
- the present invention can also be restated as the following compounds and methods.
- [4 ′] The 1-amino-2-vinylcyclopropanecarboxylic acid amide salt of [2 ′], which is the (1R, 2S) isomer or the (1S, 2R) isomer.
- [5 ′] 1-amino-2-vinylcyclopropanecarbonitrile represented by formula (3) or a salt thereof is hydrolyzed to produce 1-amino-2-vinylcyclopropanecarboxylic acid amide represented by formula (1) or A process for producing 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof to obtain a salt thereof.
- an optically active 1 which can be converted into an optically active 1-amino-2-vinylcyclopropanecarboxylic acid, which is important as an intermediate for pharmaceutical / pesticidal intermediates, particularly as an intermediate for therapeutic agents for hepatitis C -Amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof can be easily and efficiently produced.
- the compound according to the present invention is a compound represented by the formula (1) or a salt thereof, which is useful as an intermediate for pharmaceuticals and agricultural chemicals.
- both the (1R, 2S) isomer and (1S, 2R) isomer of this compound are important as intermediates for therapeutic agents for hepatitis C.
- the precursor compound that can be used as a starting material is not particularly limited.
- Org. Chem. (E) -1- (diphenylmethylene) amino-2-ethenylcyclopropanecarbonitrile which can be synthesized by the method described in U.S.A., 1999, 64 (13), 4712, or by treating it with an acid such as hydrochloric acid. Examples thereof include a compound or a mixture of two or more thereof.
- the method for synthesizing 1-amino-2-vinylcyclopropanecarboxylic acid amide from the raw material is not particularly limited, but the starting material is
- 1-amino-2-vinylcyclopropanecarbonitrile 1-amino-2-vinylcyclopropanecarboxylic acid amide can be obtained by hydrolysis using an acid or hydrolysis using a base. .
- 1-amino-2-vinylcyclopropanecarboxylic acid amide and a salt thereof are formed.
- the acid used is not particularly limited, and hydrochloric acid, sulfuric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, p -Toluenesulfonic acid, methanesulfonic acid, strong acid ion exchange resin, weak acid ion exchange resin and the like.
- hydrolysis with hydrochloric acid, sulfuric acid, acetic acid, formic acid, phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, strongly acidic ion exchange resin or the like is preferable from the viewpoint of operability and economy.
- hydrolysis with a base 1-amino-2-vinylcyclopropanecarboxylic acid amide is produced.
- bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, are mentioned.
- an acid is used for formation.
- the type of acid is not particularly limited, and usable acids include, for example, hydrochloric acid, sulfuric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, triacid, and the like.
- achiral acids such as hydrofluoric acid, hydrobromic acid, hydroiodic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid , Fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are easy to use from the viewpoints of availability and handling.
- hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are inexpensive and easy to use.
- the salt of 1-amino-2-vinylcyclopropanecarboxylic acid amide includes salts with the acids exemplified above, preferably hydrofluoric acid, hydrobromic acid, hydrogen iodide Acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid, fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid , Nitric acid, and acetic acid. Particularly preferred are hydrochloric acid, sulfuric acid, nitric acid, and acetic acid salts.
- the hydrolysis reaction of 1-amino-2-vinylcyclopropanecarbonitrile of the present invention can be carried out by stirring and reacting at ⁇ 20 to 150 ° C., preferably at ⁇ 5 ° C. to 50 ° C. for 0.1 to 24 hours. . At this time, it is desirable that the produced 1-amino-2-vinylcyclopropanecarboxylic acid amide is further hydrolyzed and 1-amino-2-vinylcyclopropanecarboxylic acid is not produced.
- the hydrolysis reaction of 1-amino-2-vinylcyclopropanecarbonitrile of the present invention can be carried out by using water, an organic solvent (for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, etc.
- an organic solvent for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, etc.
- Ethers such as tetrahydrofuran, diethyl ether, 1,4-dioxane, tert-butyl methyl ether, tert-butyl ethyl ether, diisopropyl ethyl ether, cyclopentyl methyl ether, etc., esters such as methyl acetate, ethyl acetate, propyl acetate, acetic acid Isopropyl, halogenated hydrocarbons such as dichloromethane, chloroform, 1,4-dichloroethane, etc.), additives that promote hydrolysis (for example, ketones such as acetone, methyl ethyl ketone, diethyl keto It can methyl isobutyl ketone, diethyl ketone, isopropyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, also to carry out the reaction in the presence of
- 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof of the present invention By hydrolyzing 1-amino-2-vinylcyclopropanecarboxylic acid amide or a salt thereof of the present invention, 1-amino-2-vinylcyclopropanecarboxylic acid or a salt thereof can be obtained.
- limiting in particular in the method to hydrolyze For example, the method using a biocatalyst, the method using an acid or a base, etc. are mentioned.
- 1-amino-2-vinylcyclopropanecarboxylic acid and its salt are produced.
- the acid used is not particularly limited, and sulfuric acid, hydrochloric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, p-toluenesulfone
- An acid, methanesulfonic acid, a strongly acidic ion exchange resin, or the like can be used, and these can be used in combination of two or more.
- 1-amino-2-vinylcyclopropanecarboxylic acid is produced.
- bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide
- 1-amino-2-vinylcyclopropanecarboxylic acid amide is converted to an acid by sulfuric acid, hydrochloric acid, acetic acid, formic acid, phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, etc., or lithium hydroxide, sodium hydroxide, water.
- 1-amino-2-vinylcyclopropanecarboxylic acid can be obtained easily and inexpensively, which is preferable from the viewpoint of operability and economy.
- an acid is used to form the salt.
- an acid is used to form the salt.
- acid there is no particular limitation on the type of acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, hydrobromic acid, hydroiodic acid, nitric acid, acetic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, Citric acid, malonic acid, maleic acid, fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, L- or D-tartaric acid, L- or D-lactic acid, L- or D-leucine acid, L -Or D-malic acid, L- or D-mandelic acid, o-acetyl-L- or D-mandelic acid, L- or D-aspartic acid, (+)-or
- achiral acids such as hydrofluoric acid, hydrobromic acid, hydroiodic acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid , Fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are easy to use from the viewpoints of availability and handling.
- hydrochloric acid, sulfuric acid, nitric acid, and acetic acid are inexpensive and easy to use.
- the salt of 1-amino-2-vinylcyclopropanecarboxylic acid amide includes salts with the acids exemplified above, preferably hydrofluoric acid, hydrobromic acid, hydrogen iodide Acid, formic acid, phosphoric acid, trifluoroacetic acid, chloroacetic acid, trichloroacetic acid, benzoic acid, citric acid, malonic acid, maleic acid, fumaric acid, butyric acid, isobutyric acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid , Nitric acid, and acetic acid. Particularly preferred are hydrochloric acid, sulfuric acid, nitric acid, and acetic acid salts.
- 1-amino-2-vinylcyclopropanecarboxylic acid amide of the present invention 0.001 to 50 mol per 1 mol of 1-amino-2-vinylcyclopropanecarboxylic acid amide, Preferably 0.01 to 10 molar acids or bases are used.
- the hydrolysis reaction of 1-amino-2-vinylcyclopropanecarboxylic acid amide of the present invention is carried out chemically, the mixture is stirred at 0 to 180 ° C., preferably 55 to 100 ° C. for 0.1 to 72 hours, It can be carried out by reacting.
- the reaction is performed under the same reagent conditions as when 1-amino-2-vinylcyclopropanecarbonitrile is chemically hydrolyzed, the temperature is higher than the temperature at which 1-amino-2-vinylcyclopropanecarbonitrile is hydrolyzed.
- the reaction can be carried out at a high temperature or by increasing the reaction time.
- 1-amino-2-vinylcyclopropanecarboxylic acid amide obtained by the present invention and salts thereof can be derivatized and used as raw materials for pharmaceuticals and agricultural chemicals.
- Examples of compounds that can be derived from 1-amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof include 1-amino-2-vinylcyclopropanecarboxylic acid, 1-amino-2-ethylcyclopropanecarboxylic acid amide, 1-amino-2-vinylcyclopropanecarboxylic acid amide, Amino-N- (cyclopropylsulfonyl) -2-vinylcyclopropanecarboxylic acid amide, 1-methylamino-2-vinylcyclopropanecarboxylic acid amide, 1-ethylamino-2-vinylcyclopropanecarboxylic acid amide, 1-propyl Amino-2-vinylcyclopropanecarboxylic acid amide, 1-isopropylamino-2-vinylcyclopropanecarboxylic acid amide, 1-amino-2-vinylcyclopropanecarbo
- biocatalysts include, but are not limited to, cells such as microorganisms belonging to the genus Xanthobacter, Serratia, Chromobacterium, Protaminobacter, Pseudomonas or Micobacterium, or processed products thereof is not. More specifically, Protaminobacter alboflavus ATCC 8458, Xantobacter autotrophicus DSM597, Chromobacterium iodium 35, etc. In addition, any strains such as mutant strains derived from these microorganisms by artificial mutation means, or recombinant strains induced by genetic techniques such as cell fusion or gene recombination methods have the above-mentioned ability.
- microorganisms are usually cultured using a medium containing an assimilating carbon source, a nitrogen source, an inorganic salt essential for each microorganism, nutrition, and the like.
- the pH during the culture is preferably in the range of 4 to 10, and the temperature is preferably 20 to 50 ° C.
- the culture is performed aerobically for about 1 day to 1 week.
- the microorganisms cultured in this manner are used in the reaction as microbial cells or processed microbial products such as culture broth, separated microbial cells, crushed microbial cells, and further purified enzymes.
- cells or enzymes can be immobilized and used according to conventional methods.
- optically active 1-amino-2-vinylcyclopropanecarboxylic acid amide and salts thereof of the present invention can be converted into derivatives useful as pharmaceutical and agrochemical intermediates by chemical modification of the carboxylic acid amide moiety.
- chemical modification include N-alkylation reaction, acid hydrazine reaction, ozonolysis reaction, imidation reaction, thioamidation reaction, oxidation reaction, catalytic hydrogenation reaction, etc. It is also possible to obtain.
- optical purity of 1-amino-2-vinylcyclopropanecarboxylic acid amide and 1-amino-2-vinylcyclopropanecarboxylic acid was determined by HPLC analysis. In these analyses, the following conditions were used.
- Reference example 1 280 mg (0.5 mmol) of bis (dibenzylideneacetone) palladium (0) and 263 mg (1 mmol) of triphenylphosphine were dissolved in 40 mL of tetrahydrofuran under a nitrogen atmosphere and stirred at room temperature for 10 minutes. To this was added 20 mL of a tetrahydrofuran solution of 1.25 g (10 mmol) of 1,4-dichlorobutadiene, and after the color of the solution changed to orange, 20 mL of a tetrahydrofuran solution of 2.52 g (12 mmol) of N- (diphenylmethylene) aminoacetonitrile was added.
- Example 1 1.39 g (5.1 mmol) of (E) -1- (diphenylmethylene) amino-2-ethenylcyclopropanecarbonitrile obtained in the same manner as in Reference Example 1 was dissolved in 5 mL of toluene and 12N at 0 ° C. 4.25 mL (51 mmol) of an aqueous hydrochloric acid solution was added dropwise. After stirring at that temperature (0 ° C.) for 30 minutes, the organic layer was removed by liquid separation. After stirring the aqueous layer at 40 ° C.
- Example 2 1.85 g (6.8 mmol) of (E) -1- (diphenylmethylene) amino-2-ethenylcyclopropanecarbonitrile obtained in the same manner as in Reference Example 1 was dissolved in 7 mL of toluene, and 6N at 0 ° C. 5.65 mL (33.9 mmol) of aqueous hydrochloric acid solution was added dropwise. After stirring at that temperature (0 ° C.) for 30 minutes, the organic layer was removed by liquid separation.
- the obtained aqueous layer was concentrated in vacuo to a residue that was dissolved in a mixed solution of 1.5N aqueous sodium hydroxide (13.7 mL, 20.5 mmol) and acetone (5.7 mL) and stirred at room temperature for 1 hour.
- the mixture was neutralized with 10% NH 4 Cl aqueous solution and concentrated under reduced pressure.
- the residue was suspended in 10 mL of methanol, and the insoluble material was separated by filtration.
- the filtrate was distilled off under reduced pressure to obtain a mixture of (1R, 2S) isomer and (1S, 2R) isomer of 1-amino-2-vinylcyclopropanecarboxylic amide as ocher crystals (0.70 g, Yield 82%).
- Example 3 A medium having the composition shown in the table below was prepared, 200 mL of this medium was placed in a 1 L Erlenmeyer flask, sterilized, and inoculated with Xantobacter autotrophicus DSM597 (obtained from Riken BioResource Center) at 30 ° C. Cultured with shaking for 72 hours.
- 2S) isomer area area value corresponds to the pre-hydrolysis reaction value of“ amide (1S, 2R) isomer ”, and therefore the conversion rate was calculated as in the above formula. ).
- Example 4 50 mg (0.31 mmol) of the hydrochloride of the mixture of (1R, 2S) isomer and (1S, 2R) isomer of 1-amino-2-vinylcyclopropanecarboxylic acid amide obtained in Example 1 It melt
- the 1-amino-2-vinylcyclopropanecarboxylic acid amide obtained by the present invention and a salt thereof are very useful as an intermediate for producing pharmaceuticals and agricultural chemicals.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
・ ラセミ体のビニルシクロプロパンカルボン酸を光学活性アミンと反応させ、ジアステレオマー塩とすることで光学分割を行った後にCrutius転位を用いる方法(Synthetic Communications, 1994, 24, 2873)、および、
・ ラセミ体の2-ビニル-1-カルバモイルシクロプロパンカルボン酸を光学活性アミンと反応させ、ジアステレオマー塩とした後に塩基存在下でハロゲン化剤を反応させる方法(国際公開WO2010/041739号(対応公報、EP 2345633A))が報告されている。
しかしながら、これらの方法は、Crutius転位反応が工業的に適さないこと、光学活性アミン類の製造には多段階を要し入手困難なこと、さらに高価な光学活性アミン類を目的の立体構造を有する光学異性体に対して化学量論量必要とすること等の問題から、工業的に実施することは困難である。
・ マロン酸ジエステルと1,4-ジブロモ-2-ブテンとの反応によりラセミ体のビニルシクロプロパンマロン酸ジエステルを合成した後、これをリパーゼにより分割し、Crutius転位を用いる方法(国際公開WO2007/088571号)、および
・ N-フェニルメチレングリシンアルキルエステルとtrans-1,4-ジブロモ-2-ブテンを反応させ、ラセミ体の1-アミノ-2-ビニルシクロプロパンカルボン酸アルキルエステルを合成し、さらに二炭酸ジ-tert-ブチルによりアミノ基を保護した後に、アルカリプロテアーゼにより分割を行う方法(特開2010-43124号公報(対応公報、国際公開WO00/09543号))
がある。
[1] 下式(1):
で示される、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩。
[2] 式(1)で示される、前記[1]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
[3] 下式(2):
で示される、前記[1]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
[4] (1R,2S)異性体又は(1S,2R)異性体である、前記[1]または[2]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
[5] (1R,2S)異性体又は(1S,2R)異性体である、前記[3]の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
[6] 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩の製造方法であって、
下式(3):
で示される1-アミノ-2-ビニルシクロプロパンカルボニトリルまたはその塩を加水分解して、前記[1]の式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を得ることを含む、方法。
[7] 1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩の製造方法であって、
下式(1):
で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を加水分解して、下式(4):
で示される1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を得ることを含む、方法。
[8] 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩のラセミ混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を生成せしめることを含む、前記[7]の製造方法。
[9] 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩の(1R,2S)異性体と(1S,2R)異性体とを含む混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸を生成せしめることを含む、前記[7]または[8]の製造方法。
〔1’〕 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
〔2’〕 式(2)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
〔3’〕 (1R,2S)異性体又は(1S,2R)異性体である、前記〔1’〕の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
〔4’〕 (1R,2S)異性体又は(1S,2R)異性体である、前記〔2’〕の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
〔5’〕 式(3)で示される1-アミノ-2-ビニルシクロプロパンカルボニトリルまたはその塩を加水分解して式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を得る、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩の製造方法。
〔6’〕 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩を加水分解して式(4)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を得る、1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩の製造方法。
〔7’〕 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩の(1R,2S)異性体と(1S,2R)異性体とを含む混合物を、立体選択的に加水分解する活性を有する微生物の菌体又は菌体処理物を作用させて、式(4)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸を生成せしめることを特徴とする、光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸の製造方法。
本発明による化合物は、式(1)で示される化合物またはその塩であって、医薬・農薬中間体として有用な1-アミノ-2-ビニルシクロプロパンカルボン酸アミドまたはその塩である。特に、この化合物の(1R,2S)異性体および(1S,2R)異性体はいずれも、C型肝炎薬治療薬の中間体として重要である。
塩基による加水分解の場合には、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドが生成される。ここで、用いる塩基に特に制限はなく、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の塩基が挙げられる。
本実施例において、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよび1-アミノ-2-ビニルシクロプロパンカルボン酸の光学純度は、HPLC分析により決定した。なお、これらの分析においては下記条件を使用した。
・移動相: 1mM CuSO4・5H2O
・流量: 1mL/分
・検出器: UV210nm
ビス(ジベンジリデンアセトン)パラジウム(0)280mg(0.5mmol)と、トリフェニルホスフィン263mg(1mmol)を、窒素雰囲気下でテトラヒドロフラン40mL中に溶解し、室温で10分間攪拌した。ここに、1,4-ジクロロブタジエン1.25g(10mmol)のテトラヒドロフラン溶液20mLを加え、溶液の色が橙色に変化した後に、N-(ジフェニルメチレン)アミノアセトニトリル2.52g(12mmol)のテトラヒドロフラン溶液20mLと、45%水素化ナトリウム(油性)1.07g(20mmol)とを加えた。得られた反応液を15分間攪拌した後に、セライトろ過し、得られた有機層を、水30mLと飽和食塩水30mLで洗浄した。有機層を減圧濃縮後、溶離液として20%のジエチルエーテル/石油エーテルを使用して、残渣をシリカゲルクロマトグラフィ-により精製した。精製した(E)-1-(ジフェニルメチレン)アミノ-2-エテニルシクロプロパンカルボニトリルを透明な黄色油として得た(2.32g,収率71%)。
1H NMR(CDCl3)1.69(dd,J=8.2,5.6Hz,1H),1.94(dd,J=8.2,5.6Hz,1H),2.37(ddd,J=8.2,8.2,7.1Hz,1H),5.24-5.36(m,2H),5.55(ddd,J=15.3,8.4,7.1Hz,1H),7.12-7.65(m,10H)
参考例1と同様にして得られた(E)-1-(ジフェニルメチレン)アミノ-2-エテニルシクロプロパンカルボニトリル1.39g(5.1mmol)を、トルエン5mLに溶解し、0℃で12N 塩酸水溶液4.25mL(51mmol)を滴下した。その温度(0℃)で30分間攪拌した後に、分液により有機層を除いた。水層を40℃で2時間攪拌後、水4.25mLを加え溶媒を減圧濃縮することで、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体と(1S,2R)異性体の混合物の塩酸塩を黄土色結晶として得た(813mg,収率98%)。
1H NMR(D2O)δ 1.61(dd,J=10.3,8.0Hz,1H),1.72(t,J=8.0Hz,1H),2.30(dd,17.2,8.0Hz,1H),5.21(d,J=10.3Hz,1H),5.29(d,J=17.2Hz,1H),5.63(ddd,J=17.2,10.3,6.8Hz,1H)
13C NMR(D2O)δ 16.7,28.8,41.0,121.2,131.2,170.9
参考例1と同様にして得られた(E)-1-(ジフェニルメチレン)アミノ-2-エテニルシクロプロパンカルボニトリル1.85g(6.8mmol)を、トルエン7mLに溶解し、0℃で6N 塩酸水溶液5.65mL(33.9mmol)を滴下した。その温度(0℃)で30分間攪拌した後に、分液により有機層を除いた。得られた水層を減圧濃縮した残渣に1.5N 水酸化ナトリウム水溶液13.7mL(20.5mmol)とアセトン5.7mLの混合溶液に溶解し、室温で1時間攪拌した。10% NH4Cl水溶液で中和後、減圧濃縮した。残渣をメタノール10mLに懸濁させ、ろ過により不溶物を分離した。ろ液を減圧留去し、1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体と(1S,2R)異性体の混合物を黄土色結晶として得た(0.70g,収率82%)。
下記表の組成を有する培地を調製し、この培地200mLを1Lの三角フラスコに入れ、滅菌後、キサントバクタ-・オートトロフィカス(Xanthobacter autotrophicus)DSM597(理研バイオリソースセンターより入手)を接種し、30℃で72時間振とう培養を行った。
実施例2と同様にして得られた1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体および(1S,2R)異性体の混合物(ラセミ混合物)1.0g(7.93mol)を、水100mLに溶かした後、300mLフラスコに入れ、乾燥菌体0.5gに相当する濃縮菌体を加えて、30℃で5時間攪拌して加水分解反応を行った。反応後、反応液から遠心分離によって菌体を除去して得られた上清をHPLCにより分析したところ反応の転化率は25%であり、得られた(1S,2R)-1-アミノ-2-ビニル-シクロプロパンカルボン酸の光学純度は>99%e.e.であった。
・転化率=[(前記アミドの(1R,2S)異性体のエリア面積値-前記アミドの(1S,2R)異性体のエリア面積値×100)]/前記アミドの(1R,2S)異性体のエリア面積値
(ここで、ラセミ混合物においては、アミドの(1R,2S)異性体と同(1S,2R)異性体とが等量存在すると考えられるので、前記式中の「アミドの(1R,2S)異性体のエリア面積値」は、「アミドの(1S,2R)異性体」の加水分解反応前値に相当するといえることから、前記式のようにして転化率を算出することとした)。
実施例1で得られた1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの(1R,2S)異性体と(1S,2R)異性体の混合物の塩酸塩50mg(0.31mmol)を、1.5N 水酸化ナトリウム水溶液0.62mL(0.93mmol)に溶解し、70℃で加熱攪拌した。反応時間3時間で1-アミノ-2-ビニルシクロプロパンカルボン酸アミドの転化率83%で1-アミノ-2-ビニルシクロプロパンカルボン酸が生成した。
・転化率=(反応前のアミドエリアー反応後のアミドエリア)/反応前のアミドエリア×100
[HPLC分析]
・カラム: Inertsil ODS-3(4.0×250mm,5μm)
・移動相: MeCN:30mM リン酸二水素ナトリウム=60:40
・流量: 1mL/分
・検出器: UV 210nm
Claims (9)
- 式(1)で示される、請求項1に記載の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
- (1R,2S)異性体又は(1S,2R)異性体である、請求項1または2に記載の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド。
- (1R,2S)異性体又は(1S,2R)異性体である、請求項3に記載の1-アミノ-2-ビニルシクロプロパンカルボン酸アミド塩。
- 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩のラセミ混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸またはその塩を生成せしめることを含む、請求項7に記載の製造方法。
- 式(1)で示される1-アミノ-2-ビニルシクロプロパンカルボン酸アミド又はその塩の(1R,2S)異性体と(1S,2R)異性体とを含む混合物に、立体選択的に加水分解する活性を有する微生物の菌体もしくは菌体処理物を作用させて、式(4)で示される光学活性1-アミノ-2-ビニルシクロプロパンカルボン酸を生成せしめることを含む、請求項7または8に記載の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/128,385 US20140142337A1 (en) | 2011-06-21 | 2012-06-18 | 1-amino-2-vinylcyclopropane carboxylic acid amide and salt thereof, and method for producing same |
EP12802722.4A EP2725012A1 (en) | 2011-06-21 | 2012-06-18 | 1-amino-2-vinyl cyclopropane carboxylic acid amide, salt of same, and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011137246 | 2011-06-21 | ||
JP2011-137246 | 2011-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012176715A1 true WO2012176715A1 (ja) | 2012-12-27 |
Family
ID=47422552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/065452 WO2012176715A1 (ja) | 2011-06-21 | 2012-06-18 | 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140142337A1 (ja) |
EP (1) | EP2725012A1 (ja) |
JP (1) | JPWO2012176715A1 (ja) |
WO (1) | WO2012176715A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111918969A (zh) * | 2018-03-30 | 2020-11-10 | 株式会社Api | 新型水解酶和利用该酶的(1s,2s)-1-烷氧基羰基-2-乙烯基环丙烷羧酸的制造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI758313B (zh) * | 2016-10-12 | 2022-03-21 | 美商陶氏農業科學公司 | 一種用於製備(1r,3r)-及(1s,3s)-2,2-二鹵基-3-(經取代之苯基)環丙烷甲酸的方法 |
CN116508749A (zh) * | 2023-07-03 | 2023-08-01 | 四川科宏达集团有限责任公司 | 一种除草剂增效助剂及应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000009543A2 (en) | 1998-08-10 | 2000-02-24 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis c inhibitor tri-peptides |
JP2007516981A (ja) * | 2003-12-15 | 2007-06-28 | 日本たばこ産業株式会社 | N−置換−n−スルホニルアミノシクロプロパン化合物及びその医薬用途 |
WO2007088571A2 (en) | 2006-02-02 | 2007-08-09 | Abiogen Pharma S.P.A. | A process for resolving racemic mixtures and a diastereoisomeric complex of a resolving agent and an enantiomer of interest |
WO2008070358A2 (en) * | 2006-11-16 | 2008-06-12 | Phenomix Corporation | N-cyclopropyl-hydroxyproline-based tripeptidic hepatitis c serine protease inhibitors containing an isoindole, pyrrolopyridine, pyrrolopyrimidine or pyrrolopyrazine heterocycle in the side chain |
JP2009536158A (ja) * | 2006-04-11 | 2009-10-08 | ノバルティス アクチエンゲゼルシャフト | Hcv阻害剤 |
WO2010041739A1 (ja) | 2008-10-10 | 2010-04-15 | 株式会社カネカ | 光学活性ビニルシクロプロパンカルボン酸誘導体及び光学活性ビニルシクプロパンアミノ酸誘導体の製造方法 |
US20110135599A1 (en) * | 2009-12-03 | 2011-06-09 | Gilead Sciences, Inc. | Antiviral compounds |
-
2012
- 2012-06-18 EP EP12802722.4A patent/EP2725012A1/en not_active Withdrawn
- 2012-06-18 WO PCT/JP2012/065452 patent/WO2012176715A1/ja active Application Filing
- 2012-06-18 JP JP2013521566A patent/JPWO2012176715A1/ja active Pending
- 2012-06-18 US US14/128,385 patent/US20140142337A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000009543A2 (en) | 1998-08-10 | 2000-02-24 | Boehringer Ingelheim (Canada) Ltd. | Hepatitis c inhibitor tri-peptides |
JP2010043124A (ja) | 1998-08-10 | 2010-02-25 | Boehringer Ingelheim (Canada) Ltd | C型肝炎インヒビタートリペプチド |
JP2007516981A (ja) * | 2003-12-15 | 2007-06-28 | 日本たばこ産業株式会社 | N−置換−n−スルホニルアミノシクロプロパン化合物及びその医薬用途 |
WO2007088571A2 (en) | 2006-02-02 | 2007-08-09 | Abiogen Pharma S.P.A. | A process for resolving racemic mixtures and a diastereoisomeric complex of a resolving agent and an enantiomer of interest |
JP2009536158A (ja) * | 2006-04-11 | 2009-10-08 | ノバルティス アクチエンゲゼルシャフト | Hcv阻害剤 |
WO2008070358A2 (en) * | 2006-11-16 | 2008-06-12 | Phenomix Corporation | N-cyclopropyl-hydroxyproline-based tripeptidic hepatitis c serine protease inhibitors containing an isoindole, pyrrolopyridine, pyrrolopyrimidine or pyrrolopyrazine heterocycle in the side chain |
WO2010041739A1 (ja) | 2008-10-10 | 2010-04-15 | 株式会社カネカ | 光学活性ビニルシクロプロパンカルボン酸誘導体及び光学活性ビニルシクプロパンアミノ酸誘導体の製造方法 |
EP2345633A1 (en) | 2008-10-10 | 2011-07-20 | Kaneka Corporation | Optically active vinyl-cyclopropane carboxylic acid derivative and optically active vinyl-cyclopropane amino acid derivative manufacturing method |
US20110135599A1 (en) * | 2009-12-03 | 2011-06-09 | Gilead Sciences, Inc. | Antiviral compounds |
Non-Patent Citations (3)
Title |
---|
DRUGS OF THE FUTURE, vol. 34, no. 7, 2009, pages 545 |
J. ORG. CHEM., vol. 64, no. 13, 1999, pages 4712 |
ORGANIC RESEARCH & DEVELOPMENT, vol. 14, 2010, pages 692 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111918969A (zh) * | 2018-03-30 | 2020-11-10 | 株式会社Api | 新型水解酶和利用该酶的(1s,2s)-1-烷氧基羰基-2-乙烯基环丙烷羧酸的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140142337A1 (en) | 2014-05-22 |
EP2725012A1 (en) | 2014-04-30 |
JPWO2012176715A1 (ja) | 2015-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3789938B2 (ja) | 酵素触媒作用アシル化による1級及び2級のヘテロ原子置換アミンのラセミ体分割 | |
JP4051082B2 (ja) | 脂肪族ジニトリルのシアノカルボン酸への立体選択性生物変換 | |
US8338142B2 (en) | Method for producing optically active 3-aminopiperidine or salt thereof | |
US20070197788A1 (en) | Method for the preparation of enantiomer forms of cis-configured 3-hydroxycyclohexane carboxylic acid derivatives using hydrolases | |
EP2017259A2 (en) | Preparation of gamma-amino acids having affinity for the alpha-2-delta protein | |
KR100452248B1 (ko) | 카비놀분리방법 | |
WO2010053050A1 (ja) | O-アルキルセリンおよびn-ベンジル-o-アルキルセリンの製造法 | |
JPWO2011078172A1 (ja) | 光学活性3−置換グルタル酸モノアミドの製造法 | |
WO2012176715A1 (ja) | 1-アミノ-2-ビニルシクロプロパンカルボン酸アミドおよびその塩、ならびにその製造方法 | |
Schoemaker et al. | Enzymatic Catalysis in Organic Synthesis. Synthesis of Enantiomerically Pure C�-Substituted�-Amino and�-Hydroxy Acids | |
JPWO2008056827A1 (ja) | ベタインの製造方法 | |
JP7280984B2 (ja) | (2s)-2-[(4r)-2-オキソ-4-プロピル-ピロリジン-1-イル]酪酸の調製のための酵素的プロセスおよびそのブリバラセタムへの変換 | |
US20200024621A1 (en) | Enzymatic process for the preparation of (1s,2r)-2-(difluoromethyl)-1-(propoxycarbonyl)cyclopropanecarboxylic acid | |
WO2005073388A1 (ja) | 光学活性1−置換—2—メチルピロリジンおよびその中間体の製造法 | |
JP4319847B2 (ja) | (1s,2s)−2−フルオロシクロプロパンカルボン酸誘導体の製造方法 | |
JP4843812B2 (ja) | 酵素を使用するラセミα−置換ヘテロ環式カルボン酸の光学分割方法 | |
US20070077632A1 (en) | Method for preparing (s)-indoline-2-carboxylic acid and (s)-indoline-2-carboxylic acid methyl ester using hydrolytic enzyme | |
JP2003534808A (ja) | 酵素を用いるR−体又はS−体のα−置換ヘテロサイクリックカルボン酸及びこれと反対鏡像の鏡像異性体のα−置換ヘテロサイクリックカルボン酸エステルの調製方法 | |
JP4720132B2 (ja) | 光学活性なn−保護−オクタヒドロ−1h−インドール−2−カルボン酸の製造方法 | |
EP1536017B1 (en) | Process for producing optically active octahydro-1H-indole-2-carboxylic acid | |
JP5092465B2 (ja) | ピペコリン酸の立体選択的なエステル化方法 | |
JP4746019B2 (ja) | 光学活性β−シアノイソ酪酸類及びその製造方法 | |
JP2015012838A (ja) | 光学活性アミノ酸の製造法 | |
JP2008222637A (ja) | 光学活性ピペコリン酸またはその誘導体の製造方法。 | |
JP2004261086A (ja) | ピペコリン酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12802722 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013521566 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012802722 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14128385 Country of ref document: US |