Nothing Special   »   [go: up one dir, main page]

WO2012160888A1 - Elevator apparatus - Google Patents

Elevator apparatus Download PDF

Info

Publication number
WO2012160888A1
WO2012160888A1 PCT/JP2012/059562 JP2012059562W WO2012160888A1 WO 2012160888 A1 WO2012160888 A1 WO 2012160888A1 JP 2012059562 W JP2012059562 W JP 2012059562W WO 2012160888 A1 WO2012160888 A1 WO 2012160888A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
car
loss
elevator apparatus
force loss
Prior art date
Application number
PCT/JP2012/059562
Other languages
French (fr)
Japanese (ja)
Inventor
力雄 近藤
酒井 雅也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280019460.8A priority Critical patent/CN103492301B/en
Priority to JP2013516245A priority patent/JP5634603B2/en
Priority to DE112012002180.0T priority patent/DE112012002180B4/en
Publication of WO2012160888A1 publication Critical patent/WO2012160888A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0037Performance analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3407Setting or modification of parameters of the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3476Load weighing or car passenger counting devices

Definitions

  • the present invention relates to an elevator apparatus, and more particularly to a technique for accurately estimating a driving force loss that occurs when a car travels.
  • Patent Document 1 is known as a document dealing with a technique for correcting a scale device.
  • the driving force loss that occurs when the car travels is specified, and the loaded weight in the car is estimated from the driving force that excludes this driving force loss.
  • the driving force loss (running loss) that occurs in the elevator device depends on the contact state between the rail and the guide and the load weight, and varies depending on the property. Therefore, when the driving force loss is estimated without considering the influence of the car position and the load weight, or when the driving force loss is set to a predetermined value in advance, there is an error between the estimated driving force loss and the actual driving force loss. Occurs. Because of this error, when the estimated load weight is used for the determination of the traveling abnormality, the elevator apparatus may determine that the traveling abnormality is in spite of the normal state. Moreover, when using it for the control of an elevator, the operation performance deteriorates by allowing for an error due to estimation variation.
  • the present invention has been made to solve the above-described problems, and provides an elevator apparatus having a function of identifying a driving force loss determined according to a car position and a driving force loss proportional to the loaded weight. To aim.
  • the elevator apparatus includes numerical values for the first driving force loss depending on the load weight, the hoisting machine that winds up the rope, the control device that controls the driving of the hoisting machine, An estimation device that identifies the model and estimates the driving force loss from the numerical model.
  • the elevator apparatus can accurately identify the driving force loss and accurately estimate the load weight.
  • the control performance can be improved by determining the control parameters based on the inertial mass and driving force required for car traveling.
  • FIG. 6 is a diagram for explaining a numerical model according to Embodiment 1.
  • FIG. 10 is a diagram for explaining a numerical model according to Embodiment 3.
  • FIG. 1 shows the configuration of an elevator apparatus according to the present invention.
  • the elevator apparatus has a car 1, a weight 2, a rope 3, a pulley 4, a hoisting machine 5, a deflector 6, a guide 7, a rail 8, a guide 9, a rail 10, in the same manner as a general elevator system.
  • a scale device 14 is provided.
  • the car 1 and the weight 2 are connected by a rope 3.
  • the rope 3 is wound around the pulley 4.
  • the load weight (L) of the car 1 is detected by using a scale device 14.
  • the hoisting machine 5 is provided with a torque sensor for detecting the torque of the drive shaft.
  • the operation of the elevator device is performed by the control device 12 controlling the inverter 11 and driving the hoisting machine 5.
  • the control device 12 is connected to the estimation device 13.
  • the estimation device 13 specifies the driving force loss (traveling loss) during traveling of the car 1 and stores the characteristics, and estimates the driving power loss from the stored characteristics. In the following, identifying the driving force loss and storing the characteristic is referred to as “identification”, and estimating the driving force loss from the stored characteristic is referred to as “estimation”.
  • the estimation device 13 includes an input unit 21 that receives a signal, a processing unit 22 that processes the received signal, an output unit 23 that outputs a data signal to the control device 12, and a storage unit 24 that stores data.
  • the input unit 21 receives a signal for calculating the driving force (Fiq) from the inverter 11, and the control device 12 outputs a position signal of the car 1, an acceleration / deceleration pattern signal, a signal corresponding to the current loading state, and an estimation.
  • a command signal or the like to the device 13 is input.
  • the processing unit 22 that receives these signals operates in accordance with a command signal from the control device 12. In the process of identifying the driving force loss in this operation, it is necessary to temporarily store information relating to the input signal and to read out the stored information. Therefore, the processing unit 22 and the storage unit 24 are mutually connected. It is possible to send and receive information.
  • the driving force loss identified in the processing unit 22 and the estimated driving force loss are transmitted to the output unit 23 and input to the control device 12.
  • the above-mentioned signal is input to the estimation device 13, input from other than the inverter 11 and the control device 12 can be used for identifying the driving force loss.
  • a torque current value signal of the hoisting machine an output signal of the torque sensor, a torque command signal of the inverter 11, a torque current command signal, and the like can be used.
  • the driving force loss includes friction loss due to contact between the guide 7 and the rail 8, friction loss due to contact between the guide 9 and the rail 10, rotation loss of the hoisting machine 5, and bearings of pulleys such as the deflector 6. All of the rotation loss is included.
  • the contact state between the guides (7 and 9) and the rails (8 and 10) differs depending on the position of the car 1, so that the friction loss due to the contact tends to depend on the car position x.
  • the rotation loss is proportional to the axial force applied to the rotation shaft, and therefore tends to be proportional to the load weight L of the car 1. Therefore, as a numerical model, a numerical model proportional to the load weight L, a numerical model depending on the car position x, a model combining these two numerical models, and the like can be considered.
  • the driving force loss tends to depend on the car position x and is proportional to the load weight L, the driving force loss when the load weight is different maintains the same profile shape depending on the car position x. It shows a tendency that the loss depending on the load weight L is adjusted as a whole.
  • the driving force loss for each car position is illustrated in FIG.
  • the driving force loss Fa indicates the case where the car is not loaded, and the driving force loss Fb indicates the case where the car is loaded.
  • the estimation device 13 identifies and estimates the driving force loss based on Equation 1 shown in FIG. 3 in order to accurately grasp both the tendency depending on the car position x and the tendency proportional to the loaded weight L.
  • the driving force loss Floss (x, L) indicates that it is a function of the car position x and the load weight L of the car.
  • the loaded weight L is based on the state in which the weight 2 and the car 1 are balanced.
  • Equation 1 the first term on the right side is the driving force loss (first driving force loss) depending on the loaded weight, and the second term on the right side is the driving force loss (second driving force loss) depending on the car position. Show. If the proportionality constant k1 [loss] to the load weight L in Equation 1 and the driving force loss component k2 [loss] depending on the car position x are identified, the car position x and the load weight L are used as arguments, and It becomes possible to estimate the driving force loss Floss (x, L).
  • the driving force Fiq (x, L) of the hoisting machine 5 is a function of the car position x and the load weight L, and satisfies the balance relationship shown in Equation 2.
  • the driving force Fiq (x, L) is the force Fcab (x) due to the weight of the rope / cables affecting the car, etc., and the car and the weight in a state where the weight and the car are balanced.
  • the gravitational acceleration g, and the car acceleration ⁇ (x) corresponding to the car position x can be estimated.
  • the sign of each term indicates the upward direction of the car as positive.
  • Formula 5 is obtained by the difference between Formula 3 and Formula 4. Equation 5 is used to estimate the driving force loss based on the driving force Fiq that pulls the car 1.
  • the control device 12 operates the car 1 up and down with speed changes having the same acceleration at the same car position x for the two loaded weights (L1, L2).
  • the driving force loss Floss (x, L) is obtained.
  • Equation 1 The proportionality constant k1 [loss] of Equation 1 can be calculated from Equation 6 from the driving force loss associated with the two load weights (L1, L2) obtained in this way. Similarly, the driving force loss component k2 [loss] in Equation 1 can be calculated as in Equation 7a.
  • Equation 5 even when the speed change is not the same at the same car position, the driving force loss can be obtained by calculating the final term including the acceleration. However, if the acceleration is the same, the final term on the right side is zero. Therefore, the identification error can be reduced. Moreover, even if the driving force at constant speed operation that does not include the acceleration / deceleration region is taken out, the error can be reduced because the final term becomes zero, but if the speed changes with the same acceleration at the same car position, the acceleration / deceleration will be It is possible to identify the driving force loss without error even in the vicinity of the upper and lower terminal floors that are necessarily required.
  • the loading state is first set to 0% (STEP 1). Thereafter, the control device 12 is accessed and reciprocating is performed in the vertical direction (STEP 2). The driving force obtained by the reciprocating travel is stored in the storage unit 24 (STEP 3). Next, the loading state is set to 100% (STEP 4), and the vehicle is reciprocated in the vertical direction (STEP 5), and the obtained driving force is stored in the storage unit 24 (STEP 6). Finally, based on the equations 6 and 7a, information necessary for estimating the driving force loss is identified from the stored driving force (STEP 7).
  • the driving force loss component k2 is equal to the driving force loss Floss (x, 0), thereby eliminating the trouble of changing the loading weight L of the car and omitting the learning steps STEP4 to STEP6. I can do things.
  • the driving force loss component k2 [loss] in Expression 7b can be obtained independently from the proportionality constant k1 [loss].
  • the elevator apparatus can accurately detect the driving power loss depending on the car position and the driving power loss proportional to the load weight, which vary from one property to another, so that there is no excess driving power loss. It can be confirmed, and it can be determined whether or not the elevator apparatus can be normally operated. In addition, by accurately identifying the driving force loss that varies from property to property even in the vicinity of the hoistway terminal floor, it is possible to check for the presence or absence of excessive driving force loss, regardless of the hoistway position. It can be determined whether normal operation is possible.
  • Embodiment 2 The elevator apparatus according to the second embodiment of the present invention detects an abnormality by comparing the driving force estimated using the identified driving force loss with the directly detected driving force.
  • the direct detection includes the case where the driving force is detected from the output of the torque sensor provided on the hoisting machine drive shaft and the case where the driving force is estimated from the torque current of the hoisting machine 5 (inverter 11). .
  • the driving force Fiq required for traveling can be estimated based on the right side of Equation 2.
  • the control device 12 since the control device 12 has information on the load weight L and the acceleration ⁇ (x), the information is transmitted from the control device 12 to the estimation device 13. Further, the driving force loss can be identified as disclosed in the first embodiment. Other necessary information is the inertia mass M (x) and the force Fcab (x) resulting from the weight of the cables. These can be identified from the driving force stored in the storage unit 24 in the vertical operation. .
  • the driving force Fdrive of Formula 8 is obtained by excluding the driving force loss Floss from the driving force Fiq necessary for operation.
  • the influence of the ropes / cables on the force Fcab tends to be adjusted in proportion to the car position x. If different positions of the car in the range in which the car is traveling at a constant speed are defined as car position x1 and car position x2, the position-dependent proportional constant k1 [cab] is obtained by Equation 9. Further, the influence component k2 [cab] that the rope / cables exerts on the force Fcab at the car position x0 is obtained as shown in Expression 10.
  • the influence of ropes / cables on the force Fcab is designed to be zero when the car is in the middle position, and the car position x0 indicates the distance to the car middle position.
  • the force Fcab (x) due to the weight of the cables depending on the car position is determined based on Equation 11. It can be seen that the inertial mass M (x) is obtained from Equation 8 to Equation 12.
  • each term shown on the right side of Equation 2 can be estimated from the information that the control device 12 has in advance and the driving force obtained by the learning travel by the vertical operation. Comparing this estimated driving force Fiq with the directly detected driving force Fiq, it is determined that there is a catch or abnormal contact with the rail when the directly detected driving force Fiq is larger. Monitoring is possible, and it is possible to quickly detect a running abnormality. In order to determine that the directly detected driving force is larger than the estimated driving force, an error or variation due to detection or identification is determined in advance as a predetermined value (hereinafter, the determined size is set as a specified value).
  • the driving force detected directly from the estimated driving force is greater than the specified value or when the driving force directly detected is smaller than the estimated driving force, it is detected directly from the estimated driving force. It is also included that the abnormality is determined when the difference in the driving force is smaller than a specified value.
  • Embodiment 3 The elevator apparatus according to the third embodiment of the present invention accurately estimates the load weight by accurately identifying the driving force loss from the driving force during traveling and excluding the influence thereof.
  • a formula for estimating the load weight L is obtained by substituting Equation 1 into Equation 2 and transforming it as shown in Equation 13 shown in FIG. There is no term on the weight on the right side of Equation 13.
  • the driving force Fiq (x, L) represents the force directly detected during traveling.
  • the loaded weight L can be accurately estimated. If this result is used, it is possible to estimate the load weight with high accuracy during operation, and it is possible to improve performance by determining necessary inertial mass and driving force and determining control parameters. Further, the weighing device 14 can be corrected with high accuracy by comparing the loading weight estimated with accuracy with the loading weight obtained by the weighing device 14 measured while the car is stopped.
  • the elevator device applies a control method that estimates the operation load based on the loaded weight, increases the operation speed to the limit allowed by the capabilities of the hoist 5 and the inverter 11, and improves the operation efficiency.
  • the elevator apparatus can estimate the loaded weight value with high accuracy and reduce the estimation error, the operation efficiency can be further improved. For example, in order to determine the speed so that the capacity of the hoisting machine 5 is used within a range not exceeding the rated current, Expressions 14 and 15 are used.
  • the speed Vp at the maximum speed during power running is the driving power loss Floss (x, L), the rated power Ht of the hoist, the rated load capacity Lrated, the load weight L in the car, the counter rate ⁇ , and the car load weight. It depends on the detection error Er and the power running efficiency ⁇ p of the electric motor and the inverter.
  • the speed Vr at the maximum speed during regenerative travel is the driving force loss Floss (x, L), the rated power Ht of the hoisting machine, the rated load amount Lrated, the load weight L in the car, the counter rate ⁇ , the car It depends on the detection error Er of the loaded weight and the efficiency ⁇ r during regenerative travel of the electric motor or the inverter.
  • the counter rate ⁇ is set to 0.5 when 50% of the rated load is balanced with the weight.
  • those other than the driving force loss are stored in the storage unit 24 of the estimation device 13, and the corresponding parameters are read from the storage unit 24 when the speed V is calculated.
  • the detection error Er can be reduced by using the load weight L accurately estimated by the estimation device 13 according to the present embodiment.
  • the driving force loss Floss is accurately estimated by identifying the driving force loss according to the first embodiment, the variation can be estimated to be small, and the speed can be increased to improve the operation efficiency.
  • the load weight can be specified with high accuracy and can be used as an alternative to the weighing device.
  • the load weight can be accurately identified, and the vehicle can be operated at the maximum speed without expecting more errors than necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is an elevator apparatus having a function of identifying a driving force loss determined according to a car position and a driving force loss proportional to a payload. An elevator apparatus is provided with: a car (1) coupled to a weight (2) by a rope (3); a hoist (5) for hoisting the rope; a control device (12) for controlling the drive of the hoist; and an estimation device (13) for identifying a first driving force loss dependent on a payload or a second driving force loss dependent on a car position as a numerical value model, and estimating a driving force loss from the numerical value model.

Description

エレベーター装置Elevator equipment
 この発明は、エレベーター装置に関わり、特にかごの走行時に生じる駆動力損失を精度よく推定する技術に関するものである。 The present invention relates to an elevator apparatus, and more particularly to a technique for accurately estimating a driving force loss that occurs when a car travels.
 エレベーター装置には、かごの積載重量を検知するために秤装置が搭載されている。秤装置を補正する技術を扱っている文献として、特許文献1が知られている。ここでは、かごを走行させる際に生じる駆動力損失を特定し、この駆動力損失を除外した駆動力からかご内の積載重量を推定している。 The elevator device is equipped with a scale device to detect the weight of the car. Patent Document 1 is known as a document dealing with a technique for correcting a scale device. Here, the driving force loss that occurs when the car travels is specified, and the loaded weight in the car is estimated from the driving force that excludes this driving force loss.
 エレベーター装置に生じる駆動力損失(走行ロス)は、レールとガイドの接触状態や積載重量に依存し、物件毎に異なる大きさを呈する。従って、駆動力損失をかご位置や積載重量による影響を考慮せずに推定した場合、または予め一定値に定めた場合には、推定された駆動力損失と実際の駆動力損失との間に誤差が生じる。この誤差があるため、推定した積載重量を走行異常の判定に利用すると、エレベーター装置は、正常状態であるにも拘らず、走行異常であると判断することがある。また、エレベーターの制御に利用するに際しては、推定ばらつきによる誤差を見込むことで運行性能の低下が生じる。 The driving force loss (running loss) that occurs in the elevator device depends on the contact state between the rail and the guide and the load weight, and varies depending on the property. Therefore, when the driving force loss is estimated without considering the influence of the car position and the load weight, or when the driving force loss is set to a predetermined value in advance, there is an error between the estimated driving force loss and the actual driving force loss. Occurs. Because of this error, when the estimated load weight is used for the determination of the traveling abnormality, the elevator apparatus may determine that the traveling abnormality is in spite of the normal state. Moreover, when using it for the control of an elevator, the operation performance deteriorates by allowing for an error due to estimation variation.
特開6-321440号公報JP 6-32440 A
 この発明は、上記のような課題を解決するために成されたもので、かご位置に応じて定まる駆動力損失と積載重量に比例する駆動力損失を同定する機能を備えたエレベーター装置を提供することを目的にする。 The present invention has been made to solve the above-described problems, and provides an elevator apparatus having a function of identifying a driving force loss determined according to a car position and a driving force loss proportional to the loaded weight. To aim.
 本願に係るエレベーター装置は、錘とロープで連結されているかごと、ロープを巻き上げる巻上機と、巻上機の駆動を制御する制御装置と、積載重量に依存する第1の駆動力損失を数値モデルとして同定し、数値モデルから駆動力損失を推定する推定装置と、を備えているものである。 The elevator apparatus according to the present application includes numerical values for the first driving force loss depending on the load weight, the hoisting machine that winds up the rope, the control device that controls the driving of the hoisting machine, An estimation device that identifies the model and estimates the driving force loss from the numerical model.
 本願に係るエレベーター装置は、駆動力損失を高精度に同定して、精度良く積載重量を
推定する事ができる。また、運行中に積載重量を高精度に推定するので、かご走行に必要
な慣性質量や駆動力を判断して制御パラメーターを決定する事で制御性能の向上を図る事
ができる。
The elevator apparatus according to the present application can accurately identify the driving force loss and accurately estimate the load weight. In addition, since the load weight is estimated with high accuracy during operation, the control performance can be improved by determining the control parameters based on the inertial mass and driving force required for car traveling.
本発明にかかるエレベーター装置の構成を示す図である。It is a figure which shows the structure of the elevator apparatus concerning this invention. 駆動力損失の傾向を示す図である。It is a figure which shows the tendency of a driving force loss. 実施の形態1に係る数値モデルを説明するための図である。6 is a diagram for explaining a numerical model according to Embodiment 1. FIG. 駆動力損失を学習する手順を示すフローチャートである。It is a flowchart which shows the procedure which learns a driving force loss. 実施の形態2に係る数値モデルを説明するための図である。6 is a diagram for explaining a numerical model according to Embodiment 2. FIG. 実施の形態3に係る数値モデルを説明するための図である。10 is a diagram for explaining a numerical model according to Embodiment 3. FIG.
 実施の形態1.
 図1は本発明にかかるエレベーター装置の構成を示す。エレベーター装置は、一般的なエレベーター装置の機械システムと同様に、かご1、錘2、ロープ3、プーリ4、巻上機5、逸らせ車6、ガイド7、レール8、ガイド9、レール10、秤装置14などを備えている。かご1と錘2はロープ3で連結されている。ロープ3はプーリ4に巻き掛けられている。プーリ4を巻上機5により回転駆動する事で、かご1は上下方向に運行する。かご1の積載重量(L)は秤装置14を用いて検出する。かご1に定格の半分の重量が積載された場合、錘2とかご1は釣合う。巻上機5には駆動軸のトルクを検出するトルクセンサが設けられている。
Embodiment 1 FIG.
FIG. 1 shows the configuration of an elevator apparatus according to the present invention. The elevator apparatus has a car 1, a weight 2, a rope 3, a pulley 4, a hoisting machine 5, a deflector 6, a guide 7, a rail 8, a guide 9, a rail 10, in the same manner as a general elevator system. A scale device 14 is provided. The car 1 and the weight 2 are connected by a rope 3. The rope 3 is wound around the pulley 4. By driving the pulley 4 to rotate by the hoisting machine 5, the car 1 operates in the vertical direction. The load weight (L) of the car 1 is detected by using a scale device 14. When the car 1 is loaded with half the rated weight, the weight 2 and the car 1 are balanced. The hoisting machine 5 is provided with a torque sensor for detecting the torque of the drive shaft.
 エレベーター装置の運転は、制御装置12がインバーター11を制御して巻上機5を駆動する事で行なわれる。制御装置12は推定装置13と繋がっている。推定装置13は、かご1の走行中の駆動力損失(走行ロス)を特定してその特性を保存し、保存した特性から駆動力損失を推定する。以下では、駆動力損失を特定してその特性を保存する事を「同定」、保存した特性から駆動力損失を推定する事を「推定」、という。 The operation of the elevator device is performed by the control device 12 controlling the inverter 11 and driving the hoisting machine 5. The control device 12 is connected to the estimation device 13. The estimation device 13 specifies the driving force loss (traveling loss) during traveling of the car 1 and stores the characteristics, and estimates the driving power loss from the stored characteristics. In the following, identifying the driving force loss and storing the characteristic is referred to as “identification”, and estimating the driving force loss from the stored characteristic is referred to as “estimation”.
 推定装置13は、信号を受け取る入力部21と、受け取った信号を処理する処理部22と、制御装置12にデータ信号を出力する出力部23と、データを記憶する記憶部24を備えている。入力部21には、インバーター11から駆動力(Fiq)を算出するための信号が入力され、制御装置12からはかご1の位置信号、加減速度パターン信号、現在の積載状態に相当する信号、推定装置13への指令信号などが入力される。これらの信号を受け取る処理部22は、制御装置12からの指令信号に従って動作する。この動作のうちの駆動力損失を同定する処理においては、入力された信号にかかる情報を一時的に記憶し、また、記憶した情報を読み出す必要があるため、処理部22と記憶部24は相互に情報の送受ができる構成となっている。 The estimation device 13 includes an input unit 21 that receives a signal, a processing unit 22 that processes the received signal, an output unit 23 that outputs a data signal to the control device 12, and a storage unit 24 that stores data. The input unit 21 receives a signal for calculating the driving force (Fiq) from the inverter 11, and the control device 12 outputs a position signal of the car 1, an acceleration / deceleration pattern signal, a signal corresponding to the current loading state, and an estimation. A command signal or the like to the device 13 is input. The processing unit 22 that receives these signals operates in accordance with a command signal from the control device 12. In the process of identifying the driving force loss in this operation, it is necessary to temporarily store information relating to the input signal and to read out the stored information. Therefore, the processing unit 22 and the storage unit 24 are mutually connected. It is possible to send and receive information.
 処理部22において同定された駆動力損失や推定された駆動力損失は、出力部23に伝達され、制御装置12に入力される。本実施の形態にかかる構成では、制御装置12にアクセスする事で、同定した駆動力損失や現在の推定駆動力損失を確認する事が可能である。尚、推定装置13へ前述の信号が入力されるのであれば、インバーター11や制御装置12以外からの入力でも駆動力損失の同定に利用できる。巻上機5の駆動力を算出するための信号には、巻上機のトルク電流値信号、トルクセンサの出力信号、インバーター11のトルク指令信号、トルク電流指令信号などが利用できる。 The driving force loss identified in the processing unit 22 and the estimated driving force loss are transmitted to the output unit 23 and input to the control device 12. In the configuration according to the present embodiment, it is possible to confirm the identified driving force loss and the current estimated driving force loss by accessing the control device 12. In addition, if the above-mentioned signal is input to the estimation device 13, input from other than the inverter 11 and the control device 12 can be used for identifying the driving force loss. As a signal for calculating the driving force of the hoisting machine 5, a torque current value signal of the hoisting machine, an output signal of the torque sensor, a torque command signal of the inverter 11, a torque current command signal, and the like can be used.
 次に、推定装置13に入力された信号から駆動力損失を学習(推定)するための数値モデルについて説明する。駆動力損失には、ガイド7とレール8の接触による摩擦損失、ガイド9とレール10の接触による摩擦損失、巻上機5の回転損失、並びに、逸らせ車6のような滑車類の軸受けの回転損失の全てが含まれている。この内、ガイド(7および9)とレール(8および10)の接触状態は、かご1の位置で異なるため、その接触に起因する摩擦損失は、かご位置xに依存する傾向がある。一方、回転損失は、回転軸にかかる軸力に比例するため、かご1の積載重量Lに比例する傾向がある。そのため、数値モデルとしては、積載重量Lに比例する数値モデルや、かご位置xに依存する数値モデルや、これら2つの数値モデルを組み合わせたモデルなどが考えられる。 Next, a numerical model for learning (estimating) driving force loss from the signal input to the estimation device 13 will be described. The driving force loss includes friction loss due to contact between the guide 7 and the rail 8, friction loss due to contact between the guide 9 and the rail 10, rotation loss of the hoisting machine 5, and bearings of pulleys such as the deflector 6. All of the rotation loss is included. Of these, the contact state between the guides (7 and 9) and the rails (8 and 10) differs depending on the position of the car 1, so that the friction loss due to the contact tends to depend on the car position x. On the other hand, the rotation loss is proportional to the axial force applied to the rotation shaft, and therefore tends to be proportional to the load weight L of the car 1. Therefore, as a numerical model, a numerical model proportional to the load weight L, a numerical model depending on the car position x, a model combining these two numerical models, and the like can be considered.
 駆動力損失がかご位置xに依存する傾向と積載重量Lに比例する傾向を持つことから、積載重量が異なる場合の駆動力損失は、かご位置xに依存する同一のプロファイル形状を維持しながら、積載重量Lに依存するロス分が全体に加減されるような傾向を示す。かご位置ごとの駆動力損失を図2に例示する。駆動力損失Faはかごに積載がない場合を示し、駆動力損失Fbはかごに積載がある場合を示している。 Since the driving force loss tends to depend on the car position x and is proportional to the load weight L, the driving force loss when the load weight is different maintains the same profile shape depending on the car position x. It shows a tendency that the loss depending on the load weight L is adjusted as a whole. The driving force loss for each car position is illustrated in FIG. The driving force loss Fa indicates the case where the car is not loaded, and the driving force loss Fb indicates the case where the car is loaded.
 推定装置13は、かご位置xに依存する傾向と積載重量Lに比例する傾向の両方を的確に捉えるため、図3に示す式1に基づいて駆動力損失を同定して推定する。ここで、駆動力損失Floss(x,L)は、かご位置xと、かごの積載重量Lの関数であることを示している。積載重量Lは、錘2とかご1が釣合う状態を基準としている。 The estimation device 13 identifies and estimates the driving force loss based on Equation 1 shown in FIG. 3 in order to accurately grasp both the tendency depending on the car position x and the tendency proportional to the loaded weight L. Here, the driving force loss Floss (x, L) indicates that it is a function of the car position x and the load weight L of the car. The loaded weight L is based on the state in which the weight 2 and the car 1 are balanced.
 式1において、右辺の第1項は積載重量に依存する駆動力損失(第1の駆動力損失)、右辺の第2項はかご位置に依存する駆動力損失(第2の駆動力損失)をあらわす。式1における積載重量Lへの比例定数k1[loss]と、かご位置xに依存する駆動力損失成分k2[loss]を同定すれば、かご位置xと積載重量Lを引数として、所定状態での駆動力損失Floss(x,L)を推定する事が可能となる。 In Equation 1, the first term on the right side is the driving force loss (first driving force loss) depending on the loaded weight, and the second term on the right side is the driving force loss (second driving force loss) depending on the car position. Show. If the proportionality constant k1 [loss] to the load weight L in Equation 1 and the driving force loss component k2 [loss] depending on the car position x are identified, the car position x and the load weight L are used as arguments, and It becomes possible to estimate the driving force loss Floss (x, L).
 巻上機5の駆動力Fiq(x,L)は、かご位置x及び積載重量Lの関数で、式2に示す釣合い関係を満足する。式2によれば、駆動力Fiq(x,L)は、かご等に影響するロープ/ケーブル類の重量に起因する力Fcab(x)、錘とかごが釣合った状態における、かごや錘の他、ロープ/ケーブル類を含む駆動システム全体の慣性質量M(x)、重力加速度g、かご位置xに対応したかごの加速度α(x)から、推定することができる。ここで、各項の正負符号はかご上側方向を正として示している。駆動力損失Flossは走行方向に対して逆向きに働くため、正負符号で示している。駆動力Fiqについて、かごの上方向運行の場合の釣合い関係を式3に、かごの下方向運行の場合の釣合い関係を式4に、それぞれ示している。 The driving force Fiq (x, L) of the hoisting machine 5 is a function of the car position x and the load weight L, and satisfies the balance relationship shown in Equation 2. According to Equation 2, the driving force Fiq (x, L) is the force Fcab (x) due to the weight of the rope / cables affecting the car, etc., and the car and the weight in a state where the weight and the car are balanced. From the inertial mass M (x) of the entire drive system including the ropes / cables, the gravitational acceleration g, and the car acceleration α (x) corresponding to the car position x can be estimated. Here, the sign of each term indicates the upward direction of the car as positive. Since the driving force loss Floss works in the opposite direction to the traveling direction, it is indicated by a positive / negative sign. Regarding the driving force Fiq, the balance relationship in the case of the upward operation of the car is shown in Equation 3, and the balance relationship in the case of the downward operation of the cage is shown in Equation 4, respectively.
 積載重量Lを同一とした場合、式3と式4の差により、式5が得られる。式5はかご1を牽引する駆動力Fiq等に基づいて駆動力損失を推定するために使う。推定するためには、制御装置12は、2つの積載重量(L1、L2)について、同一のかご位置xで同一加速度を有する速度変化でかご1を上下運転する。各かご位置での駆動力を記憶してその差分を2で割ると駆動力損失Floss(x,L)が得られる。 When the loading weight L is the same, Formula 5 is obtained by the difference between Formula 3 and Formula 4. Equation 5 is used to estimate the driving force loss based on the driving force Fiq that pulls the car 1. In order to estimate, the control device 12 operates the car 1 up and down with speed changes having the same acceleration at the same car position x for the two loaded weights (L1, L2). When the driving force at each car position is stored and the difference is divided by 2, the driving force loss Floss (x, L) is obtained.
 このように得られる2つの積載重量(L1、L2)に係る駆動力損失から、式1の比例定数k1[loss]を式6から算出できる。同様に、式1の駆動力損失成分k2[loss]は式7aのように算出できる。 The proportionality constant k1 [loss] of Equation 1 can be calculated from Equation 6 from the driving force loss associated with the two load weights (L1, L2) obtained in this way. Similarly, the driving force loss component k2 [loss] in Equation 1 can be calculated as in Equation 7a.
 式5において、同一かご位置で同一加速度を有する速度変化でない場合でも、加速度をふくむ最終項を算出すれば駆動力損失を得ることができるが、加速度を同一とすると、右辺における最終項がゼロになるため、同定の誤差を小さくする事ができる。また、加減速領域を含まない一定速運転での駆動力を取り出しても、最終項がゼロになるため誤差を小さくできるが、同一かご位置で同一加速度を有する速度変化であれば、加減速度が必ず必要となる上下終端階近傍でも誤差なく駆動力損失を同定することができる。 In Equation 5, even when the speed change is not the same at the same car position, the driving force loss can be obtained by calculating the final term including the acceleration. However, if the acceleration is the same, the final term on the right side is zero. Therefore, the identification error can be reduced. Moreover, even if the driving force at constant speed operation that does not include the acceleration / deceleration region is taken out, the error can be reduced because the final term becomes zero, but if the speed changes with the same acceleration at the same car position, the acceleration / deceleration will be It is possible to identify the driving force loss without error even in the vicinity of the upper and lower terminal floors that are necessarily required.
 次に、本実施の形態において駆動力損失を推定するための具体的な手順を、図4に基づいて説明する。駆動力損失の学習では、まず積載状態を0%にする(STEP1)。その後、制御装置12にアクセスして、上下方向に往復走行をおこなう(STEP2)。往復走行により得られた駆動力を記憶部24に記憶する(STEP3)。次に、積載状態を100%にして(STEP4)、同様に上下方向に往復走行して(STEP5)、得られた駆動力を記憶部24に記憶する(STEP6)。最後に式6、式7aに基づいて、記憶した駆動力から、駆動力損失を推定するのに必要な情報を同定する(STEP7)。 Next, a specific procedure for estimating the driving force loss in the present embodiment will be described with reference to FIG. In learning of driving force loss, the loading state is first set to 0% (STEP 1). Thereafter, the control device 12 is accessed and reciprocating is performed in the vertical direction (STEP 2). The driving force obtained by the reciprocating travel is stored in the storage unit 24 (STEP 3). Next, the loading state is set to 100% (STEP 4), and the vehicle is reciprocated in the vertical direction (STEP 5), and the obtained driving force is stored in the storage unit 24 (STEP 6). Finally, based on the equations 6 and 7a, information necessary for estimating the driving force loss is identified from the stored driving force (STEP 7).
 同定の精度を望まない場合には、1つの積載状態でのみ運転する方法を用いてもよい。この場合、錘の積み込み作業が不要となる無積載状態でのみ学習するとすれば、式1においてL=0とおく。積載状態に関わらず、駆動力損失成分k2は駆動力損失Floss(x,0)に等しいとする事で、かごの積載重量Lを変更する手間をなくし、また、学習手順STEP4~6を省略する事ができる。この場合、式7bの駆動力損失成分k2[loss]は、比例定数k1[loss]から独立して求めることができる。 If the accuracy of identification is not desired, a method of operating only in one loading state may be used. In this case, if learning is performed only in a no-load state in which the work of loading the weight is not necessary, L = 0 is set in Equation 1. Regardless of the loading state, the driving force loss component k2 is equal to the driving force loss Floss (x, 0), thereby eliminating the trouble of changing the loading weight L of the car and omitting the learning steps STEP4 to STEP6. I can do things. In this case, the driving force loss component k2 [loss] in Expression 7b can be obtained independently from the proportionality constant k1 [loss].
 以上によれば、駆動力損失を高精度に同定する事が可能であり、同定結果において想定されない異常な大きさの駆動力損失を検出していれば、かごの昇降路内での引っかかりや、レールとの接触異常があると判断する事ができる。 According to the above, it is possible to identify the driving force loss with high accuracy, and if the driving force loss of an abnormal size that is not assumed in the identification result is detected, the car is caught in the hoistway, It can be judged that there is a contact abnormality with the rail.
 本実施の形態に係るエレベーター装置は、物件ごとにばらつきがある、かご位置に依存する駆動力損失と積載重量に比例する駆動力損失を精度よく特定する事で、過剰な駆動力損失の有無を確認する事ができ、エレベーター装置の正常な運転が可能か否かを判断できる。また、物件ごとにばらつきがある駆動力損失を、昇降路終端階近傍においても精度よく特定する事で、過剰な駆動力損失の有無を確認する事ができ、昇降路位置に関わらずエレベーター装置の正常な運転が可能か否かを判断できる。 The elevator apparatus according to the present embodiment can accurately detect the driving power loss depending on the car position and the driving power loss proportional to the load weight, which vary from one property to another, so that there is no excess driving power loss. It can be confirmed, and it can be determined whether or not the elevator apparatus can be normally operated. In addition, by accurately identifying the driving force loss that varies from property to property even in the vicinity of the hoistway terminal floor, it is possible to check for the presence or absence of excessive driving force loss, regardless of the hoistway position. It can be determined whether normal operation is possible.
 実施の形態2.
 本発明の実施の形態2にかかるエレベーター装置は、同定した駆動力損失を用いて推定した駆動力と、直接検知した駆動力を比較する事で異常を検出するものである。ここで、直接検知には、巻上機駆動軸に設けたトルクセンサの出力から駆動力を検知する場合と、巻上機5(インバーター11)のトルク電流から駆動力を推定する場合が含まれる。
Embodiment 2. FIG.
The elevator apparatus according to the second embodiment of the present invention detects an abnormality by comparing the driving force estimated using the identified driving force loss with the directly detected driving force. Here, the direct detection includes the case where the driving force is detected from the output of the torque sensor provided on the hoisting machine drive shaft and the case where the driving force is estimated from the torque current of the hoisting machine 5 (inverter 11). .
 走行に必要な駆動力Fiqは式2の右辺に基づいて推定できる。この中で、積載重量L及び加速度α(x)に関する情報は、制御装置12が有しているため、制御装置12から推定装置13に情報伝達される。また、駆動力損失は実施の形態1において開示したように同定できる。他に必要な情報は慣性質量M(x)及びケーブル類の重量に起因する力Fcab(x)であるが、これらは上下方向の運転で記憶部24に記憶した駆動力から同定する事ができる。 The driving force Fiq required for traveling can be estimated based on the right side of Equation 2. Among these, since the control device 12 has information on the load weight L and the acceleration α (x), the information is transmitted from the control device 12 to the estimation device 13. Further, the driving force loss can be identified as disclosed in the first embodiment. Other necessary information is the inertia mass M (x) and the force Fcab (x) resulting from the weight of the cables. These can be identified from the driving force stored in the storage unit 24 in the vertical operation. .
 慣性質量M(x)と力Fcab(x)を同定するにあたり、積載重量を任意の同一条件とし、加減速度パターンを上下運転で同一のα(x)となるように走行して、直接検知した駆動力を得る。この駆動力に基づき式3と式4から、図5に示す式8が得られる。 In identifying the inertial mass M (x) and the force Fcab (x), the load weight was arbitrarily set to the same condition, and the acceleration / deceleration pattern was run so as to be the same α (x) in the vertical operation and directly detected. Get driving force. Based on this driving force, Expression 8 shown in FIG. 5 is obtained from Expression 3 and Expression 4.
 式8の駆動力Fdriveは運転に必要な駆動力Fiqから駆動力損失Flossを除外したものである。ロープ/ケーブル類が力Fcabに与える影響はかご位置xに比例して加減される傾向がある。かごを一定速度で走行した範囲におけるかごの異なる位置をかご位置x1、かご位置x2とすると、その位置依存の比例定数k1[cab]が式9により得られる。また、かご位置x0でロープ/ケーブル類が力Fcabに与える影響成分k2[cab]は、式10のように得られる。 The driving force Fdrive of Formula 8 is obtained by excluding the driving force loss Floss from the driving force Fiq necessary for operation. The influence of the ropes / cables on the force Fcab tends to be adjusted in proportion to the car position x. If different positions of the car in the range in which the car is traveling at a constant speed are defined as car position x1 and car position x2, the position-dependent proportional constant k1 [cab] is obtained by Equation 9. Further, the influence component k2 [cab] that the rope / cables exerts on the force Fcab at the car position x0 is obtained as shown in Expression 10.
 一般に、ロープ/ケーブル類が力Fcabに与える影響はかごが中間の位置にある際にゼロとなるように設計されており、かご位置x0はかご中間位置までの距離を示す。かご位置に依存するケーブル類の重量による力Fcab(x)は式11に基づいて定められる。慣性質量M(x)は式8から式12により得られることがわかる。 Generally, the influence of ropes / cables on the force Fcab is designed to be zero when the car is in the middle position, and the car position x0 indicates the distance to the car middle position. The force Fcab (x) due to the weight of the cables depending on the car position is determined based on Equation 11. It can be seen that the inertial mass M (x) is obtained from Equation 8 to Equation 12.
 以上のように、式2の右辺に示される各項は、予め制御装置12が有する情報、及び、上下運転による学習走行により得られた駆動力から推定できる。この推定された駆動力Fiqと直接検知した駆動力Fiqを比較して、直接検知した駆動力Fiqの方が大きい場合にひっかかりやレールとの接触異常が生じていると判断する事で常時異常の監視ができ、迅速に走行異常検出をする事が可能となる。尚、推定された駆動力より直接検知した駆動力の方が大きいと判断する事には、検知や同定による誤差やばらつきを予め一定値として定めて(以下、定めた大きさを規定値とする)、推定された駆動力より直接検知した駆動力の方が規定値以上に大きくなるときや、推定された駆動力より直接検知した駆動力の方が小さいが、推定された駆動力と直接検知した駆動力の差が規定値よりも小さいときに異常と判断することも含まれる。 As described above, each term shown on the right side of Equation 2 can be estimated from the information that the control device 12 has in advance and the driving force obtained by the learning travel by the vertical operation. Comparing this estimated driving force Fiq with the directly detected driving force Fiq, it is determined that there is a catch or abnormal contact with the rail when the directly detected driving force Fiq is larger. Monitoring is possible, and it is possible to quickly detect a running abnormality. In order to determine that the directly detected driving force is larger than the estimated driving force, an error or variation due to detection or identification is determined in advance as a predetermined value (hereinafter, the determined size is set as a specified value). ) When the driving force detected directly from the estimated driving force is greater than the specified value or when the driving force directly detected is smaller than the estimated driving force, it is detected directly from the estimated driving force. It is also included that the abnormality is determined when the difference in the driving force is smaller than a specified value.
 実施の形態3.
 本発明の実施の形態3にかかるエレベーター装置は、走行時の駆動力から駆動力損失を高精度に同定してその影響を除外する事で、精度良く積載重量を推定するものである。積載重量Lの推定式は式1を式2に代入して変形する事で図6に示す式13のように得られる。式13の右辺には積載重量に関する項はない。
Embodiment 3 FIG.
The elevator apparatus according to the third embodiment of the present invention accurately estimates the load weight by accurately identifying the driving force loss from the driving force during traveling and excluding the influence thereof. A formula for estimating the load weight L is obtained by substituting Equation 1 into Equation 2 and transforming it as shown in Equation 13 shown in FIG. There is no term on the weight on the right side of Equation 13.
 ここで、駆動力Fiq(x,L)は走行中に直接検知した力を表す。右辺の各係数を用いて演算する事で積載重量Lを精度良く推定する事ができる。この結果を用いれば、運行中には積載重量を高精度に推定することができ、必要な慣性質量や駆動力を判断して制御パラメーターを決定する事で性能向上を図る事ができる。また、精度良く推定された積載重量を、かご停止中に計測された秤装置14による積載重量と比較する事で、秤装置14を高精度に補正する事ができる。 Here, the driving force Fiq (x, L) represents the force directly detected during traveling. By calculating using the coefficients on the right side, the loaded weight L can be accurately estimated. If this result is used, it is possible to estimate the load weight with high accuracy during operation, and it is possible to improve performance by determining necessary inertial mass and driving force and determining control parameters. Further, the weighing device 14 can be corrected with high accuracy by comparing the loading weight estimated with accuracy with the loading weight obtained by the weighing device 14 measured while the car is stopped.
 エレベーター装置は、積載重量に基づいて運転負荷を推定し、巻上機5やインバーター11の能力により許容される限度で運転速度を高くして、運行効率を向上する制御方式を適用している。実施の形態3によれば、エレベーター装置は、積載重量値を高精度に推定できて推定誤差を小さくできるので、運行効率をさらに向上する事ができる。例えば、巻上機5の能力をその定格電流を超えない範囲で利用するように速度を決定するには、式14と式15が用いられる。 The elevator device applies a control method that estimates the operation load based on the loaded weight, increases the operation speed to the limit allowed by the capabilities of the hoist 5 and the inverter 11, and improves the operation efficiency. According to the third embodiment, since the elevator apparatus can estimate the loaded weight value with high accuracy and reduce the estimation error, the operation efficiency can be further improved. For example, in order to determine the speed so that the capacity of the hoisting machine 5 is used within a range not exceeding the rated current, Expressions 14 and 15 are used.
 力行走行時における最大速時の速度Vpは、駆動力損失Floss(x,L)、巻上機の定格電力Ht、定格積載量Lrated、かご内の積載重量L、カウンタ率γ、かご積載重量の検出誤差Er、電動機やインバーターの力行走行時効率ηpに依存する。同様に、回生走行時における最大速時の速度Vrは、駆動力損失Floss(x,L)、巻上機の定格電力Ht、定格積載量Lrated、かご内の積載重量L、カウンタ率γ、かご積載重量の検出誤差Er、電動機やインバーターの回生走行時効率ηrに依存する。カウンタ率γは定格積載の50%で錘と釣合う場合に0.5とする。 The speed Vp at the maximum speed during power running is the driving power loss Floss (x, L), the rated power Ht of the hoist, the rated load capacity Lrated, the load weight L in the car, the counter rate γ, and the car load weight. It depends on the detection error Er and the power running efficiency ηp of the electric motor and the inverter. Similarly, the speed Vr at the maximum speed during regenerative travel is the driving force loss Floss (x, L), the rated power Ht of the hoisting machine, the rated load amount Lrated, the load weight L in the car, the counter rate γ, the car It depends on the detection error Er of the loaded weight and the efficiency ηr during regenerative travel of the electric motor or the inverter. The counter rate γ is set to 0.5 when 50% of the rated load is balanced with the weight.
 これらのパラメーターのうち駆動力損失以外は推定装置13の記憶部24に格納されており、速度Vの演算時に該当するパラメーターは記憶部24から読み出される。かご負荷の検出誤差Erや駆動力損失Floss(x,L)にはばらつきがあるものの、想定される最大値を当てはめて速度を求めれば、定格電流を超えることなく運転することが可能である。特に、本実施の形態にかかる推定装置13により精度良く推定された積載重量Lを用いれば検出誤差Erを小さくできる。また実施の形態1にかかる駆動力損失の同定により駆動力損失Flossを精度良く推定すれば、そのばらつきを小さく見積る事ができ、速度を上げて運行効率を向上する事ができる。 Of these parameters, those other than the driving force loss are stored in the storage unit 24 of the estimation device 13, and the corresponding parameters are read from the storage unit 24 when the speed V is calculated. Although there are variations in the car load detection error Er and the driving force loss Floss (x, L), it is possible to operate without exceeding the rated current if the estimated maximum value is applied to obtain the speed. In particular, the detection error Er can be reduced by using the load weight L accurately estimated by the estimation device 13 according to the present embodiment. Moreover, if the driving force loss Floss is accurately estimated by identifying the driving force loss according to the first embodiment, the variation can be estimated to be small, and the speed can be increased to improve the operation efficiency.
 本発明にかかる積載重量の推定では、加減速するかご位置での駆動力損失、及び、加速度の影響が考慮されているため、最大速度に至る前の加減速中でも精度よく推定できる。また積載重量を精度よく特定でき、秤装置の代替とする事ができる。また積載重量を精度よく特定でき、必要以上の誤差を見込まずに最大限大きな速度で運転することができる。 In the estimation of the load weight according to the present invention, since the influence of the driving force loss and acceleration at the car position to be accelerated / decelerated is taken into consideration, it can be accurately estimated even during acceleration / deceleration before reaching the maximum speed. In addition, the load weight can be specified with high accuracy and can be used as an alternative to the weighing device. In addition, the load weight can be accurately identified, and the vehicle can be operated at the maximum speed without expecting more errors than necessary.
 1 かご、5 巻上機、11 インバーター、12 制御装置、13 推定装置。 1 car, 5 hoist, 11 inverter, 12 control device, 13 estimation device.

Claims (9)

  1.  錘とロープで連結されているかごと、
     前記ロープを巻き上げる巻上機と、
     前記巻上機の駆動を制御する制御装置と、
     前記かごの積載重量に依存する第1の駆動力損失を数値モデルに基づいて同定し、前記数値モデルから駆動力損失を推定する推定装置と
     を備えたことを特徴とするエレベーター装置。
    Whether it is connected with a weight and a rope,
    A hoist to wind up the rope;
    A control device for controlling the driving of the hoisting machine;
    An elevator apparatus comprising: an estimation device that identifies a first driving force loss depending on a load weight of the car based on a numerical model, and estimates the driving force loss from the numerical model.
  2.  前記数値モデルは、前記第1の駆動力損失が前記積載重量に比例することを特徴とする請求項1に記載のエレベーター装置。 The elevator apparatus according to claim 1, wherein in the numerical model, the first driving force loss is proportional to the loaded weight.
  3.  前記推定装置は、かご位置に依存する第2の駆動力損失を前記数値モデルに基づいて同定することを特徴とする請求項1に記載のエレベーター装置。 The elevator apparatus according to claim 1, wherein the estimation device identifies a second driving force loss depending on a car position based on the numerical model.
  4.  前記推定装置は、かご位置に依存する第2の駆動力損失を前記数値モデルに基づいて同定することを特徴とする請求項2に記載のエレベーター装置。 The elevator apparatus according to claim 2, wherein the estimation device identifies a second driving force loss depending on a car position based on the numerical model.
  5.  前記制御装置は、所定のかご位置における加速度を同じにして前記かごを上下方向に運行し、
     前記推定装置は、上方向の運行で直接検出された第1の駆動力と下方向の運行で検出された第2の駆動力から前記第1の駆動力損失および前記第2の駆動力損失を同定することを特徴とする請求項3に記載のエレベーター装置。
    The control device operates the car in the vertical direction with the same acceleration at a predetermined car position,
    The estimation device calculates the first driving force loss and the second driving force loss from the first driving force detected directly in the upward operation and the second driving force detected in the downward operation. The elevator apparatus according to claim 3, wherein the elevator apparatus is identified.
  6.  前記制御装置は、所定のかご位置における加速度を同じにして前記かごを上下方向に運行し、
     前記推定装置は、上方向の運行で直接検出された第1の駆動力と下方向の運行で検出された第2の駆動力から前記第1の駆動力損失および前記第2の駆動力損失を同定することを特徴とする請求項4に記載のエレベーター装置。
    The control device operates the car in the vertical direction with the same acceleration at a predetermined car position,
    The estimation device calculates the first driving force loss and the second driving force loss from the first driving force detected directly in the upward operation and the second driving force detected in the downward operation. The elevator apparatus according to claim 4, wherein the elevator apparatus is identified.
  7.  前記制御装置は、前記数値モデルから推定した駆動力と直接検知した駆動力を比較し、前記直接検知した駆動力の方が前記数値モデルから推定した駆動力よりも大きい場合、走行異常であると判断することを特徴とする請求項1ないし請求項6の何れか1項に記載のエレベーター装置。 The control device compares the driving force estimated from the numerical model with the driving force directly detected, and when the directly detected driving force is larger than the driving force estimated from the numerical model, it is a running abnormality. The elevator apparatus according to any one of claims 1 to 6, wherein a determination is made.
  8.  錘とロープで連結されているかごと、
     前記ロープを巻き上げる巻上機と、
     前記巻上機の駆動を制御する制御装置と、
     前記かごの積載重量に依存する第1の駆動力損失およびかご位置に依存する第2の駆動力損失を数値モデルとして同定し、同定した前記数値モデルと、直接検知した駆動力と、駆動システムの慣性質量と、前記かごの加速度と、ケーブル重量により加わる力とに基づいて、前記かごの積載重量を推定する推定装置と
     を備えたことを特徴とするエレベーター装置。
    Whether it is connected with a weight and a rope,
    A hoist to wind up the rope;
    A control device for controlling the driving of the hoisting machine;
    The first driving force loss that depends on the load weight of the car and the second driving force loss that depends on the car position are identified as numerical models, and the identified numerical model, the directly detected driving force, An elevator apparatus comprising: an estimation device that estimates a load weight of the car based on an inertial mass, an acceleration of the car, and a force applied by a cable weight.
  9.  推定された前記積載重量と前記巻上機の定格電力とに基づいて、前記かごの最大運転速度を決定することを特徴とする請求項8に記載のエレベーター装置。 The elevator apparatus according to claim 8, wherein the maximum operation speed of the car is determined based on the estimated load weight and the rated power of the hoisting machine.
PCT/JP2012/059562 2011-05-20 2012-04-06 Elevator apparatus WO2012160888A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280019460.8A CN103492301B (en) 2011-05-20 2012-04-06 Lift appliance
JP2013516245A JP5634603B2 (en) 2011-05-20 2012-04-06 Elevator equipment
DE112012002180.0T DE112012002180B4 (en) 2011-05-20 2012-04-06 elevator system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-113612 2011-05-20
JP2011113612 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012160888A1 true WO2012160888A1 (en) 2012-11-29

Family

ID=47216974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059562 WO2012160888A1 (en) 2011-05-20 2012-04-06 Elevator apparatus

Country Status (4)

Country Link
JP (1) JP5634603B2 (en)
CN (1) CN103492301B (en)
DE (1) DE112012002180B4 (en)
WO (1) WO2012160888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004130A (en) * 2019-06-27 2021-01-14 東芝エレベータ株式会社 Elevator monitoring method and elevator monitoring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608571A (en) * 2015-10-26 2017-05-03 天津鑫宝龙电梯集团有限公司 Elevator weighing system capable of precisely weighing
CA3185562A1 (en) * 2020-08-04 2022-02-10 Janne Salomaki A drive system and method for controlling a drive system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470906A (en) * 1990-07-04 1992-03-05 Hitachi Ltd Control system and optimization deciding device
WO2005102895A1 (en) * 2004-03-30 2005-11-03 Mitsubishi Denki Kabushiki Kaisha Control device of elevator
JP2006193297A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp Elevator device
JP2009113979A (en) * 2007-11-09 2009-05-28 Mitsubishi Electric Corp Control device of elevator
WO2011027463A1 (en) * 2009-09-04 2011-03-10 三菱電機株式会社 Elevator control device
JP2011111259A (en) * 2009-11-25 2011-06-09 Mitsubishi Electric Corp Elevator control device
WO2011108047A1 (en) * 2010-03-03 2011-09-09 三菱電機株式会社 Control device for elevator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61282276A (en) * 1985-06-07 1986-12-12 株式会社日立製作所 Load compensator for elevator
JPH06321440A (en) 1993-05-11 1994-11-22 Mitsubishi Electric Corp Elevator controller
SG71932A1 (en) * 1998-07-30 2000-04-18 Inventio Ag Method of force limitation for automatic elevator doors
EP1641697B1 (en) * 2003-07-09 2012-01-18 Kone Corporation Counterweight-less elevator
CN1902116B (en) 2004-03-29 2012-04-04 三菱电机株式会社 Elevator control device
KR20060129506A (en) 2006-09-25 2006-12-15 미쓰비시덴키 가부시키가이샤 Elevator control system
KR101157185B1 (en) * 2009-04-03 2012-07-03 유경오토메틱스(주) Elevator System And Control Method For The Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470906A (en) * 1990-07-04 1992-03-05 Hitachi Ltd Control system and optimization deciding device
WO2005102895A1 (en) * 2004-03-30 2005-11-03 Mitsubishi Denki Kabushiki Kaisha Control device of elevator
JP2006193297A (en) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp Elevator device
JP2009113979A (en) * 2007-11-09 2009-05-28 Mitsubishi Electric Corp Control device of elevator
WO2011027463A1 (en) * 2009-09-04 2011-03-10 三菱電機株式会社 Elevator control device
JP2011111259A (en) * 2009-11-25 2011-06-09 Mitsubishi Electric Corp Elevator control device
WO2011108047A1 (en) * 2010-03-03 2011-09-09 三菱電機株式会社 Control device for elevator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004130A (en) * 2019-06-27 2021-01-14 東芝エレベータ株式会社 Elevator monitoring method and elevator monitoring device

Also Published As

Publication number Publication date
JPWO2012160888A1 (en) 2014-07-31
JP5634603B2 (en) 2014-12-03
DE112012002180B4 (en) 2018-05-03
CN103492301A (en) 2014-01-01
DE112012002180T5 (en) 2014-02-13
CN103492301B (en) 2015-12-09

Similar Documents

Publication Publication Date Title
AU2011298833B2 (en) Method for controlling a drive motor of a lift system
JP5985057B2 (en) Door device and door control method
US9114955B2 (en) Control device for elevator
US11554933B2 (en) Elevator
JP6218706B2 (en) Elevator control device and elevator control method
CN112055693A (en) Monitoring solution for conveyor system
JP6058160B2 (en) Elevator apparatus and control method thereof
TWI377168B (en) Automatic inspecting device for an elevator and automatic inspecting method for an elevator
JP5634603B2 (en) Elevator equipment
WO2007007637A1 (en) Speed control device, speed control method, and speed control program for elevator
CN112752725B (en) Characteristic control device for speed governor system and elevator device
CN104671022A (en) Elevator control device and elevator control method
JP6094516B2 (en) Elevator equipment
KR101261763B1 (en) Control device for elevator
US20210331892A1 (en) Method for testing safety characteristics of an elevator
JP2005170537A (en) Elevator control device
CA3185562A1 (en) A drive system and method for controlling a drive system
CN115551793A (en) Elevator abnormity detection device
EP3974367A1 (en) Method of calibraring a load weighing device of an elevator system and elevator system
CN116281481A (en) Safety protection method for variable speed elevator
JP2021116148A (en) Wear inspection system of rope-type elevator and wear inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788879

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516245

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120021800

Country of ref document: DE

Ref document number: 112012002180

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12788879

Country of ref document: EP

Kind code of ref document: A1