Nothing Special   »   [go: up one dir, main page]

WO2012152199A1 - 热泵热回收空调机组 - Google Patents

热泵热回收空调机组 Download PDF

Info

Publication number
WO2012152199A1
WO2012152199A1 PCT/CN2012/074960 CN2012074960W WO2012152199A1 WO 2012152199 A1 WO2012152199 A1 WO 2012152199A1 CN 2012074960 W CN2012074960 W CN 2012074960W WO 2012152199 A1 WO2012152199 A1 WO 2012152199A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat pump
box
pump system
exhaust
Prior art date
Application number
PCT/CN2012/074960
Other languages
English (en)
French (fr)
Inventor
荣国华
Original Assignee
Rong Guohua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rong Guohua filed Critical Rong Guohua
Publication of WO2012152199A1 publication Critical patent/WO2012152199A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • F24F12/003Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the invention belongs to the field of HVAC, and particularly relates to an air conditioning unit that uses a heat pump for heat energy recovery.
  • the object of the present invention is to provide a heat recovery air conditioning unit with reasonable structure, hygienic cleaning and sufficient energy saving.
  • the heat pump heat recovery air conditioning unit is composed of a blower box, a blower box, a heat pump system and a power distribution control system.
  • the air supply box is composed of a fresh air outlet, a return air outlet, a filter, a blower, an evaporator, an air supply port, and an additional functional section.
  • the exhaust fan is composed of an air inlet, a fresh air outlet, a filter, a condenser, an exhaust fan, an air outlet, and an additional functional section.
  • the heat pump system consists of a compressor, a condenser, an expansion throttle, an evaporator, and an auxiliary device.
  • the power distribution control system is composed of power distribution equipment and automatic control equipment.
  • the indoor exhaust air and the outdoor fresh air are used to cool the condenser of the heat pump system in the air exhaust box, and the cooling capacity is absorbed by the condenser.
  • the outdoor fresh air and the indoor return air are cooled and cooled by the evaporator of the heat pump system and sent to the air-conditioned room. In this way, the cooling capacity in the indoor exhaust air is recovered and utilized by the refrigeration cycle of the heat pump system.
  • the condenser of the heat pump system in the exhaust fan is converted into an evaporator. Since the indoor air temperature is higher than the outdoor, the indoor exhaust air and the outdoor fresh air are used to heat the evaporator of the heat pump system in the exhaust fan, and the heat is evaporated. Absorbed. In the blower box, the evaporator of the heat pump system is converted into a condenser, and the outdoor fresh air and the indoor return air are heated by the condenser and sent to the air-conditioned room. In this way, the heat in the indoor exhaust air is recovered and utilized by the heating cycle of the heat pump system.
  • the power distribution equipment of the power distribution control system provides power for the heat pump system, the blower, the exhaust fan, the electric air volume adjustment air outlet, and the automatic control equipment.
  • the automatic control equipment automatically adjusts the heat pump system, the blower, the exhaust fan, and the electric motor according to the changes of indoor and outdoor air parameters.
  • the air volume adjusts the operating state of the tuyere to ensure efficient and stable operation of the air conditioning unit.
  • Figure 1 is a structural diagram of a connected heat pump heat recovery air conditioning unit (1)
  • Figure 2 is a structural diagram of a split heat pump heat recovery air conditioning unit
  • Figure 3 is a heat pump system diagram
  • Figure 4 is a heat pump system diagram
  • Figure 5 is a heat pump system diagram (3)
  • Figure 6 is a structural diagram of a heat exchanger unit for heat recovery of a heat pump (2)
  • Figure 8 is a heat pump system diagram (5)
  • Figure 9 is a heat pump system diagram (6)
  • Figure 10 is a heat pump system diagram (7)
  • Figure 11 is a structural diagram of a heat exchanger unit for heat recovery of a heat pump (3)
  • Figure 13 is a heat pump system diagram (9)
  • Figure 14 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit (1)
  • Figure 16 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit ( 2 )
  • Figure 17 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit (3)
  • Figure 18 is a heat pump system diagram (11)
  • Figure 20 is a heat pump system diagram ( 13 )
  • Figure 21 is a heat pump system diagram ( 14 )
  • Figure 22 is a heat pump system diagram ( 15 )
  • Figure 23 is a heat pump system diagram ( 16 )
  • Figure 24 is a heat pump system diagram ( 17 )
  • Figure 26 is the construction diagram of the cylinder piston type accumulator
  • Figure 27 is a diaphragm type reservoir construction diagram
  • Figure 28 shows the connection between the shared reservoir and the bidirectional expansion throttle in the heat pump system ( 1 )
  • Figure 30 shows the connection between the shared reservoir and the bidirectional expansion throttle in the heat pump system (3)
  • Figure 31 shows the connection between the shared reservoir and the bidirectional expansion throttle valve in the heat pump system ( 4 )
  • Figure 1 is a structural diagram of a connected heat pump heat recovery air conditioning unit, which is provided by a blower box 1 and a blower box 2
  • the heat pump system and the power distribution control system are composed of four parts.
  • the box body is made of steel plate and other materials, and is insulated with a heat insulating material such as polyurethane.
  • An inspection door is provided on the cabinet to facilitate access and maintenance of the personnel.
  • Air supply box 1 Disconnected from the exhaust box 2 by the partition 7 and placed with insulation material to prevent hurricane and heat exchange between fresh air and exhaust air.
  • Air supply box 1 , air exhaust box 2 Can be made in one piece, the required equipment is installed in a complete box, the integrated air conditioning unit is not convenient to transport, install and repair, but saves materials; can also be made into a segmented combination, with different functions
  • the equipment is placed in several functional sections, and is made into a number of small boxes, which are assembled into a whole after being on the scene.
  • air box In 1 , the fresh air outlet 3, the return air outlet 4, and the filter 5 are made into the inlet air mixing filter section, and so on, and can be made into a blower section, an evaporator section, and a humidifying and blowing section.
  • Air exhaust box 2 It can be made into the inlet air mixing filter section, the condenser section, the heat pump main unit, the electric control box section and the exhaust fan section. Each section can be disassembled for easy transportation, installation and overhaul.
  • Other functional sections may be added as needed, such as an additional electric heating section, an air disinfection section, an anechoic section, an inspection section, and the like.
  • the main part of the heat pump system (compressor 17 and other equipment) can be placed in the box or outside the box, evaporator 8 and condenser 16
  • the equipment such as the refrigerant circulation pipe 9 is located in the casing.
  • a heat exchanger in the form of a straight-expanded structural coil is used to ensure that the refrigerant evaporates and condenses therein, and the heat exchanger is made of a copper tube and an aluminum fin.
  • Electrical control box for distribution control system 18 It is equipped with controller, display, power distribution equipment, etc., which can be hung outside the box, or embedded in the box, or separated from the box. Various power distribution and control equipment and pipelines are distributed in the box. Crossing the partition 7 All kinds of pipelines should be sealed to prevent air leakage.
  • the outdoor high temperature and high humidity fresh air and indoor return air are under the action of the blower 6, from the fresh air outlet 3
  • the return air inlet 4 enters the box, mixes and is filtered by the filter 5, filtered by the filter 5, passed through the blower 6 , cooled by the evaporator 8 , cooled and dehumidified, after reaching the set temperature and humidity, from the air supply port 12 It is sent to the air-conditioning area; in the air exhaust box 2, the outdoor fresh air and the indoor exhaust air enter the tank from the air inlet 13 and the fresh air outlet 14 under the action of the exhaust fan 19, and are mixed by the filter 15
  • the dust removal filter is heated by the condenser 16, heated, and discharged to the outside through the exhaust fan 19 and the exhaust port 20.
  • the heat pump system performs a refrigeration cycle, and in the blower box 1, the evaporator 8 The heat is evaporated and the air is cooled and dehumidified.
  • the condenser 16 is cooled by the indoor and outdoor air, and the cooling capacity in the indoor exhaust is recycled.
  • the outdoor low temperature fresh air and the indoor return air are under the action of the blower 6, from the fresh air outlet 3 and the return air outlet. 4 Enter the box, mix and filter by dust filter 5, pass the blower 6 and pass the evaporator 8 to heat up. If the humidity is low, humidifier 10 is needed to humidify. After reaching the set temperature and humidity, pass the water retaining plate. 11 From the air supply port 12 to the air conditioning area; in the air exhaust box 2, the outdoor fresh air and the indoor exhaust air are driven by the exhaust fan 19, enter the box from the air inlet 13 and the fresh air outlet 14, and are mixed by the filter.
  • the heat pump system stops running, and the return air outlet 4 in the air supply box 1 is closed, and the fresh air outlet 3 and the air supply port 12 Open, blower 6 operation; fresh air outlet in the air exhaust box 2 14 closed, air inlet 13 , side air vent 21 , air vent 20 open, exhaust fan 19 Operation, air conditioning unit for new wind operation.
  • the side vent 21 is connected to the indoor exhaust air like the air inlet 13 to reduce the exhaust resistance caused by the condenser 16 and reduce the power consumption of the exhaust fan 19.
  • the power distribution equipment of the power distribution control system is the heat pump system, the blower 6 , and the exhaust fan 19
  • the electric air volume adjustment air outlet and the automatic control system provide power.
  • the heat pump system is a variable capacity system
  • the compressor 17 is a variable capacity compressor
  • the blower 6 and the exhaust fan 19 are frequency conversion speed control fans
  • the fresh air outlets 3, 14 , return air inlet 4 air inlet 13 for electric air volume adjustment air outlet, manual or electric dual-purpose air volume adjustment air outlet, side air vent 21 It is not commonly used, it can be set as manual air outlet, or it can be set as manual and electric dual-purpose air volume adjustment air outlet.
  • the automatic control device controls the compressor according to changes in indoor and outdoor air parameters.
  • FIG. 2 is a structural diagram of a split heat pump heat recovery air conditioning unit, the air supply box 1 and The exhaust fan box 2 is separated, and when the device is shipped from the factory, the refrigerant circulation pipe 9 connected to the main body of the heat pump system by the evaporator 8 or the condenser 16 is disconnected and sealed, and various types of lines connected to the electric control box 18 are also disconnected.
  • the refrigerant circulation pipe 9 is connected through the quick joint, and various types of lines are connected to the electric control box 18.
  • the two cabinets can be placed in different positions according to the needs of the user, and the arrangement is more flexible.
  • the air exhaust box 2 can be placed on the roof to save floor space and reduce the noise of the unit.
  • An air supply vent 22 can be added to the air supply box 1 to reduce the air supply resistance.
  • FIG. 3 is a diagram of the heat pump system of the above heat pump heat recovery air conditioning unit, which is a refrigeration cycle.
  • the refrigerant cycle process is this: compressor 17 ⁇ Oil separator 24 ⁇ water cooler 25 ⁇ four-way switching valve 26 ⁇ condenser 16 ⁇ four-way switching valve 27 ⁇ accumulator 28 ⁇ drying filter 29 ⁇ sight glass 30 ⁇ expansion throttle 31 ⁇ four Through the reversing valve 27 ⁇ evaporator 8 ⁇ four-way reversing valve 26 ⁇ gas-liquid separator 32 ⁇ Compressor 17 .
  • the high-pressure, high-temperature gaseous refrigerant discharged from the compressor 17 is separated from the lubricating oil in the oil separator 24, and the lubricating oil is returned to the compressor through the oil return capillary 23
  • the lubricant can also be reflowed by other means.
  • tap water enters The water cooler 25 absorbs the heat of the high-temperature refrigerant and becomes hot water, which can provide customers with domestic hot water and save fuel costs.
  • the heat of the refrigerant is absorbed by the tap water, the amount of fresh air for condensing the refrigerant can be reduced, and the power consumption of the exhaust fan 19 is lowered.
  • the water cooler 25 can be cancelled or turned off, and the heat of the refrigerant is exhausted by the indoor exhaust air and the outdoor fresh air.
  • the water cooler 25 can be in the form of a spiral tube type, a shell tube type, a sleeve type or the like, and a closed type pressurized container or an open type pressureless container is used. Compressor 17 The closer the exhaust port is, the better the heat recovery effect. image 3
  • the medium water cooler 25 is connected in series on the refrigerant pipe. Since the refrigerant is uncontrollable, the water temperature in the water cooler 25 is also difficult to control, and it is preferably used as a water supply preheater for the internal hot water system of the building.
  • the expansion restrictor 31 usually employs an electronic expansion valve to adjust the flow rate of the refrigerant relatively quickly and accurately, and other expansion restrictors, such as capillary tubes, can be used for small systems.
  • the compressor 17 employs a variable capacity compressor such as a variable frequency rotor type, a scroll type, or a screw type compressor. When the system cooling capacity and the heating capacity change, the compressor 17 also changes the capacity output in time to achieve energy-saving operation. when There are multiple compressors in the heat pump system. 17 When operating in parallel, the compressor 17 All of the fixed capacity compressors, or all of the variable capacity compressors, or a combination of variable capacity compressors and fixed capacity compressors, can achieve variable capacity operation. To achieve the purpose of energy saving.
  • auxiliary devices such as the oil separator 24, the four-way switching valve 26, 27, the accumulator 28, the drying filter 29, the sight glass 30, and the gas-liquid separator 32
  • other auxiliary equipment such as heat recovery is provided. , recooler, temperature, pressure sensor, etc.
  • the automatic control system automatically adjusts the operating status of the system according to changes in system temperature and pressure, and maintains efficient operation of the heat pump system.
  • the heat pump system performs a heating cycle, after the four-way switching valves 26, 27 are turned, the evaporator 8 becomes a condenser, and the condenser 16 becomes an evaporator.
  • the refrigerant cycle process is this: compressor 17 ⁇ Oil separator 24 ⁇ water cooler 25 ⁇ four-way switching valve 26 ⁇ evaporator 8 ⁇ four-way switching valve 27 ⁇ accumulator 28 ⁇ drying filter 29 ⁇ sight glass 30 ⁇ expansion throttle 31 ⁇ four Through the reversing valve 27 ⁇ condenser 16 ⁇ four-way reversing valve 26 ⁇ gas-liquid separator 32 ⁇ Compressor 17 .
  • the water cooler 25 stops working, does not produce hot water, the refrigerant dissipates heat in the evaporator 8, and is used to heat the outdoor fresh air, and absorbs heat in the condenser 16, absorbs the heat of the indoor exhaust air and the outdoor fresh air, and recycles the indoor Exhaust heat. If the water cooler 25 can also produce hot water in winter, it is necessary to increase the system capacity and increase the heat generation, such as increasing the power of the compressor 17, increasing the amount of fresh air outside the exhaust box 2, and the amount of exhaust air of the exhaust fan 19. . In the winter, the water cooler 25 is suitable for use in the south, while in the north, the outdoor temperature is low, and when the water cooler 25 is in operation, The heat pump system is inefficient.
  • the apparatus with the water cooler 25 described above may also be referred to as a hot water type heat pump heat recovery air conditioning unit.
  • the heat pump system When the outdoor temperature in winter is low and the indoor exhaust air volume is small, the heat pump system performs a heating cycle, and the condenser 16 acts as an evaporator to easily frost, in order to melt the frost,
  • the water cooler 25 stops the output of the hot water, but the hot water is supplied to the water cooler 25 by an external heat source (boiler, electric heat, etc.), and the water cooler 25 becomes a water heater to supply heat for the refrigerant to evaporate.
  • an external heat source blower, electric heat, etc.
  • the water cooler 25 becomes a water heater to supply heat for the refrigerant to evaporate.
  • open the air inlet of the bellows 2 13 ⁇ Close the fresh air outlet 14 open the electric control valve 37, close the electric control valve 38, and use the indoor exhaust air to melt the frost. At this time, it does not affect the normal operation of the air conditioning system.
  • FIG 6 is a structural diagram of another type of heat pump heat recovery air conditioning unit, which differs from the above air conditioning unit in that a reheater is added to the air supply box 1. 43.
  • a reheater is added to the air supply box 1. 43.
  • Heating can increase the air supply temperature, reduce the air supply temperature difference, improve the air conditioning comfort, and is suitable for air conditioning with high air conditioning precision and humidity.
  • the device can also be constructed as a split heat pump heat recovery air conditioning unit as shown in Figure 2.
  • FIG 7 is a diagram of the heat pump system of the apparatus shown in Figure 6.
  • the reheater 43 is connected in parallel with the condenser 16 in the system, and the electric control valve 44 45, according to the load change situation, adjust the refrigerant flow into the reheater 43, the condenser 16, when the winter heating cycle, the electric control valve 44 is closed, the reheater 43 does not work.
  • Electric control valve 44, 45 One of them can be assigned to a solenoid valve to distribute the refrigerant flow.
  • the reheater 43 is constructed in the same manner as the evaporator 8 and the condenser 16.
  • the device with reheater 43 described above can also be called Reheat heat pump heat recovery air conditioning unit.
  • FIG 8 is a heat pump system diagram of another reheat heat pump heat recovery air conditioning unit, shown in the refrigeration cycle, valves 46, 49, 50 Open, valves 47, 48, 51 are closed. It and Figure 7 The difference is that the reheater 43 can be converted into an evaporator. When the evaporator 8 is inoperable, the valves 46, 49, 50, the electric regulating valve 44 are closed, and the reheater 43 is used as a backup. When cooling, close valve 48 and open the valve 47, 51, the reheater 43 is converted into an evaporator; when heating, the valve 47 is closed, the valves 48, 51 are opened, and the reheater 43 is converted into a condenser.
  • solenoid valves 33, 34, 35, 36 replace the heat pump system of Figure 8.
  • Four-way reversing valve 27 In the heat pump system shown in Figure 9, solenoid valves 33, 34, 35, 36 replace the heat pump system of Figure 8.
  • FIG 11 is another conjoined The heat pump heat recovery air conditioning unit structure diagram, which differs from the above air conditioning unit in that there are two sets of refrigeration systems. One of them is a heat pump system for cooling or heating the air; the other is a single cooling system for reheating the cooled air. The system can also be used as a heat pump system for both reheating and cooling. It is a backup to the former, and although the equipment is added, the reliability is improved. The device can also be made into a picture 2 The split heat pump heat recovery air conditioning unit shown. The above equipment can also be called a two-machine heat pump heat recovery air conditioning unit.
  • Figure 12 is a heat pump system diagram of a multi-unit heat pump heat recovery air conditioning unit, showing a refrigeration cycle.
  • Two compressors 17 are operated in parallel, and the refrigerant can flow in both directions in the expansion restrictors 52, 53, 54.
  • the condenser 16 is housed in the exhaust box 2, and the evaporator 8 is installed in the blower box 1. It has a bellows 2 and condenser 16 , can connect two and several air blowers 1 and evaporator 8 , and other equipment. Only the two air blowers 1 and evaporator 8 and one room air conditioner are shown in Figure 12 . , a water cooler 25 .
  • Room air conditioner 55 Housed in an air-conditioned room, it uses a heat exchanger in the form of a straight-expanded structural coil, made of copper tubing and aluminum fins, which rely on direct evaporation or condensation of the refrigerant to circulate cooling or heat the air in the room.
  • air box 1 and air box 2 can be called the system's additional equipment, or the end equipment, there are other additional equipment that uses the refrigerant to cool or heat, such as: the bathroom's hand dryer, can use the condensation heat of the refrigerant; use the building's sewage, Equipment for cooling refrigerant in the summer, heating the refrigerant in the winter; equipment for heating the refrigerant by using the kitchen fumes, waste heat of washing the waste water; equipment for heating the refrigerant by using the solar hot water or the hot air.
  • the bathroom's hand dryer can use the condensation heat of the refrigerant; use the building's sewage, Equipment for cooling refrigerant in the summer, heating the refrigerant in the winter; equipment for heating the refrigerant by using the kitchen fumes, waste heat of washing the waste water; equipment for heating the refrigerant by using the solar hot water or the hot air.
  • the air supply box 1 In the air-conditioned area served, when there are enough additional devices such as room air conditioners 55, the air supply box 1 does not have a return air outlet 4 or closes the air return port 4 and only sends fresh air.
  • Water cooler 25 Parallel in the system, when the water temperature reaches the set temperature, the solenoid valve 57 is closed, the high temperature refrigerant is turned off, the solenoid valve 58 is opened, the high temperature refrigerant is passed, and the solenoid valves 57, 58 It can also be changed to an electric control valve to allow the refrigerant to pass through the two valves in proportion.
  • the exhaust fan 2 is usually placed outdoors, called an outdoor unit (since the exhaust box 2 can be placed indoors, it can also be called an indoor unit), and the indoor exhaust is concentrated to the exhaust box. 2 in.
  • an outdoor unit since the exhaust box 2 can be placed indoors, it can also be called an indoor unit
  • the indoor exhaust is concentrated to the exhaust box. 2 in.
  • two or more exhaust ducts 2 and condensers 16 can be made, and several air blowers 1 and evaporators 8, additional equipment, water coolers 25 and other indoor units, water coolers 25 can be connected. It can also be placed outdoors, called an outdoor unit.
  • the operating conditions of several evaporators 8 are the same, either cooling or heating, and therefore, it can be called the same-type heat pump system.
  • FIG 13 is a heat pump system diagram of another multi-heat pump heat recovery air conditioning unit, which adds a reheater to the air supply box 1 And a water cooler 25 is provided in parallel with the condenser 16 in the system, and the electric flow regulating valve 44 is used to regulate the refrigerant flow.
  • the evaporator 8 and the room air conditioner in the two blower boxes 1 are 55 It can be cooled at the same time and heated at the same time.
  • the two blower boxes 1 can also be heated one by one while the other is refrigerated, wherein the reheater 43 in the cooled blower box 1 is converted into an evaporator for cooling, Evaporator in the same box 8 Not working.
  • Figure 14 is a structural diagram of a multi-unit heat pump heat recovery air conditioning unit.
  • the air exhaust box 2 is placed outdoors, the air inlet 13 and the side air vent 21 When the indoor air is exhausted, the condenser 16 can also be converted into an evaporator to absorb the indoor heat and the cold heat in the outdoor fresh air.
  • the compressor 17 is placed in the box body and can also be placed outside the box.
  • Multiple air vents can be set 2 Parallel use; the exhaust fan 59 is different from the above-mentioned exhaust fan 2, it does not have a compressor 17, fresh air outlet 14, only handles indoor exhaust, condenser 16 It can also be converted into an evaporator to recover the cold heat in the indoor exhaust air.
  • FIG. 14 The middle part is split type, so that the arrangement is more flexible and convenient; in the air supply box 1, the evaporator 8 can also be converted into a condenser, and the reheater 43 can also be converted into an evaporator or a condenser.
  • Air exhaust box 2, 59, The blower box 1, the room air conditioner 55, and the water cooler 25 are connected to the low pressure air pipe 60, the high pressure air pipe 61, and the high pressure (or medium pressure) liquid pipe 62.
  • the water cooler 25 is placed outdoors, which is a heat-insulated pressurized container equipped with a refrigerant radiator.
  • FIG. 15 is a heat pump system diagram of the multi-unit heat pump heat recovery air conditioning unit shown in Figure 14.
  • Solenoid box 2 solenoid valve 65 open, solenoid valve 66 Shutdown, condenser 16 heating; solenoid valve 65 closed, solenoid valve 66 open, condenser 16 cooled.
  • Solenoid valve 68 opens, high temperature refrigerant passes The water cooler 25 heats the water, and when the water temperature reaches the set temperature, the solenoid valve 68 is closed. When the condenser 16 needs to be defrost, the solenoid valve 68 is closed and the solenoid valve 69 is opened.
  • the water cooler 25 is converted into a water heater to which a heat source is supplied from the outside.
  • the solenoid valve 70 is open, the solenoid valve 71 is closed, the condenser 16 is heating, the solenoid valve 71 is open, and the solenoid valve is 70 Shut down, condenser 16 is cooled.
  • the blower box 1 has a reheater 43 which controls the flow rate of the refrigerant, and controls the solenoid valves 73, 74 and the reheater 43. It can also be converted to an evaporator or condenser for use with the evaporator 8 for backup.
  • the reheater 43 is connected to the high pressure gas pipe 61 and the high pressure (or medium pressure) liquid pipe 62. Solenoid valve 73 When the solenoid valve 74 is closed, the reheater 43 is heated; the solenoid valve 73 is closed, the solenoid valve 74 is opened, and the reheater 43 is cooled.
  • Solenoid valve 76 open, solenoid valve 75 closed, evaporator 8 Cooling; solenoid valve 76 is closed, solenoid valve 75 is open, and evaporator 8 is heated.
  • Mode Converter 78 Controls the conversion of room air conditioners 55 to cooling and heating conditions.
  • the system shown in Figure 15 is a three-control system, evaporator 8, reheater 43, condenser 16 and room air conditioner 55.
  • the air supply box 1 sends cold air, and the evaporator 8 Refrigeration, reheater 43 heating; room air conditioner 55 heating, it is not in an air conditioning area with the air supply box 1; the air exhaust box 59 absorbs heat, the condenser 16 is cooled; the water cooler 25 heats; 2 Endothermic, where the condenser 16 is cooled (whether it is cooling or heating, it needs to be executed by the operation and judgment of the automatic control system).
  • Multi-junction heat pump systems are also known as heat recovery heat pump systems. For example, in the office building with a deeper depth, in the winter, the outer zone needs to send hot air, and the inner zone needs to send cold air. This equipment can meet the requirements.
  • Figure 16 is a structural diagram of another multi-unit heat pump heat recovery air conditioning unit, a set of air supply boxes 1 and air exhaust boxes 2 placed outdoors (also indoors)
  • the heat pump system has more than three room air conditioners 55, which are three-regulated heat recovery type heat pump systems.
  • FIG 17 is a structural diagram of another multi-heat pump heat recovery air conditioning unit, which replaces the outdoor unit exhaust box 2 in Figure 14 with an outdoor unit. 79. It is composed of a condenser 16, an exhaust fan 80, a compressor 17, a refrigerant circulation pipe 9, a refrigeration system auxiliary device, an electric control box 18, and the like, and an outdoor unit 79 Without indoor exhaust, the outdoor air is cooled or heated by the exhaust fan 80, and the heat energy of the indoor exhaust is recovered by the indoor unit exhaust fan 59 responsible, the unit is suitable for indoor air ducts that are inconvenient to lead out to the outside, or where there is no indoor exhaust.
  • Figure 18 is a heat pump system diagram of a multi-unit heat pump heat recovery air conditioning unit, including a condenser 16 of the outdoor exhaust box 2, and an indoor exhaust box The condenser 16 of 59, the evaporator 8 of the blower 1 and the reheater 43, the room air conditioner 55, and the water cooler 25.
  • the system is undergoing a heating cycle, the reheater 43
  • the room air conditioner 55, the water cooler 25 are heating
  • the condenser 16 and the evaporator 8 are being cooled, and the heat is transferred to the room air conditioner 55 by the evaporator 8 through the circulation.
  • the internal heat is recycled.
  • This system is also called heat recovery type.
  • the heat pump system unlike the three control systems described above, is a two-control system that connects multiple units through a gas line and a high pressure liquid line.
  • the heat pump system shown in Figure 19 is undergoing a refrigeration cycle, and the electronic expansion throttle valve 91 is open, 92 When the heating cycle is performed, the electronic expansion throttle valve 91 is closed and 92 is opened.
  • the high-pressure liquid refrigerant exchanges heat with the low-temperature gas refrigerant, which can save energy, and the compressor 17 is screwed.
  • the rod compressor a part of the high-pressure liquid refrigerant is throttled by the electronic expansion throttle valve 93, and then lowered into a low-pressure low-temperature liquid, which is injected into the compressor 17 chamber for cooling.
  • the heat pump system shown in Fig. 20 is undergoing a heating cycle, and the expansion restrictor 97 is a two-way valve, and the accumulator 28 and the water cooler 98 are eliminated. It can be used as a liquid storage device in which high-temperature and high-pressure gas refrigerant is cooled into liquid refrigerant by cooling water (or cold air).
  • solenoid valve 99 is opened, 100 is closed, and vice versa, solenoid valve is used.
  • 99 closed, 100 open, solenoid valve 99, 100 can be used electric throttle valve or electric three-way control valve, water cooler 98 should use spiral tube, shell and tube heat exchanger.
  • the heat pump system shown in Fig. 21 is undergoing a heating cycle, and a reservoir 28 is connected behind the water cooler 101.
  • the high temperature and high pressure gaseous refrigerant is cooled by the cooling water (or cold air) into a liquid refrigerant in the water cooler 101, and then flows into the accumulator 28, and the low temperature gaseous refrigerant from the evaporator 8 or the condenser 16 passes through the solenoid valve.
  • 102 Entering the water cooler 101 it is also possible to cool the high temperature and high pressure gaseous refrigerant.
  • the water cooler 101 should adopt a double spiral tube heat exchanger, and the solenoid valve 102, 103 An electric control valve or an electric three-way control valve can be used.
  • the heat pump system shown in Fig. 22 is in a refrigeration cycle, the expansion throttle 97 is a two-way valve, and the compressor 17 is a screw.
  • the rod type compressor opens the solenoid valve 104, and a part of the high-pressure liquid refrigerant is throttled by the capillary expansion throttle valve 105, and then lowered into a low-pressure low-temperature liquid, which is injected into the compressor 17 chamber for cooling.
  • the heat pump system shown in Fig. 25 is undergoing a refrigeration cycle with a cylinder piston type accumulator 113.
  • the structure and working principle are shown in Fig. 28. .
  • Figure 26 is a structural view of a cylinder piston type reservoir, which is composed of a cylinder housing 114, a piston 115, a cylinder end cover 118, 123, a refrigerant circulation pipe 119, 120, 121, 122, etc., which is installed in the refrigerant circulation line between the evaporator 8 and the condenser 16, the refrigerant circulation pipe 119, 122 is connected to the drying filter 29, and then connected to the evaporator 8 and the condenser 16, respectively, and the refrigerant circulation pipes 120 and 121 are connected to the bidirectional expansion restrictor 97, and the refrigerant circulation pipe is connected.
  • the piston 115 has an orifice tube 116 and a small amount of high pressure liquid refrigerant can be supplied from the orifice tube 116 Throttle to the low pressure side, there is also a small amount of high pressure liquid refrigerant throttling from the clearance between the piston 115 and the cylinder wall to the low pressure side.
  • the expansion throttle 97 When the system is running at low load, the expansion throttle 97 is closed, and the system relies on the orifice tube 116 throttling operation, or without orifice 170, the system relies entirely on the expansion throttle 97.
  • Orifice tube 116 The ends can be bent with a small tube, which can be made of elastic material, and a heavy object is placed at the mouth to keep it hanging forever, and extends below the liquid level of the refrigerant to ensure liquid cooling at the bottom. The agent is throttled. In the piston 115 There is insulation layer 117 in it to reduce heat transfer.
  • the refrigerant flows in the reverse direction, the left side of the piston 115 becomes the high pressure side, and the right side becomes the low pressure side, which is pushed to the right end, and the top end to the cylinder end cap 123 The excess high pressure liquid refrigerant is then stored in the cylinder on the left side of the piston 115.
  • a refrigerant circulation pipe 119 is connected to a lower portion of the can body 124, 120, 121, 122, the refrigerant circulation pipe 119, 120 is connected to the left space of the diaphragm 125, and the refrigerant circulation pipes 121, 122 and the diaphragm 125 The space on the right side is connected, and the orifice tube 116 connects the spaces on both sides of the diaphragm 125.
  • the diaphragm 125 extends or expands to the left, close to the tank body.
  • the inner wall of 124 forms a large space on the right side, in which the high-pressure liquid refrigerant circulates, and the excess portion is stored therein.
  • the refrigerant circulation pipe 119, 120 Connected to the low pressure end, the throttled refrigerant circulates in a narrow space at the bottom of the diaphragm 125. This narrow space should ensure that the refrigerant does not evaporate and vaporize; conversely, the refrigerant flows in the opposite direction and the diaphragm 125 expands to the right. Grille 126 prevents the diaphragm 125 from extending downward to prevent clogging of the refrigerant circulation tube nozzle.
  • the shared reservoir 129 in Figure 29 is located in the bi-directional expansion restrictor 97 Above, when the right side is the high pressure end and the left side is the low pressure end, the right side solenoid valve 130 is opened, the left side solenoid valve is closed, and the accumulator 129 stores the right side high pressure liquid refrigerant, and vice versa, the left side solenoid valve 130 Open, the solenoid valve on the right side is closed, and the reservoir 129 stores the high pressure liquid refrigerant on the left side.
  • the air supply box, the exhaust fan box, the heat pump system main unit, and the water cooler can be placed indoors or outside; the air supply box can be brought back to the air outlet or without the return air outlet; the exhaust air box can be carried
  • the new air outlet can also be equipped with no fresh air outlets;
  • the multi-unit unit can carry multiple indoor units and outdoor units;
  • the water cooler can be connected in series or in parallel on the high-pressure air pipe or across the refrigerant circulation pipe, and it can also be converted into
  • the water heater provides a heat source for the heat pump system for defrost operation. It can also be used as a liquid reservoir to store excess liquid refrigerant.
  • the expansion throttle can use a two-way valve or a check valve. The two-way valve makes the heat pump system more simplify.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Description

热泵热回收空调机组
技术领域
本发明属于暖通空调领域,具体涉及采用热泵进行热能回收的空调机组。
背景技术
目前,空调排风热能的回收通常采用转轮式、板翅式,换热效率低,排风与新风之间有渗透和接触,对新风造成污染,不卫生,另外,这类空调机组不具备冷热源,要增加换热设备,由外部提供冷热源。
发明内容
本发明的目的在于提供一种结构合理,卫生清洁,充分节能的热回收空调机组。
本发明的解决方案是:热泵热回收空调机组是由送风箱、排风箱、热泵系统、配电控制系统组成。送风箱由新风口、回风口、过滤器、送风机、蒸发器、送风口、附加功能段组成。排风箱由进风口、新风口、过滤器、冷凝器、排风机、排风口、附加功能段组成。热泵系统由压缩机、冷凝器、膨胀节流器、蒸发器、辅助装置组成。配电控制系统是由配电设备和自动控制设备组成。
当设备运行时,室外新风和回风被送风机吸入送风箱内,经过热泵系统蒸发器的冷却(夏季)或加热(冬季),空气被处理到设定的参数,通过送风系统送到各个空调区域。室内排风和室外新风被排风机吸入排风箱,经过热泵系统冷凝器的加热(夏季)或冷却(冬季)后排出室外。
热泵系统夏季工作时,因室内空气温度比室外低,利用室内排风和室外新风冷却排风箱中热泵系统的冷凝器,冷量被冷凝器吸收。在送风箱中,室外新风和室内回风被热泵系统的蒸发器冷却降温后送到空调房间。这样,通过热泵系统的制冷循环,回收利用了室内排风中的冷量。
热泵系统冬季工作时,排风箱中热泵系统的冷凝器转换成了蒸发器,因室内空气温度比室外高,利用室内排风和室外新风加热排风箱中热泵系统的蒸发器,热量被蒸发器吸收。在送风箱中,热泵系统的蒸发器转换成了冷凝器,室外新风和室内回风被冷凝器加热升温后送到空调房间。这样,通过热泵系统的制热循环,回收利用了室内排风中的热量。
配电控制系统的配电设备为热泵系统、送风机、排风机、电动风量调节风口、自动控制设备提供电源,自动控制设备根据室内外空气参数的变化,自动调节热泵系统、送风机、排风机、电动风量调节风口的运行状态,保证空调机组的高效和稳定运行。
附图说明
图1是连体式 热泵热回收空调机组构造图( 1 )
图2是分体式 热泵热回收空调机组构造图
图3是 热泵系统图( 1 )
图4是 热泵系统图( 2 )
图5是 热泵系统图( 3 )
图6是连体式 热泵热回收空调机组构造图( 2 )
图7是 热泵系统图( 4 )
图 8 是热泵系统图( 5 )
图 9 是热泵系统图( 6 )
图 10 是热泵系统图( 7 )
图11是连体式 热泵热回收空调机组构造图( 3 )
图12是 热泵系统图( 8 )
图 13 是 热泵系统图( 9 )
图 14 是多联 式 热泵热回收空调机组构造图( 1 )
图 15 是热泵系统图( 10 )
图 16 是多联 式 热泵热回收空调机组构造图( 2 )
图 17 是多联 式 热泵热回收空调机组构造图( 3 )
图 18 是热泵系统图( 11 )
图 19 是热泵系统图( 12 )
图 20 是热泵系统图( 13 )
图 21 是热泵系统图( 14 )
图 22 是热泵系统图( 15 )
图 23 是热泵系统图( 16 )
图 24 是热泵系统图( 17 )
图 25 是热泵系统图( 18 )
图 26 是气缸活塞式储液器构造图
图 27 是隔膜式储液器构造图
图 28 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 1 )
图 29 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 2 )
图 30 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 3 )
图 31 是共用 储液器与双向膨胀节流阀在 热泵系统中的连接方式( 4 )
附图标记说明:
1 、送风箱, 2 、 59 、排风箱, 3 、 14 、新风口, 4 、回风口, 5 、 15 、过滤器, 6 、送风机, 7 、隔板, 8 、蒸发器, 9 、 119 、 120 、 121 、 122 、制冷剂循环管, 10 、加湿器, 11 、挡水板, 12 、送风口, 13 、进风口, 16 、冷凝器, 17 、压缩机, 18 、 63 、 64 、电控箱, 19 、排风机, 20 、排风口, 21 、 22 、旁通风口, 23 、回油毛细管, 24 、 油分离器,25、98、101、水冷器,26、27、四通换向阀,28、113、129、储液器,29、干燥过滤器,30、视液镜,31、52、53、54、67、72、77、85、86、87、91、92、93、97、105、106、膨胀节流器,32、96、气液分离器,33、34、35、36、57、58、65、66、68、69、70、71、73、74、75、76、89、90、99、100、102、103、104、130、131、132、133、 电磁阀, 39 、 40 、 41 、 42 、 56 、 81 、 82 、 83 、 84 、 94 、 95 、 127 、 128 、 134 、单向阀, 43 、再热器, 37 、 38 、 44 、 45 、电动调节阀, 46 、 47 、 48 、 49 、 50 、 51 、 108 、 109 、 110 、 111 、 112 、阀门, 55 、房间空调器, 60 、低压气管, 61 、高压气管, 62 、高压(或中压)液管, 78 、模式转换器, 79 、室外机, 80 、排风扇, 88 、换向器, 107 、换热器, 114 、气缸外壳, 115 、活塞, 116 、节流孔管, 117 、保温层, 118 、 123 、气缸端盖, 124 、罐体, 125 、隔膜, 126 、格栅
具体实施办法
图 1 是一种连体式 热泵热回收空调机组构造图,该设备由送风箱 1 、排风箱 2 、热泵系统、配电控制系统四大部分组成。
箱体采用钢板等材料制成,用聚氨酯等保温材料保温。箱体上设有检查门,便于人员进入箱内检修和维护。送风箱 1 与排风箱 2 之间由隔板 7 断开,贴保温材料,防止新风与排风之间窜风和热交换。送风箱 1 、排风箱 2 可以做成整体式的,把所需的设备安装在一个完整的箱体内,整体式的空调机组不便于运输、安装和检修,但节省材料;也可以做成分段组合式的,把不同功能的设备放在若干个功能段内,做成若干个小箱体,到现场后再拼装成一个整体。例如:送风箱 1 中,把新风口 3 、回风口 4 、过滤器 5 做成进风混合过滤段,以此类推,可做成送风机段、蒸发器段、加湿送风段。排风箱 2 可做成进风混合过滤段、冷凝器段、热泵主机和电控箱段、排风机段。每段可以拆卸组装,便于运输、安装和检修。送风箱 1 、排风箱 2 可根据需要附加其它功能段,如附加电加热段、空气消毒段、消声段、检修段等。
热泵系统主机部分(压缩机 17 等设备)可放在箱体内,也可放在箱体外,蒸发器 8 、冷凝器 16 、制冷剂循环管 9 等设备位于箱体内。蒸发器 8 、冷凝器 16 采用直膨式结构盘管等形式的换热器,保证制冷剂在其中蒸发和冷凝,换热器用铜管和铝翅片制作。
配电控制系统的电控箱 18 装有控制器、显示器、配电设备等,可挂在箱体外,也可嵌入箱体内,或与箱体分体设置,各种配电和控制设备及管线分布于箱体内。穿越隔板 7 的各种管线应做密封处理,防止漏风。
夏季设备工作时,在送风箱 1 中,室外高温高湿的新风和室内回风在送风机 6 的作用下,从新风口 3 和回风口 4 进入箱内,混合后被过滤器 5 除尘过滤,经过送风机 6 ,通过蒸发器 8 ,被冷却降温除湿,达到设定的温湿度后,从送风口 12 送到空调区域;在排风箱 2 中,室外新风和室内排风在排风机 19 的作用下,从进风口 13 、新风口 14 进入箱内,混合后被过滤器 15 除尘过滤,通过冷凝器 16 ,被加热升温,再通过排风机 19 、排风口 20 排至室外。此时,热泵系统进行制冷循环,在送风箱 1 中,蒸发器 8 蒸发吸热,送风被降温除湿,在排风箱 2 中,冷凝器 16 被室内外空气冷却降温,室内排风中的冷量被回收利用。
冬季设备工作时,在送风箱 1 中,室外低温的新风和室内回风在送风机 6 的作用下,从新风口 3 和回风口 4 进入箱内,混合后被过滤器 5 除尘过滤,经过送风机 6 ,通过蒸发器 8 ,被加热升温,如果湿度低,还需加湿器 10 加湿,达到设定的温湿度后,经过挡水板 11 从送风口 12 送到空调区域;在排风箱 2 中,室外新风和室内排风在排风机 19 的作用下,从进风口 13 、新风口 14 进入箱内,混合后被过滤器 15 除尘过滤,通过冷凝器 16 ,被冷却降温,再通过排风机 19 、排风口 20 排至室外。此时,热泵系统进行制热循环,系统进行了转换,在送风箱 1 中,蒸发器 8 转换成了冷凝器,送风被加热升温,在排风箱 2 中,冷凝器 16 转换成蒸发器蒸发吸热,室内排风中的热量被回收利用。
过渡季节设备工作时,热泵系统停止运行,送风箱 1 中回风口 4 关闭,新风口 3 、送风口 12 打开,送风机 6 运行;排风箱 2 中新风口 14 关闭,进风口 13 、旁通风口 21 、排风口 20 打开,排风机 19 运行,空调机组进行全新风运行。旁通风口 21 同进风口 13 一样接室内排风,它可以减少冷凝器 16 引起的排风阻力,降低排风机 19 的耗电量。
设备运行时,配电控制系统的配电设备为热泵系统、送风机 6 、排风机 19 、电动风量调节风口、自动控制系统提供电源。热泵系统为变容量系统,压缩机 17 为变容量压缩机,送风机 6 、排风机 19 为变频调速风机,新风口 3 、 14 、回风口 4 、进风口 13 为电动风量调节风口,也可采用手动、电动两用风量调节风口,旁通风口 21 不常用,可设为手动风口,也可设为手动、电动两用风量调节风口。自动控制设备根据室内外空气参数的变化,控制压缩机 17 的排气量,自动调节热泵系统的制冷量或制热量,控制送风机 6 和排风机 19 的转速、各个风口的开度,自动调节风量,保证空调机组的高效和稳定运行。自动控制系统中有控制器、显示器、传感器、执行器等设备,通常采用微机控制(如 PLC 控制器),具有自主设定参数、故障检测、自动报警等功能,能够通过触摸屏现场控制,也可以通过计算机键盘、鼠标远程控制,以及通过局域网、互联网实现网络控制。
在冬季,当室外气温较低、室内新风需求量较小、没有室内排风时,热泵系统工作效率低,甚至无法启动,可在送风箱 1 中设电加热器,直接加热新风,而不启动热泵系统,或者在排风箱 2 中设电加热器,加热新风,再启动热泵系统,电加热器可用于融霜。
图 1 所示, 送风箱 1 位于 排风箱2的下面,也可把 送风箱 1 放在 排风箱2的上面。夏季运行时,蒸发器8会产生大量的低温冷凝水,为了节能,可以通过重力自流或水泵加压的办法,把这部分低温冷凝水喷洒到排风箱2中,用于冷却排风或冷凝器16。在蒸发器8和冷凝器16的下面装有冷凝水集水盘,收集冷凝水,并排到箱体外。 送风箱 1 、 排风箱2 可以放在室内,也可以放在室外,如放在屋顶上,可减少占地面积。另外,进、排风的方向和 风口的位置也可以根据需要进行调整。
上述设备中,送风箱 1 中带有回风口 4 ,可以处理室内回风,该机组适用于全空气空调系统、变风量空调系统,如大型商场、写字楼。当不带有回风口 4 时,该设备为全新风空调机组,送风为全新风,清洁卫生,适用于空气卫生标准较高的宾馆、医院。
图 2 是一种分体式 热泵热回收空调机组构造图,送风箱 1 与 排风箱2是分开的,设备出厂时,蒸发器8或冷凝器16与热泵系统主机连接的制冷剂循环管9是断开并密封的,与电控箱18连接的各类线路也是断开的,现场安装时,制冷剂循环管9通过快速接头连接,各类线路接入电控箱18,虽然管路和线路增加了,但仍然可以保证机组正常运行。两个箱体可以根据用户的需要放在不同的位置,布置更加灵活,例如可以把排风箱2放在屋顶上,节省占地面积,减少机组噪音的影响。 送风箱 1 上可增加一个送风旁通风口 22 ,能够减少送风阻力。
图 3 为上述 热泵热回收空调机组的热泵系统图,所进行的是制冷循环。制冷剂循环过程是这样的:压缩机 17 →油分离器24→水冷器25→四通换向阀26→冷凝器16→四通换向阀27→储液器28→干燥过滤器29→视液镜30→膨胀节流器31→四通换向阀27→蒸发器8→四通换向阀26→气液分离器32→ 压缩机 17 。从压缩机 17 排出的高压高温气态制冷剂在油分离器 24 中与润滑油分离,通过回油毛细管 23 ,润滑油回流到压缩机 17 ,也可以通过其它方式回流润滑油。在夏季,自来水进入 水冷器25,吸收高温制冷剂的热量,成为热水,可以为客户提供生活热水,也节省了燃料费。同时由于制冷剂的热量被自来水吸收,用于冷凝制冷剂的新风量就可以减少,排风机19耗电量降低。当客户不需要生活热水时,可取消或关掉水冷器25,制冷剂的热量被室内排风和室外新风排走。水冷器25可采用螺旋管式、壳管式、套管式等结构形式,使用闭式有压容器或开式无压容器,它离 压缩机 17 排气口越近,热回收效果越好。图 3 中水冷器25串联在制冷剂管道上,由于制冷剂不可控,水冷器25中的水温也难以控制,它最好作为建筑内热水系统的补水预热器使用。膨胀节流器31通常采用电子膨胀阀,调节制冷剂流量比较快速准确,也可采用其它膨胀节流器,如毛细管,适用于小型系统。压缩机17采用变容量压缩机,如:变频转子式、涡旋式、螺杆式压缩机。当系统制冷量、制热量变化时,压缩机17也适时变容量输出,实现节能运行。当 热泵系统中有多台压缩机 17 并联运行时,压缩机 17 全部采用定容量压缩机,或全部采用变容量压缩机,或者采用变容量压缩机与定容量压缩机的组合,上述组合方式都可以实现变容量运行, 达到节能的目的。另外,热泵系统中除了 回油毛细管 23 、 油分离器24、四通换向阀26、27、储液器28、干燥过滤器29、视液镜30、气液分离器32等辅助设备外,还设有其它辅助设备,如:回热器、再冷器、温度、压力传感器等。自控系统根据系统温度、压力的变化,自动调节系统的运行状况,保持热泵系统高效率的运行。
在冬季 热泵系统进行制热循环, 四通换向阀26、27转向后,蒸发器8变成冷凝器,而冷凝器16变成了蒸发器, 制冷剂循环过程是这样的:压缩机 17 →油分离器24→水冷器25→四通换向阀26→蒸发器8→四通换向阀27→储液器28→干燥过滤器29→视液镜30→膨胀节流器31→四通换向阀27→冷凝器16→四通换向阀26→气液分离器32→ 压缩机 17 。在冬季, 水冷器25停止工作,不生产热水,制冷剂在蒸发器8中散热,用于加热室外新风,而在冷凝器16中是吸热,吸收室内排风和室外新风的热量,回收利用了室内排风的热能。如果水冷器25在冬季也能生产热水,需要加大系统容量,提高产热量,如:增大压缩机17的功率,增大排风箱2中室外新风量和排风机19的排风量。在冬季,水冷器25适合在南方使用,而在北方,室外温度低,水冷器25工作时, 热泵系统效率低。以上所述的带 水冷器25的设备也可称为 热水型热泵热回收空调机组。
图4所示的 热泵系统中,电磁阀 33 、 34 、 35 、 36 代替了上述热泵系统中的 四通换向阀27。当 电磁阀 33 、 34 开启,电磁阀 35 、 36 关闭时,系统进行的是制冷循环; 当 电磁阀 33 、 34 关闭,电磁阀 35 、 36 开启时,系统进行的是制热循环。当冬季室外温度低、室内排风量小时,热泵系统进行制热循环,冷凝器 16 作为蒸发器容易结霜,为了融霜, 水冷器25停止输出热水,而是由外部热源(锅炉、电热等)向水冷器25输入热水,水冷器25变成了水热器,为制冷剂蒸发提供热量 。融霜时,打开 排风箱2的 进风口 13 ,关闭新风口 14 ,打开电动调节阀 37 ,关闭电动调节阀 38 ,利用室内排风融霜 ,此时并不影响空调系统的正常运行。
图5所示的 热泵系统中,单向阀 39 、 40 、 41 、 42 代替了上述热泵系统中的 四通换向阀27和 电磁阀 33 、 34 、 35 、 36 ,也可采用单向阀与电磁阀组合的方式。系统进行制冷循环时,单向阀 39 、 40 开启,单向阀 41 、 42 关闭;系统进行制热循环时,单向阀 39 、 40 关闭,单向阀 41 、 42 开启。融霜时, 向水冷器25输入热水, 打开 排风箱2的 进风口 13 ,关闭新风口 14 ,打开电动调节阀 37 ,关闭电动调节阀 38 ,利用室内排风融霜 。水冷器25可做成蓄热式容器,加注蓄热材料,把建筑的余热储存其中,用于 融霜和加热热水。
图 6 是另一种连体式 热泵热回收空调机组构造图,它与上述空调机组不同之处是在送风箱 1 中增加了再热器 43 ,当空气被 蒸发器8降温冷却后,再被 再热器 43 加热,可以提高送风温度,减少送风温差,改善空调舒适度,适用于空调精度高、湿度大的空调场合。该设备也可以做成图 2 所示的分体式 热泵热回收空调机组。
图 7 是 图 6 所示设备的 热泵系统图,再热器 43 与冷凝器 16 并联在系统中,电动调节阀 44 、 45 根据负荷变化情况,调节进入再热器 43 、冷凝器 16 的制冷剂流量,当冬季制热循环时,电动调节阀 44 关闭,再热器 43 不工作。电动调节阀 44 、 45 其中一个改为电磁阀也可以分配制冷剂流量。再热器 43 的结构形式同蒸发器 8 和冷凝器 16 。以上所述的带再热器 43 的设备也可称为 再热型热泵热回收空调机组。
图 8 是另一种 再热型热泵热回收空调机组的热泵系统图,图中所示在进行制冷循环,阀门 46 、 49 、 50 打开,阀门 47 、 48 、 51 关闭。它与图 7 不同的是,再热器43可以转换成蒸发器,当蒸发器8不能工作时,关闭阀门46、49、50、电动调节阀44,用再热器43做备用。制冷时,关闭阀门48, 打开阀门 47 、 51 , 再热器43转换成蒸发器 ;制热时, 关闭阀门47, 打开阀门 48 、 51 , 再热器43转换成冷凝器 。
图9所示的 热泵系统中,电磁阀 33 、 34 、 35 、 36 代替了图 8 中 热泵系统的 四通换向阀27。
图10所示的 热泵系统中,单向阀 39 、 40 、 41 、 42 代替了图 8 中 热泵系统的 四通换向阀27。
图 11 是另一种连体式 热泵热回收空调机组构造图,它与上述空调机组不同之处是有两套制冷系统。其中一套是热泵系统,用于冷却或加热空气;另一套为单冷系统,用于再热被冷却的空气,该系统也可做成热泵系统,既可用于再热,也可用于冷却,与前者互为备用,虽然增加了设备,但可靠性提高。该设备也可以做成图 2 所示的分体式 热泵热回收空调机组。上述 设备也可称为 双机型热泵热回收空调机组。
图 12 是一种多联式 热泵热回收空调机组的热泵系统图,图中所示为制冷循环, 有两台压缩机17并联运行,制冷剂在膨胀节流器52、53、54中可以双向流动, 冷凝器 16 装在排风箱 2 中,蒸发器 8 装在送风箱 1 中。它有一个排风箱 2 和冷凝器 16 ,可以连接两个及数个送风箱 1 和蒸发器 8 ,以及其它设备,图 12 中仅示意连接两个 送风箱 1 和蒸发器 8 、一个房间空调器 55 、一个水冷器 25 。房间空调器 55 放在空调房间内,它采用直膨式结构盘管等形式的换热器,用铜管和铝翅片制作,它依靠制冷剂的直接蒸发或冷凝,循环冷却或加热房间内的空气,它与送风箱 1 、排风箱 2 有所不同,可称为系统的附加设备,或末端设备,还有其它利用制冷剂冷却或加热的附加设备,如:卫生间的烘手器,可利用制冷剂的冷凝热;利用建筑的污水,夏天冷却制冷剂、冬天加热制冷剂的设备;利用厨房油烟、洗涤废水的废热加热制冷剂的设备;利用太阳能热水或热风加热制冷剂的设备。在送风箱 1 所服务的空调区域中,房间空调器 55 这类附加设备足够多时,送风箱 1 不带回风口 4 ,或关闭回风口 4 ,只送新风。水冷器 25 并联在系统内,当水温达到设定温度时,电磁阀 57 关闭,切断高温制冷剂,电磁阀 58 打开,高温制冷剂通过,电磁阀 57 、 58 也可改成电动调节阀,让制冷剂按比例通过两阀门。排风箱 2 通常放在室外,称为室外机组(因排风箱 2 可以放在室内,也可称为室内机组),室内排风集中送到排风箱 2 中。对于大型机组,可做成两个及数个排风箱 2 和冷凝器 16 ,连接数个送风箱 1 和蒸发器 8 、附加设备、水冷器 25 等室内机组,水冷器 25 也可放在室外,称为室外机组。上述设备中,若干个蒸发器 8 的工况是相同的,要么都是制冷,要么都是制热,因此,可称为同工况型热泵系统。
图 13 是另一种多联式 热泵热回收空调机组的热泵系统图,它在送风箱 1 中增加了再热器 43 ,并设有水冷器 25 ,与冷凝器 16 并联在系统内,依靠电动调节阀 44 调节制冷剂流量。该设备中,两台送风箱 1 中的蒸发器 8 和房间空调器 55 可以同时制冷、同时制热,两台送风箱 1 也可以一台制热,同时另一台制冷,其中制冷的送风箱 1 中的再热器 43 转换成了蒸发器,用于制冷,同箱内的蒸发器 8 不工作。
图 14 是一种多联式 热泵热回收空调机组构造图。排风箱 2 放在室外,进风口 13 、旁通风口 21 接室内排风,冷凝器 16 也可转换成蒸发器,吸收室内排风和室外新风中的冷热量,压缩机 17 放在箱体内,也可放在箱体外,对于大容量空调系统,可设多台排风箱 2 并联使用;排风箱 59 与上述排风箱 2 有所不同,它不装压缩机 17 、新风口 14 ,只处理室内排风,冷凝器 16 也可转换成蒸发器,回收室内排风中的冷热量,它装在室内,与服务于相同空调区域的送风箱 1 可以做成整体式,也可以做成分体式,图 14 中是分体式,这样布置更加灵活方便;送风箱1中, 蒸发器 8 也可转换成冷凝器,再热器 43 也可转换成蒸发器或冷凝器。排风箱 2 、 59 、 送风箱1、房间空调器55、水冷器25连接到 低压气管 60 、高压气管 61 、高压(或中压)液管 62 上。 水冷器25放在室外,它是一个保温的有压容器,装有制冷剂散热器。 该多联式热泵热回收空调机组可称为再热型、水冷型。图中热泵系统仅示意连接三台室内机组( 送风箱1、 排风箱 59 、房间空调器 55 )、两台室外机(排风箱 2 、 水冷器25 ),它可以连接数台室内外机组。当空调区域有足够大的排风道排向室外时,可不设排风箱 59 ,室内排风全部接入排风箱 2 中。
图 15 是图14所示多联式 热泵热回收空调机组的热泵系统图。排风箱 2 中电磁阀 65 打开,电磁阀 66 关闭,冷凝器 16 制热;电磁阀 65 关闭,电磁阀 66 打开,冷凝器 16 制冷。电磁阀 68 打开,高温制冷剂通过 水冷器25,给水加热,当水温达到设定温度, 电磁阀 68 关闭。当冷凝器 16 需要融霜时,电磁阀 68 关闭,电磁阀 69 打开, 水冷器25转换成水热器,由外部向其提供热源 。排风箱 59 中电磁阀 70 打开,电磁阀 71 关闭,冷凝器 16 制热;电磁阀 71 打开,电磁阀 70 关闭,冷凝器 16 制冷。送风箱 1 中有再热器 43 , 膨胀节流器77控制制冷剂的流量, 通过控制电磁阀 73 、 74 ,再热器 43 也可以转换成蒸发器或冷凝器使用,与蒸发器 8 互为备用。如果不需要转换成蒸发器,仅做再热器使用,可以取消电磁阀 73 、 74 、 膨胀节流器77、干燥过滤器29, 采取图 7 的做法,设电动调节阀 44 ,再热器 43 与高压气管 61 、高压(或中压)液管 62 连接。电磁阀 73 打开,电磁阀 74 关闭,再热器 43 制热;电磁阀 73 关闭,电磁阀 74 打开,再热器 43 制冷。电磁阀 76 打开,电磁阀 75 关闭,蒸发器 8 制冷;电磁阀 76 关闭,电磁阀 75 打开,蒸发器 8 制热。模式转换器 78 控制 房间空调器55 制冷与制热工况的转换。
图 15 所示系统是三管制系统,蒸发器 8 、再热器 43 、冷凝器 16 、 房间空调器55 、 水冷器25 与低压气管 60 、高压气管 61 、高压(或中压)液管 62 相连,该系统有三种工况:同时制冷、同时制热、或一部分箱体在制冷的同时,其它箱体在制热。假设该系统在冬季进行制热循环,送风箱 1 送冷风,蒸发器 8 制冷、再热器 43 制热; 房间空调器55制热,它与 送风箱 1 不在一个空调区域;排风箱 59 吸热,其中的冷凝器 16 制冷; 水冷器25制热; 排风箱 2 吸热,其中的冷凝器 16 制冷 (它是制冷还是制热,需要通过自动控制系统的运算和判断后执行)。 因此在上述的制冷剂循环过程中, 房间空调器55、水冷器25、 再热器 43 所吸收的冷量传给了蒸发器 8 、冷凝器 16 ,蒸发器 8 、冷凝器 16 所吸收的热量传给了 房间空调器55、水冷器25、 再热器 43 。
因此,通过控制电磁阀开闭、模式转换器的转换,实现了各个机组运行工况的转变,可以满足不同空调场所同时制冷和制热的需求,而且不同空调场所的冷热量又可以互相回收利用,回收总量提高,节能显著,这种 多联式 热泵系统也称为 热回收型 热泵系统。例如进深较大的写字楼,在冬季,外区需要送热风,而内区需要送冷风,采用本设备可以满足要求。
图 16 是另一种多联式 热泵热回收空调机组构造图,一组放在室外(也可放在室内)的送风箱 1 、排风箱 2 、热泵系统带三台以上的 房间空调器55,它是三管制热回收型的 热泵系统。
图 17 是另一种多联式 热泵热回收空调机组构造图,它把图 14 中的室外机组排风箱 2 换成了室外机 79 。它是由冷凝器 16 、排风扇 80 、压缩机 17 、制冷剂循环管 9 、制冷系统辅助装置、电控箱 18 等组成,室外机 79 不接室内排风,室外空气在排风扇 80 的作用下,冷却或加热冷凝器 16 ,室内排风的热能回收由室内机组排风箱 59 负责,该机组适用于室内排风道向室外引出不方便,或没有室内排风可利用的场合。
图 18 是一种多联式 热泵热回收空调机组的热泵系统图,包含有室外排风箱 2 的冷凝器 16 、室内排风箱 59 的冷凝器 16 、送风箱 1 的蒸发器 8 和再热器 43 、 房间空调器55、水冷器25。该系统在进行制热循环, 再热器 43 、 房间空调器55、水冷器25在制热, 冷凝器 16 、蒸发器 8 在制冷,通过循环, 蒸发器 8 将所服务的空调区域的热量,传递到 房间空调器55 所服务的空调区域,内部的热量得到回收利用。该系统也称为 热回收型 热泵系统,与上述三管制系统不同之处,它是两管制,通过一根气体管和一根高压液体管,将多个机组连接起来。
图19所示的 热泵系统正在进行制冷循环,电子膨胀节流阀 91 打开、 92 关闭,当进行制热循环时,电子膨胀节流阀 91 关闭、 92 打开,在 气液分离器96中,高压液态制冷剂与低温气态制冷剂热交换,可以节能,压缩机17为螺 杆式压缩机,一部分 高压液态制冷剂经过 电子膨胀节流阀 93 节流后,降为低压低温液体,喷入 压缩机17 腔内进行冷却。
图20所示的 热泵系统正在进行制热循环,膨胀节流器 97 采用双向阀,取消了 储液器28, 水冷器 98 可作为储液器使用,高温高压气态制冷剂在其中被冷却水(或冷风)冷却成液态制冷剂,当需要储存或使用制冷剂时,电磁阀 99 打开、 100 关闭,反之,则电磁阀 99 关闭、 100 打开,电磁阀 99 、 100 可采用电动调节阀或电动三通调节阀,水冷器 98 宜采用螺旋管式、壳管式换热器。如果取消专用的 储液器, 多余的制冷剂可储存在蒸发器 8 、冷凝器 16 或管道中,加大蒸发器 8 、冷凝器 16 底部盘管管径或集液箱的尺寸,为冷凝后的液态制冷剂预留储存空间,这样系统得到简化。
图21所示的 热泵系统正在进行制热循环,在水冷器 101 后面连接有储液器 28 ,高温高压气态制冷剂在水冷器 101 中被冷却水(或冷风)冷却成液态制冷剂,再流进储液器 28 中,来自蒸发器 8 或冷凝器 16 的低温气态制冷剂通过电磁阀 102 进入到水冷器 101 中,也可以冷却高温高压气态制冷剂,水冷器 101 宜采用双螺旋管式换热器,电磁阀 102 、 103 可采用电动调节阀或电动三通调节阀。
图22所示的 热泵系统正在进行制冷循环,膨胀节流器 97 采用双向阀, 压缩机17为螺 杆式压缩机,打开电磁阀 104 ,一部分 高压液态制冷剂经过 毛细管膨胀节流阀 105 节流后,降为低压低温液体,喷入 压缩机17 腔内进行冷却。
图23所示的 热泵系统正在进行制热循环, 压缩机17为补气 式涡旋压缩机,在室外低温环境下,打开补气膨胀节流器 106 ,一部分 高压液态制冷剂 节流为低压低温液体 制冷剂,再经过换热器107蒸发气化,进入 压缩机 17 补气腔内,使压缩机 17 的运行状况得到改善,制热量提高。
图24所示的 热泵系统正在进行制冷循环,它同 图8、图9、图10所示的 热泵系统功能相同,但由于采用双向膨胀节流器 97 ,使系统得到简化,再热器 43 不仅可以作为冷凝器、蒸发器使用,也可以作为储液器,阀门 108 、 109 、 110 、 111 、 112 可采用电磁阀。
图25所示的 热泵系统正在进行制冷循环,它带有气缸活塞式储液器 113 ,其结构和工作原理见图 28 。
图 26 是气缸活塞式储液器构造图,该储液器是由气缸外壳 114 、活塞 115 、气缸端盖 118 、 123 、制冷剂循环管 119 、 120 、 121 、 122 等组成,它装在蒸发器 8 、冷凝器 16 之间的制冷剂循环管路上,制冷剂循环管 119 、 122 与 干燥过滤器29相连,然后分别与 蒸发器 8 、冷凝器 16 相连, 制冷剂循环管 120 、 121 与双向膨胀节流器 97 相连,制冷剂循环管 119 、 120 和 121 、 122 分别接在气缸端盖 118 、 123 上,与气缸相通,活塞 115 可以在气缸内滑动。当系统进行制冷循环时,来自冷凝器 16 的高压液态制冷剂通过制冷剂循环管 122 从气缸端盖 123 进入气缸,大部分高压液态制冷剂又通过制冷剂循环管 121 进入到双向膨胀节流器 97 ,被节流为低压液态制冷剂,通过制冷剂循环管 120 ,从气缸端盖 118 流回到气缸,最后通过制冷剂循环管 119 又流出气缸,进入到 干燥过滤器29、 蒸发器 8 。由于气缸内一端是高压液态制冷剂,另一端是低压液态制冷剂,在活塞 115 两侧形成压差,从而推动活塞 115 从高压端向低压端移动,图中是从右向左移动,顶到气缸端盖 118 时为止,在活塞 115 左侧与气缸端盖 118 之间形成一个狭小的腔体空间,保证低压液态制冷剂的流通循环,这个狭小空间应保证制冷剂不会蒸发气化,而在活塞 115 右侧与气缸端盖 123 之间形成一个较大的腔体空间,保证高压液态制冷剂的流通循环和储存。活塞 115 带有节流孔管 116 ,少量的高压液态制冷剂可从节流孔管 116 节流到低压侧,也有微量的高压液态制冷剂从活塞 115 与气缸壁之间的配合间隙中节流到低压侧,当系统低负荷运转时,膨胀节流器 97 关闭,系统依靠节流孔管 116 节流运行,也可以不设节流孔管 116 ,系统完全依靠膨胀节流器 97 运行。节流孔管 116 两端可带有向下弯曲的小管,它可用弹性材料制成,在它的口部装一个重物,使它永远保持下垂状态,并伸入到制冷剂液面以下,保证底部的液态制冷剂被节流。在活塞 115 中有保温层 117 ,可减少传热。当系统进行制热循环时,制冷剂反向流动,活塞 115 的左侧变为高压侧,右侧变为低压侧,其被推向右端,顶到气缸端盖 123 时为止,多余的高压液态制冷剂储存在活塞 115 左侧的气缸内。
图 27 是隔膜式储液器构造图,它是由罐体 124 、隔膜 125 、节流孔管 116 、制冷剂循环管 119 、 120 、 121 、 122 等组成。隔膜 125 是高弹性、高强度、不渗漏的柔性材料,它位于罐体 124 的中央,将其分隔成左右两个独立的空间。当系统停机、压力平衡时,隔膜 125 处于任意形状的松弛状态。在罐体 124 的下部连接有制冷剂循环管 119 、 120 、 121 、 122 ,制冷剂循环管 119 、 120 与隔膜 125 左侧空间相连通,制冷剂循环管 121 、 122 与隔膜 125 右侧空间相连通,节流孔管 116 将隔膜 125 两侧空间相连通。当制冷剂循环管 121 、 122 接高压端时,隔膜 125 向左伸展或膨胀,紧贴罐体 124 的内壁,在右侧形成较大的空间,高压液态制冷剂在其中流通循环,多余的部分储存其中,此时,制冷剂循环管 119 、 120 接低压端,被节流后的制冷剂在隔膜 125 底部狭小空间内流通循环,这个狭小空间应保证制冷剂不会蒸发气化;反之,制冷剂反向流动,隔膜 125 向右膨胀。格栅 126 可阻止隔膜 125 向下伸展,防止堵塞制冷剂循环管管口。
图 28 中设有两个储液器 28 ,当双向膨胀节流器 97 右侧为高压端、左侧为低压端时,使用右侧的储液器 28 储存高压液态制冷剂,左侧的储液器 28 不使用,反之,使用左侧的储液器 28 ,右侧的不使用。图中的单向阀也可换成电磁阀。
图 29 中共用储液器 129 位于双向膨胀节流器 97 的上方,当右侧为高压端、左侧为低压端时,右侧电磁阀 130 打开、左侧的电磁阀关闭,储液器 129 储存右侧的高压液态制冷剂,反之,左侧电磁阀 130 打开、右侧的电磁阀关闭,储液器 129 储存左侧的高压液态制冷剂。
图 30 中,当双向膨胀节流阀 97 右侧为高压端、左侧为低压端时,右侧电磁阀 132 、 133 打开、 131 关闭,左侧电磁阀 132 、 133 关闭、 131 打开,共用储液器 28 储存右侧的高压液态制冷剂,反之,左侧电磁阀 132 、 133 打开、 131 关闭,右侧电磁阀 132 、 133 关闭、 131 打开,共用储液器 28 储存左侧的高压液态制冷剂。
图 31 中,当双向膨胀节流器 97 右侧为高压端、左侧为低压端时,右侧电磁阀 133 打开、左侧电磁阀 133 关闭,共用储液器 28 储存右侧的高压液态制冷剂,反之,左侧电磁阀 133 打开、右侧电磁阀 133 关闭,共用储液器 28 储存左侧的高压液态制冷剂。
综上所述,送风箱、排风箱、热泵系统主机、水冷器可以放在室内,也可以放在室外;送风箱可以带回风口,也可以不带回风口;排风箱可以带新风口,也可以不带新风口;多联式机组可以带多台室内机组和室外机组;水冷器串联、并联在高压气管上,或跨接在制冷剂循环管之间,它也可以转换成水热器,为热泵系统提供热源,用于融霜运行,它也可以作为储液器,储存多余的液态制冷剂;膨胀节流器可采用双向阀或单向阀,双向阀使热泵系统更加简化。
以上所述,仅是本发明的较佳实施办法而已,并非对本发明做任何形式上的限制。依据本发明的技术实质对以上实施办法所做的任何简单修改、等同变化及修饰,均属于本发明的保护范围。

Claims (11)

1.热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,送风箱带有新风口、回风口、送风口、蒸发器、送风机、过滤器、附加功能段;排风箱带有进风口、新风口、排风口、冷凝器、排风机、过滤器、附加功能段;热泵系统是由压缩机、冷凝器、膨胀节流器、蒸发器、辅助装置、制冷剂循环管、制冷剂组成;配电控制系统是由配电设备和自动控制设备组成,其特征在于,新风口接室外空气,回风口接室内回风,送风口接室内空调系统送风管道,进风口接室内排风,排风口接室外空气;室外新风和室内回风被送风机吸入送风箱,经过过滤器、蒸发器、附加功能段的处理,达到设定的空调参数后,通过送风口送到空调区域;室外新风和室内排风被排风机吸入排风箱,经过过滤器、冷凝器、附加功能段的处理后,通过排风口排到室外;送风箱、排风箱是整体式的,或分段组合式的,送风箱与排风箱之间是密闭隔断的;热泵系统的蒸发器装在送风箱中,制冷时,用于冷却空气,制热时,转换成冷凝器,用于加热空气;热泵系统的冷凝器装在排风箱中,制冷时,冷凝热被室内排风和室外新风带走,制热时,转换成蒸发器,吸收室内排风和室外新风中的热量;热泵系统的压缩机及辅助装置装在排风箱中,或装在送风箱中,也可装在送风箱、排风箱之外;配电控制系统的电控箱嵌入排风箱或送风箱中,或挂在送风箱、排风箱外面,或与送风箱、排风箱分体设置;上述风口为可调节风口,送风机、排风机为变频调速风机,热泵系统为变容量系统;送风箱有带回风口的,也有不带回风口的;排风箱有带新风口的,也有不带新风口的。
2. 根据权利要求1所述的热泵热回收空调机组,其特征在于,排风箱与送风箱的连接可以是整体式、分体式、多联式的,相应的,热泵系统也可以是整体式、分体式、多联式的,它们可以放在室内,也可以放在室外。
3. 根据权利要求1所述的热泵热回收空调机组,其特征在于,热水型热泵热回收空调机组带有可以提供热水的水冷器,它串联、并联、或跨接在制冷剂管道上,采用闭式有压容器或开式无压容器,它也可以转换成水热器使用,为热泵系统提供热源,它也可以作为储液器使用,储存液态制冷剂。
4. 根据权利要求1所述的热泵热回收空调机组,其特征在于,再热型热泵热回收空调机组带再热器和控制再热器中制冷剂流量的装置,再热器也可以转换成蒸发器。
5. 根据权利要求1所述的热泵热回收空调机组,其特征在于,双机型热泵热回收空调机组带有两套制冷系统,其中一套是热泵系统,用于空气的冷却或加热;另一套是单冷或热泵系统,用于空气的再热或冷却。
6. 根据权利要求2所述的热泵热回收空调机组,其特征在于,多联式热泵热回收空调机组包含有送风箱、排风箱、热泵系统、室外机、附加设备、水冷器、配电控制系统,热泵系统连接一台或数台排风箱或室外机,连接两台或数台室内机组。
7.根据权利要求2所述的热泵热回收空调机组,其特征在于,多联式热泵热回收空调机组采用同工况型热泵系统,或热回收型热泵系统。
8.根据权利要求2所述的热泵热回收空调机组,其特征在于,多联式热泵热回收空调机组的室外机组有室外机或排风箱,室外机带冷凝器,也可以转换成蒸发器,它不与室内排风相连,只与室外空气进行热交换,当室外机组是室外机时,室内的排风箱可以不带新风口,当室外机组是排风箱时,室内可以设、也可以不设排风箱,室内排风箱可以带、也可以不带新风口。
9. 热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,其中一种热泵系统带有可以储存液态制冷剂的气缸活塞式储液器,其特征在于,气缸活塞式储液器主要由气缸外壳、活塞、气缸端盖、制冷剂循环管组成,气缸端盖带有制冷剂循环管,它连接在热泵系统的冷凝器与蒸发器之间的制冷剂循环管上,并与膨胀节流阀相连,保证制冷剂的循环和节流,活塞可以在气缸内移动,它从高压端移动到低压端,从而在气缸内形成储存高压液态制冷剂的空间,活塞上也可以带有节流孔管,一部分高压液态制冷剂可从此节流到低压端,起到膨胀节流器的作用。
10. 热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,其中一种热泵系统带有可以储存液态制冷剂的隔膜式储液器,其特征在于,隔膜式储液器主要由罐体、隔膜、节流孔管、制冷剂循环管组成,隔膜采用不渗漏的弹性或柔性材料,它位于罐体的中央,将其分隔成左右两个独立空间,在罐体的下部连接有制冷剂循环管,这些管道与罐体隔膜两侧的空间相连通,它连接在热泵系统的冷凝器与蒸发器之间,并与膨胀节流器相连,保证制冷剂的循环和节流,当制冷剂循环管一侧接高压端、另一侧接低压端时,隔膜从高压侧向低压侧伸展或膨胀,在高压侧形成较大的空间,高压液态制冷剂在其中流通循环,一部分流向膨胀节流器,多余的部分储存其中,在罐体的下部可以带有节流孔管,它将隔膜两侧空间相连通,一部分高压液态制冷剂可从此节流到低压端,起到膨胀节流器的作用。
11. 热泵热回收空调机组,它是由送风箱、排风箱、热泵系统、配电控制系统组成,其中一种热泵系统带有共用储液器,其特征在于,热泵系统带有双向膨胀节流器,通过多种阀门组合及工况转换,不论系统是制冷运行还是制热运行,都能保证共用储液器运行在高压一侧,用于储存高压液态制冷剂。
PCT/CN2012/074960 2011-05-06 2012-05-01 热泵热回收空调机组 WO2012152199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120141549.4 2011-05-06
CN201120141549 2011-05-06

Publications (1)

Publication Number Publication Date
WO2012152199A1 true WO2012152199A1 (zh) 2012-11-15

Family

ID=47095372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074960 WO2012152199A1 (zh) 2011-05-06 2012-05-01 热泵热回收空调机组

Country Status (2)

Country Link
CN (7) CN102767875A (zh)
WO (1) WO2012152199A1 (zh)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371526A (zh) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 自带冷热源且无辅助换热装置并外输冷热媒的新风机组
CN105371525A (zh) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 自带冷热源且无辅助换热装置并外输冷热水的新风机组
CN106052057A (zh) * 2016-06-01 2016-10-26 苏州格兰斯柯光电科技有限公司 一种管道
CN106152284A (zh) * 2016-08-16 2016-11-23 浙江国祥股份有限公司 一种洁净空调室内机组
CN107014172A (zh) * 2017-05-27 2017-08-04 中原工学院 一种带热回收的三压力风冷热泵烘干系统
CN107726531A (zh) * 2017-11-14 2018-02-23 科林贝思(深圳)科技有限公司 一种热泵新风系统及其控制方法
CN107726532A (zh) * 2017-11-30 2018-02-23 北京三五二环保科技有限公司 一种热泵新风机
CN107869928A (zh) * 2017-12-12 2018-04-03 陈祖卫 空气‑空气换热器及其制冷装置
CN107940805A (zh) * 2017-12-25 2018-04-20 北京中矿博能节能科技有限公司 直冷式深焓取热乏风热泵系统
CN109458723A (zh) * 2018-12-20 2019-03-12 茂名市茂南区沃航制冷节能科技有限公司 一种热泵空调机热量利用装置
CN109453611A (zh) * 2018-12-21 2019-03-12 江苏格陵兰传热科技有限公司 高温烟汽的冷凝水回收利用系统
CN109539406A (zh) * 2018-11-02 2019-03-29 广东申菱环境系统股份有限公司 一种三段式的多联式空调机组
CN109959101A (zh) * 2019-05-05 2019-07-02 李社红 换热装置及具有其的热泵空调系统
CN110345593A (zh) * 2019-08-14 2019-10-18 中原工学院 一种大空间集成型组合式空调机组
CN110454870A (zh) * 2019-09-09 2019-11-15 合肥天鹅制冷科技有限公司 一体化组合式空调机组
CN110671835A (zh) * 2019-11-11 2020-01-10 恒量电器(厦门)有限公司 一种基于温湿度控制和热水加热的集成供应系统及方法
CN112032889A (zh) * 2020-09-28 2020-12-04 江苏华强新能源科技有限公司 一种节能型环境调控装置及其控制方法
CN112856869A (zh) * 2021-02-24 2021-05-28 辽宁沣知稼农业科技发展有限公司 具有冷量回收功能的高效并联无油多机头蒸发冷制冷机组
CN113048587A (zh) * 2021-04-15 2021-06-29 福建省建筑设计研究院有限公司 冷冻除湿及转轮除湿耦合冷凝热回收型温湿度分控空气处理系统
CN113154629A (zh) * 2021-05-19 2021-07-23 珠海格力电器股份有限公司 多联空气处理机组控制方法、装置、系统和存储介质
CN113678739A (zh) * 2021-08-25 2021-11-23 广东唯金智能环境科技有限公司 一种禽畜养殖舍环境控制系统及其控制方法
CN113865149A (zh) * 2021-08-30 2021-12-31 浙江工业大学 高温灭新冠病毒的复合热泵系统
CN114623514A (zh) * 2022-02-23 2022-06-14 宁波德业日用电器科技有限公司 一种全热新风除湿机及其运行方法
CN114856991A (zh) * 2021-01-20 2022-08-05 浙江雪波蓝科技有限公司 热力泵、具有该热力泵的朗肯循环系统及其应用
EP4036495A3 (en) * 2021-01-27 2022-10-12 LGL France S.A.S. Thermodynamic heat recovery without an additional thermodynamic circuit
CN112797493B (zh) * 2021-01-13 2023-12-22 青岛海信日立空调系统有限公司 一种新风空调器及其控制方法
CN117663564A (zh) * 2024-01-31 2024-03-08 荏原冷热系统(中国)有限公司 一种离心式蒸汽热泵气液分离器控制系统

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013131436A1 (zh) * 2012-03-05 2013-09-12 Rong Guohua 热回收空调机组
CN102914033A (zh) * 2012-11-22 2013-02-06 苏州启山电器技术开发事务所(普通合伙) 新风空调系统
CN103134130A (zh) * 2013-01-10 2013-06-05 广东西屋康达空调有限公司 恒温恒湿型直流变频双级热回收空调
CN104251548B (zh) * 2013-06-28 2018-05-04 海尔集团公司 单机空调器换热系统、单机空调器及其控制方法
CN109386888B (zh) * 2014-02-21 2021-04-06 大金工业株式会社 空调装置
CN103851707A (zh) * 2014-03-21 2014-06-11 无锡市汉马空调与通风设备有限公司 全新风动力热回收温湿度调节空气净化机
CN104976704B (zh) * 2014-04-08 2017-07-18 上海诺佛尔生态科技股份有限公司 二次热回收新风处理装置的工作方法
CN203837171U (zh) * 2014-04-13 2014-09-17 荣国华 用于风机盘管和热回收新风空调机组的热泵系统
CN104019513A (zh) * 2014-06-26 2014-09-03 湖南日月星能源科技有限公司 一种热泵式新风换气机组
CN105202654B (zh) * 2015-09-02 2019-02-22 广东申菱环境系统股份有限公司 一种应用于地铁站的一体化空调机组及其控制方法
CN105135531B (zh) * 2015-09-24 2017-09-12 无锡同方人工环境有限公司 一种低能耗建筑住宅用的空气调节机组
CN105509199B (zh) * 2016-01-20 2019-02-19 广东申菱环境系统股份有限公司 一种地铁站用一拖多分体式空调机组及其控制方法
CN105774468B (zh) * 2016-03-03 2017-11-24 浙江大学 基于溶液除湿的新能源电动汽车余热储能式空调系统及其方法
CN105605756A (zh) * 2016-03-17 2016-05-25 南京润慧投资管理有限公司 一种超级热回收新风机组
CN105627479A (zh) * 2016-03-18 2016-06-01 上海朗绿建筑科技有限公司 一种单蒸发器多冷凝器的新风除湿机组及空气调节方法
CN105716151B (zh) * 2016-03-31 2017-06-23 荣国华 室内新风和排油烟系统
CN107461959A (zh) * 2016-06-06 2017-12-12 同方人工环境有限公司 一种适用于木材养生房的热泵装置
CN106016629B (zh) * 2016-06-30 2022-06-10 于永康 一种室内空气质量、温度和湿度监测调节系统
CN106052363A (zh) * 2016-07-07 2016-10-26 杭州莱鸿能源科技有限公司 一种热回收热风干燥机
CN106208627A (zh) * 2016-08-17 2016-12-07 泰兴金江化学工业有限公司 一种带减温装置的变频器防爆柜
CN106196380B (zh) * 2016-08-31 2021-11-23 山东华科规划建筑设计有限公司 一种制冷剂过冷热量再利用热回收空气处理机组
CN106482303B (zh) * 2016-11-25 2022-05-17 广州华凌制冷设备有限公司 一种空调器及其制冷控制方法
CN106524269A (zh) * 2016-12-30 2017-03-22 张国华 油烟机
CN106895529A (zh) * 2017-04-10 2017-06-27 深圳沃海森科技有限公司 多级调节的离心式压缩机冷水空调机组
CN107449033A (zh) * 2017-06-29 2017-12-08 斯福朗(北京)环保科技有限公司 一种毛细管辐射系统新风处理机组及其控制方法
CN107366995A (zh) * 2017-07-03 2017-11-21 沈阳建筑大学 一种浴室排风余热回收利用系统
CN107289563A (zh) * 2017-07-29 2017-10-24 荣国华 再热型热泵热回收空调机组
CN108128116B (zh) * 2017-12-12 2021-03-16 上海交通大学 汽车热回收空调系统
CN108266877A (zh) * 2017-12-20 2018-07-10 同济大学 二氧化碳跨临界循环的排风热回收新风空调机组
CN108286755A (zh) * 2018-02-28 2018-07-17 广东省建筑科学研究院集团股份有限公司 一种自带冷源的空气处理机组
CN108317650B (zh) * 2018-02-28 2024-05-14 广东省建筑科学研究院集团股份有限公司 一种带独立新风的多联式空调热泵系统
CN110360699A (zh) * 2018-04-09 2019-10-22 宁波方太厨具有限公司 一种厨房空气调节系统
CN108583206B (zh) * 2018-04-20 2023-12-08 珠海格力电器股份有限公司 空调系统、车辆及空调系统控制方法
CN108954987A (zh) * 2018-05-25 2018-12-07 青岛海尔(胶州)空调器有限公司 空调器及稳压控制方法
CN108592495B (zh) * 2018-06-25 2024-01-16 中国制浆造纸研究院有限公司 一种风冷冰箱加湿系统
CN109297124B (zh) * 2018-11-03 2024-02-23 德州学院 一种高效节能空调机组
CN109373456A (zh) * 2018-11-26 2019-02-22 苏州浩佳节能科技有限公司 一种热回收型空调
CN109405086A (zh) * 2018-11-30 2019-03-01 上海朗绿建筑科技股份有限公司 壁挂式全热回收新风除湿机组
CN109757907B (zh) * 2019-01-09 2021-12-21 青岛海尔空调器有限总公司 能源系统、能源系统的控制方法及装置、存储介质
WO2020206227A1 (en) 2019-04-04 2020-10-08 Oy Halton Group Ltd. Slide-type range hood
CN112050306A (zh) * 2019-06-05 2020-12-08 宁波港菱环境科技股份有限公司 全新风厨房空气调节户用除湿消毒型热回收多功能一体机
CN110500648A (zh) * 2019-06-20 2019-11-26 常州工程职业技术学院 主体外置式空调
CN110285558B (zh) * 2019-06-28 2021-05-25 珠海格力电器股份有限公司 散热效果良好的空调新风机
CN111351150B (zh) * 2020-03-17 2022-02-22 江苏梅萨纳环境科技有限公司 一种热泵热回收型水风一体机组
CN212431129U (zh) * 2020-07-02 2021-01-29 王子捷 一种多功能一体式空调
KR20220011263A (ko) 2020-07-20 2022-01-28 엘지전자 주식회사 냉난방 멀티 공기조화기
CN111727888A (zh) * 2020-07-27 2020-10-02 潍坊双翼环保设备有限公司 用于养殖、种植的室内环境控制机组
CN112780362B (zh) * 2020-12-30 2023-07-28 国网黑龙江省电力有限公司供电服务中心 一种基于电源分级控制的低温环境电能高效利用系统与方法
CN112594985B (zh) * 2020-12-31 2022-04-19 广东积微科技有限公司 一种具有双四通阀多功能多联机系统的回油控制方法
CN112781150A (zh) * 2021-02-08 2021-05-11 苏州大学 一种辐射式制冷制热的被动房
CN113346160A (zh) * 2021-06-04 2021-09-03 华北电力大学 一种混合式动力电池热管理系统及方法
CN113566445B (zh) * 2021-07-29 2022-08-02 青岛久远换热科技有限公司 一种热泵除湿烘干机组
CN113654127B (zh) * 2021-08-20 2022-09-27 美的集团武汉暖通设备有限公司 空调器及其控制方法
CN113757875B (zh) * 2021-10-20 2023-01-10 福建工程学院 一种热回收型相变储能新风系统及其工作方法
CN113983586A (zh) * 2021-11-17 2022-01-28 北京市京科伦冷冻设备有限公司 一种同时进行制冷和制热的多联机中央空调系统
CN114110982B (zh) * 2021-11-24 2023-06-30 广东美的制冷设备有限公司 新风设备控制方法、装置、存储介质及新风设备
CN114396681B (zh) * 2021-12-16 2024-07-19 广东申菱环境系统股份有限公司 一种节能型新风系统
CN114562806B (zh) * 2021-12-22 2023-03-24 兴鼎工程(深圳)有限公司 一种用于节能新风系统的全热回收装置
CN115200109B (zh) * 2022-07-29 2023-07-25 郑州轻工业大学 一种用于快速维持洁净室温湿度恒定的空调系统
CN115342544B (zh) * 2022-08-11 2024-10-18 青岛海尔空调电子有限公司 经济器及空调制冷系统
CN115654622B (zh) * 2022-10-08 2024-07-16 珠海格力电器股份有限公司 新风机组及其控制方法
CN117232071B (zh) * 2023-11-11 2024-01-16 沧州医学高等专科学校 一种楼宇新风预冷预热节能装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228187A (ja) * 2001-02-01 2002-08-14 Kimura Kohki Co Ltd 空冷ヒートポンプ式外気処理空調機
CN2661630Y (zh) * 2003-11-20 2004-12-08 张明亮 隔膜式储液器
JP2006052882A (ja) * 2004-08-10 2006-02-23 Kimura Kohki Co Ltd ヒートポンプ式空調機
CN1963326A (zh) * 2006-11-30 2007-05-16 同济大学 一种能量利用与回收的单元式全空气空调机组
CN101363647A (zh) * 2007-08-08 2009-02-11 陈德 一体化全新风空调
US20100018196A1 (en) * 2006-10-10 2010-01-28 Li Perry Y Open accumulator for compact liquid power energy storage
CN201697394U (zh) * 2010-05-11 2011-01-05 海信(山东)空调有限公司 一种带热水机的热回收型多联热泵空调器
CN102042648A (zh) * 2010-11-29 2011-05-04 青岛海信日立空调系统有限公司 热回收式多联空调机组
CN201819476U (zh) * 2010-08-27 2011-05-04 宁波奥克斯电气有限公司 带有余热回收装置的直流变频空调

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233378A (ja) * 1994-11-29 1996-09-13 Sanyo Electric Co Ltd 空気調和機
JPH10332212A (ja) * 1997-06-02 1998-12-15 Toshiba Corp 空気調和装置の冷凍サイクル
CN2472117Y (zh) * 2001-03-02 2002-01-16 张端桥 一种新风换气节能空调器
ES2553572T3 (es) * 2002-11-21 2015-12-10 Lg Electronics Inc. Aparato de acondicionamiento de aire
CN100501250C (zh) * 2005-08-10 2009-06-17 严继光 具有新风及热回收装置的空调器
CN100451468C (zh) * 2006-06-15 2009-01-14 清华大学 一种热泵驱动的多级溶液除湿和再生新风机组
CN101101142B (zh) * 2006-10-23 2010-05-12 陈国宝 转轮式无冷凝水的节能环保空调
CN201066217Y (zh) * 2007-07-27 2008-05-28 珠海格力电器股份有限公司 一种带有双向储液罐的新型热泵系统
CN101430149A (zh) * 2007-11-08 2009-05-13 无锡同方人工环境有限公司 一种双向过冷储液器
JP4931848B2 (ja) * 2008-03-31 2012-05-16 三菱電機株式会社 ヒートポンプ式給湯用室外機
CN101672512A (zh) * 2008-09-11 2010-03-17 同方人工环境有限公司 一种带分布式冷热源的热回收新风机组
CN201293408Y (zh) * 2008-11-10 2009-08-19 上海耘和空调科技有限公司 立柜式热回收型热泵新风空调机
CN201311008Y (zh) * 2008-11-25 2009-09-16 冉春雨 严寒地区空调余热回收空气源热泵新风机组
CN201540000U (zh) * 2009-09-27 2010-08-04 海尔集团公司 储液器组件和具有该储液器组件的热泵制冷机
KR100999400B1 (ko) * 2010-09-14 2010-12-09 이동건 지열을 이용한 히트펌프 시스템
CN101995062A (zh) * 2010-11-09 2011-03-30 帝思迈环境设备(上海)有限公司 一种全热回收的调湿新风热泵

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228187A (ja) * 2001-02-01 2002-08-14 Kimura Kohki Co Ltd 空冷ヒートポンプ式外気処理空調機
CN2661630Y (zh) * 2003-11-20 2004-12-08 张明亮 隔膜式储液器
JP2006052882A (ja) * 2004-08-10 2006-02-23 Kimura Kohki Co Ltd ヒートポンプ式空調機
US20100018196A1 (en) * 2006-10-10 2010-01-28 Li Perry Y Open accumulator for compact liquid power energy storage
CN1963326A (zh) * 2006-11-30 2007-05-16 同济大学 一种能量利用与回收的单元式全空气空调机组
CN101363647A (zh) * 2007-08-08 2009-02-11 陈德 一体化全新风空调
CN201697394U (zh) * 2010-05-11 2011-01-05 海信(山东)空调有限公司 一种带热水机的热回收型多联热泵空调器
CN201819476U (zh) * 2010-08-27 2011-05-04 宁波奥克斯电气有限公司 带有余热回收装置的直流变频空调
CN102042648A (zh) * 2010-11-29 2011-05-04 青岛海信日立空调系统有限公司 热回收式多联空调机组

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371525A (zh) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 自带冷热源且无辅助换热装置并外输冷热水的新风机组
CN105371526A (zh) * 2015-10-28 2016-03-02 北京格瑞力德空调科技有限公司 自带冷热源且无辅助换热装置并外输冷热媒的新风机组
CN106052057A (zh) * 2016-06-01 2016-10-26 苏州格兰斯柯光电科技有限公司 一种管道
CN106152284A (zh) * 2016-08-16 2016-11-23 浙江国祥股份有限公司 一种洁净空调室内机组
CN107014172B (zh) * 2017-05-27 2023-04-18 中原工学院 一种带热回收的三压力风冷热泵烘干系统
CN107014172A (zh) * 2017-05-27 2017-08-04 中原工学院 一种带热回收的三压力风冷热泵烘干系统
CN107726531A (zh) * 2017-11-14 2018-02-23 科林贝思(深圳)科技有限公司 一种热泵新风系统及其控制方法
CN107726531B (zh) * 2017-11-14 2023-05-09 科林贝思(深圳)科技有限公司 一种热泵新风系统及其控制方法
CN107726532A (zh) * 2017-11-30 2018-02-23 北京三五二环保科技有限公司 一种热泵新风机
CN107869928A (zh) * 2017-12-12 2018-04-03 陈祖卫 空气‑空气换热器及其制冷装置
CN107940805A (zh) * 2017-12-25 2018-04-20 北京中矿博能节能科技有限公司 直冷式深焓取热乏风热泵系统
CN109539406B (zh) * 2018-11-02 2024-06-04 广东申菱环境系统股份有限公司 一种三段式的多联式空调机组
CN109539406A (zh) * 2018-11-02 2019-03-29 广东申菱环境系统股份有限公司 一种三段式的多联式空调机组
CN109458723A (zh) * 2018-12-20 2019-03-12 茂名市茂南区沃航制冷节能科技有限公司 一种热泵空调机热量利用装置
CN109453611B (zh) * 2018-12-21 2024-01-30 江苏格陵兰传热科技有限公司 高温烟汽的冷凝水回收利用系统
CN109453611A (zh) * 2018-12-21 2019-03-12 江苏格陵兰传热科技有限公司 高温烟汽的冷凝水回收利用系统
CN109959101A (zh) * 2019-05-05 2019-07-02 李社红 换热装置及具有其的热泵空调系统
CN110345593A (zh) * 2019-08-14 2019-10-18 中原工学院 一种大空间集成型组合式空调机组
CN110345593B (zh) * 2019-08-14 2024-04-30 中原工学院 一种大空间集成型组合式空调机组
CN110454870A (zh) * 2019-09-09 2019-11-15 合肥天鹅制冷科技有限公司 一体化组合式空调机组
CN110671835B (zh) * 2019-11-11 2023-08-01 恒量电器(厦门)有限公司 一种基于温湿度控制和热水加热的集成供应系统及方法
CN110671835A (zh) * 2019-11-11 2020-01-10 恒量电器(厦门)有限公司 一种基于温湿度控制和热水加热的集成供应系统及方法
CN112032889A (zh) * 2020-09-28 2020-12-04 江苏华强新能源科技有限公司 一种节能型环境调控装置及其控制方法
CN112797493B (zh) * 2021-01-13 2023-12-22 青岛海信日立空调系统有限公司 一种新风空调器及其控制方法
CN114856991A (zh) * 2021-01-20 2022-08-05 浙江雪波蓝科技有限公司 热力泵、具有该热力泵的朗肯循环系统及其应用
CN114856991B (zh) * 2021-01-20 2024-06-04 浙江雪波蓝科技有限公司 热力泵、具有该热力泵的朗肯循环系统及其应用
EP4036495A3 (en) * 2021-01-27 2022-10-12 LGL France S.A.S. Thermodynamic heat recovery without an additional thermodynamic circuit
US11859875B2 (en) 2021-01-27 2024-01-02 LGL France S.A.S. Thermodynamic heat recovery without an additional thermodynamic circuit
CN112856869A (zh) * 2021-02-24 2021-05-28 辽宁沣知稼农业科技发展有限公司 具有冷量回收功能的高效并联无油多机头蒸发冷制冷机组
CN113048587A (zh) * 2021-04-15 2021-06-29 福建省建筑设计研究院有限公司 冷冻除湿及转轮除湿耦合冷凝热回收型温湿度分控空气处理系统
CN113154629A (zh) * 2021-05-19 2021-07-23 珠海格力电器股份有限公司 多联空气处理机组控制方法、装置、系统和存储介质
CN113678739A (zh) * 2021-08-25 2021-11-23 广东唯金智能环境科技有限公司 一种禽畜养殖舍环境控制系统及其控制方法
CN113678739B (zh) * 2021-08-25 2023-11-28 广东唯金智能环境科技有限公司 一种禽畜养殖舍环境控制系统及其控制方法
CN113865149A (zh) * 2021-08-30 2021-12-31 浙江工业大学 高温灭新冠病毒的复合热泵系统
CN114623514A (zh) * 2022-02-23 2022-06-14 宁波德业日用电器科技有限公司 一种全热新风除湿机及其运行方法
CN117663564A (zh) * 2024-01-31 2024-03-08 荏原冷热系统(中国)有限公司 一种离心式蒸汽热泵气液分离器控制系统
CN117663564B (zh) * 2024-01-31 2024-04-02 荏原冷热系统(中国)有限公司 一种离心式蒸汽热泵气液分离器控制系统

Also Published As

Publication number Publication date
CN103075786A (zh) 2013-05-01
CN103277950A (zh) 2013-09-04
CN102767875A (zh) 2012-11-07
CN103398518A (zh) 2013-11-20
CN102767876B (zh) 2014-11-12
CN103398518B (zh) 2016-07-06
CN103322656A (zh) 2013-09-25
CN102767876B9 (zh) 2022-09-30
CN102914011A (zh) 2013-02-06
CN102767876A (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
WO2012152199A1 (zh) 热泵热回收空调机组
CN103912947B (zh) 用于风机盘管和热回收新风空调机组的热泵系统
WO2013131436A1 (zh) 热回收空调机组
WO2016179884A1 (zh) 变制冷剂流量的辐射空调系统
CN101490483B (zh) 换气空调装置
WO2013135135A1 (zh) 用于餐馆的空调系统
WO2013000335A1 (zh) 热能回收装置
US20110100043A1 (en) Air conditioning/ventilating system
CN205717538U (zh) 混合通风采暖空调设备
CN206234930U (zh) 一种基于高温冷冻水的温湿分控新风机组
CN108679870A (zh) 一种带新风处理功能的温湿分控空调系统
CN104061630B (zh) 单元式新风处理机
CN105571017A (zh) 新风处理机组
CN209341472U (zh) 新风再热型热泵热回收空调机组
CN109959099B (zh) 一种多功能除湿新风余热回收热水空调装置
CN101216225A (zh) 一种双温冷水/冷风机组
CN205332392U (zh) 一种机房空调
CN108195007A (zh) 温湿度控制和热量利用的空调系统
CN114562766A (zh) 一种新风机组及方法
JP2009250528A (ja) 換気空調装置
CN216281897U (zh) 新风设备
CN107036194A (zh) 高温水冷双冷源除湿新风换气机组
CN107289563A (zh) 再热型热泵热回收空调机组
CN209214143U (zh) 双冷源新风除湿机组
CN204084622U (zh) 一种单元式新风处理机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782932

Country of ref document: EP

Kind code of ref document: A1